Antibacterial Activity of Copaiba Oil Gel on Dental Biofilm
Simões, Cláudia A.C.G.; Conde, Nikeila C. de Oliveira; Venâncio, Gisely N.; Milério, Patrícia S.L.L.; Bandeira, Maria F.C.L.; da Veiga Júnior, Valdir F.
2016-01-01
Amazonian biodiversity products that have been used for years in folk medicine, have emerged as feasible and promising alternatives for the inhibition of microorganisms in dental biofilm. Copaiba oil, a phytotherapic agent widely used by the Amazonian populations, is known for its antibacterial, anti-inflammatory, anesthetic, healing and antitumor medicinal properties. Objective: The aim of this study was to evaluate the in vitro antibacterial activity of copaiba oil (Copaifera multijuga) gel against strains of Streptococcus sp present in dental biofilm. Materials and Methods: The copaiba oil was obtained and the chemical components were identified. The oil emulsions were formulated and used with the Brain Heart Infusion agar diffusion method with strains of Streptococcus mitis, Streptococcus constellatus and Streptococcus salivarius isolated from patients as well as standard strains of S. mitis (ATCC903), S. mutans (ATCC10449), S. sanguinis (ATCC15300) and S. oralis (ATCC10557). The study groups were as follows: experimental copaiba oil gel, 1% chlorhexidine gel (positive control) and base gel (negative control). The seeded plates were incubated at 37ºC for 12, 24 and 48 hours, respectively. The results obtained were analyzed by Shapiro-Wilk and Friedman Tests (p<0.05) for non parametric data and the Tukey test was used for pH values with 5% level of significance. Results: The experimental copaiba oil gel and 1% chlorhexidine gel showed antibacterial activity against the tested microorganisms. Conclusion: The copaiba oil gel demonstrated antibacterial activity against all the strains of Streptococcus sp tested, suggesting that it can be used for dental biofilm control. PMID:27386004
USDA-ARS?s Scientific Manuscript database
In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...
Guimarães, Anna Luísa Aguijar; Cunha, Elisa Alves; Matias, Fernanda Oliveira; Garcia, Patrícia Guedes; Danopoulos, Panagiota; Swikidisa, Rosita; Pinheiro, Vanessa Alves; Nogueira, Rodrigo José Lupatini
2016-01-01
The Amazon rainforest is the largest reserve of natural products in the world. Its rich biodiversity of medicinal plants has been utilized by local populations for hundreds of years for the prevention and treatment of various diseases and ailments. Oil extracts from plant species such as Copaifera officinalis and Pentaclethra macroloba are used in compounded formulations for their antiinflammatory, antimicrobial, emollient, moisturizing, and wound-healing activities. The objective of this study was to investigate the in vitro bacteriostatic effect of two Amazonian oils, Copaiba and Pracaxi, against Staphylococcus aureus, a clinically important microorganism responsible for wound infection, to support the use of these oils as novel natural products for compounded wound-treatment modalities. The antibacterial activity of Copaiba and Pracaxi oils against a standard strain of Staphylococcus aureus was assessed using broth microdilution to determine the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of the oil extracts. Copaiba oil demonstrated antibacterial activity against Staphylococcus aureus, with a Minimum Inhibitory Concentration of 0.3125 mg/mL and a Minimum Bactericidal Concentration of 0.3125 mg/mL. Conversely, Pracaxi oil failed to inhibit Staphylococcus aureus growth. While additional studies are required to further evaluate the antimicrobial activity of Pracaxi oil, even low concentrations of Copaiba oil effectively inhibited Staphylococcus aureus growth, supporting its potential use as a promising adjuvant in compounded topical formulations for wound and scar healing.
Botelho, Nara Macedo; Corrêa, Suelen Costa; Lobato, Rodolfo Costa; Teixeira, Renan Kleber Costa; Quaresma, Juarez Antônio Simões
2013-03-01
To investigate the immunohistochemistry of the uterine cervix of 20 Wistar rats (Rattus norvegicus) bearing the Walker 256 tumor, treated with copaiba oil (Copaifera officinalis). The animals were grouped into four subgroups, with five rats each: the GCT and GCopT received distilled water and topically copaiba, respectively, while the GCG and GCopG received distilled water and copaiba by gavage, respectively. The substances were administered for nine days. On the 12th day, after euthanasia, the tumor pieces were sent to the identification of T CD4+, T CD8+ and Natural Killer cells. It was found that the pattern of expression for specific markers of phenotypes of cells involved in tumor immune response was similar in all groups, regardless the administration way of copaiba oil (topical or gavage). Copaiba balsam, administered either topically or by gavage, did not alter the pattern of tumor immune response in rats bearing Walker 256 Tumor.
Soares, Deivid C.; Portella, Nathalya A.; Ramos, Mônica Freiman de S.; Siani, Antonio C.; Saraiva, Elvira M.
2013-01-01
This study investigated the leishmanicidal activity against Leishmania amazonensis of four commercial oils from Copaifera spp. named as C1, C2, C3, and C4, the sesquiterpene and diterpene pools obtained from distilling C4, and isolated β-caryophyllene (CAR). Copaiba oils chemical compositions were analyzed by gas chromatography and correlated with biological activities. Diterpenes-rich oils C2 and C3 showed antipromastigote activity. Sesquiterpenes-rich C1 and C4, and isolated CAR presented a dose-dependent activity against intracellular amastigotes, with IC50s of 2.9 µg/mL, 2.3 µg/mL, and 1.3 µg/mL (6.4 µM), respectively. Based on the highest antiamastigote activity and the low toxicity to the host cells, C4 was steamdistillated to separate pools of sesquiterpenes and diterpenes. Both pools were less active against L. amazonensis and more toxic for the macrophages than the whole C4 oil. The leishmanicidal activity of C3 and C4 oils, as well as C4 fractions and CAR, appears to be independent of nitric oxide production by macrophages. This study pointed out β-caryophyllene as an effective antileishmanial compound and also to its role as potential chemical marker in copaiba oils or fractions derived thereof, aiming further development of this rainforest raw material for leishmaniasis therapy. PMID:23864897
Garrido, Angela Delfina Bittencourt; de Cara, Sueli Patricia Harumi Miyagi; Marques, Marcia Martins; Sponchiado, Emílio Carlos; Garcia, Lucas da Fonseca Roberti; de Sousa-Neto, Manoel Damião
2015-01-01
Background: The constant development of new root canal sealers has allowed the solution of a large number of clinical cases in endodontics, however, cytotoxicity of such sealers must be tested before their validation as filling materials. The aim of this study was to evaluate the cytotoxic effect of a new Copaiba oil-based root canal sealer (Biosealer [BS]) on osteoblast-like Osteo-1 cells. Materials and Methods: The experimental groups were formed according to the culture medium conditioned with the tested sealers, as follows: Control group (CG) (culture medium without conditioning); Sealer 26 (S26) - culture medium + S26; Endofill (EF) - culture medium + EF; AH Plus (AHP) - culture medium + AHP; and BS - culture medium + BS (Copaiba oil-based sealer). The conditioned culture medium was placed in contact with 2 × 104 cells cultivated on 60 mm diameter Petri dishes for 24 h. Then, hemocytometer count was performed to evaluate cellular viability, using Trypan Blue assay. The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for cellular viability were statistically analyzed (1-way ANOVA, Tukey's test - P < 0.05), with a significance level of 5%. Results: S26, EF and AHP presented decreased cellular viability considerably, with statistical significance compared with CG (P < 0.05). BS maintained cellular viability similar to CG (P > 0.05). Conclusion: The Copaiba oil-based root canal sealer presented promising results in terms of cytotoxicity which indicated its usefulness as a root canal sealer. PMID:25878676
Fonseca, Renata G; Barros, Francisco M; Apel, Miriam A; Poser, Gilsane L von; Andriolli, Jo O L; Filho, Pedro C Campos; Sousa, Dhierlate F; Lobo, Ivon P; Conceiç O, Aline O
2015-01-01
The copaiba oil is a common natural product used in cosmetic industry and as a nutraceutical product. However, lack of quality control and scarce knowledge about its antimicrobial activity is a point of concern. The proposal of this study was to investigate the physicochemical properties and the antimicrobial activity of five commercial brands of copaiba oil. Acidity and ester index, refractory index, solubility in alcohol, and thin layer chromatography were performed to verify the physicochemical properties of five commercial copaiba oils sold in local pharmacies. Ultra performance liquid chromatography coupled with diode-array detection and electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-DAD/ESI-Q-TOF-MS) was used to investigate diterpene acids while the volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS). Antibacterial and antifungal activities were also evaluated by agar diffusion technique; and minimal inhibitory concentration and maximal bactericidal concentration were defined for each sample and bacteria. The physical-chemical analysis revealed heterogeneity between all samples analysed. The A1 sample showed characteristics of copaiba oil and was mainly composed by hydrocarbon sesquiterpenes (29.95% β-bisabolene, 25.65% Z-α-bergamotene and 10.27% β-cariophyllene). Among diterpene acids, the UPLCDAD/ESI-Q-TOF-MS data are compatible with presence of copalic and/or kolavenic acid (m/z 305 [M + H]+). Candida albicans was sensitive to almost all samples at high concentration and Saccaromyces. Cerevisiae showed sensitivity to A1 sample at 100 mg/mL. Although variable, all samples showed antibacterial activity. Significant activity was seen for A3 (19.0 ±0 and 15.6 ±0.5 mm), A4 (16.6 ±0.5 and 15.6 ±0 mm), and A5 (17.1 ±0 and 17.1 ±0 mm) on Staphylococcus saprophyticus and S. aureus, respectively. All samples were active against Klebsiella pneumoniae showing ≥15 mm diameter halo inhibition; and only A2 was active against Eschirichia coli. Phytopatogens tested revealed resistance of Ralstonia solanacearum CGH12 to all samples and susceptibility of Xcv 112 strain of Xanthomonas campestris pv campestris to almost all samples. MIC and MMC showed bacteriostatic effect against clinical interest bacteria and bactericidal effect against phytopatogens. The results from physicochemical analysis reinforce the fact that it is imperative to include simple conventional methods in the analysis of oil products. The analysis of copaiba oil gives safe products and purity which ensure products with quality. Also, since copaiba oil is an over-the-counter product the results indicate that pharmacosurveillance must be improved by the governmental regulation agency to avoid microorganism resistance selection and to achieve better international quality products.
Xavier-Junior, Francisco Humberto; Huang, Nicolas; Vachon, Jean-Jacques; Rehder, Vera Lucia Garcia; do Egito, Eryvaldo Sócrates Tabosa; Vauthier, Christine
2016-12-01
Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil. Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed. Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained. O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.
Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils
NASA Astrophysics Data System (ADS)
Gaspar, André S.; Wagner, Friedrich E.; Amaral, Vítor S.; Costa Lima, Sofia A.; Khomchenko, Vladimir A.; Santos, Judes G.; Costa, Benilde F. O.; Durães, Luísa
2017-02-01
Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7 nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57 emu/g at 5 K and 42 emu/g at 300 K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.
Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology.
da Trindade, Rafaela; da Silva, Joyce Kelly; Setzer, William N
2018-05-18
The oleoresin of Copaifera trees has been widely used as a traditional medicine in Neotropical regions for thousands of years and remains a popular treatment for a variety of ailments. The copaiba resins are generally composed of a volatile oil made up largely of sesquiterpene hydrocarbons, such as β-caryophyllene, α-copaene, β-elemene, α-humulene, and germacrene D. In addition, the oleoresin is also made up of several biologically active diterpene acids, including copalic acid, kaurenoic acid, alepterolic acid, and polyalthic acid. This review presents a summary of the ecology and distribution of Copaifera species, the traditional uses, the biological activities, and the phytochemistry of copaiba oleoresins. In addition, several biomolecular targets relevant to the bioactivities have been implicated by molecular docking methods.
Agollo, Marjorie Costa; Miszputen, Sender Jankiel; Diament, Jayme
2014-01-01
We report a case of liver damage in an elderly patient after the use of herbal products of Hypericum perforatum and copaiba (Copaifera langsdorffii Desf). Hepatotoxicity related to Hypericum perforatum is anecdotally known, but for copaiba, widely used as anti-inflammatory, there is just experimental data in the national literature. This report aimed to draw attention to the possible toxic effects of this association as well as to the clinical recovery of the patient after discontinuing their use. There is a tendency to suspect of the action of drugs to justify a non-viral acute liver injury, because of the large number of drugs responsible for hepatotoxicity. There are experiments and clinical reports in the literature describing some herbal products, including Hypericum perforatum, as the causative agents of this aggression, and are considered innocuous and used with no restrictions. We must remember that adverse reactions also occur with these substances; hence, they should be investigated when collecting the patient´s history, for leading to severe liver failure. PMID:25167337
Krause, Andre; Wu, Yu; Tian, Runtao; van Beek, Teris A
2018-04-24
High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential oils, taking patchouli essential oil as a test case. Patchouli essential oil is frequently adulterated, even today. In total, 75 genuine patchouli essential oils, 10 commercial patchouli essential oils, 10 other essential oils, 17 adulterants, and 1 patchouli essential oil, spiked at 20% with those adulterants, were measured. Visual inspection of the NMR spectra allowed for easy detection of 14 adulterants, while gurjun and copaiba balsams proved difficult and one adulterant could not be detected. NMR spectra of 10 random essential oils differed not only strongly from patchouli essential oil but also from one another, suggesting that fingerprinting by low-field NMR is not limited to patchouli essential oil. Automated chemometric evaluation of NMR spectra was possible by similarity analysis (Mahalanobis distance) based on the integration from 0.1 - 8.1 ppm in 0.01 ppm increments. Good quality patchouli essential oils were recognised as well as 15 of 17 deliberate adulterations. Visual qualitative inspection by GC-MS allowed for the detection of all volatile adulterants. Nonvolatile adulterants, and all but one volatile adulterant, could be detected by semiquantitation. Different chemometric approaches showed satisfactory results. Similarity analyses were difficult with nonvolatile adulterants. Refractive index measurements could detect only 8 of 17 adulterants. Due to advantages such as simplicity, rapidity, reproducibility, and ability to detect nonvolatile adulterants, 60 MHz 1 H-NMR is complimentary to GC-MS for quality control of essential oils. Georg Thieme Verlag KG Stuttgart · New York.
Rutten, A M
1994-10-01
In 1686 the Zeeland Chamber of the West Indian Company undertook a serious effort to establish a colony on the Wild Coast at the Pomeroon. The Wild Coast, a territory described as stretching from the Amazon to the Orinoco river, was of growing significance for the trade in pharmaceutical and technical products of the Guyana country: dyes, letterwood, balsam of copaiba, tobacco, sugar, vanilla beans and carape oil. The expedition consisted of the ship 'De Vrijheyt' which was dispatched from Flushing with the new commander Jacob de Jongh, his family, some soldiers and the surgeon David van Cassel aboard. The latter could rely on a surgeon chest with 103 medicines. The new Pomeroon colony however quickly collapsed. Mortality due to dysentery and malaria was high and the lack of leadership led to faulty discipline. The list of medicines used to combat diseases is reviewed in this article. Antimony takes an important place in the assortment and theriac was used for its anti-inflammatory activity.
Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies.
Ribeiro, Lígia N M; Breitkreitz, Márcia C; Guilherme, Viviane A; da Silva, Gustavo H R; Couto, Verônica M; Castro, Simone R; de Paula, Bárbara O; Machado, Daisy; de Paula, Eneida
2017-08-30
In a nanotechnological approach we have investigated the use of natural lipids in the preparation of nanostructured lipid carriers (NLC). Three different NLC composed of copaiba oil and beeswax, sweet almond oil and shea butter, and sesame oil and cocoa butter as structural matrices were optimized using factorial analysis; Pluronic® 68 and lidocaine (LDC) were used as the colloidal stabilizer and model encapsulated drug, respectively. The optimal formulations were characterized by different techniques (IR-ATR, DSC, and TEM), and their safety and efficacy were also tested. These nanocarriers were able to upload high amounts of the anesthetic with a sustained in vitro release profile for 24h. The physicochemical stability in terms of size (nm), PDI, zeta potential (mV), pH, nanoparticle concentration (particles/mL), and visual inspection was followed during 12months of storage at 25°C. The formulations exhibited excellent structural properties and stability. They proved to be nontoxic in vitro (cell viability tests with Balb/c 3T3 fibroblasts) and significantly improved the in vivo effects of LDC, over the heart rate of zebra fish larvae and in the blockage of sciatic nerve in mice. The results from this study support that the proper combination of natural excipients is promising in DDS, taking advantage of the biocompatibility, low cost, and diversity of lipids. Copyright © 2017 Elsevier B.V. All rights reserved.
Corn kernel oil and corn fiber oil
USDA-ARS?s Scientific Manuscript database
Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...
Microwave-assisted hydrodistillation of essential oil from rosemary.
Karakaya, Sibel; El, Sedef Nehir; Karagozlu, Nural; Sahin, Serpil; Sumnu, Gulum; Bayramoglu, Beste
2014-06-01
Effects of microwave assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) methods on yield, composition, specific gravity, refractive index, and antioxidant and antimicrobial activities of essential oil of Rosmarinus officinalis L were studied. The main aroma compounds of rosemary essential oil were found as 1,8-cineole and camphor. Trolox equivalent antioxidant capacity (TEAC) values for essential oils extracted by MAHD and HD were 1.52 mM/ml oil and 1.95 mM/ml oil, respectively. DPPH radical scavenging activity of the oils obtained by MAHD and HD were found as 60.55% and 51.04% respectively. Inhibitory effects of essential oils obtained by two methods on linoleic acid peroxidation were almost the same. Essential oils obtained by two methods inhibited growth of Esherichia coli O157:H7, Salmonella typhimurium NRRLE 4463 and Listeria monocytogenes Scott A with the same degree. However, inhibitory activity of essential oil obtained by MAHD on Staphylococcus aureus 6538P was stronger than that of obtained by HD (p < 0.05).
Kokoska, L; Havlik, J; Valterova, I; Sovova, H; Sajfrtova, M; Jankovska, I
2008-12-01
Nigella sativa L. seed essential oils obtained by hydrodistillation (HD), dry steam distillation (SD), steam distillation of crude oils obtained by solvent extraction (SE-SD), and supercritical fluid extraction (SFE-SD) were tested for their antibacterial activities, using the broth microdilution method and subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the essential oils tested differed markedly in their chemical compositions and antimicrobial activities. The oils obtained by HD and SD were dominated by p-cymene, whereas the major constituent identified in both volatile fractions obtained by SD of extracted oils was thymoquinone (ranging between 0.36 and 0.38 g/ml, whereas in oils obtained by HD and SD, it constituted only 0.03 and 0.05 g/ml, respectively). Both oils distilled directly from seeds showed lower antimicrobial activity (MICs > or = 256 and 32 microg/ml for HD and SD, respectively) than those obtained by SE-SD and SFE-SD (MICs > or = 4 microg/ml). All oil samples were significantly more active against gram-positive than against gram-negative bacteria. Thymoquinone exhibited potent growth-inhibiting activity against gram-positive bacteria, with MICs ranging from 8 to 64 microg/ml.
Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.
Thermal Characterization of Edible Oils by Using Photopyroelectric Technique
NASA Astrophysics Data System (ADS)
Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.
2013-05-01
Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.
Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique
NASA Astrophysics Data System (ADS)
Cervantes-Espinosa, L. M.; de L. Castillo-Alvarado, F.; Lara-Hernández, G.; Cruz-Orea, A.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.
2014-10-01
Thermal properties of several vegetable oils such as soy, corn, and avocado commercial oils were obtained by using a photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. The obtained results are in good agreement with the thermal effusivity reported for other vegetable oils. All measurements were done at room temperature.
Menichini, Federica; Tundis, Rosa; Bonesi, Marco; de Cindio, Bruno; Loizzo, Monica R; Conforti, Filomena; Statti, Giancarlo A; Menabeni, Roberta; Bettini, Ruggero; Menichini, Francesco
2011-04-01
The chemical composition of the essential oil of Citrus medica L. cv. Diamante peel obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction techniques was determined by GC/MS analysis. Forty-six components were fully characterised. Limonene and γ-terpinene were the major components of the oils obtained by hydrodistillation (HD) and cold-pressing (CP), while citropten was the major constituent in the oil obtained by supercritical carbon dioxide extraction (SFE). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. The essential oil obtained by hydrodistillation exerted the highest inhibitory activity against BChE (IC₅₀ value of 154.6 µg mL⁻¹) and AChE (IC₅₀ value of 171.3 µg mL⁻¹. Interestingly, the oil obtained by cold-pressing exhibited a selective inhibitory activity against AChE. The essential oils have also been evaluated for the inhibition of NO production in LPS induced RAW 264.7 macrophages. The oil obtained by hydrodistillation exerted a significant inhibition of NO production with an IC₅₀ value of 17 µg mL⁻¹ (IC₅₀ of positive control 53 µg mL⁻¹).
Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions. PMID:26641276
Uprety, Bijaya K; Rakshit, Sudip K
2017-12-01
Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.
Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.
Uçar, Suat; Karagöz, Selhan
2017-05-01
The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg -1 and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg -1 . It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.
Włodarczyk-Stasiak, Marzena; Mazurek, Artur; Jamroz, Jerzy
2017-01-01
d. The aim of the study was to evaluate the fat binding and physicochemical properties of the products under conditions of potato starch extrusion containing rapeseed or linseed oil and rapeseed oil with glycerol. The study dealt with the extrudates of potato starch produced with the addition of rape seed or linseed oil and rapeseed oil and glycerol at 22% humidity. The extrudates were obtained at two screw speeds: 80 rpm and 100 rpm. Extrudates containing rapeseed oil and glycerol (R6G) were obtained at a temperature distribution of 115/130/150°C, while those with the participation of rapeseed oil and linseed oil were obtained at 120/135/128°C. Water solubility index (WSI), water absorption index (WAI), specific surface area (SBET) and quantity of fat permanently bound were determined for the products obtained. When oils were added, the solubility of extrudates decreased as compared to the control samples (starch without oil; S). Rapeseed oil added to the starch mixture at the levels of 3 g and 6 g in had no sig- nificant effect on the solubility of the product and amounted to: 80.3–82.6% and 78–79.6%. The largest decrease in solubility (WSI, 55.4–57.1%) was demonstrated for samples with 6% addition of rapeseed oil and 10 g glycerol. For these samples (R6G), a significant increase in the index WAI (376–397%) was recorded. Extrudates obtained with the addition of 3 g of rapeseed oil absorbed slightly more water than those with 6 g of oil added. The specific surface area (SBET 230–256 m2/g) determined from the water vapor adsorption isotherm indicates no statistically significant difference at α = 0.05 for products with rapeseed oil, linseed oil, and controls. A significant increase in the specific surface area (SBET 284–347 m2/g) was observed for samples with 6g rapeseed oil and 10 g glycerol added. For samples with 3 g of rapeseed oil, the amount of bound fat was 1.9–2.1 g/100 g of starch and for 6% the starch percentage was 2.96–3.5 g/100 g. The water solubility of starch extrudates with the addition of oils decreases with an increase in screw speed. Starch extrudates with linseed oil and rapeseed oil plus added glycerol are characterized by an increase in water-absorption capacity with respect to the control extrudates. The products obtained with the addition of rapeseed oil and glycerol exhibit a significant increase in their specific surface area. The quan- tity of fat permanently bound during extrusion depended on: the oil type, its percentage in the mixture and the screw speed. The linseed oil was the least absorbed in the starch structure, but rapeseed oil binding increased with the increase in its level in the mixture.
Fadda, C; Del Caro, A; Sanguinetti, A M; Urgeghe, P P; Vacca, V; Arca, P P; Piga, A
2012-10-01
Extraction technology has a great effect on quality of olive oils. This paper studied 18 months of storage of two Sardinian extra virgin monovarietal oils obtained with a traditional and with a low oxidative stress technology. Oil samples were subjected to the following chemical analyses: acidity, peroxide value, ultraviolet light absorption K₂₃₂ and K₂₇₀, carotenoids, chlorophylls, tocopherols and total polyphenols. The antioxidant capacity of oils, polyphenol extract and oil extract (remaining after polyphenol extraction) was also determined as radical scavenging activity. The results show that both extraction technologies resulted in minor changes in legal and quality indices during storage, due surely to the high quality of the oils as well as to the very good storage conditions used. Oils obtained with the low oxidative stress technology showed lower peroxide value and acidity and resulted in up to 103% higher total polyphenol content as well as increased radical-scavenging activity, with respect to oils obtained with the traditional technology. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 279.43 - Used oil transportation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... identification number; (2) A used oil processing/re-refining facility who has obtained an EPA identification number; (3) An off-specification used oil burner facility who has obtained an EPA identification number... parts 171 through 180. Persons transporting used oil that meets the definition of a hazardous material...
40 CFR 279.43 - Used oil transportation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... identification number; (2) A used oil processing/re-refining facility who has obtained an EPA identification number; (3) An off-specification used oil burner facility who has obtained an EPA identification number... parts 171 through 180. Persons transporting used oil that meets the definition of a hazardous material...
Thermal and Tribological Properties of Jatropha Oil as Additive in Commercial Oil
NASA Astrophysics Data System (ADS)
Gallardo-Hernández, E. A.; Lara-Hernández, G.; Nieto-Camacho, F.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Hernández-Aguilar, C.; Contreras-Gallegos, E.; Torres, M. Vite; Flores-Cuautle, J. J. A.
2017-04-01
The recent use that has been given to bio-oil as an additive, in a commercial engine oil, raises the necessity to study its physical properties. The present study is aimed to obtain thermal properties of blends made with Jatropha-Curcas L. Oil, Crude, and Refined, at different concentrations using SAE40W oil (EO) as a lubricant base. By using photothermal techniques, thermal effusivity and diffusivity were obtained. The obtained results show that thermal effusivity increases from 455 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} to 520 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} as the percentage of additive increases as well, whereas thermal diffusivity values range from 7× 10^{-8}m2{\\cdot }s^{-1} to 10× 10^{-8}m2{\\cdot }s^{-1}. In the present study, four balls test was used in order to obtain friction coefficient and wear scar values for studied samples, the obtained results point out that in general refined Jatropha-Curcas L. oil presents smaller wear scars than the crude one.
Catalytic cracking of Mayan gas oil and selected hydrotreated products: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, J.W.; Zagula, E.J.; Brinkman, D.W.
1988-01-01
The catalytic cracking of a Mayan vacuum gas oil and the products from mild, moderate, and severe hydrotreating of this gas oil was evaluated over a low-metal equilibrium catalyst in a microconfined bed unit (MCBU). Results obtained with the Mayan feedstocks are compared with those of an earlier study conducted with similar feedstocks obtained from a Wilmington (CA) crude oil. Two levels of catalytic cracking severity were used in the evaluation. Performance and product analysis showed that hydrotreating improves the yields obtained from catalytic cracking and the quality of the resultant products. In contrast to results obtained with the Wilmingtonmore » feedstocks, conversion and gasoline yield do not improve with severity of the hydrotreating of the Mayan vacuum gas oils. The insensitivity of the cracking performance to hydrotreating severity may reflect the more facile removal of polar compounds (heteroatom compounds) on hydrotreating of the Mayan gas oil in comparison to the Wilmington. Sulfur and nitrogen contents of the liquid products (gasoline, light cycle oil, heavy cycle oil) decreased as the severity of the feed hydrotreating increased. 7 refs., 12 figs., 15 tabs.« less
Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2013-06-05
This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.
NASA Astrophysics Data System (ADS)
Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.
2011-05-01
Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.
A photometric method for the estimation of the oil yield of oil shale
Cuttitta, Frank
1951-01-01
A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.
Oil from hydrocracking as a raw material for the production of white oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potanina, V.A.; Dremova, T.I.; Ponomareva, T.P.
1984-01-01
This article investigates the feasibility of using distillate oil from hydrocracking for white oil production. A process technology has been developed in the USSR for the manufacture of high-quality oils by hydrocracking a heavy distillate feed in high-pressure equipment. The neutral and hydrocracked oil sample and a blend of these stocks were subjected to treatment with oleum, neutralization with 65% ethyl alcohol, and contact finishing to obtain white oils. The physicochemical properties of the white oils are given. It is determined that the hydrocracked oil can be used as the raw material in manufacturing perfume oil meeting the standard GOSTmore » 4225-76, and that the blends can be used to obtain pharmaceutical white oil meeting the standard GOST 3164-78.« less
Contri, Renata V; Kulkamp-Guerreiro, Irene C; da Silva, Sheila Janine; Frank, Luiza A; Pohlmann, Adriana R; Guterres, Silvia S
2016-08-01
The rose-hip oil holds skin regenerating properties with applications in the dermatological and cosmetic area. Its nanoencapsulation might favor the oil stability and its incorporation into hydrophilic formulations, besides increasing the contact with the skin and prolonging its effect. The aim of the present investigation was to develop suitable rose-hip-oil-loaded nanocapsules, to verify the nanocapsule effect on the UV-induced oxidation of the oil and to obtain topical formulations by the incorporation of the nanocapsules into chitosan gel and film. The rose-hip oil (500 or 600 μL), polymer (Eudragit RS100®, 100 or 200 mg), and acetone (50 or 100 mL) contents were separately varied aiming to obtain an adequate size distribution. The results led to a combination of the factors acetone and oil. The developed formulation showed average diameter of 158 ± 6 nm with low polydispersity, pH of 5.8 ± 0.9, zeta potential of +9.8 ± 1.5 mV, rose-hip oil content of 54 ± 1 μL/mL and tendency to reversible creaming. No differences were observed in the nanocapsules properties after storage. The nanoencapsulation of rose-hip oil decreased the UVA and UVC oxidation of the oil. The chitosan gel and film containing rose-hip-oil-loaded nanocapsules showed suitable properties for cutaneous use. In conclusion, it was possible to successfully obtain rose-hip-oil-loaded nanocapsules and to confirm the nanocapsules effect in protecting the oil from the UV rays. The chitosan gel and film were considered interesting alternatives for incorporating the nanoencapsulated rose-hip oil, combining the advantages of the nanoparticles to the advantages of chitosan.
Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin
2017-03-01
Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size ( d =0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d =0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.
Vail, III, William B.
1997-01-01
Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.
Vail, W.B. III
1997-05-27
Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.
Mezza, Gabriela N; Borgarello, Ana V; Grosso, Nelson R; Fernandez, Héctor; Pramparo, María C; Gayol, María F
2018-03-01
The objective of this study was to evaluate the antioxidant activity of rosemary essential oil fractions obtained by molecular distillation (MD) and investigate their effect on the oxidative stability of sunflower oil. MD fractions were prepared in a series of low-pressure stages where rosemary essential oil was the first feed. Subsequently, a distillate (D1) and residue (R1) were obtained and the residue fraction from the previous stage used as the feed for the next. The residue fractions had the largest capacity to capture free radicals, and the lowest peroxide values, conjugated dienes and conjugated trienes. The antioxidant activity of the fractions was due to oxygenated monoterpenes, specifically α-terpineol and cis-sabinene hydrate. Oxidative stability results showed the residues (R1 and R4) and butylated hydroxytoluene had greater antioxidant activity than either the distillate fractions or original rosemary essential oil. The residue fractions obtained by short path MD of rosemary essential oil could be used as a natural antioxidants by the food industry. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.
2018-01-01
A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.
Integrated oil production and upgrading using molten alkali metal
Gordon, John Howard
2016-10-04
A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.
Vail, III, William Banning
2000-01-01
Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.
Breakthrough Adsorption Study of Crude Oil Removal Using Buffing Dust
NASA Astrophysics Data System (ADS)
Setyaningsih, L. W. N.; Yuliansyah, A. T.; Prasetyo, A.; Arimanintan, S. K.; Putri, D. R.
2018-05-01
The utilization of leather industry solid waste as adsorbent to separate oil from water emulsions of surfactant flooding process is a solution that is relatively inexpensive. This study was conducted aiming to obtain a mathematical model that is appropriate for the adsorption process of crude oil by buffing dust in emulsion phase with a continuous adsorption method. Variations in the column adsorption experiments were carried out, such as: flow rate of feed of water-crude oil-surfactant, the concentration of crude oil in the feed, and mass of adsorbent used. Data were evaluated using three models: Adams Bohart, Thomas and Yan. Best results are obtained on the following conditions, the feed flow rate of 60 mL/minute, the crude oil concentration in feed is 1.5% volume and the mass of adsorbent used was 10 g. The values of kinetic constant and adsorption capacity obtained from Yan Model was 21.7774 mL/mg/minute and 220.9581 mg/g with the relative error obtained is 5.4424%.
Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin
2017-01-01
Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737
Paibon, W; Yimnoi, C-A; Tembab, N; Boonlue, W; Jampachaisri, K; Nuengchamnong, N; Waranuch, N; Ingkaninan, K
2011-04-01
Several tropical flowers have distinctive fragrances which are very appealing to use in perfumery, cosmetics and spa. However, to obtain a 'natural fragrance' from the flower is a challenge as the scent could change during the extraction process. The aim of the study is to find the suitable procedure for extraction of volatile oils from some Thai fragrant flowers. Three different methods: hydrodistillation, solvent extraction and enfleurage methods have been applied for the extraction of volatile oil from Jasminum sambac L. Aiton; Oleaceae (jasmine). The quantities and quality of jasmine volatile oils obtained from the different tested methods were compared. The solvent extraction method using 95% ethanol provided the greatest level of oil yield. However, sensory evaluation using preference test showed that the scents of the volatile oils from solvent extraction using diethyl ether and from enfleurage method were the closest to the fresh flowers compared with the volatile oils obtained from other methods. Their chemical constituents were analysed using gas chromatography coupled with mass spectrometer. Both volatile oils were then evaluated using a triangle discrimination test. From the triangle test, we found that 14 panellists from the total of 36 could not distinguish between the scents of jasmine oil from enfleurage and fresh jasmine flowers whereas only one panellist could not distinguish between the scent of jasmine oil from the solvent extraction and fresh jasmine flowers. These results suggest that the scent of the volatile oil obtained from the enfleurage method was the closest to fresh flowers compared with that obtained from other methods. This method was then successfully applied for extraction of volatile oils from three other Thai fragrant flowers, Michelia alba DC.; Magnoliaceae, Millingtonia hortensis L.; Bignoniaceae and Hedychium coronarium J. Konig; Zingiberaceae. © 2010 The Authors. Journal compilation © 2010 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
21 CFR 184.1555 - Rapeseed oil.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Rapeseed oil. 184.1555 Section 184.1555 Food and....1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a... occurring in natural rapeseed oil. The rapeseed oil is obtained from the napus and campestris varieties of...
1980-09-01
Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4
de Groot, Anton; Jagtman, Berend A; Woutersen, Marjolijn
A case of allergic contact dermatitis from neem oil is presented. Neem oil (synonyms: Melia azadirachta seed oil [INCI name], nim oil, margosa oil) is a vegetable (fixed) oil obtained from the seed of the neem tree Azadirachta indica by cold pressing. Contact allergy to neem oil has been described previously in only 3 patients. The allergen(s) is/are unknown.
Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.
Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul
2016-01-01
Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.
NASA Astrophysics Data System (ADS)
Ghazali, Q.; Yasin, N. H. M.
2016-06-01
The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.
Subroto, Erna; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R
2017-04-01
A series of experiments was conducted to determine optimum conditions for supercritical carbon dioxide extraction of candlenut oil. A Taguchi experimental design with L 9 orthogonal array (four factors in three levels) was employed to evaluate the effects of pressure of 25-35 MPa, temperature of 40-60 °C, CO 2 flow rate of 10-20 g/min and particle size of 0.3-0.8 mm on oil solubility. The obtained results showed that increase in particle size, pressure and temperature improved the oil solubility. The supercritical carbon dioxide extraction at optimized parameters resulted in oil yield extraction of 61.4% at solubility of 9.6 g oil/kg CO 2 . The obtained candlenut oil from supercritical carbon dioxide extraction has better oil quality than oil which was extracted by Soxhlet extraction using n-hexane. The oil contains high unsaturated oil (linoleic acid and linolenic acid), which have many beneficial effects on human health.
A coloured oil level indicator detection method based on simple linear iterative clustering
NASA Astrophysics Data System (ADS)
Liu, Tianli; Li, Dongsong; Jiao, Zhiming; Liang, Tao; Zhou, Hao; Yang, Guoqing
2017-12-01
A detection method of coloured oil level indicator is put forward. The method is applied to inspection robot in substation, which realized the automatic inspection and recognition of oil level indicator. Firstly, the detected image of the oil level indicator is collected, and the detected image is clustered and segmented to obtain the label matrix of the image. Secondly, the detection image is processed by colour space transformation, and the feature matrix of the image is obtained. Finally, the label matrix and feature matrix are used to locate and segment the detected image, and the upper edge of the recognized region is obtained. If the upper limb line exceeds the preset oil level threshold, the alarm will alert the station staff. Through the above-mentioned image processing, the inspection robot can independently recognize the oil level of the oil level indicator, and instead of manual inspection. It embodies the automatic and intelligent level of unattended operation.
Evaluating lubricating capacity of vegetal oils using Abbott-Firestone curve
NASA Astrophysics Data System (ADS)
Georgescu, C.; Cristea, G. C.; Dima, C.; Deleanu, L.
2017-02-01
The paper presents the change of functional parameters defined on the Abbott-Firestone curve in order to evaluate the surface quality of the balls from the four ball tester, after tests done with several vegetable oils. The tests were done using two grades of rapeseed oil (degummed and refined) and two grades of soybean oil (coarse and degummed) and a common transmission oil (T90). Test parameters were 200 N and 0.576 m/s (1500 rpm) for 60 minutes. For the refined rapeseed oil, the changes in shape of the Abbott-Firestone curves are more dramatic, these being characterized by high values of Spk (the average value for the wear scars on the three balls), thus being 40% of the sum Svk + Sk + Spk, percentage also obtained for the soybean oil, but the value Spk being lower. For the degummed soybean oil, the profile height of the wear scars are taller than those obtained after testing the coarse soybean oil, meaning that the degumming process has a negative influence on the worn surface quality and the lubricating capacity of this oil. Comparing the surface quality of the wear scars on fixed tested balls is a reliable method to point out the lubricant properties of the vegetable oils, especially if they are compared to a “classical” lubricant as a non-additivated transmission mineral oil T90. The best surface after testing was obtained for the soybean oil, followed by T90 oil and the degummed grades of the soybean oil and rapeseed oil (these three giving very close values for the functional parameters), but the refined rapeseed oil generated the poorest quality of the wear scars on the balls, under the same testing conditions.
Simplice, Mouokeu Raymond; Macaire, Womeni Hilaire; Hervé, Njike Ngamga Fabrice; Fabrice, Tonfack Djikeng; Justin, Djopnang DJimbie; François, Tchoumbougnang; Jules-Roger, Kuiate
2018-03-12
Oils of fish origin are a very rich source of Omega - 3 and Omega - 6 fatty acids. They have been suggested to provide numerous health benefits for humans involving antimicrobial properties. Chrysichthys nigrodigitatus and Hepsetus odoe are two fishes well known in Cameroon. The chemical composition and the antibacterial activity of these fishes derived oils are unknown. The study was designed to valorise C. nigrodigitatus and H.s odoe oils activity against food poisoning bacteria. Oils were extracted by pressing and maceration methods. Their quality was assessed by analysing quality indexes including peroxides, acid, iodine, anisidine and thiobarbituric acid values. Chemical analysis was established by gas chromatography coupled to flame ionization detector. Antibacterial activity was evaluated by broth microdilution method. C. nigrodigitatus oil obtained by maceration exhibited highest acid (7.33 ± 0.00 mg KOH/g), anisidine (34.5 ± 1.84) and thiobarbituric acid (7.50 ± 0.30 μmol MDA/Kg) values compared to that obtained by pressing method (9.13 ± 0.64 and 6.72 ± 0.34 μmol MDA/Kg) respectively. H. odoe oil obtained by pressing method showed highest peroxide value (6.22 ± 1.31 meq O 2 /kg). Oil chemical analysis revealed long chain polyunsaturated fatty acids of the ω-3 family: linolenic acid (C18:3); eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) and ω-6 family; arachidonic acid (C20:4). In addition, C. nigrodigitatus oil obtained by pressing and maceration methods showed Minimum Inhibitory Concentrations (MIC) values ranging from 32 to 64 mg/ml. H. odoe oil obtained by pressing method revealed MIC values ranging between 8 and 64 mg/ml. C. nigrodigitatus and H. odoe oils have activity against food poisoning bacteria, due to their chemical composition.
Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.
Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A
2018-03-01
Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vukovic, Nenad; Sukdolak, Slobodan; Solujic, Slavica; Niciforovic, Neda
2009-04-01
The chemical composition of essential oils obtained from the roots, stems, and leaves of Ballota nigra, growing in Serbia, was investigated by gas chromatography/mass spectrometry analyses. Kovats indices, mass spectra, and standard compounds were used to identify a total of 115 individual compounds. The plant produces two types of essential oils. Oils derived from stems and leaves were sesquiterpene rich (78.17% and 88.40%, respectively), containing principally beta-caryophyllene, germacrene D, and alpha-humulene, present in appreciable amounts. In contrast, oil derived from the root was dominated by p-vinylguiacol (9.24%), borneol (7.51%), myrtenol (7.13%), trans-pinocarveol (5.22%), pinocarvone (4.37%), 2-methyl-3-phenylpropanal (4.32%), and p-cymen-8-ol (4.30%). Essential oil obtained from the roots was evaluated for the antimicrobial activity against seven bacterial species and one fungi.
Chen, Shasha; Jia, Wanglu; Peng, Ping'an
2016-08-15
Carbon isotope analysis of n-alkanes produced by the pyrolysis of oil asphaltenes is a useful tool for characterizing and correlating oil sources. Low-temperature (320-350°C) pyrolysis lasting 2-3 days is usually employed in such studies. Establishing a rapid pyrolysis method is necessary to reduce the time taken for the pretreatment process in isotope analyses. One asphaltene sample was pyrolyzed in sealed ampoules for different durations (60-120 s) at 610°C. The δ(13) C values of the pyrolysates were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The molecular characteristics and isotopic signatures of the pyrolysates were investigated for the different pyrolysis durations and compared with results obtained using the normal pyrolysis method, to determine the optimum time interval. Several asphaltene samples derived from various sources were analyzed using this method. The asphaltene pyrolysates of each sample were similar to those obtained by the flash pyrolysis method on similar samples. However, the molecular characteristics of the pyrolysates obtained over durations longer than 90 s showed intensified secondary reactions. The carbon isotopic signatures of individual compounds obtained at pyrolysis durations less than 90 s were consistent with those obtained from typical low-temperature pyrolysis. Several asphaltene samples from various sources released n-alkanes with distinct carbon isotopic signatures. This easy-to-use pyrolysis method, combined with a subsequent purification procedure, can be used to rapidly obtain clean n-alkanes from oil asphaltenes. Carbon isotopic signatures of n-alkanes released from oil asphaltenes from different sources demonstrate the potential application of this method in 'oil-oil' and 'oil-source' correlations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils
Agblevor, Foster A.; Besler-Guran, Serpil
2001-01-01
A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.
Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata
2016-01-01
Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898
Shirooye, Pantea; Mokaberinejad, Roshanak; Ara, Leila; Hamzeloo-Moghadam, Maryam
2016-01-01
Herbal medicines formulated as oils were believed to possess more powerful effects than their original plants in Iranian Traditional Medicine (ITM). One of the popular oils suggested for treatment of various indications was ginger oil. In the present study, to suggest a more convenient method of oil preparation (compared to the traditional method), ginger oil has been prepared according to both the traditional and conventional maceration methods and the volatile oil constituents have been compared. Ginger oil was obtained in sesame oil according to both the traditional way and the conventional (maceration) methods. The volatile oil of dried ginger and both oils were obtained by hydro-distillation and analyzed by gas chromatography/mass spectroscopy. Fifty five, fifty nine and fifty one components consisting 94 %, 94 % and 98 % of the total compounds were identified in the volatile oil of ginger, traditional and conventional oils, respectively. The most dominant compounds of the traditional and conventional oils were almost similar; however they were different from ginger essential oil which has also been to possess limited amounts of anti-inflammatory components. It was concluded that ginger oil could be prepared through maceration method and used for indications mentioned in ITM.
The Obtaining of Oil from an Oil Reservoir.
