Science.gov

Sample records for copaiba oils obtained

  1. Antibacterial Activity of Copaiba Oil Gel on Dental Biofilm

    PubMed Central

    Simões, Cláudia A.C.G.; Conde, Nikeila C. de Oliveira; Venâncio, Gisely N.; Milério, Patrícia S.L.L.; Bandeira, Maria F.C.L.; da Veiga Júnior, Valdir F.

    2016-01-01

    Amazonian biodiversity products that have been used for years in folk medicine, have emerged as feasible and promising alternatives for the inhibition of microorganisms in dental biofilm. Copaiba oil, a phytotherapic agent widely used by the Amazonian populations, is known for its antibacterial, anti-inflammatory, anesthetic, healing and antitumor medicinal properties. Objective: The aim of this study was to evaluate the in vitro antibacterial activity of copaiba oil (Copaifera multijuga) gel against strains of Streptococcus sp present in dental biofilm. Materials and Methods: The copaiba oil was obtained and the chemical components were identified. The oil emulsions were formulated and used with the Brain Heart Infusion agar diffusion method with strains of Streptococcus mitis, Streptococcus constellatus and Streptococcus salivarius isolated from patients as well as standard strains of S. mitis (ATCC903), S. mutans (ATCC10449), S. sanguinis (ATCC15300) and S. oralis (ATCC10557). The study groups were as follows: experimental copaiba oil gel, 1% chlorhexidine gel (positive control) and base gel (negative control). The seeded plates were incubated at 37ºC for 12, 24 and 48 hours, respectively. The results obtained were analyzed by Shapiro-Wilk and Friedman Tests (p<0.05) for non parametric data and the Tukey test was used for pH values with 5% level of significance. Results: The experimental copaiba oil gel and 1% chlorhexidine gel showed antibacterial activity against the tested microorganisms. Conclusion: The copaiba oil gel demonstrated antibacterial activity against all the strains of Streptococcus sp tested, suggesting that it can be used for dental biofilm control. PMID:27386004

  2. Physicochemical and antimicrobial properties of copaiba oil: implications on product quality control.

    PubMed

    Fonseca, Renata G; Barros, Francisco M; Apel, Miriam A; Poser, Gilsane L von; Andriolli, Jo O L; Filho, Pedro C Campos; Sousa, Dhierlate F; Lobo, Ivon P; Conceiç O, Aline O

    2015-01-01

    The copaiba oil is a common natural product used in cosmetic industry and as a nutraceutical product. However, lack of quality control and scarce knowledge about its antimicrobial activity is a point of concern. The proposal of this study was to investigate the physicochemical properties and the antimicrobial activity of five commercial brands of copaiba oil. Acidity and ester index, refractory index, solubility in alcohol, and thin layer chromatography were performed to verify the physicochemical properties of five commercial copaiba oils sold in local pharmacies. Ultra performance liquid chromatography coupled with diode-array detection and electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-DAD/ESI-Q-TOF-MS) was used to investigate diterpene acids while the volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS). Antibacterial and antifungal activities were also evaluated by agar diffusion technique; and minimal inhibitory concentration and maximal bactericidal concentration were defined for each sample and bacteria. The physical-chemical analysis revealed heterogeneity between all samples analysed. The A1 sample showed characteristics of copaiba oil and was mainly composed by hydrocarbon sesquiterpenes (29.95% β-bisabolene, 25.65% Z-α-bergamotene and 10.27% β-cariophyllene). Among diterpene acids, the UPLCDAD/ESI-Q-TOF-MS data are compatible with presence of copalic and/or kolavenic acid (m/z 305 [M + H]+). Candida albicans was sensitive to almost all samples at high concentration and Saccaromyces. Cerevisiae showed sensitivity to A1 sample at 100 mg/mL. Although variable, all samples showed antibacterial activity. Significant activity was seen for A3 (19.0 ±0 and 15.6 ±0.5 mm), A4 (16.6 ±0.5 and 15.6 ±0 mm), and A5 (17.1 ±0 and 17.1 ±0 mm) on Staphylococcus saprophyticus and S. aureus, respectively. All samples were active against Klebsiella pneumoniae showing ≥15 mm diameter halo inhibition; and only A

  3. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/ polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    USDA-ARS?s Scientific Manuscript database

    In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...

  4. Trans-β-Caryophyllene: An Effective Antileishmanial Compound Found in Commercial Copaiba Oil (Copaifera spp.)

    PubMed Central

    Soares, Deivid C.; Portella, Nathalya A.; Ramos, Mônica Freiman de S.; Siani, Antonio C.; Saraiva, Elvira M.

    2013-01-01

    This study investigated the leishmanicidal activity against Leishmania amazonensis of four commercial oils from Copaifera spp. named as C1, C2, C3, and C4, the sesquiterpene and diterpene pools obtained from distilling C4, and isolated β-caryophyllene (CAR). Copaiba oils chemical compositions were analyzed by gas chromatography and correlated with biological activities. Diterpenes-rich oils C2 and C3 showed antipromastigote activity. Sesquiterpenes-rich C1 and C4, and isolated CAR presented a dose-dependent activity against intracellular amastigotes, with IC50s of 2.9 µg/mL, 2.3 µg/mL, and 1.3 µg/mL (6.4 µM), respectively. Based on the highest antiamastigote activity and the low toxicity to the host cells, C4 was steamdistillated to separate pools of sesquiterpenes and diterpenes. Both pools were less active against L. amazonensis and more toxic for the macrophages than the whole C4 oil. The leishmanicidal activity of C3 and C4 oils, as well as C4 fractions and CAR, appears to be independent of nitric oxide production by macrophages. This study pointed out β-caryophyllene as an effective antileishmanial compound and also to its role as potential chemical marker in copaiba oils or fractions derived thereof, aiming further development of this rainforest raw material for leishmaniasis therapy. PMID:23864897

  5. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care.

    PubMed

    Guimarães, Anna Luísa Aguijar; Cunha, Elisa Alves; Matias, Fernanda Oliveira; Garcia, Patrícia Guedes; Danopoulos, Panagiota; Swikidisa, Rosita; Pinheiro, Vanessa Alves; Nogueira, Rodrigo José Lupatini

    2016-01-01

    The Amazon rainforest is the largest reserve of natural products in the world. Its rich biodiversity of medicinal plants has been utilized by local populations for hundreds of years for the prevention and treatment of various diseases and ailments. Oil extracts from plant species such as Copaifera officinalis and Pentaclethra macroloba are used in compounded formulations for their antiinflammatory, antimicrobial, emollient, moisturizing, and wound-healing activities. The objective of this study was to investigate the in vitro bacteriostatic effect of two Amazonian oils, Copaiba and Pracaxi, against Staphylococcus aureus, a clinically important microorganism responsible for wound infection, to support the use of these oils as novel natural products for compounded wound-treatment modalities. The antibacterial activity of Copaiba and Pracaxi oils against a standard strain of Staphylococcus aureus was assessed using broth microdilution to determine the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of the oil extracts. Copaiba oil demonstrated antibacterial activity against Staphylococcus aureus, with a Minimum Inhibitory Concentration of 0.3125 mg/mL and a Minimum Bactericidal Concentration of 0.3125 mg/mL. Conversely, Pracaxi oil failed to inhibit Staphylococcus aureus growth. While additional studies are required to further evaluate the antimicrobial activity of Pracaxi oil, even low concentrations of Copaiba oil effectively inhibited Staphylococcus aureus growth, supporting its potential use as a promising adjuvant in compounded topical formulations for wound and scar healing.

  6. Cytotoxicity evaluation of a copaiba oil-based root canal sealer compared to three commonly used sealers in endodontics

    PubMed Central

    Garrido, Angela Delfina Bittencourt; de Cara, Sueli Patricia Harumi Miyagi; Marques, Marcia Martins; Sponchiado, Emílio Carlos; Garcia, Lucas da Fonseca Roberti; de Sousa-Neto, Manoel Damião

    2015-01-01

    Background: The constant development of new root canal sealers has allowed the solution of a large number of clinical cases in endodontics, however, cytotoxicity of such sealers must be tested before their validation as filling materials. The aim of this study was to evaluate the cytotoxic effect of a new Copaiba oil-based root canal sealer (Biosealer [BS]) on osteoblast-like Osteo-1 cells. Materials and Methods: The experimental groups were formed according to the culture medium conditioned with the tested sealers, as follows: Control group (CG) (culture medium without conditioning); Sealer 26 (S26) - culture medium + S26; Endofill (EF) - culture medium + EF; AH Plus (AHP) - culture medium + AHP; and BS - culture medium + BS (Copaiba oil-based sealer). The conditioned culture medium was placed in contact with 2 × 104 cells cultivated on 60 mm diameter Petri dishes for 24 h. Then, hemocytometer count was performed to evaluate cellular viability, using Trypan Blue assay. The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for cellular viability were statistically analyzed (1-way ANOVA, Tukey's test - P < 0.05), with a significance level of 5%. Results: S26, EF and AHP presented decreased cellular viability considerably, with statistical significance compared with CG (P < 0.05). BS maintained cellular viability similar to CG (P > 0.05). Conclusion: The Copaiba oil-based root canal sealer presented promising results in terms of cytotoxicity which indicated its usefulness as a root canal sealer. PMID:25878676

  7. Immunohistochemistry of the uterine cervix of rats bearing the Walker 256 tumor treated with copaiba balsam.

    PubMed

    Botelho, Nara Macedo; Corrêa, Suelen Costa; Lobato, Rodolfo Costa; Teixeira, Renan Kleber Costa; Quaresma, Juarez Antônio Simões

    2013-03-01

    To investigate the immunohistochemistry of the uterine cervix of 20 Wistar rats (Rattus norvegicus) bearing the Walker 256 tumor, treated with copaiba oil (Copaifera officinalis). The animals were grouped into four subgroups, with five rats each: the GCT and GCopT received distilled water and topically copaiba, respectively, while the GCG and GCopG received distilled water and copaiba by gavage, respectively. The substances were administered for nine days. On the 12th day, after euthanasia, the tumor pieces were sent to the identification of T CD4+, T CD8+ and Natural Killer cells. It was found that the pattern of expression for specific markers of phenotypes of cells involved in tumor immune response was similar in all groups, regardless the administration way of copaiba oil (topical or gavage). Copaiba balsam, administered either topically or by gavage, did not alter the pattern of tumor immune response in rats bearing Walker 256 Tumor.

  8. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.

    PubMed

    Xavier-Junior, Francisco Humberto; Huang, Nicolas; Vachon, Jean-Jacques; Rehder, Vera Lucia Garcia; do Egito, Eryvaldo Sócrates Tabosa; Vauthier, Christine

    2016-12-01

    Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil. Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed. Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained. O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.

  9. Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils

    NASA Astrophysics Data System (ADS)

    Gaspar, André S.; Wagner, Friedrich E.; Amaral, Vítor S.; Costa Lima, Sofia A.; Khomchenko, Vladimir A.; Santos, Judes G.; Costa, Benilde F. O.; Durães, Luísa

    2017-02-01

    Higher quality magnetic nanoparticles are needed for use as magnetic nanoprobe in medical imaging techniques and cancer therapy. Moreover, the phytochemistry benefits of some Amazonian essential oils have sparked great interest for medical treatments. In this work, a magnetic nanoprobe was developed, allying the biocompatibility and superparamagnetism of iron oxide nanoparticles (SPIONs) with benefits associated with Amazonian oils from Copaiba and Andiroba trees. SPIONs were obtained by two thermal decomposition procedures and different amounts of precursors (iron acetylacetonates). Their characterization was accomplished by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetization. The obtained nanoparticles composition and magnetic properties were not affected by the relative proportion of iron(II) and iron(III) in the precursor system. However, when changing the reducing and stabilizing agents the coating layer shows different compositions/relative weight - the more promising SPIONs have a coating mainly composed by oleylamine and an iron oxide:coating wt% ratio of 55:45. Nanoparticles size distributions were very narrow and centred in the average size of 6-7 nm. Cellular assays confirmed the biocompatibility of SPIONs and their effective internalization in human colon cancer cells. Mössbauer/XRD results indicated maghemite as their main iron oxide phase, but traces of magnetite proved to be present. Magnetization saturations of 57 emu/g at 5 K and 42 emu/g at 300 K were achieved. With incorporation of SPIONs into Copaiba and Andiroba essential oils, these values show a 4-fold decrease, but the supermagnetic behaviour is preserved providing the effective formation of a nanofluid.

  10. Hypericum perforatum-induced hepatotoxicity with possible association with copaiba (Copaifera langsdorffii Desf):case report

    PubMed Central

    Agollo, Marjorie Costa; Miszputen, Sender Jankiel; Diament, Jayme

    2014-01-01

    We report a case of liver damage in an elderly patient after the use of herbal products of Hypericum perforatum and copaiba (Copaifera langsdorffii Desf). Hepatotoxicity related to Hypericum perforatum is anecdotally known, but for copaiba, widely used as anti-inflammatory, there is just experimental data in the national literature. This report aimed to draw attention to the possible toxic effects of this association as well as to the clinical recovery of the patient after discontinuing their use. There is a tendency to suspect of the action of drugs to justify a non-viral acute liver injury, because of the large number of drugs responsible for hepatotoxicity. There are experiments and clinical reports in the literature describing some herbal products, including Hypericum perforatum, as the causative agents of this aggression, and are considered innocuous and used with no restrictions. We must remember that adverse reactions also occur with these substances; hence, they should be investigated when collecting the patient´s history, for leading to severe liver failure. PMID:25167337

  11. Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique

    NASA Astrophysics Data System (ADS)

    Cervantes-Espinosa, L. M.; de L. Castillo-Alvarado, F.; Lara-Hernández, G.; Cruz-Orea, A.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.

    2014-10-01

    Thermal properties of several vegetable oils such as soy, corn, and avocado commercial oils were obtained by using a photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. The obtained results are in good agreement with the thermal effusivity reported for other vegetable oils. All measurements were done at room temperature.

  12. Production and characterization of refined oils obtained from Indian oil sardine (Sardinella longiceps).

    PubMed

    Chakraborty, Kajal; Joseph, Deepu

    2015-01-28

    Crude Sardinella longiceps oil was refined in different stages such as degumming, neutralization, bleaching, and deodorization. The efficiency of these processes was evaluated on the basis of free fatty acid (FFA), peroxide (PV), p-anisidine (pAV), total oxidation (TOTOX), thiobarbituric acid reactive species (TBARS) values, Lovibond CIE-L*a*b* color analyses, and (1)H NMR or GC-MS experiments. The utilities of NMR-based proton signal characteristics as new analytical tools to understand the signature peaks and relative abundance of different fatty acids and monitoring the refining process of fish oil have been demonstrated. Phosphoric acid (1%) was found to be an effective degumming reagent to obtain oil with the lowest FFA, PV, pAV, TOTOX, and TBARS values and highest color reduction. Significant reduction in the contents of hydrocarbon functionalities as shown by the decrease in proton integral in the characteristic (1)H NMR region was demonstrated by using 1% H3PO4 during the course of the degumming process. A combination (1.25:3.75%) of activated charcoal and Fuller's earth at 3% concentration for a stirring time of 40 min was found to be effective in bleaching the sardine oil. This study demonstrated that unfavorable odor-causing components, particularly low molecular weight carbonyl compounds, could successfully be removed by the refining process. The alkane-dienals/alkanes, which cause unfavorable fishy odors, were successfully removed by distillation (100 °C) under vacuum with aqueous acetic acid solution (0.25 N) to obtain greater quality of refined sardine oil, a rich source of essential fatty acids and improved oxidative stability. The present study demonstrated that the four-stage refinement process of sardine oil resulted in a significant improvement in quality characteristics and nutritional values, particularly n-3 PUFAs, with improved fish oil characteristics for use in the pharmaceutical and functional food industries.

  13. Nanoencapsulation of Rose-Hip Oil Prevents Oil Oxidation and Allows Obtainment of Gel and Film Topical Formulations.

    PubMed

    Contri, Renata V; Kulkamp-Guerreiro, Irene C; da Silva, Sheila Janine; Frank, Luiza A; Pohlmann, Adriana R; Guterres, Silvia S

    2016-08-01

    The rose-hip oil holds skin regenerating properties with applications in the dermatological and cosmetic area. Its nanoencapsulation might favor the oil stability and its incorporation into hydrophilic formulations, besides increasing the contact with the skin and prolonging its effect. The aim of the present investigation was to develop suitable rose-hip-oil-loaded nanocapsules, to verify the nanocapsule effect on the UV-induced oxidation of the oil and to obtain topical formulations by the incorporation of the nanocapsules into chitosan gel and film. The rose-hip oil (500 or 600 μL), polymer (Eudragit RS100®, 100 or 200 mg), and acetone (50 or 100 mL) contents were separately varied aiming to obtain an adequate size distribution. The results led to a combination of the factors acetone and oil. The developed formulation showed average diameter of 158 ± 6 nm with low polydispersity, pH of 5.8 ± 0.9, zeta potential of +9.8 ± 1.5 mV, rose-hip oil content of 54 ± 1 μL/mL and tendency to reversible creaming. No differences were observed in the nanocapsules properties after storage. The nanoencapsulation of rose-hip oil decreased the UVA and UVC oxidation of the oil. The chitosan gel and film containing rose-hip-oil-loaded nanocapsules showed suitable properties for cutaneous use. In conclusion, it was possible to successfully obtain rose-hip-oil-loaded nanocapsules and to confirm the nanocapsules effect in protecting the oil from the UV rays. The chitosan gel and film were considered interesting alternatives for incorporating the nanoencapsulated rose-hip oil, combining the advantages of the nanoparticles to the advantages of chitosan.

  14. The Obtaining of Oil from an Oil Reservoir.

    ERIC Educational Resources Information Center

    Dawe, R. A.

    1979-01-01

    Discusses the mechanics of how an actual oil reservoir works and provides some technical background in physics. An experiment which simulates an oil reservoir and demonstrates quantitatively all the basic concepts of oil reservoir rock properties is also presented. (HM)

  15. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil.

    PubMed

    Krause, Andre; Wu, Yu; Tian, Runtao; van Beek, Teris A

    2018-04-24

    High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential oils, taking patchouli essential oil as a test case. Patchouli essential oil is frequently adulterated, even today. In total, 75 genuine patchouli essential oils, 10 commercial patchouli essential oils, 10 other essential oils, 17 adulterants, and 1 patchouli essential oil, spiked at 20% with those adulterants, were measured. Visual inspection of the NMR spectra allowed for easy detection of 14 adulterants, while gurjun and copaiba balsams proved difficult and one adulterant could not be detected. NMR spectra of 10 random essential oils differed not only strongly from patchouli essential oil but also from one another, suggesting that fingerprinting by low-field NMR is not limited to patchouli essential oil. Automated chemometric evaluation of NMR spectra was possible by similarity analysis (Mahalanobis distance) based on the integration from 0.1 - 8.1 ppm in 0.01 ppm increments. Good quality patchouli essential oils were recognised as well as 15 of 17 deliberate adulterations. Visual qualitative inspection by GC-MS allowed for the detection of all volatile adulterants. Nonvolatile adulterants, and all but one volatile adulterant, could be detected by semiquantitation. Different chemometric approaches showed satisfactory results. Similarity analyses were difficult with nonvolatile adulterants. Refractive index measurements could detect only 8 of 17 adulterants. Due to advantages such as simplicity, rapidity, reproducibility, and ability to detect nonvolatile adulterants, 60 MHz 1 H-NMR is complimentary to GC-MS for quality control of essential oils. Georg Thieme Verlag KG Stuttgart · New York.

  16. Effects of operative conditions on products obtained of starch-oil mixtures by single-screw extrusion.

    PubMed

    Włodarczyk-Stasiak, Marzena; Mazurek, Artur; Jamroz, Jerzy

    2017-01-01

    d. The aim of the study was to evaluate the fat binding and physicochemical properties of the products under conditions of potato starch extrusion containing rapeseed or linseed oil and rapeseed oil with glycerol. The study dealt with the extrudates of potato starch produced with the addition of rape seed or linseed oil and rapeseed oil and glycerol at 22% humidity. The extrudates were obtained at two screw speeds: 80 rpm and 100 rpm. Extrudates containing rapeseed oil and glycerol (R6G) were obtained at a temperature distribution of 115/130/150°C, while those with the participation of rapeseed oil and linseed oil were obtained at 120/135/128°C. Water solubility index (WSI), water absorption index (WAI), specific surface area (SBET) and quantity of fat permanently bound were determined for the products obtained. When oils were added, the solubility of extrudates decreased as compared to the control samples (starch without oil; S). Rapeseed oil added to the starch mixture at the levels of 3 g and 6 g in had no sig- nificant effect on the solubility of the product and amounted to: 80.3–82.6% and 78–79.6%. The largest decrease in solubility (WSI, 55.4–57.1%) was demonstrated for samples with 6% addition of rapeseed oil and 10 g glycerol. For these samples (R6G), a significant increase in the index WAI (376–397%) was recorded. Extrudates obtained with the addition of 3 g of rapeseed oil absorbed slightly more water than those with 6 g of oil added. The specific surface area (SBET 230–256 m2/g) determined from the water vapor adsorption isotherm indicates no statistically significant difference at α = 0.05 for products with rapeseed oil, linseed oil, and controls. A significant increase in the specific surface area (SBET 284–347 m2/g) was observed for samples with 6g rapeseed oil and 10 g glycerol added. For samples with 3 g of rapeseed oil, the amount of bound fat was 1.9–2.1 g/100 g of starch and for 6% the

  17. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil.

    PubMed

    Mezza, Gabriela N; Borgarello, Ana V; Grosso, Nelson R; Fernandez, Héctor; Pramparo, María C; Gayol, María F

    2018-03-01

    The objective of this study was to evaluate the antioxidant activity of rosemary essential oil fractions obtained by molecular distillation (MD) and investigate their effect on the oxidative stability of sunflower oil. MD fractions were prepared in a series of low-pressure stages where rosemary essential oil was the first feed. Subsequently, a distillate (D1) and residue (R1) were obtained and the residue fraction from the previous stage used as the feed for the next. The residue fractions had the largest capacity to capture free radicals, and the lowest peroxide values, conjugated dienes and conjugated trienes. The antioxidant activity of the fractions was due to oxygenated monoterpenes, specifically α-terpineol and cis-sabinene hydrate. Oxidative stability results showed the residues (R1 and R4) and butylated hydroxytoluene had greater antioxidant activity than either the distillate fractions or original rosemary essential oil. The residue fractions obtained by short path MD of rosemary essential oil could be used as a natural antioxidants by the food industry. Copyright © 2017. Published by Elsevier Ltd.

  18. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods.

    PubMed

    Kokoska, L; Havlik, J; Valterova, I; Sovova, H; Sajfrtova, M; Jankovska, I

    2008-12-01

    Nigella sativa L. seed essential oils obtained by hydrodistillation (HD), dry steam distillation (SD), steam distillation of crude oils obtained by solvent extraction (SE-SD), and supercritical fluid extraction (SFE-SD) were tested for their antibacterial activities, using the broth microdilution method and subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the essential oils tested differed markedly in their chemical compositions and antimicrobial activities. The oils obtained by HD and SD were dominated by p-cymene, whereas the major constituent identified in both volatile fractions obtained by SD of extracted oils was thymoquinone (ranging between 0.36 and 0.38 g/ml, whereas in oils obtained by HD and SD, it constituted only 0.03 and 0.05 g/ml, respectively). Both oils distilled directly from seeds showed lower antimicrobial activity (MICs > or = 256 and 32 microg/ml for HD and SD, respectively) than those obtained by SE-SD and SFE-SD (MICs > or = 4 microg/ml). All oil samples were significantly more active against gram-positive than against gram-negative bacteria. Thymoquinone exhibited potent growth-inhibiting activity against gram-positive bacteria, with MICs ranging from 8 to 64 microg/ml.

  19. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    PubMed Central

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  20. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis.

    PubMed

    Mohan, Dinesh; Shi, Jenny; Nicholas, Darrel D; Pittman, Charles U; Steele, Philip H; Cooper, Jerome E

    2008-03-01

    Pine wood, pine bark, oak wood and oak bark were pyrolyzed in an auger reactor. A total of 16 bio-oils or pyrolytic oils were generated at different temperatures and residence times. Two additional pine bio-oils were produced at the National Renewable Energy Laboratory in a fluidized-bed reactor at different temperatures. All these bio-oils were fractionated to obtain lignin-rich fractions which consist mainly of phenols and neutrals. The pyrolytic lignin-rich fractions were obtained by liquid-liquid extraction. Whole bio-oils and their lignin-rich fractions were studied as potential environmentally benign wood preservatives to replace metal-based CCA and copper systems that have raised environmental concerns. Each bio-oil and several lignin-rich fractions were tested for antifungal properties. Soil block tests were conducted using one brown-rot fungus (Gloeophyllum trabeum) and one white-rot fungus (Trametes versicolor). The lignin-rich fractions showed greater fungal inhibition than whole bio-oils for a impregnation solution 10% concentration level. Water repellence tests were also performed to study wood wafer swelling behavior before and after bio-oil and lignin-rich fraction treatments. In this case, bio-oil fractions did not exhibit higher water repellency than whole bio-oils. Comparison of raw bio-oils in soil block tests, with unleached wafers, at 10% and 25% bio-oil impregnation solution concentration levels showed excellent wood preservation properties at the 25% level. The good performance of raw bio-oils at higher loading levels suggests that fractionation to generate lignin-rich fractions is unnecessary. At this more effective 25% loading level in general, the raw bio-oils performed similarly. Prevention of leaching is critically important for both raw bio-oils and their fractions to provide decay resistance. Initial tests of a polymerization chemical to prevent leaching showed some success.

  1. Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology.

    PubMed

    da Trindade, Rafaela; da Silva, Joyce Kelly; Setzer, William N

    2018-05-18

    The oleoresin of Copaifera trees has been widely used as a traditional medicine in Neotropical regions for thousands of years and remains a popular treatment for a variety of ailments. The copaiba resins are generally composed of a volatile oil made up largely of sesquiterpene hydrocarbons, such as β-caryophyllene, α-copaene, β-elemene, α-humulene, and germacrene D. In addition, the oleoresin is also made up of several biologically active diterpene acids, including copalic acid, kaurenoic acid, alepterolic acid, and polyalthic acid. This review presents a summary of the ecology and distribution of Copaifera species, the traditional uses, the biological activities, and the phytochemistry of copaiba oleoresins. In addition, several biomolecular targets relevant to the bioactivities have been implicated by molecular docking methods.

  2. Chemical composition and bioactivity of Citrus medica L. cv. Diamante essential oil obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction.

    PubMed

    Menichini, Federica; Tundis, Rosa; Bonesi, Marco; de Cindio, Bruno; Loizzo, Monica R; Conforti, Filomena; Statti, Giancarlo A; Menabeni, Roberta; Bettini, Ruggero; Menichini, Francesco

    2011-04-01

    The chemical composition of the essential oil of Citrus medica L. cv. Diamante peel obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction techniques was determined by GC/MS analysis. Forty-six components were fully characterised. Limonene and γ-terpinene were the major components of the oils obtained by hydrodistillation (HD) and cold-pressing (CP), while citropten was the major constituent in the oil obtained by supercritical carbon dioxide extraction (SFE). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. The essential oil obtained by hydrodistillation exerted the highest inhibitory activity against BChE (IC₅₀ value of 154.6 µg mL⁻¹) and AChE (IC₅₀ value of 171.3 µg mL⁻¹. Interestingly, the oil obtained by cold-pressing exhibited a selective inhibitory activity against AChE. The essential oils have also been evaluated for the inhibition of NO production in LPS induced RAW 264.7 macrophages. The oil obtained by hydrodistillation exerted a significant inhibition of NO production with an IC₅₀ value of 17 µg mL⁻¹ (IC₅₀ of positive control 53 µg mL⁻¹).

  3. Changes during storage of quality parameters and in vitro antioxidant activity of extra virgin monovarietal oils obtained with two extraction technologies.

    PubMed

    Fadda, C; Del Caro, A; Sanguinetti, A M; Urgeghe, P P; Vacca, V; Arca, P P; Piga, A

    2012-10-01

    Extraction technology has a great effect on quality of olive oils. This paper studied 18 months of storage of two Sardinian extra virgin monovarietal oils obtained with a traditional and with a low oxidative stress technology. Oil samples were subjected to the following chemical analyses: acidity, peroxide value, ultraviolet light absorption K₂₃₂ and K₂₇₀, carotenoids, chlorophylls, tocopherols and total polyphenols. The antioxidant capacity of oils, polyphenol extract and oil extract (remaining after polyphenol extraction) was also determined as radical scavenging activity. The results show that both extraction technologies resulted in minor changes in legal and quality indices during storage, due surely to the high quality of the oils as well as to the very good storage conditions used. Oils obtained with the low oxidative stress technology showed lower peroxide value and acidity and resulted in up to 103% higher total polyphenol content as well as increased radical-scavenging activity, with respect to oils obtained with the traditional technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Compositional Shift in Fatty Acid Profiles of Lipids Obtained from Oleaginous Yeasts upon the Addition of Essential Oil from Citrus sinensis L.

    PubMed

    Uprety, Bijaya K; Rakshit, Sudip K

    2017-12-01

    Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.

  5. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants.

    PubMed

    Viuda-Martos, Manuel; El Gendy, Abd El-Nasser G S; Sendra, Esther; Fernández-López, Juana; Abd El Razik, K A; Omer, Elsayed A; Pérez-Alvarez, Jose A

    2010-08-25

    The aim of this work was to (i) determine the chemical composition of the essential oils of six spices widely cultivated in Egypt (Origanum syriacum, Majorana hortensis, Rosmarinus officinalis, Cymbopogon citratus, Thymus vulgaris, and Artemisia annua); (ii) determine the antioxidant activity of the Egyptian essential oils by means of five different antioxidant tests; and (iii) determine the effectiveness of these essential oils on the inhibition of Listeria innocua CECT 910. There is a great variability in the chemical composition of essential oils obtained from the six Egyptian aromatic plants. Overall, thyme (highest percentage of inhibition of DPPH radical: 89.40%) and oregano (highest percentage of inhibition of TBARS: 85.79) essential oils presented the best antioxidant profiles, whereas marjoram, lemongrass, and artemisia were highly effective in metal chelating but had a pro-oxidative behavior by Rancimat induction test. Lemongrass essential oil showed the highest antibacterial activity against L. innocua with an inhibition zone of 49.00 mm, followed in effectiveness by thyme, marjoram, and oregano.

  6. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology.

    PubMed

    Cruz, Madalena V; Paiva, Alexandre; Lisboa, Pedro; Freitas, Filomena; Alves, Vítor D; Simões, Pedro; Barreiros, Susana; Reis, Maria A M

    2014-04-01

    Spent coffee grounds (SCG) oil was obtained by supercritical carbon dioxide (scCO2) extraction in a pilot plant apparatus, with an oil extraction yield of 90% at a 35kgkg(-1) CO2/SCG ratio. Cupriavidus necator DSM 428 was cultivated in 2L bioreactor using extracted SCG oil as sole carbon source for production of polyhydroxyalkanoates. The culture reached a cell dry weight of 16.7gL(-1) with a polymer content of 78.4% (w/w). The volumetric polymer productivity and oil yield were 4.7gL(-1)day(-1) and 0.77gg(-1), respectively. The polymer produced was a homopolymer of 3-hydroxybutyrate with an average molecular weight of 2.34×10(5) and a polydispersity index of 1.2. The polymer exhibited brittle behaviour, with very low elongation at break (1.3%), tensile strength at break of 16MPa and Young's Modulus of 1.0GPa. Results show that SCG can be a bioresource for polyhydroxyalkanoates production with interesting properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chemical composition and pharmacological properties of the essential oils obtained seasonally from Lippia thymoides.

    PubMed

    Silva, Fabrício Souza; Menezes, Pedro Modesto Nascimento; de Sá, Pedro Guilherme Souza; Oliveira, André Luís de Santana; Souza, Eric Alencar Araújo; Almeida, Jackson Roberto Guedes da Silva; de Lima, Julianeli Tolentino; Uetanabaro, Ana Paula Trovatti; Silva, Tânia Regina dos Santos; Peralta, Edna Dória; Lucchese, Angélica Maria

    2016-01-01

    Lippia thymoides Mart. & Schauer (Verbenaceae) is used in folk medicine to treat wounds, fever, bronchitis, rheumatism, headaches, and weakness. This study determinates the chemical composition of essential oils from L. thymoides, obtained at during each of the four seasons and correlates with pharmacological properties. Essential oils were obtained by hydrodistillation and analyzed by gas chromatography coupled to mass spectroscopy (GC-MS). Antioxidant activity was determined by DPPH free radical scavenging and β-carotene bleaching methods. The antimicrobial assays were performed by minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) methods. Isolated rat aorta and uterus, and guinea-pig trachea were utilized to evaluate relaxant potential in pre-contracted smooth muscle. Essential oils from leaves of L. thymoides had the sesquiterpene β-caryophyllene (17.22-26.27%) as the major constituent followed by borneol (4.45-7.36%), camphor (3.22-8.61%), camphene (2.64-5.66%), and germacrene D (4.72-6.18%). In vitro assays showed that these essential oils do not have antioxidant activity, have antimicrobial selectivity to Gram-positive bacteria Staphylococcus aureus (MIC = 0.004 mg/mL and MMC = 0.26-10.19 mg/mL) and Micrococcus luteus (MIC = 0.03 mg/mL and MMC = 8.43 mg/mL), relax isolated rat aorta (EC50 = 305-544 μg/mL, with endothelium; and EC50 = 150-283 μg/mL, without endothelium), and uterus (EC50 = 74-257 μg/mL), and minor potency, isolated guinea-pig trachea. Lippia thymoides is a source of natural products of pharmaceutical interest, being necessary additional studies to determine the substances involved in the biological activities.

  8. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    PubMed Central

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  9. Chemical composition and allelopathic potential of essential oils obtained from Acacia cyanophylla Lindl. Cultivated in Tunisia.

    PubMed

    El Ayeb-Zakhama, Asma; Sakka-Rouis, Lamia; Bergaoui, Afifa; Flamini, Guido; Ben Jannet, Hichem; Harzallah-Skhiri, Fethia

    2015-04-01

    Acacia cyanophylla Lindl. (Fabaceae), synonym Acacia saligna (Labill.) H. L.Wendl., native to West Australia and naturalized in North Africa and South Europe, was introduced in Tunisia for rangeland rehabilitation, particularly in the semiarid zones. In addition, this evergreen tree represents a potential forage resource, particularly during periods of drought. A. cyanophylla is abundant in Tunisia and some other Mediterranean countries. The chemical composition of the essential oils obtained by hydrodistillation from different plant parts, viz., roots, stems, phyllodes, flowers, and pods (fully mature fruits without seeds), was characterized for the first time here. According to GC-FID and GC/MS analyses, the principal compound in the phyllode and flower oils was dodecanoic acid (4), representing 22.8 and 66.5% of the total oil, respectively. Phenylethyl salicylate (8; 34.9%), heptyl valerate (3; 17.3%), and nonadecane (36%) were the main compounds in the root, stem, and pod oils, respectively. The phyllode and flower oils were very similar, containing almost the same compounds. Nevertheless, the phyllode oil differed from the flower oil for its higher contents of hexahydrofarnesyl acetone (6), linalool (1), pentadecanal, α-terpineol, and benzyl benzoate (5) and its lower content of 4. Principal component and hierarchical cluster analyses separated the five essential oils into four groups, each characterized by its main constituents. Furthermore, the allelopathic activity of each oil was evaluated using lettuce (Lactuca sativa L.) as a plant model. The phyllode, flower, and pod oils exhibited a strong allelopathic activity against lettuce. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Callus Growth Kinetics of Physic Nut (Jatropha curcas L.) and Content of Fatty Acids from Crude Oil Obtained In Vitro.

    PubMed

    da Luz Costa, Jefferson; da Silva, André Luís Lopes; Bier, Mário César Jucoski; Brondani, Gilvano Ebling; Gollo, André Luiz; Letti, Luiz Alberto Junior; Erasmo, Eduardo Andrea Lemus; Soccol, Carlos Ricardo

    2015-06-01

    The callus growth kinetics allows identifying the appropriate moment for callus pealing and monitoring the accumulation of primary and secondary metabolites. The physic nut (Jatropha curcas L.) is a plant species used for biofuel production due to its high oil content; however, this plant presents a great amount of bioactive compounds which can be useful for industry. The aim of this research was to establish a calli growth curve and to evaluate the fatty acid profile of crude oil extracted from callus. The callus growth kinetics presented a sigmoid standard curve with six distinct phases: lag, exponential, linear, deceleration, stationary, and decline. Total soluble sugars were higher at the inoculation day. Reducing sugars were higher at the inoculation day and at the 80th day. The highest percentage of ethereal extract (oil content) was obtained at the 120th day of culture, reaching 18 % of crude oil from the callus. The calli produced medium-chain and long-chain fatty acids (from 10 to 18 carbon atoms). The palmitic acid was the fatty acid with the highest proportion in oil (55.4 %). The lipid profile obtained in callus oil was different from the seed oil profile.

  11. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing.

    PubMed

    Ribeiro, Penha Patrícia Cabral; Silva, Denise Maria de Lima E; Assis, Cristiane Fernandes de; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed.

  12. Bioactive properties of faveleira (Cnidoscolus quercifolius) seeds, oil and press cake obtained during oilseed processing

    PubMed Central

    Silva, Denise Maria de Lima e; de Assis, Cristiane Fernandes; Correia, Roberta Targino Pinto; Damasceno, Karla Suzanne Florentino da Silva Chaves

    2017-01-01

    To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed. PMID:28846740

  13. Chemical characterisation and biological activity of leaf essential oils obtained from Pistacia terebinthus growing wild in Tunisia and Sardinia Island.

    PubMed

    Piras, Alessandra; Marzouki, Hanen; Maxia, Andrea; Marengo, Arianna; Porcedda, Silvia; Falconieri, Danilo; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia

    2017-11-01

    In the present work the chemical compositions, measured by GC and GC-MS, of the essential oils obtained by hydrodistillation from leaves of Pistacia terebinthus collected in Bizerte (Tunisia) and Baunei (Italy) are reported. Both essential oils possessed high content of monoterpene hydrocarbons (86.3% and 90.9%, respectively), being α-pinene (62.4 vs. 35.0)%, camphene (3.0 vs. 2.4)%, β-pinene (12.1 vs. 4.5)%, terpinolene (1.7 vs. 35.2)% and β-phellandrene (3.8 vs. 4.5)% the main components. The Tunisian essential oil exhibited higher antifungal activity than the Italian one. Cryptococcus neoformans and the majority of dermatophyte strains showed more sensitivity to the Tunisian oil, when compared to Candida strains, in particular Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum, with MIC and MLC values in the range (0.16-0.32) μL/mL. The results obtained support the use of the oil from Tunisia for the treatment of dermatophytosis.

  14. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    SciTech Connect

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less

  15. Pyrolysis of sunflower seed hulls for obtaining bio-oils.

    PubMed

    Casoni, Andrés I; Bidegain, Maximiliano; Cubitto, María A; Curvetto, Nestor; Volpe, María A

    2015-02-01

    Bio-oils from pyrolysis of as received sunflower seed hulls (SSH), hulls previously washed with acid (SSHA) and hulls submitted to a mushroom enzymatic attack (BSSH) were analyzed. The concentration of lignin, hemicellulose and cellulose varied with the pre-treatment. The liquid corresponding to SSH presented a relatively high concentration of acetic acid and a high instability to storage. The bio-oil from SSHA showed a high concentration of furfural and an appreciable amount of levoglucosenone. Lignin was degraded upon enzymatic activity, for this reason BSSH led to the highest yield of bio-oil, with relative high concentration of acetic acid and stability to storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production.

    PubMed

    Kostić, Milan D; Veličković, Ana V; Joković, Nataša M; Stamenković, Olivera S; Veljković, Vlada B

    2016-02-01

    This study reports on the use of oil obtained from waste plum stones as a low-cost feedstock for biodiesel production. Because of high free fatty acid (FFA) level (15.8%), the oil was processed through the two-step process including esterification of FFA and methanolysis of the esterified oil catalyzed by H2SO4 and CaO, respectively. Esterification was optimized by response surface methodology combined with a central composite design. The second-order polynomial equation predicted the lowest acid value of 0.53mgKOH/g under the following optimal reaction conditions: the methanol:oil molar ratio of 8.5:1, the catalyst amount of 2% and the reaction temperature of 45°C. The predicted acid value agreed with the experimental acid value (0.47mgKOH/g). The kinetics of FFA esterification was described by the irreversible pseudo first-order reaction rate law. The apparent kinetic constant was correlated with the initial methanol and catalyst concentrations and reaction temperature. The activation energy of the esterification reaction slightly decreased from 13.23 to 11.55kJ/mol with increasing the catalyst concentration from 0.049 to 0.172mol/dm(3). In the second step, the esterified oil reacted with methanol (methanol:oil molar ratio of 9:1) in the presence of CaO (5% to the oil mass) at 60°C. The properties of the obtained biodiesel were within the EN 14214 standard limits. Hence, waste plum stones might be valuable raw material for obtaining fatty oil for the use as alternative feedstock in biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Hypolipidemic effect of oils with balanced amounts of fatty acids obtained by blending and interesterification of coconut oil with rice bran oil or sesame oil.

    PubMed

    Reena, Malongil B; Lokesh, Belur R

    2007-12-12

    Blended oils comprising coconut oil (CNO) and rice bran oil (RBO) or sesame oil (SESO) with saturated fatty acid/monounsaturated fatty acid/polyunsaturated fatty acid at a ratio of 1:1:1 and polyunsaturated/saturated ratio of 0.8-1 enriched with nutraceuticals were prepared. Blended oils (B) were subjected to interesterification reaction using sn-1,3 specific Lipase from Rhizomucor miehei. Fatty acid composition and nutraceutical contents of the blended oil were not affected by interesterification reaction. Male Wistar rats were fed with AIN-76 diet containing 10% fat from CNO, RBO, SESO, CNO+RBO blend (B), CNO+SESO(B), CNO+RBO interesterified (I), or CNO+SESO(I) for 60 days. Serum total cholesterol (TC), low-density lipoprotein cholesterol, and triacylglycerols (TAGs) were reduced by 23.8, 32.4, and 13.9%, respectively, in rats fed CNO+RBO(B) and by 20.5, 34.1, and 12.9%, respectively, in rats fed CNO+SESO(B) compared to rats given CNO. Rats fed interesterified oils showed a decrease in serum TC, low-density lipoprotein cholesterol (LDL-C), and TAGs in CNO+RBO(I) by 35, 49.1, and 23.2 and by 33.3, 47, and 19.8% in CNO+SESO(I), respectively, compared to rats given CNO. Compared to rats fed CNO+RBO blended oils, rats on CNO+RBO interesterified oil showed a further decrease of 14.6, 24.7, and 10% in TC, LDL-C, and TAG. Rats fed CNO+SESO interesterified oils showed a decrease in serum TC, LDL-C, and TAG by 16.2, 19.6, and 7.8%, respectively, compared to rats given blended oils of CNO+SESO (B). Liver lipid analysis also showed significant change in the TC and TAG concentration in rats fed blended and interesterified oils of CNO+RBO and CNO+SESO compared to the rats given CNO. The present study suggests that feeding fats containing blended oils with balanced fatty acids lowers serum and liver lipids. Interesterified oils prepared using Lipase have a further lowering effect on serum and liver lipids even though the fatty acid composition of blended and interesterified

  18. Corn kernel oil and corn fiber oil

    USDA-ARS?s Scientific Manuscript database

    Unlike most edible plant oils that are obtained directly from oil-rich seeds by either pressing or solvent extraction, corn seeds (kernels) have low levels of oil (4%) and commercial corn oil is obtained from the corn germ (embryo) which is an oil-rich portion of the kernel. Commercial corn oil cou...

  19. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols.

    PubMed

    Frankel, Edwin; Bakhouche, Abdelhakim; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-06-05

    This review describes the olive oil production process to obtain extra virgin olive oil (EVOO) enriched in polyphenol and byproducts generated as sources of antioxidants. EVOO is obtained exclusively by mechanical and physical processes including collecting, washing, and crushing of olives, malaxation of olive paste, centrifugation, storage, and filtration. The effect of each step is discussed to minimize losses of polyphenols from large quantities of wastes. Phenolic compounds including phenolic acids, alcohols, secoiridoids, lignans, and flavonoids are characterized in olive oil mill wastewater, olive pomace, storage byproducts, and filter cake. Different industrial pilot plant processes are developed to recover phenolic compounds from olive oil byproducts with antioxidant and bioactive properties. The technological information compiled in this review will help olive oil producers to improve EVOO quality and establish new processes to obtain valuable extracts enriched in polyphenols from byproducts with food ingredient applications.

  20. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry.

    PubMed

    Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A

    2009-02-01

    In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.

  1. An Oil-Stream Photomicrographic Aeroscope for Obtaining Cloud Liquid-Water Content and Droplet Size Distributions in Flight

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.

    1956-01-01

    An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.

  2. Antioxidant (Tocopherol and Canolol) Content in Rapeseed Oil Obtained from Roasted Yellow-Seeded Brassica napus.

    PubMed

    Siger, Aleksander; Gawrysiak-Witulska, Marzena; Bartkowiak-Broda, Iwona

    2017-01-01

    In this study, the effect of temperature (140, 160, 180 °C) and roasting time (5, 10, 15 min) on the bioactive compound content (canolol, tocopherol and plastochromanol-8) of cold-pressed oil from yellow-seeded rapeseed lines of different colors was investigated. Roasting increased the peroxide value in the seed oils compared to the oils from the control samples. However, roasting did not affect the acid values of the oils, which were 1.15-1.47 and 1.30-1.40 mg KOH/g, for line PN1 03/1i/14 (yellow seeds) and line PN1 563/1i/14 (brown seeds), respectively. In this study, the seeds of line PN1 03/1i/14 were characterized by different changes in canolol content during roasting than the seeds of PN1 563/1i/14. There was a 90-fold increase in canolol for the line PN1 03/1i/14 (768.26 µg/g) and a 46-fold increase for the line PN1 563/1i/14 (576.43 µg/g). Changes in tocopherol and PC-8 contents were also observed. There was an increase in the contents of γ-T and PC-8 in the oils obtained from the seeds roasted at 180 °C for 10 and 15 min. γ-T content increased by 17-18% after 15 min of roasting, whereas the PC-8 content increased twofold.

  3. Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils.

    PubMed

    Junming, Xu; Jianchun, Jiang; Yanju, Lu; Jie, Chen

    2009-10-01

    The pyrolysis reactions of soybean oils have been studied. The pyrolytic products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins, carboxylic acids and aldehydes. Several kinds of catalysts were compared. It was found that the amounts of carboxylic acids and aldehydes were significantly decreased by using base catalysts such as Na(2)CO(3) and K(2)CO(3). The low acid value pyrolytic products showed good cold flow properties and good solubility in diesel oil at low temperature. The results presented in this work have shown that the pyrolysis of soybean oils generates fuels that have chemical composition similar to petroleum based fuels.

  4. Biosensors for monitoring the isothermal breakdown kinetics of peanut oil heated at 180°C. Comparison with results obtained for extra virgin olive oil.

    PubMed

    Tomassetti, M; Vecchio, S; Campanella, L; Dragone, R

    2013-10-15

    The present research was devoted to studying the kinetics of the artificial rancidification of peanut oil (PO) when a sample of this oil was isothermally heated at 180°C in an air stream. The formation of radical species due to heating was evaluated using a radical index whose value was determined using a biosensor method based on a superoxide dismutase (SOD), while the increasing toxicity was monitored using a suitable toxicity measuring probe based on the Clark electrode and immobilized yeast cells. An extra virgin olive oil was isothermally rancidified under the same experimental conditions and the corresponding data were used for the purpose of comparison. Both the so-called "model-fitting" and the classical kinetic methods were applied to the isothermal process biosensor data in order to obtain the kinetic constant rate value at 180°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis.

    PubMed

    de Oliveira, Dayse A S B; Minozzo, Marcelo G; Licodiedoff, Silvana; Waszczynskyj, Nina

    2016-09-15

    In this study, the effects of chemical refining and deodorization on fatty acid profiles and physicochemical and sensory characteristics of the tuna by-product oil obtained by enzymatic hydrolysis were evaluated. Enzymatic extraction was conducted for 120 min at 60 °C and pH 6.5 using Alcalase at an enzyme-substrate ratio of 1:200 w/w. The chemical refining of crude oil consisted of degumming, neutralization, washing, drying, bleaching, and deodorization; deodorization was conducted at different temperatures and processing times. Although chemical refining was successful, temperature and chemical reagents favored the removal of polyunsaturated fatty acids (PUFA) from the oil. Aroma attributes of fishy odor, frying odor, and rancid odor predominantly contributed to the sensory evaluation of the product. Deodorization conditions of 160 °C for 1h and 200 °C for 1h were recommended for the tuna by-product oil, which is rich in PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation.

    PubMed

    Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid

    2013-08-30

    A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill.

    PubMed

    Mulet, Magdalena; David, Zoyla; Nogales, Balbina; Bosch, Rafael; Lalucat, Jorge; García-Valdés, Elena

    2011-02-01

    The Galicia seashore, in northwestern Spain, was one of the shorelines affected by the Prestige oil spill in November 2002. The diversity of autochthonous Pseudomonas populations present at two beaches (Carnota municipality) was analyzed using culture-independent and culture-dependent methods. The first analysis involved the screening of an rpoD gene library. The second involved the isolation of 94 Pseudomonas strains that were able to grow on selective media by direct plating or after serial enrichments on several carbon sources: biphenyl, gentisate, hexadecane, methylnaphthalene, naphthalene, phenanthrene, salicylate, xylene, and succinate. Eight denitrifying Pseudomonas strains were also isolated by their ability to grow anaerobically with nitrate. The calculated coverage index for Pseudomonas species was 89% when clones and isolates were considered together, and there were 29 phylospecies detected. The most abundant were members of the species P. stutzeri, P. putida, P. anguilliseptica, and P. oleovorans. Thirty-one isolates could not be identified at the species level and were considered representatives of 16 putative novel Pseudomonas species. One isolate was considered representative of a novel P. stutzeri genomovar. Concordant results were obtained when the diversities of the cloned DNA library and the cultured strains were compared. The clone library obtained by the rpoD PCR method was a useful tool for evaluating Pseudomonas communities and also for microdiversity studies of Pseudomonas populations.

  8. Bioactive compounds and quality parameters of avocado oil obtained by different processes.

    PubMed

    Krumreich, Fernanda D; Borges, Caroline D; Mendonça, Carla Rosane B; Jansen-Alves, Cristina; Zambiazi, Rui C

    2018-08-15

    The objective of this study was to evaluate the quality of avocado oil whose pulp was processed through different drying and oil extraction methods. The physicochemical characteristics of avocados cv. Breda were determined after drying the pulp in an oven under ventilation (40 °C and 60 °C) and vacuum oven (60 °C), followed by the oil extracted by mechanical pressing or the Soxhlet method. From the approximately 72% pulp found in the avocado fruit, the 16% fraction is lipids. The quality indices evaluated in avocado oil showed better results when the pulp was dried at 60 °C under vacuum and oil extraction was done by the Soxhlet method with petroleum ether, whereas the bioactive compounds were better preserved when the avocado pulp was dried at 60 °C under ventilation and mechanical pressing was used for the oil extraction. Among the fatty acids found, oleic acid was the main. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A Diverse Soil Microbiome Degrades More Crude Oil than Specialized Bacterial Assemblages Obtained in Culture.

    PubMed

    Bell, Terrence H; Stefani, Franck O P; Abram, Katrina; Champagne, Julie; Yergeau, Etienne; Hijri, Mohamed; St-Arnaud, Marc

    2016-09-15

    Soil microbiome modification may alter system function, which may enhance processes like bioremediation. In this study, we filled microcosms with gamma-irradiated soil that was reinoculated with the initial soil or cultivated bacterial subsets obtained on regular media (REG-M) or media containing crude oil (CO-M). We allowed 8 weeks for microbiome stabilization, added crude oil and monoammonium phosphate, incubated the microcosms for another 6 weeks, and then measured the biodegradation of crude oil components, bacterial taxonomy, and functional gene composition. We hypothesized that the biodegradation of targeted crude oil components would be enhanced by limiting the microbial taxa competing for resources and by specifically selecting bacteria involved in crude oil biodegradation (i.e., CO-M). Postincubation, large differences in taxonomy and functional gene composition between the three microbiome types remained, indicating that purposeful soil microbiome structuring is feasible. Although phylum-level bacterial taxonomy was constrained, operational taxonomic unit composition varied between microbiome types. Contrary to our hypothesis, the biodegradation of C10 to C50 hydrocarbons was highest when the original microbiome was reinoculated, despite a higher relative abundance of alkane hydroxylase genes in the CO-M microbiomes and of carbon-processing genes in the REG-M microbiomes. Despite increases in the relative abundances of genes potentially linked to hydrocarbon processing in cultivated subsets of the microbiome, reinoculation of the initial microbiome led to maximum biodegradation. In this study, we show that it is possible to sustainably modify microbial assemblages in soil. This has implications for biotechnology, as modification of gut microbial assemblages has led to improved treatments for diseases like Clostridium difficile infection. Although the soil environment determined which major phylogenetic groups of bacteria would dominate the assemblage, we

  10. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater

    PubMed Central

    Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane

    2012-01-01

    In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625

  11. Utilization of the Fine Particles Obtained from Cold Pressed Vegetable Oils: A Case Study in Organic Rice Bran, Sunflower and Sesame Oils.

    PubMed

    Srikaeo, Khongsak; Poungsampao, Phuttan; Phuong, Nguyen Thi

    2017-01-01

    Fine particles obtained from the physical refining of organic cold pressed vegetable oils which are normally discarded as a process waste can be utilized as cosmetic and food ingredients. This paper demonstrated the use of the fine particles from rice bran (Thai Jasmine and Riceberry varieties), sunflower and sesame oils as the ingredient in body mask and as dietary fiber. It was found that the fine particles from rice brans exhibited better antioxidant properties than those of sunflower and sesame. The mixed fine particles were added to body mask formula. The addition of the fine particles affected the physical properties and stability of the body mask especially viscosity and pH. Total dietary fiber recovered from the fine particles ranged from 17.91-23.83 g/100g dry sample. Dietary fiber from Riceberry exhibited the best antioxidant properties as evidenced by DPPH radical scavenging activity and reducing power.

  12. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect

    David, K.; Ben, H.; Muzzy, J.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oilsmore » range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.« less

  13. Structuration of lipid bases with fully hydrogenated crambe oil and sorbitan monostearate for obtaining zero-trans/low sat fats.

    PubMed

    Stahl, Marcella Aparecida; Buscato, Monise Helen Masuchi; Grimaldi, Renato; Cardoso, Lisandro Pavie; Ribeiro, Ana Paula Badan

    2018-05-01

    Several studies have shown that excessive intake of trans and saturated fatty acids is associated with an increased risk of cardiovascular disease. In this context, the food industry has sought alternatives for the development of healthy lipid bases, with higher levels of unsaturated fatty acids, adapting to current legislation. The incorporation of structuring agents into liquid oils has proven to be a potential alternative for obtaining semi-plastic lipid bases with reduced levels of saturated fatty acids. Thus, the objective of this study was to produce zero trans fat bases with lower saturated fatty acids levels. Palm oil (PO) was used as a zero trans-lipid base reference because of its technological functionality. Blends containing different proportions of high oleic sunflower oil (HOSO) and PO were prepared as follows: control 100: 0; 80:20; 60:40; 40:60; 20:80; and 100: 0 PO: HOSO (w/w%), respectively. Then, 3% of fully hydrogenated crambe oil (FHCO) and 3% sorbitan monostearate (SMS) were added to the blends as structuring agents, forming the structured (S) blends. The addition of HOSO to the PO decreased the saturated fatty acids by up to 30.6%, with consequent increase of unsaturated fatty acids, especially oleic acid. The joint action of the SMS and the FCHO allowed for obtaining structured blends with plastic and spreadability characteristics, as well as modifications throughout the crystallization process of the original blends. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Concentrations of tocols and γ-oryzanol compounds in rice bran oil obtained by fractional extraction with supercritical carbon dioxide.

    PubMed

    Yoon, Sung Won; Pyo, Young-Gil; Lee, Junsoo; Lee, Jeom-Sig; Kim, Byung Hee; Kim, In-Hwan

    2014-01-01

    Rice bran oil (RBO) is a good source of several commercially important bioactive phytochemicals, such as tocols (i.e. tocopherols and tocotrienols) and ferulic esters of sterols (i.e. γ-oryzanol). The aims of the present study were to examine the effects of different pressure and temperature combinations on the fractional extraction of RBO using supercritical carbon dioxide (SC-CO2) and to assess the levels of tocols homologues and γ-oryzanol components in the resulting oil fractions. Fractional extraction of rice bran oil was performed using SC-CO2 at either 27.6 or 41.4 MPa and either 40 or 60°C. The effects of the four different pressure and temperature combinations on the levels of seven tocols homologues (α-, β-, γ- and δ-tocopherol and α-, γ- and δ-tocotrienol) and the four major components of γ-oryzanol in the resulting oil fractions were investigated. Superior extraction efficiency was obtained using the higher pressure of 41.4 MPa. The tocols (particularly α-tocopherol and α-tocotrienol) were recovered early in the extraction process, while the γ-oryzanol compounds were obtained in the later stages. With regard to SC-CO2 extraction, tocols are more soluble than γ-oryzanol components, α-tocopherol is the most soluble of the tocols and the four γ-oryzanol components all have similar solubilities. Valuable data on solubilities of tocols homologues in SC-CO2 were provided from present study.

  15. Chemical composition of Lycium europaeum fruit oil obtained by supercritical CO2 extraction and evaluation of its antioxidant activity, cytotoxicity and cell absorption.

    PubMed

    Rosa, Antonella; Maxia, Andrea; Putzu, Danilo; Atzeri, Angela; Era, Benedetta; Fais, Antonella; Sanna, Cinzia; Piras, Alessandra

    2017-09-01

    We studied the total phenols and flavonoids, liposoluble antioxidants, fatty acid and triacylglycerol profiles, and oxidative status of oil obtained from Lycium europaeum fruits following supercritical CO 2 extraction (at 30MPa and 40°C). Linoleic (52%), palmitic (18%), oleic (13%), and α-linolenic (6%) were the main oil fatty acids, while trilinolein and palmitodilinolein/oleodilinolein represented the main triacylglycerols. The oil was characterized by high levels of all-trans-zeaxanthin and all-trans-β-carotene (755 and 332μg/g of oil, respectively), α-tocopherol (308μg/g of oil), total phenols (13.6mg gallic acid equivalents/g of oil), and total flavonoids (6.8mg quercetin equivalents/g of oil). The oil showed radical scavenging activities (ABTS and DPPH assays) and inhibited Caco-2 cell growth. Moreover, the incubation of differentiated Caco-2 cells with a non-toxic oil concentration (100μg/mL) induced a significant intracellular accumulation of essential fatty acids. The results qualify L. europaeum oil as a potential source for food/pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Green bio-oil extraction for oil crops

    NASA Astrophysics Data System (ADS)

    Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.

    2016-06-01

    The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.

  17. Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia.

    PubMed

    Vukovic, Nenad; Sukdolak, Slobodan; Solujic, Slavica; Niciforovic, Neda

    2009-04-01

    The chemical composition of essential oils obtained from the roots, stems, and leaves of Ballota nigra, growing in Serbia, was investigated by gas chromatography/mass spectrometry analyses. Kovats indices, mass spectra, and standard compounds were used to identify a total of 115 individual compounds. The plant produces two types of essential oils. Oils derived from stems and leaves were sesquiterpene rich (78.17% and 88.40%, respectively), containing principally beta-caryophyllene, germacrene D, and alpha-humulene, present in appreciable amounts. In contrast, oil derived from the root was dominated by p-vinylguiacol (9.24%), borneol (7.51%), myrtenol (7.13%), trans-pinocarveol (5.22%), pinocarvone (4.37%), 2-methyl-3-phenylpropanal (4.32%), and p-cymen-8-ol (4.30%). Essential oil obtained from the roots was evaluated for the antimicrobial activity against seven bacterial species and one fungi.

  18. Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation.

    PubMed

    Olmedo, Ruben; Nepote, Valeria; Grosso, Nelson Ruben

    2014-08-01

    The objective of this study was to determine the antioxidant activity of fractions separated from oregano essential oil by short-path molecular distillation. Two residue (R1 and R2) and two distillate (D1 and D2) fractions were prepared by molecular distillation. The major components were: carvacrol, terpinen-4-ol and γ-terpinene in R1 and R2; and γ-terpinene, α-terpineol and sabinene in D1 and D2. Free-radical scavenging activity was observed in all fractions and was highest in R2 (77.2%). D1 and D2 showed a smaller amount of volatile oxidation compounds produced from sunflower oil stored at 60°C for 14days. The greatest antioxidant activity was observed in D1 and D2. The thermal stability of oregano essential oil and its fractions was also analysed. R1 and R2 presented an increased carvacrol concentration and thermal stability. The short-path molecular distillation fractions can be used to prepare fractions from oregano essential oil with a higher antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. World oil

    NASA Astrophysics Data System (ADS)

    Sweeney, J. L.

    1982-06-01

    Results obtained through the application of 10 prominent world oil or world energy models to 12 scenarios are reported. These scenarios were designed to bound the range of likely future world oil market outcomes. Conclusions relate to oil market trends, impacts of policies on oil prices, security of oil supplies, impacts of policies on oil security problems, use of the oil import premium in policymaking, the transition to oil substitutes, and the state of the art of world oil modeling.

  20. Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 T Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Cho, Yunju; Qi, Yulin; O'Connor, Peter B; Barrow, Mark P; Kim, Sunghwan

    2014-01-01

    In this study, a phase-correction technique was applied to the study of crude oil spectra obtained using a 7 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). 7 T FT-ICR MS had not been widely used for oil analysis due to the lower resolving power compared with high field FT-ICR MS. For low field instruments, usage of data that has not been phase-corrected results in an inability to resolve critical mass splits of C3 and SH4 (3.4 mDa), and (13)C and CH (4.5 mDa). This results in incorrect assignments of molecular formulae, and discontinuous double bond equivalents (DBE) and carbon number distributions of S1, S2, and hydrocarbon classes are obtained. Application of phase correction to the same data, however, improves the reliability of assignments and produces continuous DBE and carbon number distributions. Therefore, this study clearly demonstrates that phase correction improves data analysis and the reliability of assignments of molecular formulae in crude oil anlayses.

  1. Oil from hydrocracking as a raw material for the production of white oils

    SciTech Connect

    Potanina, V.A.; Dremova, T.I.; Ponomareva, T.P.

    1984-01-01

    This article investigates the feasibility of using distillate oil from hydrocracking for white oil production. A process technology has been developed in the USSR for the manufacture of high-quality oils by hydrocracking a heavy distillate feed in high-pressure equipment. The neutral and hydrocracked oil sample and a blend of these stocks were subjected to treatment with oleum, neutralization with 65% ethyl alcohol, and contact finishing to obtain white oils. The physicochemical properties of the white oils are given. It is determined that the hydrocracked oil can be used as the raw material in manufacturing perfume oil meeting the standard GOSTmore » 4225-76, and that the blends can be used to obtain pharmaceutical white oil meeting the standard GOST 3164-78.« less

  2. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    PubMed Central

    Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved

  3. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant

  4. Essential oil composition and antifungal activity of Foeniculum vulgare Mill obtained by different distillation conditions.

    PubMed

    Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M

    2003-04-01

    The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.

  5. Antibacterial activity and antibiotic modulating potential of the essential oil obtained from Eugenia jambolana in association with led lights.

    PubMed

    Pereira, Nara L F; Aquino, Pedro E A; Júnior, José G A S; Cristo, Janyketchuly S; Vieira Filho, Marcos A; Moura, Flávio F; Ferreira, Najla M N; Silva, Maria K N; Nascimento, Eloiza M; Correia, Fabrina M A; Cunha, Francisco A B; Boligon, Aline A; Coutinho, Henrique D M; Ribeiro-Filho, Jaime; Matias, Edinardo F F; Guedes, Maria I F

    2017-09-01

    Bacterial resistance has risen as an important health problem with impact on the pharmaceutical industry because many antibiotics have become ineffective, which has affected their commercialization. The Brazilian biodiversity is marked by a vast variety of natural products with significant therapeutic potential, which could bring new perspectives in the treatment of infections caused by resistant microorganisms. The present study aimed to evaluate the antibacterial effect of the essential oil obtained from Eugenia jambolana (EjEO) using the method of microdilution method to determine the Minimum Inhibitory Concentration (MIC). The modulatory effect of this oil on antibiotic activity was determined using both the broth microdilution and gaseous contact methods. The antibacterial effect of the association of the gaseous contact and the use of a LED unit with red and blue lights was also determined. The chemical components of the EjEO were characterized by HPLC, which revealed the presence of α-pinene as a major constituent. The EjEO presented a MIC≥128μg/mL against S. aureus and ≥1024μg/mL against E. coli. The combination of the EjEO with antibiotics presented synergism against E. coli and antagonism against S. aureus. An antagonistic effect was obtained from the association of EjEO with amikacin and erythromycin by the method of gaseous contact. On the other hand, the association of EjEO with ciprofloxacin presented a synergistic effect against S. aureus and E. coli exposed to LED lights. A similar effect was observed in the association of the EjEO with norfloxacin presented synergism against S. aureus in the same conditions. In conclusion, our results demonstrated that the essential oil obtained from Eugenia jambolana interfere with the action of antibiotics against bacteria exposed to LED lights. Thus, further researches are required to elucidate the mechanisms underlying these effects, which could open new perspectives in the development of new

  6. Thermal and Tribological Properties of Jatropha Oil as Additive in Commercial Oil

    NASA Astrophysics Data System (ADS)

    Gallardo-Hernández, E. A.; Lara-Hernández, G.; Nieto-Camacho, F.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Hernández-Aguilar, C.; Contreras-Gallegos, E.; Torres, M. Vite; Flores-Cuautle, J. J. A.

    2017-04-01

    The recent use that has been given to bio-oil as an additive, in a commercial engine oil, raises the necessity to study its physical properties. The present study is aimed to obtain thermal properties of blends made with Jatropha-Curcas L. Oil, Crude, and Refined, at different concentrations using SAE40W oil (EO) as a lubricant base. By using photothermal techniques, thermal effusivity and diffusivity were obtained. The obtained results show that thermal effusivity increases from 455 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} to 520 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} as the percentage of additive increases as well, whereas thermal diffusivity values range from 7× 10^{-8}m2{\\cdot }s^{-1} to 10× 10^{-8}m2{\\cdot }s^{-1}. In the present study, four balls test was used in order to obtain friction coefficient and wear scar values for studied samples, the obtained results point out that in general refined Jatropha-Curcas L. oil presents smaller wear scars than the crude one.

  7. A photometric method for the estimation of the oil yield of oil shale

    USGS Publications Warehouse

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  8. Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone.

    PubMed

    Sonwai, Sopark; Rungprasertphol, Poonyawee; Nantipipat, Nantinee; Tungvongcharoan, Satinee; Laiyangkoon, Nantikan

    2017-09-01

    This work was aimed to study the solvent fraction of coconut oil (CNO). The fatty acid and triacylglycerol compositions, solid fat content (SFC) and the crystallization properties of CNO and its solid and liquid fractions obtained from fractionation at different conditions were investigated using various techniques. CNO was dissolved in acetone (1:1 w/v) and left to crystallize isothermally at 10°C for 0.5, 1 and 2 h and at 12°C for 2, 3 and 6 h. The solid fractions contained significantly lower contents of saturated fatty acids of ≤ 10 carbon atoms but considerably higher contents of saturated fatty acids with > 12 carbon atoms with respect to those of CNO and the liquid fractions. They also contained higher contents of high-melting triacylglycerol species with carbon number ≥ 38. Because of this, the DSC crystallization onset temperatures and the crystallization peak temperatures of the solid fractions were higher than CNO and the liquid fractions. The SFC values of the solid fractions were significantly higher than CNO at all measuring temperatures before reaching 0% just below the body temperature with the fraction obtained at 12°C for 2 h exhibiting the highest SFC. On the contrary, the SFC values of the liquid fractions were lower than CNO. The crystallization duration exhibited strong influence on the solid fractions. There was no effect on the crystal polymorphic structure possibly because CNO has β'-2 as a stable polymorph. The enhanced SFC of the solid fractions would allow them to find use in food applications where a specific melting temperature is desired such as sophisticated confectionery fats, and the decreased SFC of the liquid fractions would provide them with a higher cold stability which would be useful during extended storage time.

  9. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-01

    This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.

  10. Process for obtaining liquid fuel-oil and/or gaseous hydrocarbons from solid carbonaceous feed stocks

    SciTech Connect

    Hollaway, J.W.

    1978-02-28

    A process for forming a fuel-oil from coal is disclosed. The coal is treated in a low temperature carbonization retort to give coke, coal-gas and tar-oil. The coke is converted to water-gas which is then synthesized in a Fischer-Tropsch synthesizer to form fuel-oil. The tar-oil is hydrogenated in a hydro-treater by hydrogen produced from the coal-gas. Hydrogen is produced from coal-gas either in a thermal cracking chamber or by reforming the methane content to hydrogen and passing the resultant hydrogen/carbon monoxide mixture through a water-gas shift reactor and a carbon dioxide scrubber.

  11. Extraction of essential oil from Cupressus sempervirens: comparison of global yields, chemical composition and antioxidant activity obtained by hydrodistillation and supercritical extraction.

    PubMed

    Nejia, Herzi; Séverine, Camy; Jalloul, Bouajila; Mehrez, Romdhane; Stéphane, Condoret Jean

    2013-01-01

    In this study, supercritical fluid extraction (SFE) with CO2 and hydrodistillation (HD) were compared as methods to isolate the essential oil from Cupressus sempervirens. The odour of the oil obtained by SFE at 90 bar and 40°C was very close to the odour of the leaves of C. sempervirens before the extraction. Compounds extracted by both SFE and HD were identified by GC-FID and GC-MS. Moreover, the difference in the chemical composition obtained by SFE and HD was quite noticeable qualitatively and quantitatively. Phenolic composition and antioxidant activity were also determined. Compared to HD, the SFE method presents some advantages: the extraction was completed after 1 h in SFE, although 4 h is necessary for HD, and the yield was improved by 34%. Finally, it has also been shown that SFE is very selective towards some specific components such as manoyl oxide, trans-totarol and α-acoradiene.

  12. Mugil cephalus roe oil obtained by supercritical fluid extraction affects the lipid profile and viability in cancer HeLa and B16F10 cells.

    PubMed

    Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M

    2016-09-14

    We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.

  13. Development of edible films obtained from submicron emulsions based on whey protein concentrate, oil/beeswax and brea gum.

    PubMed

    Cecchini, Juan Pablo; Spotti, María J; Piagentini, Andrea M; Milt, Viviana G; Carrara, Carlos R

    2017-06-01

    Edible films with whey protein concentrate (WPC) with a lipid component, sunflower oil (O) or beeswax (W), to enhance barrier to water vapor were obtained. Brea gum was used as emulsifier and also as matrix component. In order to achieve emulsion with small and homogeneous droplet size, an ultrasonicator equipment was used after obtaining a pre-emulsion using a blender. The films were made by casting. Effects of lipid fraction on droplet size, zeta potential, mechanical properties, water vapor permeability (WVP), solubility, and optical properties were determined. The droplet size of emulsions with BG decreased when decreasing the lipid content in the formulation. The zeta potential was negative for all the formulations, since the pH was close to 6 for all of them and pI of BG is close to 2.5, and pI of ß-lactoglobulin and α-lactalbumin (main proteins in WPC) are 5.2 and 4.1, respectively. Increasing W or SO content in blended films reduced the tensile strength and puncture resistance significantly. BG and WPC films without lipid presented better mechanical properties. The presence of lipids decreased the WVP, as expected, and those films having BG improved this property. BG films were slightly amber as a result of the natural color of the gum. BG has shown to be a good polysaccharide for emulsifying the lipid fraction and improving the homogeneity and mechanical properties of the films with WPC and beeswax or oil.

  14. Contact Allergy to Neem Oil.

    PubMed

    de Groot, Anton; Jagtman, Berend A; Woutersen, Marjolijn

    A case of allergic contact dermatitis from neem oil is presented. Neem oil (synonyms: Melia azadirachta seed oil [INCI name], nim oil, margosa oil) is a vegetable (fixed) oil obtained from the seed of the neem tree Azadirachta indica by cold pressing. Contact allergy to neem oil has been described previously in only 3 patients. The allergen(s) is/are unknown.

  15. Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation.

    PubMed

    Calero, Juan; Verdugo, Cristóbal; Luna, Diego; Sancho, Enrique D; Luna, Carlos; Posadillo, Alejandro; Bautista, Felipa M; Romero, Antonio A

    2014-12-25

    The obtaining of Ecodiesel, a biofuel applicable to diesel engines which keeps the glycerin as monoglyceride (MG), was achieved through a selective ethanolysis process of sunflower oil, by application of Lipozyme RM IM, a Rhizomucor miehei lipase immobilized on macroporous anion exchange resins. This biocatalyst that was already described in the synthesis of conventional biodiesel has also shown its efficiency in the present selective enzymatic process, after optimization of the influence of various reaction parameters. Thus, an adequate activity is obtained that is maintained throughout five successive reuses. Quantitative conversions of triglycerides (TG) with high yields to fatty acid ethyl esters (FAEE) were obtained under mild reaction conditions that correspond to the transformation of TG in a mixture of two moles of FAEE and a mole of MG, thus avoiding the glycerol production. Thus, the selective transesterification reaction of sunflower oil with absolute ethanol can be carried out under standard conditions with oil/ethanol volume ratio 12/3.5 (mL), at constant pH obtained by the addition of 50 μl of aqueous solution of 10 N NaOH, reaction temperature of 40 °C and 40 mg of Lipozyme RM IM. Under these experimental conditions six successive reactions can be efficiently carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace.

    PubMed

    Walia, Mayanka; Rawat, Kiran; Bhushan, Shashi; Padwad, Yogendra S; Singh, Bikram

    2014-03-30

    Apple pomace is generated in huge quantities in juice-processing industries the world over and continuous efforts are being made for its inclusive utilization. In this study, apple seeds separated from industrial pomace were used for extraction of oil. The fatty acid composition, physicochemical and antioxidant as well as in vitro anticancer properties of extracted oil were studied to assess its suitability in food and therapeutic applications. The fatty acid composition of seed oil revealed the dominance of oleic (46.50%) and linoleic acid (43.81%). It had high iodine (121.8 g I 100 g⁻¹) and saponification value (184.91 mg KOH g⁻¹ oil). The acid value, refractive index and relative density were 4.28 mg KOH g⁻¹, 1.47 and 0.97 mg mL⁻¹, respectively. The antioxidant potential (IC₅₀) of apple seed oil was 40.06 µg mL⁻¹. Cytotoxicity of apple seed oil against CHOK1, SiHa and A549 cancer cell lines ranged between 0.5 ± 0.06% and 88.6 ± 0.3%. The physicochemical properties of apple seed oil were comparable with edible food oil, indicating its better stability and broad application in the food and pharmaceutical industries. Apple seed oil could be a good source of natural antioxidants. Also, the in vitro cytotoxic activity against specific cell lines exhibited its potential as an anticancer agent. © 2013 Society of Chemical Industry.