ERIC Educational Resources Information Center
Dawe, R. A.
1979-01-01
Discusses the mechanics of how an actual oil reservoir works and provides some technical background in physics. An experiment which simulates an oil reservoir and demonstrates quantitatively all the basic concepts of oil reservoir rock properties is also presented. (HM)
A superhydrophobic copper mesh as an advanced platform for oil-water separation
NASA Astrophysics Data System (ADS)
Ren, Guina; Song, Yuanming; Li, Xiangming; Zhou, Yanli; Zhang, Zhaozhu; Zhu, Xiaotao
2018-01-01
Improving the separation efficiency and simplifying the separation process would be highly desired for oil-water separation yet still challenging. Herein, to address this challenge, we fabricated a superhydrophobic copper mesh by an immersion process and exploited it as an advanced platform for oil-water separation. To realize oil-water separation efficiently, the obtained mesh was enfolded directly to form a boat-like device, and it could also be mounted on an open end of a glass barrel to form the oil skimmer device. For these devices, they can collect the floating oils through the pores of the copper mesh while repelling water completely, and the oil collection efficiency is up to 99.5%. Oils collected in the devices can be easily sucked out into a container for storing, without requiring mechanical handing for recycling. Importantly, the miniature boat and the oil skimmer devices can retain their enhanced oil collection efficiency even after 10 cycles of oil-water separation. Moreover, exploiting its superhydrophobicity under oil, the obtained copper mesh was demonstrated as a novel platform to remove tiny water droplets from oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis
Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less
NASA Astrophysics Data System (ADS)
Sweeney, J. L.
1982-06-01
Results obtained through the application of 10 prominent world oil or world energy models to 12 scenarios are reported. These scenarios were designed to bound the range of likely future world oil market outcomes. Conclusions relate to oil market trends, impacts of policies on oil prices, security of oil supplies, impacts of policies on oil security problems, use of the oil import premium in policymaking, the transition to oil substitutes, and the state of the art of world oil modeling.
Yue, Xuan-Feng; Shang, Xiao; Zhang, Zhi-Juan; Zhang, Yan-Ni
2017-04-01
Essential oils from the seed, pulp, and leaf of sea buckthorn were obtained with hydrodistillation, and their phytochemical composition was analyzed through gas chromatography-mass spectrometry. Furthermore, the antibacterial activity of the oils was tested on five food-borne bacteria by spectrometry and evaluated in terms of minimum inhibitory concentration. The results indicate that the composition of all essential oils is dominated by free fatty acids, esters, and alkanes. Minimum inhibitory concentration values on each bacterium were obtained for oils from different parts. The oils from different parts exhibited nearly equal inhibitory effect on Staphylococcus aureus. The pulp oil was found to be the most effective for the rest of bacteria tested except Escherichia coli, on which seed oil shows twice the inhibitory effect to that of leaf or pulp oil. Three natural inhibitory examples were found comparable with or even better than the positive control: pulp oil on Bacillus subtilis, and pulp oil and leaf oil on Bacillus coagulans. Copyright © 2016. Published by Elsevier B.V.
Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test
NASA Astrophysics Data System (ADS)
Nazari, M.; Rasoulifard, M. H.; Hosseini, H.
2016-02-01
In this study, the dielectric breakdown strength of magnetic nanofluids based on transformer mineral oil for use in power systems is reviewed. Nano oil samples are obtained from dispersion of the magnetic nanofluid within uninhibited transformer mineral oil NYTRO LIBRA as the base fluid. AC dielectric breakdown voltage measurement was carried out according to IEC 60156 standard and the lightning impulse breakdown voltage was obtained by using the sphere-sphere electrodes in an experimental setup for nano oil in volume concentration of 0.1-0.6%. Results indicate improved AC and lightning impulse breakdown voltage of nano oil compared to the base oil. AC test was performed again after applying impulse current and result showed that nano oil unlike the base oil retains its dielectric properties. Increase the dielectric strength of the nano oil is mainly due to dielectric and magnetic properties of Fe3O4 nanoparticles that act as free electrons snapper, and reduce the rate of free electrons in the ionization process.
Verzera, Antonella; Trozzi, Alessandra; Gazea, Florea; Cicciarello, Giuseppe; Cotroneo, Antonella
2003-01-01
This paper reports the composition of bergamot oils obtained from plants grafted on the following rootstocks: sour orange, Carrizo citrange, trifoliate orange, Alemow, Volkamerian lemon, and Troyer citrange. The aim of this study is to evaluate the possibility of using rootstocks other than sour orange, checking their effect on the composition of the essential oil. Results are reported for analysis of 203 bergamot oils during the years 1997-1998, 1998-1999, and 1999-2000. The oils were analyzed by HRGC and HRGC/MS; 78 components were identified, and the results were in agreement with those reported in the literature for the Calabrian bergamot oils obtained from industry. Because of the quality of their essential oils, Alemow and Volkamerian lemon can be considered as substitutes for sour orange rootstocks.
Theory of heat transfer and hydraulic resistance of oil radiators
NASA Technical Reports Server (NTRS)
Mariamov, N B
1942-01-01
In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.
Method of and device for detecting oil pollutions on water surfaces
Belov, Michael Leonidovich [Moscow, RU; Gorodnichev, Victor Aleksandrovich [Moscow, RU; Kozintsev, Valentin Ivanovich [Moscow, RU; Smimova, Olga Alekseevna [Moscow, RU; Fedotov, Yurii Victorovich [Moscow, RU; Khroustaleva, Anastasiva Michailovnan [Moscow, RU
2008-08-26
Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.
Methods of making carbon fiber from asphaltenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohnert, George; Bowen, III, Daniel E.
2017-02-28
Making carbon fiber from asphaltenes obtained through heavy oil upgrading. In more detail, carbon fiber is made from asphaltenes obtained from heavy oil feedstocks undergoing upgrading in a continuous coking reactor.
Portable microwave assisted extraction: An original concept for green analytical chemistry.
Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid
2013-11-08
This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.
21 CFR 184.1317 - Garlic and its derivatives.
Code of Federal Regulations, 2014 CFR
2014-04-01
... obtained from Allium sativum, a genus of the lily family. Its derivatives include essential oils, oleo-resins, and natural extractives obtained from garlic. (b) Garlic oil meets the specifications of the...
Piras, Alessandra; Marzouki, Hanen; Maxia, Andrea; Marengo, Arianna; Porcedda, Silvia; Falconieri, Danilo; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia
2017-11-01
In the present work the chemical compositions, measured by GC and GC-MS, of the essential oils obtained by hydrodistillation from leaves of Pistacia terebinthus collected in Bizerte (Tunisia) and Baunei (Italy) are reported. Both essential oils possessed high content of monoterpene hydrocarbons (86.3% and 90.9%, respectively), being α-pinene (62.4 vs. 35.0)%, camphene (3.0 vs. 2.4)%, β-pinene (12.1 vs. 4.5)%, terpinolene (1.7 vs. 35.2)% and β-phellandrene (3.8 vs. 4.5)% the main components. The Tunisian essential oil exhibited higher antifungal activity than the Italian one. Cryptococcus neoformans and the majority of dermatophyte strains showed more sensitivity to the Tunisian oil, when compared to Candida strains, in particular Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum, with MIC and MLC values in the range (0.16-0.32) μL/mL. The results obtained support the use of the oil from Tunisia for the treatment of dermatophytosis.
Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed
2015-01-01
Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884
NASA Technical Reports Server (NTRS)
Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.
2001-01-01
Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.
NASA Astrophysics Data System (ADS)
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang
2017-11-01
In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.
Green bio-oil extraction for oil crops
NASA Astrophysics Data System (ADS)
Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.
2016-06-01
The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.
de Godoy, Luiz Antonio Fonseca; Hantao, Leandro Wang; Pedroso, Marcio Pozzobon; Poppi, Ronei Jesus; Augusto, Fabio
2011-08-05
The use of multivariate curve resolution (MCR) to build multivariate quantitative models using data obtained from comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) is presented and evaluated. The MCR algorithm presents some important features, such as second order advantage and the recovery of the instrumental response for each pure component after optimization by an alternating least squares (ALS) procedure. A model to quantify the essential oil of rosemary was built using a calibration set containing only known concentrations of the essential oil and cereal alcohol as solvent. A calibration curve correlating the concentration of the essential oil of rosemary and the instrumental response obtained from the MCR-ALS algorithm was obtained, and this calibration model was applied to predict the concentration of the oil in complex samples (mixtures of the essential oil, pineapple essence and commercial perfume). The values of the root mean square error of prediction (RMSEP) and of the root mean square error of the percentage deviation (RMSPD) obtained were 0.4% (v/v) and 7.2%, respectively. Additionally, a second model was built and used to evaluate the accuracy of the method. A model to quantify the essential oil of lemon grass was built and its concentration was predicted in the validation set and real perfume samples. The RMSEP and RMSPD obtained were 0.5% (v/v) and 6.9%, respectively, and the concentration of the essential oil of lemon grass in perfume agreed to the value informed by the manufacturer. The result indicates that the MCR algorithm is adequate to resolve the target chromatogram from the complex sample and to build multivariate models of GC×GC-FID data. Copyright © 2011 Elsevier B.V. All rights reserved.
Recycling of waste engine oil for diesel production.
Maceiras, R; Alfonsín, V; Morales, F J
2017-02-01
The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ultrasound-assisted extraction of flaxseed oil using immobilized enzymes.
Long, Jing-jing; Fu, Yu-jie; Zu, Yuan-gang; Li, Ji; Wang, Wei; Gu, Cheng-bo; Luo, Meng
2011-11-01
An aqueous enzymatic process assisted by ultrasound extraction (AEP-UE) was applied to the extraction of oil from flaxseed (Linum usitatissimum L.). The highest oil recovery of 68.1% was obtained when ground flaxseed was incubated with 130 U/g of cellulase, pectinase, and hemicellulase for 12h, at 45°C and pH 5.0. The IC(50) values of oil obtained by AEP-UE and organic solvent extraction (OSE), as measured by DPPH scavenging activity essay, were 2.27 mg/mL and 3.31 mg/mL. The AEP-UE-derived oil had a 1.5% higher content of unsaturated fatty acids than the OSE-derived oil. AEP-UE is therefore a promising environmentally friendly method for large-scale preparation of flaxseed oil. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mohan, Dinesh; Shi, Jenny; Nicholas, Darrel D; Pittman, Charles U; Steele, Philip H; Cooper, Jerome E
2008-03-01
Pine wood, pine bark, oak wood and oak bark were pyrolyzed in an auger reactor. A total of 16 bio-oils or pyrolytic oils were generated at different temperatures and residence times. Two additional pine bio-oils were produced at the National Renewable Energy Laboratory in a fluidized-bed reactor at different temperatures. All these bio-oils were fractionated to obtain lignin-rich fractions which consist mainly of phenols and neutrals. The pyrolytic lignin-rich fractions were obtained by liquid-liquid extraction. Whole bio-oils and their lignin-rich fractions were studied as potential environmentally benign wood preservatives to replace metal-based CCA and copper systems that have raised environmental concerns. Each bio-oil and several lignin-rich fractions were tested for antifungal properties. Soil block tests were conducted using one brown-rot fungus (Gloeophyllum trabeum) and one white-rot fungus (Trametes versicolor). The lignin-rich fractions showed greater fungal inhibition than whole bio-oils for a impregnation solution 10% concentration level. Water repellence tests were also performed to study wood wafer swelling behavior before and after bio-oil and lignin-rich fraction treatments. In this case, bio-oil fractions did not exhibit higher water repellency than whole bio-oils. Comparison of raw bio-oils in soil block tests, with unleached wafers, at 10% and 25% bio-oil impregnation solution concentration levels showed excellent wood preservation properties at the 25% level. The good performance of raw bio-oils at higher loading levels suggests that fractionation to generate lignin-rich fractions is unnecessary. At this more effective 25% loading level in general, the raw bio-oils performed similarly. Prevention of leaching is critically important for both raw bio-oils and their fractions to provide decay resistance. Initial tests of a polymerization chemical to prevent leaching showed some success.
Fast pyrolysis of oil palm shell (OPS)
NASA Astrophysics Data System (ADS)
Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila
2015-04-01
Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.
Extraction of citral oil from lemongrass (Cymbopogon Citratus) by steam-water distillation technique
NASA Astrophysics Data System (ADS)
Alam, P. N.; Husin, H.; Asnawi, T. M.; Adisalamun
2018-04-01
In Indonesia, production of citral oil from lemon grass (Cymbopogon Cytratus) is done by a traditional technique whereby a low yield results. To improve the yield, an appropriate extraction technology is required. In this research, a steam-water distillation technique was applied to extract the essential oil from the lemongrass. The effects of sample particle size and bed volume on yield and quality of citral oil produced were investigated. The drying and refining time of 2 hours were used as fixed variables. This research results that minimum citral oil yield of 0.53% was obtained on sample particle size of 3 cm and bed volume of 80%, whereas the maximum yield of 1.95% on sample particle size of 15 cm and bed volume of 40%. The lowest specific gravity of 0.80 and the highest specific gravity of 0.905 were obtained on sample particle size of 8 cm with bed volume of 80% and particle size of 12 cm with bed volume of 70%, respectively. The lowest refractive index of 1.480 and the highest refractive index of 1.495 were obtained on sample particle size of 8 cm with bed volume of 70% and sample particle size of 15 cm with bed volume of 40%, respectively. The solubility of the produced citral oil in alcohol was 70% in ratio of 1:1, and the citral oil concentration obtained was around 79%.
Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras
2017-01-01
Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065
Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras
2017-01-29
BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.
40 CFR 279.72 - On-specification used oil fuel.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of § 279.11 by performing analyses or obtaining copies of analyses or other information documenting...-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or... meets the specifications for used oil fuel under § 279.11, must keep copies of analyses of the used oil...
Caponio, Francesco; Durante, Viviana; Varva, Gabriella; Silletti, Roccangelo; Previtali, Maria Assunta; Viggiani, Ilaria; Squeo, Giacomo; Summo, Carmine; Pasqualone, Antonella; Gomes, Tommaso; Baiano, Antonietta
2016-07-01
Olive oil flavouring with aromatic plants and spices is a traditional practice in Mediterranean gastronomy. The aim of this work was to compare the influence of two different flavouring techniques (infusion of spices into the oil vs. combined malaxation of olives paste and spices) on chemical and sensory quality of flavoured olive oil. In particular, oxidative and hydrolytic degradation (by routine and non-conventional analyses), phenolic profiles (by HPLC), volatile compounds (by SPME-GC/MS), antioxidant activity, and sensory properties (by a trained panel and by consumers) of the oils were evaluated. The obtained results evidenced that the malaxation method was more effective in extracting the phenolic compounds, with a significantly lower level of hydrolysis of secoiridoids. As a consequence, antioxidant activity was significantly lower in the oils obtained by infusion, which were characterized by a higher extent of the oxidative degradation. The volatile compounds were not significantly influenced by changing the flavouring method, apart for sulfur compounds that were more abundant in the oils obtained by the combined malaxation method. From a sensory point of view, more intense bitter and pungent tastes were perceived when the infusion method was adopted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S
2008-01-01
The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.
da Luz Costa, Jefferson; da Silva, André Luís Lopes; Bier, Mário César Jucoski; Brondani, Gilvano Ebling; Gollo, André Luiz; Letti, Luiz Alberto Junior; Erasmo, Eduardo Andrea Lemus; Soccol, Carlos Ricardo
2015-06-01
The callus growth kinetics allows identifying the appropriate moment for callus pealing and monitoring the accumulation of primary and secondary metabolites. The physic nut (Jatropha curcas L.) is a plant species used for biofuel production due to its high oil content; however, this plant presents a great amount of bioactive compounds which can be useful for industry. The aim of this research was to establish a calli growth curve and to evaluate the fatty acid profile of crude oil extracted from callus. The callus growth kinetics presented a sigmoid standard curve with six distinct phases: lag, exponential, linear, deceleration, stationary, and decline. Total soluble sugars were higher at the inoculation day. Reducing sugars were higher at the inoculation day and at the 80th day. The highest percentage of ethereal extract (oil content) was obtained at the 120th day of culture, reaching 18 % of crude oil from the callus. The calli produced medium-chain and long-chain fatty acids (from 10 to 18 carbon atoms). The palmitic acid was the fatty acid with the highest proportion in oil (55.4 %). The lipid profile obtained in callus oil was different from the seed oil profile.
Tavakoli, Javad; Estakhr, Parviz; Jelyani, Aniseh Zarei
2017-08-01
The present study was carried out to investigate the improvement of oxidative stability of refined olive oil using various concentrations of unsaponifiable matters extracted from Pistacia khinjuk fruit oil (UFO). For further elucidation of UFO antioxidative power, tertbutylhydroquinone (TBHQ) was used in an olive oil sample, too. Oxidative stability of olive oil samples without and with different levels of UFO (50, 100, 250, 500, 750 and 1000 ppm) and TBHQ (100 ppm) were studied via evaluation of conjugated diene value, carbonyl value, oil/oxidative stability index, acid value and total tocopherol (TT) contents through 8 h thermal process at 170 °C. Results obtained by oxidative stability assays revealed that the highest antioxidative activity of olive oil was obtained by 100 ppm of UFO, followed using 100, 250, 500, 750, and 1000 ppm of UFO and 100 ppm TBHQ, respectively. Evaluation of the relationship between oxidative stability indexes and TT changes indicated a strong correlation (R 2 = 0.9718) between mean relative resistance to oxidation and relative resistance to TT reduction during thermal process. By promotion of relative resistance to TT reduction, olive oil samples' relative resistance to oxidation was enhanced exponentially; implying importance of TT in promotion of oxidative stability of edible oils. The results obtained in this study showed that UFO has higher antioxidative activity compared to TBHQ; thus UFO can be considered as a natural antioxidant with ideal antioxidative activity.
Kostić, Milan D; Veličković, Ana V; Joković, Nataša M; Stamenković, Olivera S; Veljković, Vlada B
2016-02-01
This study reports on the use of oil obtained from waste plum stones as a low-cost feedstock for biodiesel production. Because of high free fatty acid (FFA) level (15.8%), the oil was processed through the two-step process including esterification of FFA and methanolysis of the esterified oil catalyzed by H2SO4 and CaO, respectively. Esterification was optimized by response surface methodology combined with a central composite design. The second-order polynomial equation predicted the lowest acid value of 0.53mgKOH/g under the following optimal reaction conditions: the methanol:oil molar ratio of 8.5:1, the catalyst amount of 2% and the reaction temperature of 45°C. The predicted acid value agreed with the experimental acid value (0.47mgKOH/g). The kinetics of FFA esterification was described by the irreversible pseudo first-order reaction rate law. The apparent kinetic constant was correlated with the initial methanol and catalyst concentrations and reaction temperature. The activation energy of the esterification reaction slightly decreased from 13.23 to 11.55kJ/mol with increasing the catalyst concentration from 0.049 to 0.172mol/dm(3). In the second step, the esterified oil reacted with methanol (methanol:oil molar ratio of 9:1) in the presence of CaO (5% to the oil mass) at 60°C. The properties of the obtained biodiesel were within the EN 14214 standard limits. Hence, waste plum stones might be valuable raw material for obtaining fatty oil for the use as alternative feedstock in biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methods of analyzing crude oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooks, Robert Graham; Jjunju, Fred Paul Mark; Li, Anyin
The invention generally relates to methods of analyzing crude oil. In certain embodiments, methods of the invention involve obtaining a crude oil sample, and subjecting the crude oil sample to mass spectrometry analysis. In certain embodiments, the method is performed without any sample pre-purification steps.
30 CFR 250.409 - May I obtain departures from these drilling requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false May I obtain departures from these drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling...
30 CFR 250.409 - May I obtain departures from these drilling requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false May I obtain departures from these drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling...
30 CFR 250.409 - May I obtain departures from these drilling requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false May I obtain departures from these drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling...
30 CFR 250.409 - May I obtain departures from these drilling requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling requirements? The District... 30 Mineral Resources 2 2010-07-01 2010-07-01 false May I obtain departures from these drilling...
30 CFR 250.409 - May I obtain departures from these drilling requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these... 30 Mineral Resources 2 2011-07-01 2011-07-01 false May I obtain departures from these drilling...
Sørensen, J M; Katsiotis, S T
2000-04-01
Mature and immature fruits of a Cretan Vitex agnus-castus L. population were chosen to investigate different parameters such as comminution, maturity, distillation period and extraction method influencing the essential oil yield and composition. The effect of the comminution and the maturity of the plant material showed highly significant differences in yield and composition of the essential oils obtained, as well as the distillation duration from one to five hours and the method applied (hydrodistillation and simultaneous distillation extraction). The variation of 36 essential oil components due to the parameters applied was studied. The results showed that many different essential oil qualities can be obtained from the same plant material according to the parameters employed in its extraction. Entire fruits hydrodistilled for one hour yielded an oil much richer in monoterpene hydrocarbons and oxygenated compounds whereas the best combination to obtain an oil rich in less volatile compounds is by SDE of comminuted fruits for five hours. For mature fruits the main components varied as follows due to the parameters studied: sabinene 16.4-44.1%, 1,8-cineole 8.4-15.2%, beta-caryophyllene 2.1-5.0%, and trans-beta-farnesene 5.0-11.7%.
The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue).
Wang, Pan; Zhan, Sihui; Yu, Hongbing; Xue, Xufang; Hong, Nan
2010-05-01
Pyrolysis of herb residue was investigated in a fixed-bed to determine the effects of pyrolysis temperature and catalysts (ZSM-5, Al-SBA-15 and alumina) on the products yields and the qualities of bio-oils. The results indicated that the maximum bio-oil yield of 34.26% was obtained at 450 degrees Celsius with 10 wt.% alumina catalyst loaded. The pyrolytic oils were examined by ultimate analysis and calorific values determination, and the results indicated that the presence of all catalysts decreased the oxygen content of bio-oils and increased the calorific values. The order of the catalytic effect for upgrading the pyrolytic oil was Al(2)O(3)>Al-SBA-15>ZSM-5. The bio-oil with the lowest oxygen content (26.71%) and the highest calorific value (25.94 MJ kg(-1)) was obtained with 20 wt.% alumina catalyst loaded. Furthermore, the gas chromatography/mass spectrometry (GC/MS) was used in order to investigate the components of obtained pyrolytic oils. It was found that the alumina catalyst could clearly enhance the formation of aliphatics and aromatics. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Status of the bioactive phytoceuticals during deep-fat frying of snack food using nutra-coconut oil.
Maneesh Kumar, M; Faiza, Sheema; Debnath, Sukumar; Nasirullah
2017-10-01
The present study was carried out to study the physico-chemical changes that take place in both product and oil during the deep fat frying of a traditional savoury snack 'kodubale', at 120-160 °C for 120-600 s using coconut oil (CO) and nutra-coconut oil (NCO). Further, kinetic studies on moisture loss, oil uptake, color and degradation of β-carotene, total polyphenol content and antioxidant activity for kodubale was carried out during frying as a function of temperature and time. The study showed that the kinetic coefficients for above parameters increased with temperature and time and the data obtained were well fitted with first order kinetic model. The results also revealed that NCO fried product retained major phenolic acids due to the presence of antioxidants in the NCO which was enriched with flaxseed oil concentrate. The fatty acids profile of oil extracted from products obtained by frying using NCO was characterized with higher ω-3 and ω-6 fatty acids content as compared to same obtained using CO. However, the breaking strength and sensory characteristics of CO and NCO fried kodubale was found to have no significant difference ( p < 0.05).
Dugani, A; Auzzi, A; Naas, F; Megwez, S
2008-01-01
The anti-ulcer activity of the oil and mucilage obtained from flaxseed (Linum usitatissimum) was evaluated in a rat model of ethanol-induced gastric ulcer. Our results show that pretreatment of rats with flaxseed oil and flaxseed mucilage significantly reduced the number and length of gastric ulcers induced by ethanol. Flaxseed oil was more effective than flaxseed mucilage in reducing the number of ulcers. The reduction in ulcer severity (cumulative length in mm) provided by an oral dose of flaxseed oil (5 ml/kg) was more prominent than that obtained by ranitidine (50 mg/kg). This study indicates that both flaxseed oil and flaxseed mucilage can provide a cytoprotective effect against ethanol-induced gastric ulcers in rats. PMID:21503150
Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens
NASA Astrophysics Data System (ADS)
Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.
2006-11-01
Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.
30 CFR 250.410 - How do I obtain approval to drill a well?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You must obtain written... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I obtain approval to drill a well? 250...
Antioxidant Activity of Essential Oil Extracted by SC-CO₂ from Seeds of Trachyspermum ammi.
Singh, Aarti; Ahmad, Anees
2017-07-11
Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO₂) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi . A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO₂ flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO₂ methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w , respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC 50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL -1 , respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO₂ method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity.
Rosa, Antonella; Maxia, Andrea; Putzu, Danilo; Atzeri, Angela; Era, Benedetta; Fais, Antonella; Sanna, Cinzia; Piras, Alessandra
2017-09-01
We studied the total phenols and flavonoids, liposoluble antioxidants, fatty acid and triacylglycerol profiles, and oxidative status of oil obtained from Lycium europaeum fruits following supercritical CO 2 extraction (at 30MPa and 40°C). Linoleic (52%), palmitic (18%), oleic (13%), and α-linolenic (6%) were the main oil fatty acids, while trilinolein and palmitodilinolein/oleodilinolein represented the main triacylglycerols. The oil was characterized by high levels of all-trans-zeaxanthin and all-trans-β-carotene (755 and 332μg/g of oil, respectively), α-tocopherol (308μg/g of oil), total phenols (13.6mg gallic acid equivalents/g of oil), and total flavonoids (6.8mg quercetin equivalents/g of oil). The oil showed radical scavenging activities (ABTS and DPPH assays) and inhibited Caco-2 cell growth. Moreover, the incubation of differentiated Caco-2 cells with a non-toxic oil concentration (100μg/mL) induced a significant intracellular accumulation of essential fatty acids. The results qualify L. europaeum oil as a potential source for food/pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical, physical and tribological investigation of polymercaptanized soybean oil
USDA-ARS?s Scientific Manuscript database
Polymercaptanized soybean oil (PMSO) was investigated for its chemical, physical and tribological properties relative to soybean oil (SO) and also as a potential multi-functional lubricant additive in high oleic sunflower oil (HOSuO). Analytical investigations showed that PMSO is obtained by convers...
Hachicha Hbaieb, Rim; Kotti, Faten; García-Rodríguez, Rosa; Gargouri, Mohamed; Sanz, Carlos; Pérez, Ana G
2015-05-01
The ability of olive endogenous enzymes β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POX), to determine the phenolic profile of virgin olive oil was investigated. Olives used for oil production were stored for one month at 20 °C and 4 °C and their phenolic content and enzymatic activities were compared to those of ripening olive fruits. Phenolic and volatile profiles of the corresponding oils were also analysed. Oils obtained from fruits stored at 4 °C show similar characteristics to that of freshly harvested fruits. However, the oils obtained from fruits stored at 20 °C presented the lowest phenolic content. Concerning the enzymatic activities, results show that the β-glucosidase enzyme is the key enzyme responsible for the determination of virgin olive oil phenolic profile as the decrease in this enzyme activity after 3 weeks of storage at 20 °C was parallel to a dramatic decrease in the phenolic content of the oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baananou, Sameh; Bagdonaite, Edita; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Boughattas, Naceur A
2015-01-01
The anti-inflammatory activity of two extracts from the aerial parts of Ledum palustre has been reported. The volatile oil was obtained by supercritical fluid extraction (SFE) and the essential oil by hydrodistillation (HD). The oils were analysed by gas chromatography-mass spectrometry to monitor their composition. Both extracts shared as main compound (41.0-43.4%) ledol (23.3-26.7%) and ascaridole (15.1-4.5%). The anti-inflammatory activity was evaluated by the subcutaneous carrageenan injection-induced hind paw oedema. The treated animals received essential oil (SFE and HD), the reference group received ketoprofen or piroxicam and the control group received NaCl 0.9%. A statistical analysis was performed by the Student t-test. The results show that L. palustre essential oil enhanced a significant inhibition of oedema (50-73%) for HD oil and (52-80%) for SFE oil. These results were similar to those obtained with piroxicam (70%) and ketoprofen (55%).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tall oil. 186.1557 Section 186.1557 Food and Drugs....1557 Tall oil. (a) Tall oil (CAS Reg. No. 8002-26-4) is essentially the sap of the pine tree. It is obtained commercially from the waste liquors of pinewood pulp mills and consists mainly of tall oil resin...
Sonmezdag, Ahmet Salih; Kelebek, Hasim; Selli, Serkan
2018-02-01
Volatile, aroma-active, and phenolic compounds of pistachio oil obtained from cv. Uzun were investigated in the current study. To obtain a representative aromatic extract, three of the most widely used extraction methods were compared using a representative test; the solvent-assisted flavour extraction (SAFE) aromatic extract from pistachio oil was found to be the most representative. A total of 50 aroma compounds were determined in pistachio oil and it was found that terpenes, aldehydes, and alcohols were the most abundant volatile compounds. Applying GC-MS-olfactometry and aroma extract dilution analysis (AEDA) resulted in a total of 14 aroma-active areas being detected in the extract of pistachio oil. In the phenolic fraction obtained by the LC-ESI-MS/MS method, a total of 12 phenolic compounds was found in the pistachio oil, of which seven compounds were reported for the first time. Eriodictyol-7-O-glucoside and protocatechuic acid were the most dominant phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Shanmugam, Saravanan R; Nam, Hyungseok; Hassan, El Barbary; Dempster, Thomas A
2017-11-01
Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with a high lipid containing algae Nannochloropsis. The higher heating value of bio-oils ranged from 31 to 36MJ/kg and around 50% of the bio-oils was in the vacuum gas oil range while high lipid containing algae Nannochloropsis contained a significant portion (33-42%) in the diesel range. A predictive relationship between bio-oil yields and biochemical compositions was developed and showed a broad agreement between predictive and experimental yields. The aqueous phases obtained had high amount of TOC (12-43g/L), COD (35-160g/L), TN (1-18g/L), ammonium (0.34-12g/L) and phosphate (0.7-12g/L). Copyright © 2017 Elsevier Ltd. All rights reserved.
Mathematical modeling of polymer flooding using the unstructured Voronoi grid
NASA Astrophysics Data System (ADS)
Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.
2017-12-01
Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.
Pulaj, Bledar; Mustafa, Behxhet; Nelson, Kate; Quave, Cassandra L; Hajdari, Avni
2016-05-26
Plant material from different organs of Pistacia terebinthus L., (Anacardiaceae) were collected in Kosovo with aim to analyze the chemical variability of the essential oils among native populations and to test them for potential antibacterial activity against Staphylococcus aureus. Essential oils obtained from leaves, pedicels, fruits and galls were analyzed by GC-FID and GC/MS. Minimum inhibitory concentration (MIC) against three clinically relevant strains of S. aureus (NRS385, LAC and UAMS-1) were used to evaluate the antibacterial activity of essential oils. In total, 33 different compounds were identified. The main constituents were α-pinene (12.58-66.29 %), D-limonene (13.95-46.29 %), β-ocimene (0.03-40.49 %), β-pinene (2.63-20.47 %), sabinene (0.00-5.61 %) and (Z)-β-ocimene (0.00-44.85 %). Antibacterial testing of the essential oils against three clinical isolates of S. aureus revealed that seven of the eight samples had some activity at the concentration range tested (0.04-0.512 % v/v). The gall tissues from both sites produced the highest yield of essential oil (3.24 and 6 %), and both exhibited growth inhibitory activity against S. aureus. The most bioactive essential oils, which exhibited MIC90 values ranging from 0.032-0.128 % v/v, obtained from the fruits of the Ura e Shejtë collection site. Likewise, the leaf and pedicel essential oil from the same site was highly active with MIC90 values of 0.064-0.128 and 0.032-0.256 % v/v, respectively. Principle Component Analyses demonstrated that there is a variation in the chemical composition of essential oil depending on the plant organs from which essential oil are obtained and the geographical origin of the plant populations. The highest variability regarding the chemical composition of essential oil was found between oils obtained from different organs originating from the Prizren site. The MIC90 activity of Pistacia terebinthus was on par or superior compared with Tea Tree Oil control (0.128 % v/v), suggesting that essential oils from this species may have some potential for development as an antibacterial agent for S. aureus infections.
Seiquer, Isabel; Rueda, Ascensión; Olalla, Manuel; Cabrera-Vique, Carmen
2015-12-01
Argan oil is becoming increasingly popular in the edible-oil market as a luxury food with healthy properties. This paper analyzes (i) the bioavailability of the polyphenol content and antioxidant properties of extra virgin argan oil (EVA) by the combination of in vitro digestion and absorption across Caco-2 cells and (ii) the protective role of the oil bioaccessible fraction (BF) against induced oxidative stress. Results were compared with those obtained with extra virgin olive oil (EVO). Higher values of polyphenols and antioxidant activity were observed in the BF obtained after the in vitro digestion of oils compared with the initial chemical extracts; the increase was higher for EVA but absolute BF values were lower than EVO. Bioaccessible polyphenols from EVA were absorbed by Caco-2 cells in higher proportions than from EVO, and minor differences were observed for antioxidant activity. Preincubation of cell cultures with BF from both oils significantly protected against oxidation, limiting cell damage and reducing reactive oxygen species generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Melliou, Eleni; Eleni, Melliou; Michaelakis, Antonios; Antonios, Michaelakis; Koliopoulos, George; George, Koliopoulos; Skaltsounis, Alexios-Leandros; Alexios-Leandros, Skaltsounis; Magiatis, Prokopios; Prokopios, Magiatis
2009-02-18
Tauhe essential oils contained in the rind of the fruit and the leaves of bergamot from Greece (Citrus aurantium subsp. bergamia) were studied. The bergamot trees in question were cultivated on Kefalonia Island. The plant material (leaves and fruits in different stages of maturity) was collected between December and March for a two year period. The rind of the fruit was separated manually and the essential oil was obtained either by cold pressing or by hydrodistillation. The maximum yield calculated on a wet weight of fresh rinds basis was 1.8%. The essential oils were first analyzed by GC-MS with a DB-5 column and then with a beta-Dex enantiomeric column. The main constituent of the cold pressed essential oil of the rind was (-)-linalyl acetate with optical purity >99.9%. Other important constituents were (-)-linalool, (+)-limonene and gamma-terpinene. The best value of linalool/linalyl acetate ratio was 0.38 and the maximum sum of linalool+linalyl acetate was found to be 55.8%. The larvacidal activities of the obtained essential oils and the compounds (+/-)-linalyl acetate, (+/-)-linalool and (-)-linalool were evaluated against larvae of the mosquito species Culex pipiens (Diptera: Culicidae), the West Nile virus vector, under laboratory conditions. The cold pressed essential oil showed an LC(50) value of 58 mg/L, while the LC(50) value of the corresponding essential oil obtained by hydrostillation was 106 mg/L. The essential oil of the leaves presented similar larvicidal toxicity with the cold pressed oil of the rind (LC(50)=68 mg/L).
Sanchez-Suarez, Jf; Riveros, I; Delgado, G
2013-01-01
The leishmanicidal and cytotoxic activity of ten essential oils obtained from ten plant specimens were evaluated. Essential oils were obtained by the steam distillation of plant leaves without any prior processing. Cytotoxicity was tested on J774 macrophages and leishmanicidal activity was assessed against four species of Leishmania associated with cutaneous leishmaniasis. Seven essential oils exhibited activity against Leishmania parasites, five of which were toxic against J774 macrophages. Selectivity indices of >6 and 13 were calculated for the essential oils of Ocimum basilicum and Origanum vulgare, respectively. The essential oil of Ocimum basilicum was active against promastigotes of Leishmania and innocuous to J774 macrophages at concentrations up to 1600 µg/mL and should be further investigated for leishmanicidal activity in others in vitro and in vivo experimental models.
Montevecchi, Marco; Dorigo, Antonio; Cricca, Monica; Checchi, Luigi
2013-07-01
Ozonated oils are antiseptics obtained from the chemical reaction between ozone and unsaturated fatty acids of vegetable oils. The aim of this study was to investigate the antimicrobial effectiveness of a commercially available ozonated oil (O3-Oil), in comparison with 0.2% chlorhexidine digluconate (CHX) and 10% povidone-iodine (PVP-I) through a disk diffusion test. For each antiseptic a series of two-fold dilutions was made, obtaining seven dilutions: 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 and 1:128. The undiluted antiseptics and the seven dilutions were tested against two freeze-dried bacterial strains: Staphylococcus aureus (Sa) and Porphyromonas gingivalis (Pg). O3-Oil showed significantly greater diameters of growth inhibition (p<0.01) than CHX and PVP-I in all dilutions for both tested strains. CHX lost any antibacterial efficacy when diluted more than 1:32. At the highest dilution, the diameters of growth inhibition against Sa were 20.67±0.58 mm and 15.33±0.58 mm, for O3-Oil and PVP-I, respectively. At the same dilution, the diameters of growth inhibition against Pg were: 19.00 mm for O3-Oil and 13.67±0.58 mm for PVP-I. The promising results obtained for the O3-Oil, against the opportunistic Sa, and Pg, one of the main periodontal pathogens, suggest its potential applicability for periodontal treatment. Further preclinical and clinical investigations are warranted.
Fractional conversion of microalgae from water blooms.
Zhou, Yingdong; Li, Linling; Zhang, Rui; Hu, Changwei
2017-09-21
Fractional conversion of natural algae cyanobacteria from Taihu Lake was conducted. The raw Taihu Lake algae (TLA) and pretreated samples were pyrolyzed at 290 °C and 450 °C according to the TGA results. Extraction of lipids or saccharides from the TLA was performed as a pretreatment to obtain lipid extracted algae (LEA) or saccharide extracted algae (SEA). The total yields of bio-oil from fractional pyrolysis were 40.9 wt% from TLA, 42.3 wt% from LEA, and 48.5 wt% from SEA. From TLA, the major components of the bio-oil were fatty acids, amides and hydrocarbons (heptadecane) at 290 °C whereas those at 450 °C were phenols and C 10 -C 15 hydrocarbons. Following the lipid extraction, acids, amides and indoles accounted for a large proportion at 290 °C, while the main products obtained at 450 °C were phenols, indoles and pyrroles. It is worth mentioning that the yield of bio-oil from the LEA had increased, and the composition of the bio-oil was simplified. Moreover, the average molecular weight of the bio-oil obtained from LEA had decreased. Interestingly, the extraction of saccharides inhibited pyrolysis of the lipids, so the distribution of the bio-oil from SEA changed only a little. Fractional pyrolysis of pretreated microalgae not only increased the bio-oil yield but also improved the quality of the bio-oil.
Sharifzadeh, Aghil; Shokri, Hojjatollah
2016-01-01
Objective: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU)-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC). Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis), Zingiber officinale roscoe (Z. officinale roscoe), Matricaria chamomilla (Ma. chamomilla), Trachyspermum ammi (T. ammi) and Origanum vulgare (O. vulgare). The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS). Results: In GC-MS analysis, thymol (63.40%), linalool (42%), α-pinene (27.87%), α-pinene (22.10%), and zingiberene (31.79%) were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P<0.05). The main finding was that the susceptibilities of FLU-resistant C. albicans to essential oils were higher than those of the FLU-susceptible yeasts. Conclusion: Results of this study indicated that the oils from medicinal plants could be used as potential anti FLU-resistant C. albicans agents. PMID:27222835
21 CFR 184.1555 - Rapeseed oil.
Code of Federal Regulations, 2010 CFR
2010-04-01
... hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of saturated fatty acids. The fatty acids are present in the same porportions which result from the full hydrogenation of fatty acids occurring in natural rapeseed oil. The rapeseed oil is obtained from the napus and...
Analysis of method of polarization surveying of water surface oil pollution
NASA Technical Reports Server (NTRS)
Zhukov, B. S.
1979-01-01
A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.
Roussis; Fitzgerald
2000-04-01
The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils.
Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.
Sinağ, Ali; Gülbay, Selen; Uskan, Burçin; Uçar, Suat; Ozgürler, Sara Bilge
2010-01-15
The main objective of this work is to propose an alternative method for evaluation of the waste machinery oil which is an environmental problem in Turkey. For this purpose, pyrolysis of waste machinery oil was conducted in a tubular reactor. Effect of the experimental conditions (various temperatures, catalyst type) on the formation of pyrolytic oil, gas, and char was investigated. Nickel supported on silica and zeolite (HZSM-5) were used as catalysts. Properties of the pyrolytic oils were characterized by gas chromatograph equipped with a mass selective detector (GC-MS), gas chromatography with flame ionization detector (GC-FID for boiling point range distribution), nuclear magnetic resonance ((1)H NMR) spectroscopy, higher heating value measurement, and elemental analysis. The behavior of the metals in the waste machinery oil and the pyrolytic oil samples was also quantitatively detected by inductively coupled plasma (ICP) analysis. As, Cd and Cr contents of the all pyrolytic oils were found as <0.05 ppm, while Cu content of the pyrolytic oils varied between 0.3 ppm and 0.61 ppm. Only Vanadium contents of the pyrolytic oils obtained at 800 degrees C (0.342 ppm) and in the presence of HZSM5 (0.57 ppm) increased compared to that obtained by waste machinery oil (0.1 ppm). Lower metal contents of the pyrolytic oils reveal that pyrolysis of the waste machinery oils leads to the formation of environmental friendly pyrolytic oils with higher heating values.
Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo
2017-11-01
In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 173.275 - Hydrogenated sperm oil.
Code of Federal Regulations, 2014 CFR
2014-04-01
... from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by rendering is refined. The oil is...
Oliveira, Gisele L; Cardoso, Sheila K; Lara, Célio R; Vieira, Thallyta M; Guimarães, Elsie F; Figueiredo, Lourdes S; Martins, Ernane R; Moreira, Davyson L; Kaplan, Maria Auxiliadora C
2013-01-01
Piper aduncum L. is used in folk medicine to treat respiratory and inflammatory diseases. The aim of this study was to analyze the essential oil from leaves of P. aduncum collected in the Brazilian Cerrado, North of Minas Gerais, as well as to evaluate the larvicidal activity of this oil and of its major constituent. The essential oil was analyzed by gas chromatography coupled to flame ionization detector and gas chromatography coupled to mass spectrometry that allowed characterizing 23 compounds (monoterpenes: 90.4%; sesquiterpenes: 7.0%). The major component was 1,8-cineole (53.9%). This oil showed to be very different from those obtained from the same species. Larvae of A. aegypti were exposed to different concentrations of the essential oil and 1,8-cineole. The mortality rate of 100% was obtained after 24 h of treatment with the oil at concentrations of 500 and 1,000 ppm. After 48 h of treatment, the mortality rate was 80% and 50% for concentrations of 250 and 100 ppm, respectively. The LC₅₀ obtained after 24h was estimated in 289.9 ppm and after 48 h was 134.1 ppm. The major compound 1,8-cineole showed no larvicidal activity.
Rajamohan, Sakthivel; Kasimani, Ramesh
2018-04-01
This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.