  17. Microwave-assisted hydrodistillation of essential oil from rosemary.

    PubMed

    Karakaya, Sibel; El, Sedef Nehir; Karagozlu, Nural; Sahin, Serpil; Sumnu, Gulum; Bayramoglu, Beste

    2014-06-01

    Effects of microwave assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) methods on yield, composition, specific gravity, refractive index, and antioxidant and antimicrobial activities of essential oil of Rosmarinus officinalis L were studied. The main aroma compounds of rosemary essential oil were found as 1,8-cineole and camphor. Trolox equivalent antioxidant capacity (TEAC) values for essential oils extracted by MAHD and HD were 1.52 mM/ml oil and 1.95 mM/ml oil, respectively. DPPH radical scavenging activity of the oils obtained by MAHD and HD were found as 60.55% and 51.04% respectively. Inhibitory effects of essential oils obtained by two methods on linoleic acid peroxidation were almost the same. Essential oils obtained by two methods inhibited growth of Esherichia coli O157:H7, Salmonella typhimurium NRRLE 4463 and Listeria monocytogenes Scott A with the same degree. However, inhibitory activity of essential oil obtained by MAHD on Staphylococcus aureus 6538P was stronger than that of obtained by HD (p < 0.05).

  18. Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae).

    PubMed

    da Silva, Thanany Brasil; Menezes, Leociley Rocha Alencar; Sampaio, Marília Fernanda Chaves; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Soares, Milena Botelho Pereira; Prata, Ana Paula do Nascimento; Nogueira, Paulo Cesar de Lima; Costa, Emmanoel Vilaça

    2013-03-01

    Essential oils from leaves of Xylopia frutescens (XFMJ) and two specimens of Xylopia laevigata (XLMC and XLSI) were obtained by hydrodistillation using a Clevenger-type apparatus, and analyzed by GC-MS and GC-FID. Sesquiterpenes dominated the essential oils. The main constituents of XFMJ were (E)-caryophyllene (24.8%), bicyclogermacrene (20.8%), germacrene D (17.0%), beta-elemene (7.9%), and (E)-beta-ocimene (6.8%). XLMC contained significant quantities of germacrene D (18.9%), bicyclogermacrene (18.4%), beta-elemene (9.5%), delta-selinene (9.2%), (E)-caryophyllene (8.5%), germacrene B (5.7%) and gamma-muurolene (5.7%), while germacrene D (27.0%), bicyclogermacrene (12.8%), (E)-caryophyllene (8.6%), gamma-muurolene (8.6%), delta-cadinene (6.8%), and germacrene B (6.0%) were the main components of XLSI. The essential oils had trypanocidal activity against the Y strain of Trypanosoma cruzi, with IC50 values lower than 30 microg x mL(-1) and 15 microg x mL(-1) against epimastigote and trypomastigote forms of T. cruzi, respectively, and were also able to reduce the percentage in vitro of T. cruzi-infected macrophages and the intracellular number of amastigotes at concentrations that were non-cytotoxic to macrophages.

  19. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.

    PubMed

    Sinağ, Ali; Gülbay, Selen; Uskan, Burçin; Uçar, Suat; Ozgürler, Sara Bilge

    2010-01-15

    The main objective of this work is to propose an alternative method for evaluation of the waste machinery oil which is an environmental problem in Turkey. For this purpose, pyrolysis of waste machinery oil was conducted in a tubular reactor. Effect of the experimental conditions (various temperatures, catalyst type) on the formation of pyrolytic oil, gas, and char was investigated. Nickel supported on silica and zeolite (HZSM-5) were used as catalysts. Properties of the pyrolytic oils were characterized by gas chromatograph equipped with a mass selective detector (GC-MS), gas chromatography with flame ionization detector (GC-FID for boiling point range distribution), nuclear magnetic resonance ((1)H NMR) spectroscopy, higher heating value measurement, and elemental analysis. The behavior of the metals in the waste machinery oil and the pyrolytic oil samples was also quantitatively detected by inductively coupled plasma (ICP) analysis. As, Cd and Cr contents of the all pyrolytic oils were found as <0.05 ppm, while Cu content of the pyrolytic oils varied between 0.3 ppm and 0.61 ppm. Only Vanadium contents of the pyrolytic oils obtained at 800 degrees C (0.342 ppm) and in the presence of HZSM5 (0.57 ppm) increased compared to that obtained by waste machinery oil (0.1 ppm). Lower metal contents of the pyrolytic oils reveal that pyrolysis of the waste machinery oils leads to the formation of environmental friendly pyrolytic oils with higher heating values.

  20. Process for preparing lubricating oil from used waste lubricating oil

    DOEpatents

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  1. 21 CFR 184.1555 - Rapeseed oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Rapeseed oil. 184.1555 Section 184.1555 Food and....1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a... occurring in natural rapeseed oil. The rapeseed oil is obtained from the napus and campestris varieties of...

  2. In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis.

    PubMed

    Houicher, Abderrahmane; Hechachna, Hind; Teldji, Hanifa; Ozogul, Fatih

    2016-01-01

    The aim of this study was to determine the antifungal activity of the essential oils isolated from three aromatic plants against 13 filamentous fungal strains. The major constituents of Mentha spicata, Thymus vulgaris, and Laurus nobilis essential oils were carvone (52.2%), linalool (78.1%), and 1,8-cineole (45.6%), respectively. There are also some patents suggesting the use of essential oils as natural and safe alternatives to fungicides for plant protection. In the present work, M. spicata essential oil exhibited the strongest activity against all tested fungi in which Fusarium graminearum, F.moniliforme, and Penicillium expansum were the most sensitive to mint oil with lower minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 2.5 μL mL-1 (v/v). Thymus vulgaris essential oil was less active compared to the oil of M. spicata. Aspergillus ochraceus was the most sensitive strain to thyme oil with MIC and MFC values of 2.5 and 5 μL mL-1, respectively. Thymus vulgaris essential oil also exhibited a moderate fungicidal effect against the tested fungi, except for A. niger (MFC >20 μL-1). L. nobilis essential oil showed a similar antifungal activity with thyme oil in which A. parasiticus was the most resistant strain to this oil (MFC >20 μL mL-1). Our findings suggested the use of these essential oils as alternatives to synthetic fungicides in order to prevent pre-and post-harvest infections and ensure product safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Chemical composition and antibacterial activity of Origanum saccatum P.H. Davis essential oil obtained by solvent-free microwave extraction: comparison with hydrodistillation.

    PubMed

    Sozmen, Fazli; Uysal, Burcu; Oksal, Birsen S; Kose, Elif Odabas; Deniz, I Gokhan

    2011-01-01

    The components of the essential oils (EOs) obtained by solvent-free microwave extraction (SFME) and hydrodistillation (HD) from endemic Origanum saccatum P.H. Davis were identified by using GC/MS. The main constituents of both EOs obtained by SFME and HD, respectively, from O. saccatum were p-cymene (72.5 and 70.6%), thymol (9.32 and 8.11%), and carvacrol (7.18 and 6.36%). The EO obtained by SFME contained substantially higher amounts of oxygenated compounds and lower amounts of monoterpenes than did the EO obtained by HD. The antibacterial activities of the EOs obtained by SFME and HD were evaluated with the disc diffusion method by comparison with 10 different bacterial strains. The antibacterial activity of the EO extracted by SFME was found to be more effective than that of the EO extracted by HD against seven of the tested bacteria.

  4. Method of refining cracked oil by using metallic soaps. [desulfurization of cracked oils

    SciTech Connect

    Masakichi, M.; Marunouchi, K.K.; Yoshimura, T.

    1937-04-13

    The method of refining cracked oil consists in dissolving oil-soluble heavy metallic soap of oleic acid in a volatile organic solvent which will disperse homogeneously in cracked oil; pouring the solution thus obtained slowly into cracked oil to effect dispersion naturally and homogeneously at room temperature in the cracked oil. This process serves to react the mercaptans in the cracked oil with the heavy metallic soap by a double decomposition reaction and to precipitate the mercaptans as insoluble metallic salts. The remaining liquid is distilled to separate it from the remaining solvent.

  5. 40 CFR 279.43 - Used oil transportation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identification number; (2) A used oil processing/re-refining facility who has obtained an EPA identification number; (3) An off-specification used oil burner facility who has obtained an EPA identification number... parts 171 through 180. Persons transporting used oil that meets the definition of a hazardous material...

  6. 40 CFR 279.43 - Used oil transportation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification number; (2) A used oil processing/re-refining facility who has obtained an EPA identification number; (3) An off-specification used oil burner facility who has obtained an EPA identification number... parts 171 through 180. Persons transporting used oil that meets the definition of a hazardous material...

  7. GC-MS evaluation of Cymbopogon citratus (DC) Stapf oil obtained using modified hydrodistillation and microwave extraction methods.

    PubMed

    Ajayi, E O; Sadimenko, A P; Afolayan, A J

    2016-10-15

    Bioactive compounds of Cymbopogon citratus essential oil, using different media have been tentatively identified with the aid of gas chromatography-mass spectrometry (GC-MS). Hydrodistillation was complemented using weakly acidic and alkaline media for the oil extraction. Solvent-free microwave extraction (SFME) was also used. Analyses of the oils revealed the presence of 7, 16, 22, and 15 compounds in the water-distilled (WD), microwave-distilled (MD), acid-distilled (AD), and base-distilled (BD), essential oils, respectively. Total yield of the volatile fractions was 0.73%, 0.64%, 0.70%, and 0.45%, respectively. Citral was found to be the major component, the base extraction having the highest content. This was followed by 2-isopropenyl-5-methylhex-4-enal, p-cymene, and 2-thujene. The antimicrobial, antibacterial, and antioxidant activities and assessment of medicinal/nutritional uses of the essential oils are subjects of future studies. Copyright © 2016. Published by Elsevier Ltd.

  8. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro.

    PubMed

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-03-06

    An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. The cytotoxicity (CC(50)) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4 degrees C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37 degrees C before the adsorption of untreated-virus. The CC(50) values were less than 100 microg/mL and the MIC values were 3.7 and 11.1 microg/mL. The CC(50)/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 microg/mL produced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at 100 microg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.

  9. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

    PubMed Central

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-01-01

    Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. Methods The cytotoxicity (CC50) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation. PMID:19267922

  10. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    PubMed

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  11. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false May I obtain departures from these drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling...

  12. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false May I obtain departures from these drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling...

  13. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false May I obtain departures from these drilling..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling...

  14. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these drilling requirements? The District... 30 Mineral Resources 2 2010-07-01 2010-07-01 false May I obtain departures from these drilling...

  15. 30 CFR 250.409 - May I obtain departures from these drilling requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations General Requirements § 250.409 May I obtain departures from these... 30 Mineral Resources 2 2011-07-01 2011-07-01 false May I obtain departures from these drilling...

  16. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You must obtain written... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I obtain approval to drill a well? 250...

  17. Use of dimethyldioxirane in the epoxidation of the main constituents of the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora.

    PubMed

    Veloza, Luz A; Orozco, Lina M; Sepúlveda-Arias, Juan C

    2011-07-01

    Dimethyldioxirane (DMDO), a widely used oxidant in organic synthesis is considered an environmentally friendly oxygen transfer reagent because acetone is the only byproduct formed in its oxidation reactions. This work describes the isolation of the main constituents (terpenes) in the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora, their epoxidation with DMDO in acetone solution and the characterization of the resulting epoxides by GC-MS (EI) and NMR. This is one of the first reports involving the application of dioxirane chemistry to essential oils in order to generate modified compounds with potential uses in several areas of medicine and industry.

  18. Thermal Characterization of Edible Oils by Using Photopyroelectric Technique

    NASA Astrophysics Data System (ADS)

    Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.

    2013-05-01

    Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.

  19. Properties of Base Stocks Obtained from Used Engine Oils by Acid/Clay Re-refining (Proprietes des Stocks de Base Obtenus par Regeneration des Huiles a Moteur Usees par le Procede de Traitement a l’Acide et a la Terre),

    DTIC Science & Technology

    1980-09-01

    Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4

  20. Methods of analyzing crude oil

    SciTech Connect

    Cooks, Robert Graham; Jjunju, Fred Paul Mark; Li, Anyin

    The invention generally relates to methods of analyzing crude oil. In certain embodiments, methods of the invention involve obtaining a crude oil sample, and subjecting the crude oil sample to mass spectrometry analysis. In certain embodiments, the method is performed without any sample pre-purification steps.

  1. Evaluation of sensor arrays for engine oils using artificial oil alteration

    NASA Astrophysics Data System (ADS)

    Sen, Sedat; Schneidhofer, Christoph; Dörr, Nicole; Vellekoop, Michael J.

    2011-06-01

    With respect to varying operation conditions, only sensors directly installed in the engine can detect the current oil condition hence enabling to get the right time for the oil change. Usually, only one parameter is not sufficient to obtain reliable information about the current oil condition. For this reason, appropriate sensor principles were evaluated for the design of sensor arrays for the measurement of critical lubricant parameters. In this contribution, we report on the development of a sensor array for engine oils using laboratory analyses of used engine oils for the correlation with sensor signals. The sensor array comprises the measurement of conductivity, permittivity, viscosity and temperature as well as oil corrosiveness as a consequence of acidification of the lubricant. As a key method, rapid evaluation of the sensors was done by short term simulation of entire oil change intervals based on artificial oil alteration. Thereby, the compatibility of the sensor array to the lubricant and the oil deterioration during the artificial alteration process was observed by the sensors and confirmed by additional laboratory analyses of oil samples take.

  2. Comparison Between Oil-mist and Oil-jet Lubrication of High-speed, Small-bore, Angular-contact Ball Bearings

    NASA Technical Reports Server (NTRS)

    Pinel, Stanley I.; Signer, Hans R.; Zaretsky, Erwin V.

    2001-01-01

    Parametric tests were conducted with an optimized 35-mm-bore-angular-contact ball bearing on a high-speed, high-temperature bearing tester. Results from both air-oil mist lubrication and oil-jet lubrication systems used to lubricate the bearing were compared to speeds of 2.5 x 10(exp 6) DN. The maximum obtainable speed with air-oil mist lubrication is 2.5 x 10(exp 6) DN. Lower bearing temperatures and higher power losses are obtained with oil-jet lubrication than with air-oil mist lubrication. Bearing power loss is a direct function of oil flow to the bearing and independent of oil delivery system. For a given oil-flow rate, bearing temperature and power loss increase with increases in speed. Bearing life is an inverse function of temperature, the difference in temperature between the individual bearing ring components, and the resultant elastohydrodynamic (EHD) film thicknesses. Bearing life is independent of the oil delivery system except as it affects temperature. Cage slip increased with increases in speed. Cage slip as high as 7 percent was measured and was generally higher with air-oil mist lubrication than with oil-jet lubrication.

  3. Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil.

    PubMed

    Subroto, Erna; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2017-04-01

    A series of experiments was conducted to determine optimum conditions for supercritical carbon dioxide extraction of candlenut oil. A Taguchi experimental design with L 9 orthogonal array (four factors in three levels) was employed to evaluate the effects of pressure of 25-35 MPa, temperature of 40-60 °C, CO 2 flow rate of 10-20 g/min and particle size of 0.3-0.8 mm on oil solubility. The obtained results showed that increase in particle size, pressure and temperature improved the oil solubility. The supercritical carbon dioxide extraction at optimized parameters resulted in oil yield extraction of 61.4% at solubility of 9.6 g oil/kg CO 2 . The obtained candlenut oil from supercritical carbon dioxide extraction has better oil quality than oil which was extracted by Soxhlet extraction using n-hexane. The oil contains high unsaturated oil (linoleic acid and linolenic acid), which have many beneficial effects on human health.

  4. Separation of oil-water-sludge emulsions coming from palm oil mill process through microwave techniques.

    PubMed

    Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S

    2008-01-01

    The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.

  5. Utilization of sulphurized palm oil as cutting fluid base oil for broaching process

    NASA Astrophysics Data System (ADS)

    Sukirno; Ningsih, Y. R.

    2017-03-01

    Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is

  6. Improving oil classification quality from oil spill fingerprint beyond six sigma approach.

    PubMed

    Juahir, Hafizan; Ismail, Azimah; Mohamed, Saiful Bahri; Toriman, Mohd Ekhwan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wah, Wong Kok; Zali, Munirah Abdul; Retnam, Ananthy; Taib, Mohd Zaki Mohd; Mokhtar, Mazlin

    2017-07-15

    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving F stat >F critical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited. Copyright © 2017. Published by Elsevier Ltd.

  7. 21 CFR 186.1557 - Tall oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tall oil. 186.1557 Section 186.1557 Food and Drugs....1557 Tall oil. (a) Tall oil (CAS Reg. No. 8002-26-4) is essentially the sap of the pine tree. It is obtained commercially from the waste liquors of pinewood pulp mills and consists mainly of tall oil resin...

  8. Recovery potential of cold press byproducts obtained from the edible oil industry: physicochemical, bioactive, and antimicrobial properties.

    PubMed

    Karaman, Safa; Karasu, Salih; Tornuk, Fatih; Toker, Omer Said; Geçgel, Ümit; Sagdic, Osman; Ozcan, Nihat; Gül, Osman

    2015-03-04

    Physicochemical, bioactive, and antimicrobial properties of different cold press edible oil byproducts (almond (AOB), walnut (WOB), pomegranate (POB), and grape (GOB)) were investigated. Oil, protein, and crude fiber content of the byproducts were found between 4.82 and 12.57%, between 9.38 and 49.05%, and between 5.87 and 45.83%, respectively. GOB had very high crude fiber content; therefore, it may have potential for use as a new dietary fiber source in the food industry. As GOB, POB, and WOB oils were rich in polyunsaturated fatty acids, AOB was rich in monounsaturated fatty acids. Oil byproducts were also found to be rich in dietary mineral contents, especially potassium, calcium, phosphorus, and magnesium. WOB had highest total phenolic (802 ppm), flavonoid (216 ppm), and total hydrolyzed tannin (2185 ppm) contents among the other byproducts. Volatile compounds of all the byproducts are mainly composed of terpenes in concentration of approximately 95%. Limonene was the dominant volatile compound in all of the byproducts. Almond and pomegranate byproduct extracts showed antibacterial activity depending on their concentration, whereas those of walnut and grape byproducts showed no antibacterial activity against any pathogenic bacteria tested. According to the results of the present study, walnut, almond, pomegranate, and grape seed oil byproducts possess valuable properties that can be taken into consideration for improvement of nutritional and functional properties of many food products.

  9. Effect of unsaponifiable matter extracted from Pistacia khinjuk fruit oil on the oxidative stability of olive oil.

    PubMed

    Tavakoli, Javad; Estakhr, Parviz; Jelyani, Aniseh Zarei

    2017-08-01

    The present study was carried out to investigate the improvement of oxidative stability of refined olive oil using various concentrations of unsaponifiable matters extracted from Pistacia khinjuk fruit oil (UFO). For further elucidation of UFO antioxidative power, tertbutylhydroquinone (TBHQ) was used in an olive oil sample, too. Oxidative stability of olive oil samples without and with different levels of UFO (50, 100, 250, 500, 750 and 1000 ppm) and TBHQ (100 ppm) were studied via evaluation of conjugated diene value, carbonyl value, oil/oxidative stability index, acid value and total tocopherol (TT) contents through 8 h thermal process at 170 °C. Results obtained by oxidative stability assays revealed that the highest antioxidative activity of olive oil was obtained by 100 ppm of UFO, followed using 100, 250, 500, 750, and 1000 ppm of UFO and 100 ppm TBHQ, respectively. Evaluation of the relationship between oxidative stability indexes and TT changes indicated a strong correlation (R 2  = 0.9718) between mean relative resistance to oxidation and relative resistance to TT reduction during thermal process. By promotion of relative resistance to TT reduction, olive oil samples' relative resistance to oxidation was enhanced exponentially; implying importance of TT in promotion of oxidative stability of edible oils. The results obtained in this study showed that UFO has higher antioxidative activity compared to TBHQ; thus UFO can be considered as a natural antioxidant with ideal antioxidative activity.

  10. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I obtain approval to drill a well? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You...

  11. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How do I obtain approval to drill a well? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You...

  12. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I obtain approval to drill a well? 250..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a...

  13. 30 CFR 250.410 - How do I obtain approval to drill a well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How do I obtain approval to drill a well? 250... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.410 How do I obtain approval to drill a well? You...

  14. 33 CFR 151.37 - Obtaining an Attachment for NLSs to the IOPP Certificate and obtaining an NLS Certificate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of... Pollution from Ships Noxious Liquid Substance Pollution § 151.37 Obtaining an Attachment for NLSs to the...

  15. 33 CFR 151.37 - Obtaining an Attachment for NLSs to the IOPP Certificate and obtaining an NLS Certificate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of... Pollution from Ships Noxious Liquid Substance Pollution § 151.37 Obtaining an Attachment for NLSs to the...

  16. 33 CFR 151.37 - Obtaining an Attachment for NLSs to the IOPP Certificate and obtaining an NLS Certificate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of... Pollution from Ships Noxious Liquid Substance Pollution § 151.37 Obtaining an Attachment for NLSs to the...

  17. 33 CFR 151.37 - Obtaining an Attachment for NLSs to the IOPP Certificate and obtaining an NLS Certificate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Implementation of... Pollution from Ships Noxious Liquid Substance Pollution § 151.37 Obtaining an Attachment for NLSs to the...

  18. [Determination of lead in microemulsified rapeseed oil and bio-diesel oil by GFAAS].

    PubMed

    Li, Sheng-qing; He, Xiao-min; Du, Ping; Wang, Min; Chen, Hao; Wu, Mou-cheng

    2008-10-01

    Bio-diesel oil has attracted much attention as a substitutable energy sources for its renewable and eco-friendly property. However, problems of lead contamination in fuel are also emphasized increasingly at present. So it was of quite significance to determine the contents of lead in bio-diesel oil and its raw material rapeseed oil. An effective method was developed for the rapid determination of lead in rapeseed oil and bio-diesel oil by graphite furnace atomic absorption spectrometry (GFAAS) after their stabilization as microemulsions. In this research work, polyethyleneglycol octyl phenyl ether and n-butanol were used for emulsifier and auxiliary emulsifying agent, respectively. For Pb, efficient thermal stabilization was obtained using NH4H2PO4 as matrix modifier. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization and the influence of the microemulsion composition on the GFAAS response were observed by mixing different organic solvents. The ashing and atomization temperature and ramp rate influenced the sensitivity obtained for Ph. Take this into account, the optimum conditions of the graphite furnace atomic absorption spectrometric determination of Pb in rapeseed oil and bio-diesel oil samples were investigated. The results showed that the microemulsion was quite stable when the value of V(20% polyethyleneglycol octyl phenyl ether), V(n-butanol), V(oil) and V(water) was 0.1: 8.9: 0.5: 0.5, without matrix interference effect. The determination limit of the proposed method was 126.2 microg x L(-1) for Pb, comfortably below the values found in the analyzed samples. The recoveries were from 81.8% to 109.0%, which performed using the addition of different concentrations of lead to bio-diesel oil, rapeseed oil and petrochemical diesel samples. The relative standard deviation of determination was 5.84%. This work showed the great efficiency of the microemulsion

  19. Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring.

    PubMed

    De Padova, Diana; Mossa, Michele; Adamo, Maria; De Carolis, Giacomo; Pasquariello, Guido

    2017-02-01

    In case of oil spills due to disasters, one of the environmental concerns is the oil trajectories and spatial distribution. To meet these new challenges, spill response plans need to be upgraded. An important component of such a plan would be models able to simulate the behaviour of oil in terms of trajectories and spatial distribution, if accidentally released, in deep water. All these models need to be calibrated with independent observations. The aim of the present paper is to demonstrate that significant support to oil slick monitoring can be obtained by the synergistic use of oil drift models and remote sensing observations. Based on transport properties and weathering processes, oil drift models can indeed predict the fate of spilled oil under the action of water current velocity and wind in terms of oil position, concentration and thickness distribution. The oil spill event that occurred on 31 May 2003 in the Baltic Sea offshore the Swedish and Danish coasts is considered a case study with the aim of producing three-dimensional models of sea circulation and oil contaminant transport. The High-Resolution Limited Area Model (HIRLAM) is used for atmospheric forcing. The results of the numerical modelling of current speed and water surface elevation data are validated by measurements carried out in Kalmarsund, Simrishamn and Kungsholmsfort stations over a period of 18 days and 17 h. The oil spill model uses the current field obtained from a circulation model. Near-infrared (NIR) satellite images were compared with numerical simulations. The simulation was able to predict both the oil spill trajectories of the observed slick and thickness distribution. Therefore, this work shows how oil drift modelling and remotely sensed data can provide the right synergy to reproduce the timing and transport of the oil and to get reliable estimates of thicknesses of spilled oil to prepare an emergency plan and to assess the magnitude of risk involved in case of oil spills due

  20. Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr.

    PubMed

    de Almeida, Macia C S; Souza, Luciana G S; Ferreira, Daniele A; Monte, Francisco J Q; Braz-Filho, Raimundo; de Lemos, Telma L G

    2015-10-01

    Bauhinia pentandrais popularly known as "mororó" and inhabits the Caatinga and Savannah biomes. This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil.

  1. Comparison of the volatile constituents in cold-pressed bergamot oil and a volatile oil isolated by vacuum distillation.

    PubMed

    Belsito, Emilia L; Carbone, Concetta; Di Gioia, Maria L; Leggio, Antonella; Liguori, Angelo; Perri, Francesca; Siciliano, Carlo; Viscomi, Maria C

    2007-09-19

    The vacuum distillation of bergamot peels furnishes a high-quality essential oil that is totally bergapten-free. This oil was compared with that produced by distillation of cold-pressed oils and those commercially available. The oil obtained by vacuum distillation of the bergamot vegetable matrix shows a composition quite similar to that of the cold-pressed oil. It also displays qualitative characteristics that are superior with respect to those normally observed for essential oils isolated by distillation of cold-pressed oils. Oils isolated by the method presented here can constitute ideal candidates in producing foods, for example, Earl Grey tea, and cosmetic preparations.

  2. Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice.

    PubMed

    Rodrigues, Lindaiane Bezerra; Martins, Anita Oliveira Brito Pereira Bezerra; Ribeiro-Filho, Jaime; Cesário, Francisco Rafael Alves Santana; E Castro, Fyama Ferreira; de Albuquerque, Thaís Rodrigues; Fernandes, Maria Neyze Martins; da Silva, Bruno Anderson Fernandes; Quintans Júnior, Lucindo José; Araújo, Adriano Antunes de Sousa; Menezes, Paula Dos Passos; Nunes, Paula Santos; Matos, Isabella Gonçalves; Coutinho, Henrique Douglas Melo; Goncalves Wanderley, Almir; de Menezes, Irwin Rose Alencar

    2017-11-01

    Cyclodextrins (CDs) are cyclic oligosaccharides can enhance the bioavailability of drugs. Ocimum basilicum is an aromatic plant found in Brazil used in culinary. The essential oil of this plant presents anti-edematogenic and anti-inflammatory activities in acute and chronic inflammation. The aim of this study was to investigate the anti-inflammatory effects of the essential oil obtained from O. basilicum complexed with β - cyclodextrin (OBEO/β-CD) in mice. The complexation with β-cyclodextrin (β-CD) was performed by different methods and analyzed by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). The anti-inflammatory activity was evaluated using mice models of paw edema induced by carrageenan, dextran, histamine and arachidonic acid (AA); vascular permeability and peritonitis induced by carrageenan and granuloma induced by cotton block introduction. The DSC, TG and SEM analysis indicated that the OBEO was successfully complexed with β-CD. The oral administration of OEOB/β-CD prevented paw edema formation by decreasing vascular permeability in vivo, inhibited leukocyte recruitment to the peritoneal cavity, and inhibited granuloma formation in mice. Our results indicate that conjugation with β-CD improves the anti-inflammatory effects of OBEO in mice models of acute and chronic inflammation, indicating that this complex can be used in anti-inflammatory drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 21 CFR 184.1555 - Rapeseed oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of saturated fatty acids. The fatty acids are present in the same porportions which result from the full hydrogenation of fatty acids occurring in natural rapeseed oil. The rapeseed oil is obtained from the napus and...

  4. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.

    PubMed

    Uçar, Suat; Karagöz, Selhan

    2017-05-01

    The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg -1 and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg -1 . It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.

  5. Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.).

    PubMed

    Singh, Sunita; Das, S S; Singh, G; Schuff, Carola; de Lampasona, Marina P; Catalán, César A N

    2014-01-01

    Gas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06, and 8.33 ± 0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria.

  6. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    PubMed

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 33 CFR 151.37 - Obtaining an Attachment for NLSs to the IOPP Certificate and obtaining an NLS Certificate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL... MARPOL 73/78 and the Protocol on Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Noxious Liquid Substance Pollution § 151.37 Obtaining an Attachment for NLSs to the...

  8. Chemical composition of shale oil. 1; Dependence on oil shale origin

    SciTech Connect

    Kesavan, S.; Lee, S.; Polasky, M.E.

    1991-01-01

    This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent themore » abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.« less

  9. Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr

    PubMed Central

    de Almeida, Macia C. S.; Souza, Luciana G. S.; Ferreira, Daniele A.; Monte, Francisco J. Q.; Braz-Filho, Raimundo; de Lemos, Telma L. G.

    2015-01-01

    Background: Bauhinia pentandrais popularly known as “mororó” and inhabits the Caatinga and Savannah biomes. Objective: This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. Materials and Methods: The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. Results: The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Conclusion: Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil. PMID:26664026

  10. Composition, In Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins Obtained from Black Cumin Seeds (Nigella sativa L.)

    PubMed Central

    Singh, Sunita; Das, S. S.; Singh, G.; Schuff, Carola; de Lampasona, Marina P.; Catalán, César A. N.

    2014-01-01

    Gas chromatography-mass spectrometry (GC-MS) analysis revealed the major components in black cumin essential oils which were thymoquinone (37.6%) followed by p-cymene (31.2%), α-thujene (5.6%), thymohydroquinone (3.4%), and longifolene (2.0%), whereas the oleoresins extracted in different solvents contain linoleic acid as a major component. The antioxidant activity of essential oil and oleoresins was evaluated against linseed oil system at 200 ppm concentration by peroxide value, thiobarbituric acid value, ferric thiocyanate, ferrous ion chelating activity, and 1,1-diphenyl-2-picrylhydrazyl radical scavenging methods. The essential oil and ethyl acetate oleoresin were found to be better than synthetic antioxidants. The total phenol contents (gallic acid equivalents, mg GAE per g) in black cumin essential oil, ethyl acetate, ethanol, and n-hexane oleoresins were calculated as 11.47 ± 0.05, 10.88 ± 0.9, 9.68 ± 0.06, and 8.33 ± 0.01, respectively, by Folin-Ciocalteau method. The essential oil showed up to 90% zone inhibition against Fusarium moniliforme in inverted petri plate method. Using agar well diffusion method for evaluating antibacterial activity, the essential oil was found to be highly effective against Gram-positive bacteria. PMID:24689064

  11. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.

    PubMed

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-01

    Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 - montmorillonite K10, KSF - montmorillonite KSF, B - Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500°C with heating rate of 100°C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3-79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500°C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams.

    PubMed

    Uprety, Bijaya K; Reddy, Jayanth Venkatarama; Dalli, Sai Swaroop; Rakshit, Sudip K

    2017-07-01

    We have demonstrated possible use of microbial oil in biopolymer industries. Microbial oil was produced from biodiesel based crude glycerol and subsequently converted into polyol. Fermentation of crude glycerol in a batch bioreactor using Rhodosporidium toruloides ATCC 10788 produced 18.69g/L of lipid at the end of 7days. The microbial oil was then chemically converted to polyol and characterized using FT-IR and 1 H NMR. For comparison, canola oil and palm oil were also converted into their respective polyols. The hydroxyl numbers of polyols from canola, palm and microbial oil were found to be 266.86, 222.32 and 230.30 (mgKOH/g of sample) respectively. All the polyols were further converted into rigid and semi-rigid polyurethanes (maintaining the molar -NCO/-OH ratio of 1.1) to examine their suitability in polymer applications. Conversion of microbial lipid to polyurethane foam also provides a new route for the production of polymers using biodiesel based crude glycerol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy.

    PubMed

    Zhang, Qing; Liu, Cheng; Sun, Zhijian; Hu, Xiaosong; Shen, Qun; Wu, Jihong

    2012-06-01

    The application of Fourier Transform Infrared (FTIR) Spectroscopy to authenticate edible vegetable oils (corn, peanut, rapeseed and soybean oil) adulterated with used frying oil was introduced in this paper. The FTIR spectrum of oil was divided into 22 regions which corresponded to the constituents and molecular structures of vegetable oils. Samples of calibration set were classified into four categories for corn and peanut oils and five categories for rapeseed and soybean oils by cluster analysis. Qualitative analysis of validation set was obtained by discriminant analysis. Area ratio between absorption band 19 and 20 and wavenumber shift of band 19 were treated by linear regression for quantitative analysis. For four adulteration types, LODs of area ratio were 6.6%, 7.2%, 5.5%, 3.6% and wavenumber shift were 8.1%, 9.0%, 6.9%, 5.6%, respectively. The proposed methodology is a useful tool to authenticate the edible vegetable oils adulterated with used frying oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  15. Oil film thickness using airborne laser-induced oil fluorescence backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1983-01-01

    Remote airborne measurement of oil film thickness on ocean surface using laser-induced water Raman backscatter is discussed. It is pointed out that the theoretical model of oil fluorescence by Horvath et al. (1971) contains the necessary constituents to provide for the natural background fluorescence that is also induced by the laser during the course of an oil thickness experiment. How the various parameters of the model are obtained from typical airborne profile data is discussed, and it is shown that the water Raman backscatter may be used to assist further in the application of the data. The regions or water types over which the technique might be most useful or applicable are discussed.

  16. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    SciTech Connect

    Solak, Agnieszka; Rutkowski, Piotr, E-mail: piotr.rutkowski@pwr.wroc.pl

    2014-02-15

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with highmore » yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.« less

  17. Integrated oil production and upgrading using molten alkali metal

    DOEpatents

    Gordon, John Howard

    2016-10-04

    A method that combines the oil retorting process (or other process needed to obtain/extract heavy oil or bitumen) with the process for upgrading these materials using sodium or other alkali metals. Specifically, the shale gas or other gases that are obtained from the retorting/extraction process may be introduced into the upgrading reactor and used to upgrade the oil feedstock. Also, the solid materials obtained from the reactor may be used as a fuel source, thereby providing the heat necessary for the retorting/extraction process. Other forms of integration are also disclosed.

  18. Fast pyrolysis of oil palm shell (OPS)

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  19. Free-radical scavenging activity and antibacterial impact of Greek oregano isolates obtained by SFE.

    PubMed

    Stamenic, Marko; Vulic, Jelena; Djilas, Sonja; Misic, Dusan; Tadic, Vanja; Petrovic, Slobodan; Zizovic, Irena

    2014-12-15

    The antioxidant and antibacterial properties of Greek oregano extracts obtained by fractional supercritical fluid extraction (SFE) with carbon dioxide were investigated and compared with the properties of essential oil obtained by hydrodistillation. According to DPPH, hydroxyl radical and superoxide anion radical scavenging activity assays, the supercritical extracts expressed stronger antioxidant activity comparing to the essential oil. The most effective was the supercritical extract obtained by fractional extraction at 30 MPa and 100°C after the volatile fraction had been extracted at lower pressure. At the same time this extract showed strong antibacterial activity against staphylococci, including MRSA strain, but did not affect Escherichia coli of normal intestinal flora. The essential oil obtained by hydrodistillation showed stronger antibacterial activity against E. coli, Salmonella and Klebsiella pneumoniae, comparing to the supercritical extracts but at the same affected the normal gut flora. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Antioxidant properties of chemical extracts and bioaccessible fractions obtained from six Spanish monovarietal extra virgin olive oils: assays in Caco-2 cells.

    PubMed

    Borges, Thays H; Cabrera-Vique, Carmen; Seiquer, Isabel

    2015-07-01

    The antioxidant activity and the total phenolic content (TPC) of six Spanish commercial monovarietal extra virgin olive oils (Arbequina, Cornicabra, Hojiblanca, Manzanilla, Picual and Picudo) were evaluated in chemical extracts and in bioaccessible fractions (BF) obtained after in vitro digestion. Moreover, the effects of the BF on cell viability and the generation of reactive oxygen species (ROS) were investigated in Caco-2 cell cultures. The in vitro digestion process increased the TPC and antioxidant activity evaluated by different methods (ABTS, DPPH and FRAP) compared with chemical extracts. After digestion, the Picual variety showed better beneficial effects in preserving cell integrity than the other varieties studied. Significant reductions of ROS production were observed after incubation of Caco-2 cells with the BF of all the varieties and, moreover, a protective effect against the oxidative stress induced by t-BOOH was shown for Arbequina, Cornicabra, Hojiblanca, Manzanilla and Picual. These findings seem to be an additional reason supporting the health benefits of Spanish extra virgin olive oil varieties. Multivariate factor analysis and principal component analysis were applied to assess the contribution of antioxidant activity and TPC, before and after digestion, to the characterization of the different varieties.

  1. Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System.

    PubMed

    Bouassida, Mouna; Ghazala, Imen; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2018-01-28

    Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

  2. Chemical, Rheological and Nutritional Characteristics of Sesame and Olive Oils Blended with Linseed Oil.

    PubMed

    Hashempour-Baltork, Fataneh; Torbati, Mohammadali; Azadmard-Damirchi, Sodeif; Peter Savage, Geoffrey

    2018-03-01

    Purpose: Nutritional quality and oxidation stability are two main factors in the evaluation of edible oils. Oils in their pure form do not have an ideal fatty acid composition or suitable oxidative stability during processing or storage. Methods: This study was designed to evaluate the chemical, nutritional and rheological properties of oil mixtures in three ratios of olive: sesame: linseed, 65:30:5; 60:30:10 and 55:30:15. Acidity value, peroxide value, rancimat test, fatty acid profile, nutritional indexes and rheological properties of the oil blends were determined. The nutritional quality was determined by indexes, including the atherogenic and thrombogenic indexs; the ratios of hypocholesterolemic: hypercholesterolemic; poly unsaturated fatty acid: saturated fatty acid and the ω 6 :ω 3 . Results: The results indicated that blending of other vegetable oils with linseed oil could balance ω 6 :ω 3 . Results showed that formulated oils had a good balance of oxidation stability and nutritional properties as well. Rheological data showed that these oil blends followed Newtonian behavior at 4°C and 25°C. Conclusion: According to the results, addition of linseed oil to vegetable oils containing high levels of bioactive compounds was a simple and economic practice to obtain a functional oil with good nutritional and stability properties.

  3. Fast-HPLC Fingerprinting to Discriminate Olive Oil from Other Edible Vegetable Oils by Multivariate Classification Methods.

    PubMed

    Jiménez-Carvelo, Ana M; González-Casado, Antonio; Pérez-Castaño, Estefanía; Cuadros-Rodríguez, Luis

    2017-03-01

    A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phase LC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis took only 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil were used: one input-class, two input-class, and pseudo two input-class.

  4. Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions.

    PubMed

    Poppe, Jakeline Kathiele; Matte, Carla Roberta; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Ayub, Marco Antônio Záchia

    2018-04-21

    This work describes the use of an ultrasound system for the enzymatic transesterification of oils using combi-lipases as biocatalyst. The reactions were carried out evaluating the individual use of waste oil and fresh soybean oil, and the immobilized lipases CALB, TLL, and RML were used as biocatalysts. It was performed in a mixture design of three factors to obtain the ideal mixture of lipases according to the composition of fatty acids present in each oil, and the main reaction variables were optimized. After 18 h of reaction, ultrasound provided a biodiesel yield of about 90% when using soybean oil and 70% using the waste oil. The results showed that ultrasound technology, in combination with the application of enzyme mixtures, known as combi-lipases, and the use of waste oil, could be a promising route to reduce the overall process costs of enzymatic production of biodiesel.

  5. Ultrasound-assisted extraction of flaxseed oil using immobilized enzymes.

    PubMed

    Long, Jing-jing; Fu, Yu-jie; Zu, Yuan-gang; Li, Ji; Wang, Wei; Gu, Cheng-bo; Luo, Meng

    2011-11-01

    An aqueous enzymatic process assisted by ultrasound extraction (AEP-UE) was applied to the extraction of oil from flaxseed (Linum usitatissimum L.). The highest oil recovery of 68.1% was obtained when ground flaxseed was incubated with 130 U/g of cellulase, pectinase, and hemicellulase for 12h, at 45°C and pH 5.0. The IC(50) values of oil obtained by AEP-UE and organic solvent extraction (OSE), as measured by DPPH scavenging activity essay, were 2.27 mg/mL and 3.31 mg/mL. The AEP-UE-derived oil had a 1.5% higher content of unsaturated fatty acids than the OSE-derived oil. AEP-UE is therefore a promising environmentally friendly method for large-scale preparation of flaxseed oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.

    PubMed

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo

    2017-11-01

    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.

    PubMed

    Román Falcó, Iván P; Grané Teruel, Nuria; Prats Moya, Soledad; Martín Carratalá, M Luisa

    2012-11-28

    A new approach for the determination of kinetic parameters of the cis/trans isomerization during the oxidation process of 24 virgin olive oils belonging to 8 different varieties is presented. The accelerated process of degradation at 100 °C was monitored by recording the Fourier transform infrared spectra. The parameters obtained confirm pseudo-first-order kinetics for the degradation of cis and the appearance of trans double bonds. The kinetic approach affords the induction time and the rate coefficient; these parameters are related to the fatty acid profile of the fresh olive oils. The data obtained were used to compare the oil stability of the samples with the help of multivariate statistical techniques. Fatty acid allowed a classification of the samples in five groups, one of them constituted by the cultivars with higher stability. Meanwhile, the kinetic parameters showed greater ability for the characterization of olive oils, allowing the classification in seven groups.

  8. Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill

    SciTech Connect

    Neff, J.M.; Owens, E.H.; Stoker, S.W.

    1995-12-31

    Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurfacemore » oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m{sup 2} to about 12,000 m{sup 2}. Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs.« less

  9. Evaluating lubricating capacity of vegetal oils using Abbott-Firestone curve

    NASA Astrophysics Data System (ADS)

    Georgescu, C.; Cristea, G. C.; Dima, C.; Deleanu, L.

    2017-02-01

    The paper presents the change of functional parameters defined on the Abbott-Firestone curve in order to evaluate the surface quality of the balls from the four ball tester, after tests done with several vegetable oils. The tests were done using two grades of rapeseed oil (degummed and refined) and two grades of soybean oil (coarse and degummed) and a common transmission oil (T90). Test parameters were 200 N and 0.576 m/s (1500 rpm) for 60 minutes. For the refined rapeseed oil, the changes in shape of the Abbott-Firestone curves are more dramatic, these being characterized by high values of Spk (the average value for the wear scars on the three balls), thus being 40% of the sum Svk + Sk + Spk, percentage also obtained for the soybean oil, but the value Spk being lower. For the degummed soybean oil, the profile height of the wear scars are taller than those obtained after testing the coarse soybean oil, meaning that the degumming process has a negative influence on the worn surface quality and the lubricating capacity of this oil. Comparing the surface quality of the wear scars on fixed tested balls is a reliable method to point out the lubricant properties of the vegetable oils, especially if they are compared to a “classical” lubricant as a non-additivated transmission mineral oil T90. The best surface after testing was obtained for the soybean oil, followed by T90 oil and the degummed grades of the soybean oil and rapeseed oil (these three giving very close values for the functional parameters), but the refined rapeseed oil generated the poorest quality of the wear scars on the balls, under the same testing conditions.

  10. Estimation of trace amounts of benzene in solvent-extracted vegetable oils and oil seed cakes.

    PubMed

    Masohan, A; Parsad, G; Khanna, M K; Chopra, S K; Rawat, B S; Garg, M O

    2000-09-01

    A new method is presented for the qualitative and quantitative estimation of trace amounts (up to 0.15 ppm) of benzene in crude as well as refined vegetable oils obtained by extraction with food grade hexane (FGH), and in the oil seed cakes left after extraction. The method involves the selection of two solvents; cyclohexanol, for thinning of viscous vegetable oil, and heptane, for azeotroping out trace benzene as a concentrate from the resulting mixture. Benzene is then estimated in the resulting azeotrope either by UV spectroscopy or by GC-MS subject to availability and cost effectiveness of the latter. Repeatability and reproducibility of the method is within 1-3% error. This method is suitable for estimating benzene in vegetable oils and oil seed cakes.

  11. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of § 279.11 by performing analyses or obtaining copies of analyses or other information documenting...-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or... meets the specifications for used oil fuel under § 279.11, must keep copies of analyses of the used oil...

  12. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by rendering is refined. The oil is...

  13. Stability of omega-3 LC-PUFA-rich photoautotrophic microalgal oils compared to commercially available omega-3 LC-PUFA oils.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Lemahieu, Charlotte; Muylaert, Koenraad; Van Durme, Jim; Goiris, Koen; Foubert, Imogen

    2013-10-23

    Microalgae are the primary producers of omega-3 LC-PUFA, which are known for their health benefits. Their oil may thus be a potential alternative for fish oil. However, oxidative and hydrolytic stability of omega-3 LC-PUFA oils are important parameters. The purpose of this work was therefore to evaluate these parameters in oils from photoautotrophic microalgae (Isochrysis, Phaeodactylum, Nannochloropsis gaditana, and Nannochloropsis sp.) obtained with hexane/isopropanol (HI) and hexane (H) and compare them with commercial omega-3 LC-PUFA oils. When the results of both the primary and secondary oxidation parameters were put together, it was clear that fish, tuna, and heterotrophic microalgae oil are the least oxidatively stable oils, whereas krill oil and the microalgae oils performed better. The microalgal HI oils were shown to be more oxidatively stable than the microalgal H oils. The hydrolytic stability was shown not to be a problem during the storage of any of the oils.

  14. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide.

    PubMed

    Mishima, Kenji; Honjo, Masatoshi; Sharmin, Tanjina; Ito, Shota; Kawakami, Ryo; Kato, Takafumi; Misumi, Makoto; Suetsugu, Tadashi; Orii, Hideaki; Kawano, Hiroyuki; Irie, Keiichi; Sano, Kazunori; Mishima, Kenichi; Harada, Takunori; Ouchi, Mikio

    2016-09-01

    Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.

  15. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...

  16. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...

  17. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...

  18. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conditions: (a) The sperm oil is derived from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by...

  19. Breakthrough Adsorption Study of Crude Oil Removal Using Buffing Dust

    NASA Astrophysics Data System (ADS)

    Setyaningsih, L. W. N.; Yuliansyah, A. T.; Prasetyo, A.; Arimanintan, S. K.; Putri, D. R.

    2018-05-01

    The utilization of leather industry solid waste as adsorbent to separate oil from water emulsions of surfactant flooding process is a solution that is relatively inexpensive. This study was conducted aiming to obtain a mathematical model that is appropriate for the adsorption process of crude oil by buffing dust in emulsion phase with a continuous adsorption method. Variations in the column adsorption experiments were carried out, such as: flow rate of feed of water-crude oil-surfactant, the concentration of crude oil in the feed, and mass of adsorbent used. Data were evaluated using three models: Adams Bohart, Thomas and Yan. Best results are obtained on the following conditions, the feed flow rate of 60 mL/minute, the crude oil concentration in feed is 1.5% volume and the mass of adsorbent used was 10 g. The values of kinetic constant and adsorption capacity obtained from Yan Model was 21.7774 mL/mg/minute and 220.9581 mg/g with the relative error obtained is 5.4424%.

  20. Recycling of waste engine oil for diesel production.

    PubMed

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Correlation between electron spin resonance spectra and oil yield in eastern oil shales

    USGS Publications Warehouse

    Choudhury, M.; Rheams, K.F.; Harrell, J.W.

    1986-01-01

    Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.

  2. Chemical, physical and tribological investigation of polymercaptanized soybean oil

    USDA-ARS?s Scientific Manuscript database

    Polymercaptanized soybean oil (PMSO) was investigated for its chemical, physical and tribological properties relative to soybean oil (SO) and also as a potential multi-functional lubricant additive in high oleic sunflower oil (HOSuO). Analytical investigations showed that PMSO is obtained by convers...

  3. [The quality of fat: olive oil].

    PubMed

    Tur Marí, Josep A

    2004-06-01

    Olive oil is one of the most characteristic Mediterranean Diet foods, also being a key contributor to the healthy aspects attributed to this dietary pattern. Since 4000 BC, olive oil has been obtained in the Mediterranean area, but now it is exceeding its natural borders, and currently the use of olive oil is a worldwide synonym of health and gastronomic quality. Olive oil has important effects on the body, and has protective effects against several pathologies, i.e. cardiovascular diseases, and various cancers, as well as to diminish the age-related cognitive decline. These effects are due to the olive oil richness in monounsaturated fatty acids and antioxidant substances. Olive oil has been and is the food that define one of the most oldest methods of cooking: frying.

  4. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  5. Catalytic cracking of Mayan gas oil and selected hydrotreated products: Topical report

    SciTech Connect

    Wells, J.W.; Zagula, E.J.; Brinkman, D.W.

    1988-01-01

    The catalytic cracking of a Mayan vacuum gas oil and the products from mild, moderate, and severe hydrotreating of this gas oil was evaluated over a low-metal equilibrium catalyst in a microconfined bed unit (MCBU). Results obtained with the Mayan feedstocks are compared with those of an earlier study conducted with similar feedstocks obtained from a Wilmington (CA) crude oil. Two levels of catalytic cracking severity were used in the evaluation. Performance and product analysis showed that hydrotreating improves the yields obtained from catalytic cracking and the quality of the resultant products. In contrast to results obtained with the Wilmingtonmore » feedstocks, conversion and gasoline yield do not improve with severity of the hydrotreating of the Mayan vacuum gas oils. The insensitivity of the cracking performance to hydrotreating severity may reflect the more facile removal of polar compounds (heteroatom compounds) on hydrotreating of the Mayan gas oil in comparison to the Wilmington. Sulfur and nitrogen contents of the liquid products (gasoline, light cycle oil, heavy cycle oil) decreased as the severity of the feed hydrotreating increased. 7 refs., 12 figs., 15 tabs.« less

  6. The monoamine oxidase inhibitory activity of essential oils obtained from Eryngium species and their chemical composition.

    PubMed

    Klein-Júnior, Luiz Carlos; dos Santos Passos, Carolina; Tasso de Souza, Tiago Juliano; Gobbi de Bitencourt, Fernanda; Salton, Juliana; de Loreto Bordignon, Sérgio Augusto; Henriques, Amélia Teresinha

    2016-01-01

    Monoamine oxidase (MAO) inhibitors are used in the treatment of depression, anxiety disorders, and the symptomatic treatment of Parkinson's disease. Eryngium, the most representative of the Apiaceae family, is well known for the presence of essential oils (EOs), which have already demonstrated MAO inhibitory potential. The objective of this study is to evaluate the MAO inhibitory capacity of the EOs obtained from Eryngium floribundum Cham. & Schlecht. (EF), E. eriophorum Cham. & Schlecht. (EE), E. nudicaule Lam. (EN), E. horridum Malme (EH), and E. pandanifolium Cham. & Schlecht. (EP). EOs were obtained from fresh whole plants by hydrodistillation (3 h). Chemical analyses were performed by GC/MS using apolar and polar columns, with oven temperature from 60 to 300 °C at 3 °C/min. The MAO-A and -B activities were evaluated in vitro by an end-point method using kynuramine as the substrate and mitochondrial suspension or human recombinant enzymes as the enzymatic source. DMSO 2%, clorgyline 10(-7) M, and pargyline 10(-6) M were used as controls. EFEO, EEEO, ENEO, EHEO, and EPEO GC/MS analysis showed (E)-caryophyllene (4.9-10.8%), germacrene D (0.6-35.1%), bicyclogermacrene (10.4-17.2), spathulenol (0.4-36.0%), and globulol (1.4-18.6%) as main constituents. None of the EOs inhibited MAO-A activity (4 and 40 μg/mL). However, EHEO inhibited MAO-B activity with an IC50 value of 5.65 μg/mL (1-200 μg/mL). Pentadecane (10 μM), its major constituent (53.5%), did not display significant MAO-B inhibition. The study demonstrates the promising application of Eryngium species as a source of potential central nervous system bioactive secondary metabolites, specially related to neurodegenerative disorders.

  7. Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass.

    PubMed

    Boleydei, Hamid; Mirghaffari, Nourollah; Farhadian, Omidvar

    2018-05-15

    Efficiency of a biosorbent prepared from the green macroalga Enteromorpha intestinalis biomass for decontamination of seawater and freshwater polluted by crude oil and engine spent oil was compared. The effect of different experimental conditions including contact time, pH, particle size, initial oil concentration, and biosorbent dose on the oil biosorption was studied in the batch method. The biosorbent was characterized by CHNOS, FTIR, and SEM analysis. The experimental data were well fitted to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. Based on the obtained results, the adsorption of spent oil with higher viscosity was better than crude oil. The biosorption of oil hydrocarbons from seawater was more efficient than freshwater. The algal biomasses which are abundantly available could be effectively used as a low-cost and environmentally friendly adsorbent for remediation of oil spill in the marine environments or in the water and wastewater treatment.

  8. A novel solution blending method for using olive oil and corn oil as plasticizers in chitosan based organoclay nanocomposites.

    PubMed

    Giannakas, A; Patsaoura, A; Barkoula, N-M; Ladavos, A

    2017-02-10

    In the current study a novel reflux-solution blending method is being followed with the introduction of small ethanol volumes into chitosan acetic acid aquatic solution in order to incorporate olive oil and corn oil in chitosan and its organoclay nanocomposites. Ethanol enables the direct interaction of chitosan with oils and results in effective plasticization of chitosan/oil films with remarkable increase of the strain at break from 8% of chitosan and chitosan/oil aquatic samples to app. 22% for chitosan/oil ethanol samples. Compared with olive oil, corn oil is less effective as plasticizer (max strain at break app. 14%). Addition of oils is beneficial for water sorption, water vapor permeability and oxygen permeability response of the obtained films. Barrier properties are further improved after the use of OrgMMT, however OrgMMT results in significant reduction of strain at break of all oil containing samples (app. 8%) acting as stress concentrator upon deformation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Development of epoxide compound from kapok oil for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Anam, M. K.; Supranto; Murachman, B.; Purwono, S.

    2017-06-01

    Epoxide compound is made by reacting Kapok Oil with acetic acid and hydrogen peroxide with in situ method. The epoxidation reaction was varied at temperatures of 60 °C, 70 °C and 80 °C, while the time of reaction time was varied at 15 minutes, 30 minutes, 60 minutes and 90 minutes. The reaction rate coefficient for the epoxide was obtained as {\\boldsymbol{k}}{\\boldsymbol{=}}{{124}}{\\boldsymbol{,}}{{82}} {{\\exp }} {\\boldsymbol{\\bigg(}}\\frac{{\\boldsymbol-}{{24}}{\\boldsymbol{,}}{{14}}}{{\\boldsymbol{R}}{\\boldsymbol{T}}}{\\boldsymbol{\\bigg)}}. The addition of the epoxide compound 0.5 w/w in the formulation of SLS was able to reduce the IFT value up to 9.95 x 10-2 m N/m. The addition of co-surfactant (1-octanol) was varied between 0.1 and 0.4 of the total mass of the main formulation (SLS + epoxide + water formation). The smallest interfacial tension value is obtained on the addition of co-surfactants as much as 0.2 w/w, with the IFT value is 2.43 x 10-3 m N/m. The effectiveness of the chemicals was tested through micro displacement using artificial porous medium. The experimental results show that some chemicals developed in the laboratory can be used as EOR chemicals. The oil displacement experiments show that as much as 20 to 80 of remaining oil can be recovered by flooding it with the chemicals. The results also show that the oil recovery depends on type of chemicals and chemical concentration.

  10. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows.

    PubMed

    Yang, S L; Bu, D P; Wang, J Q; Hu, Z Y; Li, D; Wei, H Y; Zhou, L Y; Loor, J J

    2009-11-01

    The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P < 0.05) with oil supplementation compared with C. Concentration of ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P < 0.05) due to oil compared with C. Compared with C, oil supplementation resulted in lower (P < 0.05) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 104 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (P < 0.05). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus

  11. Effect of infusion of spices into the oil vs. combined malaxation of olive paste and spices on quality of naturally flavoured virgin olive oils.

    PubMed

    Caponio, Francesco; Durante, Viviana; Varva, Gabriella; Silletti, Roccangelo; Previtali, Maria Assunta; Viggiani, Ilaria; Squeo, Giacomo; Summo, Carmine; Pasqualone, Antonella; Gomes, Tommaso; Baiano, Antonietta

    2016-07-01

    Olive oil flavouring with aromatic plants and spices is a traditional practice in Mediterranean gastronomy. The aim of this work was to compare the influence of two different flavouring techniques (infusion of spices into the oil vs. combined malaxation of olives paste and spices) on chemical and sensory quality of flavoured olive oil. In particular, oxidative and hydrolytic degradation (by routine and non-conventional analyses), phenolic profiles (by HPLC), volatile compounds (by SPME-GC/MS), antioxidant activity, and sensory properties (by a trained panel and by consumers) of the oils were evaluated. The obtained results evidenced that the malaxation method was more effective in extracting the phenolic compounds, with a significantly lower level of hydrolysis of secoiridoids. As a consequence, antioxidant activity was significantly lower in the oils obtained by infusion, which were characterized by a higher extent of the oxidative degradation. The volatile compounds were not significantly influenced by changing the flavouring method, apart for sulfur compounds that were more abundant in the oils obtained by the combined malaxation method. From a sensory point of view, more intense bitter and pungent tastes were perceived when the infusion method was adopted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  13. Biodiesel production from heterotrophic microalgal oil.

    PubMed

    Miao, Xiaoling; Wu, Qingyu

    2006-04-01

    The present study introduced an integrated method for the production of biodiesel from microalgal oil. Heterotrophic growth of Chlorella protothecoides resulted in the accumulation of high lipid content (55%) in cells. Large amount of microalgal oil was efficiently extracted from these heterotrophic cells by using n-hexane. Biodiesel comparable to conventional diesel was obtained from heterotrophic microalgal oil by acidic transesterification. The best process combination was 100% catalyst quantity (based on oil weight) with 56:1 molar ratio of methanol to oil at temperature of 30 degrees C, which reduced product specific gravity from an initial value of 0.912 to a final value of 0.8637 in about 4h of reaction time. The results suggested that the new process, which combined bioengineering and transesterification, was a feasible and effective method for the production of high quality biodiesel from microalgal oil.

  14. Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill.

    PubMed

    Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Won, Jong Ho; Han, Gi Myung; Hong, Sang Hee; Kim, Moonkoo; Jung, Jee-Hyun; Shim, Won Joon

    2011-12-15

    After the Hebei Spirit oil spill in December 2007, mixtures of three types of Middle East crude oil were stranded along 375 km of coastline in Western Korea. Stranded oils were monitored for their identity and weathering status in 19 stations in three provinces. The results obtained using a weathering model indicated that evaporation would be a dominant weathering process immediately after the spill and the sequential changes of chemical composition in the field verified this prediction positively. In the early stages of weathering, the half-life of spilled oil was calculated to be 2.6 months. Tiered fingerprinting approaches identified background contamination and confirmed the identity of the stranded oils with the spill source. Double ratios using alkylated phenanthrenes and dibenzothiophenes in samples after the spill clearly reveal the impact of weathering on oil. However, to derive defensible fingerprinting for source identification and allocation, recalcitrant biomarkers are extremely useful. Weathering status of the stranded oils was evaluated using composition profiles of saturated hydrocarbons, polycyclic aromatic hydrocarbons and various weathering indices. Most samples collected 8 months after the spill were categorized in either the advanced or extreme weathering states. Gradual increase in toxic components in the residual oil through weathering emphasizes the need for adaptive ecotoxicological approaches. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    NASA Astrophysics Data System (ADS)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  16. A superhydrophobic copper mesh as an advanced platform for oil-water separation

    NASA Astrophysics Data System (ADS)

    Ren, Guina; Song, Yuanming; Li, Xiangming; Zhou, Yanli; Zhang, Zhaozhu; Zhu, Xiaotao

    2018-01-01

    Improving the separation efficiency and simplifying the separation process would be highly desired for oil-water separation yet still challenging. Herein, to address this challenge, we fabricated a superhydrophobic copper mesh by an immersion process and exploited it as an advanced platform for oil-water separation. To realize oil-water separation efficiently, the obtained mesh was enfolded directly to form a boat-like device, and it could also be mounted on an open end of a glass barrel to form the oil skimmer device. For these devices, they can collect the floating oils through the pores of the copper mesh while repelling water completely, and the oil collection efficiency is up to 99.5%. Oils collected in the devices can be easily sucked out into a container for storing, without requiring mechanical handing for recycling. Importantly, the miniature boat and the oil skimmer devices can retain their enhanced oil collection efficiency even after 10 cycles of oil-water separation. Moreover, exploiting its superhydrophobicity under oil, the obtained copper mesh was demonstrated as a novel platform to remove tiny water droplets from oil.

  17. Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration.

    PubMed

    Vietina, Michelangelo; Agrimonti, Caterina; Marmiroli, Nelson

    2013-12-15

    Extra virgin olive oil is frequently subjected to adulterations with addition of oils obtained from plants other than olive. DNA analysis is a fast and economic tool to identify plant components in oils. Extraction and amplification of DNA by PCR was tested in olives, in milled seeds and in oils, to investigate its use in olive oil traceability. DNA was extracted from different oils made of hazelnut, maize, sunflower, peanut, sesame, soybean, rice and pumpkin. Comparing the DNA melting profiles in reference plant materials and in the oils, it was possible to identify any plant components in oils and mixtures of oils. Real-Time PCR (RT-PCR) platform has been added of the new methodology of high resolution melting (HRM), both were used to analyse olive oils mixed with different percentage of other oils. Results showed HRM a cost effective method for efficient detection of adulterations in olive oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The effectiveness of eucalyptus oil, orange oil, and xylene in dissolving different endodontic sealers.

    PubMed

    Yadav, Hemant Kumar; Yadav, Rakesh Kumar; Chandra, Anil; Thakkar, Rahul Rameshbhai

    2016-01-01

    The objective of this study was to evaluate the dissolution effectiveness of eucalyptus oil, orange oil, xylene, and distilled water on three different endodontic sealers. About 240 samples of root canal sealers (eighty for each sealer) were prepared and divided into four groups of 20 each for immersion in different organic solvents. Each group was further subdivided into two subgroups (n = 10) for 2 and 10 min of immersion time. The mean percentage of weight loss was determined for each sealer in each solvent at both time periods. Data were statistically analyzed by two factor analysis of variance and significance of mean difference was obtained by Tukey's post hoc test (P < 0.05). The lowest level of solubility was observed for Adseal followed by Apexit Plus and Endomethasone N at both time periods in all solvents. Apexit Plus showed no significant (P > 0.05) difference in its dissolution in all the organic solvents except distilled water at both the time periods. The solubility profile of Endomethasone N and Adseal did not differ significantly among eucalyptus oil, orange oil, and xylene at 2 min and between eucalyptus oil and orange oil at 10 min. However, at 10 min, Endomethasone N and Adseal showed a more pronounced solubility in xylene as compared to both eucalyptus oil and orange oil. In general, xylene was the most effective in dissolving root canal sealers than other organic solvents. Essential oils (eucalyptus oil and orange oil) were found similar in their ability to dissolve Apexit Plus and Endomethasone N.

  19. Performance evaluation of NEEM oil and HONGE Oil as cutting fluid in drilling operation of mild steel

    NASA Astrophysics Data System (ADS)

    Jyothi, P. N.; Susmitha, M.; Sharan, P.

    2017-04-01

    Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.

  20. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Hassan, El Barbary; Dempster, Thomas A

    2018-03-01

    Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH 4 , CO, CO 2 and lower alkanes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    NASA Astrophysics Data System (ADS)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  2. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps.

    PubMed

    Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N

    2015-11-07

    Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil.

  3. Cross-correlations between crude oil and exchange markets for selected oil rich economies

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Lu, Xinsheng; Zhou, Ying

    2016-07-01

    Using multifractal detrended cross-correlation analysis (MF-DCCA), this paper studies the cross-correlation behavior between crude oil market and five selected exchange rate markets. The dataset covers the period of January 1,1996-December 31,2014, and contains 4,633 observations for each of the series, including daily closing prices of crude oil, Australian Dollars, Canadian Dollars, Mexican Pesos, Russian Rubles, and South African Rand. Our empirical results obtained from cross-correlation statistic and cross-correlation coefficient have confirmed the existence of cross-correlations, and the MF-DCCA results have demonstrated a strong multifractality between cross-correlated crude oil market and exchange rate markets in both short term and long term. Using rolling window analysis, we have also found the persistent cross-correlations between the exchange rates and crude oil returns, and the cross-correlation scaling exponents exhibit volatility during some time periods due to its sensitivity to sudden events.

  4. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-07-16

    Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Essential oil obtained from micropropagated lavender, its effect on HSF cells and application in cosmetic emulsion as a natural protective substance.

    PubMed

    Andrys, D; Adaszyńska-Skwirzyńska, M; Kulpa, D

    2018-04-01

    The aim of the study was to determine the influence of the essential oils isolated from the field - grown and micropropagated in vitro narrow - leaved lavender of the 'Munstead' cultivar, on human skin cells, and their capability to synthesise procollagen. The amount of procollagen type I produced by fibroblast cells was determined using ELISA kit. Essential oil isolated from micropropagated lavender was further used as a protective ingredient against the development of microorganisms in O/W cosmetic emulsion. The presented results demonstrate that the use of 0.01, 0.001 and 0.0001% essential oils isolated from in vitro plants stimulate HSF cells to the production of procollagen. It was further performed that the tested essential oil used in the concentration of 0.1% in a cosmetic emulsion is characterised by preservative effect for cosmetic preparations for the period of 3 months.

  6. Dehulling of coriander fruit before oil extraction

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) is a summer annual traditionally grown for use as fresh green herb, spice or for its essential oil. The essential oil is obtained by steam distillation of crushed fruit and the residue is utilized as feed or processed further to recover the triglyceride. The triglyc...

  7. Diesel Fuel from Used Frying Oil

    PubMed Central

    Buczek, Bronislaw

    2014-01-01

    New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate) was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats. PMID:24574908

  8. Fabrication and characterization of regenerated cellulose films obtained from oil palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Nor Amalini, A.; Melina Cheah, M. Y.; Wan Rosli, W. D.; Hayati, S.; Mohamad Haafiz, M. K.

    2017-12-01

    Development of regenerated cellulose (RC) derived from underutilized cellulosic biomass has recently gained attention as potential petroleum-based polymer replacers. The objective of this current work is to evaluate the properties of RC films obtained from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) through environmental process. The RC films were fabricated by using different amounts of OPEFB-MCC (4, 6 and 8 %) and 1-butyl-3-methylimidazolium chloride (BMIMCl) was used as green OPEFB-MCC dissolving medium. The resultant RC films were then characterized by means of Fourier transform infrared (FTIR) spectroscopy, mechanical, thermal and morphological properties by using tensile test, differential scanning colorimetry (DSC), and scanning electron microscopy (SEM) respectively. Increase in OPEFB-MCC amounts from 4 to 8 % enhanced the tensile strength and elongation at break of RC by 101 and 78 %, respectively, indicating stronger and more flexible films were formed. It is interesting to note that the Tg (101-154 °C) and Tm(130-187 °C) were found shifted to higher temperature with higher proportions of OPEFB-MCC in RC films. Meanwhile, FTIR analysis showed no new peak presented in RC films, suggesting that BMIMCl is a non-derivatizing solvent to OPEFB-MCC. Conspicuous changes in the spectra of RC films compared to OPEFB-MCC at 3200-3600 cm-1, 1430 cm-1, 1162 cm-1, 1111 cm-1, 1020-1040 cm-1 and 896 cm-1 were associated with transformation of cellulose I to cellulose II structure or/and decrease in crystallinity occurred after regeneration process. SEM micrographs of the RC films revealed that higher OPEFB-MCC contents exhibited smoother and more homogeneous surfaces morphology. Overall, OPEFB-MCC exhibited good film forming ability for RC production and may offer potential application in various industries including food packaging, medical goods and electronic devices.

  9. Bio-Friendly Alternatives for Xylene – Carrot oil, Olive oil, Pine oil, Rose oil

    PubMed Central

    Nandan, Surapaneni Rateesh Kumar; Kulkarni, Pavan G.; Rao, Thokala Madhusudan; Palakurthy, Pavan

    2015-01-01

    Background Xylene is a flammable liquid with characteristic petroleum or aromatic odours, it is miscible with most of the organic solvents and paraffin wax. Xylene clears tissues rapidly and renders transparency, facilitating clearing endpoint determination, this made it to be used as a clearing agent in routine histopathological techniques. Even though it is a good clearing agent, it causes damage to the tissues by its hardening effect particularly those fixed in non-protein coagulant fixatives. Apart from these tissue effects, it has severe, long lasting ill effects on health of technicians and pathologists when exposed to longer duration. Hence in order to overcome these effects and replace xylene with a safe alternative agent, the present study was carried out to assess the clearing ability and bio-friendly nature of four different natural oils i.e., Carrot oil, Olive oil, Pine oil and Rose oil in comparison with that of Xylene. According to Bernoulli’s principle of fluid dynamics, to decrease viscosity of these oils and increase penetration into tissues for rapid clearing hot-air oven technique was used. Aims To assess:1) Clearing ability and bio-friendly nature of four different oils i.e., Carrot oil, Olive oil, Pine oil, Rose oil in comparison with that of xylene, 2) Application of Bernoulli’s principle of fluid dynamics in rapid clearing of tissues by using hot-air oven. Materials and Methods Forty different formalin fixed tissue samples were taken. Each sample of tissue was cut into 5 bits (40x5=200 total bits) which were subjected for dehydration in differential alcohol gradients. Later, each bit is kept in 4 different oils such as Carrot oil, Olive oil, Pine oil, Rose oil and xylene and transferred into hot-air oven. Further routine steps of processing, sectioning and staining were done. Individual sections cleared in four different oils were assessed for cellular architecture, staining quality and a comparison was done between them. Results Results

  10. Thermo-chemical extraction of fuel oil from waste lubricating grease.

    PubMed

    Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul

    2013-06-01

    This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Can a GIS toolbox assess the environmental risk of oil spills? Implementation for oil facilities in harbors.

    PubMed

    Valdor, Paloma F; Gómez, Aina G; Velarde, Víctor; Puente, Araceli

    2016-04-01

    Oil spills are one of the most widespread problems in port areas (loading/unloading of bulk liquid, fuel supply). Specific environmental risk analysis procedures for diffuse oil sources that are based on the evolution of oil in the marine environment are needed. Diffuse sources such as oil spills usually present a lack of information, which makes the use of numerical models an arduous and occasionally impossible task. For that reason, a tool that can assess the risk of oil spills in near-shore areas by using Geographical Information System (GIS) is presented. The SPILL Tool provides immediate results by automating the process without miscalculation errors. The tool was developed using the Python and ArcGIS scripting library to build a non-ambiguous geoprocessing workflow. The SPILL Tool was implemented for oil facilities at Tarragona Harbor (NE Spain) and validated showing a satisfactory correspondence (around 0.60 RSR error index) with the results obtained using a 2D calibrated oil transport numerical model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  13. Thermal-Diffusivity Measurements of Mexican Citrus Essential Oils Using Photoacoustic Methodology in the Transmission Configuration

    NASA Astrophysics Data System (ADS)

    Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.

    2011-05-01

    Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.

  14. A coloured oil level indicator detection method based on simple linear iterative clustering

    NASA Astrophysics Data System (ADS)

    Liu, Tianli; Li, Dongsong; Jiao, Zhiming; Liang, Tao; Zhou, Hao; Yang, Guoqing

    2017-12-01

    A detection method of coloured oil level indicator is put forward. The method is applied to inspection robot in substation, which realized the automatic inspection and recognition of oil level indicator. Firstly, the detected image of the oil level indicator is collected, and the detected image is clustered and segmented to obtain the label matrix of the image. Secondly, the detection image is processed by colour space transformation, and the feature matrix of the image is obtained. Finally, the label matrix and feature matrix are used to locate and segment the detected image, and the upper edge of the recognized region is obtained. If the upper limb line exceeds the preset oil level threshold, the alarm will alert the station staff. Through the above-mentioned image processing, the inspection robot can independently recognize the oil level of the oil level indicator, and instead of manual inspection. It embodies the automatic and intelligent level of unattended operation.

  15. Preparation of microemulsions with soybean oil-based surfactants

    USDA-ARS?s Scientific Manuscript database

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  16. Supercritical carbon dioxide extraction of cuphea seed oil

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil is being investigated as a potential domestic source of medium chain fatty acids for several industrial uses. Although the oil from cuphea seeds has been obtained using both solvent extraction and screw pressing, both methods suffer from several disadvantages. Petroleum ether extra...

  17. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils.

    PubMed

    Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis

    2003-09-10

    A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).

  18. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  19. Olive Oil Based Emulsions in Frozen Puff Pastry Production

    NASA Astrophysics Data System (ADS)

    Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.

    2008-07-01

    Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.

  20. Study on high power ultraviolet laser oil detection system

    NASA Astrophysics Data System (ADS)

    Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou

    2018-03-01

    Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.

  1. Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Rasoulifard, M. H.; Hosseini, H.

    2016-02-01

    In this study, the dielectric breakdown strength of magnetic nanofluids based on transformer mineral oil for use in power systems is reviewed. Nano oil samples are obtained from dispersion of the magnetic nanofluid within uninhibited transformer mineral oil NYTRO LIBRA as the base fluid. AC dielectric breakdown voltage measurement was carried out according to IEC 60156 standard and the lightning impulse breakdown voltage was obtained by using the sphere-sphere electrodes in an experimental setup for nano oil in volume concentration of 0.1-0.6%. Results indicate improved AC and lightning impulse breakdown voltage of nano oil compared to the base oil. AC test was performed again after applying impulse current and result showed that nano oil unlike the base oil retains its dielectric properties. Increase the dielectric strength of the nano oil is mainly due to dielectric and magnetic properties of Fe3O4 nanoparticles that act as free electrons snapper, and reduce the rate of free electrons in the ionization process.

  2. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    NASA Astrophysics Data System (ADS)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  3. Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil

    PubMed Central

    Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M

    2012-01-01

    Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable

  4. Antibacterial Action of Essential Oils of Artemisia as an Ecological Factor

    PubMed Central

    Nagy, Julius G.; Tengerdy, Robert P.

    1967-01-01

    Bacterial response to increasing amounts of the volatile oils varies significantly according to species of bacteria tested. Among the four species examined, Escherichia coli was the most resistant to the oils, followed by Neisseria sicca, Bacillus subtilis, and Staphylococcus aureus. The oils of Artemisia tridentata seem to have the same degree of antibacterial action as oils obtained from A. nova. PMID:4963443

  5. Phytotoxic Effects and Phytochemical Fingerprinting of Hydrodistilled Oil, Enriched Fractions, and Isolated Compounds Obtained from Cryptocarya massoy (Oken) Kosterm. Bark.