Antioxidant Activity of Essential Oil Extracted by SC-CO2 from Seeds of Trachyspermum ammi
Singh, Aarti; Ahmad, Anees
2017-01-01
Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO2) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi. A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO2 flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO2 methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w, respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL−1, respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO2 method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity. PMID:28930268
Sözmen, Fazli; Uysal, Burcu; Köse, Elif Odabaş; Aktaş, Ozgür; Cinbilgel, Ilker; Oksal, Birsen S
2012-07-01
The antibacterial activity and chemical composition of the essential oils (EOs) isolated from Origanum bilgeri P.H.Davis by two different extraction methods, i.e., hydrodistillation (HD) and solvent-free microwave extraction (SFME), were examined. This endemic Origanum species had shown very good antibacterial activity. The composition of the O. bilgeri EOs obtained by SFME and HD was investigated by GC/MS analysis. The main components of the oils obtained by both methods were carvacrol (90.20-84.30%), p-cymene (3.40-5.85%), γ-terpinene (0.47-1.20%), and thymol (0.69-1.08%). The EO isolation by SFME offered many important advantages, including a higher extraction yield, a shorter extraction time, and a higher content of the active component carvacrol. The carvacrol-rich oils obtained by both HD and SFME showed a good antibacterial activity. The largest inhibition zones were observed for the O. bilgeri EO obtained by SFME. Our study suggests that O. bilgeri EO has the potential to be used as preventative against bacterial contamination in many foods, instead of the common synthetic antimicrobial products. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Bouajaj, S; Benyamna, A; Bouamama, H; Romane, A; Falconieri, D; Piras, A; Marongiu, B
2013-01-01
Salvia officinalis (Common sage, Culinary sage) is an aromatic plant that is frequently used as a spice in Mediterranean cookery and in the food industry and as a traditional medicine for the treatment of several infectious diseases. The essential oils were obtained by two different methods [hydrodistillation (HD) and microwave (Mw)] from the aerial part of S. officinalis L. growing wild in Ourika-Marrakech in Morocco. Ourika is a large zone of the Atlas Mountains which is considered as a large reserve of Flora, especially medicinal and aromatic plants. The obtained oils were analysed by gas chromatography and gas chromatography-mass spectrometry and compared with that of Tunisia. Thirty-six compounds were identified from the Mw-extracted oil which accounted for 97.32% of the total oil composition. However, 33 compounds obtained by HD representing 98.67%. The major components were trans-thujone (14.10% and 29.84%), 1,8-cineole (5.10% and 16.82%), camphor (4.99% and 9.14%), viridiflorol (16.42% and 9.92%), β-caryophyllene (19.83% and 5.20%) and α-humulene (13.54% and 4.02%). Antibacterial, allelopathic (% germination in lettuce seeds and inhibited root growth obtained after treatment with S. officinalis oils) and antioxidant (IC₅₀ values 22 mg/mL) activities were studied.
Antibacterial Action of Essential Oils of Artemisia as an Ecological Factor
Nagy, Julius G.; Tengerdy, Robert P.
1967-01-01
Bacterial response to increasing amounts of the volatile oils varies significantly according to species of bacteria tested. Among the four species examined, Escherichia coli was the most resistant to the oils, followed by Neisseria sicca, Bacillus subtilis, and Staphylococcus aureus. The oils of Artemisia tridentata seem to have the same degree of antibacterial action as oils obtained from A. nova. PMID:4963443
Viuda-Martos, Manuel; El Gendy, Abd El-Nasser G S; Sendra, Esther; Fernández-López, Juana; Abd El Razik, K A; Omer, Elsayed A; Pérez-Alvarez, Jose A
2010-08-25
The aim of this work was to (i) determine the chemical composition of the essential oils of six spices widely cultivated in Egypt (Origanum syriacum, Majorana hortensis, Rosmarinus officinalis, Cymbopogon citratus, Thymus vulgaris, and Artemisia annua); (ii) determine the antioxidant activity of the Egyptian essential oils by means of five different antioxidant tests; and (iii) determine the effectiveness of these essential oils on the inhibition of Listeria innocua CECT 910. There is a great variability in the chemical composition of essential oils obtained from the six Egyptian aromatic plants. Overall, thyme (highest percentage of inhibition of DPPH radical: 89.40%) and oregano (highest percentage of inhibition of TBARS: 85.79) essential oils presented the best antioxidant profiles, whereas marjoram, lemongrass, and artemisia were highly effective in metal chelating but had a pro-oxidative behavior by Rancimat induction test. Lemongrass essential oil showed the highest antibacterial activity against L. innocua with an inhibition zone of 49.00 mm, followed in effectiveness by thyme, marjoram, and oregano.
Demulsification of water/oil/solid emulsions by hollow-fiber membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tirmizi, N.P.; Raghuraman, B.; Wiencek, J.
1996-05-01
The demulsification techniques investigated use preferential surface wetting to allow separation of oil and water phases in ultrafiltration and microfiltration membranes. A hydrophobic membrane allows the permeation of an oil phase at almost zero pressure and retains the water phase, even though the molecular weight of the water molecule (18) is much smaller than that of the oil molecule (198 for tetradecane, used in this study). Hydrophobic membranes having pore sizes from 0.02 to 0.2 {micro}m were tested for demulsification of water-in-oil emulsions and water/oil/solid mixtures. The dispersed (aqueous)-phase drop sizes ranged from 1 to 5 {micro}m. High separation rates,more » as well as good permeate quality, were obtained with microfiltration membranes. Water content of permeating oil was 32--830 ppm depending on operating conditions and interfacial properties. For emulsions with high surfactant content, simultaneous operation of a hydrophobic and hydrophilic membrane, or simultaneous membrane separation with electric demulsification was more efficient in obtaining complete phase separation.« less
21 CFR 173.275 - Hydrogenated sperm oil.
Code of Federal Regulations, 2010 CFR
2010-04-01
... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...
21 CFR 173.275 - Hydrogenated sperm oil.
Code of Federal Regulations, 2013 CFR
2013-04-01
... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...
21 CFR 173.275 - Hydrogenated sperm oil.
Code of Federal Regulations, 2012 CFR
2012-04-01
... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...
21 CFR 173.275 - Hydrogenated sperm oil.
Code of Federal Regulations, 2011 CFR
2011-04-01
... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...
Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak
2017-07-15
Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.
Garrido-Varo, Ana; Sánchez, María-Teresa; De la Haba, María-José; Torres, Irina; Pérez-Marín, Dolores
2017-01-01
Near-Infrared (NIR) Spectroscopy was used for the non-destructive assessment of physico-chemical quality parameters in olive oil. At the same time, the influence of the sample presentation mode (spinning versus static cup) was evaluated using two spectrophotometers with similar optical characteristics. A total of 478 olive oil samples were used to develop calibration models, testing various spectral signal pre-treatments. The models obtained by applying MPLS regression to spectroscopic data yielded promising results for olive oil quality measurements, particularly for acidity, the peroxide index and alkyl and ethyl ester content. The results obtained indicate that this non-invasive technology can be used successfully by the olive oil sector to categorize olive oils, to detect potential fraud and to provide consumers with more reliable information. Although both sample presentation modes yielded comparable results, equations constructed with samples scanned using the spinning mode provided greater predictive capacity. PMID:29144417
Meccia, Gina; Quintero, Patricia; Rojas, Luis B; Usubillaga, Alfredo; Velasco, Judith; Diaz, Tulia; Diaz, Clara; Velásquez, Jesús; Toro, Maria
2013-11-01
The essential oil obtained by hydrodistillation of Carapa guianensis Aubl. (Meliaceae) leaves was analyzed by GC-FID and GC-MS. Twenty-three components were identified, which made up 93.7% of the oil. The most abundant constituents were bicyclogermacrene (28.5%), alpha-humulene (17.2%), germacrene B (11.9%), and trans-beta-caryophyllene (9.9%). Antimicrobial activity of the essential oil, as well as the crude extracts of the leaves obtained by refluxing the dried leaves with n-hexane, dichloromethane, and methanol, was determined using the disc diffusion assay. Activity against Staphylococcus aureus ATCC 29923 and Enterococcus faecalis ATCC 29212 was only found for the essential oil and the methanolic extract, at minimal inhibitory concentrations (MIC) of 400 microg/mL and 50 microg/mL.
Sanchez-Suarez, JF; Riveros, I; Delgado, G
2013-01-01
Background The leishmanicidal and cytotoxic activity of ten essential oils obtained from ten plant specimens were evaluated. Methods Essential oils were obtained by the steam distillation of plant leaves without any prior processing. Cytotoxicity was tested on J774 macrophages and leishmanicidal activity was assessed against four species of Leishmania associated with cutaneous leishmaniasis. Results Seven essential oils exhibited activity against Leishmania parasites, five of which were toxic against J774 macrophages. Selectivity indices of >6 and 13 were calculated for the essential oils of Ocimum basilicum and Origanum vulgare, respectively. Conclusion The essential oil of Ocimum basilicum was active against promastigotes of Leishmania and innocuous to J774 macrophages at concentrations up to 1600 µg/mL and should be further investigated for leishmanicidal activity in others in vitro and in vivo experimental models. PMID:23682270
USDA-ARS?s Scientific Manuscript database
The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...
Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis
2017-03-01
A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Xiao-Juan; Li, Zhu-Gang; Wang, Xun; Han, Jun-Yan; Zhang, Bo; Fu, Yu-Jie; Zhao, Chun-Jian
2016-12-01
Cavitation-accelerated aqueous enzymatic extraction (CAEE) of seed oil from Cucurbita pepo was performed. An enzyme cocktail comprised of cellulose, pectinase and proteinase can work synergistically in releasing the oil. The CAEE extraction conditions were optimized by a Plackett-Burman design followed by a central composite methodology. A maximal extraction yield of 58.06% was achieved under optimal conditions of vacuum degree -0.07, enzyme amount 1.05% and extraction time 69min. As compared to soxhlet extraction (SE)-derived oil, CAEE-derived oil exhibited similar physical properties and better oxidation stability. In addition, chemical composition analyzing showed that the content of linoleic acid obtained by CAEE (47.67%) was higher than that of SE (44.51%). Moreover, the IC50 of oil obtained by CAEE and SE, as measured by α-amylase inhibition assay, were 40.68μg/mL and 45.46μg/mL. All results suggest that CAEE represents an excellent alternative protocol for production of oil from oil-bearing materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oils from wild, micropropagated plants, calli, and suspended cells of Euphorbia characias L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes-Ferreira, M.; Pais, M.S.S.; Novais, J.M.
1991-12-31
Micropropagated Euphorbia characias plants gave higher yields of crude oil than did wild ones. Leaves of either wild and micropropagated plants contained more oil than did stems. Triterpenols, hydrocarbons, and free and esterified fatty acids are components of the crude oil produced by stems, young and mature leaves of wild and micropropagated E. characias plants, as well as by calli and suspended cells. With the exception of the free fatty acids fraction, all crude oil fractions were higher in micropropagated plants than in the wild ones. The crude oil content of leaves of either wild or micropropagated plants was highermore » than that of stems. However the triterpenols yields were higher in stems than in leaves, both in wild and micropropagated plants. The composition of the triterpenol fraction of the crude oil obtained from calli and suspended cells is quite different from that produced by any in vivo parent plant organ studied. Free fatty acids constitute the main fraction of the crude oil obtained from calli and suspended cells.« less
Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi
2017-10-22
The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.
Ocean experiments and remotely sensed images of chemically dispersed oil spills
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Fedors, J. C.; Hoge, F. E.; Swift, R. N.; Johnson, J. C.
1983-01-01
A series of experiments was performed at sea where the effectiveness of dispersants applied from a helicopter was tested on fresh and weathered crude oils released from a surface research vessel. In conjunction with these experiments, remote sensing measurements using an array of airborne optical and microwave sensors were performed in order to aid in the interpretation of the dispersant effectiveness and to obtain quantitative images of oil on the sea under controlled conditions. Surface oil thickness and volume are inferred from airborne measurements using a dual-channel microwave imaging radiometer, aerial color photography, and an airborne oceanographic lidar. The remotely sensed measurements are compared with point sampled data obtained using a research vessel. The mass balance computations of surface versus subsurface oil volume using remotely sensed and point sampled data are consistent with each other and with the volumes of oil released. Data collected by the several techniques concur in indicating that, for the oils used and under the sea conditions encountered, the dispersant and application method are primarily useful when applied to fresh oil.
Sub-supercritical liquefaction of rice stalk for the production of bio-oil: Effect of solvents.
Li, Rundong; Li, Bingshuo; Yang, Tianhua; Kai, Xingping; Wang, Weidan; Jie, Yefei; Zhang, Yang; Chen, Guanyi
2015-12-01
The effect of solvents (water and ethanol) on liquefaction characteristics of rice stalk (RS) was investigated in an autoclave. The highest conversion and liquid yield in water and ethanol were 84.95 wt%, 72.62 wt% and 78.93wt%, 63.84 wt%, respectively. FTIR and GC-MS of the bio-oils obtained from subcritical water (SubH2O, 300°C) and supercritical ethanol (scEtOH, 300°C) indicated that the behavior of RS liquefaction depended on solvents used. The major components of bio-oil produced in SubH2O were ketones and phenols, while esters and phenols dominated in scEtOH. ICP-OES analysis showed that the concentrations of potassium (K) and sodium (Na) in the bio-oil obtained from scEtOH were 14-15 times higher than that obtained from SubH2O. Ethanol gave rise to an improvement in the bio-oil properties including water content, density, acidity and HHV. It was concluded that the bio-oil from RS can be effectively upgraded in scEtOH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rivera-Rangel, L R; Aguilera-Campos, K I; García-Triana, A; Ayala-Soto, J G; Chavez-Flores, D; Hernández-Ochoa, L
2018-01-01
Two different extraction processes, Soxhlet and ultrasound, were used to obtain the oil extracts of Western Schley, Wichita, and Native pecan nuts cultured in Chihuahua, Mexico. The aspects evaluated in this study were the extraction yield of the processes and fatty acids' profile of the resulting extracts. Gas chromatography coupled with mass spectrometry (GC-MS) was used to identify and determine the composition percentage of fatty acids present in pecan nuts oils extracted. The results obtained show that higher oil extraction yields were obtained by Soxhlet method with hexane (69.90%) in Wichita varieties. Wichita, Western Schley, and Native pecan nuts from Chihuahua are rich in PUFA (polyunsaturated fatty acids) and MUFA (monounsaturated fatty acids) and have low levels of SFA (saturated fatty acids). The predominant fatty acid present in all pecan nuts oils was linoleic acid followed by oleic acid. Myristic acid, palmitic acid, and linolenic acid were also identified in representative quantities. The results from this study suggest that there are statistically significant differences in the chemical composition of the pecan nuts oils extracted from the varieties cultured in Chihuahua, Mexico, and those cultivated in other regions of the world.
Rivera-Rangel, L. R.; Aguilera-Campos, K. I.; García-Triana, A.; Ayala-Soto, J. G.; Chavez-Flores, D.
2018-01-01
Two different extraction processes, Soxhlet and ultrasound, were used to obtain the oil extracts of Western Schley, Wichita, and Native pecan nuts cultured in Chihuahua, Mexico. The aspects evaluated in this study were the extraction yield of the processes and fatty acids' profile of the resulting extracts. Gas chromatography coupled with mass spectrometry (GC-MS) was used to identify and determine the composition percentage of fatty acids present in pecan nuts oils extracted. The results obtained show that higher oil extraction yields were obtained by Soxhlet method with hexane (69.90%) in Wichita varieties. Wichita, Western Schley, and Native pecan nuts from Chihuahua are rich in PUFA (polyunsaturated fatty acids) and MUFA (monounsaturated fatty acids) and have low levels of SFA (saturated fatty acids). The predominant fatty acid present in all pecan nuts oils was linoleic acid followed by oleic acid. Myristic acid, palmitic acid, and linolenic acid were also identified in representative quantities. The results from this study suggest that there are statistically significant differences in the chemical composition of the pecan nuts oils extracted from the varieties cultured in Chihuahua, Mexico, and those cultivated in other regions of the world. PMID:29610686
Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol
Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray; ...
2017-08-08
Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less
Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray
Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less
Translations on North Korea No. 572 Kulloja, No. 11, 1977.
1978-01-25
thoroughly carry through the chuche-oriented oil production line on obtaining edible oil from corn and industrial oils from rice bran , we will be...industrial oils with rice bran . The great leader Comrade Kim Il-song taught as follows: "The question of processing corn by industrial methods is...great leader on extracting oil from corn and rice bran makes it possible within a short period of time to produce oil in large quantities everywhere
Liquid fuels from food waste: An alternative process to co-digestion
NASA Astrophysics Data System (ADS)
Sim, Yoke-Leng; Ch'ng, Boon-Juok; Mok, Yau-Cheng; Goh, Sok-Yee; Hilaire, Dickens Saint; Pinnock, Travis; Adams, Shemlyn; Cassis, Islande; Ibrahim, Zainab; Johnson, Camille; Johnson, Chantel; Khatim, Fatima; McCormack, Andrece; Okotiuero, Mary; Owens, Charity; Place, Meoak; Remy, Cristine; Strothers, Joel; Waithe, Shannon; Blaszczak-Boxe, Christopher; Pratt, Lawrence M.
2017-04-01
Waste from uneaten, spoiled, or otherwise unusable food is an untapped source of material for biofuels. A process is described to recover the oil from mixed food waste, together with a solid residue. This process includes grinding the food waste to an aqueous slurry, skimming off the oil, a combined steam treatment of the remaining solids concurrent with extrusion through a porous cylinder to release the remaining oil, a second oil skimming step, and centrifuging the solids to obtain a moist solid cake for fermentation. The water, together with any resulting oil from the centrifuging step, is recycled back to the grinding step, and the cycle is repeated. The efficiency of oil extraction increases with the oil content of the waste, and greater than 90% of the oil was collected from waste containing at least 3% oil based on the wet mass. Fermentation was performed on the solid cake to obtain ethanol, and the dried solid fermentation residue was a nearly odorless material with potential uses of biochar, gasification, or compost production. This technology has the potential to enable large producers of food waste to comply with new laws which require this material to be diverted from landfills.
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.
NASA Astrophysics Data System (ADS)
Alamsjah, Mochammad Amin; Abdillah, Annur Ahadi; Mustikawati, Hutami; Atari, Suci Dwi Purnawa
2017-09-01
Biodiesel has several advantages over solar. Compared to solar, biodiesel has more eco-friendly characteristic and produces lower greenhouse gas emissions. Biodiesel that is made from animal fats can be produced from fish oil, while other alternative sources from vegetable oils are seaweed Kappaphycus alvarezii and Gracilaria sp. Waste tuna oil (Thunnus sp.) in Indonesia is commonly a side product of tuna canning industries known as tuna precook oil; on the other hand, seaweed Gracilaria sp. and Kappaphycus alvarezii are commonly found in Indonesia's seas. Seaweed waste that was used in the present study was 100 kg and in wet condition, and the waste oil was 10 liter. The seaweed was extracted with soxhletation method that used n-hexane as the solvent. To produce biodiesel, trans esterification was performed on the seaweed oil that was obtained from the soxhletation process and waste tuna oil. Biodiesel manufactured from seaweed K. alvarezii obtained the best score in flash point, freezing point, and viscosity test. However, according to level of manufacturing efficiency, biodiesel from waste tuna oil is more efficient and relatively easier compared to biodiesel from waste K. alvarezii and Gracilaria sp.
NASA Astrophysics Data System (ADS)
Prakash, R.; Murugan, S.
2017-11-01
This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.
Keramati, H; Alidadi, H; Parvaresh, A R; Movahedian, H; Mahvi, A H
2008-10-01
The aim of this research was to sudy the reduction of pollution of vegetable oil manufacturing wastewater with DAF system. At first phase of this examination, the optimum dosage of the coagulants was determined. The coagulants that used in this study were Alum and Ferric Chloride. The second phase was flotation in this series of examinations, oil, COD, total solid, volatile solid, fixed solid and suspended solid measured in raw wastewater and the effluent of the DAF pilot. Optimum value of pH for alum and ferric chloride obtained 7.5 and 5.5, respectively. Optimum dosage for these obtained 30 and 32 mg L(-1) in this research. Mean removal for the parameters ofoil, COD, total solid, volatile solid, fixed solid and suspended solid obtained 75.85, 78.27, 77.32, 82.47, 73.52 and 85.53%, respectively. With pressure rising from 3 to 4 and 5 atm removing rate of COD, total solid, volatile solid, fixed solid parameters reduced, but oil and suspended solid have increase. In addition, following increase of flotation time up to 120 sec all of the measured parameters have increase in removing rate. Optimum A/S for removal of COD, total solid, volatile solid, fixed solid parameters obtained 0.001 and for oil and suspended solid obtained 0.0015.
Olive Oil Based Emulsions in Frozen Puff Pastry Production
NASA Astrophysics Data System (ADS)
Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.
2008-07-01
Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.
30 CFR 250.410 - How do I obtain approval to drill a well?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I obtain approval to drill a well? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You...
30 CFR 250.410 - How do I obtain approval to drill a well?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How do I obtain approval to drill a well? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You...
30 CFR 250.410 - How do I obtain approval to drill a well?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I obtain approval to drill a well? 250..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a...
30 CFR 250.410 - How do I obtain approval to drill a well?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How do I obtain approval to drill a well? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.
2013-08-05
The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less
Method of refining cracked oil by using metallic soaps. [desulfurization of cracked oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masakichi, M.; Marunouchi, K.K.; Yoshimura, T.
1937-04-13
The method of refining cracked oil consists in dissolving oil-soluble heavy metallic soap of oleic acid in a volatile organic solvent which will disperse homogeneously in cracked oil; pouring the solution thus obtained slowly into cracked oil to effect dispersion naturally and homogeneously at room temperature in the cracked oil. This process serves to react the mercaptans in the cracked oil with the heavy metallic soap by a double decomposition reaction and to precipitate the mercaptans as insoluble metallic salts. The remaining liquid is distilled to separate it from the remaining solvent.
Avetisyan, Arpi; Markosian, Anahit; Petrosyan, Margarit; Sahakyan, Naira; Babayan, Anush; Aloyan, Samvel; Trchounian, Armen
2017-01-19
The plants belonging to the Ocimum genus of the Lamiaceae family are considered to be a rich source of essential oils which have expressed biological activity and use in different area of human activity. There is a great variety of chemotypes within the same basil species. Essential oils from three different cultivars of basil, O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. citriodorum Vis. were the subjects of our investigations. The oils were obtained by steam distillation in a Clevenger-type apparatus. The gas chromatography mass selective analysis was used to determine their chemical composition. The antioxidant activities of these essential oils were measured using 1,1-diphenyl-2-picrylhydrazyl assays; the tyrosinase inhibition abilities of the given group of oils were also assessed spectophotometrically, and the antimicrobial activity of the essential oils was determined by the agar diffusion method, minimal inhibitory concentrations were expressed. According to the results, the qualitative and quantitative composition of essential oils was quite different: O. basilicum var. purpureum essential oil contained 57.3% methyl-chavicol (estragol); O. basilicum var. thyrsiflora oil had 68.0% linalool. The main constituents of O. citriodorum oil were nerol (23.0%) and citral (20.7%). The highest antioxidant activity was demonstrated by O. basilicum var. thyrsiflora essential oil. This oil has also exhibited the highest tyrosinase inhibition level, whereas the oil from O. citriodorum cultivar demonstrated the highest antimicrobial activity. The results obtained indicate that these essential oils have antioxidant, antibacterial and antifungal activity and can be used as natural antioxidant and antimicrobial agents in medicine, food industry and cosmetics.
Satyal, Prabodh; Craft, Jonathan D.; Dosoky, Noura S.; Setzer, William N.
2017-01-01
Garlic, Allium sativum, is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale, has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum, cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species. PMID:28783070
Satyal, Prabodh; Craft, Jonathan D; Dosoky, Noura S; Setzer, William N
2017-08-05
Garlic, Allium sativum , is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale , has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum , cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species.
[Diversity of oil-degrading bacteria isolated form the Indian Ocean sea surface].
Wu, Changliang; Wang, Xin; Shao, Zongze
2010-09-01
In order to investigate the diversity of oil-degrading bacteria in the surface seawater across the India Ocean, and to obtain new oil-degrading bacteria. Potential oil-degrading bacteria were selected out via 1:1 mixture of diesel and crude oil as sole carbon source. Meanwhile, the community structure of 13 enrichments was analyzed by polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE). We obtained 51 unique strains of 29 genera after screening via morphological, physiological, biochemical and 16S rRNA analyses. They mainly belonged to a and gamma-Proteobacteria. The four genera Alcanivorax (accounting for 18%), Novosphingobium (10%), Marinobacter (6%) and Thalassospira (6%) were the most predominant bacteria. Ecological analyses showed that the bacteria had high diversity with Shannon-Winner index (H) of 4.57968, and distributed even with Evenness index (E) as 0.8664771. Then Further experiments revealed oil-degrading capability of 49 strains. In addition, our investigation revealed oil-degrading ability of genera Sinomonas, Knoellia and Mesoflavibacter for the first time. DGGE fingerprint patterns indicated that the genus Alcanivorax was an important oil-degrading bacteria in the surface seawater across the India Ocean. This study demonstrated a high diversity of the oil-degradation bacteria in the surface seawater of Indian Ocean, these bacteria are of potential in bioremediation of marine oil pollution.
26 CFR 1.43-2 - Qualified enhanced oil recovery project.
Code of Federal Regulations, 2010 CFR
2010-04-01
... not obtained, to obtain a chemical or physical reaction (other than pressure) between the oil and the... following requirements— (1) The project involves the application (in accordance with sound engineering... engineering principles and whether the change in method will result in more than an insignificant increase in...
Belsito, Emilia L; Carbone, Concetta; Di Gioia, Maria L; Leggio, Antonella; Liguori, Angelo; Perri, Francesca; Siciliano, Carlo; Viscomi, Maria C
2007-09-19
The vacuum distillation of bergamot peels furnishes a high-quality essential oil that is totally bergapten-free. This oil was compared with that produced by distillation of cold-pressed oils and those commercially available. The oil obtained by vacuum distillation of the bergamot vegetable matrix shows a composition quite similar to that of the cold-pressed oil. It also displays qualitative characteristics that are superior with respect to those normally observed for essential oils isolated by distillation of cold-pressed oils. Oils isolated by the method presented here can constitute ideal candidates in producing foods, for example, Earl Grey tea, and cosmetic preparations.
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
Montesano, Domenico; Blasi, Francesca; Simonetti, Maria Stella; Santini, Antonello; Cossignani, Lina
2018-03-01
Pumpkin ( Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as "Berrettina" ( Cucurbita maxima L.), was evaluated. In particular, the lipid fraction of seed oil was characterized, and the triacylglycerol (TAG) was thoroughly studied by using a stereospecific procedure to obtain the intrapositional fatty acid composition of the three sn -positions of the glycerol backbone of TAG. Moreover, alkaline hydrolysis was carried out to study the main components of the unsaponifiable fraction, i.e., sterols and alcohols. It was observed that monounsaturated fatty acids and polyunsaturated fatty acids were the most abundant (41.7% and 37.2%, respectively) in Berrettina pumpkin seed oil, with high content of oleic and linoleic acid (41.4% and 37.0%, respectively). The main sterols of Berrettina pumpkin seed oil were Δ 7,22,25 -stigmastatrienol, Δ 7,25 -stigmastadienol, and spinasterol; with regard to the alcoholic fraction, triterpenic compounds were more abundant than aliphatic compounds (63.2% vs. 36.8%). The obtained data are useful to evaluate pumpkin seed oil from a nutritional point of view. The oil obtained from the seed could be used as a preservative and as a functional ingredient in different areas, e.g., cosmetics, foods, and nutraceuticals.
Blasi, Francesca; Simonetti, Maria Stella; Cossignani, Lina
2018-01-01
Pumpkin (Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as “Berrettina” (Cucurbita maxima L.), was evaluated. In particular, the lipid fraction of seed oil was characterized, and the triacylglycerol (TAG) was thoroughly studied by using a stereospecific procedure to obtain the intrapositional fatty acid composition of the three sn-positions of the glycerol backbone of TAG. Moreover, alkaline hydrolysis was carried out to study the main components of the unsaponifiable fraction, i.e., sterols and alcohols. It was observed that monounsaturated fatty acids and polyunsaturated fatty acids were the most abundant (41.7% and 37.2%, respectively) in Berrettina pumpkin seed oil, with high content of oleic and linoleic acid (41.4% and 37.0%, respectively). The main sterols of Berrettina pumpkin seed oil were Δ7,22,25-stigmastatrienol, Δ7,25-stigmastadienol, and spinasterol; with regard to the alcoholic fraction, triterpenic compounds were more abundant than aliphatic compounds (63.2% vs. 36.8%). The obtained data are useful to evaluate pumpkin seed oil from a nutritional point of view. The oil obtained from the seed could be used as a preservative and as a functional ingredient in different areas, e.g., cosmetics, foods, and nutraceuticals. PMID:29494522
Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long
2015-11-25
The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.
Satellite observations and modeling of oil spill trajectories in the Bohai Sea.
Xu, Qing; Li, Xiaofeng; Wei, Yongliang; Tang, Zeyan; Cheng, Yongcun; Pichel, William G
2013-06-15
On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil spills, we performed two numerical simulations to simulate the trajectories of the oil spills with the GNOME (General NOAA Operational Modeling Environment) model. For the first time, we drive the GNOME with currents obtained from an operational ocean model (NCOM, Navy Coastal Ocean Model) and surface winds from operational scatterometer measurements (ASCAT, the Advanced Scatterometer). Both data sets are freely and openly available. The initial oil spill location inputs to the model are based on the detected oil spill locations from the SAR images acquired on June 11 and 14. Three oil slicks are tracked simultaneously and our results show good agreement between model simulations and subsequent satellite observations in the semi-enclosed shallow sea. Moreover, GNOME simulation shows that the number of 'splots', which denotes the extent of spilled oil, is a vital factor for GNOME running stability when the number is less than 500. Therefore, oil spill area information obtained from satellite sensors, especially SAR, is an important factor for setting up the initial model conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Free-radical scavenging activity and antibacterial impact of Greek oregano isolates obtained by SFE.
Stamenic, Marko; Vulic, Jelena; Djilas, Sonja; Misic, Dusan; Tadic, Vanja; Petrovic, Slobodan; Zizovic, Irena
2014-12-15
The antioxidant and antibacterial properties of Greek oregano extracts obtained by fractional supercritical fluid extraction (SFE) with carbon dioxide were investigated and compared with the properties of essential oil obtained by hydrodistillation. According to DPPH, hydroxyl radical and superoxide anion radical scavenging activity assays, the supercritical extracts expressed stronger antioxidant activity comparing to the essential oil. The most effective was the supercritical extract obtained by fractional extraction at 30 MPa and 100°C after the volatile fraction had been extracted at lower pressure. At the same time this extract showed strong antibacterial activity against staphylococci, including MRSA strain, but did not affect Escherichia coli of normal intestinal flora. The essential oil obtained by hydrodistillation showed stronger antibacterial activity against E. coli, Salmonella and Klebsiella pneumoniae, comparing to the supercritical extracts but at the same affected the normal gut flora. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rohyami, Yuli; Anjani, Rafika Debby; Purwanti, Napthalina Putri
2017-03-01
Virgin coconut oil is an excellent product which has result of oil processing business opportunities in the international market. Standardization of virgin coconut oil necessary to satisfy the requirements industry needs. This research is expected as procedure preparation of reference materials. Preparation of virgin coconut oil by Sacharomycescerevisiaeenzyme. Based on the results of this study concluded that the ratio of Saccharomyces cerevisiae can affect the yield of virgin coconut oil produced. The preparation of virgin coconut oil enzymatically using a variety of mass ratio of 0.001 to 0.006% is obtained yield average of 12.40%. The optimum separation of virgin coconut oil on the use of enzymes with a mass ratio of 0.002%. The average water content at a ratio of 0.002% is 0.04 % with a value of uncertainty is 0.005%. The average iodine number in virgin coconut oil produced is 2.4403 ± 0,1974 grams of iodine per 100 grams of oil and optimum iodine number is obtained from the manufacturing process virgin coconut oil with a ratio of 0.006% Saccharomyces cerevisiae. Sacharomycescerevisiae with a ratio of 0.002% results virgin coconut oil with acid number 0.3068 ± 0.1098%. The peroxide value of virgin coconut oil between 0.0108 ± 0.009 to 0.0114 ± 0015milli-equivalent per kilograms. Organoleptic test results and test chemical parameters can be used as the test data that can be developed in prototype preparation of candidate in-house reference material in the testing standards of quality virgin coconut oil.
Gurunathan, Baskar; Ravi, Aiswarya
2015-08-01
Heterogeneous nanocatalyst has become the choice of researchers for better transesterification of vegetable oils to biodiesel. In the present study, transesterification reaction was optimized and kinetics was studied for biodiesel production from neem oil using CZO nanocatalyst. The highly porous and non-uniform surface of the CZO nanocatalyst was confirmed by AFM analysis, which leads to the aggregation of CZO nanoparticles in the form of multi layered nanostructures. The 97.18% biodiesel yield was obtained in 60min reaction time at 55°C using 10% (w/w) CZO nanocatalyst and 1:10 (v:v) oil:methanol ratio. Biodiesel yield of 73.95% was obtained using recycled nanocatalyst in sixth cycle. The obtained biodiesel was confirmed using GC-MS and (1)H NMR analysis. Reaction kinetic models were tested on biodiesel production, first order kinetic model was found fit with experimental data (R(2)=0.9452). The activation energy of 233.88kJ/mol was required for transesterification of neem oil into biodiesel using CZO nanocatalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.
de Oliveira, Marcelo Firmino; Vieira, Andressa Tironi; Batista, Antônio Carlos Ferreira; Rodrigues, Hugo de Souza; Stradiotto, Nelson Ramos
2011-01-01
A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40°C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100°C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit. PMID:21629751
Wei, Shigang; Zhang, Huihui; Wang, Yeqiang; Wang, Lu; Li, Xueyuan; Wang, Yinghua; Zhang, Hanqi; Xu, Xu; Shi, Yuhua
2011-07-22
The ultrasonic nebulization extraction-heating gas flow transfer coupled with headspace single drop microextraction (UNE-HGFT-HS-SDME) was developed for the extraction of essential oil from Zanthoxylum bungeanum Maxim. The gas chromatography-mass spectrometry was applied to the determination of the constituents in the essential oil. The contents of the constituents from essential oil obtained by the proposed method were found to be more similar to those obtained by hydro-distillation (HD) than those obtained by ultrasonic nebulization extraction coupled with headspace single drop microextraction (UNE-HS-SDME). The heating gas flow was firstly used in the analysis of the essential oil to transfer the analytes from the headspace to the solvent microdrop. The relative standard deviations for determining the five major constituents were in the range from 1.5 to 6.7%. The proposed method is a fast, sensitive, low cost and small sample consumption method for the determination of the volatile and semivolatile constituents in the plant materials. Copyright © 2011 Elsevier B.V. All rights reserved.
The use of isotope ratios (13C/12C) for vegetable oils authentication
NASA Astrophysics Data System (ADS)
Cristea, G.; Magdas, D. A.; Mirel, V.
2012-02-01
Stable isotopes are now increasingly used for the control of the geographical origin or authenticity of food products. The falsification may be more or less sophisticated and its sophistication as well as its costs increases with the improvement of analytical methods. In this study 22 vegetable oils (olive, sunflower, palm, maize) commercialized on Romanian market were investigated by mean of δ13C in bulk oil and the obtained results were compared with those reported in literature in order to check the labeling of these natural products. The obtained results were in the range of the mean values found in the literature for these types of oils, thus providing their accurate labeling.
Crystal clear transparent lipstick formulation based on solidified oils.
De Clermont-Gallerande, H; Chavardes, V; Zastrow, L
1999-12-01
We have developed a lipstick, the stick of which looks totally transparent. The base, coloured or not, may contain high concentration of actives or fragrances. The present study examines the process of determination of oils and solidifying agents. The selecting criterion include visible spectroscopic measurements to quantify transparency of the formulated product. We have also validated the stick hardness through drop point and breakage measurements. After several investigations, we selected a mixture of oils and solidifying agents. The oil network obtained has been characterized through optical microscopy, transmission electronic microscopy, X-ray diffraction and differential scanning calorimetry. We can show that the final product we obtained is amorphous and its solidity can be explained by chemical bonds formation.
Optimization of the isolation and quantitation of kahweol and cafestol in green coffee oil.
Chartier, Agnes; Beaumesnil, Mathieu; de Oliveira, Alessandra Lopes; Elfakir, Claire; Bostyn, Stephane
2013-12-15
Kahweol and cafestol are two diterpenes that exist mainly as esters of fatty acids in green coffee oil. To recover them under their free form they have to be either saponified or trans-esterified. These two compounds are well known to be sensitive to heat, and reagents, therefore experimental conditions used in the transesterification reaction are critical. In this paper, a Doehlert experimental design plan is used to optimize the transesterification conditions using some key variables such as the temperature of the reaction, the reagent base concentration and the duration of the reaction. Therefore, the optimal parameters determined from the Doehlert design are equal to 70 °C, temperature of the reaction; 1.25 mol L(-1) concentration of the reagent base; and 60 min reaction time. The contour plots show that the extracted quantity of kahweol and cafestol can depend greatly from the experimental conditions. After transesterification, the free form of the diterpernes is extracted from the lipid fraction using liquid-liquid extraction and analyzed using GC-FID without prior derivatization. The amount of kahweol and cafestol obtained from green coffee oil obtained by cold mechanical press of Catuai coffee bean is equal to 33.2±2.2 and 24.3±2.4 g kg(-1)oil, respectively. In an attempt to streamline the process, the transesterification reaction is performed in an in-flow chemistry reactor using the optimal conditions obtained with the Doehlert experimental design. The amount of kahweol and cafestol obtained from the same green coffee oil is equal to 43.5 and 30.072 g kg(-1)oil, respectively. Results are slightly higher compared to the ones obtained with the batch procedure. This can be explained by a better mixing of the coffee oil with the reagents and a faster transesterification reaction. © 2013 Elsevier B.V. All rights reserved.
Thermo-chemical extraction of fuel oil from waste lubricating grease.
Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul
2013-06-01
This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ye, Qiuping; Jin, Xinyi; Wei, Shiqin; Zheng, Gongyu; Li, Xinlei
2016-05-01
Subcritical fluid extraction (SFE), as a novel method, was applied to investigate the yield, quality, and sensory evaluation of headspace oil from Jasminum sambac (L.) Aiton in comparison with petroleum ether extraction (PEE). The results indicated that the yield of the headspace oil using SFE was significantly higher (P < 0.05) than when using PEE. SFE contributed to obtaining alcohols and ethers, prevented the thermal reaction of terpenes, and reduced α-caryophyllene and β-caryophyllene in the headspace oil. The contents of linalool (21.90%) and benzyl acetate (16.31%) were higher via SFE than PEE. In addition, the sensory evaluation of SFE was superior to PEE, indicating a fresh, jasmine-like odor and green-yellow color. Thus, SFE is an improved method for obtaining natural headspace oil from jasmine flowers.
Settling of virgin olive oil from horizontal screw solid bowl in static conditions.
Gila, Abraham M; Bejaoui, Mohamed A; Beltrán, Gabriel; Jiménez, Antonio
2017-08-01
This work was aimed to study the clarification efficiency of natural decantation in settling tank on virgin olive oil obtained from a two-ways continuous process. For this purpose, the impurities content of the virgin olive oil were monitored during settling process in settling tank at two different depths. Efficiency of purging system was determined for two days. The experiments were performed at industrial scale during three crop years. During the first minutes of settling was observed an ascent of the smaller organic particles of the oil. Then, most of the virgin olive oil impurities were settled at 300 min, independently of the initial content of virgin olive oil. Finally, oil decantation showed slower rate. Higher clarification values were obtained for those decanter oils with higher impurities content, achieving clarification percentages between of 62.69 and 95.91% at 48 h of settling. The highest settling efficiency was observed for those decanter oils with initial higher impurities content. The purging system used in the settling tanks was not able to remove the most of settled impurities since a considerable amount of the impurities remained in the tank after 48 h, between 13.6 and 71.41% for the studied oils. In the tank purges was observed important oil losses. Therefore, decantation was not an efficient system for oil clarification since its settling capacity varied depending on the initial impurities content and due to the settled impurities can not be removed fully by purging system.
Sanei-Dehkordi, Alireza; Sedaghat, Mohammad Mehdi; Vatandoost, Hassan; Abai, Mohammad Reza
2016-01-01
Background: Recently, essential oils and extracts derived from plants have received much interest as potential bio-active agents against mosquito vectors. Methods: The essential oils extract from fresh peel of ripe fruit of Citrus aurantium and Citrus paradisi were tested against mosquito vector Anopheles stephensi (Diptera: Culicidae) under laboratory condition. Then chemical composition of the essential oil of C. aurantium was analyzed using gas chromatography-mass spectrometry (GC–MS). Results: The essential oils obtained from C. aurantium, and C. paradisi showed good larviciding effect against An. stephensi with LC50 values 31.20 ppm and 35.71 ppm respectively. Clear dose response relationships were established with the highest dose of 80 ppm plant extract evoking almost 100% mortality. Twenty-one (98.62%) constituents in the leaf oil were identified. The main constituent of the leaf oil was Dl-limonene (94.81). Conclusion: The results obtained from this study suggest that the limonene of peel essential oil of C. aurantium is promising as larvicide against An. stephensi larvae and could be useful in the search for new natural larvicidal compounds. PMID:28032110
Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro
2012-01-01
Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage.
Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro
2012-01-01
Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage. PMID:23762760
Combined Raman spectroscopy and first-principles calculation for essential oil of Lemongrass
NASA Astrophysics Data System (ADS)
Faria, Rozilaine A. P. G.; Picanço, Nágela F. M.; Campo, Gladís S. D. L.; Faria, Jorge L. B.; Instituto de Física/UFMT Collaboration; Instituto Federal de Mato Grosso/IFMT Team
2014-03-01
The essential oils have increased food's industry interest by the presence of antioxidant and antimicrobial. Many of them have antimicrobial and antioxidant, antibacterial and antifungal activities. But, due to the concentrations required to be added in the food matrix, the sensory quality of the food is changed. The production and composition of essential oil extracted from plants depend on the plant-environment interactions, the harvest season, phenophase and physiological state of the vegetal. Cymbopogom citratus (Lemongrass) has a good yield in essential oil with neral (citral A), geranial (citral B) and myrcene, reaching 90% of the oil composition. In our experimental work, the essential oil of lemongrass was obtained by hydrodistillation in Clevenger apparatus for 4 hours. The compound was further analyzed by Raman scattering in a spectrometer HR 800, with excitation at 633nm, in the range 80-3400 cm-1. The spectrum obtained was compared with DFT calculations of molecules of the oil components. Our results show the vibrational signatures of the main functional groups and suggest a simple, but very useful, methodology to quantify the proportions of these components in the oil composition, showing good agreement with Raman data. CNPq/Capes/Fapemat.
Sanei-Dehkordi, Alireza; Sedaghat, Mohammad Mehdi; Vatandoost, Hassan; Abai, Mohammad Reza
2016-12-01
Recently, essential oils and extracts derived from plants have received much interest as potential bio-active agents against mosquito vectors. The essential oils extract from fresh peel of ripe fruit of Citrus aurantium and Citrus paradisi were tested against mosquito vector Anopheles stephensi (Diptera: Culicidae) under laboratory condition. Then chemical composition of the essential oil of C. aurantium was analyzed using gas chromatography-mass spectrometry (GC-MS). The essential oils obtained from C. aurantium , and C. paradisi showed good larviciding effect against An. stephensi with LC 50 values 31.20 ppm and 35.71 ppm respectively. Clear dose response relationships were established with the highest dose of 80 ppm plant extract evoking almost 100% mortality. Twenty-one (98.62%) constituents in the leaf oil were identified. The main constituent of the leaf oil was Dl-limonene (94.81). The results obtained from this study suggest that the limonene of peel essential oil of C. aurantium is promising as larvicide against An. stephensi larvae and could be useful in the search for new natural larvicidal compounds.
Wenqiang, Guan; Shufen, Li; Ruixiang, Yan; Yanfeng, Huang
2006-09-01
Essential oil of Artemisia argyi Lévl. et Vant inflorescence was obtained by supercritical CO(2) extraction and hydrodistillation. The oil was analyzed by gas chromatography/mass spectrometry to characterize its components and was also tested for antifungal activity. A total of 61 compounds were identified in the hydrodistilled oil. The major components were 1,8-cineole (4.46%), borneol (3.58%), terpinol (10.18%), spathulenol (10.03%), caryophyllene oxide (6.51%), juniper camphor (8.74%), Camazulene (2.05%), and camphor (3.49%). By using supercritical CO(2) at 50 degrees C and 10 MPa, the concentrations of previous main components were lower than oil obtained by hydrodistillation, while miscellaneous compounds were higher. The essential oil extracted by these two methods exhibited antifungal activity against Botrytis cinerea and Alternaria alternate, two common storage pathogens of fruits and vegetables. The inhibition of B. cinerea and A. alternate were 93.3 and 84.7% for oil extracted by hydrodistillation when exposed to a concentration of 1,000 mg L(-1), while values of 70.8 and 60.5% were observed from oil extracted by supercritical CO(2).