    PubMed

    Rolli, Enrico; Marieschi, Matteo; Maietti, Silvia; Guerrini, Alessandra; Grandini, Alessandro; Sacchetti, Gianni; Bruni, Renato

    2016-01-01

    The hydrodistilled oil of Cryptocarya massoy bark was characterized by GC-FID and GC/MS analyses, allowing the identification of unusual C10 massoia lactone (3, 56.2%), C12 massoia lactone (4, 16.5%), benzyl benzoate (1, 12.7%), C8 massoia lactone (3.4%), δ-decalactone (5, 1.5%), and benzyl salicylate (2, 1.8%) as main constituents. The phytotoxic activities of the oil, three enriched fractions (lactone-rich, ester-rich, and sesquiterpene-rich), and four constituents (compounds 1, 2, 5, and δ-dodecalactone (6)) against Lycopersicon esculentum and Cucumis sativus seeds and seedlings were screened. At a concentration of 1000 μl/l, the essential oil and the massoia lactone-rich fraction caused a complete inhibition of the germination of both seeds, and, when applied on tomato plantlets, they induced an 85 and 100% dieback, respectively. These performances exceeded those of the well-known phytotoxic essential oils of Syzygium aromaticum and Cymbopogon citratus, already used in commercial products for the weed and pest management. The same substances were also evaluated against four phytopathogenic bacteria and ten phytopathogenic fungi, providing EC50 values against the most susceptible strains in the 100-500 μl/l range for the essential oil and in the 10-50 μl/l range for compound 6 and the lactone-rich fraction. The phytotoxic behavior was related mainly to massoia lactones and benzyl esters, while a greater amount of 6 may infer a good activity against some phytopathogenic fungi. Further investigations of these secondary metabolites are warranted, to evaluate their use as natural herbicides. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Storage stability of cooked sausages containing vegetable oils.

    PubMed

    Papavergou, E J; Ambrosiadis, J A; Psomas, J

    1995-01-01

    Comminuted cooked sausages were produced using standard industrial practices, by substituting corn oil, sunflower oil, cotton seed oil, soybean oil and hydrogenated vegetable fat for animal fat. When processed, products were assessed for their stability with respect to autoxidation and change in organoleptic properties during vacuum-packed storage in a domestic refrigerator at 4 degrees C. Data obtained indicated that changes in thiobarbituric acid (TBA) values and organoleptic properties of products produced using corn oil, sunflower oil and hydrogenated vegetable fat were similar to those observed for reference material produced using lard. In the case of samples produced using soybean and cotton seed oil, TBA value changes were more pronounced, but did not exceed acceptable limits. A more rapid deterioration of organoleptic characteristics was also observed for the same samples, which showed flavour problems after 3 months of storage at 4 degrees C. Substitution of plant oils for lard considerably reduced the cholesterol content and increased the ratio of unsaturated to saturated fatty acids of cooked sausages.

  7. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOEpatents

    Agblevor, Foster A.; Besler-Guran, Serpil

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  8. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.

  9. Demulsification of water/oil/solid emulsions by hollow-fiber membranes

    SciTech Connect

    Tirmizi, N.P.; Raghuraman, B.; Wiencek, J.

    1996-05-01

    The demulsification techniques investigated use preferential surface wetting to allow separation of oil and water phases in ultrafiltration and microfiltration membranes. A hydrophobic membrane allows the permeation of an oil phase at almost zero pressure and retains the water phase, even though the molecular weight of the water molecule (18) is much smaller than that of the oil molecule (198 for tetradecane, used in this study). Hydrophobic membranes having pore sizes from 0.02 to 0.2 {micro}m were tested for demulsification of water-in-oil emulsions and water/oil/solid mixtures. The dispersed (aqueous)-phase drop sizes ranged from 1 to 5 {micro}m. High separation rates,more » as well as good permeate quality, were obtained with microfiltration membranes. Water content of permeating oil was 32--830 ppm depending on operating conditions and interfacial properties. For emulsions with high surfactant content, simultaneous operation of a hydrophobic and hydrophilic membrane, or simultaneous membrane separation with electric demulsification was more efficient in obtaining complete phase separation.« less

  10. Direct polymerization of vernonia oil through cationic means

    USDA-ARS?s Scientific Manuscript database

    Vernonia oil is obtained by extraction from Vernonia galamensis seeds. It is a triglyceride containing 70-80% vernolic acid (12,13-epoxy-9-decenoic acid). With approximately three epoxy groups per molecule, vernonia oil is a good raw material for new product development and many derivatives have bee...

  11. Ocean experiments and remotely sensed images of chemically dispersed oil spills

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Fedors, J. C.; Hoge, F. E.; Swift, R. N.; Johnson, J. C.

    1983-01-01

    A series of experiments was performed at sea where the effectiveness of dispersants applied from a helicopter was tested on fresh and weathered crude oils released from a surface research vessel. In conjunction with these experiments, remote sensing measurements using an array of airborne optical and microwave sensors were performed in order to aid in the interpretation of the dispersant effectiveness and to obtain quantitative images of oil on the sea under controlled conditions. Surface oil thickness and volume are inferred from airborne measurements using a dual-channel microwave imaging radiometer, aerial color photography, and an airborne oceanographic lidar. The remotely sensed measurements are compared with point sampled data obtained using a research vessel. The mass balance computations of surface versus subsurface oil volume using remotely sensed and point sampled data are consistent with each other and with the volumes of oil released. Data collected by the several techniques concur in indicating that, for the oils used and under the sea conditions encountered, the dispersant and application method are primarily useful when applied to fresh oil.

  12. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    SciTech Connect

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less

  13. 30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a departure to diverter... diverter line for floating drilling operations on a dynamically positioned drillship Maintain an...

  14. Analysis of method of polarization surveying of water surface oil pollution

    NASA Technical Reports Server (NTRS)

    Zhukov, B. S.

    1979-01-01

    A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction.

  15. Crystal clear transparent lipstick formulation based on solidified oils.

    PubMed

    De Clermont-Gallerande, H; Chavardes, V; Zastrow, L

    1999-12-01

    We have developed a lipstick, the stick of which looks totally transparent. The base, coloured or not, may contain high concentration of actives or fragrances. The present study examines the process of determination of oils and solidifying agents. The selecting criterion include visible spectroscopic measurements to quantify transparency of the formulated product. We have also validated the stick hardness through drop point and breakage measurements. After several investigations, we selected a mixture of oils and solidifying agents. The oil network obtained has been characterized through optical microscopy, transmission electronic microscopy, X-ray diffraction and differential scanning calorimetry. We can show that the final product we obtained is amorphous and its solidity can be explained by chemical bonds formation.

  16. Catalytic pyrolysis of waste furniture sawdust for bio-oil production.

    PubMed

    Uzun, Başak B; Kanmaz, Gülin

    2014-07-01

    In this study, the catalytic pyrolysis of waste furniture sawdust in the presence of ZSM-5, H-Y and MCM-41 (10 wt % of the biomass sample) was carried out in order to increase the quality of the liquid product at the various pyrolysis temperatures of 400, 450, 500 and 550(o)C. In the non-catalytic work, the maximum oil yield was obtained as 42% at 500(o)C in a fixed-bed reactor system. In the catalytic work, the maximum oil yield was decreased to 37.48, 30.04 and 29.23% in the presence of ZSM-5, H-Y and MCM-41, respectively. The obtained pyrolysis oils were analyzed by various spectroscopic and chromatographic techniques. It was determined that the use of a catalyst decreased acids and increased valuable organics found in the bio-oil. The removal of oxygen from bio-oil was confirmed with the results of the elemental analysis and gas chromatography-mass spectrometry. © The Author(s) 2014.

  17. Chemical composition of the essential oil from the leaves of Carapa guianensis collected from Venezuelan Guayana and the antimicrobial activity of the oil and crude extracts.

    PubMed

    Meccia, Gina; Quintero, Patricia; Rojas, Luis B; Usubillaga, Alfredo; Velasco, Judith; Diaz, Tulia; Diaz, Clara; Velásquez, Jesús; Toro, Maria

    2013-11-01

    The essential oil obtained by hydrodistillation of Carapa guianensis Aubl. (Meliaceae) leaves was analyzed by GC-FID and GC-MS. Twenty-three components were identified, which made up 93.7% of the oil. The most abundant constituents were bicyclogermacrene (28.5%), alpha-humulene (17.2%), germacrene B (11.9%), and trans-beta-caryophyllene (9.9%). Antimicrobial activity of the essential oil, as well as the crude extracts of the leaves obtained by refluxing the dried leaves with n-hexane, dichloromethane, and methanol, was determined using the disc diffusion assay. Activity against Staphylococcus aureus ATCC 29923 and Enterococcus faecalis ATCC 29212 was only found for the essential oil and the methanolic extract, at minimal inhibitory concentrations (MIC) of 400 microg/mL and 50 microg/mL.

  18. Modifications of Atlantic salmon by-product oil for obtaining different ω-3 polyunsaturated fatty acids concentrates: An approach to comparative analysis.

    PubMed

    Haq, Monjurul; Park, Seul-Ki; Kim, Min-Jung; Cho, Yeon-Jin; Chun, Byung-Soo

    2018-04-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) rich 2-monoacylglycerols (2-MAG), omega-3 polyunsaturated free fatty acids (ω-3 PUFFAs) concentrate, and PUFA enriched acylglycerols were prepared from salmon frame bone oil (SFBO) by enzymatic alcoholysis, urea complexation, and enzymatic esterification, respectively. The yields of 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols were 40.25, 16.52, and 15.65%, respectively. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed darker red color than SFBO and 2-MAG due to aggregation of astaxanthin pigment in ω-3 PUFFAs concentrate during urea complexation. The viscosity and specific gravity of SFBO and PUFA enriched acylglycerols showed similar values whereas 2-MAG and ω-3 PUFFAs showed significantly (p < 0.05) lower values. Stability parameters like acid value, peroxide value, free fatty acid value, and p-anisidine value of SFBO and ω-3 PUFAs concentrates were within acceptable limits except extreme high acid value and free fatty acid value of ω-3 PUFFAs concentrate. Thermogravimetric analysis showed similar and higher thermal stability of SFBO and PUFA enriched acylglycerols than 2-MAG and ω-3 PUFFAs concentrate. The ω-3 PUFAs content in 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols was increased to 20.81, 52.96, and 51.74% respectively from 13.54% in SFBO. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed higher DPPH and ABTS radical scavenging activity than SFBO and 2-MAG. The results obtained from this study suggest the production of PUFA enriched acylglycerols rich in ω-3 PUFAs supplements from fish oil for human and pet animals. Copyright © 2017. Published by Elsevier B.V.

  19. 30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a... least 8 inches. (d) Use a single diverter line for floating drilling operations on a dynamically...

  20. 30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a... least 8 inches. (d) Use a single diverter line for floating drilling operations on a dynamically...

  1. 30 CFR 250.432 - How do I obtain a departure to diverter design and installation requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.432 How do I obtain a... least 8 inches. (d) Use a single diverter line for floating drilling operations on a dynamically...

  2. Method of and device for detecting oil pollutions on water surfaces

    DOEpatents

    Belov, Michael Leonidovich [Moscow, RU; Gorodnichev, Victor Aleksandrovich [Moscow, RU; Kozintsev, Valentin Ivanovich [Moscow, RU; Smimova, Olga Alekseevna [Moscow, RU; Fedotov, Yurii Victorovich [Moscow, RU; Khroustaleva, Anastasiva Michailovnan [Moscow, RU

    2008-08-26

    Detection of oil pollution on water surfaces includes providing echo signals obtained from optical radiation of a clean water area at two wavelengths, optically radiating an investigated water area at two wavelengths and obtaining echo signals from the optical radiation of the investigated water area at the two wavelengths, comparing the echo signals obtained from the radiation of the investigated area at two wavelengths with the echo signals obtained from the radiation of the clean water area, and based on the comparison, determining presence or absence of oil pollution in the investigated water area.

  3. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil.

    PubMed

    Seiquer, Isabel; Rueda, Ascensión; Olalla, Manuel; Cabrera-Vique, Carmen

    2015-12-01

    Argan oil is becoming increasingly popular in the edible-oil market as a luxury food with healthy properties. This paper analyzes (i) the bioavailability of the polyphenol content and antioxidant properties of extra virgin argan oil (EVA) by the combination of in vitro digestion and absorption across Caco-2 cells and (ii) the protective role of the oil bioaccessible fraction (BF) against induced oxidative stress. Results were compared with those obtained with extra virgin olive oil (EVO). Higher values of polyphenols and antioxidant activity were observed in the BF obtained after the in vitro digestion of oils compared with the initial chemical extracts; the increase was higher for EVA but absolute BF values were lower than EVO. Bioaccessible polyphenols from EVA were absorbed by Caco-2 cells in higher proportions than from EVO, and minor differences were observed for antioxidant activity. Preincubation of cell cultures with BF from both oils significantly protected against oxidation, limiting cell damage and reducing reactive oxygen species generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A new analytical method for quantification of olive and palm oil in blends with other vegetable edible oils based on the chromatographic fingerprints from the methyl-transesterified fraction.

    PubMed

    Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis

    2017-03-01

    A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Oil shale as an energy source in Israel

    SciTech Connect

    Fainberg, V.; Hetsroni, G.

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis ofmore » the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.« less

  6. Regeneration and reuse waste from an edible oil refinery.

    PubMed

    Boukerroui, Abdelhamid; Belhocine, Lydia; Ferroudj, Sonia

    2017-08-21

    A spent bleaching earth (SBE) from an edible oil refinery has been regenerated by thermal processing in oven, followed by washing with a cold solution of hydrochloric acid (1M). Optimal regeneration conditions have been controlled by decolorization tests of degummed and neutralized soybean oil. Optimal values of treatment (temperature 350°C, carbonization time 01 h, and HCl concentration 1M) gave a very efficient material. After bleaching oil by regenerated spent bleaching earth (RSBE), the chlorophyll-a and β-carotenes contained in crude edible oil and observed respectively at 430, 454, and 483 nm, value of λ max , are very much decreased. The results obtained after decolorization of edible oil by RSBE material indicate, that, during the process, the bleaching oil did not undergo any changes in the free fatty acid content. The peroxide value (PV) was reduced from 4.2 to 1.8 meq O 2 /kg, and the color has been improved (Lovibond color yellow/red: from 50/0.5 to 2.7/0.3, respectively). The RSBE material obtained was characterized by several techniques (FTIR, SEM). The results show that the heat treatment did not affect the mineral structure of RSBE, and the regenerated material recovered its porous structure.

  7. Comparison and evaluation of volatile oils from three different extraction methods for some Thai fragrant flowers.

    PubMed

    Paibon, W; Yimnoi, C-A; Tembab, N; Boonlue, W; Jampachaisri, K; Nuengchamnong, N; Waranuch, N; Ingkaninan, K

    2011-04-01

    Several tropical flowers have distinctive fragrances which are very appealing to use in perfumery, cosmetics and spa. However, to obtain a 'natural fragrance' from the flower is a challenge as the scent could change during the extraction process. The aim of the study is to find the suitable procedure for extraction of volatile oils from some Thai fragrant flowers. Three different methods: hydrodistillation, solvent extraction and enfleurage methods have been applied for the extraction of volatile oil from Jasminum sambac L. Aiton; Oleaceae (jasmine). The quantities and quality of jasmine volatile oils obtained from the different tested methods were compared. The solvent extraction method using 95% ethanol provided the greatest level of oil yield. However, sensory evaluation using preference test showed that the scents of the volatile oils from solvent extraction using diethyl ether and from enfleurage method were the closest to the fresh flowers compared with the volatile oils obtained from other methods. Their chemical constituents were analysed using gas chromatography coupled with mass spectrometer. Both volatile oils were then evaluated using a triangle discrimination test. From the triangle test, we found that 14 panellists from the total of 36 could not distinguish between the scents of jasmine oil from enfleurage and fresh jasmine flowers whereas only one panellist could not distinguish between the scent of jasmine oil from the solvent extraction and fresh jasmine flowers. These results suggest that the scent of the volatile oil obtained from the enfleurage method was the closest to fresh flowers compared with that obtained from other methods. This method was then successfully applied for extraction of volatile oils from three other Thai fragrant flowers, Michelia alba DC.; Magnoliaceae, Millingtonia hortensis L.; Bignoniaceae and Hedychium coronarium J. Konig; Zingiberaceae. © 2010 The Authors. Journal compilation © 2010 Society of Cosmetic Scientists and

  8. How the Addition of Spices and Herbs to Virgin Olive Oil to Produce Flavored Oils Affects Consumer Acceptance.

    PubMed

    Issaoui, Manel; Flamini, Guido; Souid, Sondess; Bendini, Alessandra; Barbieri, Sara; Gharbi, Ines; Toschi, Tullia Gallina; Cioni, Pier Luigi; Hammami, Mohamed

    2016-06-01

    With the aim to expand the olive oil market to a larger number of consumers who are not familiar with the sensory characteristics of virgin olive oil, the use of novel products known as "flavored olive oils", obtained by adding different kind of spices and aromatic herbs, is spreading in many countries. In order to test consumer acceptability of this type of product, in a country (Tunisia) in which virgin olive oil is regularly consumed, flavored olive oils were prepared by adding aromatic extracts of thyme, oregano, a mix of herbs (used as pizza seasoning), rosemary, and basil to a monovarietal Chemlali virgin olive oil and a consumer test on 206 subjects was performed. Selected quality parameters (free acidity, peroxide number, oxidative stability, specific absorption at K232 nm and K270 nm) were also measured and no significant variations were detected. Slight differences were found concerning the content of minor compounds (chlorophylls, carotenoids and total phenols). On the other hand, notable differences were seen in the profiles of volatile compounds, which appeared to be responsible for the observed variability in consumer acceptance. Although the unflavored oil was more appreciated than the flavored ones, among the latter, thyme flavored olive oil was the most appreciated.

  9. Water soluble fractions of rose-scented geranium (Pelargonium species) essential oil.

    PubMed

    Rao, B R Rajeswara; Kaul, P N; Syamasundar, K V; Ramesh, S

    2002-09-01

    The essential oil of rose-scented geranium (Pelargonium species, family: Geraniaceae) obtained through steam or water plus steam distillation of shoot biomass is extensively used in the fragrance industry and in aromatherapy. During distillation, a part of the essential oil becomes dissolved in the distillation water (hydrosol) and is lost as this hydrosol is discarded. In this investigation, hydrosol was shaken for 30 min with hexane (10:1 proportion) and the hexane was distilled to yield 'secondary' or 'recovered' essential oil. The chemical composition of secondary oil was compared with that of 'primary' oil (obtained directly by distilling shoot biomass of the crop). Primary oil accounted for 93.0% and secondary oil 7.0% of the total oil yield (100.2 ml from 100 kg green shoot biomass). Fifty-two compounds making up 95.0-98.5% of the primary and the secondary oils were characterized through gas chromatography (GC) and gas chromatography-mass spectroscopy (GC--MS). Primary oil was richer in hydrocarbons (8.5-9.4%), citronellyl formate (6.2-7.5%), geranyl formate (4.1-4.7%), citronellyl propionate (1.0-1.2%), alpha-selinene (1.8-2.2%), citronellyl butyrate (1.4-1.7%), 10-epi-gamma-eudesmol (4.9-5.5%) and geranyl tiglate (1.8-2.1%). Recovered oil was richer in organoleptically important oxygenated compounds (88.9-93.9%), commercial rhodinol fraction (74.3-81.2%), sabinene (0.4-6.2%), cis-linool oxide (furanoid) (0.7-1.2%), linalool (14.7-19.6%), alpha-terpineol (3.3-4.8%) and geraniol (21.3-38.4%). Blending of recovered oil with primary oil is recommended to enhance the olfactory value of the primary oil of rose-scented geranium. Distillation water stripped of essential oil through hexane extraction can be recycled for distilling the next batch of rose-scented geranium.

  10. New boundary conditions for oil reservoirs with fracture

    NASA Astrophysics Data System (ADS)

    Andriyanova, Elena; Astafev, Vladimir

    2017-06-01

    Based on the fact that most of oil fields are on the late stage of field development, it becomes necessary to produce hard-to-extract oil, which can be obtained only by use of enhance oil recovery methods. For example many low permeable or shale formations can be developed only with application of massive hydraulic fracturing technique. In addition, modern geophysical researches show that mostly oil bearing formations are complicated with tectonic faults of different shape and permeability. These discontinuities exert essential influence on the field development process and on the well performance. For the modeling of fluid flow in the reservoir with some area of different permeability, we should determine the boundary conditions. In this article for the first time the boundary conditions for the problem of fluid filtration in the reservoir with some discontinuity are considered. This discontinuity represents thin but long area, which can be hydraulic fracturing of tectonic fault. The obtained boundary condition equations allow us to take into account pressure difference above and below the section and different values of permeability.

  11. Sensory attribute preservation in extra virgin olive oil with addition of oregano essential oil as natural antioxidant.

    PubMed

    Asensio, Claudia M; Nepote, Valeria; Grosso, Nelson R

    2012-09-01

    Four commercial varieties of oregano are farmed in Argentina: "Compacto,"Cordobes,"Criollo," y "Mendocino." Oregano essential oil is known for antioxidant properties. The objective of this study was to evaluate changes in the intensities of positive and negative attributes in extra virgin olive oil with addition of essential oil obtained from the 4 Argentinean oregano types. Oregano essential oil was added into olive oil at 0.05% w/w. The samples were stored in darkness and light exposure during 126 d at room temperature. The intensity ratings of fruity, pungency, bitterness, oregano flavor, and rancid flavor were evaluated every 21 d by a trained sensory panel. In general, samples with addition of oregano essential oil in olive oil exhibited higher and lower intensity ratings of positive and negative attributes, respectively, during storage compared with the control samples. The first 2 principal components explained 72.3% of the variability in the olive oil samples. In general, positive attributes of olive oil were highly associated with the addition of oregano essential oil in darkness, whereas rancid flavor was negatively associated with them. Olive oil with oregano "Cordobes" essential oil was oppositely associated with light exposure treatments and negative attribute (rancid flavor) suggesting better performance as natural antioxidant of this essential oil in olive oil. The result of this study showed that the presence of oregano essential oil, specially "Cordobes" type, preserve sensory quality of extra virgin olive oil prolonging the shelf life of this product. Extra virgin olive oil is highly appreciated for its health benefits, taste, and aroma. These properties are an important aspect in this product quality and need to be preserved. The addition of natural additives instead of synthetic ones covers the present trend in food technology. This research showed that the addition of oregano essential oil preserved the intensity ratings of positive attributes

  12. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil.

    PubMed

    Zhang, Zhen-Shan; Liu, Yu-Lan; Che, Li-Ming

    2018-03-01

    Supercritical carbon dioxide extraction (SC-CO 2 ) technology was used to extract oil from Eucommia ulmoides seed. The optimum conditions and significant parameters in SC-CO 2 were obtained using response surface methodology (RSM). The qualities of the extracted oil were evaluated by physicochemical properties, fatty acid composition, vitamin E composition. It was found that the optimum extraction parameters were at pressure of 37 MPa, temperature of 40°C, extraction time of 125 min and CO 2 flow rate of 2.6 SL/min. Pressure, temperature and time were identified as significant parameter effecting on extraction yield. The importance of evaluated parameters decreased in the order of pressure > extraction time > temperature > CO 2 flow rate. GC analysis indicated that E. ulmoides seed oil contained about 61% of linolenic acid and its fatty acid composition was similar with that of flaxseed oil and perilla oil. The content and composition of vitamin E was determined using HPLC. The E. ulmoides seed oil was rich in vitamin E (190.72 mg/100 g), the predominant vitamin E isomers were γ- tocopherol and δ- tocopherol, which accounted for 70.87% and 24.81% of the total vitamin E, respectively. The high yield and good physicochemical properties of extracted oil support the notion that SC-CO 2 technology is an effective technique for extracting oil from E. ulmoides seed.

  13. Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin.

    PubMed

    Boukroufa, Meryem; Boutekedjiret, Chahrazed; Petigny, Loïc; Rakotomanomana, Njara; Chemat, Farid

    2015-05-01

    In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only "in situ" water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm(2) and 59.83°C giving a polyphenol yield of 50.02 mgGA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled "in situ" water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    SciTech Connect

    Trebbau, G.; Fernandez, B.; Marin, A.

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolicmore » activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.« less

  15. Thermoset polymers via ring opening metathesis polymerization of functionalized oils

    DOEpatents

    Larock, Richard C; Henna, Phillip H; Kessier, Michael R

    2012-11-27

    The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.

  16. Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies.

    PubMed

    Ribeiro, Lígia N M; Breitkreitz, Márcia C; Guilherme, Viviane A; da Silva, Gustavo H R; Couto, Verônica M; Castro, Simone R; de Paula, Bárbara O; Machado, Daisy; de Paula, Eneida

    2017-08-30

    In a nanotechnological approach we have investigated the use of natural lipids in the preparation of nanostructured lipid carriers (NLC). Three different NLC composed of copaiba oil and beeswax, sweet almond oil and shea butter, and sesame oil and cocoa butter as structural matrices were optimized using factorial analysis; Pluronic® 68 and lidocaine (LDC) were used as the colloidal stabilizer and model encapsulated drug, respectively. The optimal formulations were characterized by different techniques (IR-ATR, DSC, and TEM), and their safety and efficacy were also tested. These nanocarriers were able to upload high amounts of the anesthetic with a sustained in vitro release profile for 24h. The physicochemical stability in terms of size (nm), PDI, zeta potential (mV), pH, nanoparticle concentration (particles/mL), and visual inspection was followed during 12months of storage at 25°C. The formulations exhibited excellent structural properties and stability. They proved to be nontoxic in vitro (cell viability tests with Balb/c 3T3 fibroblasts) and significantly improved the in vivo effects of LDC, over the heart rate of zebra fish larvae and in the blockage of sciatic nerve in mice. The results from this study support that the proper combination of natural excipients is promising in DDS, taking advantage of the biocompatibility, low cost, and diversity of lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Essential oil composition of Dracocephalum kotschyi Boiss. from Iran.

    PubMed

    Sonboli, Ali; Mirzania, Foroogh; Gholipour, Abbas

    2018-06-06

    Dracocephalum kotschyi is one of the medicinal and fragrant herbs that can be found in natural locations of mountainous areas. In this investigation the hydrodistilled essential oils obtained from aerial parts of two populations of D. kotschyi collected from Siahbisheh and Baladeh were analysed by capillary GC-FID and GC-MS. Essential oil analysis led to the identification of 48 compounds that represented 85.9 and 90.0% of the total oil compositions, respectively. As the major group of compounds, oxygenated monoterpens comprised 45.5 and 57.4% in the essential oils of compounds as the main group in the essential oils of Siahbisheh and Baladeh samples, respectively. Disagreement in the major contents of the essential oils of these two samples may be ascribed to differences in the ecological, climatic and genetically factors.

  18. Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    PubMed Central

    Liakos, Ioannis L.; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D’Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-01-01

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization. PMID:27399724

  19. Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.

    PubMed

    Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-07-07

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  20. Oil Slick Observation at Low Incidence Angles in Ku-Band

    NASA Astrophysics Data System (ADS)

    Panfilova, M. A.; Karaev, V. Y.; Guo, Jie

    2018-03-01

    On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.

  1. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.

    PubMed

    Xu, Qing; Li, Xiaofeng; Wei, Yongliang; Tang, Zeyan; Cheng, Yongcun; Pichel, William G

    2013-06-15

    On June 4 and 17, 2011, separate oil spill accidents occurred at two oil platforms in the Bohai Sea, China. The oil spills were subsequently observed on different types of satellite images including SAR (Synthetic Aperture Radar), Chinese HJ-1-B CCD and NASA MODIS. To illustrate the fate of the oil spills, we performed two numerical simulations to simulate the trajectories of the oil spills with the GNOME (General NOAA Operational Modeling Environment) model. For the first time, we drive the GNOME with currents obtained from an operational ocean model (NCOM, Navy Coastal Ocean Model) and surface winds from operational scatterometer measurements (ASCAT, the Advanced Scatterometer). Both data sets are freely and openly available. The initial oil spill location inputs to the model are based on the detected oil spill locations from the SAR images acquired on June 11 and 14. Three oil slicks are tracked simultaneously and our results show good agreement between model simulations and subsequent satellite observations in the semi-enclosed shallow sea. Moreover, GNOME simulation shows that the number of 'splots', which denotes the extent of spilled oil, is a vital factor for GNOME running stability when the number is less than 500. Therefore, oil spill area information obtained from satellite sensors, especially SAR, is an important factor for setting up the initial model conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    PubMed Central

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield. PMID:27600348

  3. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array.

    PubMed

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2014-11-13

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r² = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r² = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  4. Libya, Algeria and Egypt: crude oil potential from known deposits

    SciTech Connect

    Dietzman, W.D.; Rafidi, N.R.; Ross, T.A.

    1982-04-01

    An analysis is presented of the discovered crude oil resources, reserves, and estimated annual production from known fields of the Republics of Libya, Algeria, and Egypt. Proved reserves are defined as the remaining producible oil as of a specified date under operating practice in effect at that time and include estimated recoverable oil in undrilled portions of a given structure or structures. Also included in the proved reserve category are the estimated indicated additional volumes of recoverable oil from the entire oil reservoir where fluid injection programs have been started in a portion, or portions, of the reservoir. The indicatedmore » additional reserves (probable reserves) reported herein are the volumes of crude oil that might be obtained with the installation of secondary recovery or pressure maintenance operations in reservoirs where none have been previously installed. The sum of cumulative production, proved reserves, and probable reserves is defined as the ultimate oil recovery from known deposits; and resources are defined as the original oil in place (OOIP). An assessment was made of the availability of crude oil under three assumed sustained production rates for each country; an assessment was also made of each country's capability of sustaining production at, or near, the 1980 rates assuming different limiting reserve to production ratios. Also included is an estimate of the potential maximum producing capability from known deposits that might be obtained from known accumulations under certain assumptions, using a simple time series approach. The theoretical maximum oil production capability from known fields at any time is the maximum deliverability rate assuming there are no equipment, investment, market, or political constraints.« less

  5. Antioxidant activities and volatile constituents of various essential oils.

    PubMed

    Wei, Alfreda; Shibamoto, Takayuki

    2007-03-07

    Thirteen essential oils were examined for their antioxidant activity using three different assay systems. Jasmine, parsley seed, rose, and ylang-ylang oils inhibited hexanal oxidation by over 95% after 40 days at a level of 500 microg/mL in the aldehyde/carboxylic acid assay. Scavenging abilities of the oils for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ranged from 39% for angelica seed oil to 90% for jasmine oil at a level of 200 microg/mL. The greatest inhibitory activity toward malonaldehyde (MA) formation from squalene upon UV-irradiation was obtained from parsley seed oil (inhibitory effect, 67%), followed by rose oil (46%), and celery seed oil (23%) at the level of 500 microg/mL. The main compounds of oils showing high antioxidant activity were limonene (composition, 74.6%) in celery seed, benzyl acetate (22.9%) in jasmine, alpha-pinene (33.7%) in juniper berry, myristicin (44%) in parsley seed, patchouli alcohol (28.8%) in patchouli, citronellol (34.2%) in rose, and germacrene (19.1%) in ylang-ylang.

  6. Preparation and oil absorption properties of magnetic melamine sponge

    NASA Astrophysics Data System (ADS)

    Lei, LUO; Jia-qi, HU; Na, LV

    2017-12-01

    The magnetic melamine sponge (MS-Fe3O4) with magnetic response and high hydrophobicity was fabricated by two-step method. First, the magnetic nano-particles were fixed on the skeleton of melamine sponge (MS) using 3-hydroxytyramine hydrochloride and 1-dodecanethiol, then hydrophobicity modified with octadecyltrichlorosilane (OTS). The structures and chemical compositions of MS and MS-Fe3O4 were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wettability of the sample was obtained by using contact angle analysis system. MS-Fe3O4 endowed with outstanding selectivity and excellent oil absorption capacities, which can be widely used in absorbing various sorts of oil. The oil absorption capacities for crude oil, diesel oil, lubricating oil, soybean oil and peanut oil were 71g/g, 51g/g, 62g/g, 54g/g, 57g/g. In addition, MS-Fe3O4 showed excellent recyclability which can be forecasted as an ideal candidate for oil-water separation.

  7. Stability of cosmetic emulsion containing different amount of hemp oil.

    PubMed

    Kowalska, M; Ziomek, M; Żbikowska, A

    2015-08-01

    The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Oil Fires and Oil Slick, Kuwait

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this color infrared view of the Kuwait oil fires and offshore oil slick, (29.0N, 48.0E), smoke from the burning oil fields both to the north and south of Kuwait City almost totally obliterates the image. Unburned pools of oil on the ground and oil offshore in the Persian Gulf are reflecting sunlight, much the same way as water does, and appear as white or light toned features. The water borne oil slicks drifted south toward the Arab Emirate States.

  9. An experiment of used palm oil refinery using the value engineering method

    NASA Astrophysics Data System (ADS)

    Sumiati; Waluyo, M.

    2018-01-01

    Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.

  10. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations

    PubMed Central

    Satyal, Prabodh; Murray, Brittney L.; McFeeters, Robert L.; Setzer, William N.

    2016-01-01

    Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris. PMID:28231164

  11. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-05-01

    Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Simulation and automation of thermal processes in oil well

    NASA Astrophysics Data System (ADS)

    Kostarev, N. A.; Trufanova, N. M.

    2018-03-01

    The paper presents a two-dimensional mathematical model and a numerical analysis of heat and mass transfer processes in an oil well. The proposed and implemented mathematical model of the process of heat and mass transfer in an oil well allows analyzing the temperature field in the whole space of an oil well and is suitable for any fields equipped with an electric centrifugal pump. Temperature and velocity fields were obtained, as well as the distribution of temperature on the wall of the pump tubing along the depth of the well. On the basis of the obtained temperature fields, the modes of periodic heating of the well by the heating cable were developed. Recommendations are given on the choice of power parameters and the time of warming up the well.

  13. Identification and quantification of Cu-chlorophyll adulteration of edible oils.

    PubMed

    Fang, Mingchih; Tsai, Chia-Fen; Wu, Guan-Yan; Tseng, Su-Hsiang; Cheng, Hwei-Fang; Kuo, Ching-Hao; Hsu, Che-Lun; Kao, Ya-Min; Shih, Daniel Yang-Chih; Chiang, Yu-Mei

    2015-01-01

    Cu-pyropheophytin a, the major Cu-pigment of Cu-chlorophyll, was determined in edible oil by high-resolution mass spectrometry with a high-performance liquid chromatography-quadrupole (HPLC-Q)-Orbitrap system and by HPLC coupled with a photodiode-array detector. Respective limit of detection and limit of quantification levels of 0.02 μg/g and 0.05 μg/g were obtained. Twenty-nine commercial oil products marked as olive oil, grapeseed oil and blended oil, all sourced directly from a food company that committed adulteration with Cu-chlorophyll, were investigated. In this company, four green dyes illegally used in oils were seized during factory investigation by the health authorities. The food additive Cu-pyropheophytin a was found in all confiscated samples in concentrations between 0.02 and 0.39 μg/g. Survey results of another 235 commercial oil samples manufactured from other companies, including olive pomace oil, extra virgin olive oil, olive oil, grapeseed oil and blended oil, indicated high positive incidences of 63%, 39%, 44%, 97% and 8%, respectively, with a concentration range between 0.02 and 0.54 μg/g. High Cu-chlorophyll concentrations are indications for fraudulent adulteration of oils.

  14. Neem oil nanoemulsions: characterisation and antioxidant activity.

    PubMed

    Rinaldi, Federica; Hanieh, Patrizia Nadia; Longhi, Catia; Carradori, Simone; Secci, Daniela; Zengin, Gokhan; Ammendolia, Maria Grazia; Mattia, Elena; Del Favero, Elena; Marianecci, Carlotta; Carafa, Maria

    2017-12-01

    The aim of the present work is to develop nanoemulsions (NEs), nanosized emulsions, manufactured for improving the delivery of active pharmaceutical ingredients. In particular, nanoemulsions composed of Neem seed oil, contain rich bioactive components, and Tween 20 as nonionic surfactant were prepared. A mean droplet size ranging from 10 to 100 nm was obtained by modulating the oil/surfactant ratio. Physicochemical characterisation was carried out evaluating size, ζ-potential, microviscosity, polarity and turbidity of the external shell and morphology, along with stability in simulated cerebrospinal fluid (CSF), activity of Neem oil alone and in NEs, HEp-2 cell interaction and cytotoxicity studies. This study confirms the formation of NEs by Tween 20 and Neem oil at different weight ratios with small and homogenous dimensions. The antioxidant activity of Neem oil alone and in NEs was comparable, whereas its cytotoxicity was strongly reduced when loaded in NEs after interaction with HEp-2 cells.

  15. XAFS SPECTROSCOPY RESULTS FOR PM SAMPLES FROM RESIDUAL FUEL OIL

    EPA Science Inventory

    X-ray absorption fine structure (XAFS spectroscopy data were obtained from particulate samples produced by the combustion of residual fuel oil in a 732-kW fire-tube boiler at EPA's National Risk Management Research Laboratory in North Carolina. Residual oil flyash (ROFA) from fo...

  16. A high-oil castor cultivar developed through recurrent selection

    USDA-ARS?s Scientific Manuscript database

    The purpose of this paper is to present and interpret the data obtained from field-grown castor seeds. Under greenhouse conditions, a previous recurrent selection for high-oil castor seeds from a base population resulted in a new population with an increased mean oil content from 50.33 to 54.47% dry...

  17. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.

    2018-01-01

    A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.

  18. Microbicide activity of clove essential oil (Eugenia caryophyllata)

    PubMed Central

    Nuñez, L.; Aquino, M. D’

    2012-01-01

    Clove essential oil, used as an antiseptic in oral infections, inhibits Gram-negative and Gram-positive bacteria as well as yeast. The influence of clove essential oil concentration, temperature and organic matter, in the antimicrobial activity of clove essential oil, was studied in this paper, through the determination of bacterial death kinetics. Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were the microorganisms selected for a biological test. To determine the temperature effect, they were assayed at 21° and 37° C. The concentration coefficient was determined with 0.4%, and 0.2% of essential oil. The influence of the presence of organic matter was determined with 0.4% of essential oil. The results obtained demonstrated that Escherichia coli were more sensitive even though the essential oil exerted a satisfactory action in three cases. In the three microbial species, 0.4% of essential oil at 21° C have reduced the bacterial population in 5 logarithmic orders. Organic matter reduces the antibacterial activity even though the bactericide efficacy was not lost. Clove essential oil can be considered as a potential antimicrobial agent for external use PMID:24031950

  19. Combined Raman spectroscopy and first-principles calculation for essential oil of Lemongrass

    NASA Astrophysics Data System (ADS)

    Faria, Rozilaine A. P. G.; Picanço, Nágela F. M.; Campo, Gladís S. D. L.; Faria, Jorge L. B.; Instituto de Física/UFMT Collaboration; Instituto Federal de Mato Grosso/IFMT Team

    2014-03-01

    The essential oils have increased food's industry interest by the presence of antioxidant and antimicrobial. Many of them have antimicrobial and antioxidant, antibacterial and antifungal activities. But, due to the concentrations required to be added in the food matrix, the sensory quality of the food is changed. The production and composition of essential oil extracted from plants depend on the plant-environment interactions, the harvest season, phenophase and physiological state of the vegetal. Cymbopogom citratus (Lemongrass) has a good yield in essential oil with neral (citral A), geranial (citral B) and myrcene, reaching 90% of the oil composition. In our experimental work, the essential oil of lemongrass was obtained by hydrodistillation in Clevenger apparatus for 4 hours. The compound was further analyzed by Raman scattering in a spectrometer HR 800, with excitation at 633nm, in the range 80-3400 cm-1. The spectrum obtained was compared with DFT calculations of molecules of the oil components. Our results show the vibrational signatures of the main functional groups and suggest a simple, but very useful, methodology to quantify the proportions of these components in the oil composition, showing good agreement with Raman data. CNPq/Capes/Fapemat.

  20. Oils from wild, micropropagated plants, calli, and suspended cells of Euphorbia characias L.

    SciTech Connect

    Fernandes-Ferreira, M.; Pais, M.S.S.; Novais, J.M.

    1991-12-31

    Micropropagated Euphorbia characias plants gave higher yields of crude oil than did wild ones. Leaves of either wild and micropropagated plants contained more oil than did stems. Triterpenols, hydrocarbons, and free and esterified fatty acids are components of the crude oil produced by stems, young and mature leaves of wild and micropropagated E. characias plants, as well as by calli and suspended cells. With the exception of the free fatty acids fraction, all crude oil fractions were higher in micropropagated plants than in the wild ones. The crude oil content of leaves of either wild or micropropagated plants was highermore » than that of stems. However the triterpenols yields were higher in stems than in leaves, both in wild and micropropagated plants. The composition of the triterpenol fraction of the crude oil obtained from calli and suspended cells is quite different from that produced by any in vivo parent plant organ studied. Free fatty acids constitute the main fraction of the crude oil obtained from calli and suspended cells.« less

  1. Antioxidant capacity and phenolic acids of virgin coconut oil.

    PubMed

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  2. Oil and Gas Stormwater Permitting Documents

    EPA Pesticide Factsheets

    This final rule exempts construction activities at oil and gas sites from the requirement to obtain an NPDES permit for stormwater discharges except in very limited instances. This rule is effective June 12, 2006.

  3. Formation, analysis and characterization of wood pyrolyzed oil

    NASA Astrophysics Data System (ADS)

    Mahadwad, O. K.; Wagh, D. D.; Kokil, P. L.

    2017-06-01

    Pyrolysis of wood is the possible path for converting biomass to higher valuable products such as bio-oil, bio-char and bio-gas. Bio-oil or liquid biofuels have higher heating values so it can store and transport more conveniently. The by-products bio-char and bio-gas, which can be used to provide heat required in the process. This work focused on the formation, analysis and characterization of bio-oil which was obtained from the mixed wood pyrolysis. A GC-MS technique was used for the determination of families of lighter chemicals form pyrolyzed oil. Karl fisher titration and other analytical methods were used for the characterization of pyrolyzed oil. In all there were sixty-six compounds found in the GC-MS analysis of bio-oil and the major compound was acetic acid (19.06 wt ), formic acid (4.90 wt ) 1,2-benzenediol (4.43 wt ) and furfural (3.46 wt ). Along with this analysis, pyrolyzed oil was characterized by calculating its viscosity, density, calorific value, acid value, fire point, flash point, carbon, hydrogen, nitrogen, ash and water content in it. Most of the above mention properties of bio-oil matches with the properties of crude oil except it show more water content in it.

  4. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...

  5. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...

  6. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...

  7. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...

  8. 25 CFR 211.22 - Leases for subsurface storage of oil or gas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...

  9. Extraction of citral oil from lemongrass (Cymbopogon Citratus) by steam-water distillation technique

    NASA Astrophysics Data System (ADS)

    Alam, P. N.; Husin, H.; Asnawi, T. M.; Adisalamun

    2018-04-01

    In Indonesia, production of citral oil from lemon grass (Cymbopogon Cytratus) is done by a traditional technique whereby a low yield results. To improve the yield, an appropriate extraction technology is required. In this research, a steam-water distillation technique was applied to extract the essential oil from the lemongrass. The effects of sample particle size and bed volume on yield and quality of citral oil produced were investigated. The drying and refining time of 2 hours were used as fixed variables. This research results that minimum citral oil yield of 0.53% was obtained on sample particle size of 3 cm and bed volume of 80%, whereas the maximum yield of 1.95% on sample particle size of 15 cm and bed volume of 40%. The lowest specific gravity of 0.80 and the highest specific gravity of 0.905 were obtained on sample particle size of 8 cm with bed volume of 80% and particle size of 12 cm with bed volume of 70%, respectively. The lowest refractive index of 1.480 and the highest refractive index of 1.495 were obtained on sample particle size of 8 cm with bed volume of 70% and sample particle size of 15 cm with bed volume of 40%, respectively. The solubility of the produced citral oil in alcohol was 70% in ratio of 1:1, and the citral oil concentration obtained was around 79%.

  10. [Diversity of oil-degrading bacteria isolated form the Indian Ocean sea surface].

    PubMed

    Wu, Changliang; Wang, Xin; Shao, Zongze

    2010-09-01

    In order to investigate the diversity of oil-degrading bacteria in the surface seawater across the India Ocean, and to obtain new oil-degrading bacteria. Potential oil-degrading bacteria were selected out via 1:1 mixture of diesel and crude oil as sole carbon source. Meanwhile, the community structure of 13 enrichments was analyzed by polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE). We obtained 51 unique strains of 29 genera after screening via morphological, physiological, biochemical and 16S rRNA analyses. They mainly belonged to a and gamma-Proteobacteria. The four genera Alcanivorax (accounting for 18%), Novosphingobium (10%), Marinobacter (6%) and Thalassospira (6%) were the most predominant bacteria. Ecological analyses showed that the bacteria had high diversity with Shannon-Winner index (H) of 4.57968, and distributed even with Evenness index (E) as 0.8664771. Then Further experiments revealed oil-degrading capability of 49 strains. In addition, our investigation revealed oil-degrading ability of genera Sinomonas, Knoellia and Mesoflavibacter for the first time. DGGE fingerprint patterns indicated that the genus Alcanivorax was an important oil-degrading bacteria in the surface seawater across the India Ocean. This study demonstrated a high diversity of the oil-degradation bacteria in the surface seawater of Indian Ocean, these bacteria are of potential in bioremediation of marine oil pollution.

  11. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  12. [Chemical studies on essential oils from 6 Artemisia species].

    PubMed

    Pan, J G; Xu, Z L; Ji, L

    1992-12-01

    The constituents of the essential oils obtained from the leaves of Artemisia argyi, A. argyi cv.qiai, A. lavandulaefolia, A. mongolica, A. princeps and A. argyi var. gracilis were analysed by GC-MS. 96 compounds including alpha-thujene, 1,8-cineole, camphor and artemisia alcohol, etc. were identified. Their percentages in the oils were given.

  13. Effects of rootstock on the composition of bergamot (Citrus bergamia Risso et Poiteau) essential oil.

    PubMed

    Verzera, Antonella; Trozzi, Alessandra; Gazea, Florea; Cicciarello, Giuseppe; Cotroneo, Antonella

    2003-01-01

    This paper reports the composition of bergamot oils obtained from plants grafted on the following rootstocks: sour orange, Carrizo citrange, trifoliate orange, Alemow, Volkamerian lemon, and Troyer citrange. The aim of this study is to evaluate the possibility of using rootstocks other than sour orange, checking their effect on the composition of the essential oil. Results are reported for analysis of 203 bergamot oils during the years 1997-1998, 1998-1999, and 1999-2000. The oils were analyzed by HRGC and HRGC/MS; 78 components were identified, and the results were in agreement with those reported in the literature for the Calabrian bergamot oils obtained from industry. Because of the quality of their essential oils, Alemow and Volkamerian lemon can be considered as substitutes for sour orange rootstocks.

  14. Oil

    USGS Publications Warehouse

    Rocke, T.E.

    1999-01-01

    Each year, an average of 14 million gallons of oil from more than 10,000 accidental spills flow into fresh and saltwater environments in and around the United States. Most accidental oil spills occur when oil is transported by tankers or barges, but oil is also spilled during highway, rail, and pipeline transport, and by nontransportation-related facilities, such as refinery, bulk storage, and marine and land facilities (Fig. 42.1). Accidental releases, however, account for only a small percentage of all oil entering the environment; in heavily used urban estuaries, the total petroleum hydrocarbon contributions due to transportation activities may be 10 percent or less. Most oil is introduced to the environment by intentional discharges from normal transport and refining operations, industrial and municipal discharges, used lubricant and other waste oil disposal, urban runoff, river runoff, atmospheric deposition, and natural seeps. Oil-laden wastewater is often released into settling ponds and wetlands (Fig. 42.2). Discharges of oil field brines are a major source of the petroleum crude oil that enters estuaries in Texas.

  15. Eupatorium capillifolium essential oil: chemical composition antifungal activity and insecticidal activity

    USDA-ARS?s Scientific Manuscript database

    Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...

  16. Influence of simulated deep frying on the antioxidant fraction of vegetable oils after enrichment with extracts from olive oil pomace.

    PubMed

    Orozco-Solano, M I; Priego-Capote, F; Luque de Castro, M D

    2011-09-28

    The stability of the antioxidant fraction in edible vegetable oils has been evaluated during a simulated deep frying process at 180 °C. Four edible oils (i.e., extra-virgin olive oil with a 400 μg/mL overall content in naturally existing phenols; high-oleic sunflower oil without natural content of these compounds but enriched either with hydrophilic antioxidants isolated from olive pomace or with an oxidation inhibitor, dimethylsiloxane; and sunflower oil without enrichment) were subjected to deep heating consisting of 20 cycles at 180 °C for 5 min each. An oil aliquot was sampled after each heating cycle to study the influence of heating on the antioxidant fraction composed of hydrophilic and lipophilic antioxidants such as phenols and tocopherols, respectively. The decomposition curves for each group of compounds caused by the influence of deep heating were studied to compare their resistance to oxidation. Thus, the suitability of olive pomace as raw material to obtain these compounds offers an excellent alternative to the use of olive-tree materials different from leaves. The enrichment of refined edible oils with natural antioxidants from olive pomace is a sustainable strategy to take benefits from this residue.

  17. Utilization of Cocoa Peel as Biosorbent for Oil and Color Removal in Palm Oil Mill Effluent (POME)

    NASA Astrophysics Data System (ADS)

    Pandia, S.; Hutagalung, A. T.; Siahaan, A. D.

    2018-01-01

    The aim of this study is to discover the effectiveness of cocoa peel as biosorbents for oil and color removal in POME. This study used biosorbent from cocoa peel with variation of particle size which passed through 70 mesh, 100 mesh, and 120 mesh and was activated with the ratio of biosorbent and 0,6 M HNO3 of 1:2, 1:4, and 1:6 (m/v). The adsorption process was carried out using biosorbent with the highest iodine number in varying biosorbent mass and contact time. The highest iodine number was 596,684 mg/g and obtained at particle size 120 mesh and the ratio of biosorbent : HNO3 as 1 : 4. The resulting biosorbents were analyzed for their characterization, such as vapor content, ash content, and volatile matter, including FT-IR and SEM-EDX. The POME were analyzed for their oil and color content, using gravimetric method and UV-Vis spectrophotometry. The best removal is were 80,88% for oil and 83.45% for color at 1.5 g biosorbent mass and 3 h contact time. The resullt for oil removal was close to the standard of Indonesian Environment Minister for oil in effluent. Also the adsorption of oil and color behaves as a pseudo-second-order kinetic models.

  18. VOLATILE CONSTITUENTS OF GINGER OIL PREPARED ACCORDING TO IRANIAN TRADITIONAL MEDICINE AND CONVENTIONAL METHOD: A COMPARATIVE STUDY.

    PubMed

    Shirooye, Pantea; Mokaberinejad, Roshanak; Ara, Leila; Hamzeloo-Moghadam, Maryam

    2016-01-01

    Herbal medicines formulated as oils were believed to possess more powerful effects than their original plants in Iranian Traditional Medicine (ITM). One of the popular oils suggested for treatment of various indications was ginger oil. In the present study, to suggest a more convenient method of oil preparation (compared to the traditional method), ginger oil has been prepared according to both the traditional and conventional maceration methods and the volatile oil constituents have been compared. Ginger oil was obtained in sesame oil according to both the traditional way and the conventional (maceration) methods. The volatile oil of dried ginger and both oils were obtained by hydro-distillation and analyzed by gas chromatography/mass spectroscopy. Fifty five, fifty nine and fifty one components consisting 94 %, 94 % and 98 % of the total compounds were identified in the volatile oil of ginger, traditional and conventional oils, respectively. The most dominant compounds of the traditional and conventional oils were almost similar; however they were different from ginger essential oil which has also been to possess limited amounts of anti-inflammatory components. It was concluded that ginger oil could be prepared through maceration method and used for indications mentioned in ITM.

  19. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  20. Monthly Crude Oil and Natural Gas Production Report

    EIA Publications

    2017-01-01

    Crude oil production (including lease condensate) and natural gas production (gross withdrawals) from data collected on Form EIA-914 (Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report) for Federal Offshore Gulf of Mexico, Texas, Louisiana, New Mexico, Oklahoma, Texas, Wyoming, other states and lower 48 states. Alaska data are from the Alaska state government and included to obtain a U.S. total.

  1. UV-blocking potential of oils and juices.

    PubMed

    Gause, S; Chauhan, A

    2016-08-01

    Sunscreens are commonly used to protect the body from damage caused by UV light. Some components of organic sunscreens have been shown to pass through the skin during wear which could raise toxicity concerns for these compounds. This study explores the potential for oils and fruit and vegetable juices to be substitutes for these compounds. The absorptivity of various oils (canola oil, citronella oil, coconut oil, olive oil, soya bean oil, vitamin E, as well as aloe vera) and fruit and vegetable juices (acerola, beet, grape, orange carrot, purple carrot and raspberry) was measured in vitro. The mean absorptivity was compared with FDA-approved UV absorbers to gauge the potential of the natural products. The most promising candidates were incorporated into formulations, and the UV transmittance of a 20-μm-thick film of the formulation was measured. The formulations were also imaged by light microscopy and scanning electron microscopy. The absorptivity of oils was at least two orders of magnitude lower compared to the commercial UV blockers. The fruit juice powders were more effective at UV blocking but still showed an order of magnitude lower absorptivity compared to commercial UV blockers. The UV blocking from most natural oils is insufficient to obtain a significant UV protection. Formulations containing 50wt% purple carrot showed good UV-blocking capabilities and represent a promising ingredient for sunscreen and cosmetic applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator

    PubMed Central

    2011-01-01

    Polyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration. Cupriavidus necator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils. It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production. PMID:21906352

  3. [Not Available].

    PubMed

    Rutten, A M

    1994-10-01

    In 1686 the Zeeland Chamber of the West Indian Company undertook a serious effort to establish a colony on the Wild Coast at the Pomeroon. The Wild Coast, a territory described as stretching from the Amazon to the Orinoco river, was of growing significance for the trade in pharmaceutical and technical products of the Guyana country: dyes, letterwood, balsam of copaiba, tobacco, sugar, vanilla beans and carape oil. The expedition consisted of the ship 'De Vrijheyt' which was dispatched from Flushing with the new commander Jacob de Jongh, his family, some soldiers and the surgeon David van Cassel aboard. The latter could rely on a surgeon chest with 103 medicines. The new Pomeroon colony however quickly collapsed. Mortality due to dysentery and malaria was high and the lack of leadership led to faulty discipline. The list of medicines used to combat diseases is reviewed in this article. Antimony takes an important place in the assortment and theriac was used for its anti-inflammatory activity.

  4. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  5. Indirect and direct tensile behavior of Devonian oil shales

    SciTech Connect

    Chong, K.P.; Chen, J.L.; Dana, G.F.

    1984-03-01

    Ultimate indirect tensile strengths of Devonian oil shales across the bedding planes is a mechanical property parameter important to predicting how oil shale will break. This is particularly important to in-situ fragmentation. The Split Cylinder Test was used to determine the indirect tensile strengths between the bedding planes. Test specimens, cored perpendicular to the bedding planes, representing oil shales of different oil yields taken from Silver Point Quad in DeKalb County, Tennessee and Friendship in Scioto County, Ohio, were subjected to the Split Cylinder Test. Linear regression equations relating ultimate tensile strength across the bedding planes to volume percent ofmore » organic matter in the rock were developed from the test data. In addition, direct tensile strengths were obtained between the bedding planes for the Tennessee oil shales. This property is important for the design of horizontal fractures in oil shales. Typical results were presented.« less

  6. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  7. Antioxidant Activity of Essential Oil Extracted by SC-CO₂ from Seeds of Trachyspermum ammi.

    PubMed

    Singh, Aarti; Ahmad, Anees

    2017-07-11

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO₂) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi . A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO₂ flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO₂ methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w , respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC 50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL -1 , respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO₂ method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity.

  8. Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.

    PubMed

    Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B

    2012-12-01

    Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Chemical composition and functional characterisation of commercial pumpkin seed oil.

    PubMed

    Procida, Giuseppe; Stancher, Bruno; Cateni, Francesca; Zacchigna, Marina

    2013-03-30

    Pumpkin (Cucurbita pepo L.) seed oil is a common product in Slovenia, Hungary and Austria and is considered a preventive agent for various pathologies, particularly prostate diseases. These properties are related to its high content of carotenoids and liposoluble vitamins. In this study the carotenoid (lutein and zeaxanthin), vitamin E (α- and γ-tocopherol) and fatty acid contents of 12 samples of commercial pumpkin seed oil were investigated together with the composition of the volatile fraction resulting from the roasting process. The aromatic profile obtained from the commercial samples was directly related to the intensity of the roasting process of the crushed pumpkin seeds. The roasting temperature played a crucial role in the concentrations of volatile substances originating from Strecker degradation, lipid peroxidation and Maillard reaction. The findings suggest that high-temperature roasting leads to the production of an oil with intense aromatic characteristics, while mild conditions, generally employed to obtain an oil with professed therapeutic characteristics, lead to a product with minor characteristic pumpkin seed oil aroma. The nutraceutical properties of the product are confirmed by the high content of α- and γ-tocopherol and carotenoids. © 2012 Society of Chemical Industry.

  10. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  11. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow.

    PubMed

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  12. Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.

    PubMed

    Rele, Aarti S; Mohile, R B

    2003-01-01

    Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting

  13. Solids precipitation in crude oils, gas-to-liquids and their blends

    NASA Astrophysics Data System (ADS)

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  14. Extraction of the essential oil from endemic Origanum bilgeri P.H.Davis with two different methods: comparison of the oil composition and antibacterial activity.

    PubMed

    Sözmen, Fazli; Uysal, Burcu; Köse, Elif Odabaş; Aktaş, Ozgür; Cinbilgel, Ilker; Oksal, Birsen S

    2012-07-01

    The antibacterial activity and chemical composition of the essential oils (EOs) isolated from Origanum bilgeri P.H.Davis by two different extraction methods, i.e., hydrodistillation (HD) and solvent-free microwave extraction (SFME), were examined. This endemic Origanum species had shown very good antibacterial activity. The composition of the O. bilgeri EOs obtained by SFME and HD was investigated by GC/MS analysis. The main components of the oils obtained by both methods were carvacrol (90.20-84.30%), p-cymene (3.40-5.85%), γ-terpinene (0.47-1.20%), and thymol (0.69-1.08%). The EO isolation by SFME offered many important advantages, including a higher extraction yield, a shorter extraction time, and a higher content of the active component carvacrol. The carvacrol-rich oils obtained by both HD and SFME showed a good antibacterial activity. The largest inhibition zones were observed for the O. bilgeri EO obtained by SFME. Our study suggests that O. bilgeri EO has the potential to be used as preventative against bacterial contamination in many foods, instead of the common synthetic antimicrobial products. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  15. Rapeseed Oil as Renewable Resource for Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Stirna, Uldis; Fridrihsone, Anda; Misane, Marija; Vilsone, Dzintra

    2011-01-01

    Vegetable oils are one of the most important platform chemicals due to their accessibility, specific structure of oils and low price. Rapeseed oil (RO) polyols were prepared by amidization of RO with diethanolamine (DEA). To determine the kinetics of amidization reaction, experiments were carried out. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), amine (NH) value was determined. Group contribution method by Fedor‵s was used to calculate solubility parameters, van der Waals volume was calculated by Askadskii. Obtained polyol‵s OH and NH value are from 304 up to 415 mg KOH/g. RO polyols synthesis meets the criteria of "green chemistry". In the present study, reaction of RO amidization with DEA was investigated, as well as optimum conditions for polyol synthesis was established to obtain polyols for polyurethane production. Calculations of solubility parameter and cohesion energy density were calculated, as RO polyols will be used as side chains in polymers, and solubility parameter will be used to explain properties of polymers.

  16. Optical methods and differential scanning calorimetry as a potential tool for discrimination of olive oils (extra virgin and mix with vegetable oils)

    NASA Astrophysics Data System (ADS)

    Nikolova, Kr.; Yovcheva, T.; Marudova, M.; Eftimov, T.; Bodurov, I.; Viraneva, A.; Vlaeva, I.

    2016-03-01

    Eleven samples from olive oil have been investigated using four physical methods - refractive index measurement, fluorescence spectra, color parameters and differential scanning colorimetry. In pomace olive oil (POO) and extra virgin olive oil (EVOO) the oleic acid (65.24 %-78.40 %) predominates over palmitic (10.47 %-15.07 %) and linoleic (5.26 %-13.92 %) acids. The fluorescence spectra contain three peaks related to oxidation products at about λ = (500-540) nm, chlorophyll content at about λ = (675-680) nm and non determined pigments at λ = (700-750) nm. The melting point for EVOO and POO is between -1 °C and -6 °C. In contrast, the salad olive oils melt between -24 °C and -30 °C. The refractive index for EVOO is lower than that for mixed olive oils. The proposed physical methods could be used for fast and simple detection of vegetable oils in EVOO without use of chemical substances. The experimental results are in accordance with those obtained by chemical analysis.

  17. Settling of virgin olive oil from horizontal screw solid bowl in static conditions.

    PubMed

    Gila, Abraham M; Bejaoui, Mohamed A; Beltrán, Gabriel; Jiménez, Antonio

    2017-08-01

    This work was aimed to study the clarification efficiency of natural decantation in settling tank on virgin olive oil obtained from a two-ways continuous process. For this purpose, the impurities content of the virgin olive oil were monitored during settling process in settling tank at two different depths. Efficiency of purging system was determined for two days. The experiments were performed at industrial scale during three crop years. During the first minutes of settling was observed an ascent of the smaller organic particles of the oil. Then, most of the virgin olive oil impurities were settled at 300 min, independently of the initial content of virgin olive oil. Finally, oil decantation showed slower rate. Higher clarification values were obtained for those decanter oils with higher impurities content, achieving clarification percentages between of 62.69 and 95.91% at 48 h of settling. The highest settling efficiency was observed for those decanter oils with initial higher impurities content. The purging system used in the settling tanks was not able to remove the most of settled impurities since a considerable amount of the impurities remained in the tank after 48 h, between 13.6 and 71.41% for the studied oils. In the tank purges was observed important oil losses. Therefore, decantation was not an efficient system for oil clarification since its settling capacity varied depending on the initial impurities content and due to the settled impurities can not be removed fully by purging system.

  18. Rheological behavior on treated Malaysian crude oil

    NASA Astrophysics Data System (ADS)

    Chandran, Krittika; Sinnathambi, Chandra Mohan

    2016-11-01

    Crude oil is always produced with water. This association causes many problems during oil production, arising from the formation of emulsion. Emulsion is an undesirable substance that increases operational and capital cost in the pipeline and processing equipment. To overcome this issue, demulsifiers are formulated to break the emulsion, where they are able to separate the water-oil emulsions to their respective phases. The emulsifier's main function is to reduce the interfacial tension properties of the emulsion. For this research, both the EOR and natural water-in-oil emulsions were treated with low a concentration demulsifier. The main objective of this paper is to determine the dynamic viscosity and rheological properties of the treated EOR and natural emulsion. The dynamic viscosity was obtained using the Brook-field Digital Viscometer. The components that influence the emulsion's rheological properties are the temperature, shear rate and shear stress. The results obtained demonstrate that the viscosity of the treated crude decreases and portrays the Non-Newtonian shear thinning "pseudo-plastic" behavior. Besides that, to determine the interfacial film of the treated crude, the spinning drop tensiometer was used. With the addition of demulsifier, the thinning rate of the oil film accelerates whereby there is a linear decrease in the interfacial tension with an increase in time. Therefore, from the results, it can be observed that the rheology study plays a significant role in the demulsification test. Furthermore, both the rheology approaches showed that time, temperature, shear rate and shear stress have a great impact on the viscosity behavior as well as the IFT.

  19. Krill Oil for Cardiovascular Risk Prevention: Is It for Real?

    PubMed Central

    Backes, James M.; Howard, Patricia A.

    2014-01-01

    Omega-3 fatty acids play an important role in cardiovascular health. Although it is suggested that individuals obtain these nutrients through diet, many prefer to rely on supplements. Fish oil supplements are widely used, yet large capsule sizes and tolerability make them less than ideal. Recently, krill oil has emerged as a potential alternative for omega-3 supplementation. This article will discuss what is known about krill oil and its potential use in cardiovascular risk prevention. PMID:25477562

  20. High-shear, jet-cooking, and alkali treatment of corn distillers' dried grains to obtain products with enhanced protein, oil and phenolic antioxidants.

    PubMed

    Inglett, G E; Chen, D; Rose, D J; Berhow, M

    2010-08-01

    Distillers dried grains (DDG) have potential to be a nutritionally important source of protein, oil and phenolic antioxidants. DDG was subjected to high-shear and jet-cooking, with or without alkaline pH adjustment and autoclaving. Soluble and insoluble fractions were analyzed for protein, oil and ash. Extracts were analyzed for phenolic acids and antioxidant activity. Protein contents were significantly elevated in the insoluble fractions after treatment and the oil content was drastically increased in the insoluble fraction after high-shear and jet-cooking without pH adjustment. Alkaline pH adjustment resulted in a soluble fraction that was highest in phenolic acids, but not antioxidant activity. The highest antioxidant activity was found in the 50% ethanol extract from DDG that had been subjected to high-shear and jet-cooking. These results suggest that high-shear and jet-cooking may be useful processing treatments to increase the value of DDG by producing fractions high in protein, oil and extractable phenolic acids with high antioxidant activity. The DDG fractions and extracts described herein may be useful as food and nutraceutical ingredients, and, if used for these applications, will increase the value of DDG and ease economic burdens on ethanol producers, allowing them to compete in the bio-fuel marketplace.

  1. Carbon Nano Tube Composites with Chemically Functionalized Plant Oils

    NASA Astrophysics Data System (ADS)

    Thielemans, Wim; Wool, Richard P.; Blau, Werner; Barron, Valerie

    2003-03-01

    Carbon Nano Tube Composites with Chemically Functionalized Plant Oil Wim Thielemans, R., P. Wool, V. Barron and W. Blau Multi-Wall Carbon Nano Tubes (MWCNT) made by the Kratchmer-Huffman CCVD process were found to interact and solubilize by slow mechanical stirring, with chemically functionalized plant oils, such as acrylated, epoxidized and maleinated triglycerides (TG) derived from plant oils. The chemical functionality on the TG imparted amphiphilic properties to the oils which allows them to self-assemble on the nanotubes, promoting both dissolution and the ability to make nanocomposites with unusual properties. Once in solution, the MWCT can be processed in a variety of methods, in particular to make composites with enhanced mechanical, fracture and thermal properties. Since the tensile modulus of MWs is about 1 TPa and a vector percolation analysis indicated tensile strengths of 50-100 GPa, we obtain significantly improved properties with even small amounts (1-3the glass transition temperature of the composite by about 20 oC, and the tensile modulus by about 11significant effects on the fracture stress can be obtained due to the both the influence of the strength and length of the MWNT at the crack tip. The ability of the oils to self-assemble on the carbon nanotube surfaces also makes them ideal candidates for self-healing materials. The properties with different functionalized oils will be reported. Supported by EPA, DoE and ISF

  2. Chemical composition of the essential oil from Jasminum pubescens leaves and flowers.

    PubMed

    Temraz, Abeer; Cioni, Pier Luigi; Flamini, Guido; Braca, Alessandra

    2009-12-01

    The essential oil obtained from the leaves and flowers of Jasminum pubescens (Retz.) Willd. (Oleaceae) has been analyzed by GC/MS. Sixty-three and sixty-four components of the essential oils, representing 95.0% of the total oil for the leaves and 91.9% for the flowers, were identified, respectively. Both the oils were mainly constituted by non-terpene derivatives (58.2% and 50.8%, respectively), among which aldehydes (44.7%) characterized the essential oil from the leaves. Besides aldehydes (14.3%) and other carbonylic compounds (acids, esters, and ketones, 38.1%) were the main non-terpene compounds of the oil from the flowers.

  3. Biodiesel production using waste frying oil

    SciTech Connect

    Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less

  4. Performance of Different Natural Antioxidant Compounds
in Frying Oil

    PubMed Central

    Aydenız, Buket

    2016-01-01

    Summary In this study, the natural green tea extract, purified lycopene, purified resveratrol and purified γ-oryzanol were added into peanut oil and their antioxidant performances were evaluated during frying. Moreover, the sensory properties of fried dough were evaluated to determine the consumption feasibility. All natural antioxidants led to significant increase in the stability of the oil samples. The ranges of measurements in the treatment groups were as follows: free acidity 0.1–2.9 g of oleic acid per 100 g of oil, conjugated dienes 0.01–0.40 g per 100 g of oil, total polar material 8.8–73.8 g per 100 g of oil, total phenolics 0.1–4.2 mg of gallic acid equivalents per 100 g of oil, and antioxidant capacity 0.5–11.0 mM of Trolox equivalents per 100 g of oil. The fatty acid and sterol compositions indicated that antioxidant supplementation could slow the oxidative degradation of unsaturated fatty acids and reduce trans-acid formation. Frying oil enriched with purified γ-oryzanol had higher sterol levels than the other enriched oil samples. The obtained quality of oil protection was in descending order: purified γ-oryzanol, green tea extract and purified lycopene. PMID:27904389

  5. Essential Oils, Part VI: Sandalwood Oil, Ylang-Ylang Oil, and Jasmine Absolute.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    In this article, some aspects of sandalwood oil, ylang-ylang oil, and jasmine absolute are discussed including their botanical origin, uses of the plants and the oils and absolute, chemical composition, contact allergy to and allergic contact dermatitis from these essential oils and absolute, and their causative allergenic ingredients.

  6. Study of jojoba oil aging by FTIR.

    PubMed

    Le Dréau, Y; Dupuy, N; Gaydou, V; Joachim, J; Kister, J

    2009-05-29

    As the jojoba oil was used in cosmetic, pharmaceutical, dietetic food, animal feeding, lubrication, polishing and bio-diesel fields, it was important to study its aging at high temperature by oxidative process. In this work a FT-MIR methodology was developed for monitoring accelerate oxidative degradation of jojoba oils. Principal component analysis (PCA) was used to differentiate various samples according to their origin and obtaining process, and to differentiate oxidative conditions applied on oils. Two spectroscopic indices were calculated to report simply the oxidation phenomenon. Results were confirmed and deepened by multivariate curve resolution-alternative least square method (MCR-ALS). It allowed identifying chemical species produced or degraded during the thermal treatment according to a SIMPLISMA pretreatment.

  7. Chemometric techniques in oil classification from oil spill fingerprinting.

    PubMed

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wong, Kok Fah; Retnam, Ananthy; Zali, Munirah Abdul; Mokhtar, Mazlin; Yusri, Mohd Ayub

    2016-10-15

    Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources. Copyright © 2016. Published by Elsevier Ltd.

  8. The Synthesis of Biodiesel from Used Temple Oil

    NASA Astrophysics Data System (ADS)

    Saddu, Sharanabasappa; Kivade, S. B.; Ramana, P.

    2018-05-01

    Safe and sustainable resources of energy is required for the financial and industrial growth. A new approach in investigating, growth, production and the economy is necessary, for the future reorganization of a sustainable natural raw material. In India, because of many mythological and religious beliefs thousands of devotees pour oil in lamps in various temples and also over the idols in Hanuman and Shani temples. This poured oil cannot be utilized and was ultimately wasted. One of tender advertisements by department of Muzarai of Karnataka Government, the used oil potential at shree Renuka yallamma temple Soundatti, Belagavi district is 18,900 kg for the year 2016-2017. This is only one temple oil potential; the number of Hindu temples in India is a Puzzle. This used temple oil was used as alternative feedstock, to decrease the cost of bio fuel. Using ASTM standard methods, the properties of used temple oil biodiesel were analyzed. From the tests it is clear that the, properties of used temple oil biodiesel are similar to diesel fuel. The obtained yield of biodiesel was 94.51%. This study identified that the price of the feedstock was one of the most significant factors.

  9. Photocatalytic production and processing of conjugated linoleic acid-rich soy oil.

    PubMed

    Jain, Vishal P; Proctor, Andrew

    2006-07-26

    Daily intake of conjugated linoleic acid (CLA), an anticarcinogenic, antiatherosclerotic, antimutagenic agent, and antioxidant, from dairy and meat products is substantially less than estimated required values. The objective of this study was to obtain CLA-rich soybean oil by a customized photochemical reaction system with an iodine catalyst and evaluate the effect of processing on iodine and iodo compounds after adsorption. After 144 h of irradiation, a total CLA yield of 24% (w/w) total oil was obtained with 0.15% (w/w) iodine. Trans,trans isomers (17.5%) formed the majority of the total yield and are also associated with health benefits. The isomers cis-9,trans-11 and trans-10,cis-12 CLA, associated with maximum health benefits, formed approximately 3.5% of the total oil. This amount is quite significant considering that total CLA obtained from dairy sources is only 0.6%. ATR-FTIR, 1H NMR, and GC-MS analyses indicated the absence of peroxide and aldehyde protons, providing evidence that secondary lipid oxidation products were not formed during the photochemical reaction. Adsorption processing vastly reduced the iodine and iodocompounds without CLA loss. Photocatalysis significantly increased the levels of CLA in soybean oil.

  10. Influence sample sizing of citrus hystrix essential oil from hydrodistillation extraction

    NASA Astrophysics Data System (ADS)

    Yahya, A.; Amadi, I.; Hashib, S. A.; Mustapha, F. A.

    2018-03-01

    Essential oil extracted from kaffir lime leaves through hydrodistillation. The objective of this study is to quantify the oil production rate by identify the significant influence of particle size on kaffir lime leaves. Kaffir lime leaves were ground and separated by using siever into 90, 150, 300 μm and other kaffir lime leaves. The mean essential oil yield of 0.87, 0.52, 0.41 and 0.3% was obtained. 90 μm of ground gives the highest yield compared to other sizes. Thus, it can be concluded that in quantifying oil production rate, the relevance of different size of particle is clearly affects the amount of oil yield. In analysing the composition of kaffir lime essential oil using GC-MS, there were 38 compounds found in the essential oil. Some of the major compounds of the kaffir lime leave oils were detected while some are not, may due to oil experience thermal degradation which consequently losing some significant compounds in controlled temperature.

  11. Palm oil and the heart: A review

    PubMed Central

    Odia, Osaretin J; Ofori, Sandra; Maduka, Omosivie

    2015-01-01

    Palm oil consumption and its effects on serum lipid levels and cardiovascular disease in humans is still a subject of debate. Advocacy groups with varying agenda fuel the controversy. This update intends to identify evidence-based evaluations of the influence of palm oil on serum lipid profile and cardiovascular disease. Furthermore, it suggests a direction for future research. The sources of information were based on a PubMed, Google Scholar, African Journal online and Medline search using key words including: palm oil, palmitic acid, saturated fatty acids and heart disease. Published animal and human experiments on the association of palm oil and its constituents on the serum lipid profile and cardiovascular disease were also explored for relevant information. These papers are reviewed and the available evidence is discussed. Most of the information in mainstream literature is targeted at consumers and food companies with a view to discourage the consumption of palm oil. The main argument against the use of palm oil as an edible oil is the fact that it contains palmitic acid, which is a saturated fatty acid and by extrapolation should give rise to elevated total cholesterol and low-density lipoprotein cholesterol levels. However, there are many scientific studies, both in animals and humans that clearly show that palm oil consumption does not give rise to elevated serum cholesterol levels and that palm oil is not atherogenic. Apart from palmitic acid, palm oil consists of oleic and linoleic acids which are monounsaturated and polyunsaturated respectively. Palm oil also consists of vitamins A and E, which are powerful antioxidants. Palm oil has been scientifically shown to protect the heart and blood vessels from plaques and ischemic injuries. Palm oil consumed as a dietary fat as a part of a healthy balanced diet does not have incremental risk for cardiovascular disease. Little or no additional benefit will be obtained by replacing it with other oils rich in mono

  12. Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats.