Santos, A C F; Rezende, R P; Brendel, M; Souza, S S; Gonçalves, A C S; Dias, J C T
2014-03-24
We investigated the biodegradability of oil in mangrove sediment from Camamu Bay and measured its effect on the bacterial community. Microcosms of mangrove sediment were contaminated with 0.1, 0.5, 1, 2, and 5% (w/v) oil, and the microbial activity was compared to that in uncontaminated sediment. The evolution of CO2 and gas chromatography showed the mineralization of oil compounds, which could reach 100%. Bacterial diversity was determined by polymerase chain reaction using a set of primers for the V3 and V6-V8 regions of 16S rDNA. The band profile obtained by denaturing gradient gel electrophoresis of the amplicons that were obtained for the V3 region showed a negative correlation between band number and oil concentration, whereas that of the V6-V8 region showed a positive correlation between band numbers and oil concentration. The latter also gave similar results for microcosms that were contaminated with 2 and 5% oil. These results demonstrate the mangrove sediment's capacity to recover from oil contamination (in vitro) and suggest that native mangrove microorganisms contain enzymes necessary for the catabolism of oil.
Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.
Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao
2016-09-18
The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.
Lu, Yongshang; Larock, Richard C
2009-01-01
Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.
Sienkiewicz, Monika; Wasiela, Małgorzata; Głowacka, Anna
2012-01-01
The aim of this study was to investigate the antibacterial properties of oregano (Origanum heracleoticum L.) essential oil against clinical strains of Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of oregano essential oil was investigate against 2 tested and 20 clinical bacterial strains of Escherichia coli and 20 clinical strains o Pseudomonas aeruginosa come from patients with different clinical conditions. The agar dilution method was used for microbial growth inhibition at various concentrations ofoil. Susceptibility testing to antibiotics was carried out using disc-diffusion method. The results of experiments showed that the tested oil was active against all of the clinical strains from both genus of bacteria, but strains of Escherichia coli were more sensitive to tested oil. Essential oil from Origanum heracleoticum L. inhibited the growth of Escherichia coli and Pseudomonas aeruginosa clinical strains with different patters of resistance. The obtained outcomes will enable further investigations using oregano essential oil obtained from Origanum heracleoticum L. as alternative antibacterial remedies enhancing healing process in bacterial infections and as an effective means for the prevention of antibiotic-resistant strain development.
Lee, Min Kyung; Uddin, M Salim; Chun, Byung Soo
2008-07-01
The oil in mackerel viscera was extracted by supercritical carbon dioxide (SCO2) at a semi-batch flow extraction process and the fatty acids composition in the oil was identified. Also the off-flavors removal in mackerel viscera and the storage improvement of the oils were carried out. As results obtained, by increasing pressure and temperature, quantity was increased. The maximum yield of oils obtained from mackerel viscera by SCO, extraction was 118 mgg(-1) (base on dry weight of freeze-dried raw anchovy) at 50 degrees C, 350 bar And the extracted oil contained high concentration of EPA and DHA. Also it was found that the autoxidation of the oils using SCO2 extraction occurred very slowly compared to the oils by organic solvent extraction. The off-flavors in the powder after SCO2 extraction were significantly removed. Especially complete removal of the trimethylamine which influences a negative compound to the products showed. Also other significant off-flavors such as aldehydes, sulfur-containing compounds, ketones, acids or alcohols were removed by the extraction.
Shafaghat, Ali
2011-09-01
Essential oils obtained from flowers, leaves and stems of Origanum vulgare L. ssp. viride (Boiss.) Hayek., growing wild in Ardabil Province (north-west Iran), were analyzed by GC and GC/MS. beta-Caryophyllene was the major constituent in all three oils (48.1%, 50.1% and 60.2%, respectively). Of the 19 components detected in the flower oil, comprising 96.3% of the total, the major components were 1,8-cineole (11.6%), alpha-pinene (6.9%), and gamma-cadinene (4.8%). 1-Octen-3-ol (23.8%), and 1,8-cineole (8.5%) predominated in the leafoil. In the stem oil, other main constituents were bicyclogermacrene (9.8%), 1,8-cineole (6.4%), borneol (5.1%), and pinocarvone (4.4%). The essential oils were evaluated for their antibacterial activity against 10 selected microorganisms. The data obtained contribute to the future use of certain essential oils as natural preservatives for food products, due to their safety and positive effect on shelf life.
Qian, Yangyang; Zhang, Jie; Wang, Jie
2014-12-01
The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time". Copyright © 2014 Elsevier Ltd. All rights reserved.
Linear least-squares method for global luminescent oil film skin friction field analysis
NASA Astrophysics Data System (ADS)
Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu
2018-06-01
A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.
NASA Astrophysics Data System (ADS)
Murad, Muhamad Nasir; Sharif, Safian; Rahim, Erween Abd.; Abdullah, Rozaini
2017-09-01
Increased attention to environmental issues due to industrial activities has forced the authorities raise awareness and implement regulations to reduce the use of mineral oil. Some vegetable oils unexplored or less explored, particularly the non-edible oils such as Jatropha curcas oil (JCO) and others. Physicochemical properties of JCO is compared with others edible oils, synthetic ester and fatty alcohol to obtain a viable alternative in metal cutting fluids. The oil was found to show the suitability of properties for coolant-lubricant applications in term of its physicochemical properties and better in flash point and viscosity value.
Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian
2016-12-01
Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Asgary, S.; Naderi, G.A.; Shams Ardekani, M.R.; Sahebkar, A.; Airin, A.; Aslani, S.; Kasher, T.; Emami, S.A.
2014-01-01
Oxidative stress and protein glycation play pivotal roles in the pathophysiology of diabetes mellitus and its vascular complications. The present study aimed to investigate the anti-glycation properties of essential oils obtained from different parts of Juniperus communis subsp. hemisphaerica. The branchlets of male tree (BMT) and branchlets of female (BFT) tree, and fruits of J. communis subsp. hemisphaerica were extracted using steam distillation method. The oils were phytochemically analyzed using gas chromatography-mass spectrometry. Anti-glycation properties were evaluated using hemoglobin and insulin glycation assays. Overall, 18 volatile components were identified in the J. communis subsp. hemisphaerica oils, amounting to 82.1%, 100.0% and 96.4% of the BMT, BFT and fruit oils, respectively. Promising inhibitory activity was observed from all concentrations of the tested oils in the hemoglobin and insulin glycation assays. The inhibitory activities peaked to 89.9% (BFT oil; 200 μg mL-1) and 81.0% (BFT oil; 600 μg mL-1) in the hemoglobin and insulin glycation assays, respectively. The evidence from this study suggests that essential oils obtained from the fruits and branchlets of J. communis subsp. hemisphaerica possess anti-glycation properties. These activities may find implication for the prevention and treatment of diabetic complications. PMID:25657787
Asgary, S; Naderi, G A; Shams Ardekani, M R; Sahebkar, A; Airin, A; Aslani, S; Kasher, T; Emami, S A
2014-01-01
Oxidative stress and protein glycation play pivotal roles in the pathophysiology of diabetes mellitus and its vascular complications. The present study aimed to investigate the anti-glycation properties of essential oils obtained from different parts of Juniperus communis subsp. hemisphaerica. The branchlets of male tree (BMT) and branchlets of female (BFT) tree, and fruits of J. communis subsp. hemisphaerica were extracted using steam distillation method. The oils were phytochemically analyzed using gas chromatography-mass spectrometry. Anti-glycation properties were evaluated using hemoglobin and insulin glycation assays. Overall, 18 volatile components were identified in the J. communis subsp. hemisphaerica oils, amounting to 82.1%, 100.0% and 96.4% of the BMT, BFT and fruit oils, respectively. Promising inhibitory activity was observed from all concentrations of the tested oils in the hemoglobin and insulin glycation assays. The inhibitory activities peaked to 89.9% (BFT oil; 200 μg mL(-1)) and 81.0% (BFT oil; 600 μg mL(-1)) in the hemoglobin and insulin glycation assays, respectively. The evidence from this study suggests that essential oils obtained from the fruits and branchlets of J. communis subsp. hemisphaerica possess anti-glycation properties. These activities may find implication for the prevention and treatment of diabetic complications.
Study on high power ultraviolet laser oil detection system
NASA Astrophysics Data System (ADS)
Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou
2018-03-01
Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.
Ayvaz, Abdurrahman; Sagdic, Osman; Karaborklu, Salih; Ozturk, Ismet
2010-01-01
This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 microl/l air for P. interpunctella and E. kuehniella, respectively. LC(50) and LC(99) values of each essential oil were estimated for each insect species.
Ayvaz, Abdurrahman; Sagdic, Osman; Karaborklu, Salih; Ozturk, Ismet
2010-01-01
This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 µl/l air for P. interpunctella and E. kuehniella, respectively. LC50 and LC99 values of each essential oil were estimated for each insect species. PMID:20578885
USDA-ARS?s Scientific Manuscript database
Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...
Preparation of microemulsions with soybean oil-based surfactants
USDA-ARS?s Scientific Manuscript database
Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...
Supercritical carbon dioxide extraction of cuphea seed oil
USDA-ARS?s Scientific Manuscript database
Cuphea seed oil is being investigated as a potential domestic source of medium chain fatty acids for several industrial uses. Although the oil from cuphea seeds has been obtained using both solvent extraction and screw pressing, both methods suffer from several disadvantages. Petroleum ether extra...
Catalytic pyrolysis of waste furniture sawdust for bio-oil production.
Uzun, Başak B; Kanmaz, Gülin
2014-07-01
In this study, the catalytic pyrolysis of waste furniture sawdust in the presence of ZSM-5, H-Y and MCM-41 (10 wt % of the biomass sample) was carried out in order to increase the quality of the liquid product at the various pyrolysis temperatures of 400, 450, 500 and 550(o)C. In the non-catalytic work, the maximum oil yield was obtained as 42% at 500(o)C in a fixed-bed reactor system. In the catalytic work, the maximum oil yield was decreased to 37.48, 30.04 and 29.23% in the presence of ZSM-5, H-Y and MCM-41, respectively. The obtained pyrolysis oils were analyzed by various spectroscopic and chromatographic techniques. It was determined that the use of a catalyst decreased acids and increased valuable organics found in the bio-oil. The removal of oxygen from bio-oil was confirmed with the results of the elemental analysis and gas chromatography-mass spectrometry. © The Author(s) 2014.
Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene
2018-02-01
Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).
Dervos, Constantine T.; Paraskevas, Christos D.; Skafidas, Panayotis D.; Vassiliou, Panayota
2005-01-01
This work investigates the use of a specially designed cylindrical metal cell, in order to obtain complex permittivity and tanδ data of highly insulating High Voltage (HV) transformer oil samples. The data are obtained at a wide range of frequencies and operation temperatures to demonstrate the polarization phenomena and the thermally stimulated effects. Such complex permittivity measurements may be utilized as a criterion for the service life prediction of oil field electrical equipment (OFEE). Therefore, by one set of measurements on a small oil volume, data may be provided on the impending termination, or continuation of the transformer oil service life. The oil incorporating cell, attached to the appropriate measuring units, could be described as a complex permittivity sensor. In this work, the acquired dielectric data from a great number of operating distribution network power transformers were correlated to corresponding physicochemical ones to demonstrate the future potential employment of the proposed measuring technique.
Román Falcó, Iván P; Grané Teruel, Nuria; Prats Moya, Soledad; Martín Carratalá, M Luisa
2012-11-28
A new approach for the determination of kinetic parameters of the cis/trans isomerization during the oxidation process of 24 virgin olive oils belonging to 8 different varieties is presented. The accelerated process of degradation at 100 °C was monitored by recording the Fourier transform infrared spectra. The parameters obtained confirm pseudo-first-order kinetics for the degradation of cis and the appearance of trans double bonds. The kinetic approach affords the induction time and the rate coefficient; these parameters are related to the fatty acid profile of the fresh olive oils. The data obtained were used to compare the oil stability of the samples with the help of multivariate statistical techniques. Fatty acid allowed a classification of the samples in five groups, one of them constituted by the cultivars with higher stability. Meanwhile, the kinetic parameters showed greater ability for the characterization of olive oils, allowing the classification in seven groups.
Alessandrello, Mauricio J; Juárez Tomás, María S; Raimondo, Enzo E; Vullo, Diana L; Ferrero, Marcela A
2017-09-15
In this work, a mixed biofilm composed by Pseudomonas monteilii P26 and Gordonia sp. H19 was formed using polyurethane foam (PUF) as immobilization support, for crude oil removal from artificial sea water. Fresh immobilized cells and immobilized cells that were stored at 4°C for two months before use were assessed. The oil removal assays were carried out at microcosm scale at 4, 15 and 30°C. A viability loss of P. monteilii P26 was observed after the storage. The highest removal value (75%) was obtained at 30°C after 7days using fresh immobilized cells on PUF. Enhanced oil bioremoval was obtained at 4°C and 15°C with the previously stored immobilized cells compared to the fresh immobilized cells. Crude oil sorption on the different systems was responsible for the removal of 22-33% oil at the different temperatures. In conclusion, an economic tool for petroleum bioremediation is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee
2018-06-01
Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.
Trifan, Adriana; Aprotosoaie, Ana Clara; Spac, A; Hăncianu, Monica; Miron, Anca; Stănescu, Ursula
2011-01-01
Coriandrum sativum L. (Apiaceae) is a well known herb, native to the Mediterranean region, also intensively cultivated in Romania. The essential oil obtained from Coriandri fructus posseses antimicrobial, antioxidant and anxiolytic effects. Many parameters such as genetic and climatic factors or agronomical practices can influence the yield and composition of the volatile fraction. Plant density is an important factor for the microenvironment in coriander field. In order to study the effect of planting density on the yield of the essential oil and its composition, a bifactorial experiment was carried out on coriander plants (Sandra cultivar). The experiment was performed with three plant densities on the row (0, 15 and 20 cm); the distance between plant rows was 12.5, 25 and 50 cm, respectively. So, it resulted nine experimental variants. The essential oils obtained by hydrodistillation from fruits have been characterized using gas chromatography and mass spectroscopy analysis (GC-MS). The highest yield (7.9866 kg/ha) was obtained for the plants spaced at 20 cm in between and 25 cm row spacing. The highest content of monoterpene alcohols (50.96%) was obtained with 25 cm row spacing and plant spaced at 0 cm on the row. The main components in all oils were monoterpene alcohols (40.75% - 50.96%) and monoterpenes (32.43-38.44%). The essential oil of coriander fruits (Sandra cultivar) does not meet the requirements of the European Pharmacopoeia, especially concerning the content in linalool. Nevertheless, the high content in monoterpene alcohols and monoterpenes recommends the use of the essential oil as immunomodulatory, analgesic and antiinflammatory agent in rheumatology and also as an antibacterial and antiviral agent. Consequently, the changes in yield and composition of the essential oil of Sandra coriander should be assesed during several periods of vegetation in order to conclude on its pharmaceutical quality.
Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material.
Güneş, Seda; Tıhmınlıoğlu, Funda
2017-09-01
Recent studies in wound dressing applications offer new therapies and promote wound healing process. The aim of this study was to develop Hypericum perforatum (St John's Wort) oil incorporated chitosan films for wound dressing applications. H. perforatum oil as a potential therapeutic agent was encapsulated in chitosan film to achieve a better wound dressing material. Oil incorporated chitosan films were successfully prepared by solvent casting method in different oil concentrations (0.25-1.5%v/v). Water vapor permeability (WVP), mechanical test, swelling behavior and surface hydrophobicity were performed in order to characterize the prepared films. Antimicrobial test was performed by disc diffusion method and the growth inhibition effects of the films including different amount of H. perforatum oil were investigated on Escherichia coli and Staphylococcus aureus. WVP increased with oil incorporation and the highest value was obtained for 0.25% oil concentration.The highest strain value was obtained in 0.25% oil content films although tensile stress decreased with increasing oil content. H. perforatum oil incorporated films had antimicrobial effect on both microorganisms. Chitosan based films had no cytotoxic effects on NIH3T3fibroblast cells and provided a good surface for cell attachment and proliferation. The results showed that the H. perforatum incorporated chitosan films seems to be a potential and novel biomaterial for wound healing applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel
2012-01-01
The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.
Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.
Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia
2014-01-01
The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280
Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.
De Padova, Diana; Mossa, Michele; Adamo, Maria; De Carolis, Giacomo; Pasquariello, Guido
2017-02-01
In case of oil spills due to disasters, one of the environmental concerns is the oil trajectories and spatial distribution. To meet these new challenges, spill response plans need to be upgraded. An important component of such a plan would be models able to simulate the behaviour of oil in terms of trajectories and spatial distribution, if accidentally released, in deep water. All these models need to be calibrated with independent observations. The aim of the present paper is to demonstrate that significant support to oil slick monitoring can be obtained by the synergistic use of oil drift models and remote sensing observations. Based on transport properties and weathering processes, oil drift models can indeed predict the fate of spilled oil under the action of water current velocity and wind in terms of oil position, concentration and thickness distribution. The oil spill event that occurred on 31 May 2003 in the Baltic Sea offshore the Swedish and Danish coasts is considered a case study with the aim of producing three-dimensional models of sea circulation and oil contaminant transport. The High-Resolution Limited Area Model (HIRLAM) is used for atmospheric forcing. The results of the numerical modelling of current speed and water surface elevation data are validated by measurements carried out in Kalmarsund, Simrishamn and Kungsholmsfort stations over a period of 18 days and 17 h. The oil spill model uses the current field obtained from a circulation model. Near-infrared (NIR) satellite images were compared with numerical simulations. The simulation was able to predict both the oil spill trajectories of the observed slick and thickness distribution. Therefore, this work shows how oil drift modelling and remotely sensed data can provide the right synergy to reproduce the timing and transport of the oil and to get reliable estimates of thicknesses of spilled oil to prepare an emergency plan and to assess the magnitude of risk involved in case of oil spills due to disaster.
NASA Astrophysics Data System (ADS)
Anuar, M. A. M.; Anting, N.; Shahidan, S.; Lee, Y. Y.; Din, M. F. Md; Khalid, F. S.; Nazri, W. M. H. W.
2017-11-01
Malaysia is one of the biggest producer of palm oil product and currently as main source of economy for the country. During the production of crude palm oil, a large amount of waste material is generated, such as palm oil fibres, palm oil shells and empty fruit bunches. Palm oil shell aggregate (POSA) is identified as a material that shows good potential to be used as a fine aggregate replacement in asphaltic concrete. On other hand, the chemical compound that exist in the Palm Oil Shell (POS) have shown a good potential as reflective component in cool-material. The purpose of this study is to obtain the physical and chemical properties of palm oil shell. The result shows the apparent particle density of Palm Oil Shell is 1.6 mg/m3. The specific gravity of palm oil shell was obtained with the value 1.6 and the water absorption amount of palm oil shell recorded from this study was 25.1%. The X-Ray Fluorescence study shows that palm oil shell contains the highest amount of SiO2 (46.412 wt%) and the second highest amount of Fe2O3 (34.016 wt%), both is the main output of relectivity compound. As a conclusion, waste palm oil shell has a potential to be used as alternative material for fine aggregate replacement. Besides that, the amount of chemical element that consist in palm oil shell which high in SiO2 and Fe2O3, promising the benefit to mitigate urban heat island as a cooling material agent.
XAFS SPECTROSCOPY RESULTS FOR PM SAMPLES FROM RESIDUAL FUEL OIL
X-ray absorption fine structure (XAFS spectroscopy data were obtained from particulate samples produced by the combustion of residual fuel oil in a 732-kW fire-tube boiler at EPA's National Risk Management Research Laboratory in North Carolina. Residual oil flyash (ROFA) from fo...
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.73 Notification. (a) Identification numbers. A used oil fuel marketer subject to the requirements of this subpart who has not... requirements and obtain an EPA identification number. (b) A marketer who has not received an EPA identification...
Sannino, M; Del Piano, L; Abet, Massimo; Baiano, S; Crimaldi, M; Modestia, F; Raimo, F; Ricciardiello, G; Faugno, S
2017-11-01
The aim of this study was to investigate how the combination of extraction parameters, such as extraction temperature seeds preheating and screw rotation speed, influenced the yield and chemical quality of tobacco seed oil (TSO). For its peculiar properties, TSO can be used for several purposes, as raw material in the manufacturing of soap, paints, resins, lubricants, biofuels and also as edible oil. TSO was obtained using a mechanical screw press and the quality of the oil was evaluated by monitoring the free fatty acids (FFA), the peroxide value (PV), the spectroscopic indices K 232 , K 270 and ΔK and the fatty acid composition. The maximum extraction yield, expressed as percent of oil mechanically extracted respect to the oil content in the seeds, determined by solvent extraction, was obtained with the combination of the highest extraction temperature, the slowest screw rotation speed and seeds preheating. Under these conditions yield was 80.28 ± 0.33% (w/w), 25% higher than the lowest yield obtained among investigated conditions. The extraction temperature and seed preheating showed a significant effect on FFA, on spectroscopic indices K 232 , K 270 and ΔK values. The average values of these parameters slightly increased rising the temperature and in presence of preheating, the screw rotation speed did not affect the chemical characteristic tested. In the extraction conditions investigated no significant changes in PV and fatty acids composition of oil were observed.
Blagojević, Polina D; Radulović, Niko S; Skropeta, Danielle
2015-08-01
The plant volatile profile and the essential-oil chemical composition change during the storage of plant material. The objective of this study was to develop a mathematical model able to predict, explain, and quantify these changes. Mathematical equations, derived under the assumption that the essential oil contained within plant material could be treated as an ideal solution (Raoult's law), were applied for tracking of postharvest changes in the volatile profile of Artemisia absinthium L. (the essential oils were analyzed by GC-FID and GC/MS). Starting from a specific chemical composition of an essential-oil sample obtained from plant material after a short drying period (typically 5-10 d), and by using the equations derived from this model, one could easily predict evaporation-induced changes in the volatile profile of the plant material. Based on the composition of the essential-oil sample obtained after a given storage time t, it is possible to identify those components that were involved in chemical reactions, both as reactants and possible products. The established model even allowed the recognition of pairs of transformation, i.e., 'daughter' products and their 'parent' compounds. The obtained results highlight that the essential-oil composition is highly dependent on the storage period of any plant material and urges caution in different types of phytochemical studies, especially chemotaxonomic ones, or practical application. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
NASA Astrophysics Data System (ADS)
Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya
2018-04-01
The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.
Misra, Anoop; Singhal, Neha; Khurana, Lokesh
2010-06-01
Developing countries are undergoing rapid nutrition transition concurrent with increases in obesity, the metabolic syndrome, and type 2 diabetes mellitus (T2DM). From a healthy traditional high-fiber, low-fat, low-calorie diet, a shift is occurring toward increasing consumption of calorie-dense foods containing refined carbohydrates, fats, red meats, and low fiber. Data show an increase in the supply of animal fats and increased intake of saturated fatty acid (SFAs) (obtained from coconut oil, palm oil, and ghee [clarified butter]) in many developing countries, particularly in South Asia and South-East Asia. In some South Asian populations, particularly among vegetarians, intake of n-3 polyunsaturated fatty acids (PUFAs) (obtained from flaxseed, mustard, and canola oils) and long-chain (LC) n-3 PUFAs (obtained from fish and fish oils) is low. Further, the effect of supplementation of n-3 PUFAs on metabolic risk factors and insulin resistance, except for demonstrated benefit in terms of decreased triglycerides, needs further investigation among South Asians. Data also show that intake of monounsaturated fatty acids (MUFAs) ranged from 4.7% to 16.4%en in developing countries, and supplementing it from olive, canola, mustard, groundnut, and rice bran oils may reduce metabolic risk. In addition, in some developing countries, intake of n-6 PUFAs (obtained from sunflower, safflower, corn, soybean, and sesame oils) and trans-fatty acids (TFAs) is increasing. These data show imbalanced consumption of fats and oils in developing countries, which may have potentially deleterious metabolic and glycemic consequences, although more research is needed. In view of the rapid rise of T2DM in developing countries, more aggressive public health awareness programs coupled with governmental action and clear country-specific guidelines are required, so as to promote widespread use of healthy oils, thus curbing intake of SFAs and TFAs, and increasing intake of n-3 PUFAs and MUFAs. Such actions would contribute to decelerating further escalation of "epidemics" of obesity, the metabolic syndrome, and T2DM in developing countries.
Thermoset polymers via ring opening metathesis polymerization of functionalized oils
Larock, Richard C; Henna, Phillip H; Kessier, Michael R
2012-11-27
The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.
NASA Astrophysics Data System (ADS)
Idris, N.; Maswati; Yusibani, E.
2018-05-01
The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.
Chatzopoulou, Paschalina; de Haan, Andre; Katsiotis, Stavros T
2002-09-01
The present investigation reports the experimental data a) from the recovery and the composition of the extract under super critical fluid extraction from Juniperus communis L. "berries" (cones), and b) their comparison with those of the essential oil obtained by hydrodistillation. For the extraction of the juniper oil different values of temperature and pressure were applied; furthermore, the degree of comminution of the plant material was also considered - a) integral "berries" and b) comminuted "berries". The quality of the oil recovered from the "berries" by supercritical carbon dioxide extraction was found to be highly dependent on the applied conditions. The comminution affected greatly the oil recovery and consequently the final composition of the extracts. Significant differences were recorded between the supercritical CO(2) extract and the distilled oil, the latter being more enriched in monoterpenoid hydrocarbons.
Development of alginate microspheres containing thyme essential oil using ionic gelation.
Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy
2016-08-01
Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels
NASA Astrophysics Data System (ADS)
Klyus, Oleg; Bezyukov, O.
2017-06-01
The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.
Soares, Elzalina R; da Silva, Felipe M A; de Almeida, Richardson A; de Lima, Bruna R; Koolen, Hector H F; Lourenço, Caroline C; Salvador, Marcos J; Flach, Adriana; da Costa, Luiz Antonio M A; de Souza, Antonia Q L; Pinheiro, Maria L B; de Souza, Afonso D L
2015-01-01
Essential oils from the leaves, twigs and barks of Bocageopsis pleiosperma Maas were obtained by using hydrodistillation and analysed by using gas chromatography coupled to mass spectrometry. Several compounds (51) were detected and identified, being β-bisabolene the main component in all aerial parts of the plant, with higher concentration in the leaves (55.77%), followed by barks (38.53%) and twigs (34.37%). In order to increase the biological knowledge about the essential oil of Bocageopsis species, antimicrobial activities were evaluated against the microorganisms Escherichia coli, Staphylococcus epidermidis, Enterobacter aerogenes, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida albicans. The essential oil obtained from the barks exhibited a moderate effect against S. epidermidis ATCC 1228 (MIC = 250 μg/mL), while the other oils did not exhibit antimicrobial activity. These results represent the first report about the chemical composition of B. pleiosperma and the first antimicrobial evaluation with a Bocageopsis species.
Kanat, Mehmet; Alma, M Hakki
2004-02-01
Along with sulfate turpentine, the essential oils obtained by steam distillation from nine plant species naturally grown in Turkish forests were tested at three different concentrations to evaluate their effectiveness against the larvae of pine processionary moth (Thaumetopoea pityocampa Schiff). The results indicated that the essential oils from the nine species and sulfate turpentine were effective against the larvae of T pityocampa. The most effective essential oil in the control of the larvae was steam-distilled wood turpentine, followed by thyme herb oil, juniper berry oil, laurel leaf oil, lavender flower oil, eucalyptus leaf oil, lavender leaf oil, cypress berry oil, essential oil of styrax and sulfate turpentine, respectively, in terms of mean mortality time. It is therefore feasible to use these essential oils as environment-friendly insecticides in the control of T pityocampa.
30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a departure to diverter... diverter line for floating drilling operations on a dynamically positioned drillship Maintain an...
30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a... least 8 inches. (d) Use a single diverter line for floating drilling operations on a dynamically...
30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a... least 8 inches. (d) Use a single diverter line for floating drilling operations on a dynamically...
30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a... least 8 inches. (d) Use a single diverter line for floating drilling operations on a dynamically...
Siger, Aleksander; Józefiak, Marta; Górnaś, Paweł
2017-01-01
The paper looks at the levels of canolol, tocopherols and antioxidant activity in cold-pressed and hot-pressed rapeseed oils produced from seeds of various moisture levels (5%, 7.5%, and 10%). The paper also considers the effects of seed roasting on the levels of these compounds. The material used for the tests was rapeseed cv. Adrianna. The quality of the oils obtained is determined using peroxide and acid values. The levels of canolol and tocopherols are analyzed using HPLC. The DPPH radical-scavenging activity method for oil samples and phenolic extract from oils was used. It has been demonstrated that the oils produced from rapeseeds with a 5% moisture content, and in particular from cold-pressed oils, were characterized by the lowest peroxide values. Cold-pressed oils produced from rapeseeds with a 5% moisture content were characterized by higher levels of tocopherols and plastochromanol-8. In the case of hot-pressed oils, the highest levels of tocopherols were found in oils pro- duced from seeds with a 7.5% moisture content, and the greatest amount of PC-8 (more than 4 mg/100 g) was found in oils produced from seeds with a 10% moisture content. Hot-pressed oils have been shown to have higher levels of these compounds than cold-pressed oils. Both roasting and hot pressing led to an increase in the amount of canolol in the oils investigated. When analysing the antioxidant activity of the oils and phenolic extracts it was shown that phenolic compounds are responsible for approx. 10% of total antioxidant activity. Various levels of biologically active compounds were shown to be present in the rapeseed oil obtained from raw materials of a varying moisture content. The type of pressing process (cold-pressing or hot-pressing) and whether the seeds have undergone roasting has also been shown to affect the resulting oil and the level of native antioxidants it contains.
An experiment of used palm oil refinery using the value engineering method
NASA Astrophysics Data System (ADS)
Sumiati; Waluyo, M.
2018-01-01
Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.
Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia
2006-05-10
Isolation of volatile concentrate from the dried leaves of Artemisia arborescens and of Helichrysum splendidum has been obtained by supercritical extraction with carbon dioxide. To obtain a pure volatile extract devoid of cuticular waxes, the extraction products were fractionated in two separators operating in series. A good extraction process was obtained operating at 90 bar and 50 degrees C in the extraction vessel, at 90 bar and at -5 degrees C in the first separator and at a pressure between 20 and 15 bar and temperatures in the range 10-20 degrees C in the second one. The composition of the volatile concentrate has been analyzed by GC/MS. The volatile concentrate of A. arborescens was found to contain: trans-thujone (13.96%), camphor (6.15%) and chamazulene (5.95%). The main constituents in the extract of H. splendidum were: germacrene D-4-ol (17.08%), germacrene D (9.04%), bicyclogermacrene (8.79%) and delta-cadinene (8.43%). A comparison with the oils obtained by hydrodistillation is also given. The differences observed between the composition of the SFE volatile concentrates and of the hydrodistilled (HD) oils were relevant. Indeed, the HD oils had a blue color whereas the volatile concentrates were pale yellow. The HD oil of H. splendidum had a blue color due to the presence of guaiazulene (0.42% vs 0%), whereas the coloration of HD oil of A. arborecens was due to the high concentration of chamazulene (26.64% vs 3.37%).
NASA Astrophysics Data System (ADS)
Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.
2018-01-01
The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.
Composition of the essential oil of Helichrysum chasmolycicum growing wild in Turkey.
Chalchat, J C; Ozcan, M M
2006-01-01
The chemical compositions of the essential oil obtained from the aerial parts of Helichrysum chasmolycicum were analyzed by gas chromatography and gas chromatography-mass spectrometry. From the 57 identified constituents, representing 66.55% of the oil, the main constituents of the oil were beta-caryophyllene (27.6%), beta-selinene (8.9%), alpha-selinene (8.4%), caryophyllene oxide (7.3%), and carvacrol (2.4%). The essential oil was almost totally characterized by sesquiterpene hydrocarbons such as beta-caryophyllene and alpha- and beta-selinene.
Mbah, C J
2007-05-01
The lipophilic character of five vehicles (or co-vehicles): diethylhexylmaleate, dimethicone, light mineral oil, octyldodecanol and oleyl alcohol and eight botanical oils: Aloe vera oil, coconut oil, extra virgin olive oil, grape leaf oil, grape seed oil, hazelnut oil, jojoba oil and safflower oil was determined by partitioning esters of p-hydroxybenzoic acid (parabens) between them and phosphate buffer (pH 7.4). The results were compared to those obtained with 1-octanol. The most lipophilic effects were observed with octyldodecanol and oleyl alcohol for the vehicles (or co-vehicles), coconut oil, jojoba oil and safflower oil for botanical oils. Light mineral oil showed the least lipophilic effect. With butylparaben, it was observed that oleyl alcohol, octyldodecanol, coconut oil and jojoba oil were 0.94, 0.91, 0.74 and 0.68 times as lipophilic as 1-octanol respectively. The study indicates that octyldodecanol and oleyl alcohol could be good substitutes for 1-octanol in partition coefficient determination. The estimated permeability coefficients of the parabens suggest that octyldodecanol, oleyl alcohol, coconut oil and jojoba oil could be potential dermal permeation enhancers.
USDA-ARS?s Scientific Manuscript database
The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...
Dehulling of coriander fruit before oil extraction
USDA-ARS?s Scientific Manuscript database
Coriander (Coriandrum sativum L.) is a summer annual traditionally grown for use as fresh green herb, spice or for its essential oil. The essential oil is obtained by steam distillation of crushed fruit and the residue is utilized as feed or processed further to recover the triglyceride. The triglyc...
Direct polymerization of vernonia oil through cationic means
USDA-ARS?s Scientific Manuscript database
Vernonia oil is obtained by extraction from Vernonia galamensis seeds. It is a triglyceride containing 70-80% vernolic acid (12,13-epoxy-9-decenoic acid). With approximately three epoxy groups per molecule, vernonia oil is a good raw material for new product development and many derivatives have bee...
Process for preparing lubricating oil from used waste lubricating oil
Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.
1978-01-01
A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.
Chemical composition of the essential oil from Jasminum pubescens leaves and flowers.
Temraz, Abeer; Cioni, Pier Luigi; Flamini, Guido; Braca, Alessandra
2009-12-01
The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.
Villalobos-Hernández, J R; Müller-Goymann, C C
2007-01-01
This paper describes the in vitro photoprotection in the UV-A range, i.e. 320-400 nm obtained by the use of carnauba wax-decyl oleate nanoparticles either as encapsulation systems or as accompanying vehicles for inorganic sunscreens such as barium sulfate, strontium carbonate and titanium dioxide. Lipid-free inorganic sunscreen nanosuspensions, inorganic sunscreen-free wax-oil nanoparticle suspensions and wax-oil nanoparticle suspensions containing inorganic sunscreens dispersed either in their oil phase or their aqueous phase were prepared by high pressure homogenization. The in vitro erythemal UV-A protection factors (EUV-A PFs) of the nanosuspensions were calculated by means of a sun protection analyzer. EUV-A PFs being no higher than 4 were obtained by the encapsulation of barium sulfate and strontium carbonate, meanwhile by the distribution of titanium dioxide in presence of wax-oil nanoparticles, the EUV-A PFs varied between 2 and 19. The increase in the EUV-A PFs of the titanium dioxide obtained by the use of wax-oil nanoparticles demonstrated a better performance of the sun protection properties of this pigment in the UV-A region.
Photocatalytic production and processing of conjugated linoleic acid-rich soy oil.
Jain, Vishal P; Proctor, Andrew
2006-07-26
Daily intake of conjugated linoleic acid (CLA), an anticarcinogenic, antiatherosclerotic, antimutagenic agent, and antioxidant, from dairy and meat products is substantially less than estimated required values. The objective of this study was to obtain CLA-rich soybean oil by a customized photochemical reaction system with an iodine catalyst and evaluate the effect of processing on iodine and iodo compounds after adsorption. After 144 h of irradiation, a total CLA yield of 24% (w/w) total oil was obtained with 0.15% (w/w) iodine. Trans,trans isomers (17.5%) formed the majority of the total yield and are also associated with health benefits. The isomers cis-9,trans-11 and trans-10,cis-12 CLA, associated with maximum health benefits, formed approximately 3.5% of the total oil. This amount is quite significant considering that total CLA obtained from dairy sources is only 0.6%. ATR-FTIR, 1H NMR, and GC-MS analyses indicated the absence of peroxide and aldehyde protons, providing evidence that secondary lipid oxidation products were not formed during the photochemical reaction. Adsorption processing vastly reduced the iodine and iodocompounds without CLA loss. Photocatalysis significantly increased the levels of CLA in soybean oil.
Tabanca, Nurhayat; Demirci, Betul; Crockett, Sara L; Başer, Kemal Hüsnü Can; Wedge, David E
2007-10-17
Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.
Life of Pennzane and 815Z-Lubricated Instrument Bearings Cleaned with Non-CFC Solvents
NASA Technical Reports Server (NTRS)
Loewenthal, Stuart; Jones, William; Predmore, Roamer
1999-01-01
This report takes the form of two papers: (1) "Life of Pennzane and 815Z-Lubricated Instrument Bearings cleaned with Non-CFC Solvents" and (2) a published paper, entitled "Instrument bearing life with NON-CFC cleaners". Abstract for paper # 1 : Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-1 13 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under flight-like conditions with two space oils. A goal was to gain a better understanding of the lubricant surface chemistry effects with such solvents. A second objective was to obtain well-controlled, full-scale bearing life test data with a relatively new synthetic oil (Pennzane), touted as an improvement to Bray 815Z, an oil with considerable space flight history. The second paper, which serves as an attachment, is abstracted below: Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-113 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under flight-like conditions with two space oils. A goal was to gain a better understanding of the lubricant surface chemistry effects with such solvents. A second objective was to obtain well-controlled, full-scale bearing life test data with a relatively new synthetic oil (Pennzane), touted as an improvement to Bray 815Z, an oil with considerable space flight history.
Volatile constituents of Pinus roxburghii from Nepal.
Satyal, Prabodh; Paudel, Prajwal; Raut, Josna; Deo, Akash; Dosoky, Noura S; Setzer, William N
2013-01-01
Pinus roxburghii Sarg. Is one of 3 species of pine found in Nepal, the oil of which is traditionally used to treat cuts, wounds, boils, and blisters. To obtain, analyze, and examine the anti-microbial and cytotoxic activities of the essential oils of P. roxburghii. Three plant parts (cone, needle, and bark) of Pinus roxburghii were collected in Biratnagar, Nepal. The essential oils were obtained by hydrodistillation, and the chemical compositions were determined by GC-MS. The needle and cone essential oils were screened for anti-microbial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Aspergillus niger; brine shrimp (Artemia salina) lethality; and in-vitro cytotoxicity against MCF-7 cells. GC-MS analysis for the cone oil revealed 81 compounds with 78 components being identified (95.5% of the oil) while 98.3% of needle oil was identified to contain 68 components and 98.6% of the bark oil (38 components) was identified. The 3 essential oils were dominated by sesquiterpenes, particularly (E)-caryophyllene (26.8%-34.5%) and α-humulene (5.0%-7.3%) as well as monoterpene alcohols terpinen-4-ol (4.1%-30.1%) and α-terpineol(2.8%-5.0%). The monoterpene δ-3-carene was present only in needle and cone essential oils (2.3% and 6.8%, respectively). Bio-activity assays of the cone essential oil of P. roxburghii showed remarkable cytotoxic activity (100% killing of MCF-7 cells at 100 μg/mL) along with notable brine shrimp lethality (LC50 =11.8 μg/mL). The cone essential oil did not show anti-bacterial activity, but it did exhibit anti-fungal activity against Aspergillus niger (MIC=39 μg/mL). The bioactivity of P. roxburghii essential oil is consistent with its traditional medicinal use.
El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia
2016-03-01
In Tunisia, Tipuana tipu (Benth.) Kuntze is an exotic tree, which was introduced many years ago and planted as ornamental street, garden, and park tree. The present work reported, for the first time, the chemical composition and evaluates the allelopathic effect of the hydrodistilled essential oils of the different parts of this tree, viz., roots, stems, leaves, flowers, and pods gathered in the area of Sousse, a coastal region, in the East of Tunisia. In total, 86 compounds representing 89.9 - 94.9% of the whole oil composition, were identified in these oils by GC-FID and GC/MS analyses. The root essential oil was clearly distinguished for its high content in sesquiterpene hydrocarbons (β-caryophyllene, 1 (44); 24.1% and germacrene D, 2 (53); 20.0%), while those obtained from pods, leaves, stems, and flowers were dominated by non-terpene hydrocarbons. The most important ones were n-tetradecane (41, 16.3%, pod oil), 1,7-dimethylnaphthalene (43, 15.6%, leaf oil), and n-octadecane (77, 13.1%, stem oil). The leaf oil was rich in the apocarotene (E)-β-ionone (4 (54); 33.8%), and the oil obtained from flowers was characterized by hexahydrofarnesylacetone (5 (81); 19.9%) and methyl hexadecanoate (83, 10.2%). Principal component and hierarchical cluster analyses separated the five essential oils into three groups and two subgroups, each characterized by the major oil constituents. Contact tests showed that the germination of lettuce seeds was totally inhibited by the root essential oil tested at 1 mg/ml. The inhibitory effect on the shoot and root elongation varied from -1.6% to -32.4%, and from -2.5% to -64.4%, respectively. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Holographic interferometry of oil films and droplets in water with a single-beam mirror-type scheme.
Kukhtarev, Nickolai; Kukhtareva, Tatiana; Gallegos, Sonia C
2011-03-01
Application of single-beam reflective laser optical interferometry for oil films and droplets in water detection and characterization is discussed. Oil films can be detected by the appearance of characteristic interference patterns. Analytical expressions describing intensity distribution in these interference patterns allow determination of oil film thickness, size of oil droplets, and distance to the oil film from the observation plane. Results from these analyses indicate that oil spill aging and breakup can be monitored in real time by analyzing time-dependent holographic fringe patterns. Interferometric methods of oil spill detection and characterization can be automated using digital holography with three-dimensional reconstruction of the time-changing oil spill topography. In this effort, the interferometric methods were applied to samples from Chevron oil and British Petroleum MC252 oil obtained during the Deep Water Horizon oil spill in the Gulf of Mexico. © 2011 Optical Society of America
Wang, Lai-Hao; Wang, Chia-Chen; Kuo, Su-Ching
2007-01-01
The effects of four essential oils (rosemary, ylang, lilacin, and peppermint oils), and three plant oils (jojoba oil, corn germ oil, and olive oil) on the permeation of aminophylline were studied using human skin. The permeation effects of these oils were compared with those of three chemical penetration enhancers. Although all oils enhanced the permeation of aminophylline, their effects were less than that of ethanol. Jojoba oil was found to be the most active, causing about a 32% peak height decrease of N-H bending absorbances in comparison with the control, while peppermint, lilacin, rosemary, and ylang oils caused 28%, 24%, 18%, and 12% peak height decreases, respectively. Microemulsions containing 10% jojoba oil and 30% corn germ oil were found to be superior vehicles for the percutaneous absorption of aminophylline. Comparision with results obtained from high-performance liquid chromatography shows good agreement.
Water soluble fractions of rose-scented geranium (Pelargonium species) essential oil.
Rao, B R Rajeswara; Kaul, P N; Syamasundar, K V; Ramesh, S
2002-09-01
The essential oil of rose-scented geranium (Pelargonium species, family: Geraniaceae) obtained through steam or water plus steam distillation of shoot biomass is extensively used in the fragrance industry and in aromatherapy. During distillation, a part of the essential oil becomes dissolved in the distillation water (hydrosol) and is lost as this hydrosol is discarded. In this investigation, hydrosol was shaken for 30 min with hexane (10:1 proportion) and the hexane was distilled to yield 'secondary' or 'recovered' essential oil. The chemical composition of secondary oil was compared with that of 'primary' oil (obtained directly by distilling shoot biomass of the crop). Primary oil accounted for 93.0% and secondary oil 7.0% of the total oil yield (100.2 ml from 100 kg green shoot biomass). Fifty-two compounds making up 95.0-98.5% of the primary and the secondary oils were characterized through gas chromatography (GC) and gas chromatography-mass spectroscopy (GC--MS). Primary oil was richer in hydrocarbons (8.5-9.4%), citronellyl formate (6.2-7.5%), geranyl formate (4.1-4.7%), citronellyl propionate (1.0-1.2%), alpha-selinene (1.8-2.2%), citronellyl butyrate (1.4-1.7%), 10-epi-gamma-eudesmol (4.9-5.5%) and geranyl tiglate (1.8-2.1%). Recovered oil was richer in organoleptically important oxygenated compounds (88.9-93.9%), commercial rhodinol fraction (74.3-81.2%), sabinene (0.4-6.2%), cis-linool oxide (furanoid) (0.7-1.2%), linalool (14.7-19.6%), alpha-terpineol (3.3-4.8%) and geraniol (21.3-38.4%). Blending of recovered oil with primary oil is recommended to enhance the olfactory value of the primary oil of rose-scented geranium. Distillation water stripped of essential oil through hexane extraction can be recycled for distilling the next batch of rose-scented geranium.