    PubMed

    Shaw, D; Annett, J M; Doherty, B; Leslie, J C

    2007-09-01

    To establish a valid animal model of the effects of olfactory stimuli on anxiety, a series of experiments was conducted using rats in an open-field test. Throughout, effects of lavender oil were compared with the effects of chlordiazepoxide (CDP), as a reference anxiolytic with well-known effects on open-field behaviour. Rats were exposed to lavender oil (0.1-1.0 ml) for 30 min (Experiment 1) or 1h (Experiment 2) prior to open-field test and in the open field or injected with CDP (10 mg/kg i.p.). CDP had predicted effects on behaviour, and the higher doses of lavender oil had some effects on behaviour similar to those of CDP. In Experiment 3, various combinations of pre-exposure times and amounts of lavender oil were used. With sufficient exposure time and quantity of lavender the same effects were obtained as in Experiment 2. Experiment 4 demonstrated that these behavioural effects of lavender could be obtained following pre-exposure, even if no oil was present in the open-field test. In Experiments 2-4, lavender oil increased immobility. Together, these experiments suggest that lavender oil does have anxiolytic effects in the open field, but that a sedative effect can also occur at the highest doses.

  13. On the Mineral and Vegetal Oils Used as Electroinsulation in Transformers

    NASA Astrophysics Data System (ADS)

    Şerban, Mariana; Sângeorzan, Livia; Helerea, Elena

    Due to the relatively large availability and reduced price, the mineral transformer oils are widely used as electrical insulating liquids. However, mineral oil drastically degrades over time in service. New efforts were made to improve mineral oils characteristics, and other types of liquids like vegetal oils are proposed. This paper deals with new comparative tests on mineral and vegetal oils using as indicator the electric strength. The samples of non-additive mineral oil type TR 30 and vegetal oils of rape, sunflower and corn have been tested with increasing voltage of 60 Hz using different electrodes. The obtained data have been statistical processed. The analyze shows different average values of electrical strength for the different type of sample. New method of testing through electrical breakdown is proposed. Experimental data confirms that it is possible to use as electroinsulation organic vegetal oils in power transformers.

  14. A possible mechanism of metabolic regulation in Gibberella fujikuroi using a mixed carbon source of glucose and corn oil inferred from analysis of the kinetics data obtained in a stirrer tank bioreactor.

    PubMed

    Rios-Iribe, Erika Y; Hernández-Calderón, Oscar M; Reyes-Moreno, C; Contreras-Andrade, I; Flores-Cotera, Luis B; Escamilla-Silva, Eleazar M

    2013-01-01

    A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi. © 2013 American Institute of Chemical Engineers.

  15. Composition of the essential oil of Helichrysum chasmolycicum growing wild in Turkey.

    PubMed

    Chalchat, J C; Ozcan, M M

    2006-01-01

    The chemical compositions of the essential oil obtained from the aerial parts of Helichrysum chasmolycicum were analyzed by gas chromatography and gas chromatography-mass spectrometry. From the 57 identified constituents, representing 66.55% of the oil, the main constituents of the oil were beta-caryophyllene (27.6%), beta-selinene (8.9%), alpha-selinene (8.4%), caryophyllene oxide (7.3%), and carvacrol (2.4%). The essential oil was almost totally characterized by sesquiterpene hydrocarbons such as beta-caryophyllene and alpha- and beta-selinene.

  16. Detection of oil spills using 13.3 GHz radar scatterometer

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1972-01-01

    The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.

  17. Effect of oil on an electrowetting lenticular lens and related optical characteristics.

    PubMed

    Shin, Dooseub; Kim, Junoh; Kim, Cheoljoong; Koo, Gyo Hyun; Sim, Jee Hoon; Lee, Junsik; Won, Yong Hyub

    2017-03-01

    While there are many ways to realize autostereoscopic 2D/3D switchable displays, the electrowetting lenticular lens is superior due to the high optical efficiency and short response time. In this paper, we propose a more stable electrowetting lenticular lens by controlling the quantity of oil. With a large amount of oil, the oil layer was broken and the lenticular lens was damaged at relatively low voltage. Therefore, controlling the amount of oil is crucial to obtain the required dioptric power with stability. We proposed a new structure to evenly adjust the volume of oil and the dioptric power was measured by varying the volume of oil. Furthermore, the optical characteristics were finally analyzed in the electrowetting lenticular lens array with a proper amount of oil.

  18. GC/MS Analysis of the Essential Oil of Vernonia cinerea.

    PubMed

    Joshi, Rajesh K

    2015-07-01

    The hydro-distilled essential oil obtained from the roots of V. cinerea Less. (Asteraceae) was investigated by gas chromatography equipped with flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Twenty-five constituents were identified, which represented 97.4% of the total oil. The major compounds were α-muurolene (30.7%), β-caryophyllene (9.6%), α-selinene (8.7%), cyperene (6.7%) and α-gurjunene (6.5%). The essential oil was dominated by sesquiterpene hydrocarbons (87.8%).

  19. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  20. ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL.

    PubMed

    M, Canales-Martinez; C R, Rivera-Yañez; J, Salas-Oropeza; H R, Lopez; M, Jimenez-Estrada; R, Rosas-Lopez; D A, Duran; C, Flores; L B, Hernandez; M A, Rodriguez-Monroy

    2017-01-01

    Bursera morelensis , known as "Aceitillo", is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis . The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae , V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC 50 = 2.27 mg/mL) was the most sensitive fungal strain. This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.

  1. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    PubMed Central

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199

  2. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    PubMed

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  3. Influence of stability of polymer surfactant on oil displacement mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Li; Li, Chengliang; Pi, Yanming; Wu, Di; He, Ying; Geng, Liang

    2018-02-01

    At present, most of the oilfields of China have entered the late stage of high water-cut development, and three oil recovery technique has become the leading technology for improving oil recovery. With the improvement of three oil recovery techniques, the polymer surfactant flooding technology has been widely promoted in oil fields in recent years. But in the actual field experiment, it has been found that the polymer surfactant has chromatographic separation at the extraction end, which indicates that the property of the polymer surfactant has changed during the displacement process. At present, there was few literature about how the stability of polymer surfactant affects the oil displacement mechanism. This paper used HuaDing-I polymer surfactant to conduct a micro photolithography glass flooding experiment, and then compared the oil displacement law of polymer surfactant before and after static setting. Finally, the influence law of stability of polymer surfactant on the oil displacement mechanism is obtained by comprehensive analysis.

  4. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...

  5. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...

  6. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cocoa butter substitute from coconut oil, palm... substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or both oils, may be safely used in food in accordance with the following...

  7. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    PubMed

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions

    PubMed Central

    Zhang, Li-Wen; Al-Suwayeh, Saleh A; Hung, Chi-Feng; Chen, Chih-Chieh; Fang, Jia-You

    2011-01-01

    The study evaluated the potential of nanoemulsions for the topical delivery of 5-aminolevulinic acid (ALA) and methyl ALA (mALA). The drugs were incorporated in oil-in-water (O/W) and water-in-oil (W/O) formulations obtained by using soybean oil or squalene as the oil phase. The droplet size, zeta potential, and environmental polarity of the nanocarriers were assessed as physicochemical properties. The O/W and W/O emulsions showed diameters of 216–256 and 18–125 nm, which, respectively, were within the range of submicron- and nano-sized dispersions. In vitro diffusion experiments using Franz-type cells and porcine skin were performed. Nude mice were used, and skin fluorescence derived from protoporphyrin IX was documented by confocal laser scanning microscopy (CLSM). The loading of ALA or mALA into the emulsions resulted in slower release across cellulose membranes. The release rate and skin flux of topical drug application were adjusted by changing the type of nanocarrier, the soybean oil O/W systems showing the highest skin permeation. This formulation increased ALA flux via porcine skin to 180 nmol/cm2/h, which was 2.6-fold that of the aqueous control. The CLSM results showed that soybean oil systems promoted mALA permeation to deeper layers of the skin from ∼100 μm to ∼140 μm, which would be beneficial for treating subepidermal and subcutaneous lesions. Drug permeation from W/O systems did not surpass that from the aqueous solution. An in vivo dermal irritation test indicated that the emulsions were safe for topical administration of ALA and mALA. PMID:21556344

  9. A new shock wave assisted sandalwood oil extraction technique

    NASA Astrophysics Data System (ADS)

    Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.

    A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.

  10. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    PubMed

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  11. [Study of automatic marine oil spills detection using imaging spectroscopy].

    PubMed

    Liu, De-Lian; Han, Liang; Zhang, Jian-Qi

    2013-11-01

    To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond. It is then used to obtain the reference spectral signature for the following oil spill detection step. Secondly, the characteristics of reflectance spectral signature of sea water, clouds, and oil spill are compared. The bands which have large difference in reflectance spectral signatures of the sea water, clouds, and oil spill are selected. By using these bands, the sea water pixels are segmented. And the background parameters are then calculated. Finally, the classical adaptive matched filter from target detection algorithms is improved and introduced for oil spill detection. The proposed method is applied to the real airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral image captured during the deepwater horizon oil spill in the Gulf of Mexico for oil spill detection. The results show that the proposed method has, high efficiency, does not need artificial auxiliary work, and can be used for automatic detection of marine oil spill.

  12. In Vitro antifungal activity of essential oils against Colletotrichum gloeosporioides

    NASA Astrophysics Data System (ADS)

    Yusoff, Nor Hanis Aifaa; Abdullah, Siti Aisyah; Othman, Zaulia; Zainal, Zamri

    2018-04-01

    The efficacy of Citrus hystrix, Azadirachta indica and Cymbopogon citratus essential oils were evaluated for controlling the growth of mycelia and spore germination of Colletotrichum gloeosporioides. In order to determine the best essential oil (EO) and suitable concentration of essential oil, in vitro experiment was conducted by preparing a pure culture of antrachnose on Potato Dextrose Agar containing EOs of C. hystrix, A. indica and C. citratus with different concentrations (0.2%, 0.6%, 1% and 1.4% (v/v)). The result shows that C. hystrix essential oil at a concentration of 1.4% (v/v) reduced of mycelia growth of C. gloeosporioides by 29.49%. A second experiment was conducted, but at higher concentration of each essential oils (1.8%, 2.2%, 2.6% and 2.8% (v/v)). Significant difference (p ≤ 0.05) inhibition of mycelia growth was obtained in all treatments except the control. The antifungal index values of essential oils were proportionally increased with concentration of essential oil applied in each treatment. It is concluded that essential oil from C. hystrix are efficient in inhibiting C. gloeosporioides.

  13. Oil/gas collector/separator for underwater oil leaks

    DOEpatents

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  14. Population density of oil palm pollinator weevil Elaeidobius kamerunicus based on seasonal effect and age of oil palm

    NASA Astrophysics Data System (ADS)

    Daud, Syarifah Nadiah Syed Mat; Ghani, Idris Abd.

    2016-11-01

    The pollinating weevil, Elaedobius kamerunicus (EK) has been known to be the most efficient insect pollinator of oil palm, and has successfully improved the oil palm pollination and increased the yield. Its introduction has greatly reduced the need for assisted pollination. The purpose of this study was to identify the population density of oil palm pollinator weevil EK using the concept of pollinator force and to relate the population density with the seasonal effect and the age of oil palm at Lekir Oil Palm Plantation Batu 14, Perak, Peninsular Malaysia. The pollinator force of the weevil was sustained at a range between 3095.2 to 19126.1 weevils per ha. The overall mean of weevil per spikelet shows that the range of weevil was between 13.51 and 54.06 per spikelet. There was no correlation between rainfall and population density of EK. However, positive correlation was obtained between weevil density and the number of anthesising female inflorescence of oil palm (r= 0.938, p< 0.05). Results of t-test show that the 6-year old oil palm stands had significantly different population density than that of a 8-year old oil palm stand. The information of this study should be useful as a baseline data to investigate why there is such a wide range of weevils per ha or spikelet. Further study should also be done to relate the number pollinator force per spikelete and the Fresh fruit Bunch (FFB), fruit set or fruit to bunch ratio.

  15. Evaluation of the leishmanicidal and cytotoxic potential of essential oils derived from ten colombian plants.

    PubMed

    Sanchez-Suarez, Jf; Riveros, I; Delgado, G

    2013-01-01

    The leishmanicidal and cytotoxic activity of ten essential oils obtained from ten plant specimens were evaluated. Essential oils were obtained by the steam distillation of plant leaves without any prior processing. Cytotoxicity was tested on J774 macrophages and leishmanicidal activity was assessed against four species of Leishmania associated with cutaneous leishmaniasis. Seven essential oils exhibited activity against Leishmania parasites, five of which were toxic against J774 macrophages. Selectivity indices of >6 and 13 were calculated for the essential oils of Ocimum basilicum and Origanum vulgare, respectively. The essential oil of Ocimum basilicum was active against promastigotes of Leishmania and innocuous to J774 macrophages at concentrations up to 1600 µg/mL and should be further investigated for leishmanicidal activity in others in vitro and in vivo experimental models.

  16. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    PubMed

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.

  17. Biodegradation of Nitriles in Shale Oil

    PubMed Central

    Aislabie, Jackie; Atlas, Ronald M.

    1988-01-01

    Enrichment cultures were obtained, after prolonged incubation on a shale oil as the sole source of nitrogen, that selectively degraded nitriles. Capillary gas chromatographic analyses showed that the mixed microbial populations in the enrichments degraded the homologous series of aliphatic nitriles but not the aliphatic hydrocarbons, aromatic hydrocarbons, or heterocyclic-nitrogen compounds found in this oil. Time course studies showed that lighter nitriles were removed more rapidly than higher-molecular-weight nitriles. A Pseudomonas fluorescens strain isolated from an enrichment, which was able to completely utilize the individual nitriles undecyl cyanide and undecanenitrile as sole sources of carbon and nitrogen, was unable to attack stearonitrile when provided alone as the growth substrate. A P. aeruginosa strain, also isolated from one of the enrichments, used nitriles but not aliphatic or aromatic hydrocarbons when the oil was used as a sole nitrogen source. However, when the shale oil was used as the sole source of carbon, aliphatic hydrocarbons in addition to nitriles were degraded but aromatic hydrocarbons were still not attacked by this P. aeruginosa strain. PMID:16347731

  18. Microbial oil - A plausible alternate resource for food and fuel application.

    PubMed

    Bharathiraja, B; Sridharan, Sridevi; Sowmya, V; Yuvaraj, D; Praveenkumar, R

    2017-06-01

    Microbes have recourse to low-priced substrates like agricultural wastes and industrial efflux. A pragmatic approach towards an emerging field- the exploitation of microbial oils for biodiesel production, pharmaceutical and cosmetic applications, food additives, biopolymer production will be of immense remunerative significance in the near future. Due to high free fatty acid, nutritive content and simpler solvent extraction processes of microbial oils with plant oil, microbial oils can back plant oils in food applications. The purpose of this review is to evaluate the opulence of lipid production in native and standard micro-organisms and also to emphasize the vast array of applications including food and fuel by obtaining maximum yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Study on adsorption properties of synthetic materials on marine emulsified oil

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Peng, Shitao; Wang, Xiaoli; Zhou, Ran; Luo, Lei

    2018-02-01

    As an effective measure for marine oil spill recovery, adsorption treatment can be adopted in areas where mechanical recovery is not applicable. This experiment is mainly aimed at studying the adsorption properties of synthetic materials on emulsified oil. The emulsified oil was prepared by simulating the emulsification process of marine oil spill via a wave-current flume, and the adsorption weights of synthetic materials on emulsified oil were obtained by performing a field adsorption experiment. Polypropylene, nano-polypropylene and hydrophobic melamine sponge were tested by adsorbing a variety of emulsified oils according to the Adsorption Property Test Method (Version F-726) defined by ASTM. Their adsorption weights on emulsified oil (with initial thickness of 5 mm and water content of 20.86%) are 5.42 g/g, 23.5 g/g and 82.15g/g, respectively, which, compared with that on gear oil in the initial state, are respective decreases of 46.39%, 19.88% and 11.84%, demonstrating obvious decreases in their adsorption performances.

  20. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek

    2003-04-01

    This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanismsmore » by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.« less

  1. A combined microwave pretreatment/solvent extraction process for the production of oil from palm fruit: optimisation, oil quality and effect of prolonged exposure.

    PubMed

    Tan, Jason Cx; Chuah, Cheng-Hock; Cheng, Sit-Foon

    2017-04-01

    Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater. A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg -1 ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres. Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Environmental consequences of oil production from oil sands

    NASA Astrophysics Data System (ADS)

    Rosa, Lorenzo; Davis, Kyle F.; Rulli, Maria C.; D'Odorico, Paolo

    2017-02-01

    Crude oil from oil sands will constitute a substantial share of future global oil demand. Oil sands deposits account for a third of globally proven oil reserves, underlie large natural forested areas, and have extraction methods requiring large volumes of freshwater. Yet little work has been done to quantify some of the main environmental impacts of oil sands operations. Here we examine forest loss and water use for the world's major oil sands deposits. We calculate actual and potential rates of water use and forest loss both in Canadian deposits, where oil sands extraction is already taking place, and in other major deposits worldwide. We estimated that their exploitation, given projected production trends, could result in 1.31 km3 yr-1 of freshwater demand and 8700 km2 of forest loss. The expected escalation in oil sands extraction thus portends extensive environmental impacts.

  3. Monitoring endogenous enzymes during olive fruit ripening and storage: correlation with virgin olive oil phenolic profiles.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; García-Rodríguez, Rosa; Gargouri, Mohamed; Sanz, Carlos; Pérez, Ana G

    2015-05-01

    The ability of olive endogenous enzymes β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POX), to determine the phenolic profile of virgin olive oil was investigated. Olives used for oil production were stored for one month at 20 °C and 4 °C and their phenolic content and enzymatic activities were compared to those of ripening olive fruits. Phenolic and volatile profiles of the corresponding oils were also analysed. Oils obtained from fruits stored at 4 °C show similar characteristics to that of freshly harvested fruits. However, the oils obtained from fruits stored at 20 °C presented the lowest phenolic content. Concerning the enzymatic activities, results show that the β-glucosidase enzyme is the key enzyme responsible for the determination of virgin olive oil phenolic profile as the decrease in this enzyme activity after 3 weeks of storage at 20 °C was parallel to a dramatic decrease in the phenolic content of the oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Frothers and Oil at Saltwater–Air Interfaces for Oil Separation: Molecular Dynamics Simulations and Experimental Measurements

    SciTech Connect

    Chong, Leebyn; Lai, Yungchieh; Gray, McMahan

    Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less

  5. Effects of Frothers and Oil at Saltwater–Air Interfaces for Oil Separation: Molecular Dynamics Simulations and Experimental Measurements

    DOE PAGES

    Chong, Leebyn; Lai, Yungchieh; Gray, McMahan; ...

    2017-06-16

    Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater–air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Here, combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profilesmore » of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. Finally, the obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.« less

  6. Anti-inflammation activity of fruit essential oil from Cinnamomum insularimontanum Hayata.

    PubMed

    Lin, Chien-Tsong; Chen, Chi-Jung; Lin, Ting-Yu; Tung, Judia Chen; Wang, Sheng-Yang

    2008-12-01

    In this study, the fruit essential oil of Cinnamomum insularimontanum was prepared by using water distillation. Followed by GC-MS analysis, the composition of fruit essential oil was characterized. The main constituents of essential oil were alpha-pinene (9.45%), camphene (1.70%), beta-pinene (4.30%), limonene (1.76%), citronellal (24.64%), citronellol (16.78%), and citral (35.89%). According to the results obtained from nitric oxide (NO) inhibitory activity assay, crude essential oil and its dominant compound (citral) presented the significant NO production inhibitory activity, IC(50) of crude essential oil and citral were 18.68 and 13.18microg/mL, respectively. Moreover, based on the results obtained from the protein expression assay, the expression of IKK, iNOS, and nuclear NF-kappaB was decreased and IkappaBalpha was increased in dose-dependent manners, it proved that the anti-inflammatory mechanism of citral was blocked via the NF-kappaB pathway, but it could not efficiently suppress the activity on COX-2. In addition, citral exhibited a potent anti-inflammatory activity in the assay of croton oil-induced mice ear edema, when the dosage was 0.1 and 0.3mg per ear, the inflammation would reduce to 22% and 83%, respectively. The results presented that the fruit essential oil of C. insularimontanum and/or citral may have a great potential to develop the anti-inflammatory medicine in the future.

  7. Practical aspects of chemometrics for oil spill fingerprinting.

    PubMed

    Christensen, Jan H; Tomasi, Giorgio

    2007-10-26

    Tiered approaches for oil spill fingerprinting have evolved rapidly since the 1990s. Chemometrics provides a large number of tools for pattern recognition, calibration and classification that can increase the speed and the objectivity of the analysis and allow for more extensive use of the available data in this field. However, although the chemometric literature is extensive, it does not focus on practical issues that are relevant to oil spill fingerprinting. The aim of this review is to provide a framework for the use of chemometric approaches in tiered oil spill fingerprinting and to provide clear-cut practical details and experiences that can be used by the forensic chemist. The framework is based on methods for initial screening, which include classification of samples into oil type, detection of non matches and of weathering state, and detailed oil spill fingerprinting, in which a more rigorous matching of an oil spill sample to suspected source oils is obtained. This review is intended as a tutorial, and is based on two examples of initial screening using respectively gas chromatography with flame ionization detection and fluorescence spectroscopy; and two of detailed oil spill fingerprinting where gas chromatography-mass spectrometry data are analyzed according to two approaches: The first relying on sections of processed chromatograms and the second on diagnostic ratios.

  8. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    SciTech Connect

    Sheng, Shuangwen

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then,more » the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.« less

  9. 27 CFR 21.98 - Bone oil (Dipple's oil).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bone oil (Dipple's oil....98 Bone oil (Dipple's oil). (a) Color. The color shall be a deep brown. (b) Distillation range. When... below 90 °C. (c) Pyrrol reaction. Prepare a 1.0 percent solution of bone oil in 95 percent alcohol...

  10. 27 CFR 21.98 - Bone oil (Dipple's oil).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bone oil (Dipple's oil....98 Bone oil (Dipple's oil). (a) Color. The color shall be a deep brown. (b) Distillation range. When... below 90 °C. (c) Pyrrol reaction. Prepare a 1.0 percent solution of bone oil in 95 percent alcohol...

  11. 27 CFR 21.98 - Bone oil (Dipple's oil).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bone oil (Dipple's oil....98 Bone oil (Dipple's oil). (a) Color. The color shall be a deep brown. (b) Distillation range. When... below 90 °C. (c) Pyrrol reaction. Prepare a 1.0 percent solution of bone oil in 95 percent alcohol...

  12. 27 CFR 21.98 - Bone oil (Dipple's oil).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bone oil (Dipple's oil....98 Bone oil (Dipple's oil). (a) Color. The color shall be a deep brown. (b) Distillation range. When... below 90 °C. (c) Pyrrol reaction. Prepare a 1.0 percent solution of bone oil in 95 percent alcohol...

  13. Antimicrobial activity of essential oil from Schinus molle Linn.

    PubMed

    Gundidza, M

    1993-11-01

    The essential oil from the fresh leaves of Schinus molle isolated by hydrodistillation was tested for antibacterial activity using the hole plate diffusion method and for antifungal activity using the mycelium or single cell growth inhibition method. Results obtained showed that the volatile oil exhibited significant activity against the following bacterial species: Klebsiella pneumoniae, Alcaligenes faecalis, Pseudomonas aeruginosa, Leuconostoc cremoris, Enterobacter aerogenes, Proteus vulgaris, Clostridium sporogenes, Acinetobacter calcoacetica, Escherichia coli, Beneckea natriegens, Citrobacter freundii, Serratia marcescens, Bacillus subtilis and Brochothrix thermosphacata. The fungal species Aspergillus ochraceus, Aspergillus parasiticus, Fusarium culmorum and Alternaria alternata exhibited significant sensitivity to the volatile oil.

  14. Research on breakdown characteristics of oil-paper insulation in compound field at different temperatures

    NASA Astrophysics Data System (ADS)

    Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.

    2018-01-01

    The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.

  15. Oil-in-water emulsification using confined impinging jets.

    PubMed

    Siddiqui, Shad W; Norton, Ian T

    2012-07-01

    A confined impinging jet mixing device has been used to investigate the continuous sunflower oil/water emulsification process under turbulent flow conditions with oil contents between 5% (v/v) and 10% (v/v). Various emulsifiers (Tween20, Span80, Whey Protein, Lecithin and Sodium Dodecylsulphate) varying in molecular weights have been studied. Mean droplet sizes varied with the emulsifiers used and smallest droplets were obtained under fully turbulent flow regime, i.e. at the highest jet flow rate and highest jet Reynolds Number conditions. Sodium Dodecylsulfate (SDS) produced droplets in the range of 3.8 μm while 6 μm droplets were obtained with Whey Protein. Similar droplet sizes were obtained under fully turbulent flow conditions (610 mL/min; Reynolds Number=13,000) for oil content varying between 5% (v/v) and 10% (v/v). To investigate the smallest droplet size possible in the device, the emulsion was passed through the geometry multiple times. Multi-pass emulsification resulted in reduction in droplet size indicating that longer residence in the flow field under high shear condition allowed for breakage of droplets as well as the time for the emulsifier to stabilize the newly formed droplets, decreasing the impact of coalescence. This was confirmed by timescale analysis of the involved process steps for the droplet data obtained via experiments. Dependence of mean droplet size on the o/w interfacial tension and peak energy dissipation was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. 21 CFR 172.861 - Cocoa butter substitute from coconut oil, palm kernel oil, or both oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Cocoa butter substitute from coconut oil, palm... HUMAN CONSUMPTION Multipurpose Additives § 172.861 Cocoa butter substitute from coconut oil, palm kernel oil, or both oils. The food additive, cocoa butter substitute from coconut oil, palm kernel oil, or...

  17. Abundance of active ingredients in sea-buckthorn oil.

    PubMed

    Zielińska, Aleksandra; Nowak, Izabela

    2017-05-19

    Vegetable oils are obtained by mechanical extraction or cold pressing of various parts of plants, most often: seeds, fruits, and drupels. Chemically, these oils are compounds of the ester-linked glycerol and higher fatty acids with long aliphatic chain hydrocarbons (min. C14:0). Vegetable oils have a variety of properties, depending on their percentage of saturation. This article describes sea-buckthorn oil, which is extracted from the well characterized fruit and seeds of sea buckthorn. The plant has a large number of active ingredients the properties of which are successfully used in the cosmetic industry and in medicine. Valuable substances contained in sea-buckthorn oil play an important role in the proper functioning of the human body and give skin a beautiful and healthy appearance. A balanced composition of fatty acids give the number of vitamins or their range in this oil and explains its frequent use in cosmetic products for the care of dry, flaky or rapidly aging skin. Moreover, its unique unsaturated fatty acids, such as palmitooleic acid (omega-7) and gamma-linolenic acid (omega-6), give sea-buckthorn oil skin regeneration and repair properties. Sea-buckthorn oil also improves blood circulation, facilitates oxygenation of the skin, removes excess toxins from the body and easily penetrates through the epidermis. Because inside the skin the gamma-linolenic acid is converted to prostaglandins, sea-buckthorn oil protects against infections, prevents allergies, eliminates inflammation and inhibits the aging process. With close to 200 properties, sea-buckthorn oil is a valuable addition to health and beauty products.

  18. Chemical composition, in vitro antioxidant, antimicrobial and insecticidal activities of essential oil from Cladanthus arabicus

    USDA-ARS?s Scientific Manuscript database

    The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...

  19. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars.

    PubMed

    Avetisyan, Arpi; Markosian, Anahit; Petrosyan, Margarit; Sahakyan, Naira; Babayan, Anush; Aloyan, Samvel; Trchounian, Armen

    2017-01-19

    The plants belonging to the Ocimum genus of the Lamiaceae family are considered to be a rich source of essential oils which have expressed biological activity and use in different area of human activity. There is a great variety of chemotypes within the same basil species. Essential oils from three different cultivars of basil, O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. citriodorum Vis. were the subjects of our investigations. The oils were obtained by steam distillation in a Clevenger-type apparatus. The gas chromatography mass selective analysis was used to determine their chemical composition. The antioxidant activities of these essential oils were measured using 1,1-diphenyl-2-picrylhydrazyl assays; the tyrosinase inhibition abilities of the given group of oils were also assessed spectophotometrically, and the antimicrobial activity of the essential oils was determined by the agar diffusion method, minimal inhibitory concentrations were expressed. According to the results, the qualitative and quantitative composition of essential oils was quite different: O. basilicum var. purpureum essential oil contained 57.3% methyl-chavicol (estragol); O. basilicum var. thyrsiflora oil had 68.0% linalool. The main constituents of O. citriodorum oil were nerol (23.0%) and citral (20.7%). The highest antioxidant activity was demonstrated by O. basilicum var. thyrsiflora essential oil. This oil has also exhibited the highest tyrosinase inhibition level, whereas the oil from O. citriodorum cultivar demonstrated the highest antimicrobial activity. The results obtained indicate that these essential oils have antioxidant, antibacterial and antifungal activity and can be used as natural antioxidant and antimicrobial agents in medicine, food industry and cosmetics.

  20. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, Luc

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  1. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  2. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less

  3. Parameters influencing the yield and composition of the essential oil from Cretan Vitex agnus-castus fruits.

    PubMed

    Sørensen, J M; Katsiotis, S T

    2000-04-01

    Mature and immature fruits of a Cretan Vitex agnus-castus L. population were chosen to investigate different parameters such as comminution, maturity, distillation period and extraction method influencing the essential oil yield and composition. The effect of the comminution and the maturity of the plant material showed highly significant differences in yield and composition of the essential oils obtained, as well as the distillation duration from one to five hours and the method applied (hydrodistillation and simultaneous distillation extraction). The variation of 36 essential oil components due to the parameters applied was studied. The results showed that many different essential oil qualities can be obtained from the same plant material according to the parameters employed in its extraction. Entire fruits hydrodistilled for one hour yielded an oil much richer in monoterpene hydrocarbons and oxygenated compounds whereas the best combination to obtain an oil rich in less volatile compounds is by SDE of comminuted fruits for five hours. For mature fruits the main components varied as follows due to the parameters studied: sabinene 16.4-44.1%, 1,8-cineole 8.4-15.2%, beta-caryophyllene 2.1-5.0%, and trans-beta-farnesene 5.0-11.7%.

  4. Status of the bioactive phytoceuticals during deep-fat frying of snack food using nutra-coconut oil.

    PubMed

    Maneesh Kumar, M; Faiza, Sheema; Debnath, Sukumar; Nasirullah

    2017-10-01

    The present study was carried out to study the physico-chemical changes that take place in both product and oil during the deep fat frying of a traditional savoury snack 'kodubale', at 120-160 °C for 120-600 s using coconut oil (CO) and nutra-coconut oil (NCO). Further, kinetic studies on moisture loss, oil uptake, color and degradation of β-carotene, total polyphenol content and antioxidant activity for kodubale was carried out during frying as a function of temperature and time. The study showed that the kinetic coefficients for above parameters increased with temperature and time and the data obtained were well fitted with first order kinetic model. The results also revealed that NCO fried product retained major phenolic acids due to the presence of antioxidants in the NCO which was enriched with flaxseed oil concentrate. The fatty acids profile of oil extracted from products obtained by frying using NCO was characterized with higher ω-3 and ω-6 fatty acids content as compared to same obtained using CO. However, the breaking strength and sensory characteristics of CO and NCO fried kodubale was found to have no significant difference ( p  < 0.05).

  5. Insecticidal activity of the essential oils from different plants against three stored-product insects.

    PubMed

    Ayvaz, Abdurrahman; Sagdic, Osman; Karaborklu, Salih; Ozturk, Ismet

    2010-01-01

    This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 microl/l air for P. interpunctella and E. kuehniella, respectively. LC(50) and LC(99) values of each essential oil were estimated for each insect species.

  6. Insecticidal Activity of the Essential Oils from Different Plants Against Three Stored-Product Insects

    PubMed Central

    Ayvaz, Abdurrahman; Sagdic, Osman; Karaborklu, Salih; Ozturk, Ismet

    2010-01-01

    This study was conducted to determine the insecticidal activity of essential oils from oregano, Origanum onites L. (Lamiales: Lamiaceae), savory, Satureja thymbra L. (Lamiales: Lamiaceae), and myrtle, Myrtus communis L. (Rosales: Myrtaceae) against three stored-product insects. Essential oils from three species of plants were obtained by Clevenger-type water distillation. The major compounds in these essential oils were identified using gas chromatography-mass spectrometry and their insecticidal activity was tested against adults of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), the Indian meal moth Plodia interpunctella Hübner (Lepidoptera: Pyralidae) and the bean weevil Acanthoscelides obtectus Say (Coleoptera: Bruchidae). While the major compound found in oregano and savory was carvacrol, the main constituent of the myrtle was linalool. Among the tested insects, A. obtectus was the most tolerant species against the essential oils. However, the insecticidal activity of the myrtle oil was more pronounced than other oils tested against A. obtectus adults. The essential oils of oregano and savory were highly effective against P. interpunctella and E. kuehniella, with 100% mortality obtained after 24 h at 9 and 25 µl/l air for P. interpunctella and E. kuehniella, respectively. LC50 and LC99 values of each essential oil were estimated for each insect species. PMID:20578885

  7. Comparative evaluation of physicochemical properties of jatropha curcas seed oil for coolant-lubricant application

    NASA Astrophysics Data System (ADS)

    Murad, Muhamad Nasir; Sharif, Safian; Rahim, Erween Abd.; Abdullah, Rozaini

    2017-09-01

    Increased attention to environmental issues due to industrial activities has forced the authorities raise awareness and implement regulations to reduce the use of mineral oil. Some vegetable oils unexplored or less explored, particularly the non-edible oils such as Jatropha curcas oil (JCO) and others. Physicochemical properties of JCO is compared with others edible oils, synthetic ester and fatty alcohol to obtain a viable alternative in metal cutting fluids. The oil was found to show the suitability of properties for coolant-lubricant applications in term of its physicochemical properties and better in flash point and viscosity value.

  8. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    USGS Publications Warehouse

    Starliper, Clifford E.; Ketola, H. George; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc; Dittman, Dawn E.

    2015-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate.

  9. Chemical compositions and antimicrobial potential of Actinodaphne macrophylla leaves oils from East Kalimantan

    NASA Astrophysics Data System (ADS)

    Putri, A. S.; Purba, F. F.; Kusuma, I. W.; Kuspradini, H.

    2018-04-01

    Essential oils producing plants comprises about 160-200 species, one of which belongs to Lauraceae family. Actinodaphne macrophylla is a plant of the Lauraceae family and widely spread on Kalimantan island. For humans, essential oils are used in cosmetics industry, food industry, and pharmaceutical industry. This research aimed to analyze the characteristics of essential oil and potential of antimicrobial activity from A. macrophylla leaves oils. Essential oils were obtained by steam distillation method. Antimicrobial activity was assayed using agar diffusion method which compared with two synthetic standards including chlorhexidine and chloramphenicol. Four microorganisms were used in this study were Candida albicans, Staphylococcus aureus, Streptococcus mutans, and Streptococcus sobrinus. The obtained oil was determined for its characteristics including the yield, refractive index, and chemical components. The attained components were analyzed using GC-MS. The results of this study showed that essential oils of A. macrophylla leaves contained 0.1051% of yield, clearless, and refractive index was 1.425. Based on GC-MS analysis result, it showed chemical components including spathulenol, 2-monopalmitin, (+)-sabinene, copaen, camphene, and β-pinene. This plant potentially can inhibit the growth of S. aureus, C. albicans, S. sobrinus, and S. mutans with inhibition zones of 17.22, 20.89, 22.34 and 22.89 mm, respectively.

  10. Optimization of the isolation and quantitation of kahweol and cafestol in green coffee oil.

    PubMed

    Chartier, Agnes; Beaumesnil, Mathieu; de Oliveira, Alessandra Lopes; Elfakir, Claire; Bostyn, Stephane

    2013-12-15

    Kahweol and cafestol are two diterpenes that exist mainly as esters of fatty acids in green coffee oil. To recover them under their free form they have to be either saponified or trans-esterified. These two compounds are well known to be sensitive to heat, and reagents, therefore experimental conditions used in the transesterification reaction are critical. In this paper, a Doehlert experimental design plan is used to optimize the transesterification conditions using some key variables such as the temperature of the reaction, the reagent base concentration and the duration of the reaction. Therefore, the optimal parameters determined from the Doehlert design are equal to 70 °C, temperature of the reaction; 1.25 mol L(-1) concentration of the reagent base; and 60 min reaction time. The contour plots show that the extracted quantity of kahweol and cafestol can depend greatly from the experimental conditions. After transesterification, the free form of the diterpernes is extracted from the lipid fraction using liquid-liquid extraction and analyzed using GC-FID without prior derivatization. The amount of kahweol and cafestol obtained from green coffee oil obtained by cold mechanical press of Catuai coffee bean is equal to 33.2±2.2 and 24.3±2.4 g kg(-1)oil, respectively. In an attempt to streamline the process, the transesterification reaction is performed in an in-flow chemistry reactor using the optimal conditions obtained with the Doehlert experimental design. The amount of kahweol and cafestol obtained from the same green coffee oil is equal to 43.5 and 30.072 g kg(-1)oil, respectively. Results are slightly higher compared to the ones obtained with the batch procedure. This can be explained by a better mixing of the coffee oil with the reagents and a faster transesterification reaction. © 2013 Elsevier B.V. All rights reserved.