Production of BCG alginate-PLL microcapsules by emulsification/internal gelation.
Esquisabel, A; Hernández, R M; Igartua, M; Gascón, A R; Calvo, B; Pedraz, J L
1997-01-01
A biocompatible emulsification method for microencapsulation of live cells and enzymes within a calcium alginate matrix applied to Bacillus Calmette-Guérin (BCG) has been developed. Small-diameter alginate beads (microcapsules) were formed via internal gelation of an alginate solution emulsified within vegetable oil. Five different oils (sesame, sweet almond, perhydrosqualene, camomile and jojoba) were used. The rheological analysis of the oils showed a Newtonian behaviour, with viscosities = 30.0, 37.7, 51.2, 59.3 and 67.1 mPa.s for perhydrosqualene, jojoba, camomile, sesame and sweet almond oil respectively. The particle size of the microcapsules obtained ranged from 30.3 microns for the microcapsules prepared with sweet almond oil to 57.0 microns for those made with perhydrosqualene. The mean particle diameter obtained was found to be dependent on the viscosity of the oil employed, according to the equation: phi (micron) = 76.6-0.628 eta (mPa.s) (r2 = 0.943). The encapsulated BCG was identified by the Difco TB stain set K, followed by observation under optical microscopy. Freeze-drying of the microcapsules was carried out to ensure their stability during storage. Two batches of microcapsules (those prepared with sesame and jojoba oil) and four types of cryoprotectors (glucose, trehalose, mannitol and sorbitol), at three concentration levels (5, 10 and 20% w/v) were studied. The parameters evaluated were particle size, physical appearance, reconstitution of lyophilizates and microscopical evaluation. For both batches of microcapsules the best results were obtained with trehalose 5%, showing particle sizes of 42.1 microns in the case of the microcapsules prepared with sesame oil, and of 45.3 microns for those prepared with jojoba.
Venturi, Francesca; Sanmartin, Chiara; Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela
2017-08-22
While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil.
Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis
2003-09-10
A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).
Deng, Wanshun; Long, Mengying; Zhou, Qiannan; Wen, Ni; Deng, Wenli
2018-02-01
Superhydrophobic membranes with opposite wettability toward water and oil are able to separate water-in-oil emulsions. By constructing porous and hierarchal-structured superhydrophobic coating on filter paper, we hope a quick separation process could be achieved due to the acceleration of both demulsification and penetration process. Here, superhydrophobic coatings were prepared by simply spraying environmental and cost-effective acrylonitrile-butadiene-styrene copolymer (ABS) colloid in dichloromethane onto filter paper. The morphologies and wettability of the obtained coatings were carefully studied. Moreover, the separation performances in dealing with various surfactant-stabilized water-in-oil emulsions (SSWOE) were also investigated to verify our hypothesis. The morphologies of the ABS coatings varied with its weight concentration in dichloromethane and they changed from porous and plain surface into porous and hierarchal-structured surface. Besides, the hydrophobicity of the above coatings varied form hydrophobic to superhydrophobic. Moreover, the resulted superhydrophobic membranes show great separation capability in separating various span 80-stabilized water-in-oil emulsions with oil filtrate purities larger than 99.90% and huge penetration fluxes whose maximum is over 13,000L/(m 2 h). Thus, we envision that such membrane can be a practical candidate in dealing with water-in-oil emulsions to obtain pure oils. Copyright © 2017 Elsevier Inc. All rights reserved.
An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.
Starliper, Clifford E.; Ketola, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.
2014-01-01
Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate. PMID:25685547
Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela
2017-01-01
While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil. PMID:28829365
NASA Astrophysics Data System (ADS)
Sembodo, Bregas Siswahjono Tatag; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad
2018-02-01
Lignocellulosic biomass has recently received serious attention as an energy source that can replace fossil fuels. Corncob is one of lignocellulosic biomass wastes, which can be further processed into bio-oil through thermochemical liquefaction process. Bio-oil is expected to be further processed into fuel oil. In this research the effect of Na2CO3 catalyst weight on the yield of bio-oil was investigated. The composition of bio-oil produced in this process was analyzed by GC-MS. Bio-oil formation rate were analyzed through mathematical model development. First model aasumed as an isothermal process, while second model was not. It is found that both models were able to provide a good approach to experimental data. The average reaction rate constants was obtained from isothermal model, while the activation energy level and collision factors were obtained from non-isothermal model. The reaction rate will increase by addition of Na2CO3 (0 - 0.5 g) as catalyst to 250 mL system solution, then the activation energy will decrease from 1964.265 joules/mole to 1029.994 joules/mole. The GC-MS analysis results showed that the bio-oil were contained of ester compounds, phenolic compounds, cyclic compunds, heterocyclic compounds, and poly-alcohols compounds.
An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.
Starliper, Clifford E.; Ketola, H. George; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc; Dittman, Dawn E.
2015-01-01
Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate.
An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.
Starliper, Clifford E.; Ketolab, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.
2015-01-01
Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments for captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine if selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBC’s (0.02 to 0.04%) were obtained with three different sources of cinnamon oil. MBC’s for three sources of oregano and lemongrass oils ranged from 0.14 to 0.30% and 0.10 to 0.65%, respectively, and for two thyme oils were 2.11 and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBC’s to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBC’s for all but one isolate
Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats.
Shaw, D; Annett, J M; Doherty, B; Leslie, J C
2007-09-01
To establish a valid animal model of the effects of olfactory stimuli on anxiety, a series of experiments was conducted using rats in an open-field test. Throughout, effects of lavender oil were compared with the effects of chlordiazepoxide (CDP), as a reference anxiolytic with well-known effects on open-field behaviour. Rats were exposed to lavender oil (0.1-1.0 ml) for 30 min (Experiment 1) or 1h (Experiment 2) prior to open-field test and in the open field or injected with CDP (10 mg/kg i.p.). CDP had predicted effects on behaviour, and the higher doses of lavender oil had some effects on behaviour similar to those of CDP. In Experiment 3, various combinations of pre-exposure times and amounts of lavender oil were used. With sufficient exposure time and quantity of lavender the same effects were obtained as in Experiment 2. Experiment 4 demonstrated that these behavioural effects of lavender could be obtained following pre-exposure, even if no oil was present in the open-field test. In Experiments 2-4, lavender oil increased immobility. Together, these experiments suggest that lavender oil does have anxiolytic effects in the open field, but that a sedative effect can also occur at the highest doses.
Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya
2012-05-01
Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.
NASA Astrophysics Data System (ADS)
Putri, A. S.; Purba, F. F.; Kusuma, I. W.; Kuspradini, H.
2018-04-01
Essential oils producing plants comprises about 160-200 species, one of which belongs to Lauraceae family. Actinodaphne macrophylla is a plant of the Lauraceae family and widely spread on Kalimantan island. For humans, essential oils are used in cosmetics industry, food industry, and pharmaceutical industry. This research aimed to analyze the characteristics of essential oil and potential of antimicrobial activity from A. macrophylla leaves oils. Essential oils were obtained by steam distillation method. Antimicrobial activity was assayed using agar diffusion method which compared with two synthetic standards including chlorhexidine and chloramphenicol. Four microorganisms were used in this study were Candida albicans, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sobrinus. The obtained oil was determined for its characteristics including the yield, refractive index, and chemical components. The attained components were analyzed using GC-MS. The results of this study showed that essential oils of A. macrophylla leaves contained 0.1051% of yield, clearless, and refractive index was 1.425. Based on GC-MS analysis result, it showed chemical components including spathulenol, 2-monopalmitin, (+)-sabinene, copaen, camphene, and β-pinene. This plant potentially can inhibit the growth of S. aureus, C. albicans, S. sobrinus, and S. mutans with inhibition zones of 17.22, 20.89, 22.34 and 22.89 mm, respectively.
Barbosa, P.; Lima, A. S.; Vieira, P.; Dias, L. S.; Tinoco, M. T.; Barroso, J. G.; Pedro, L. G.; Figueiredo, A. C.
2010-01-01
Twenty seven essential oils, isolated from plants representing 11 families of Portuguese flora, were screened for their nematicidal activity against the pinewood nematode (PWN), Bursaphelenchus xylophilus. The essential oils were isolated by hydrodistillation and the volatiles by distillation-extraction, and both were analysed by GC and GC-MS. High nematicidal activity was achieved with essential oils from Chamaespartium tridentatum, Origanum vulgare, Satureja montana, Thymbra capitata, and Thymus caespititius. All of these essential oils had an estimated minimum inhibitory concentration ranging between 0.097 and 0.374 mg/ml and a lethal concentration necessary to kill 100% of the population (LC100) between 0.858 and 1.984 mg/ml. Good nematicidal activity was also obtained with the essential oil from Cymbopogon citratus. The dominant components of the effective oils were 1–octen-3-ol (9%), n–nonanal, and linalool (both 7%) in C. tridentatum, geranial (43%), neral (29%), and β-myrcene (25%) in C. citratus, carvacrol (36% and 39%), γ-terpinene (24% and 40%), and p-cymene (14% and 7%) in O. vulgare and S. montana, respectively, and carvacrol (75% and 65%, respectively) in T. capitata and T. caespititius. The other essential oils obtained from Portuguese flora yielded weak or no activity. Five essential oils with nematicidal activity against PWN are reported for the first time. PMID:22736831
Machado, Kamilla N.; Kaneko, Telma M.; Young, Maria Cláudia M.; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H.
2017-01-01
Background: Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Methods: Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. Results: The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. Conclusions: The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa. PMID:28930241
Machado, Kamilla N; Kaneko, Telma M; Young, Maria Cláudia M; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H
2017-05-01
Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa.
Stability of cosmetic emulsion containing different amount of hemp oil.
Kowalska, M; Ziomek, M; Żbikowska, A
2015-08-01
The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Schott, Michael; Müller, Kajetan
2018-01-01
Achieving high quality of a coated food product is mostly dependent on the characteristics of the food material to be coated, the properties of the components in the coating solution, and the obtained coating material. In the present study, usability and effectiveness of various components as well as their concentrations were assessed to produce an effective coating material. For this purpose, different concentrations of gelling agent (sodium alginate 0–3.5%, w/w), plasticizers (glycerol and sorbitol (0–20%, w/w), surfactants (tween 40, tween 80, span 60, span 80, lecithin (0–5%, w/w), and vegetable oils (sunflower oil, olive oil, rapeseed oil (0–5%, w/w) were used to prepare edible coating solutions. Formulations were built gradually, and characteristics of coatings were evaluated by analyzing surface tension values and its polar and dispersive components, emulsion droplet size, and optical appearance in microscopic scale. The results obtained showed that 1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, and 0.2% tween 40 or tween 80 can be used in formulation to obtain an effective coating for hydrophobic food surfaces. Three formulations were designed, and their stability (emulsion droplet size, optical characteristics, and creaming index) and wettability tests on strawberry showed that they could be successfully used in coating applications. PMID:29509669
Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai
2018-08-01
Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.
NASA Astrophysics Data System (ADS)
Gu, Rongbao; Chen, Hongtao; Wang, Yudong
2010-07-01
The multifractal nature of WTI and Brent crude oil markets is studied employing the multifractal detrended fluctuation analysis. We find that two crude oil markets become more and more efficient for long-term and two Gulf Wars cannot change time scale behavior of crude oil return series. Considering long-term influence caused by Gulf Wars, we find such “turning windows” in generalized Hurst exponents obtained from three periods divided by two Gulf Wars so that WTI and Brent crude oil returns possess different properties above and below the windows respectively. Comparing with the results obtained from three periods we conclude that, before the First Gulf War, international crude oil markets possessed the highest multifractality degree, small-scope fluctuations presented the strongest persistence and large-scope fluctuations presented the strongest anti-persistence. We find that, for two Gulf Wars, the first one made a greater impact on international oil markets; for two markets, Brent was more influenced by Gulf Wars. In addition, we also verified that the multifractal structures of two markets’ indices are not only mainly attributed to the broad fat-tail distributions and persistence, but also affected by some other factors.
Ben Othman, Mahmoud; Bel Hadj Salah-Fatnassi, Karima; Ncibi, Saida; Elaissi, Amer; Zourgui, Lazhar
2017-07-01
The antimicrobial effects of essential oil, ethanol and aqueous extracts of Teucrium polium L. were investigated against 13 microorganisms. Extracts and essential oil were obtained from maceration, decoction and hydrodistillation respectively. Samples were tested for their antimicrobial activity using the disk diffusion, the agar dilution and the agar incorporation method. Essential oil was analysed using GC/MS, results showed that β-pinene (35.97%) and α-pinene (13.32%) were the main components. Furthermore, essential oil exhibited the highest antimicrobial activity, it was most effective against Proteus mirabilis, Staphylococcus aureus and Citrobacter freundei where inhibition zone ranged between 15 and 25 mm, and with the microbial inhibitory concentration (MIC) values of 0.078-0.156 mg/ml. The oil and ethanol extract showed the best antifungal activity against Microsporum canis , Scopulariopsis brevicaulis , and Trichophyton rubrum with the inhibition percentage (I%) ranging from 18.94 to 100%. However, none of the samples exhibited antifungal activity against Aspergillus fumigatus . In this study, the obtained results showed significant effects of essential oils and ethanol extracts of T. polium which may used as a substitute to the synthetic drugs against certain microbial diseases.
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-01-01
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB. PMID:28036040
Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt. The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, publishedmore » work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degrees} C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3--5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).« less
Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor.
Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki
2016-12-28
The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB.
Yu, Guo-Wei; Nie, Jing; Song, Zhi-Yu; Li, Zu-Guang; Lee, Maw-Rong; Wang, Shen-Peng
2017-11-01
Simultaneous distillation extraction (SDE) is quite useful for the separation of volatile compounds from an analyte when their contents are quite low. In this study, a simplified SDE approach is applied for the extraction of essential oil from Schisandra sphenanthera, with microwave as heating source, [Bmim][Cl] as the medium for pretreatment, and gas chromatography-mass spectrometry as the analytical approach. Consequently, the improvement resulted from [Bmim][Cl] pretreatment is demonstrated by taking comparison with blank experiments. Totally 61 compounds have been detected in the essential oil obtained by using [Bmim][Cl] pretreatment, while without [Bmim][Cl] pretreatment, only 53 compounds can be detected. Moreover, [Bmim][Cl] pretreatment can also resulted in a higher yield of essential oil. The experimental results demonstrate that the simplified SDE coupled with ionic liquid pretreatment is a feasible approach for the extraction of essential oil from S. sphenanthera with high efficiency as 0.85% of essential oil yield has been obtained, and can be potentially extended to the extraction of essential oil or other target volatile compounds with low content. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Thermal Properties of Jojoba Oil Between 20°C and 45°C
NASA Astrophysics Data System (ADS)
Lara-Hernández, G.; Flores-Cuautle, J. J. A.; Hernandez-Aguilar, C.; Suaste-Gómez, E.; Cruz-Orea, A.
2017-08-01
Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba ( Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between 20°C and 45°C were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 W\\cdot s^{1/2}\\cdot m^{-2}\\cdot K^{-1} to 378 W\\cdot s^{1/2}m^{-2}\\cdot K^{-1} as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between 20°C and 45°C.
Terpenes as green solvents for extraction of oil from microalgae.
Dejoye Tanzi, Celine; Abert Vian, Maryline; Ginies, Christian; Elmaataoui, Mohamed; Chemat, Farid
2012-07-09
Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.
Qualitative analysis of pure and adulterated canola oil via SIMCA
NASA Astrophysics Data System (ADS)
Basri, Katrul Nadia; Khir, Mohd Fared Abdul; Rani, Rozina Abdul; Sharif, Zaiton; Rusop, M.; Zoolfakar, Ahmad Sabirin
2018-05-01
This paper demonstrates the utilization of near infrared (NIR) spectroscopy to classify pure and adulterated sample of canola oil. Soft Independent Modeling Class Analogies (SIMCA) algorithm was implemented to discriminate the samples to its classes. Spectral data obtained was divided using Kennard Stone algorithm into training and validation dataset by a fixed ratio of 7:3. The model accuracy obtained based on the model built is 0.99 whereas the sensitivity and precision are 0.92 and 1.00. The result showed the classification model is robust to perform qualitative analysis of canola oil for future application.
Re-Os dating of maltenes and asphaltenes within single samples of crude oil
NASA Astrophysics Data System (ADS)
Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Galimberti, Roberto; Nali, Micaela; Yang, Gang; Zimmerman, Aaron
2016-04-01
Re-Os geochronology of oil may constrain the timing of oil formation and improve oil-source and oil-oil correlations. Typically, asphaltene (ASPH), the heaviest and most Re-Os rich oil fraction, from multiple oils within an oil field or a larger petroleum system are analyzed to obtain sufficient spread in Re-Os isotopic ratios, a mathematical necessity for precise Re-Os isochrons. Here we offer a new approach for Re-Os geochronology of oil based on isotopic analyses of different fractions within a single sample of crude oil. We studied three oils from the Gela oil field, southern Sicily, Italy, recovered from Triassic-Jurassic stratigraphic intervals (Streppenosa, Noto, and Sciacca Formations) within the Gela-1 well. ASPH (insoluble in n-alkane) and maltene (MALT, soluble in n-alkane) fractions of oil were separated using n-pentane, n-hexane, n-heptane and n-decane solvents. The ASPH contents of the Sciacca and Noto oils (26-33 wt%) are notably higher compared to the Streppenosa oil (7-12 wt% ASPH). We present an optimized Re-Os procedure with sample digestion in a high-pressure asher, followed by isotopic measurements using negative thermal ionization mass spectrometry. Very high metal contents of Gela oils allowed acquisition of precise Re-Os data. Systematic variations between the type of solvent used for ASPH precipitation and the ASPH content of the oil (also known from the literature) and the Re-Os contents of the ASPH and MALT fractions (first observed in this study) provide important practical applications for Re-Os analyses of oil. Most Re and Os (∼96-98%) in the Noto oil are hosted in the ASPH fraction. In contrast, a significant portion of Re and Os (∼33-34%) is stored in the MALT fraction of the lighter, but heavily biodegraded Streppenosa oil. Collectively, our new data on alkane distribution, hopane and sterane biomarkers, major and trace element contents, and Re-Os concentrations and isotopic ratios of the oils and their fractions support the presence of two oil families. Streppenosa oil, a heavily biodegraded oil generated at an early stage of thermal maturation from a shaly source rock, is clearly distinct from the Noto and Sciacca oils, both generated at peak maturation from a carbonate source rock with no subsequent biodegradation. Two Re-Os ages were obtained. Crude oil and ASPH from Noto and Sciacca oil yield a Model 1 isochron age of 27.5 ± 4.6 Ma with an initial 187Os/188Os of 3.89 ± 0.43 (MSWD = 1.6, n = 19). We interpret this Oligocene age as the time of initial oil generation, that was probably related to the onset of regional collisional tectonics in southern Sicily. ASPH and crude oil from the Streppenosa oil yield scattered data, perhaps related to effects of biodegradation. Streppenosa MALT yield a Model 1 age of 200.0 ± 5.2 Ma and initial 187Os/188Os of 1.39 ± 0.11 (MSWD = 0.52; n = 4). This age and initial Os-isotopic composition are consistent with rapid oil generation shortly after Late Triassic source-rock formation, perhaps driven by magmatic-related heating. Here we document a potentially powerful geochronological tool that can be applied to single samples of crude oil. Within each oil, the 187Os/188Os and most of the 187Re/188Os ratios in the MALT fractions are lower than in the corresponding ASPH fractions. Crude oils, being physical mixtures of ASPH and MALT, have intermediate Re-Os isotopic ratios. Hence, the needed spread in data points for a Re-Os isochron is obtained by analyzing components of a single crude oil. This approach eliminates pitfalls in interpretation of Re-Os data from multiple oils with possibly different generation, migration, or reservoir modification history.
Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Lemahieu, Charlotte; Muylaert, Koenraad; Van Durme, Jim; Goiris, Koen; Foubert, Imogen
2013-10-23
Microalgae are the primary producers of omega-3 LC-PUFA, which are known for their health benefits. Their oil may thus be a potential alternative for fish oil. However, oxidative and hydrolytic stability of omega-3 LC-PUFA oils are important parameters. The purpose of this work was therefore to evaluate these parameters in oils from photoautotrophic microalgae (Isochrysis, Phaeodactylum, Nannochloropsis gaditana, and Nannochloropsis sp.) obtained with hexane/isopropanol (HI) and hexane (H) and compare them with commercial omega-3 LC-PUFA oils. When the results of both the primary and secondary oxidation parameters were put together, it was clear that fish, tuna, and heterotrophic microalgae oil are the least oxidatively stable oils, whereas krill oil and the microalgae oils performed better. The microalgal HI oils were shown to be more oxidatively stable than the microalgal H oils. The hydrolytic stability was shown not to be a problem during the storage of any of the oils.
Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson
2013-12-15
Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.
Souza, Ariana B; de Souza, Maria G M; Moreira, Maísa A; Moreira, Monique R; Furtado, Niege A J C; Martins, Carlos H G; Bastos, Jairo K; dos Santos, Raquel A; Heleno, Vladimir C G; Ambrosio, Sergio Ricardo; Veneziani, Rodrigo C S
2011-11-18
The antimicrobial activity of four labdane-type diterpenes isolated from the oleoresin of Copaifera langsdorffii as well as of two commercially available diterpenes (sclareol and manool) was investigated against a representative panel of microorganisms responsible for periodontitis. Among all the evaluated compounds, (-)-copalic acid (CA) was the most active, displaying a very promising MIC value (3.1 µg mL-1; 10.2 µM) against the key pathogen (Porphyromonas gingivalis) involved in this infectious disease. Moreover, CA did not exhibit cytotoxicity when tested in human fibroblasts. Time-kill curve assays performed with CA against P. gingivalis revealed that this compound only inhibited the growth of the inoculums in the first 12 h (bacteriostatic effect). However, its bactericidal effect was clearly noted thereafter (between 12 and 24 h). It was also possible to verify an additive effect when CA and chlorhexidine dihydrochloride (CHD, positive control) were associated at their MBC values. The time curve profile resulting from this combination showed that this association needed only six hours for the bactericidal effect to be noted. In summary, CA has shown to be an important metabolite for the control of periodontal diseases. Moreover, the use of standardized extracts based on copaiba oleoresin with high CA contents can be an important strategy in the development of novel oral care products.
Gas occurrence property in shales of Tuha basin northwest china
NASA Astrophysics Data System (ADS)
Chen, Jinlong; Huang, Zhilong
2017-04-01
Pore of rock under formation condition must be fulfilled by gas, oil, or water, so the volume of water and gas is equation to porous volume in shale gas. The occurrences states of gas are free gas, solution gas, and absorbed gas. Field analysis is used to obtain total gas content by improved lost gas recover method. Free gas content acquired by pore proportion of gas, which use measured pore volume minus water and oil saturation, convert gas content of standard condition by state equation. Water saturation obtain from core water content, oil saturation obtain from extract carbohydrate. Solution gas need gas solubility in oil and water to calculate solution gas content in standard condition. Absorbed gas, introduce Absorbed Gas Saturation ɛ, which acquire from isothermal adsorption volume vs field analysis gas content in many basins of published paper, need isothermal adsorption and Absorbed Gas Saturation to obtain absorbed gas content. All of the data build connect with logging value by regression equation. The gas content is 0.92-1.53 m3/t from field analysis, evaluate gas content is 1.33 m3/t average, free gas proportion is about 47%, absorbed gas counter for 49%, and solution gas is average 4%.
Abalos, M; Parera, J; Abad, E; Rivera, J
2008-04-01
Among the tasks included in the "Quality and safety of feeding fats obtained from co-products or by-products of the food chain" Project, supported by the European Union and included in the 6th Framework Program, a number of fats and oils collected as co- or by-products from the food chain were selected for the determination of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and 'dioxin-like' polychlorinated biphenyls (DL-PCBs). In the majority of the cases these samples are currently employed as feed ingredients. Nevertheless, additional fats, which are forbidden for feedstuff purposes were also considered in this study. In general terms, fats and oils were classified taking into account their nature and the processes applied to obtain these co- or by-products. PCDD/F and DL-PCB levels were evaluated in a first group of samples composed of fish oils, animal fats and lecithins. As expected, fats and oils with an animal origin presented higher concentrations, expressed in pg WHO-TEQ/g, compared to the levels found in vegetable samples like lecithins. The category of fish oils had the highest values for both PCDD/Fs and the sum of PCDD/Fs and DL-PCBs, with some samples showing levels above the maximum established at the present legislation related to the presence of PCDD/Fs and DL-PCBs in animal feed [Commission Directive 2006/13/EC of 3 February 2006 amending Annexes I and II to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed as regards dioxins and dioxin-like PCBs. Official Journal of the European Communities L32, 44-53]. In a second group, fats and oils with a more complex composition obtained from different transformation processes or even mixtures of fats were considered; thus, acid oils from chemical refining, acid oils from physical refining, recycled cooking oils, oils extracted from exhausted bleaching earths, hydrogenated by-products, fatty acids calcium soaps and miscellaneous fats were analyzed. The data revealed a significant variability in PCDD/F and DL-PCB levels, expressed in pg WHO-TEQ/g, in these products. It has to be pointed out that the analyses of fats and oils belonging to these categories of products were sometimes difficult due to the complexity of the samples. In terms of legislation most of these samples cannot be easily included into one of the specific categories of substances intended for feedstuff purposes that are regulated in Commission Directive 2006/13/EC.
El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Ben Jannet, Hichem; Harzallah-Skhiri, Fethia
2015-04-01
Acacia cyanophylla Lindl. (Fabaceae), synonym Acacia saligna (Labill.) H. L.Wendl., native to West Australia and naturalized in North Africa and South Europe, was introduced in Tunisia for rangeland rehabilitation, particularly in the semiarid zones. In addition, this evergreen tree represents a potential forage resource, particularly during periods of drought. A. cyanophylla is abundant in Tunisia and some other Mediterranean countries. The chemical composition of the essential oils obtained by hydrodistillation from different plant parts, viz., roots, stems, phyllodes, flowers, and pods (fully mature fruits without seeds), was characterized for the first time here. According to GC-FID and GC/MS analyses, the principal compound in the phyllode and flower oils was dodecanoic acid (4), representing 22.8 and 66.5% of the total oil, respectively. Phenylethyl salicylate (8; 34.9%), heptyl valerate (3; 17.3%), and nonadecane (36%) were the main compounds in the root, stem, and pod oils, respectively. The phyllode and flower oils were very similar, containing almost the same compounds. Nevertheless, the phyllode oil differed from the flower oil for its higher contents of hexahydrofarnesyl acetone (6), linalool (1), pentadecanal, α-terpineol, and benzyl benzoate (5) and its lower content of 4. Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by its main constituents. Furthermore, the allelopathic activity of each oil was evaluated using lettuce (Lactuca sativa L.) as a plant model. The phyllode, flower, and pod oils exhibited a strong allelopathic activity against lettuce. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Simulation and automation of thermal processes in oil well
NASA Astrophysics Data System (ADS)
Kostarev, N. A.; Trufanova, N. M.
2018-03-01
The paper presents a two-dimensional mathematical model and a numerical analysis of heat and mass transfer processes in an oil well. The proposed and implemented mathematical model of the process of heat and mass transfer in an oil well allows analyzing the temperature field in the whole space of an oil well and is suitable for any fields equipped with an electric centrifugal pump. Temperature and velocity fields were obtained, as well as the distribution of temperature on the wall of the pump tubing along the depth of the well. On the basis of the obtained temperature fields, the modes of periodic heating of the well by the heating cable were developed. Recommendations are given on the choice of power parameters and the time of warming up the well.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... Recreational Diving, Oil and Gas Operations and Commercial Fishing Seats for the Flower Garden Banks National... seats on the Flower Garden Banks National Marine Sanctuary Advisory Council: Recreational Diving, Oil... February 4, 2010. ADDRESSES: Application kits may be obtained from Jennifer Morgan, NOAA--Flower Garden...
USDA-ARS?s Scientific Manuscript database
Essential oils obtained by hydrodistillation were analyzed both by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The main constituents found in Achillea oil were as follows: A. filipendulina Lam.: 43.8% santolina alcohol, 14.5% 1,8-cineole and 12.5% cis-chrysanthenyl acet...
A high-oil castor cultivar developed through recurrent selection
USDA-ARS?s Scientific Manuscript database
The purpose of this paper is to present and interpret the data obtained from field-grown castor seeds. Under greenhouse conditions, a previous recurrent selection for high-oil castor seeds from a base population resulted in a new population with an increased mean oil content from 50.33 to 54.47% dry...
21 CFR 184.1890 - α-Tocopherols.
Code of Federal Regulations, 2011 CFR
2011-04-01
... commercially as a concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible vegetable oil products. (2) dl-α-Tocopherol (CAS Reg. No. 10191-41-0) is a mixture of... by condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...
21 CFR 184.1890 - α-Tocopherols.
Code of Federal Regulations, 2010 CFR
2010-04-01
... commercially as a concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible vegetable oil products. (2) dl-α-Tocopherol (CAS Reg. No. 10191-41-0) is a mixture of... by condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...
Organogels of vegetable oil with plant wax – trans/saturated fat replacements
USDA-ARS?s Scientific Manuscript database
This featured article reviews recent advances on the development of trans fat-free, low saturated fat food products from organogels formed by a plant wax in a vegetable oil. Plant waxes are of great interest in this research area because they are obtained as by-products during the oil refining proce...
Oil Slick Observation at Low Incidence Angles in Ku-Band
NASA Astrophysics Data System (ADS)
Panfilova, M. A.; Karaev, V. Y.; Guo, Jie
2018-03-01
On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.
Cao, Leichang; Zhang, Cheng; Hao, Shilai; Luo, Gang; Zhang, Shicheng; Chen, Jianmin
2016-11-01
This study examined the effect of glycerol used as a co-solvent on yields of bio-oil derived from rice straw through hydrothermal liquefaction (HTL). The reaction was conducted in a high-pressure batch reactor with different volume ratios of glycerol to water. The quality of the derived bio-oil was analyzed in terms of its elemental composition, heating value, water content, ash content, and acid number. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry were conducted to analyze the chemical composition of the derived bio-oils. The following optimal conditions were obtained: 1:1 vol ratio of glycerol to water with 5wt% of Na2CO3 at 260°C for 1h. Under these conditions, 50.31wt% of bio-oil and 26.65wt% of solid residue were produced. Therefore, glycerol can be used as a co-solvent in HTL of rice straw at moderate temperatures to obtain bio-oil with high yield and quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buitrago, Alexis; Rojas, Janne; Rojas, Luis; Velasco, Judith; Morales, Antonio; Peñaloza, Yonel; Díaz, Clara
2015-02-01
Hydrodistillation of Vismia macrophylla Kunth (Hypericaceae) leaves (L) and fruits (F) yielded 1.3%, v/w, and 5.6%, v/w, of essential oil, respectively. GC and GC-MS analyses showed the presence of twenty-four (96.4%, L) and thirty-one (96.6%, F) components, respectively. Major compounds identified in the leaf oil were γ-bisabolene (44.4%) and β-bisabolol (14.9%), while those in the fruit oil were germacrene-D (12.1%), 6-cadinene (10.7%) and γ-bisabolene (22.3 %). Oil obtained from the fruits of V. macrophylla showed antibacterial activity against Gram-positive (S. aureus ATCC 25923 and E. faecalis ATCC 29212) as well as Gram-negative bacteria (E. coli ATCC 25922), with MIC values ranging from 150 μL/mL to 740 μL/mL. Oil obtained from leaves were active only on the Gram-positive bacteria S. aureus (100 μL/mL) and E. faecalis (500 μL/mL), but also showed antiyeast activity against Candida albicans CDC-B385 and C. krusei ATCC 6258 (600 μL/mL, each).
Feasibility of low frequency ultrasound for water removal from crude oil emulsions.
Antes, Fabiane G; Diehl, Liange O; Pereira, Juliana S F; Guimarães, Regina C L; Guarnieri, Ricardo A; Ferreira, Bianca M S; Dressler, Valderi L; Flores, Erico M M
2015-07-01
The feasibility of indirect application of low frequency ultrasound for demulsification of crude oil was investigated without using chemical demulsifiers. Experiments were performed in an ultrasonic bath with frequency of 35 kHz. Synthetic emulsions with water content of 12%, 35% and 50% and median of droplet size distribution (DSD), median D(0.5), of 5, 10 and 25 μm were prepared from crude oil with API density of 19 (heavy crude oil) and submitted to the proposed ultrasound-assisted demulsification procedure. Experimental conditions as temperature, time of exposition to ultrasound and ultrasonic power were evaluated. Separation of water from crude oil emulsion was observed for all emulsions investigated. Demulsification efficiency up to 65% was obtained for emulsion with 50% of water content and DSD of 10 μm. Higher efficiency of demulsification was achieved using US temperature of 45 °C and ultrasound power of 160 W by 15 min. Results obtained in this study showed that ultrasound could be considered a promising technology for industrial crude oil treatment and respective water removal. Copyright © 2015 Elsevier B.V. All rights reserved.
Torri, Cristian; Samorì, Chiara; Adamiano, Alessio; Fabbri, Daniele; Faraloni, Cecilia; Torzillo, Giuseppe
2011-09-01
The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/w(dry-biomass). This oil was converted into biodiesel with a 8.7 ± 1% w/w(dry-biomass) yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/w(dry-biomass)) and 28 ± 2% w/w(dry-biomass) of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nadhiro, U.; Subekti, S.; Tjahjaningsih, W.; Patmawati
2018-04-01
Crude fish oil extracted from fish canning industry a low quality, therefore refining process is required to obtain feasible fish oil for food purposes. Purification of fish oil can through steps of degumming, neutralization, and bleaching by using bentonite as the adsorbent. This study aims to analyze the results of the purification process of crude fish oil by-product of canning industry of lemuru fish by using bentonite adsorbent with different concentrations. The method used was an experimental method by descriptive data analysis. The results showed that the highest yield (33.418 %) obtained from oil purification of lemuru with bentonite concentration of 6 % are classified as follows: free fatty acid content of 0.265 %, peroxide value of 6.343 mEq / kg, produce clarity 60.275 % T, 88.075 % T, 87.5 % T, 87.425 % T, 87.975 % T at a wavelength (λ) of 450 nm, 550 nm, 620 nm, 665 nm, 700 nm, para-anisidine value of 3.725 mEq / kg; and value of oxidation total of 16.41 meq / kg.
The Potential of Biodiesel Production derived from Fish Waste
NASA Astrophysics Data System (ADS)
Farzana Samat, Amira; Amirah Safiah Muhamad, Nor; Rasib, Nur Aziera Abd; Hassan, Siti Aminah Mohd; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur
2018-03-01
Petroleum based diesel is one of the largest greenhouse emitters in the worlds based on its contribution to more likely of all carbon, methane and other greenhouse emissions. Besides, the depletion of fossil fuel that indirectly increased its price has force the global oil industry not to be so dependent on the fossil fuel but instead start focusing on alternative sources. Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant from combustion equipment. In this study, the discarded parts of mixed marine fish species were used as the raw material to produce biodiesel. Marine fish oil was extracted from the discarded part of fish and if refined through a series of pretreatment process. The refined marine fish oil undergoes esterification process to reduce the amount of free fatty acid. The oil was then transesterified with methanol and sodium hydroxide as an alkaline catalyst that will speed up the conversion of oil to methyl ester. The three process parameters considered for this study were reaction time, reaction temperature and methanol to oil molar ratio. Biodiesel obtained was then analyzed using gas chromatography (GC). Statistical analyses were performed using SPSS software. The data obtained was analyzed by using one way analysis of variance (ANOVA) repeated measure. The results obtained showed that the conversion of FAME yield is the highest at reaction time 180 minutes, reaction temperature 60°C and methanol to oil molar ratio at 15:1 with FAME yield 80.16%, 80.03% and 80.39%. Thus, it can be concluded that the conversion of biodiesel increased as the reaction time, temperature and
Ye, Zhou; Liu, Li; Wei, Chuan-xin; Gu, Qun; An, Ping-ao; Zhao, Yue-jiao; Yin, Da-yi
2015-06-01
In order to analysis the oil spill situation based on the obtained data in airborne aerial work, it's needed to get the spectral reflectance characteristics of the oil film of different oils and thickness as support and to select the appropriate operating band. An experiment is set up to measure the reflectance spectroscopy from ultraviolet to near-infrared for the film of five target samples, which means petrol, diesel, lubricating oil, kerosene and fossil, using spectral measurement device. The result is compared with the reflectance spectra of water in the same experimental environment, which shows that the spectral reflection characteristics of the oil film are related to the thickness and the type of the oil film. In case of the same thickness, the spectral reflectance curve of different types of film is far different, and for the same type of film, the spectral reflectance curve changes accordingly with the change of film thickness, therefore in terms of the single film, different film thickness can be distinguished by reflectance curves. It also shows that in terms of the same film thickness, the reflectance of diesel, kerosene, lubricants reaches peak around 380 nm wavelength, obviously different from the reflectance of water, and that the reflectance of crude oil is far less than that of water in more than 340 nm wavelength, and the obtained reflection spectrum can be used to distinguish between different types of oil film to some extent. The experiment covers main types of spilled oil, with data comprehensively covering commonly used detect spectral bands, and quantitative description of the spectral reflectance properties of film. It provides comprehensive theoretical and data support for the selection of airborne oil spill detection working band and the detection and analysis of water-surface oil spill.
Santin, Claudia M T; Michelin, Simone; Scherer, Robison P; Valério, Alexsandra; Luccio, Marco di; Oliveira, Débora; Oliveira, J Vladimir
2017-03-01
The objective of this study is to evaluate the batch enzymatic production of biodiesel in solvent-free system under ultrasound using as substrates ethanol, soybean oil and macauba fruit oil. For this purpose, a Plackett & Burman experimental design was carried out for soybean oil while a 2 4-1 design was conducted for macauba oil in order to maximize the biodiesel conversion for each system. Good conversions to fatty acid ethyl esters (FAEE), 88% for soybean oil and 75.2% for macauba oil, was obtained thus demonstrating the potential use of ultrasound for this reaction system. Copyright © 2016 Elsevier B.V. All rights reserved.
Mendoza-Juache, Alejandro; Aranda-Romo, Saray; Bermeo-Escalona, Josué R; Gómez-Hernández, Araceli; Pozos-Guillén, Amaury; Sánchez-Vargas, Luis Octavio
The colonization of the surfaces of dental prostheses by Candida albicans is associated with the development of denture stomatitis. In this context, the use of fluconazole has been proposed, but its disadvantage is microbial resistance. Meanwhile, the oil of Allium sativum has shown an effect in controlling biofilm formation by C. albicans. The objective of this study was to determine the antifungal activities of the essential oil of A. sativum and fluconazole against clinical isolates of Candida species obtained from rigid, acrylic-based partial or total dentures and to compare these agents' effects on both biofilm and planktonic cells. A total of 48 clinical isolates obtained from the acrylic surface of partial or complete dentures were examined, and the following species were identified: C. albicans, Candida glabrata, Candida tropicalis, and Candida krusei. For each isolate, the antifungal activities of the essential oil of A. sativum and fluconazole against both biofilm and planktonic cells were evaluated using the Clinical & Laboratory Standards Institute (CLSI) M27-A3 method. The isolates were also evaluated by semiquantitative XTT reduction. All planktonic Candida isolates were susceptible to the essential oil of A. sativum, whereas 4.2% were resistant to fluconazole. Regarding susceptibilities in biofilms, 43.8% of biofilms were resistant to A. sativum oil, and 91.7% were resistant to fluconazole. All planktonic cells of the different Candida species tested are susceptible to <1mg/ml A. sativum oil, and the majority are susceptible to fluconazole. Susceptibility decreases in biofilm cells, with increased resistance to fluconazole compared with A. sativum oil. The essential oil of A. sativum is thus active against clinical isolates of Candida species obtained from dentures, with effects on both biofilm and planktonic cells in vitro. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Oladimeji, Abdulkabir Oladele; Aliyu, Medinat Bola; Ogundajo, Akintayo Lanre; Babatunde, Oluwatoyin; Adeniran, Oluremi Ishola; Balogun, Olaoye Solomon
2016-11-01
Various studies have shown that the leaf extracts of Spondias mombin Linn (Anacardiaceae) possess pharmacological properties such as antioxidant and antiviral effects. However, no biological activity from its essential oil has been reported in literature. To analyse the chemical constituents, cytotoxic activity and antioxidant capability of the essential oils from fresh and dried leaves of S. mombin. Hydrodistillation using Clevenger-type apparatus was employed to obtain the essential oil. Oil analysis was performed using an HP 6890 Gas Chromatograph coupled with an HP 5973 Mass Selective Detector. The cytotoxicity bioassay was carried out using the brine shrimp lethality test (10,000-0.01 μg/mL). Additionally, the reactive oxygen species scavenging potential of the two S. mombin oils (1000-200 μg/mL) were investigated using a hydroxyl radical scavenging and ferric iron reducing system. Chemical analysis of essential oils from S. mombin revealed the presence of 41 compounds, with predominance of monoterpenoids, sesquiterpenoids and non-terpenoids derivatives. In both fractions, the principal component was β-caryophellene (27.9-30.9%), followed by γ-cadinene (9.7-12.3%). There was an increase in the oxygenated monoterpenoid contents and a concomitant decrease in the amounts of sesquiterpenoids hydrocarbons observed on drying the leaves. The oil obtained from the fresh leaves was more active than that obtained from dried leaves, with LC 50 values (from the brine shrimp lethality assay) of 0.01 and 4.78 μg/mL, respectively. The two oils (from fresh and dried leaves) at 1.0 mg/mL scavenged hydroxyl radical by 83% and 99.8%, respectively. Moreover, they reduced ferric ion significantly and compared favourably with vitamin C. Essential oil derived from the leaves of S. mombin could hold promise for future application in the treatment of cancer-related diseases.
NASA Astrophysics Data System (ADS)
Weihang, Kong; Lingfu, Kong; Lei, Li; Xingbin, Liu; Tao, Cui
2017-06-01
Water volume fraction is an important parameter of two-phase flow measurement, and it is an urgent task for accurate measurement in horizontal oil field development and optimization of oil production. The previous ring-shaped conductance water-cut meter cannot obtain the response values corresponding to the oil field water conductivity for oil-water two-phase flow in horizontal oil-producing wells characterized by low yield liquid, low velocity and high water cut. Hence, an inserted axisymmetric array structure sensor, i.e. a six-group local-conductance probe (SGLCP), is proposed in this paper. Firstly, the electric field distributions generated by the exciting electrodes of SGLCP are investigated by the finite element method (FEM), and the spatial sensitivity distributions of SGLCP are analyzed from the aspect of different separations between two electrodes and different axial rotation angles respectively. Secondly, the numerical simulation responses of SGLCP in horizontal segregated flow are calculated from the aspect of different water cut and heights of the water layer, respectively. Lastly, an SGLCP-based well logging instrument was developed, and experiments were carried out in a horizontal pipe with an inner diameter of 125 mm on the industrial-scale experimental multiphase flow setup in the Daqing Oilfield, China. In the experiments, the different oil-water two-phase flow, mineralization degree, temperature and pressure were tested. The results obtained from the simulation experiments and simulation well experiments demonstrate that the designed and developed SGLCP-based instrument still has a good response characteristic for measuring water conductivity under the different conditions mentioned above. The validity and reliability of obtaining the response values corresponding to the water conductivity through the designed and developed SGLCP-based instrument are verified by the experimental results. The significance of this work can provide an effective technology for measuring the water volume fraction of oil-water two-phase flow in horizontal oil-producing wells.
Chakraborty, Kajal; Joseph, Deepu
2015-01-28
Crude Sardinella longiceps oil was refined in different stages such as degumming, neutralization, bleaching, and deodorization. The efficiency of these processes was evaluated on the basis of free fatty acid (FFA), peroxide (PV), p-anisidine (pAV), total oxidation (TOTOX), thiobarbituric acid reactive species (TBARS) values, Lovibond CIE-L*a*b* color analyses, and (1)H NMR or GC-MS experiments. The utilities of NMR-based proton signal characteristics as new analytical tools to understand the signature peaks and relative abundance of different fatty acids and monitoring the refining process of fish oil have been demonstrated. Phosphoric acid (1%) was found to be an effective degumming reagent to obtain oil with the lowest FFA, PV, pAV, TOTOX, and TBARS values and highest color reduction. Significant reduction in the contents of hydrocarbon functionalities as shown by the decrease in proton integral in the characteristic (1)H NMR region was demonstrated by using 1% H3PO4 during the course of the degumming process. A combination (1.25:3.75%) of activated charcoal and Fuller's earth at 3% concentration for a stirring time of 40 min was found to be effective in bleaching the sardine oil. This study demonstrated that unfavorable odor-causing components, particularly low molecular weight carbonyl compounds, could successfully be removed by the refining process. The alkane-dienals/alkanes, which cause unfavorable fishy odors, were successfully removed by distillation (100 °C) under vacuum with aqueous acetic acid solution (0.25 N) to obtain greater quality of refined sardine oil, a rich source of essential fatty acids and improved oxidative stability. The present study demonstrated that the four-stage refinement process of sardine oil resulted in a significant improvement in quality characteristics and nutritional values, particularly n-3 PUFAs, with improved fish oil characteristics for use in the pharmaceutical and functional food industries.
NASA Technical Reports Server (NTRS)
Heinlein, Fritz
1926-01-01
While little has been accomplished in obtaining an abundant supply of light oils from coal and heavy oils, progress has been made on engine design to make use of the heavier oils. Progress has been made in two different directions which are outlined in this paper: the group of engines with medium and high-pressure carburetion in the cylinder; and the group of engines with low-pressure carburetion of the heavy oils before reaching the cylinder.
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
NASA Astrophysics Data System (ADS)
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
Bougatsos, Christos; Ngassapa, Olipa; Runyoro, Deborah K B; Chinou, Ioanna B
2004-01-01
The chemical composition of the essential oils obtained from the aerial parts of Helichrysum cymosum and H. fulgidum, from Tanzania, were analyzed by GC and GC/MS. A total of sixty-five compounds, representing 92.4% and 88.2% of the two oils, respectively, were identified. trans-Caryophyllene, caryophyllene oxide, beta-pinene, p-cymene, spathulenol and beta-bourbonene were found to be the main components. Furthermore, the oils were tested against six gram (+/-) bacteria and three pathogenic fungi. It was found that the oil of H. fulgidum exhibited significant antimicrobial activity, while the oil of H. cymosum was not active at all.
Murray, Ana P; Gurovic, Maria S Vela; Rodriguez, Silvana A; Murray, María G; Ferrero, Adriana A
2009-06-01
The essential oils of Schinus areira L. and S. longifolia (Lindl.) Speg. (Anacardiaceae) have been studied for their in vitro anti-acetylcholinesterase and antioxidant activities. The chemical composition of the oils obtained by hydrodistillation was determined by GC-MS. Fruit and leaf oils of S. areira were analyzed separately. The essential oil from S. longifolia elicited marked enzymatic inhibition (IC50 = 20.0 +/- 1.0 microg/mL) and showed radical scavenger activity (IC50 = 25.2 +/- 2.4 microg/mL). The essential oil from S. areira leaves was more active than that of the fruits in both bioassays.
Tomassetti, M; Vecchio, S; Campanella, L; Dragone, R
2013-10-15
The present research was devoted to studying the kinetics of the artificial rancidification of peanut oil (PO) when a sample of this oil was isothermally heated at 180°C in an air stream. The formation of radical species due to heating was evaluated using a radical index whose value was determined using a biosensor method based on a superoxide dismutase (SOD), while the increasing toxicity was monitored using a suitable toxicity measuring probe based on the Clark electrode and immobilized yeast cells. An extra virgin olive oil was isothermally rancidified under the same experimental conditions and the corresponding data were used for the purpose of comparison. Both the so-called "model-fitting" and the classical kinetic methods were applied to the isothermal process biosensor data in order to obtain the kinetic constant rate value at 180°C. Copyright © 2012 Elsevier Ltd. All rights reserved.
Batcha, Abeed Fatima Mohidin; Prasad, D M Reddy; Khan, Maksudur R; Abdullah, Hamidah
2014-05-01
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that can be synthesized through bacterial fermentation. In this study, Cupriavidus necator H16 is used to synthesize PHB by using Jatropha oil as its sole carbon source. Different variables mainly jatropha oil and urea concentrations, and agitation rate were investigated to determine the optimum condition for microbial fermentation in batch culture. Based on the results, the highest cell dry weight and PHB concentrations of 20.1 and 15.5 g/L, respectively, were obtained when 20 g/L of jatropha oil was used. Ethanol was used as external stress factor and the addition of 1.5 % ethanol at 38 h had a positive effect with a high PHB yield of 0.987 g PHB/g jatropha oil. The kinetic studies for cell growth rate and PHB production were conducted and the data were fitted with Logistic and Leudeking–Piret models. The rate constants were evaluated and the theoretical values were in accordance with the experimental data obtained
Sodeifian, Gholamhossein; Sajadian, Seyed Ali; Honarvar, Bizhan
2018-04-01
Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.
de Oliveira, Dayse A S B; Minozzo, Marcelo G; Licodiedoff, Silvana; Waszczynskyj, Nina
2016-09-15
In this study, the effects of chemical refining and deodorization on fatty acid profiles and physicochemical and sensory characteristics of the tuna by-product oil obtained by enzymatic hydrolysis were evaluated. Enzymatic extraction was conducted for 120 min at 60 °C and pH 6.5 using Alcalase at an enzyme-substrate ratio of 1:200 w/w. The chemical refining of crude oil consisted of degumming, neutralization, washing, drying, bleaching, and deodorization; deodorization was conducted at different temperatures and processing times. Although chemical refining was successful, temperature and chemical reagents favored the removal of polyunsaturated fatty acids (PUFA) from the oil. Aroma attributes of fishy odor, frying odor, and rancid odor predominantly contributed to the sensory evaluation of the product. Deodorization conditions of 160 °C for 1h and 200 °C for 1h were recommended for the tuna by-product oil, which is rich in PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bardant, Teuku Beuna; Winarni, Ina; Sukmana, Hadid
2017-01-01
It was desired to obtain a general formula for producing bio-ethanol from any part of lignocelluloses wastes that came from palm oil industries due to its abundance. Optimum condition that obtained by using RSM for conducting high-loading-substrate enzymatic hydrolysis of palm oil empty fruit bunch was applied to palm oil trunks and then followed by unsterilized fermentation for producing bio-ethanol. From several optimized conditions investigated, the resulted ethanol concentration could reach 7.92 %v by using 36.5 %w of palm oil trunks but the results were averagely 2.46 %v lower than palm oil empty fruit bunch. The results was statistically compared and showed best correlative coefficient at 0.808 (in scale 0-1) which support the conclusion that the optimum condition for empty fruit bunch and trunks are similar. Utilization of mixed-culture yeast was investigated to produce ethanol from unsterilized hydrolysis product but the improvement wasn't significant compares to single culture yeast.
Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid
2013-08-30
A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.
21 CFR 184.1282 - Dill and its derivatives.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Anethum sowa, D.C. Its derivatives include essential oils, oleoresins, and natural extractives obtained from these sources of dill. (b) Dill oils meet the description and specifications of the “Food...
21 CFR 184.1282 - Dill and its derivatives.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Anethum sowa, D.C. Its derivatives include essential oils, oleoresins, and natural extractives obtained from these sources of dill. (b) Dill oils meet the description and specifications of the “Food...
Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr.
de Almeida, Macia C S; Souza, Luciana G S; Ferreira, Daniele A; Monte, Francisco J Q; Braz-Filho, Raimundo; de Lemos, Telma L G
2015-10-01
Bauhinia pentandrais popularly known as "mororó" and inhabits the Caatinga and Savannah biomes. This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil.
[Chemical studies on essential oils from 6 Artemisia species].
Pan, J G; Xu, Z L; Ji, L
1992-12-01
The constituents of the essential oils obtained from the leaves of Artemisia argyi, A. argyi cv.qiai, A. lavandulaefolia, A. mongolica, A. princeps and A. argyi var. gracilis were analysed by GC-MS. 96 compounds including alpha-thujene, 1,8-cineole, camphor and artemisia alcohol, etc. were identified. Their percentages in the oils were given.
Calero, Juan; Verdugo, Cristóbal; Luna, Diego; Sancho, Enrique D; Luna, Carlos; Posadillo, Alejandro; Bautista, Felipa M; Romero, Antonio A
2014-12-25
The obtaining of Ecodiesel, a biofuel applicable to diesel engines which keeps the glycerin as monoglyceride (MG), was achieved through a selective ethanolysis process of sunflower oil, by application of Lipozyme RM IM, a Rhizomucor miehei lipase immobilized on macroporous anion exchange resins. This biocatalyst that was already described in the synthesis of conventional biodiesel has also shown its efficiency in the present selective enzymatic process, after optimization of the influence of various reaction parameters. Thus, an adequate activity is obtained that is maintained throughout five successive reuses. Quantitative conversions of triglycerides (TG) with high yields to fatty acid ethyl esters (FAEE) were obtained under mild reaction conditions that correspond to the transformation of TG in a mixture of two moles of FAEE and a mole of MG, thus avoiding the glycerol production. Thus, the selective transesterification reaction of sunflower oil with absolute ethanol can be carried out under standard conditions with oil/ethanol volume ratio 12/3.5 (mL), at constant pH obtained by the addition of 50 μl of aqueous solution of 10 N NaOH, reaction temperature of 40 °C and 40 mg of Lipozyme RM IM. Under these experimental conditions six successive reactions can be efficiently carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
Lucia, Alejandro; Gonzalez Audino, Paola; Seccacini, Emilia; Licastro, Susana; Zerba, Eduardo; Masuh, Hector
2007-09-01
In the search for new alternatives for the control of Aedes aegypti the larvicidal activity of Eucalyptus grandis essential oil and pine resin essential oil (turpentine) and their major components (alpha- and beta-pinene and 1,8-cineole) was determined. Gas chromatography-mass spectroscopy analysis of E. grandis essential oil revealed that its major components are alpha-pinene and 1,8-cineole. Similar analysis of turpentine obtained by distillation of the resin pitch of conifers showed that alpha- and beta-pinene are the only major components. Third and early 4th instars of the CIPEIN-susceptible strain of Ae. aegypti were exposed to acetonic solutions of E. grandis essential oil, turpentine, and their major components for 24 h. Turpentine, with an LC50 of 14.7 ppm, was more active than the essential oil of E. grandis (LC50: 32.4 ppm). Larvicidal activity of the essential oil components showed that alpha- and beta-pinene present low LC50 values (15.4 and 12.1 ppm, respectively), whereas pure 1,8-cineole showed an LC50 of 57.2 ppm. These results suggest that alpha-pinene in E. grandis and alpha- and beta-pinene in turpentine serve as the principal larvicidal components of both oils. Results obtained on larvicidal effects of essential oil of Eucalyptus grandis and turpentine could be considered a contribution to the search for new biodegradable larvicides of natural origin.
Ma, Chunhua; Ji, Jiaojiao; Tan, Connieal; Chen, Dongmei; Luo, Feng; Wang, Yiru; Chen, Xi
2014-03-01
Oxidation has important effects on the quality of edible oils. In particular, the generation of aldehydes produced by the oxidation of oils is one of the deteriorative factors to their quality. The aim of this study was to develop a method to determine the aldehydes as lipid oxidation markers in edible oils. Seven aldehydes generated from lipid oxidation were studied using headspace solid-phase microextraction coupled to gas chromatography with a flame ionization detector. The extraction efficiency of five commercial fibers was investigated and the influence of extraction temperature, extraction time, desorption temperature, and desorption time were optimized. The best result was obtained with 85 μm carboxen/polydimethylsiloxane, extraction at 50 °C for 15 min and desorption in the gas chromatography injector at 250 °C for 2 min. Under the optimized conditions, the content of hexanal was the highest of the seven aldehydes in all edible oils. The limits of detection for hexanal in the three oils were found to range from 4.6 to 10.2 ng L(-1). The reproducibility of the method was evaluated and the relative standard deviations were less than 8.9%. This developed approach was successfully applied to analyze hexanal in peanut oil, soy oil, and olive oil samples, and these results were compared with those obtained using the thiobarbituric acid-reactive substances (TBARs) method. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sathian, Sarith. P.; Kurian, Job
2005-05-01
This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows.
Akhbari, Maryam; Masoum, Saeed; Aghababaei, Fahimeh; Hamedi, Sepideh
2018-06-01
In this study, the efficiencies of conventional hydro-distillation and novel microwave hydro-distillation methods in extraction of essential oil from Rosemary officinalis leaves have been compared. In order to attain the best yield and also highest quality of the essential oil in the microwave assisted method, the optimal values of operating parameters such as extraction time, microwave irradiation power and water volume to plant mass ratio were investigated using central composite design under response surface methodology. Optimal conditions for obtaining the maximum extraction yield in the microwave assisted method were predicted as follows: extraction time of 85 min, microwave power of 888 W, and water volume to plant mass ratio of 0.5 ml/g. The extraction yield at these predicted conditions was computed as 0.7756%. The qualities of the obtained essential oils under designed experiments were optimized based on total contents of four major compounds (α-pinene, 1,8-cineole, camphor and verbenone) which determined by gas chromatography equipped with mass spectroscopy (GC-MS). The highest essential oil quality (55.87%) was obtained at extraction time of 68 min; microwave irradiation power of 700 W; and water volume to plant mass ratio of zero.
Giannakas, A; Patsaoura, A; Barkoula, N-M; Ladavos, A
2017-02-10
In the current study a novel reflux-solution blending method is being followed with the introduction of small ethanol volumes into chitosan acetic acid aquatic solution in order to incorporate olive oil and corn oil in chitosan and its organoclay nanocomposites. Ethanol enables the direct interaction of chitosan with oils and results in effective plasticization of chitosan/oil films with remarkable increase of the strain at break from 8% of chitosan and chitosan/oil aquatic samples to app. 22% for chitosan/oil ethanol samples. Compared with olive oil, corn oil is less effective as plasticizer (max strain at break app. 14%). Addition of oils is beneficial for water sorption, water vapor permeability and oxygen permeability response of the obtained films. Barrier properties are further improved after the use of OrgMMT, however OrgMMT results in significant reduction of strain at break of all oil containing samples (app. 8%) acting as stress concentrator upon deformation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiménez-Carvelo, Ana M; González-Casado, Antonio; Pérez-Castaño, Estefanía; Cuadros-Rodríguez, Luis
2017-03-01
A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phase LC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis took only 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil were used: one input-class, two input-class, and pseudo two input-class.
Effect of oil on an electrowetting lenticular lens and related optical characteristics.
Shin, Dooseub; Kim, Junoh; Kim, Cheoljoong; Koo, Gyo Hyun; Sim, Jee Hoon; Lee, Junsik; Won, Yong Hyub
2017-03-01
While there are many ways to realize autostereoscopic 2D/3D switchable displays, the electrowetting lenticular lens is superior due to the high optical efficiency and short response time. In this paper, we propose a more stable electrowetting lenticular lens by controlling the quantity of oil. With a large amount of oil, the oil layer was broken and the lenticular lens was damaged at relatively low voltage. Therefore, controlling the amount of oil is crucial to obtain the required dioptric power with stability. We proposed a new structure to evenly adjust the volume of oil and the dioptric power was measured by varying the volume of oil. Furthermore, the optical characteristics were finally analyzed in the electrowetting lenticular lens array with a proper amount of oil.
Correlation between electron spin resonance spectra and oil yield in eastern oil shales
Choudhury, M.; Rheams, K.F.; Harrell, J.W.
1986-01-01
Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.
Chinese Energy Security: The Myth of the Plan’s Frontline Status
2010-08-01
management know-how so Chinese energy corporations can lower the risks.10 The Chinese economy is more resilient in the face of oil price shocks induced by...diesel. For example, the import quota is largely controlled by the big three oil companies—state-owned China National Petro- leum Corporation (CNPC...Sinopec, and the China National Offshore Oil Corporation (CNOOC). If pri- vate or smaller companies produce oil overseas and obtain import quotas
Moritz, Cristiane Mengue Feniman; Rall, Vera Lúcia Mores; Saeki, Margarida Júri; Júnior, Ary Fernandes
2012-01-01
The use of essential oils in foods has attracted great interest, due to their antagonistic action against pathogenic microorganisms. However, this action is undesirable for probiotic foods, as products containing Lactobacillus rhamnosus. The aim of the present study was to measure the sensitivity profile of L. rhamnosus and a yogurt starter culture in fermented milk, upon addition of increasing concentrations of cinnamon, clove and mint essential oils. Essential oils were prepared by steam distillation, and chemically characterised by gas chromatography-mass spectrometry (GC-MS) and determination of density. Survival curves were obtained from counts of L. rhamnosus and the starter culture (alone and in combination), upon addition of 0.04% essential oils. In parallel, titratable acidity was monitored over 28 experimental days. Minimum inhibitory concentration values, obtained using the microdilution method in Brain Heart Infusion medium, were 0.025, 0.2 and 0.4% for cinnamon, clove and mint essential oils, respectively. Cinnamon essential oil had the highest antimicrobial activity, especially against the starter culture, interfering with lactic acid production. Although viable cell counts of L. rhamnosus were lower following treatment with all 3 essential oils, relative to controls, these results were not statistically significant; in addition, cell counts remained greater than the minimum count of 108CFU/mL required for a product to be considered a probiotic. Thus, although use of cinnamon essential oil in yogurt makes starter culture fermentation unfeasible, it does not prevent the application of L. rhamnosus to probiotic fermented milk. Furthermore, clove and mint essential oil caused sublethal stress to L. rhamnosus. PMID:24031939
Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations
Satyal, Prabodh; Murray, Brittney L.; McFeeters, Robert L.; Setzer, William N.
2016-01-01
Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris. PMID:28231164
Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T
2016-02-01
In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT < soybean oil < DAG. In simulated in vitro digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) < soybean oil (t'1/2 = 18.74 min) < DAG (t'1/2 = 29.08 min). The parameters obtained using the 2 models showed MCT was digested faster than soybean oil, and that soybean oil was digested faster than DAG. © 2015 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winschel, R. A.; Robbins, G. A.; Burke, F. P.
1986-11-01
Conoco Coal Research Division is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. A set of thirty-one process oils from the Hydrocarbon Research, Inc. (HRI) Catalytic Two-Stage Liquefaction (CTSL) bench unitmore » was analyzed to provide information on process performance. The Fourier-Transform infrared (FTIR) spectroscopic method for the determination of phenolics in cola liquids was further verified. A set of four tetahydrofuran-soluble products from Purdue Research Foundation's reactions of coal/potassium/crown ether, analyzed by GC/MS and FTIR, were found to consist primarily of paraffins (excluding contaminants). Characterization data (elemental analyses, /sup 1/H-NMR and phenolic concentrations) were obtained on a set of twenty-seven two-stage liquefaction oils. Two activities were begun but not completed. First, analyses were started on oils from Wilsonville Run 250 (close- coupled ITSL). Also, a carbon isotopic method is being examined for utility in determining the relative proportion of coal and petroleum products in coprocessing oils.« less
Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata.
Lin, Chien-Tsong; Chen, Chi-Jung; Lin, Ting-Yu; Tung, Judia Chen; Wang, Sheng-Yang
2008-12-01
In this study, the fruit essential oil of Cinnamomum insularimontanum was prepared by using water distillation. Followed by GC-MS analysis, the composition of fruit essential oil was characterized. The main constituents of essential oil were alpha-pinene (9.45%), camphene (1.70%), beta-pinene (4.30%), limonene (1.76%), citronellal (24.64%), citronellol (16.78%), and citral (35.89%). According to the results obtained from nitric oxide (NO) inhibitory activity assay, crude essential oil and its dominant compound (citral) presented the significant NO production inhibitory activity, IC(50) of crude essential oil and citral were 18.68 and 13.18microg/mL, respectively. Moreover, based on the results obtained from the protein expression assay, the expression of IKK, iNOS, and nuclear NF-kappaB was decreased and IkappaBalpha was increased in dose-dependent manners, it proved that the anti-inflammatory mechanism of citral was blocked via the NF-kappaB pathway, but it could not efficiently suppress the activity on COX-2. In addition, citral exhibited a potent anti-inflammatory activity in the assay of croton oil-induced mice ear edema, when the dosage was 0.1 and 0.3mg per ear, the inflammation would reduce to 22% and 83%, respectively. The results presented that the fruit essential oil of C. insularimontanum and/or citral may have a great potential to develop the anti-inflammatory medicine in the future.
Yihan, Sun; Mingming, Liu; Guo, Zhiguang
2018-05-19
Herein, a catalytic mesh with unique wettability, high oil-water separation efficiency and excellent catalytic performance towards aromatic dyes was fabricated. Polypyrrole (PPy) was firstly pre-coated on pristine stainless-steel mesh (SSM) surface via cyclic voltammetry approach. Subsequently, a simple electrodeposition process was performed to prepare and anchor Ag nanoparticles (AgNPs) onto the PPy-coated SSM surface. The PPy-coated mesh with anchored AgNPs was denoted as PPy/AgNPs-coated SSM. The obtained PPy/AgNPs-coated SSM exhibited dual superlyophobic properties and were able to achieve on-demand separation to deal with various of light oil (ρ oil < ρ water ) and heavy oil (ρ oil > ρ water )-water mixtures. Importantly, benefitting from AgNPs on mesh surface, the obtained PPy/AgNPs-coated SSM exhibits exceptional catalytic activity. As proof-of-concept three typical aromatic dye molecules (methylene blue, rhodamine B and Congo red) can be effectivity degraded. Additionally, the degradation of aromatic dyes and oil-water separation were achieved simultaneously when the PPy/AgNPs-coated SSM was converted to water-removing mode. Therefore, the present work is of great significance to the development of novel oil-water filtration membranes and can open a new avenue towards the practicability of metal nanoparticle catalysts in wastewater treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Wen-Juan; Yang, Kai; You, Chun-Xue; Wang, Cheng-Fang; Geng, Zhu-Feng; Su, Yang; Wang, Ying; Du, Shu-Shan; Deng, Zhi-Wei
2015-05-01
The chemical composition of the essential oil obtained by hydrodistillation from the aerial parts of Mentha haplocalyx was investigated by GC-FID and GC/MS analyses. In sum, 23 components, representing 92.88% of the total oil composition, were identified, and the main compounds were found to be menthol (59.71%), menthyl acetate (7.83%), limonene (6.98%), and menthone (4.44%). By bioassay-guided fractionation (contact toxicity), three compounds were obtained from the essential oil and identified as menthol, menthyl acetate, and limonene. The essential oil and the three isolated compounds exhibited potent contact toxicity against Lasioderma serricorne adults, with LD50 values of 16.5, 7.91, 5.96, and 13.7 μg/adult, respectively. Moreover, the oil and its isolated compounds also exhibited strong repellency against L. serricorne adults. At the lower concentrations tested and at 2 h after exposure, menthol showed even significantly stronger repellency than the positive control DEET. The study revealed that the bioactivity properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components, which indicates that the M. haplocalyx oil and its isolated compounds have potential for the development as natural insecticides and/or repellents to control insects in stored grains and traditional Chinese medicinal materials. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Božović, Mijat; Garzoli, Stefania; Sabatino, Manuela; Pepi, Federico; Baldisserotto, Anna; Andreotti, Elisa; Romagnoli, Carlo; Mai, Antonello; Manfredini, Stefano; Ragno, Rino
2017-01-26
A comprehensive study on essential oils extracted from different Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball samples from Tarquinia (Italy) is reported. In this study, the 24-h steam distillation procedure for essential oil preparation, in terms of different harvesting and extraction times, was applied. The Gas chromatography-mass spectrometry (GC/MS) analysis showed that C. nepeta (L.) Savi subsp. glandulosa (Req.) Ball essential oils from Tarquinia belong to the pulegone-rich chemotype. The analysis of 44 samples revealed that along with pulegone, some other chemicals may participate in exerting the related antifungal activity. The results indicated that for higher activity, the essential oils should be produced with at least a 6-h steam distillation process. Even though it is not so dependent on the period of harvesting, it could be recommended not to harvest the plant in the fruiting stage, since no significant antifungal effect was shown. The maximum essential oil yield was obtained in August, with the highest pulegone percentage. To obtain the oil with a higher content of menthone, September and October should be considered as the optimal periods. Regarding the extraction duration, vegetative stage material gives the oil in the first 3 h, while material from the reproductive phase should be extracted at least at 6 or even 12 h.
21 CFR 184.1890 - α-Tocopherols.
Code of Federal Regulations, 2014 CFR
2014-04-01
... concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible... condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room temperature...
21 CFR 184.1890 - α-Tocopherols.
Code of Federal Regulations, 2013 CFR
2013-04-01
... commercially as a concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam... by condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...
21 CFR 184.1890 - α-Tocopherols.
Code of Federal Regulations, 2012 CFR
2012-04-01
... commercially as a concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam... by condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...
Oil and Gas Stormwater Permitting Documents
This final rule exempts construction activities at oil and gas sites from the requirement to obtain an NPDES permit for stormwater discharges except in very limited instances. This rule is effective June 12, 2006.
21 CFR 184.1282 - Dill and its derivatives.
Code of Federal Regulations, 2014 CFR
2014-04-01
... derivatives include essential oils, oleoresins, and natural extractives obtained from these sources of dill. (b) Dill oils meet the description and specifications of the “Food Chemicals Codex,” 4th ed. (1996...
Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.
Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian
2016-10-01
In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Bakarnga-Via, Issakou; Hzounda, Jean Baptiste; Fokou, Patrick Valere Tsouh; Tchokouaha, Lauve Rachel Yamthe; Gary-Bobo, Magali; Gallud, Audrey; Garcia, Marcel; Walbadet, Lucain; Secka, Youssouf; Dongmo, Pierre Michel Jazet; Boyom, Fabrice Fekam; Menut, Chantal
2014-04-04
Cancer has become a global public health problem and the search for new control measures is urgent. Investigation of plant products such as essential oils from Monodora myristica, Xylopia aethiopica and Xylopia parviflora might lead to new anticancer therapy. In this study, we have investigated the antineoplastic activity of essential oils from fruits of these plants growing in Chad and Cameroon. The essential oils obtained by hydrodistillation of fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora collected in Chad and Cameroon were analyzed by GC-FID and GC-MS and investigated for their antiproliferative activity against the breast cancer cell line (MCF7). Overall, monoterpenes were mostly found in the six essential oils. Oils from X. aethiopica and X. parviflora from Chad and Cameroon mainly contain β-pinene at 24.6%, 28.2%, 35.7% and 32.9% respectively. Monodora myristica oils from both origins contain mainly α-phellandrene at 52.7% and 67.1% respectively. The plant origin did not significantly influence the chemical composition of oils. The six essential oils exerted cytotoxic activity against cancer (MCF-7) and normal cell lines (ARPE-19), with more pronounced effect on neoplastic cells in the majority of cases. The highest selectivity was obtained with the essential oils of X. parviflora from Chad and Cameroon (5.87 and 5.54) which were more cytotoxic against MCF-7 than against normal cell line (ARPE-19) with IC50 values of 0.155 μL/mL and 0.166 μL/mL respectively. Essential oils from fruits of Monodora myristica, Xylopia aethiopica and Xylopia parviflora have shown acceptable antineoplastic potency, and might be investigated further in this regard.
Chen, Fengli; Jia, Jia; Zhang, Qiang; Gu, Huiyan; Yang, Lei
2017-11-17
In this work, a modified technique was developed to separate essential oil from the fruit of Amorpha fruticosa using microwave-assisted hydrodistillation concatenated liquid-liquid extraction (MHD-LLE). The new apparatus consists of two series-wound separation columns for separating essential oil, one is the conventional oil-water separation column, and the other is the extraction column of components from hydrosol using an organic solvent. Therefore, the apparatus can simultaneously collect the essential oil separated on the top of hydrosol and the components extracted from hydrosol using an organic solvent. Based on the yield of essential oil in the first and second separation columns, the effects of parameters were investigated by single factor experiments and Box-Behnken design. Under the optimum conditions (2mL ethyl ether as the extraction solvent in the second separation column, 12mL/g liquid-solid ratio, 4.0min homogenate time, 35min microwave irradiation time and 540W microwave irradiation power), satisfactory yields for the essential oil in the first separation column (10.31±0.33g/kg) and second separation column (0.82±0.03g/kg) were obtained. Compared with traditional methods, the developed method gave a higher yield of essential oil in a shorter time. In addition, GC-MS analysis of the essential oil indicated significant differences of the relative contents of individual volatile components in the essential oils obtained in the two separation columns. Therefore, the MHD-LLE technique developed here is a good alternative for the isolation of essential oil from A. fruticosa fruit as well as other herbs. Copyright © 2017 Elsevier B.V. All rights reserved.
Libya, Algeria and Egypt: crude oil potential from known deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietzman, W.D.; Rafidi, N.R.; Ross, T.A.
1982-04-01
An analysis is presented of the discovered crude oil resources, reserves, and estimated annual production from known fields of the Republics of Libya, Algeria, and Egypt. Proved reserves are defined as the remaining producible oil as of a specified date under operating practice in effect at that time and include estimated recoverable oil in undrilled portions of a given structure or structures. Also included in the proved reserve category are the estimated indicated additional volumes of recoverable oil from the entire oil reservoir where fluid injection programs have been started in a portion, or portions, of the reservoir. The indicatedmore » additional reserves (probable reserves) reported herein are the volumes of crude oil that might be obtained with the installation of secondary recovery or pressure maintenance operations in reservoirs where none have been previously installed. The sum of cumulative production, proved reserves, and probable reserves is defined as the ultimate oil recovery from known deposits; and resources are defined as the original oil in place (OOIP). An assessment was made of the availability of crude oil under three assumed sustained production rates for each country; an assessment was also made of each country's capability of sustaining production at, or near, the 1980 rates assuming different limiting reserve to production ratios. Also included is an estimate of the potential maximum producing capability from known deposits that might be obtained from known accumulations under certain assumptions, using a simple time series approach. The theoretical maximum oil production capability from known fields at any time is the maximum deliverability rate assuming there are no equipment, investment, market, or political constraints.« less
Converting solid wastes into liquid fuel using a novel methanolysis process.
Xiao, Ye; He, Peng; Cheng, Wei; Liu, Jacqueline; Shan, Wenpo; Song, Hua
2016-03-01
Biomass fast pyrolysis followed by hydrodeoxygenation upgrading is the most popular way to produce upgraded bio-oil from biomass. This process requires large quantities of expensive hydrogen and operates under high pressure condition (70-140 atm). Therefore, a novel methanolysis (i.e., biomass pyrolysis under methane environment) process is developed in this study, which is effective in upgraded bio-oil formation at atmospheric pressure and at about 400-600°C. Instead of using pure methane, simulated biogas (60% CH4+40% CO2) was used to test the feasibility of this novel methanolysis process for the conversion of different solid wastes. The bio-oil obtained from canola straw is slightly less than that from sawdust in term of quantity, but the oil quality from canola straw is better in terms of lower acidity, lower Bromine Number, higher H/C atomic ratio and lower O/C atomic ratio. The municipal solid waste and newspaper can also obtain relatively high oil yields, but the oil qualities of them are both lower than those from sawdust and canola straw. Compared with catalysts of 5%Zn/ZSM-5 and 1%Ag/ZSM-5, the 5%Zn-1%Ag/ZSM-5 catalyst performed much better in terms of upgraded bio-oil yield as well as oil quality. During the methanolysis process, the metal silver may be used to reduce the total acid number of the oil while the metal zinc might act to decrease the bromine number of the oil. The highly dispersed Zn and Ag species on/in the catalyst benefit the achievement of better upgrading performance and make it be a very promising catalyst for bio-oil upgrading by biogas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carvalho, Ana K F; Rivaldi, Juan D; Barbosa, Jayne C; de Castro, Heizir F
2015-04-01
The filamentous fungus Mucor circinelloides URM 4182 was tested to determine its ability to produce single-cell oil suitable for obtaining biodiesel. Cell growth and lipid accumulation were investigated in a medium containing glucose as the main carbon source. A microwave-assisted ethanol extraction technique (microwave power ⩽200 W, 50-60 °C) was established and applied to lipid extraction from the fungal hyphae to obtain high lipid concentration (44%wt) of the dry biomass, which was considerably higher than the quantity obtained by classical solvent methods. The lipid profile showed a considerable amount of oleic acid (39.3%wt), palmitic acid (22.2%wt) and γ-linoleic acid (10.8%wt). Biodiesel was produced by transesterification of the single-cell oil with ethanol using a immobilized lipase from Candida antarctica (Novozym® 435) as the catalyst. (1)H NMR and HPLC analyses confirmed conversion of 93% of the single-cell oil from M. circinelloides into ethyl esters (FAEE). Copyright © 2015 Elsevier Ltd. All rights reserved.
Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan
2014-01-01
In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.
Regeneration and reuse waste from an edible oil refinery.
Boukerroui, Abdelhamid; Belhocine, Lydia; Ferroudj, Sonia
2017-08-21
A spent bleaching earth (SBE) from an edible oil refinery has been regenerated by thermal processing in oven, followed by washing with a cold solution of hydrochloric acid (1M). Optimal regeneration conditions have been controlled by decolorization tests of degummed and neutralized soybean oil. Optimal values of treatment (temperature 350°C, carbonization time 01 h, and HCl concentration 1M) gave a very efficient material. After bleaching oil by regenerated spent bleaching earth (RSBE), the chlorophyll-a and β-carotenes contained in crude edible oil and observed respectively at 430, 454, and 483 nm, value of λ max , are very much decreased. The results obtained after decolorization of edible oil by RSBE material indicate, that, during the process, the bleaching oil did not undergo any changes in the free fatty acid content. The peroxide value (PV) was reduced from 4.2 to 1.8 meq O 2 /kg, and the color has been improved (Lovibond color yellow/red: from 50/0.5 to 2.7/0.3, respectively). The RSBE material obtained was characterized by several techniques (FTIR, SEM). The results show that the heat treatment did not affect the mineral structure of RSBE, and the regenerated material recovered its porous structure.
Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei
2010-03-15
Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Susmitha, M.; Sharan, P.; Jyothi, P. N.
2016-09-01
Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.
Leonardi, Michele; Ambryszewska, Katarzyna E; Melai, Bernardo; Flamini, Guido; Cioni, Pier Luigi; Parri, Federico; Pistelli, Luisa
2013-03-01
The composition of 21 essential-oil samples isolated from Helichrysum italicum collected in seven locations of Elba Island (Tuscany, Italy), characterized by different soil types, during three different periods (January, May, and October 2010) was determined by GC-FID and GC/EI-MS analyses. In total, 115 components were identified, representing 96.8-99.8% of the oil composition. The oils were characterized by a high content of oxygenated monoterpenes (38.6-62.7%), while monoterpene and sesquiterpene hydrocarbons accounted for 2.3-41.9 and 5.1-20.1% of the identified constituents, respectively. The main oxygenated derivatives were nerol (2.8-12.8%) and its ester derivative neryl acetate (5.6-45.9%). To compare the chemical variability of the species within Elba Island and between the island and other localities within the Mediterranean area, studied previously, multivariate statistical analysis was performed. The results obtained showed a difference in the composition of the essential oils of H. italicum from Elba Island, mainly due to the environment where the plant grows, and, in particular, to the soil type. These hypotheses were further confirmed by the comparison of these oils with essential oils obtained from H. italicum collected on other islands of the Tuscan archipelago. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Degradation of brominated flame retardant in computer housing plastic by supercritical fluids.
Wang, Yanmin; Zhang, Fu-Shen
2012-02-29
The degradation process of brominated flame retardant (BFR) and BFR-containing waste computer housing plastic in various supercritical fluids (water, methanol, isopropanol and acetone) was investigated. The results showed that the debromination and degradation efficiencies, final products were greatly affected by the solvent type. Among the four tested solvents, isopropanol was the most suitable solvent for the recovery of oil from BFR-containing plastic for its (1) excellent debromination effectiveness (debromination efficiency 95.7%), (2) high oil production (60.0%) and (3) mild temperature and pressure requirements. However, in this case, the removed bromine mostly existed in the oil. Introduction of KOH into the sc-isopropanol could capture almost all the inorganic bromine from the oil thus bromine-free oil could be obtained. Furthermore, KOH could enhance the depolymerization of the plastic. The obtained oil mainly consisted of single- and duplicate-ringed aromatic compounds in a carbon range of C9-C17, which had alkyl substituents or aliphatic bridges, such as butyl-benzene, (3-methylbutyl)-benzene, 1,1'-(1,3-propanediyl)bis benzene. Phenol, alkyl phenols and esters were the major oxygen-containing compounds in the oil. This study provides an efficient approach for debromination and simultaneous recovering valuable chemicals from BFR-containing plastic in e-waste. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, K.; Ben, H.; Muzzy, J.
2012-03-01
Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oilsmore » range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.« less
Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M
2016-09-14
We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.
Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit; Singh, Anand; Yadav, Ajai Kumar
2011-10-01
Rosa damascena Mill. is an important aromatic plant for commercial production of rose oil, water, concrete and absolute. The rose water and rose oil produced under the mountainous conditions of Uttarakhand were investigated for their chemical composition. The major components of rose water volatiles obtained from the bud, half bloom and full bloom stages of cultivar 'Ranisahiba' were phenyl ethyl alcohol (66.2-79.0%), geraniol (3.3-6.6%) and citronellol (1.8-5.5%). The rose water volatiles of cultivar 'Noorjahan' and 'Kannouj' also possessed phenyl ethyl alcohol (80.7% and 76.7%, respectively) as a major component at full bloom stage. The essential oil of cultivar 'Noorjahan' obtained from two different growing sites was also compared. The major components of these oils were citronellol (15.9-35.3%), geraniol (8.3-30.2%), nerol (4.0-9.6%), nonadecane (4.5-16.0%), heneicosane (2.6-7.9%) and linalool (0.7-2.8%). This study clearly showed that the flower ontogeny and growing site affect the composition of rose volatiles. The rose oil produced in this region was comparable with ISO standards. Thus, it was concluded that the climatic conditions of Uttarakhand are suitable for the production of rose oil of international standards.
NASA Astrophysics Data System (ADS)
Hastuti, L. T.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Murni, V. W.; Haib, J.
2017-07-01
Clove (Syzygium aromaticum) is native to Indonesia and used as a spice in virtually all of the world's cuisine. Clove bud oil, a yellow liquid, is obtained from distillation of buds. The quality of oil is influenced by origin, post-harvest processing, pre-treatment before distillation, the distillation method, and post-distillation treatment. The objective of this study is to investigate the effect of drying process and prolonged storage on essential oil composition of clove bud from the Tolitoli, Indonesia. To determine the effect of drying, fresh clove bud was dried under sunlight until it reached moisture content 13±1 %. The effect of storage was studied in the oil extracted from clove bud that was stored in laboratory at 25 °C for 4 months. The essential oil of each treatment was obtained by steam distillation and its chemical composition was analyzed by GC/MS. The major components found in fresh and dried clove are as follows: eugenol, eugenyl acetate, and caryophyllene. Percentage of caryophyllene was slightly increase after drying but decrease during storage. While the content of eugenyl acetate decreased during drying and storage, the content of eugenol increased. The drying and storage also affect to the change on minor compounds of essential oil of clove.
[The quality of fat: olive oil].
Tur Marí, Josep A
2004-06-01
Olive oil is one of the most characteristic Mediterranean Diet foods, also being a key contributor to the healthy aspects attributed to this dietary pattern. Since 4000 BC, olive oil has been obtained in the Mediterranean area, but now it is exceeding its natural borders, and currently the use of olive oil is a worldwide synonym of health and gastronomic quality. Olive oil has important effects on the body, and has protective effects against several pathologies, i.e. cardiovascular diseases, and various cancers, as well as to diminish the age-related cognitive decline. These effects are due to the olive oil richness in monounsaturated fatty acids and antioxidant substances. Olive oil has been and is the food that define one of the most oldest methods of cooking: frying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, J.A.; Carey, R.G.; Janecky, D.R.
1994-06-01
The instrumentation, the luminescence microprobe, and synchronously scanned luminescence spectroscopy technique described here can be used to classify microliter quantities of oil such as those in fluid inclusions in cements from petroleum reservoirs. It is primarily constructed to obtain synchronously scanned luminescence spectra from microscopic sized samples to characterize the organic classes of compounds that predominate. At present no other technique can so readily analyze a single oil-bearing fluid inclusion. The data collected from the technique are pertinent to evaluating systems and providing quantitative data for solving problems in oil migration and maturation determinations, oil-to-oil and oil-to-source correlations, oil degradation,more » and episodes and chemistry of cementation.« less
Utilization of sulphurized palm oil as cutting fluid base oil for broaching process
NASA Astrophysics Data System (ADS)
Sukirno; Ningsih, Y. R.
2017-03-01
Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is applicable for industrial cutting fluids formulation.
Ou, Ming-Chiu; Liu, Yi-Hsin; Sun, Yung-Wei; Chan, Chin-Feng
2015-01-01
The chemical composition and functional activities of cold-pressed and water distilled peel essential oils of Citrus paradisi (C. paradisi) and Citrus grandis (L.) Osbeck (C. grandis) were investigated in present study. Yields of cold-pressed oils were much higher than those of distilled oils. Limonene was the primary ingredient of essential oils of C. paradisi (cold 92.83%; distilled 96.06%) and C. grandis (cold 32.63%; distilled 55.74%). In addition, C. grandis oils obtained were rich in oxygenated or nitrogenated compounds which may be involved in reducing cardiovascular diseases or enhancing sleep effectiveness. The order of free radical scavenging activities of 4 citrus oils was distilled C. paradisi oil > cold-pressed C. paradisi oil > distilled C. grandis oil > cold-pressed C. grandis oil. Cold-pressed C. grandis oil exhibited the lowest activity in all antioxidative assays. The order of antimicrobial activities of 4 citrus oils was distilled C. grandis oil, cold-pressed C. paradisi oil > distilled C. paradisi oil > cold-pressed C. paradisi oil. Surprisingly, distilled C. grandis oil exhibited better antimicrobial activities than distilled C. paradisi oil, especially against Escherichia coli and Salmonella enterica subsp. The results also indicated that the antimicrobial activities of essential oils may not relate to their antioxidative activities. PMID:26681970
Toda, Kei; Ebisu, Yuki; Hirota, Kazutoshi; Ohira, Shin-Ichi
2012-09-05
Underground fluids are important natural sources of drinking water, geothermal energy, and oil-based fuels. To facilitate the surveying of such underground fluids, a novel microchannel extraction device was investigated for in-line continuous analysis and flow injection analysis of sulfide levels in water and in oil. Of the four designs investigated, the honeycomb-patterned microchannel extraction (HMCE) device was found to offer the most effective liquid-liquid extraction. In the HMCE device, a thin silicone membrane was sandwiched between two polydimethylsiloxane plates in which honeycomb-patterned microchannels had been fabricated. The identical patterns on the two plates were accurately aligned. The extracted sulfide was detected by quenching monitoring of fluorescein mercuric acetate (FMA). The sulfide extraction efficiencies from water and oil samples of the HMCE device and of three other designs (two annular and one rectangular channel) were examined theoretically and experimentally. The best performance was obtained with the HMCE device because of its thin sample layer (small diffusion distance) and large interface area. Quantitative extraction from both water and oil could be obtained using the HMCE device. The estimated limit of detection for continuous monitoring was 0.05 μM, and sulfide concentrations in the range of 0.15-10 μM could be determined when the acceptor was 5 μM FMA alkaline solution. The method was applied to natural water analysis using flow injection mode, and the data agreed with those obtained using headspace gas chromatography-flame photometric detection. The analysis of hydrogen sulfide levels in prepared oil samples was also performed. The proposed device is expected to be used for real time survey of oil wells and groundwater wells. Copyright © 2012 Elsevier B.V. All rights reserved.
Ochoa, Aitor; Aramburu, Borja; Ibáñez, María; Valle, Beatriz; Bilbao, Javier; Gayubo, Ana G; Castaño, Pedro
2014-09-01
This work analyses the composition, morphology, and thermal behavior of the carbonaceous materials deposited during the thermal treatment of bio-oil (thermal pyrolytic lignin-TPL). The bio-oil was obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust), and the TPLs were obtained in the 400-700 °C range. The TPLs were characterized by performing elemental analysis; (13)C NMR, Raman, FTIR, and X-ray photoelectron spectroscopy; SEM; and temperature-programmed oxidation analyzed by differential thermogravimetry and differential scanning calorimetry. The results are compared to a commercial lignin (CL). The TPLs have lower oxygen and hydrogen contents and a greater aromaticity and structural order than the CL material. Based on these features, different valorization routes are proposed: the TPL obtained at 500 °C is suitable for use as a fuel, and the TPL obtained at 700 °C has a suitable morphology and composition for use as an adsorbent or catalyst support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jović, Ozren; Smrečki, Neven; Popović, Zora
2016-04-01
A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for p<0.05). Also, iRR can be a fast alternative to iPLS, especially in case of unknown degree of complexity of analyzed system, i.e. if upper limit of number of latent variables is not easily estimated for iPLS. Adulteration of hempseed (H) oil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEP<1.2%). This means that FTIR-ATR coupled with iRR can very rapidly and effectively determine the level of adulteration in the adulterated hempseed oil (R(2)>0.99). Copyright © 2015 Elsevier B.V. All rights reserved.
Volatile constituents of Pinus roxburghii from Nepal
Satyal, Prabodh; Paudel, Prajwal; Raut, Josna; Deo, Akash; Dosoky, Noura S.; Setzer, William N.
2013-01-01
Background: Pinus roxburghii Sarg. Is one of 3 species of pine found in Nepal, the oil of which is traditionally used to treat cuts, wounds, boils, and blisters. Objective: To obtain, analyze, and examine the anti-microbial and cytotoxic activities of the essential oils of P. roxburghii. Materials and Methods: Three plant parts (cone, needle, and bark) of Pinus roxburghii were collected in Biratnagar, Nepal. The essential oils were obtained by hydrodistillation, and the chemical compositions were determined by GC-MS. The needle and cone essential oils were screened for anti-microbial activity against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Aspergillus niger; brine shrimp (Artemia salina) lethality; and in-vitro cytotoxicity against MCF-7 cells. Results: GC-MS analysis for the cone oil revealed 81 compounds with 78 components being identified (95.5% of the oil) while 98.3% of needle oil was identified to contain 68 components and 98.6% of the bark oil (38 components) was identified. The 3 essential oils were dominated by sesquiterpenes, particularly (E)-caryophyllene (26.8%-34.5%) and α-humulene (5.0%-7.3%) as well as monoterpene alcohols terpinen-4-ol (4.1%-30.1%) and α-terpineol(2.8%-5.0%). The monoterpene δ-3-carene was present only in needle and cone essential oils (2.3% and 6.8%, respectively). Bio-activity assays of the cone essential oil of P. roxburghii showed remarkable cytotoxic activity (100% killing of MCF-7 cells at 100 μg/mL) along with notable brine shrimp lethality (LC50 =11.8 μg/mL). The cone essential oil did not show anti-bacterial activity, but it did exhibit anti-fungal activity against Aspergillus niger (MIC=39 μg/mL). Conclusion: The bioactivity of P. roxburghii essential oil is consistent with its traditional medicinal use. PMID:23598924
Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M
2003-04-01
The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.
Hassanzadeh, Sara L.; Tuten, Jessika A.; Vogler, Bernhard; Setzer, William N.
2010-01-01
The essential oils from the leaves of three different individuals of Cupressus lusitanica were obtained by hydrodistillation and analyzed by gas chromatography - mass spectrometry. A total of 49 compounds were identified in the leaf oils. The major components of C. lusitanica leaf oil were α-pinene (40%-82%), limonene (4%-18%), isobornyl acetate (up to 10%) and cis-muurola-4(14),5-diene (up to 7%). The essential oil was screened for antimicrobial activity, and it showed antibacterial activity against Bacillus cereus and antifungal activity against Aspergillus niger. PMID:21808533
Solids precipitation in crude oils, gas-to-liquids and their blends
NASA Astrophysics Data System (ADS)
Ramanathan, Karthik
Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a thermodynamic model based on a modified regular solution theory. A study was done to test the sensitivity of the thermodynamic model to varying levels of crude oil characterization input data for a fourth crude oil sample. The differentiation of the solute fraction (C25+) into the normal alkane, non-n-alkane and the aromatic fractions was found to be important for improving the predictive accuracy of the model. The n-alkane and non-n-alkane distribution used in the modeling of wax precipitation for the three crude oils blended with the GTL liquid gave the WPT's that agreed to within 5% of the experimental values. The precipitated solid amounts were overestimated using this method.
NASA Astrophysics Data System (ADS)
Sicot, G.; Lennon, M.; Miegebielle, V.; Dubucq, D.
2015-08-01
The thickness and the emulsion rate of an oil spill are two key parameters allowing to design a tailored response to an oil discharge. If estimated on per pixel basis at a high spatial resolution, the estimation of the oil thickness allows the volume of pollutant to be estimated, and that volume is needed in order to evaluate the magnitude of the pollution, and to determine the most adapted recovering means to use. The estimation of the spatial distribution of the thicknesses also allows the guidance of the recovering means at sea. The emulsion rate can guide the strategy to adopt in order to deal with an offshore oil spill: efficiency of dispersants is for example not identical on a pure oil or on an emulsion. Moreover, the thickness and emulsion rate allow the amount of the oil that has been discharged to be estimated. It appears that the shape of the reflectance spectrum of oil in the SWIR range (1000-2500nm) varies according to the emulsion rate and to the layer thickness. That shape still varies when the oil layer reaches a few millimetres, which is not the case in the visible range (400-700nm), where the spectral variation saturates around 200 μm (the upper limit of the Bonn agreement oil appearance code). In that context, hyperspectral imagery in the SWIR range shows a high potential to describe and characterize oil spills. Previous methods which intend to estimate those two parameters are based on the use of a spectral library. In that paper, we will present a method based on the inversion of a simple radiative transfer model in the oil layer. We will show that the proposed method is robust against another parameter that affects the reflectance spectrum: the size of water droplets in the emulsion. The method shows relevant results using measurements made in laboratory, equivalent to the ones obtained using methods based on the use of a spectral library. The method has the advantage to release the need of a spectral library, and to provide maps of thickness and emulsion rate values per pixel. The maps obtained are not composed of regions of thickness ranges, such as the ones obtained using discretized levels of measurements in the spectral library, or maps made from visual observations following the Bonn agreement oil appearance code.
Wagdare, Nagesh A; Marcelis, Antonius T M; Boom, Remko M; van Rijn, Cees J M
2011-11-01
Microcapsules were prepared by microsieve membrane cross flow emulsification of Eudragit FS 30D/dichloromethane/edible oil mixtures in water, and subsequent phase separation induced by extraction of the dichloromethane through an aqueous phase. For long-chain triglycerides and jojoba oil, core-shell particles were obtained with the oil as core, surrounded by a shell of Eudragit. Medium chain triglyceride (MCT oil) was encapsulated as relatively small droplets in the Eudragit matrix. The morphology of the formed capsules was investigated with optical and SEM microscopy. Extraction of the oil from the core-shell capsules with hexane resulted in hollow Eudragit capsules with porous shells. It was shown that the differences are related to the compatibility of the oils with the shell-forming Eudragit. An oil with poor compatibility yields microcapsules with a dense Eudragit shell on a single oil droplet as the core; oils having better compatibility yield porous Eudragit spheres with several oil droplets trapped inside. Copyright © 2011 Elsevier B.V. All rights reserved.
Chiou, A; Salta, F N; Kalogeropoulos, N; Mylona, A; Ntalla, I; Andrikopoulos, N K
2007-10-01
Palm oil, olive oil, and sunflower oil were supplemented with an extract rich in polyphenols obtained from olive tree (Olea europaea) leaves at levels of 120 and 240 mg total polyphenols per kilogram of oil. Pan-frying of potatoes was performed in both the enriched and the nonsupplemented oils under domestic frying conditions. Total polyphenol content was estimated by the Folin-Ciocalteau assay, oleuropein was determined by HPLC analysis, while other individual polyphenols by GC/MS analysis. Fourteen polyphenol species were identified in the olive leaf extract, among which oleuropein predominated (1.25 g/kg olive leaves). All the enriched oils contained oleuropein before and after frying. Oleuropein as well as other polyphenol species were detected in all French fries cooked in enriched oils. Polyphenol intake by consuming French fries pan-fried in the enriched oils was calculated to be 6 to 31 times higher than that in the case of French fries fried in commercial oils, being dependent on the frying oil type.
Zhang, Qing; Liu, Cheng; Sun, Zhijian; Hu, Xiaosong; Shen, Qun; Wu, Jihong
2012-06-01
The application of Fourier Transform Infrared (FTIR) Spectroscopy to authenticate edible vegetable oils (corn, peanut, rapeseed and soybean oil) adulterated with used frying oil was introduced in this paper. The FTIR spectrum of oil was divided into 22 regions which corresponded to the constituents and molecular structures of vegetable oils. Samples of calibration set were classified into four categories for corn and peanut oils and five categories for rapeseed and soybean oils by cluster analysis. Qualitative analysis of validation set was obtained by discriminant analysis. Area ratio between absorption band 19 and 20 and wavenumber shift of band 19 were treated by linear regression for quantitative analysis. For four adulteration types, LODs of area ratio were 6.6%, 7.2%, 5.5%, 3.6% and wavenumber shift were 8.1%, 9.0%, 6.9%, 5.6%, respectively. The proposed methodology is a useful tool to authenticate the edible vegetable oils adulterated with used frying oil. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hubbert's Peak -- A Physicist's View
NASA Astrophysics Data System (ADS)
McDonald, Richard
2011-04-01
Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.
GC/MS Analysis of the Essential Oil of Vernonia cinerea.
Joshi, Rajesh K
2015-07-01
The hydro-distilled essential oil obtained from the roots of V. cinerea Less. (Asteraceae) was investigated by gas chromatography equipped with flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Twenty-five constituents were identified, which represented 97.4% of the total oil. The major compounds were α-muurolene (30.7%), β-caryophyllene (9.6%), α-selinene (8.7%), cyperene (6.7%) and α-gurjunene (6.5%). The essential oil was dominated by sesquiterpene hydrocarbons (87.8%).
Krill Oil for Cardiovascular Risk Prevention: Is It for Real?
Backes, James M.; Howard, Patricia A.
2014-01-01
Omega-3 fatty acids play an important role in cardiovascular health. Although it is suggested that individuals obtain these nutrients through diet, many prefer to rely on supplements. Fish oil supplements are widely used, yet large capsule sizes and tolerability make them less than ideal. Recently, krill oil has emerged as a potential alternative for omega-3 supplementation. This article will discuss what is known about krill oil and its potential use in cardiovascular risk prevention. PMID:25477562
Rosato, Antonio; Vitali, Cesare; Gallo, Daniela; Balenzano, Luca; Mallamaci, Rosanna
2008-08-01
In this work we highlight a possible synergistic anti-Candida effect between Melaleuca alternifolia, Origanum vulgare and Pelargonium graveolens essential oils and the antifungal compound Amphotericin B. The antifungal activity was assessed using the agar dilution method in eleven Candida strains. The results obtained indicate the occurrence of a synergistic interaction between the essential oils under study and Amphotericin B. P. graveolens essential oil appeared to be the most effective, inhibiting all the Candida species evaluated by this study.
Poppe, Jakeline Kathiele; Matte, Carla Roberta; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Ayub, Marco Antônio Záchia
2018-04-21
This work describes the use of an ultrasound system for the enzymatic transesterification of oils using combi-lipases as biocatalyst. The reactions were carried out evaluating the individual use of waste oil and fresh soybean oil, and the immobilized lipases CALB, TLL, and RML were used as biocatalysts. It was performed in a mixture design of three factors to obtain the ideal mixture of lipases according to the composition of fatty acids present in each oil, and the main reaction variables were optimized. After 18 h of reaction, ultrasound provided a biodiesel yield of about 90% when using soybean oil and 70% using the waste oil. The results showed that ultrasound technology, in combination with the application of enzyme mixtures, known as combi-lipases, and the use of waste oil, could be a promising route to reduce the overall process costs of enzymatic production of biodiesel.
NASA Astrophysics Data System (ADS)
Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.
2018-03-01
The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.
Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr
de Almeida, Macia C. S.; Souza, Luciana G. S.; Ferreira, Daniele A.; Monte, Francisco J. Q.; Braz-Filho, Raimundo; de Lemos, Telma L. G.
2015-01-01
Background: Bauhinia pentandrais popularly known as “mororó” and inhabits the Caatinga and Savannah biomes. Objective: This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. Materials and Methods: The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. Results: The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Conclusion: Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil. PMID:26664026
On the Mineral and Vegetal Oils Used as Electroinsulation in Transformers
NASA Astrophysics Data System (ADS)
Şerban, Mariana; Sângeorzan, Livia; Helerea, Elena
Due to the relatively large availability and reduced price, the mineral transformer oils are widely used as electrical insulating liquids. However, mineral oil drastically degrades over time in service. New efforts were made to improve mineral oils characteristics, and other types of liquids like vegetal oils are proposed. This paper deals with new comparative tests on mineral and vegetal oils using as indicator the electric strength. The samples of non-additive mineral oil type TR 30 and vegetal oils of rape, sunflower and corn have been tested with increasing voltage of 60 Hz using different electrodes. The obtained data have been statistical processed. The analyze shows different average values of electrical strength for the different type of sample. New method of testing through electrical breakdown is proposed. Experimental data confirms that it is possible to use as electroinsulation organic vegetal oils in power transformers.
Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils.
Raczyk, Marianna; Siger, Aleksander; Radziejewska-Kubzdela, Elżbieta; Ratusz, Katarzyna; Rudzińska, Magdalena
2017-01-01
Pumpkin seed oil is valuable oil for its distinctive taste and aroma, as well as supposed health- promoting properties. The aim of this study was to investigate how roasting pumpkin seeds influences the physicochemical properties of cold-pressed oils. The fatty acid composition, content of phytosterols, carotenoids and tocopherols, oxidative stability and colour were determined in oils after cold pressing and storage for 3 months using GC-FID, GCxGC-ToFMS, HPLC, Rancimat and spectrophotometric methods. The results of this study indicate that the seed-roasting and storage process have no effect on the fatty acid composition of pumpkin seed oils, but does affect phytosterols and tocopherols. The carotenoid content decreased after storage. The colour of the roasted oil was darker and changed significantly during storage. Pumpkin oil obtained from roasted seeds shows better physicochemical properties and oxidative stability than oil from unroasted seeds.
USDA-ARS?s Scientific Manuscript database
The essential oil of air dried fruits of Prangos pabularia Lindl (Apiaceae) was obtained by hydrodistillation and its chemical profile was identified using GC-FID and GC-MS. Bicyclogermacrene (21%), (Z)-'-ocimene (19%), '-humulene (8%), '-pinene (8%) and spathulenol (6%) were the main constituents o...
Arumugam, A; Senthamizhan, S G; Ponnusami, V; Sudalai, S
2018-06-01
Polyhydroxyalkanoates (PHA) are biodegradable polymers found in the cellular masses of a wide range of bacterial species and the demand for PHA is steadily growing. In this work we have produced PHA from a low-cost substrate, Calophyllum inophyllum oil, using Cupriavidus necator. Effects of various process parameters such as Oil concentration, Nitrogen source and inoculum size on the production of PHA were studied using Response Surface Methodology. A quadratic equation was used in the model to fit the experimental data. It was found that the model could satisfactorily predict the PHA yield (R 2 =99.17%). Linear, quadratic and interaction terms used in the model were found to be statistically significant. Maximum PHA yield of 10.6gL -1 was obtained under the optimized conditions of oil concentration - 17.5%, inoculum concentration - 50mL/L and nitrogen content - 1.125gL -1 , respectively. The product obtained was characterized using FTIR and NMR to confirm that it was PHA. The results demonstrate that C. inophyllum oil, a non-edible oil, can be potentially used as a low-cost substrate for the production of PHA. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gajewski, Juliusz B.; Glogowski, Marek J.
2008-12-01
The former research [1] was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical—tribological and especially electrostatic—aspects since there has been a lack of such an interpretation in the literature of the subject.
The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.
Basibuyuk, M; Kalat, D G
2004-03-01
Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.
Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.
Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B
2012-12-01
Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aysu, Tevfik
2016-11-01
The catalytic pyrolysis of Cirsium arvense was performed with titania supported catalysts under the operating conditions of 500°C, 40°C/min heating rate, 100mL/min N2 flow rate in a fixed bed reactor for biofuel production. The effect of catalysts on product yields was investigated. The amount of pyrolysis products (bio-char, bio-oil, gas) and the composition of the produced bio-oils were determined by proton nuclear magnetic resonance ((1)H NMR), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC-MS) and elemental analysis (EA) techniques. Thistle bio-oils had lower O/C and H/C molar ratios compared to feedstock. The highest bio-char and bio-oil yields of 29.32wt% and 36.71wt% were obtained in the presence of Ce/TiO2 and Ni/TiO2 catalysts respectively. GC-MS identified 97 different compounds in the bio-oils obtained from thistle pyrolysis. (1)H NMR analysis showed that the bio-oils contained ∼55-77% aliphatic and ∼6-19% aromatic structural units. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Karacan; T. Torul
2007-08-15
The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highestmore » degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.« less
Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties
Liakos, Ioannis L.; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D’Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia
2016-01-01
Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization. PMID:27399724
Rodrigues, Fabiola F G; Oliveira, Liana G S; Rodrigues, Fábio F G; Saraiva, Manuele E; Almeida, Sheyla C X; Cabral, Mario E S; Campos, Adriana R; Costa, Jose Galberto M
2012-07-01
Cordia verbenacea is a Brazilian coastal shrub popularly known as "erva baleeira". The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens.
Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.
Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia
2016-07-07
Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.
Chemical composition and functional characterisation of commercial pumpkin seed oil.
Procida, Giuseppe; Stancher, Bruno; Cateni, Francesca; Zacchigna, Marina
2013-03-30
Pumpkin (Cucurbita pepo L.) seed oil is a common product in Slovenia, Hungary and Austria and is considered a preventive agent for various pathologies, particularly prostate diseases. These properties are related to its high content of carotenoids and liposoluble vitamins. In this study the carotenoid (lutein and zeaxanthin), vitamin E (α- and γ-tocopherol) and fatty acid contents of 12 samples of commercial pumpkin seed oil were investigated together with the composition of the volatile fraction resulting from the roasting process. The aromatic profile obtained from the commercial samples was directly related to the intensity of the roasting process of the crushed pumpkin seeds. The roasting temperature played a crucial role in the concentrations of volatile substances originating from Strecker degradation, lipid peroxidation and Maillard reaction. The findings suggest that high-temperature roasting leads to the production of an oil with intense aromatic characteristics, while mild conditions, generally employed to obtain an oil with professed therapeutic characteristics, lead to a product with minor characteristic pumpkin seed oil aroma. The nutraceutical properties of the product are confirmed by the high content of α- and γ-tocopherol and carotenoids. © 2012 Society of Chemical Industry.
Pérez, Ana G.; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos
2014-01-01
Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil. PMID:24651694
Pérez, Ana G; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos
2014-01-01
Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil.
Santana, Jeferson S; Sartorelli, Patricia; Guadagnin, Rafael C; Matsuo, Alisson L; Figueiredo, Carlos R; Soares, Marisi G; da Silva, Adalberto M; Lago, João Henrique G
2012-10-01
In folk medicine, Schinus terebinthifolius Raddi (Anacardiaceae), has been used as a remedy for ulcers, respiratory problems, wounds, rheumatism, gout, diarrhea, skin ailments and arthritis, as well as to treat tumors and leprosy. To investigate the chemical composition and cytotoxicity of essential oil from leaves of S. terebinthifolius as well as the identification of active compounds from this oil. Essential oil from S. terebinthifolius leaves, obtained by hydrodistillation using a Clevenger-type apparatus, was characterized in terms of its chemical composition. Also, the crude oil was subjected to chromatographic separation procedures to afford an active fraction composed of α- and β-pinenes. These compounds, including hydrogenation (pinane) and epoxydation (α-pinene oxide) derivatives from α-pinene, were tested in vitro against murine melanoma cell line (B16F10-Nex2) and human melanoma (A2058), breast adenocarcinoma (MCF7), leukemia (human leukemia (HL-60) and cervical carcinoma (HeLa) cell lines. Forty-nine constituents were identified in the oil (97.9% of the total), with germacrene D (23.7%), bicyclogermacrene (15.0%), β-pinene (9.1%) and β-longipinene (8.1%) as the main compounds. The crude essential oil showed cytotoxic effects in several cell lines, mainly on leukemia and human cervical carcinoma. Fractions composed mainly of α- and β-pinenes as well as those composed of individually pinenes showed effective activities against all tested cell lines. Aiming to determinate preliminary structure/activity relationships, α-pinene was subjected to epoxydation and hydrogenation procedures whose obtained α-pinene oxide showed an expressive depression in its cytotoxicity effect, similar as observed to pinane derivative. The obtained results indicated that the monoterpenes α- and β-pinenes could be responsible to the cytotoxic activity detected in the crude oil from leaves of S. terebinthifolius. In addition, it was possibly inferred that the presence of double bond in their structures, mainly at endocyclic position, is crucial to cytotoxic potential detected in these derivatives.
Zheljazkov, Valtcho D; Horgan, Thomas; Astatkie, Tess; Schlegel, Vicki
2013-01-01
Fennel (Foeniculum vulgare Mill) is an essential oil crop grown worldwide for production of essential oil, as medicinal or as culinary herb. The essential oil is extracted via steam distillation either from the whole aboveground biomass (herb) or from fennel fruits (seed). The hypothesis of this study was that distillation time (DT) can modify fennel oil yield, composition, and antioxidant capacity of the oil. Therefore, the objective of this study was to evaluate the effect of eight DT (1.25, 2.5, 5, 10, 20, 40, 80, and 160 min) on fennel herb essential oil. Fennel essential oil yield (content) reached a maximum of 0.68% at 160 min DT. The concentration of trans-anethole (32.6-59.4% range in the oil) was low at 1.25 min DT, and increased with an increase of the DT. Alpha-phelandrene (0.9-10.5% range) was the lowest at 1.25 min DT and higher at 10, 80, and 160 min DT. Alpha-pinene (7.1-12.4% range) and beta-pinene (0.95-1.64% range) were higher in the shortest DT and the lowest at 80 min DT. Myrcene (0.93-1.95% range), delta-3-carene (2.1-3.7% range), cis-ocimene (0-0.23% range), and gamma-terpinene (0.22-2.67% range) were the lowest at 1.25 min DT and the highest at 160 min DT. In contrast, the concentrations of paracymene (0.68-5.97% range), fenchone (9.8-22.7% range), camphor (0.21-0.51% range), and cis-anethole (0.14-4.66% range) were highest at shorter DT (1.25-5 min DT) and the lowest at the longer DT (80-160 min DT). Fennel oils from the 20 and 160 min DT had higher antioxidant capacity than the fennel oil obtained at 1.25 min DT. DT can be used to obtain fennel essential oil with differential composition. DT must be reported when reporting essential oil content and composition of fennel essential oil. The results from this study may be used to compare reports in which different DT to extract essential oil from fennel biomass were used.
Periaswamy Sivagnanam, Saravana; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo
2015-01-01
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process. PMID:26035021
Sivagnanam, Saravana Periaswamy; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo
2015-05-29
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.
Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan
2009-08-01
In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.
30 CFR 250.423 - What are the requirements for pressure testing casing?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the pressure...
Irfan, Muhammad; Chen, Qun; Yue, Yan; Pang, Renzhong; Lin, Qimei; Zhao, Xiaorong; Chen, Hao
2016-07-01
In the present study, pyrolysis of Achnatherum splendens L. was performed under three different pyrolysis temperature (300, 500, and 700°C) to investigate the characteristics of biochar, bio-oil, and syngas. Biochar yield decreased from 48% to 24%, whereas syngas yield increased from 34% to 54% when pyrolysis temperature was increased from 300 to 700°C. Maximum bio-oil yield (27%) was obtained at 500°C. The biochar were characterized for elemental composition, surface, and adsorption properties. The results showed that obtained biochar could be used as a potential soil amendment. The bio-oil and syngas co-products will be evaluated in the future as bioenergy sources. Overall, our results suggests that A. splendens L. could be utilized as a potential feedstock for biochar and bioenergy production through pyrolytic route. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Taamalli, Amani; Arráez Román, David; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-05-01
The present work describes a classification method of Tunisian 'Chemlali' olive oils based on their phenolic composition and geographical area. For this purpose, the data obtained by HPLC-ESI-TOF-MS from 13 samples of extra virgin olive oils, obtained from different production area throughout the country, were used for this study focusing in 23 phenolics compounds detected. The quantitative results showed a significant variability among the analysed oil samples. Factor analysis method using principal component was applied to the data in order to reduce the number of factors which explain the variability of the selected compounds. The data matrix constructed was subjected to a canonical discriminant analysis (CDA) in order to classify the oil samples. These results showed that 100% of cross-validated original group cases were correctly classified, which proves the usefulness of the selected variables. Copyright © 2011 Elsevier Ltd. All rights reserved.
The slow and fast pyrolysis of cherry seed.
Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale
2011-01-01
The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.
1993-06-29
A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3
Ribeiro, Penha Patrícia Cabral; Silva, Denise Maria de Lima E; Assis, Cristiane Fernandes de; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves
2017-01-01
To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed.
Teke, Gerald Ngo; Elisée, Kemadjou Nana; Roger, Kuiate Jules
2013-06-13
The leaves of Cupressus lusitanica Mill. are used in the western highlands of Cameroon for their medicinal property. The leaves of this species were collected in the West Region of Cameroon in August 2010 and subjected to hydrodistillation to obtain the essential oil. The oil was fractionated using adsorption column chromatography. The chemical composition of this oil and its fractions was analysed by gas chromatography-mass spectrometry (GC-MS). The essential oil and fractions were tested for antimicrobial activity against eight bacterial species and six species of Candida by the agar diffusion method. Macrodilution method was used to determine the minimum inhibition concentrations (MICs) and minimum bactericidal and/or fungicidal concentrations (MBCs and MFCs). The toxicity profile of the oil was studied using Swiss mice and Wistar albino rats. Forty-nine compounds were identified in the essential oil. The main components were germacrene D (18.5%), epi-zonarene (8.2%), cis-calamenene (8.2%), terpinen-4-ol (6.3%), linalool (6.0%) and umbellulone (6.0%). Enterococcus faecalis, Proteus mirabilis and Candida albicans were most susceptible to the oil (MICs of 1.25 and 0.16% for bacteria and fungi respectively). The estimated oral LD50 was 6.33 g/kg. There was an increase in sera ALT and AST activities while the blood cells and protein levels decreased in treated animals. The results obtained from this study support the ethnomedicinal use of C. lusitanica leaf oil in the treatment of whooping cough and skin infections though it should be used with care. This plant oil could be useful in the standardisation of phytomedicine.
Polatoğlu, Kaan; Karakoç, Ömer Cem; Demirci, Betül; Gören, Nezhun; Can Başer, Kemal Hüsnü
2015-01-01
Insecticides of the natural origin are an important alternative to the synthetic insecticides that are being employed for the preserving stored products. The volatiles obtained from T. cinerariifolium (=Pyrethrum cinerariifolium) is being used for many types of insecticidal applications; however there is a very little information on the insecticidal activity of the essential oils of other Tanacetum species. The main purpose of the present study is to determine the chemical composition of T. macrophyllum (Waldst. & Kit.) Schultz Bip. essential oils and evaluate their insecticidal activity against S. granarius as well as its other beneficial biological activities. Highest contact toxicity was observed in the leaf oil of (88.93%) against S. granarius. The flower oil showed considerable fumigant toxicity against L. minor at 10 mg/mL application concentration (61.86 %) when compared with other samples at the same concentration. The highest DPPH (2,2-Diphenyl-1-picrylhydrazyl) scavenging activity (47.7%) and phosphomolybdenum reducing activity was observed also for the flower oil of T. macrophyllum at 10 mg/mL concentration. The essential oils were analyzed by GC, GC/MS. The flower and leaf oils were characterized with γ-eudesmol 21.5%, (E)-sesquilavandulol 20.3%, copaborneol 8.5% and copaborneol 14.1%, 1,8-cineole 11%, bornyl acetate 9.6%, borneol 6.3% respectively. AHC analysis of the qualitative and quantitative data obtained from the essential oil composition of the T. macrophyllum essential oil from the present research and previous reports pointed out that two different chemotypes could be proposed with current findings which are p-methyl benzyl alcohol/ cadinene and eudesmane chemotypes.
Silva, Denise Maria de Lima e; de Assis, Cristiane Fernandes; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves
2017-01-01
To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed. PMID:28846740
Volatile oil composition of Carthamus Tinctorius L. flowers grown in Kazakhstan.
Turgumbayeva, Aknur Amanbekovna; Ustenova, Gulbaram Omargazieva; Yeskalieva, Balakyz Kymyzgalievna; Ramazanova, Bakyt Amanullovna; Rahimov, Kairolla Duysenbayevich; Aisa, Hajiakbar; Juszkiewicz, Konrad T
2018-03-14
Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed which is used as edible oil. For a long time, C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum haemorrhage and osteoporosis. The subject of this study is the seeds of Kazakhstan species of 'Akmai' safflower, collected in the flowering stage in Southern Kazakhstan. Volatile oil was carry out to study the component composition of Kazakhstan 'AkMai' safflower flowers. Pale yellow oily extracts were obtain by varying the process parameters. The volatile oil obtained by hydrodistillation of the petals Carthamus tinctorius L. was analyzed by gas chromatography/mass spectrometry (GC/MS). The yield of the oil was 0.175 % (v/w). 20 compounds representing 99.81% of the oil were characterized. The volatile oil was found to be rich in undecanoic acid, octane, 2-nonen -1-ol, hexadecanal, dodecanal, dec-2-en-1-ol, nonanoic acid, tetradecanoic acid, 2 pentadecanone, 6,10,14-trimethyl, 1,2-benzenedicarboxylic acid, isobutyl-beta-phenylpropionate, 1.3-cyclohexadiene, myrtenoic acid, octadecanoic acid, heneicosanoic acid, 2(3H)-furanone, 4,4-dipropylheptane, hexcosane,1-eicosanol, as well as heptocosane. Volatile oil from the flowers of the Kazakhstan safflower species 'Ak-Mai' were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species 'Ak-Mai' was released for the first time by using this oil.
Keshavarz, Alireza; Zilouei, Hamid; Abdolmaleki, Amir; Asadinezhad, Ahmad
2015-07-01
A surface modification method was carried out to enhance the light crude oil sorption capacity of polyurethane foam (PUF) through immobilization of multi-walled carbon nanotube (MWCNT) on the foam surface at various concentrations. The developed sorbent was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and tensile elongation test. The results obtained from thermogravimetric and tensile elongation tests showed the improvement of thermal and mechanical resistance of surface-modified foam. The experimental data also revealed that the immobilization of MWCNT on PUF surface enhanced the sorption capacity of light crude oil and reduced water sorption. The highest oil removal capacity was obtained for 1 wt% MWCNT on PUF surface which was 21.44% enhancement in light crude oil sorption compared to the blank PUF. The reusability of surface modified PUF was determined through four cycles of chemical regeneration using petroleum ether. The adsorption of light crude oil with 30 g initial mass showed that 85.45% of the initial oil sorption capacity of this modified sorbent was remained after four regeneration cycles. Equilibrium isotherms for adsorption of oil were analyzed by the Freundlich, Langmuir, Temkin, and Redlich-Peterson models through linear and non-linear regression methods. Results of equilibrium revealed that Langmuir isotherm is the best fitting model and non-linear method is a more accurate way to predict the parameters involved in the isotherms. The overall findings suggested the promising potentials of the developed sorbent in order to be efficiently used in large-scale oil spill cleanup. Copyright © 2015 Elsevier Ltd. All rights reserved.
Orhan, Ilkay Erdogan; Ozcelik, Berrin; Kan, Yüksel; Kartal, Murat
2011-10-01
In the current study, in vitro inhibitory activity of several essential oils obtained from the cultivated plants, Foeniculum vulgare, Mentha piperita and M. spicata, Ocimum basilicum, Origanum majorana, O. onites, O. vulgare, Satureja cuneifolia, and a number of individual essential oil components of terpene and aromatic types were screened against 10 isolated strains of Klebsiella pneumoniae producing extended-spectrum beta-lactamase (ESBL) enzyme, which makes this microorganism quite resistant against the antibiotics: trimetoprime-sulfametoksazol, sulbactam-ampicilin, clavulonate-amoxicilin, ceftriaxon, cefepime, imipenem, ceftazidime, tobramicine, gentamisine, ofloxacin, and ciprofloksasin. All of the essential oils and the components exerted a remarkable inhibition ranging between 32 and 64 μg/mL against all of these strains as strong as the references (ampicilin and oflaxocin) inhibiting at 32 μg/mL. Besides, chemical compositions of the essential oils were elucidated by gas chromatography-mass spectrometry (GC-MS). The essential oils and the pure components widely found in essential oils screened herein have shown remarkable inhibition against ESBL-producing K. pneumoniae strains, which leads to the suggestion that they may be used as food preservatives for this purpose. Practical Application: The essential oils obtained from Foeniculum vulgare, Mentha piperita and M. spicata, O.cimum basilicum, Origanum majorana, O. onites, O. vulgare, and Satureja cuneifolia as well as common essential oil components have shown notable inhibitory effects against 10 isolated strains of Klebsiella pneumoniae producing extended-spectrum beta-lactamase (ESBL) enzyme and they might be used as food preservative or ingredient. © 2011 Institute of Food Technologists®
Betancor, Mónica B; Li, Keshuai; Bucerzan, Valentin S; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Han, Lihua; Norambuena, Fernando; Torrissen, Ole; Napier, Johnathan A; Tocher, Douglas R; Olsen, Rolf E
2018-06-01
Facing a bottleneck in the growth of aquaculture, and a gap in the supply and demand of the highly beneficial n-3 long-chain PUFA (LC-PUFA), sustainable alternatives to traditional marine-based feeds are required. Therefore, in the present trial, a novel oil obtained from a genetically engineered oilseed crop, Camelina sativa, that supplied over 25 % n-3 LC-PUFA was tested as a sole dietary-added lipid source in Atlantic salmon (Salmo salar) feed. Three groups of fish were fed three experimental diets for 12 weeks with the same basal composition and containing 20 % added oil supplied by either a blend of fish oil and rapeseed oil (1:3) (COM) reflecting current commercial formulations, wild-type Camelina oil (WCO) or the novel transgenic Camelina oil (TCO). There were no negative effects on the growth, survival rate or health of the fish. The whole fish and flesh n-3 LC-PUFA levels were highest in fish fed TCO, with levels more than 2-fold higher compared with those of fish fed the COM and WCO diets, respectively. Diet TCO had no negative impacts on the evaluated immune and physiological parameters of head kidney monocytes. The transcriptomic responses of liver and mid-intestine showed only mild effects on metabolism genes. Overall, the results clearly indicated that the oil from transgenic Camelina was highly efficient in supplying n-3 LC-PUFA providing levels double that obtained with a current commercial standard, and similar to those a decade ago before substantial dietary fishmeal and oil replacement.
D'Alessandro, Robert N.; Tarabocchia, John; Jones, Jerald Andrew; Bonde, Steven E.; Leininger, Stefan
2010-10-26
The present disclosure is directed to a multi-stage system and a process utilizing said system with the design of reducing the sulfur-content in a liquid comprising hydrocarbons and organosulfur compounds. The process comprising at least one of the following states: (1) an oxidation stage; (2) an extraction state; (3) a raffinate washing stage; (4) a raffinate polishing stage; (5) a solvent recovery stage; (6) a solvent purification stage; and (7) a hydrocarbon recovery stage. The process for removing sulfur-containing hydrocarbons from gas oil, which comprises oxidizing gas oil comprising hydrocarbons and organosulfur compounds to obtain a product gas oil.
Some Characteristics of Fuel Sprays at Low-injection Pressures
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1931-01-01
This report presents the results of tests conducted at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine some of the characteristics of the fuel sprays obtained from an 0.008-inch and a 0.020-inch open nozzle when injection pressures from 100 to 500 pounds per square inch were used. Fuel oil and gasoline were injected into air at densities of atmospheric land 0.325 pound per cubic foot. It was found that the penetration rate at these low pressures was about the same as the rate obtained with higher pressures. Spray cone-angles were small and individual oil drops were visible in all the sprays. Gasoline and fuel oil sprays had similar characteristics.
Estimation of trace amounts of benzene in solvent-extracted vegetable oils and oil seed cakes.
Masohan, A; Parsad, G; Khanna, M K; Chopra, S K; Rawat, B S; Garg, M O
2000-09-01
A new method is presented for the qualitative and quantitative estimation of trace amounts (up to 0.15 ppm) of benzene in crude as well as refined vegetable oils obtained by extraction with food grade hexane (FGH), and in the oil seed cakes left after extraction. The method involves the selection of two solvents; cyclohexanol, for thinning of viscous vegetable oil, and heptane, for azeotroping out trace benzene as a concentrate from the resulting mixture. Benzene is then estimated in the resulting azeotrope either by UV spectroscopy or by GC-MS subject to availability and cost effectiveness of the latter. Repeatability and reproducibility of the method is within 1-3% error. This method is suitable for estimating benzene in vegetable oils and oil seed cakes.
Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production
Patel, Vinay R.; Dumancas, Gerard G.; Kasi Viswanath, Lakshmi C.; Maples, Randall; Subong, Bryan John J.
2016-01-01
Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production. PMID:27656091
Essential oil composition of Dracocephalum kotschyi Boiss. from Iran.
Sonboli, Ali; Mirzania, Foroogh; Gholipour, Abbas
2018-06-06
Dracocephalum kotschyi is one of the medicinal and fragrant herbs that can be found in natural locations of mountainous areas. In this investigation the hydrodistilled essential oils obtained from aerial parts of two populations of D. kotschyi collected from Siahbisheh and Baladeh were analysed by capillary GC-FID and GC-MS. Essential oil analysis led to the identification of 48 compounds that represented 85.9 and 90.0% of the total oil compositions, respectively. As the major group of compounds, oxygenated monoterpens comprised 45.5 and 57.4% in the essential oils of compounds as the main group in the essential oils of Siahbisheh and Baladeh samples, respectively. Disagreement in the major contents of the essential oils of these two samples may be ascribed to differences in the ecological, climatic and genetically factors.
Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production.
Patel, Vinay R; Dumancas, Gerard G; Kasi Viswanath, Lakshmi C; Maples, Randall; Subong, Bryan John J
2016-01-01
Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production.
Economakis, C; Skaltsa, Helen; Demetzos, Costas; Soković, M; Thanos, Costas A
2002-10-23
The chemical composition of the essential oils obtained from the leaves and bracts of hydroponically cultivated Origanum dictamnus were analyzed by GC-MS techniques. Three different concentrations of phosphorus (5, 30, and 60 mg/L) in the nutrient solution were used for the cultivation, using the nutrient film technique (NFT). A total of 46 different compounds were identified and significant differences (qualitative and quantitative) were observed between the samples. Carvacrol and p-cymene were identified as the main compounds in all samples analyzed, whereas thymoquinone was found in higher percentage in the leaves than in bracts. The essential oils were tested for their antibacterial activity against Gram-positive and Gram-negative bacteria. The oils obtained from the bracts were found to be more active. The results obtained from GC-MS analyses were submitted to chemometric analysis.
Dawidowicz, Andrzej L; Czapczyńska, Natalia B
2011-11-01
Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Abedi, Abdol-Samad; Rismanchi, Marjan; Shahdoostkhany, Mehrnoush; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad
2017-11-01
It has been previously reported that the essential oil of Nigella sativa L. seeds and its major active component, thymoquinone (TQ), possess a broad variety of biological activities and therapeutic properties. In this work, microwave-assisted extraction (MAE) of the essential oil from Nigella sativa L. seeds and its antioxidant activity were studied. Response surface methodology based on central composite design was used to evaluate the effects of extraction time, irradiation power and moisture content on extraction yield and TQ content. Optimal parameters obtained by CCD and RSM were extraction time 30 min, irradiation power 450 W, and moisture content 50%. The extraction yield and TQ content of the essential oil were 0.33 and 20% under the optimum conditions, respectively. In contrast, extraction yield and TQ amount of oil obtained by hydrodistillation (HD) were 0.23 and 3.71%, respectively. The main constituents of the essential oil extracted by MAE and HD were p -cymene, TQ, α-thujene and longifolene, comprising more than 60% of total peak area. The antioxidant capacity of essential oils extracted by different methods were evaluated using 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays, and compared with traditional antioxidants. The results showed that MAE method was a viable alternative to HD for the essential oil extraction from N. sativa seeds due to the excellent extraction efficiency, higher thymoquinone content, and stronger antioxidant activity.
Cabral, E C; Sevart, L; Spindola, H M; Coelho, M B; Sousa, I M O; Queiroz, N C A; Foglio, M A; Eberlin, M N; Riveros, J M
2013-02-01
The oil obtained from Pterodon pubescens (Leguminosae) seeds are known to display anti-cancer, anti-dermatogenic and anti-nociceptive activitiy. Phytochemical studies have demonstrated that its main constituents are diterpenoids with voucapan skeletons. Considering the potential biological activities of the oil, rapid and efficient methods for assessing its quality would facilitate certification and quality control. To develop a direct mass spectrometric fingerprinting method for the P. pubescens seed oil that would focus on the major diterpenoids constituents, enabling quality control, origin certification and recognition of marker species in commercially available products. Two techniques were used: (i) direct infusion electrospray ionisation (ESI) mass spectrometry after solvent extraction and dilution and (ii) ambient desorption/ionisation via easy ambient sonic-spray ionisation, EASI(+)-MS, performed directly on the seed surface or at a paper surface imprinted with the oil. From a combination of ESI-MS, HRESI-MS and ESI-MS/MS data, 12 diterpenes were characterised, and typical profiles were obtained for the oil extract or the crude oil via both ESI-MS and EASI-MS. These techniques require no or very simple sample preparation protocols and the whole analytical processes with spectra acquisition take just a few minutes. Both techniques, but particularly EASI-MS, provide simple, fast and efficient MS fingerprinting methodologies to characterise the P. pubescens oil with typical (di)terpene profiles being applicable to quality control and certification of authenticity and origin. Copyright © 2012 John Wiley & Sons, Ltd.
Evaluation of sensor arrays for engine oils using artificial oil alteration
NASA Astrophysics Data System (ADS)
Sen, Sedat; Schneidhofer, Christoph; Dörr, Nicole; Vellekoop, Michael J.
2011-06-01
With respect to varying operation conditions, only sensors directly installed in the engine can detect the current oil condition hence enabling to get the right time for the oil change. Usually, only one parameter is not sufficient to obtain reliable information about the current oil condition. For this reason, appropriate sensor principles were evaluated for the design of sensor arrays for the measurement of critical lubricant parameters. In this contribution, we report on the development of a sensor array for engine oils using laboratory analyses of used engine oils for the correlation with sensor signals. The sensor array comprises the measurement of conductivity, permittivity, viscosity and temperature as well as oil corrosiveness as a consequence of acidification of the lubricant. As a key method, rapid evaluation of the sensors was done by short term simulation of entire oil change intervals based on artificial oil alteration. Thereby, the compatibility of the sensor array to the lubricant and the oil deterioration during the artificial alteration process was observed by the sensors and confirmed by additional laboratory analyses of oil samples take.
Antioxidant activities and volatile constituents of various essential oils.
Wei, Alfreda; Shibamoto, Takayuki
2007-03-07
Thirteen essential oils were examined for their antioxidant activity using three different assay systems. Jasmine, parsley seed, rose, and ylang-ylang oils inhibited hexanal oxidation by over 95% after 40 days at a level of 500 microg/mL in the aldehyde/carboxylic acid assay. Scavenging abilities of the oils for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ranged from 39% for angelica seed oil to 90% for jasmine oil at a level of 200 microg/mL. The greatest inhibitory activity toward malonaldehyde (MA) formation from squalene upon UV-irradiation was obtained from parsley seed oil (inhibitory effect, 67%), followed by rose oil (46%), and celery seed oil (23%) at the level of 500 microg/mL. The main compounds of oils showing high antioxidant activity were limonene (composition, 74.6%) in celery seed, benzyl acetate (22.9%) in jasmine, alpha-pinene (33.7%) in juniper berry, myristicin (44%) in parsley seed, patchouli alcohol (28.8%) in patchouli, citronellol (34.2%) in rose, and germacrene (19.1%) in ylang-ylang.
Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na
2015-01-01
In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.
Influence sample sizing of citrus hystrix essential oil from hydrodistillation extraction
NASA Astrophysics Data System (ADS)
Yahya, A.; Amadi, I.; Hashib, S. A.; Mustapha, F. A.
2018-03-01
Essential oil extracted from kaffir lime leaves through hydrodistillation. The objective of this study is to quantify the oil production rate by identify the significant influence of particle size on kaffir lime leaves. Kaffir lime leaves were ground and separated by using siever into 90, 150, 300 μm and other kaffir lime leaves. The mean essential oil yield of 0.87, 0.52, 0.41 and 0.3% was obtained. 90 μm of ground gives the highest yield compared to other sizes. Thus, it can be concluded that in quantifying oil production rate, the relevance of different size of particle is clearly affects the amount of oil yield. In analysing the composition of kaffir lime essential oil using GC-MS, there were 38 compounds found in the essential oil. Some of the major compounds of the kaffir lime leave oils were detected while some are not, may due to oil experience thermal degradation which consequently losing some significant compounds in controlled temperature.
Carranco, Núria; Farrés-Cebrián, Mireia; Saurina, Javier
2018-01-01
High performance liquid chromatography method with ultra-violet detection (HPLC-UV) fingerprinting was applied for the analysis and characterization of olive oils, and was performed using a Zorbax Eclipse XDB-C8 reversed-phase column under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase. More than 130 edible oils, including monovarietal extra-virgin olive oils (EVOOs) and other vegetable oils, were analyzed. Principal component analysis results showed a noticeable discrimination between olive oils and other vegetable oils using raw HPLC-UV chromatographic profiles as data descriptors. However, selected HPLC-UV chromatographic time-window segments were necessary to achieve discrimination among monovarietal EVOOs. Partial least square (PLS) regression was employed to tackle olive oil authentication of Arbequina EVOO adulterated with Picual EVOO, a refined olive oil, and sunflower oil. Highly satisfactory results were obtained after PLS analysis, with overall errors in the quantitation of adulteration in the Arbequina EVOO (minimum 2.5% adulterant) below 2.9%. PMID:29561820
Preparation and oil absorption properties of magnetic melamine sponge
NASA Astrophysics Data System (ADS)
Lei, LUO; Jia-qi, HU; Na, LV
2017-12-01
The magnetic melamine sponge (MS-Fe3O4) with magnetic response and high hydrophobicity was fabricated by two-step method. First, the magnetic nano-particles were fixed on the skeleton of melamine sponge (MS) using 3-hydroxytyramine hydrochloride and 1-dodecanethiol, then hydrophobicity modified with octadecyltrichlorosilane (OTS). The structures and chemical compositions of MS and MS-Fe3O4 were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wettability of the sample was obtained by using contact angle analysis system. MS-Fe3O4 endowed with outstanding selectivity and excellent oil absorption capacities, which can be widely used in absorbing various sorts of oil. The oil absorption capacities for crude oil, diesel oil, lubricating oil, soybean oil and peanut oil were 71g/g, 51g/g, 62g/g, 54g/g, 57g/g. In addition, MS-Fe3O4 showed excellent recyclability which can be forecasted as an ideal candidate for oil-water separation.
Boleydei, Hamid; Mirghaffari, Nourollah; Farhadian, Omidvar
2018-05-15
Efficiency of a biosorbent prepared from the green macroalga Enteromorpha intestinalis biomass for decontamination of seawater and freshwater polluted by crude oil and engine spent oil was compared. The effect of different experimental conditions including contact time, pH, particle size, initial oil concentration, and biosorbent dose on the oil biosorption was studied in the batch method. The biosorbent was characterized by CHNOS, FTIR, and SEM analysis. The experimental data were well fitted to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. Based on the obtained results, the adsorption of spent oil with higher viscosity was better than crude oil. The biosorption of oil hydrocarbons from seawater was more efficient than freshwater. The algal biomasses which are abundantly available could be effectively used as a low-cost and environmentally friendly adsorbent for remediation of oil spill in the marine environments or in the water and wastewater treatment.
NASA Technical Reports Server (NTRS)
Hacker, Paul T.
1956-01-01
An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.
Daughton, Christian G.
1983-01-01
Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
USDA-ARS?s Scientific Manuscript database
Tea tree oil (TTO) is a popular skin remedy obtained from the leaves of Melaleuca alternifolia, M. linariifolia or M dissitiflora. Due to the commercial importance ofTTO, substitution or adulteration with other tea tree species (such as cajeput, niaouli, manuka and kanuka oils) is common and may p...
Monthly Crude Oil and Natural Gas Production Report
2017-01-01
Crude oil production (including lease condensate) and natural gas production (gross withdrawals) from data collected on Form EIA-914 (Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, other states and lower 48 states. Alaska data are from the Alaska state government and included to obtain a U.S. total.
Cho, Yunju; Birdwell, Justin E.; Hur, Manhoi; Lee, Joonhee; Kim, Byungjoo; Kim, Sunghwan
2017-01-01
In this study, comprehensive two-dimensional (2D) gas chromatography–mass spectrometry (GC–MS), atmospheric pressure photoionization (APPI) quadrupole-Orbitrap mass spectrometry (MS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to study the aromatic fractions of crude oil and oil shale pyrolysates (shale oils). The collected data were compared and combined in the double bond equivalence (DBE) versus carbon number plot to obtain a more complete understanding of the composition of the oil fractions. The numbers of peaks observed by each technique followed the order 2D GC–MS < Orbitrap MS < FT-ICR MS. The class distributions observed by Orbitrap MS and FT-ICR MS were similar to each other but different from that observed by 2D GC–MS. The DBE and carbon number distributions of the 2D GC–MS and Orbitrap MS data were similar for crude oil aromatics. The FT-ICR MS plots of DBE and carbon number showed an extended range of higher values relative to the other methods. For the aromatic fraction of an oil shale pyrolysate generated by the Fischer assay, only a few nitrogen-containing compounds were observed by 2D GC–MS but a large number of these compounds were detected by Orbitrap MS and FT-ICR MS. This comparison clearly shows that the data obtained from these three techniques can be combined to more completely characterize oil composition. The data obtained by Orbitrap MS and FT-ICR MS agreed well with one another, and the combined DBE versus carbon number plot provided more complete coverage of compounds present in the fractions. In addition, the chemical structure information provided by 2D GC–MS could be matched with the chemical formulas in the DBE versus carbon number plots, providing information not available in ultrahigh-resolution MS results. It was therefore concluded that the combination of 2D GC–MS, Orbitrap MS, and FT-ICR MS in the DBE versus carbon number space facilitates structural assignment of heavy oil components.
Identification and quantification of Cu-chlorophyll adulteration of edible oils.
Fang, Mingchih; Tsai, Chia-Fen; Wu, Guan-Yan; Tseng, Su-Hsiang; Cheng, Hwei-Fang; Kuo, Ching-Hao; Hsu, Che-Lun; Kao, Ya-Min; Shih, Daniel Yang-Chih; Chiang, Yu-Mei
2015-01-01
Cu-pyropheophytin a, the major Cu-pigment of Cu-chlorophyll, was determined in edible oil by high-resolution mass spectrometry with a high-performance liquid chromatography-quadrupole (HPLC-Q)-Orbitrap system and by HPLC coupled with a photodiode-array detector. Respective limit of detection and limit of quantification levels of 0.02 μg/g and 0.05 μg/g were obtained. Twenty-nine commercial oil products marked as olive oil, grapeseed oil and blended oil, all sourced directly from a food company that committed adulteration with Cu-chlorophyll, were investigated. In this company, four green dyes illegally used in oils were seized during factory investigation by the health authorities. The food additive Cu-pyropheophytin a was found in all confiscated samples in concentrations between 0.02 and 0.39 μg/g. Survey results of another 235 commercial oil samples manufactured from other companies, including olive pomace oil, extra virgin olive oil, olive oil, grapeseed oil and blended oil, indicated high positive incidences of 63%, 39%, 44%, 97% and 8%, respectively, with a concentration range between 0.02 and 0.54 μg/g. High Cu-chlorophyll concentrations are indications for fraudulent adulteration of oils.
Utilization of agroindustrial residues for lipase production by solid-state fermentation
Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia
2008-01-01
The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively. PMID:24031288
Cruz, Madalena V; Paiva, Alexandre; Lisboa, Pedro; Freitas, Filomena; Alves, Vítor D; Simões, Pedro; Barreiros, Susana; Reis, Maria A M
2014-04-01
Spent coffee grounds (SCG) oil was obtained by supercritical carbon dioxide (scCO2) extraction in a pilot plant apparatus, with an oil extraction yield of 90% at a 35kgkg(-1) CO2/SCG ratio. Cupriavidus necator DSM 428 was cultivated in 2L bioreactor using extracted SCG oil as sole carbon source for production of polyhydroxyalkanoates. The culture reached a cell dry weight of 16.7gL(-1) with a polymer content of 78.4% (w/w). The volumetric polymer productivity and oil yield were 4.7gL(-1)day(-1) and 0.77gg(-1), respectively. The polymer produced was a homopolymer of 3-hydroxybutyrate with an average molecular weight of 2.34×10(5) and a polydispersity index of 1.2. The polymer exhibited brittle behaviour, with very low elongation at break (1.3%), tensile strength at break of 16MPa and Young's Modulus of 1.0GPa. Results show that SCG can be a bioresource for polyhydroxyalkanoates production with interesting properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Seung-Soo; Heo, Hyeon Su; Kim, Sang Guk; Ryoo, Ryong; Kim, Jeongnam; Jeon, Jong-Ki; Park, Sung Hoon; Park, Young-Kwon
2011-07-01
Oil fractions, separated from food waste leachate, can be used as an energy source. Especially, high quality oil can be obtained by catalytic cracking. In this study, nanoporous catalysts such as Al-MCM-41 and mesoporous MFI type zeolite were applied to the catalytic cracking of oil fractions using the pyrolysis gas chromatography/mass spectrometry. Mesoporous MFI type zeolite showed better textural porosity than Al-MCM-41. In addition, mesoporous MFI type zeolite had strong Brönsted acidity while Al-MCM-41 had weak acidity. Significant amount of acid components in the food waste oil fractions were converted to mainly oxygenates and aromatics. As a result of its well-defined nanopores and strong acidity, the use of a mesoporous MFI type zeolite produced large amounts of gaseous and aromatic compounds. High yields of hydrocarbons within the gasoline range were also obtained in the case of mesoporous MFI type zeolite, whereas the use of Al-MCM-41, which exhibits relatively weak acidity, resulted in high yields of oxygenates and diesel range hydrocarbons.
Extraction of fleshing oil from waste limed fleshings and biodiesel production.
Sandhya, K V; Abinandan, S; Vedaraman, N; Velappan, K C
2016-02-01
The aim of the study was focused on extraction of fleshing oil from limed fleshings with different neutralization process by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) followed by solvent extraction. The production of fatty acid methyl esters (FAMEs) from limed fleshing oil by two stage process has also been investigated. The central composite design (CCD) was used to study the effect of process variables viz., amount of flesh, particle size and time of fleshing oil extraction. The maximum yield of fleshing oil from limed fleshings post neutralization by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) was 26.32g and 12.43g obtained at 200g of flesh, with a particle size of 3.90mm in the time period of 2h. Gas chromatography analysis reveals that the biodiesel (FAME) obtained from limed fleshings is rich in oleic and palmitic acids with weight percentages 46.6 and 32.2 respectively. The resulting biodiesel was characterized for its physio-chemical properties of diesel as per international standards (EN14214). Copyright © 2015 Elsevier Ltd. All rights reserved.
Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga
2016-08-01
Headspace-Mass Spectrometry (HS-MS), Fourier Transform Mid-Infrared spectroscopy (FT-MIR) and UV-Visible spectrophotometry (UV-vis) instrumental responses have been combined to predict virgin olive oil sensory descriptors. 343 olive oil samples analyzed during four consecutive harvests (2010-2014) were used to build multivariate calibration models using partial least squares (PLS) regression. The reference values of the sensory attributes were provided by expert assessors from an official taste panel. The instrumental data were modeled individually and also using data fusion approaches. The use of fused data with both low- and mid-level of abstraction improved PLS predictions for all the olive oil descriptors. The best PLS models were obtained for two positive attributes (fruity and bitter) and two defective descriptors (fusty and musty), all of them using data fusion of MS and MIR spectral fingerprints. Although good predictions were not obtained for some sensory descriptors, the results are encouraging, specially considering that the legal categorization of virgin olive oils only requires the determination of fruity and defective descriptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Olivero-David, Raul; Mena, Carmen; Pérez-Jimenez, M Angeles; Sastre, Blanca; Bastida, Sara; Márquez-Ruiz, Gloria; Sánchez-Muniz, Francisco J
2014-12-03
Ripening modifies oil attributes and composition. However, the influence of olive ripening on virgin olive oil (VOO) thermal oxidative stability on food-frying has not been studied yet. Oils from Picual olives of low (VOO1), medium (VOO2), and high (VOO3) ripeness were obtained, and their thermal oxidative stability during 40 potato-fryings was tested. Unused VOO1 showed higher antioxidant content and oxidative stability than VOO2 and VOO3. Polar compounds (PC), oligomers, and altered fatty acid methyl esters (polar-FAME) increased, whereas linoleic acid, polyphenols, and tocopherols decreased in the three VOOs through frying. The alteration was lower in VOO1, followed by VOO2 (0.105, 0.117, and 0.042 g/100 g oil less of PC, oligomers and polar-FAME per frying, respectively, in VOO1 than in VOO3). In conclusion, VOO obtained from low-ripeness Picual olives should be preferred when frying fresh-potatoes due to its higher thermal and oxidative stability, permitting a higher number of potato-frying uses.
Manzo, Alessandra; Musso, Loana; Panseri, Sara; Iriti, Marcello; Dallavalle, Sabrina; Catalano, Enrico; Scarì, Giorgio; Giorgi, Annamaria
2016-07-01
This research aimed at improving knowledge as to the chemical composition and the antibacterial and anti-cancer activities of the essential oil of Waldheimia glabra, a wild plant from the Himalayan Mountains. The results obtained by GC-MS showed that spathulenol, 9-tetradecenol, thujopsene, α-thujone, santolina alcohol and terpinen-4-ol were the main constituents of Waldheimia glabra essential oil. These results were confirmed by HS-SPME GC-MS analysis that also reported high amounts of artemisia alcohol and camphor. Disc diffusion assay suggested a mild antibacterial activity against both Escherichia coli and Staphylococcus aureus. Finally, a dose-response correlation was observed between Waldhemia glabra essential oil concentration and viability of human breast adenocarcinoma cells MDA-MB-231 and MCF-7. Together with the GC-MS method, HS-SPME GC-MS proved to be a reliable technique to characterise the chemical composition of essential oil obtained from aromatic plants. Further studies will focus on W. glabra phytochemicals and their biological activity, in order to support traditional uses of the plant. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
New boundary conditions for oil reservoirs with fracture
NASA Astrophysics Data System (ADS)
Andriyanova, Elena; Astafev, Vladimir
2017-06-01
Based on the fact that most of oil fields are on the late stage of field development, it becomes necessary to produce hard-to-extract oil, which can be obtained only by use of enhance oil recovery methods. For example many low permeable or shale formations can be developed only with application of massive hydraulic fracturing technique. In addition, modern geophysical researches show that mostly oil bearing formations are complicated with tectonic faults of different shape and permeability. These discontinuities exert essential influence on the field development process and on the well performance. For the modeling of fluid flow in the reservoir with some area of different permeability, we should determine the boundary conditions. In this article for the first time the boundary conditions for the problem of fluid filtration in the reservoir with some discontinuity are considered. This discontinuity represents thin but long area, which can be hydraulic fracturing of tectonic fault. The obtained boundary condition equations allow us to take into account pressure difference above and below the section and different values of permeability.
30 CFR 203.82 - What is MMS's authority to collect this information?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Oil, Gas, and Sulfur General Required Reports § 203.82 What is MMS's authority to collect this...) Applicants (respondents) are Federal OCS oil and gas lessees. Applications are required to obtain or retain a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... & 60[deg]F''. We use the information in Form BSEE-0126, Well Potential Test Report, for reservoir... necessary for certain oil and gas completions. The information obtained from the well potential test is...
Imaging of forced-imbibition in carbonate rocks using synchrotron X-ray micro-tomography
NASA Astrophysics Data System (ADS)
Singh, K.; Menke, H. P.; Andrew, M. G.; Lin, Q.; Saif, T.; Al-Khulaifi, Y.; Reynolds, C. A.; Bijeljic, B.; Rau, C.; Blunt, M. J.
2016-12-01
We have investigated the pore-scale behavior of brine-oil systems and oil trapping during forced-imbibition in a water-wet carbonate rock in a capillary-dominated flow regime at reservoir pressure conditions. To capture the dynamics of the brine-oil front progression and snap-off process, real-time tomograms with a time resolution of 38 s (24 s for imaging and 14 s for recording the data) and a spatial resolution of 3.28 µm were acquired at Diamond Light Source (UK). The data were first analyzed at global scale (complete imaged rock) for overall front behavior. From the saturation profiles, we obtain the location of the tail of the desaturation front that progresses with a velocity of 13 µm/min. This velocity is smaller than average flow velocity 16.88 µm/min, which explains why it needs slightly more than 1 pore volume of brine injection to reach the residual saturation of oil in a water-wet rock. The data were further analyzed at local scale to investigate the pore-scale mechanisms of oil trapping during brine flooding. We isolated various trapping events which resulted in the creation of discrete oil ganglia occupying one to several pore bodies. We perform pore-scale curvature analysis of brine-oil interfaces to obtain local capillary pressure that will be related to the shape and the size of throats in which ganglia were trapped.
Purification of biodiesel by choline chloride based deep eutectic solvent
NASA Astrophysics Data System (ADS)
Niawanti, Helda; Zullaikah, Siti; Rachimoellah, M.
2017-05-01
Purification is a crucial step in biodiesel production to meet the biodiesel standard. This study purified biodiesel using choline chloride based deep eutectic solvent (DES). DES was used to reduce unreacted oil and unsaponifiable matter in rice bran oil based biodiesel. The objective of this work was to study the effect of extraction time using DES on the content and yield of fatty acid methyl ester (FAME). Rice bran used in this work contains 16.49 % of oil with initial free fatty acids (FFA) of 44.75 %. Acid catalyzed methanolysis was employed to convert rice bran oil (RBO) into biodiesel under following operation conditions: T = 60 °C, t = 8 h, molar ratio of oil to methanol = 1/10, H2SO4 = 1% w/w of oil. Rice bran oil based biodiesel obtained contain 89.05 % of FAME with very low FFA content (0.05 %). DES was made from a mixture of choline chloride and ethylene glycol with molar ratio of 1/2. Molar ratio of crude biodiesel to DES were 1/2 and 1/4. Extraction time was varied from 15 minutes to 240 minutes at 30 °C. The highest FAME content was obtained after purification for 240 min. at molar ratio crude biodiesel to DES 1/4 was 96.60 %. This work shows that DES has potential to purify biodiesel from non-edible raw material, such as RBO.
Pinto, Eugénia; Vale-Silva, Luís; Cavaleiro, Carlos; Salgueiro, Lígia
2009-11-01
The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.
Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S
2013-01-01
Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
NASA Astrophysics Data System (ADS)
Sengupta, Avery; Gupta, Surashree Sen; Ghosh, Mahua
2013-03-01
The purpose of the present study was to obtain optimal processing for preparation of uniform-sized nanoemulsion of conjugated linolenic acid (CLnA) rich oil to increase the oxidative stability of CLnA by using a high-speed disperser (HSD) and ultrasonication. The emulsifiers used were egg phospholipid and soya protein isolate. The effects of oil concentration [0.05 to 1.25 % (w/w)], emulsifier ratio [0.1:0.9 to 0.9:0.1 (phospholipid:protein)], speed of the HSD (2,000 to 12,000 rpm) and times of HSD and sonication treatments (10 to 50 min) were observed. Optimization was performed with and without response surface methodology (RSM). The optimum compositional variables i.e. concentration of oil was 1 % and phospholipid:protein molar ratio was 0.5:0.5. Maximum size reduction occurred at 10,000 rpm speed of HSD. HSD should be administered for 40 min followed by 40 min ultrasonication. The range of the size of the droplets in the nanoemulsion was between 173 ± 1.20 and 183 ± 0.94 nm. Nanoemulsion is a size reduction technique where the oil present in the emulsion can be easily stabilized which increases the shelf-life of the oil. The present study derived the reaction parameters were optimized using RSM to produce nanoemulsion of CLnA rich oils of minimum size to obtain maximum stability.
Carbon Nano Tube Composites with Chemically Functionalized Plant Oils
NASA Astrophysics Data System (ADS)
Thielemans, Wim; Wool, Richard P.; Blau, Werner; Barron, Valerie
2003-03-01
Carbon Nano Tube Composites with Chemically Functionalized Plant Oil Wim Thielemans, R., P. Wool, V. Barron and W. Blau Multi-Wall Carbon Nano Tubes (MWCNT) made by the Kratchmer-Huffman CCVD process were found to interact and solubilize by slow mechanical stirring, with chemically functionalized plant oils, such as acrylated, epoxidized and maleinated triglycerides (TG) derived from plant oils. The chemical functionality on the TG imparted amphiphilic properties to the oils which allows them to self-assemble on the nanotubes, promoting both dissolution and the ability to make nanocomposites with unusual properties. Once in solution, the MWCT can be processed in a variety of methods, in particular to make composites with enhanced mechanical, fracture and thermal properties. Since the tensile modulus of MWs is about 1 TPa and a vector percolation analysis indicated tensile strengths of 50-100 GPa, we obtain significantly improved properties with even small amounts (1-3the glass transition temperature of the composite by about 20 oC, and the tensile modulus by about 11significant effects on the fracture stress can be obtained due to the both the influence of the strength and length of the MWNT at the crack tip. The ability of the oils to self-assemble on the carbon nanotube surfaces also makes them ideal candidates for self-healing materials. The properties with different functionalized oils will be reported. Supported by EPA, DoE and ISF
[Determination of lead in microemulsified rapeseed oil and bio-diesel oil by GFAAS].
Li, Sheng-qing; He, Xiao-min; Du, Ping; Wang, Min; Chen, Hao; Wu, Mou-cheng
2008-10-01
Bio-diesel oil has attracted much attention as a substitutable energy sources for its renewable and eco-friendly property. However, problems of lead contamination in fuel are also emphasized increasingly at present. So it was of quite significance to determine the contents of lead in bio-diesel oil and its raw material rapeseed oil. An effective method was developed for the rapid determination of lead in rapeseed oil and bio-diesel oil by graphite furnace atomic absorption spectrometry (GFAAS) after their stabilization as microemulsions. In this research work, polyethyleneglycol octyl phenyl ether and n-butanol were used for emulsifier and auxiliary emulsifying agent, respectively. For Pb, efficient thermal stabilization was obtained using NH4H2PO4 as matrix modifier. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization and the influence of the microemulsion composition on the GFAAS response were observed by mixing different organic solvents. The ashing and atomization temperature and ramp rate influenced the sensitivity obtained for Ph. Take this into account, the optimum conditions of the graphite furnace atomic absorption spectrometric determination of Pb in rapeseed oil and bio-diesel oil samples were investigated. The results showed that the microemulsion was quite stable when the value of V(20% polyethyleneglycol octyl phenyl ether), V(n-butanol), V(oil) and V(water) was 0.1: 8.9: 0.5: 0.5, without matrix interference effect. The determination limit of the proposed method was 126.2 microg x L(-1) for Pb, comfortably below the values found in the analyzed samples. The recoveries were from 81.8% to 109.0%, which performed using the addition of different concentrations of lead to bio-diesel oil, rapeseed oil and petrochemical diesel samples. The relative standard deviation of determination was 5.84%. This work showed the great efficiency of the microemulsion, indicating that it is possible to extract lead from the oil phase. The method was applied to the determination of lead in oil samples with satisfactory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, J.W.
1978-02-28
A process for forming a fuel-oil from coal is disclosed. The coal is treated in a low temperature carbonization retort to give coke, coal-gas and tar-oil. The coke is converted to water-gas which is then synthesized in a Fischer-Tropsch synthesizer to form fuel-oil. The tar-oil is hydrogenated in a hydro-treater by hydrogen produced from the coal-gas. Hydrogen is produced from coal-gas either in a thermal cracking chamber or by reforming the methane content to hydrogen and passing the resultant hydrogen/carbon monoxide mixture through a water-gas shift reactor and a carbon dioxide scrubber.
Catalytic combustion with incompletely vaporized residual fuel
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1981-01-01
Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.
Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.
Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun
2011-01-01
Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp.
Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Sharma, Amit Kumar
2016-10-01
The control potential of seven plant essential oils was evaluated against Fusarium proliferatum (Matsushima) Nirenberg and Fusarium verticillioides Sheldon. The fungicidal activity was assessed through microtiter plate assay to determine the minimum inhibitory and fungicidal concentration of essential oils. The essential oil of Mentha arvensis was adjudged as best for inhibiting the fungal growth, while oil of Thymus vulgaris and Anethum graveolens showed high efficacy in terms of fungicidal activity. The oil of M. arvensis and T. vulgaris also showed good inhibition activity in agar disc diffusion assay. M. arvensis essential oil was analysed for its composition using gas chromatography/mass spectrometry revealing menthol (63.18 %), menthone (15.08 %), isomenthyl acetate (5.50 %) and limonene (4.31 %) as major components. Significant activity of M. arvensis essential oil against F. proliferatum and F. verticillioides isolates obtained, pave the way for its use as antifungal control agents.
Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy
NASA Astrophysics Data System (ADS)
Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi
2013-06-01
Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.
[Aromatherapy in nursing practice].
Tseng, Yueh-Hsia
2005-08-01
Aromatherapy is the use of essential oils which are distilled from aromatic plants to obtain holistic effects on the mind, body, and spirit. Among nurses, aromatherapy is the second most commonly used complementary therapy. The chemical components of essential oils, such as ketones, aldehydes, and esters, determine the specific effects of the essential oils. Essential oils may be administered by inhalation, bathing, or massage to decrease anxiety, pain, and fatigue, and improve wound healing. As neuronal, liver, and kidney toxicity, as well as skin allergies may occur, it is recommended not to use essential oils on a regular basis. Research has provided evidence on the effects of essential oils, but further research is needed to identify the effects of their interaction with medications, and whether there are any side effects or contraindications. Consequently, it will provide a scientific base on the use of essential oils and enhance the possibilities for the use of essential oils in health care.
Antioxidant capacity and phenolic acids of virgin coconut oil.
Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I
2009-01-01
The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
Oil shale as an energy source in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fainberg, V.; Hetsroni, G.
1996-01-01
Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis ofmore » the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.« less
Isolation of genomic DNA from defatted oil seed residue of rapeseed (Brassica napus).
Sadia, M; Rabbani, M A; Hameed, S; Pearce, S R; Malik, S A
2011-02-08
A simple protocol for obtaining pure, restrictable and amplifiable megabase genomic DNA from oil-free seed residue of Brassica napus, an important oil seed plant, has been developed. Oil from the dry seeds was completely recovered in an organic solvent and quantified gravimetrically followed by processing of the residual biomass (defatted seed residue) for genomic DNA isolation. The isolated DNA can be cut by a range of restriction enzymes. The method enables simultaneous isolation and recovery of lipids and genomic DNA from the same test sample, thus allowing two independent analyses from a single sample. Multiple micro-scale oil extraction from the commercial seeds gave approximately 39% oil, which is close to the usual oil recovery from standard oil seed. Most of the amplified fragments were scored in the range of 2.5 to 0.5 kb, best suited for scoring as molecular diagnostics.
Analysis of ZDDP Content and Thermal Decomposition in Motor Oils Using NAA and NMR
NASA Astrophysics Data System (ADS)
Ferguson, S.; Johnson, J.; Gonzales, D.; Hobbs, C.; Allen, C.; Williams, S.
Zinc dialkyldithiophosphates (ZDDPs) are one of the most common anti-wear additives present in commercially-available motor oils. The ZDDP concentrations of motor oils are most commonly determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). As part of an undergraduate research project, we have determined the Zn concentrations of eight commercially-available motor oils and one oil additive using neutron activation analysis (NAA), which has potential for greater accuracy and less sensitivity to matrix effects as compared to ICP-AES. The 31P nuclear magnetic resonance (31P-NMR) spectra were also obtained for several oil additive samples which have been heated to various temperatures in order to study the thermal decomposition of ZDDPs.
Microbial oil - A plausible alternate resource for food and fuel application.
Bharathiraja, B; Sridharan, Sridevi; Sowmya, V; Yuvaraj, D; Praveenkumar, R
2017-06-01
Microbes have recourse to low-priced substrates like agricultural wastes and industrial efflux. A pragmatic approach towards an emerging field- the exploitation of microbial oils for biodiesel production, pharmaceutical and cosmetic applications, food additives, biopolymer production will be of immense remunerative significance in the near future. Due to high free fatty acid, nutritive content and simpler solvent extraction processes of microbial oils with plant oil, microbial oils can back plant oils in food applications. The purpose of this review is to evaluate the opulence of lipid production in native and standard micro-organisms and also to emphasize the vast array of applications including food and fuel by obtaining maximum yield. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical composition of shale oil. 1; Dependence on oil shale origin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesavan, S.; Lee, S.; Polasky, M.E.
1991-01-01
This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent themore » abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.« less
Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.
García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana
2016-01-01
In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.
Use of ultrasound to monitor physical properties of soybean oil
NASA Astrophysics Data System (ADS)
Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.
2016-07-01
The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.
Diesel Fuel from Used Frying Oil
Buczek, Bronislaw
2014-01-01
New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate) was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats. PMID:24574908
NASA Astrophysics Data System (ADS)
Pergola, N.; Grimaldi, S. C.; Coviello, I.; Faruolo, M.; Lacava, T.; Tramutoli, V.
2010-12-01
Marine oil spill disasters may have devastating effects on the marine and coastal environment. For monitoring and mitigation purposes, timely detection and continuously updated information on polluted areas are required. Satellite remote sensing can give a significant contribution in such a direction. Nowadays, SAR (Synthetic Aperture Radar) technology has been recognized as the most efficient for oil spill detection and mapping, thanks to the high spatial resolution and all-time/all-weather capability of the present operational sensors. Anyway, the present SARs revisiting time does not allow for a rapid detection and a near real-time monitoring of these phenomena at global scale. Passive optical sensors, on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), may represent, at this moment, a suitable SAR alternative/complement for oil spill detection and monitoring. Up to now, some techniques, based on optical satellite data, have been proposed for “a posteriori” mapping of already known oil spill discharges. On the other hand, reliable satellite methods for an automatic and timely detection of oil spills, for surveillance and warning purposes, are still currently missing. Recently, an innovative technique for automatic and near real time oil spill detection and monitoring has been proposed. The technique is based on the general RST (Robust Satellite Technique) approach which exploits multi-temporal satellite records in order to obtain a former characterization of the measured signal, in terms of expected value and natural variability, providing a further identification of signal anomalies by an automatic, unsupervised change detection step. Results obtained by using AVHRR (Advanced Very High Resolution Radiometer) Thermal Infrared data, in different geographic areas and observational conditions, demonstrated excellent detection capabilities both in term of sensitivity (to the presence even of thin/old oil films) and reliability (up to zero occurrence of false alarms), mainly due to the RST invariance regardless of local and environmental conditions. Exploiting its complete independence on the specific satellite platform, RST approach has been successfully exported to the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites. In this paper, results obtained applying the proposed methodology to the recent oil spill disaster of Deepwater Horizon Platform in the gulf of Mexico, that discharged over 5 million barrels (550 million litres) in the ocean, will be shown. A dense temporal series of RST-based oil spill maps, obtained by using MODIS TIR records, are commented, emphasizing and discussing main peculiarities and specific characteristics of this event. Preliminary findings, possible residual limits and future perspectives will be also presented and discussed.
Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying
2015-10-01
Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.
Antimicrobial Activities of Clove and Thyme Extracts
Nzeako, B C; Al-Kharousi, Zahra S N; Al-Mahrooqui, Zahra
2006-01-01
Objective: It has been postulated that geographical locations of the herbs affect the constituents of their essential oils and thus the degree of their antimicrobial action. This study examine two samples of clove obtained from Sri Lanka and Zanzibar and two samples of thyme from Iran and Oman to determine the antimicrobial potential of their extracted oils. Method: The active agents in each plant were extracted by steam distillation and by boiling. The antimicrobial activities of the extracts were determined at neat and by two-fold dilutions in well agar diffusion technique using Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pyogenes, Corynebacterium species, Salmonella species, Bacteroides fragilis and Candida albicans. Results: All oil extracts possessed antimicrobial activity against all bacteria and yeast tested. Their water extracts exhibited lower antimicrobial activity, though thyme aqueous extract was active only against S. aureus. The lowest concentration of antimicrobial activity (0.1% i.e., 1:1024) was obtained with thyme oil extract using Candida albicans. There was no significant difference in antimicrobial activity between clove obtained from Sri Lanka or Zanzibar or thyme obtained from Iran or Oman. Conclusion: Our experiment showed that the country of origin of the herbs has no effect on their antimicrobial activity. However, further work is necessary to ascertain why Candida albicans displayed remarkable degree of sensitivity with the extracts than all the other organisms test. PMID:21748125
Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Dai, Yu-Tung
2011-12-30
The aims of the present study were set out to measure size distributions and estimate workers' exposure concentrations of oil mist nanoparticles in three selected workplaces of the forming, threading, and heat treating areas in a fastener manufacturing plant by using a modified electrical aerosol detector (MEAD). The results were further compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS) for the validation purpose. Results show that oil mist nanoparticles in the three selected process areas were formed mainly through the evaporation and condensation processes. The measured size distributions of nanoparticles were consistently in the form of uni-modal. The estimated fraction of nanoparticles deposited on the alveolar (AV) region was consistently much higher than that on the head airway (HD) and tracheobronchial (TB) regions in both number and surface area concentration bases. However, a significant difference was found in the estimated fraction of nanoparticles deposited on each individual region while different exposure metrics were used. Comparable results were found between results obtained from both NSAM and MEAD. After normalization, no significant difference can be found between the results obtained from SMPS and MEAD. It is concluded that the obtained MEAD results are suitable for assessing oil mist nanoparticle exposures. Copyright © 2011 Elsevier B.V. All rights reserved.
Improving oil classification quality from oil spill fingerprint beyond six sigma approach.
Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin
2017-07-15
This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving F stat >F critical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.
Rodríguez, Elisa Jorge; Ramis-Ramos, Guillermo; Heyden, Yvan Vander; Simó-Alfonso, Ernesto F; Lerma-García, María Jesús; Saucedo-Hernández, Yanelis; Monteagudo, Urbano; Morales, Yeni; Holgado, Beatriz; Herrero-Martínez, José Manuel
2012-11-01
The essential oil of Murraya paniculata L leaves from the mountains of the Central Region of Cuba, obtained by hydrodistillation, was analyzed by gas chromatography-mass spectrometry. Eighteen compounds, accounting for 95.1% of the oil were identified. The major component was beta-caryophyllene (ca. 30%). The antioxidant activity of essential oil was evaluated against Cucurbita seed oil by peroxide, thiobarbituric acid and p-anisidine methods. The essential oil showed stronger antioxidant activity than that of butylated hydroxyanisole and butylated hydroxytoluene, but lower than that of propyl gallate. Moreover, this antioxidant activity was supported by the complementary antioxidant assay in the linoleic acid system and 2, 2'-diphenyl-1-picrylhydrazyl. The essential oil also showed good to moderate inhibitory effects against Klebsiellapneumoniae and Bacillus subtilis.
Detection of oil spills using 13.3 GHz radar scatterometer
NASA Technical Reports Server (NTRS)
Krishen, K.
1972-01-01
The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.
Biodiesel production from heterotrophic microalgal oil.
Miao, Xiaoling; Wu, Qingyu
2006-04-01
The present study introduced an integrated method for the production of biodiesel from microalgal oil. Heterotrophic growth of Chlorella protothecoides resulted in the accumulation of high lipid content (55%) in cells. Large amount of microalgal oil was efficiently extracted from these heterotrophic cells by using n-hexane. Biodiesel comparable to conventional diesel was obtained from heterotrophic microalgal oil by acidic transesterification. The best process combination was 100% catalyst quantity (based on oil weight) with 56:1 molar ratio of methanol to oil at temperature of 30 degrees C, which reduced product specific gravity from an initial value of 0.912 to a final value of 0.8637 in about 4h of reaction time. The results suggested that the new process, which combined bioengineering and transesterification, was a feasible and effective method for the production of high quality biodiesel from microalgal oil.
De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice
2013-12-04
This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.
Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils
Huber, George W; Vispute, Tushar P; Routray, Kamalakanta
2014-06-03
Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.
Purifying contaminated water. [DOE patent application
Daughton, C.G.
1981-10-27
Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.
Sulphide Production and Corrosion in Seawaters During Exposure to FAME Diesel
2012-05-12
FAME diesel is a renewable fuel produced from vegetable oils made by converting triglyceride oils to methyl (or ethyl) esters by... oil from which the biodiesel was made (Knothe 2004; Barabas and Todorut 2011). FAME diesel mixes easily with petro- leum diesel (Chotwichien et al...Materials and methods FAME diesel A previously characterized soy -based diesel was obtained from US Navy Fuel and Lubes, Patuxent River, MD (Lee
The effects of intermolecular interactions on the physical properties of organogels in edible oils.
Lupi, Francesca R; Greco, Valeria; Baldino, Noemi; de Cindio, Bruno; Fischer, Peter; Gabriele, Domenico
2016-12-01
The microstructure of organogels based on monoglycerides of fatty acids (MAGs) and policosanol and on different edible oils was investigated by using different techniques (calorimetry, nuclear magnetic resonance, infrared spectroscopy, rheology, polarized light microscopy) towards a better understanding and control of the oil gelation phenomena. Dynamic moduli were related via a fractal model to microstructural information such as solid content and fractal dimension. Infrared spectroscopy evidenced that network structure in MAGs gel is mainly due to hydrogen bonding, whereas in policosanol system is mainly given by van der Waals interactions. Because of the different relative contribution of molecular interactions, the investigated organogelators exhibit a distinguished macroscopic behavior. MAGs are sensitive to the utilized oil and structuration occurs quickly, even though at a temperature lower than policosanol. Policosanol organogels exhibit a behavior independent of the used oil and a slower gelation rate, as a result of the weaker van der Waals interactions. Nevertheless, at lower concentration a stronger final gel is obtained, probably due to of the large number of interactions arising among the long alkyl chains of the fatty alcohols. Obtained results evidenced that policosanol is very effective in gelation of different oils and seems promising for potential commercial uses. Copyright © 2016 Elsevier Inc. All rights reserved.
Waldner, Cheryl L
2008-01-01
During the late part of 2000 and early months of 2001, project veterinarians recruited 205 beef herds to participate in a study of the effects of emissions from the upstream oil and gas industry on cattle reproduction and health. Researchers developed herd-selection criteria to optimize the range of exposure to facilities, including oil and gas wells, battery sites, and gas-gathering and gas-processing facilities across the major cattle-producing areas of Western Canada. Herds were initially selected on the basis of a ranking system of exposure potential on the basis of herd-owner reports of the locations of their operations in relation to oil and gas industry facilities. At the end of the study, researchers summarized data obtained from provincial regulatory agencies on facility location and reported flaring and venting volumes for each herd and compared these data to the original rankings of herd-exposure potential. Through this selection process, the researchers were successful in obtaining statistically significant differences in exposure to various types of oil and gas facility types and reported emissions among herds recruited for the study.
Di Ilio, Vincenzo; Pasquariello, Nicoletta; van der Esch, Andrew S; Cristofaro, Massimo; Scarsella, Gianfranco; Risuleo, Gianfranco
2006-07-01
Neem oil is a natural product obtained from the seeds of the tree Azadirachta indica. Its composition is very complex and the oil exhibits a number of biological activities. The most studied component is the terpenoid azadirachtin which is used for its insecticidal and putative antimicrobial properties. In this report we investigate the biological activity of partially purified components of the oil obtained from A. indica. We show that the semi-purified fractions have moderate to strong cytotoxicity. However, this is not attributable to azadirachtin but to other active compounds present in the mixture. Each fraction was further purified by appropriate extraction procedures and we observed a differential cytotoxicity in the various sub-fractions. This led us to investigate the mode of cell death. After treatment with the oil fractions we observed positivity to TUNEL staining and extensive internucleosomal DNA degradation both indicating apoptotic death. The anti-proliferative properties of the neem oil-derived compounds were also assayed by evaluation of the nuclear PCNA levels (Proliferating Cell Nuclear Antigen). PCNA is significantly reduced in cells treated with a specific fraction of neem oil. Finally, our results strongly suggest a possible involvement of the mitochondrial pathway in the apoptotic death.
Particle formation and characterization of mackerel reaction oil by gas saturated solution process.
Tanbirul Haque, A S M; Chun, Byung-Soo
2016-01-01
Most of the health benefits of fish oil can be attributed to the presence of omega-3 fatty acids like Docosahexenoic acid (DHA) and Eicosapentaenoic acid (EPA). There are few dietary sources of EPA and DHA other than oily fish. EPA and DHA have great potential effect on human health. In this research, Supercritical carbon dioxide (scCO2) extracted mackerel oil was reacted by enzyme at different systems to improve the EPA and DHA. Different types of immobilize enzyme TL-IM, RM-IM, Novozyme 435 were assessed for improving PUFAs. Best result was found at non-pressurized system using TL-IM. Reacted oil particle were obtained with polyethylene glycol by gas saturated solution process (PGSS). Different parameters like temperature, pressure, agitation speed and nozzle size effect on particle formulation were observed. SEM and PSA analysis showed, small size non spherical particles were obtained. It was found that after particle formation poly unsaturated fatty acids (PUFAs) were present in particle as same in oil. PUFAs release from particle was almost linear against constant time duration. Oil quality in particle not change significantly, in this contrast this study will be helpful for food and pharmaceutical industry to provide high EPA and DHA containing powder.
Application of PLE for the determination of essential oil components from Thymus vulgaris L.
Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota; Mardarowicz, Marek; Gawdzik, Jan
2008-08-15
Essential plants, due to their long presence in human history, their status in culinary arts, their use in medicine and perfume manufacture, belong to frequently examined stock materials in scientific and industrial laboratories. Because of a large number of freshly cut, dried or frozen plant samples requiring the determination of essential oil amount and composition, a fast, safe, simple, efficient and highly automatic sample preparation method is needed. Five sample preparation methods (steam distillation, extraction in the Soxhlet apparatus, supercritical fluid extraction, solid phase microextraction and pressurized liquid extraction) used for the isolation of aroma-active components from Thymus vulgaris L. are compared in the paper. The methods are mainly discussed with regard to the recovery of components which typically exist in essential oil isolated by steam distillation. According to the obtained data, PLE is the most efficient sample preparation method in determining the essential oil from the thyme herb. Although co-extraction of non-volatile ingredients is the main drawback of this method, it is characterized by the highest yield of essential oil components and the shortest extraction time required. Moreover, the relative peak amounts of essential components revealed by PLE are comparable with those obtained by steam distillation, which is recognized as standard sample preparation method for the analysis of essential oils in aromatic plants.