  11. Carbon isotope analyses of n-alkanes released from rapid pyrolysis of oil asphaltenes in a closed system.

    PubMed

    Chen, Shasha; Jia, Wanglu; Peng, Ping'an

    2016-08-15

    Carbon isotope analysis of n-alkanes produced by the pyrolysis of oil asphaltenes is a useful tool for characterizing and correlating oil sources. Low-temperature (320-350°C) pyrolysis lasting 2-3 days is usually employed in such studies. Establishing a rapid pyrolysis method is necessary to reduce the time taken for the pretreatment process in isotope analyses. One asphaltene sample was pyrolyzed in sealed ampoules for different durations (60-120 s) at 610°C. The δ(13) C values of the pyrolysates were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The molecular characteristics and isotopic signatures of the pyrolysates were investigated for the different pyrolysis durations and compared with results obtained using the normal pyrolysis method, to determine the optimum time interval. Several asphaltene samples derived from various sources were analyzed using this method. The asphaltene pyrolysates of each sample were similar to those obtained by the flash pyrolysis method on similar samples. However, the molecular characteristics of the pyrolysates obtained over durations longer than 90 s showed intensified secondary reactions. The carbon isotopic signatures of individual compounds obtained at pyrolysis durations less than 90 s were consistent with those obtained from typical low-temperature pyrolysis. Several asphaltene samples from various sources released n-alkanes with distinct carbon isotopic signatures. This easy-to-use pyrolysis method, combined with a subsequent purification procedure, can be used to rapidly obtain clean n-alkanes from oil asphaltenes. Carbon isotopic signatures of n-alkanes released from oil asphaltenes from different sources demonstrate the potential application of this method in 'oil-oil' and 'oil-source' correlations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.

    PubMed Central

    Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia

    2014-01-01

    The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280

  13. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production.

    PubMed

    Patel, Vinay R; Dumancas, Gerard G; Kasi Viswanath, Lakshmi C; Maples, Randall; Subong, Bryan John J

    2016-01-01

    Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production.

  14. Terpenes as green solvents for extraction of oil from microalgae.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Ginies, Christian; Elmaataoui, Mohamed; Chemat, Farid

    2012-07-09

    Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  15. Qualitative analysis of pure and adulterated canola oil via SIMCA

    NASA Astrophysics Data System (ADS)

    Basri, Katrul Nadia; Khir, Mohd Fared Abdul; Rani, Rozina Abdul; Sharif, Zaiton; Rusop, M.; Zoolfakar, Ahmad Sabirin

    2018-05-01

    This paper demonstrates the utilization of near infrared (NIR) spectroscopy to classify pure and adulterated sample of canola oil. Soft Independent Modeling Class Analogies (SIMCA) algorithm was implemented to discriminate the samples to its classes. Spectral data obtained was divided using Kennard Stone algorithm into training and validation dataset by a fixed ratio of 7:3. The model accuracy obtained based on the model built is 0.99 whereas the sensitivity and precision are 0.92 and 1.00. The result showed the classification model is robust to perform qualitative analysis of canola oil for future application.

  16. Use of ultrasound to monitor physical properties of soybean oil

    NASA Astrophysics Data System (ADS)

    Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.

  17. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin.

    PubMed

    Montesano, Domenico; Blasi, Francesca; Simonetti, Maria Stella; Santini, Antonello; Cossignani, Lina

    2018-03-01

    Pumpkin ( Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as "Berrettina" ( Cucurbita maxima L.), was evaluated. In particular, the lipid fraction of seed oil was characterized, and the triacylglycerol (TAG) was thoroughly studied by using a stereospecific procedure to obtain the intrapositional fatty acid composition of the three sn -positions of the glycerol backbone of TAG. Moreover, alkaline hydrolysis was carried out to study the main components of the unsaponifiable fraction, i.e., sterols and alcohols. It was observed that monounsaturated fatty acids and polyunsaturated fatty acids were the most abundant (41.7% and 37.2%, respectively) in Berrettina pumpkin seed oil, with high content of oleic and linoleic acid (41.4% and 37.0%, respectively). The main sterols of Berrettina pumpkin seed oil were Δ 7,22,25 -stigmastatrienol, Δ 7,25 -stigmastadienol, and spinasterol; with regard to the alcoholic fraction, triterpenic compounds were more abundant than aliphatic compounds (63.2% vs. 36.8%). The obtained data are useful to evaluate pumpkin seed oil from a nutritional point of view. The oil obtained from the seed could be used as a preservative and as a functional ingredient in different areas, e.g., cosmetics, foods, and nutraceuticals.

  18. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin

    PubMed Central

    Blasi, Francesca; Simonetti, Maria Stella; Cossignani, Lina

    2018-01-01

    Pumpkin (Cucurbita spp.) has received considerable attention in recent years because of the nutritional and health-protective value of seed oil. The nutritional composition of pumpkin native to central Italy, locally known as “Berrettina” (Cucurbita maxima L.), was evaluated. In particular, the lipid fraction of seed oil was characterized, and the triacylglycerol (TAG) was thoroughly studied by using a stereospecific procedure to obtain the intrapositional fatty acid composition of the three sn-positions of the glycerol backbone of TAG. Moreover, alkaline hydrolysis was carried out to study the main components of the unsaponifiable fraction, i.e., sterols and alcohols. It was observed that monounsaturated fatty acids and polyunsaturated fatty acids were the most abundant (41.7% and 37.2%, respectively) in Berrettina pumpkin seed oil, with high content of oleic and linoleic acid (41.4% and 37.0%, respectively). The main sterols of Berrettina pumpkin seed oil were Δ7,22,25-stigmastatrienol, Δ7,25-stigmastadienol, and spinasterol; with regard to the alcoholic fraction, triterpenic compounds were more abundant than aliphatic compounds (63.2% vs. 36.8%). The obtained data are useful to evaluate pumpkin seed oil from a nutritional point of view. The oil obtained from the seed could be used as a preservative and as a functional ingredient in different areas, e.g., cosmetics, foods, and nutraceuticals. PMID:29494522

  19. In vitro and in vivo assessment of the effect of Laurus novocanariensis oil and essential oil in human skin.

    PubMed

    Viciolle, E; Castilho, P; Rosado, C

    2012-12-01

    Laurus novocanariensis is an endemic plant from the Madeira Island forest that derives a fatty oil, with a strong spicy odour, from its berries that has been used for centuries in traditional medicine to treat skin ailments. This work aimed to investigate the effect of the application of both the oil and its essential oil on normal skin, to assess their safety and potential benefits. Diffusion studies with Franz cells using human epidermal membranes were conducted. The steady-state fluxes of two model molecules through untreated skin were compared with those obtained after a 2-h pre-treatment with either the oil or the essential oil. Additionally, eleven volunteers participated in the in vivo study that was conducted on the forearm and involved daily application of the oil for 5 days. Measurements were performed every day in the treated site with bioengineering methods that measure erythema, irritation and loss of barrier function. Slightly higher steady-state fluxes were observed for both the lipophilic and the hydrophilic molecule when the epidermal membranes were pre-treated. Nevertheless, such differences had no statistical significance, which seems to confirm that neither the oil nor the essential oil impaired the epidermal barrier. Results collected with the Chromameter, the Laser Doppler Flowmeter and the visual scoring are in agreement with those established in the in vitro study. They indicate that the repeated application of the oil did not cause erythema, because the results observed in the first day of the study were maintained throughout the week. Application of the oil did not affect the skin barrier function, because the transepidermal water loss remained constant throughout the study. The stratum corneum hydration was slightly reduced on days 4 and 5. This work shows that both the oil and the essential oil were well tolerated by the skin and did not cause significant barrier impairment or irritation. © 2012 Society of Cosmetic Scientists and the

  20. Re-Os dating of maltenes and asphaltenes within single samples of crude oil

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Galimberti, Roberto; Nali, Micaela; Yang, Gang; Zimmerman, Aaron

    2016-04-01

    Re-Os geochronology of oil may constrain the timing of oil formation and improve oil-source and oil-oil correlations. Typically, asphaltene (ASPH), the heaviest and most Re-Os rich oil fraction, from multiple oils within an oil field or a larger petroleum system are analyzed to obtain sufficient spread in Re-Os isotopic ratios, a mathematical necessity for precise Re-Os isochrons. Here we offer a new approach for Re-Os geochronology of oil based on isotopic analyses of different fractions within a single sample of crude oil. We studied three oils from the Gela oil field, southern Sicily, Italy, recovered from Triassic-Jurassic stratigraphic intervals (Streppenosa, Noto, and Sciacca Formations) within the Gela-1 well. ASPH (insoluble in n-alkane) and maltene (MALT, soluble in n-alkane) fractions of oil were separated using n-pentane, n-hexane, n-heptane and n-decane solvents. The ASPH contents of the Sciacca and Noto oils (26-33 wt%) are notably higher compared to the Streppenosa oil (7-12 wt% ASPH). We present an optimized Re-Os procedure with sample digestion in a high-pressure asher, followed by isotopic measurements using negative thermal ionization mass spectrometry. Very high metal contents of Gela oils allowed acquisition of precise Re-Os data. Systematic variations between the type of solvent used for ASPH precipitation and the ASPH content of the oil (also known from the literature) and the Re-Os contents of the ASPH and MALT fractions (first observed in this study) provide important practical applications for Re-Os analyses of oil. Most Re and Os (∼96-98%) in the Noto oil are hosted in the ASPH fraction. In contrast, a significant portion of Re and Os (∼33-34%) is stored in the MALT fraction of the lighter, but heavily biodegraded Streppenosa oil. Collectively, our new data on alkane distribution, hopane and sterane biomarkers, major and trace element contents, and Re-Os concentrations and isotopic ratios of the oils and their fractions support the

  1. Evaluation of the Leishmanicidal and Cytotoxic Potential of Essential Oils Derived From Ten Colombian Plants

    PubMed Central

    Sanchez-Suarez, JF; Riveros, I; Delgado, G

    2013-01-01

    Background The leishmanicidal and cytotoxic activity of ten essential oils obtained from ten plant specimens were evaluated. Methods Essential oils were obtained by the steam distillation of plant leaves without any prior processing. Cytotoxicity was tested on J774 macrophages and leishmanicidal activity was assessed against four species of Leishmania associated with cutaneous leishmaniasis. Results Seven essential oils exhibited activity against Leishmania parasites, five of which were toxic against J774 macrophages. Selectivity indices of >6 and 13 were calculated for the essential oils of Ocimum basilicum and Origanum vulgare, respectively. Conclusion The essential oil of Ocimum basilicum was active against promastigotes of Leishmania and innocuous to J774 macrophages at concentrations up to 1600 µg/mL and should be further investigated for leishmanicidal activity in others in vitro and in vivo experimental models. PMID:23682270

  2. Long-chain omega-3 oils-an update on sustainable sources.

    PubMed

    Nichols, Peter D; Petrie, James; Singh, Surinder

    2010-06-01

    Seafood is currently the best and generally a safe source of long-chain (LC, (≥C(20)) omega-3 oils amongst the common food groups. LC omega-3 oils are also obtained in lower amounts per serve from red meat, egg and selected other foods. As global population increases the opportunities to increase seafood harvest are limited, therefore new alternate sources are required. Emerging sources include microalgae and under-utilized resources such as Southern Ocean krill. Prospects for new land plant sources of these unique and health-benefiting oils are also particularly promising, offering hope for alternate and sustainable supplies of these key oils, with resulting health, social, economic and environmental benefits.

  3. Characterization of orange oil microcapsules for application in textiles

    NASA Astrophysics Data System (ADS)

    Rossi, W.; Bonet-Aracil, M.; Bou-Belda, E.; Gisbert-Payá, J.; Wilson, K.; Roldo, L.

    2017-10-01

    The use of orange oil presents as an ecological alternative to chemicals, attracting the attention of the scientific community to the development of eco-friendly antimicrobials. The microencapsulation technology has been used for the application of orange oil to textiles, being an economically viable, fast and efficient method by combining core and shell materials, desirable perceptual and functional characteristics, responsible for properties related to the nature of the product and provides that the wall materials release the functional substances in a controlled manner, in addition to effectively protecting and isolating the core material from the external environment to prevent its volatilization and deterioration, increasing the stability of the oil, such as non-toxicity. Thus, to better exploit the properties of the orange essential oil applied to textile products this study presents a characterization of microcapsules of Melamine formaldehyde obtained by the interfacial polymerization method with variations of proportions of orange oil (volatile) with fixed oil Medium-Chain Triglycerides (MCT) (non-volatile) to assist in the stability of the orange essential oil. Scanning electron microscope (SEM) was used as visualizing tool to characterize microparticles and surface morphology and thermal characteristics of microcapsules were premeditated by mean Differential scanning calorimetry (DSC).

  4. ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL

    PubMed Central

    M., Canales-Martinez; C.R., Rivera-Yañez; J., Salas-Oropeza; H.R., Lopez; M., Jimenez-Estrada; R., Rosas-Lopez; D.A., Duran; C., Flores; L.B., Hernandez; M.A., Rodriguez-Monroy

    2017-01-01

    Background: Bursera morelensis, known as “Aceitillo”, is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis. Materials and Methods: The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. Results: GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae, V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC50 = 2.27 mg/mL) was the most sensitive fungal strain. Conclusions: This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species. PMID:28480418

  5. Antioxidant Activity of Essential Oil Extracted by SC-CO2 from Seeds of Trachyspermum ammi

    PubMed Central

    Singh, Aarti; Ahmad, Anees

    2017-01-01

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO2) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi. A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO2 flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO2 methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w, respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL−1, respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO2 method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity. PMID:28930268

  6. Study on nickel and vanadium removal in thermal conversion of oil sludge and oil shale sludge

    NASA Astrophysics Data System (ADS)

    Sombral, L. G. S.; Pickler, A. C.; Aires, J. R.; Riehl, C. A.

    2003-05-01

    The petroleum refining processes and of oil shale industrialization generate solid and semi-solid residues. In those residues heavy metals are found in concentrations that vary according to the production sector. The destination of those residues is encouraging researches looking for new technologies that reach the specifications of environmental organisms, and are being developed and applied to the industry. In this work it is shown that the heavy metals concentrations, previously in the petroleum oily solid residues and in those of the oils shale, treated by low temperature thermal conversion, obtaining in both cases concentrations below Ippm to Nickel and below 5ppm to vanadium.

  7. Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2009-01-01

    Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.

  8. Thermal Properties of Jojoba Oil Between 20°C and 45°C

    NASA Astrophysics Data System (ADS)

    Lara-Hernández, G.; Flores-Cuautle, J. J. A.; Hernandez-Aguilar, C.; Suaste-Gómez, E.; Cruz-Orea, A.

    2017-08-01

    Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba ( Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between 20°C and 45°C were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 W\\cdot s^{1/2}\\cdot m^{-2}\\cdot K^{-1} to 378 W\\cdot s^{1/2}m^{-2}\\cdot K^{-1} as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between 20°C and 45°C.

  9. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  10. Microencapsulation of soybean oil by spray drying using oleosomes

    NASA Astrophysics Data System (ADS)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  11. Bioremediation of cooking oil waste using lipases from wastes

    PubMed Central

    do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166

  12. Bioremediation of cooking oil waste using lipases from wastes.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Prado, Débora Zanoni do; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando; Fleuri, Luciana Francisco

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  13. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii.

    PubMed

    Xiu, Yu; Wu, Guodong; Tang, Wensi; Peng, Zhengfeng; Bu, Xiangpan; Chao, Longjun; Yin, Xue; Xiong, Jiannan; Zhang, Haiwu; Zhao, Xiaoqing; Ding, Jing; Ma, Lvyi; Wang, Huafang; van Staden, Johannes

    2018-06-04

    Paeonia ostii var. lishizhenii, a well-known medicinal and horticultural plant, is indigenous to China. Recent studies have shown that its seed has a high oil content, and it was approved as a novel resource of edible oil with a high level of α-linolenic acid by the Chinese Government. This study measured the seed oil contents and fatty acid components of P. ostii var. lishizhenii and six other peonies, P. suffruticosa, P. ludlowii, P. decomposita, P. rockii, and P. lactiflora Pall. 'Heze' and 'Gansu'. The results show that P. ostii var. lishizhenii exhibits the average oil characteristics of tested peonies, with an oil content of 21.3%, α-linolenic acid 43.8%, and unsaturated fatty acids around 92.1%. Hygiene indicators for the seven peony seed oils met the Chinese national food standards. P. ostii var. lishizhenii seeds were used to analyze transcriptome gene regulation networks on endosperm development and oil biosynthesis. In total, 124,117 transcripts were obtained from six endosperm developing stages (S0-S5). The significant changes in differential expression genes (DEGs) clarify three peony endosperm developmental phases: the endosperm cell mitotic phase (S0-S1), the TAG biosynthesis phase (S1-S4), and the mature phase (S5). The DEGs in plant hormone signal transduction, DNA replication, cell division, differentiation, transcription factors, and seed dormancy pathways regulate the endosperm development process. Another 199 functional DEGs participate in glycolysis, pentose phosphate pathway, citrate cycle, FA biosynthesis, TAG assembly, and other pathways. A key transcription factor (WRI1) and some important target genes (ACCase, FATA, LPCAT, FADs, and DGAT etc.) were found in the comprehensive genetic networks of oil biosynthesis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  14. Fatty acid fragmentation of triacylglycerol isolated from crude nyamplung oil

    NASA Astrophysics Data System (ADS)

    Aparamarta, Hakun Wirawasista; Anggraini, Desy; Istianingsih, Della; Susanto, David Febrilliant; Widjaja, Arief; Ju, Yi-Hsu; Gunawan, Setiyo

    2017-05-01

    Nyamplung (Calophylluminophyllum) has many benefits ranging from roots, stems, leaves, until seeds. In this seed, C. inophyllum contained significantly high amount of crude oil (70.4%). C. inophyllum oil is known as non edible. Therefore Indonesian people generally only know that seeds can produce oil that can be used for biodiesel. In this work, the fragmentation of fatty acid in triacylglycerols (TAG) was studied. The isolation process was started with separation of non polar lipid fraction (NPLF) from crude C. inophyllum oil via batchwise multistage liquid extraction. TAG was obtained in high purity (99%) and was analyzed by Thin Layer Chromatography (TLC) and Gas Chromatography - Mass Spectrometry (GCMS). It was found that fatty acids of TAG are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1c), linoleic acid (C18:2c), and linolenic acid (C18:3c). Moreover, TAG isolated from C. inophyllum oil was promising as edible oil.

  15. Comparative study on direct burning of oil shale and coal

    NASA Astrophysics Data System (ADS)

    Hammad, Ahmad; Al Asfar, Jamil

    2017-07-01

    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  16. Oil Spill Hydrodynamics, from Droplets to Oil Slicks

    NASA Astrophysics Data System (ADS)

    Moghimi, S.; Restrepo, J. M.; Venkataramani, S.

    2016-02-01

    A fundamental challenge in proposing a model for the fate of oil in oceans relates to the extreme spatio-temporal scales required by hazard/abatement studies. We formulate a multiscale model that takes into account droplet dynamics and its effects on submerged and surface oil. The upscaling of the microphysics, within a mass conserving model, allows us to resolve oil mass exchanges between the oil found on the turbulent ocean surface and the ocean interior. In addition to presenting the model and the mutl-scale methodology we apply this upscaling to the evolution of oil on shelves and show how nearshore oil spills demonstrate dynamics that are not easily captured by oil models based on idealized tracer dynamics. In particular we demonstrate how oil can slow down and even park itself under certain oceanic conditions. An explanation for this phenomenon is proposed as well.

  17. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  18. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L

    PubMed Central

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras

    2017-01-01

    Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065

  19. General Toxicity and Antifungal Activity of a New Dental Gel with Essential Oil from Abies Sibirica L.

    PubMed

    Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras

    2017-01-29

    BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.

  20. Phytochemical composition and antibacterial activity of the essential oils from different parts of sea buckthorn (Hippophae rhamnoides L.).

    PubMed

    Yue, Xuan-Feng; Shang, Xiao; Zhang, Zhi-Juan; Zhang, Yan-Ni

    2017-04-01

    Essential oils from the seed, pulp, and leaf of sea buckthorn were obtained with hydrodistillation, and their phytochemical composition was analyzed through gas chromatography-mass spectrometry. Furthermore, the antibacterial activity of the oils was tested on five food-borne bacteria by spectrometry and evaluated in terms of minimum inhibitory concentration. The results indicate that the composition of all essential oils is dominated by free fatty acids, esters, and alkanes. Minimum inhibitory concentration values on each bacterium were obtained for oils from different parts. The oils from different parts exhibited nearly equal inhibitory effect on Staphylococcus aureus. The pulp oil was found to be the most effective for the rest of bacteria tested except Escherichia coli, on which seed oil shows twice the inhibitory effect to that of leaf or pulp oil. Three natural inhibitory examples were found comparable with or even better than the positive control: pulp oil on Bacillus subtilis, and pulp oil and leaf oil on Bacillus coagulans. Copyright © 2016. Published by Elsevier B.V.

  1. Tracking buoys research for oil spilling with the wireless charging equipment

    NASA Astrophysics Data System (ADS)

    Cui, Di; Zhao, Ping

    2018-03-01

    This paper describes thewirelesscharging equipment for achieving oil spill tracking buoys detection in satellite images acquired after tanker accidents or ship oil spill accidents. This information could allow the evolution of residues dumped at sea to be tracked. The validity of this process is demonstrated using several experiment acquired over several regions (Dalian and Tianjin coasts in China), in which a tanker accident has occurred and as a consequence oil spillage has taken place. Thus, this purpose of paper is developed for the active surveillance and rapid response to marine oil spills tracking buoys with wirelesscharging equipmentis important and essential to environment protection. It may appears of leak places for the Wire Charging Equipment for marine oil spills tracking buoys monitoring needs, and achieved instant alarm technology and equipment, guarantees leak occurred timely obtained alarm information. In order toproviding oil spill accidents emergency quickly reaction time and prepared. The maximum degree reduce oil leak and accidents caused influences are ensured.

  2. Application of diethanolamide surfactant derived from palm oil to improve the performance of biopesticide from neem oil

    NASA Astrophysics Data System (ADS)

    Nisya, F. N.; Prijono, D.; Nurkania, A.

    2017-05-01

    The purpose of this research was to improve the performance of organic pesticide derived from neem plant using diethanolamide surfactant (DEA) derived from palm oil in controlling armyworms. The pesticide was made of neem oil. Neem oil is a neem plant product containing several active components, i.e. azadirachtin, salanin, nimbin, and meliantriol which act as a pesticide. DEA surfactant acts as a wetting, dispersing and spreading agent in neem oil pesticide. The neem oil was obtained by pressing neem seeds using a screw press machine and a hydraulic press machine. DEA surfactant was synthesized from methyl esters of palm oil olein. Pesticide formulation was conducted by stirring the ingredients by using a homogenizer at 5,000 rpm for 30 minutes. Surfactant was added to the formulation by up to 5%. Glycerol, as an emulsifier, was added in to pesticide formulations of neem oil. The efficacy of the pesticides in controlling armyworms fed soybean leaves in laboratory was measured at six concentrations, i.e. 10, 13, 16, 19, 22, and 25 ml/L. Results showed that the neem oil used in this study had a density of 0.91 g/cm3, viscosity of 58.94 cPoise, refractive index of 1.4695, surface tension of 40.69 dyne/cm, azadirachtin content of 343.82-1.604 ppm. Meanwhile, the azadirachtin content of neem seed cake was 242.20 ppm. It was also found that palmitic (31.4%) and oleic (22.5%) acids were the main fatty acids contained in neem oil. As the additive material used in neem oil in this study, diethanolamide surfactant had a pH of 10.6, density of 0.9930 g/cm3, viscosity of 708.20 cP, and surface tension of 25.37 dyne/cm. Results of CMC, contact angle, and droplet size analyzes showed that diethanolamide surfactant could be added into insecticide formulation by 5%. Results of LC tests showed that on Spodoptera litura the LC50 and LC95 values were 13 and 22 ml/L, respectively. Neem oil was found to inhibit the development of Spodoptera litura and its larval molting process.

  3. A Complex Permittivity Based Sensor for the Electrical Characterization of High-Voltage Transformer Oils

    PubMed Central

    Dervos, Constantine T.; Paraskevas, Christos D.; Skafidas, Panayotis D.; Vassiliou, Panayota

    2005-01-01

    This work investigates the use of a specially designed cylindrical metal cell, in order to obtain complex permittivity and tanδ data of highly insulating High Voltage (HV) transformer oil samples. The data are obtained at a wide range of frequencies and operation temperatures to demonstrate the polarization phenomena and the thermally stimulated effects. Such complex permittivity measurements may be utilized as a criterion for the service life prediction of oil field electrical equipment (OFEE). Therefore, by one set of measurements on a small oil volume, data may be provided on the impending termination, or continuation of the transformer oil service life. The oil incorporating cell, attached to the appropriate measuring units, could be described as a complex permittivity sensor. In this work, the acquired dielectric data from a great number of operating distribution network power transformers were correlated to corresponding physicochemical ones to demonstrate the future potential employment of the proposed measuring technique.

  4. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.

    PubMed

    Alessandrello, Mauricio J; Juárez Tomás, María S; Raimondo, Enzo E; Vullo, Diana L; Ferrero, Marcela A

    2017-09-15

    In this work, a mixed biofilm composed by Pseudomonas monteilii P26 and Gordonia sp. H19 was formed using polyurethane foam (PUF) as immobilization support, for crude oil removal from artificial sea water. Fresh immobilized cells and immobilized cells that were stored at 4°C for two months before use were assessed. The oil removal assays were carried out at microcosm scale at 4, 15 and 30°C. A viability loss of P. monteilii P26 was observed after the storage. The highest removal value (75%) was obtained at 30°C after 7days using fresh immobilized cells on PUF. Enhanced oil bioremoval was obtained at 4°C and 15°C with the previously stored immobilized cells compared to the fresh immobilized cells. Crude oil sorption on the different systems was responsible for the removal of 22-33% oil at the different temperatures. In conclusion, an economic tool for petroleum bioremediation is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  6. Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil.

    PubMed

    Bomfim, Larissa M; Menezes, Leociley R A; Rodrigues, Ana Carolina B C; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Neto, Albertino F S; Nascimento, Magaly P; Campos, Adriana F; Silva, Lidércia C R C E; Costa, Emmanoel V; Bezerra, Daniel P

    2016-03-01

    Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with β-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-β-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%). © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Oil palm mapping for Malaysia using PALSAR-2 dataset

    NASA Astrophysics Data System (ADS)

    Gong, P.; Qi, C. Y.; Yu, L.; Cracknell, A.

    2016-12-01

    Oil palm is one of the most productive vegetable oil crops in the world. The main oil palm producing areas are distributed in humid tropical areas such as Malaysia, Indonesia, Thailand, western and central Africa, northern South America, and central America. Increasing market demands, high yields and low production costs of palm oil are the primary factors driving large-scale commercial cultivation of oil palm, especially in Malaysia and Indonesia. Global demand for palm oil has grown exponentially during the last 50 years, and the expansion of oil palm plantations is linked directly to the deforestation of natural forests. Satellite remote sensing plays an important role in monitoring expansion of oil palm. However, optical remote sensing images are difficult to acquire in the Tropics because of the frequent occurrence of thick cloud cover. This problem has led to the use of data obtained by synthetic aperture radar (SAR), which is a sensor capable of all-day/all-weather observation for studies in the Tropics. In this study, the ALOS-2 (Advanced Land Observing Satellite) PALSAR-2 (Phased Array type L-band SAR) datasets for year 2015 were used as an input to a support vector machine (SVM) based machine learning algorithm. Oil palm/non-oil palm samples were collected using a hexagonal equal-area sampling design. High-resolution images in Google Earth and PALSAR-2 imagery were used in human photo-interpretation to separate oil palm from others (i.e. cropland, forest, grassland, shrubland, water, hard surface and bareland). The characteristics of oil palms from various aspects, including PALSAR-2 backscattering coefficients (HH, HV), terrain and climate by using this sample set were further explored to post-process the SVM output. The average accuracy of oil palm type is better than 80% in the final oil palm map for Malaysia.

  8. Improvement of mineral oil saturated and aromatic hydrocarbons determination in edible oil by liquid-liquid-gas chromatography with dual detection.

    PubMed

    Zoccali, Mariosimone; Barp, Laura; Beccaria, Marco; Sciarrone, Danilo; Purcaro, Giorgia; Mondello, Luigi

    2016-02-01

    Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off-line tools to eliminate them. In the present research, a novel on-line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver-ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties.

    PubMed

    Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin

    2017-03-01

    Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size ( d =0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d =0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.

  10. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    PubMed

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    efficient in the quantification of mixtures of up to three types of oils and fats, with RMSEP being obtained between 0.08 and 0.27% (v/v), mean precision between 0.07 and 0.32% (v/v) and minimum detectable concentration between 0.23 and 0.81% (v/v) depending on the type of oil or fat in the mixture determined. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  12. Antifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans

    PubMed Central

    Sharifzadeh, Aghil; Shokri, Hojjatollah

    2016-01-01

    Objective: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU)-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC). Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis), Zingiber officinale roscoe (Z. officinale roscoe), Matricaria chamomilla (Ma. chamomilla), Trachyspermum ammi (T. ammi) and Origanum vulgare (O. vulgare). The susceptibility test was based on the M27-A2 methodology. The chemical compositions of the essential oils were obtained by gas chromatography- mass spectroscopy (GC-MS). Results: In GC-MS analysis, thymol (63.40%), linalool (42%), α-pinene (27.87%), α-pinene (22.10%), and zingiberene (31.79%) were found to be the major components of T. ammi, O. vulgare, My. communis, Ma. chamomilla and Z. officinale roscoe, respectively. The results showed that essential oils have different levels of antifungal activity. O. vulgare and T. ammi essential oils were found to be the most efficient (P<0.05). The main finding was that the susceptibilities of FLU-resistant C. albicans to essential oils were higher than those of the FLU-susceptible yeasts. Conclusion: Results of this study indicated that the oils from medicinal plants could be used as potential anti FLU-resistant C. albicans agents. PMID:27222835

  13. Lattice Boltzmann Simulation of Seismic Mobilization of Residual Oil in Sandstone

    NASA Astrophysics Data System (ADS)

    Guo, R.; Jiang, F.; Deng, W.

    2017-12-01

    Seismic stimulation is a promising technology for enhanced oil recovery. However, current mechanism studies are mainly in the single constricted tubes or idealized porous media, and no study has been conducted in real reservoir porous media. We have developed a numerical simulation which uses the lattice Boltzmann method to directly calculate the characteristics of residual oil clusters to quantify seismic mobilization of residual oil in real Berea sandstone in a scale of 400μm x 400μm x 400μm. The residual oil clusters will be firstly obtained by applying the water flooding scheme to the oil-saturated sandstone. Then, we will apply the seismic stimulation to the sandstone by converting the seismic effect to oscillatory inertial force and add to the pore fluids. This oscillatory inertial force causes the mobilization of residual oil by overcoming the capillary force. The response of water and oil to the seismic stimulation will be observed in our simulations. Two seismic oil mobilization mechanisms will be investigated: (1) the passive response of residual oil clusters to the seismic stimulation, and (2) the resonance of oil clusters subject to low frequency seismic stimulation. We will then discuss which mechanism should be the dominant mechanism for the seismic stimulation oil recovery for practical applications.

  14. Oil Fires and Oil Slick, Kuwait

    NASA Image and Video Library

    1991-05-06

    STS039-87-012 (28 April-6 May 1991) --- A handheld 70mm camera onboard the Space Shuttle Discovery exposed this infrared frame showing oil fires near the Kuwait coast as well as south-bound oil slicks in the Gulf. Pools of oil on the land are recognized as white objects near the burning wells.

  15. Extraction of fleshing oil from waste limed fleshings and biodiesel production.

    PubMed

    Sandhya, K V; Abinandan, S; Vedaraman, N; Velappan, K C

    2016-02-01

    The aim of the study was focused on extraction of fleshing oil from limed fleshings with different neutralization process by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) followed by solvent extraction. The production of fatty acid methyl esters (FAMEs) from limed fleshing oil by two stage process has also been investigated. The central composite design (CCD) was used to study the effect of process variables viz., amount of flesh, particle size and time of fleshing oil extraction. The maximum yield of fleshing oil from limed fleshings post neutralization by ammonium chloride (NH4Cl) and hydrochloric acid (HCl) was 26.32g and 12.43g obtained at 200g of flesh, with a particle size of 3.90mm in the time period of 2h. Gas chromatography analysis reveals that the biodiesel (FAME) obtained from limed fleshings is rich in oleic and palmitic acids with weight percentages 46.6 and 32.2 respectively. The resulting biodiesel was characterized for its physio-chemical properties of diesel as per international standards (EN14214). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Sub-inhibitory stress with essential oil affects enterotoxins production and essential oil susceptibility in Staphylococcus aureus.

    PubMed

    Turchi, Barbara; Mancini, Simone; Pistelli, Luisa; Najar, Basma; Cerri, Domenico; Fratini, Filippo

    2018-03-01

    Fourteen wild strains of Staphylococcus aureus positive for gene sea were tested for enterotoxins production and the minimum inhibitory concentration of Leptospermum scoparium, Origanum majorana, Origanum vulgare, Satureja montana and Thymus vulgaris essential oils (EOs) were determined. After this trial, bacteria stressed with sub-inhibitory concentration of each EO were tested for enterotoxins production by an immunoenzymatic assay and resistance to the same EO. Oregano oil exhibited the highest antibacterial activity followed by manuka and thyme oils. After the exposure to a sub-inhibitory concentration of EOs, strains displayed an increased sensitivity in more than 95% of the cases. After treatment with oregano and marjoram EOs, few strains showed a modified enterotoxins production, while 43% of the strains were no longer able to produce enterotoxins after treatment with manuka EO. The results obtained in this study highlight that exposure to sub-inhibitory concentration of EO modifies strains enterotoxins production and EOs susceptibility profile.

  17. Effects of the Oil and Mucilage from Flaxseed (Linum Usitatissimum) on Gastric Lesions Induced by Ethanol in Rats

    PubMed Central

    Dugani, A; Auzzi, A; Naas, F; Megwez, S

    2008-01-01

    The anti-ulcer activity of the oil and mucilage obtained from flaxseed (Linum usitatissimum) was evaluated in a rat model of ethanol-induced gastric ulcer. Our results show that pretreatment of rats with flaxseed oil and flaxseed mucilage significantly reduced the number and length of gastric ulcers induced by ethanol. Flaxseed oil was more effective than flaxseed mucilage in reducing the number of ulcers. The reduction in ulcer severity (cumulative length in mm) provided by an oral dose of flaxseed oil (5 ml/kg) was more prominent than that obtained by ranitidine (50 mg/kg). This study indicates that both flaxseed oil and flaxseed mucilage can provide a cytoprotective effect against ethanol-induced gastric ulcers in rats. PMID:21503150

  18. Antimicrobial Activity of Individual and Combined Essential Oils against Foodborne Pathogenic Bacteria.

    PubMed

    Reyes-Jurado, Fatima; López-Malo, Aurelio; Palou, Enrique

    2016-02-01

    The antimicrobial activities of essential oils from Mexican oregano (Lippia berlandieri Schauer), mustard (Brassica nigra), and thyme (Thymus vulgaris) were evaluated alone and in binary combinations against Listeria monocytogenes, Staphylococcus aureus, or Salmonella Enteritidis. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry. The MICs of the evaluated essential oils ranged from 0.05 to 0.50% (vol/vol). Mustard essential oil was the most effective, likely due to the presence of allyl isothiocyanate, identified as its major component. Furthermore, mustard essential oil exhibited synergistic effects when combined with either Mexican oregano or thyme essential oils (fractional inhibitory concentration indices of 0.75); an additive effect was obtained by combining thyme and Mexican oregano essential oils (fractional inhibitory concentration index = 1.00). These results suggest the potential of studied essential oil mixtures to inhibit microbial growth and preserve foods; however, their effect on sensory quality in selected foods compatible with their flavor needs to be assessed.

  19. An evaluation of oil spill responses for offshore oil production projects in Newfoundland and Labrador, Canada: Implications for seabird conservation.

    PubMed

    Fraser, Gail S; Racine, Vincent

    2016-06-15

    Seabirds are vulnerable to oil pollution, particularly in cold-water regions. We investigated the response of small spills (<7.95m(3)) at offshore production platforms in Newfoundland, a region recognized for seabird diversity and abundance. In three environmental assessments for oil production operations Environment Canada requested monitoring and mitigation of small spills potentially impacting seabird populations; suggestions supported by two independent reviews. An industry spill response plan states that operators would collect systematic observations on spills and deploy countermeasures where possible. Operators' spill reports were obtained under an Access to Information request. There were 220 daytime spills with sheens (out of 381 spills; 1997-2010). Of these, six reported time to oil dispersion and eleven the presence or absence of seabirds. Industry self-reporting has not permitted an evaluation of the impact of chronic oil spills on seabirds. We recommend that independent observers be placed on platforms to systematically collect data on spills and seabirds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sub-supercritical liquefaction of rice stalk for the production of bio-oil: Effect of solvents.

    PubMed

    Li, Rundong; Li, Bingshuo; Yang, Tianhua; Kai, Xingping; Wang, Weidan; Jie, Yefei; Zhang, Yang; Chen, Guanyi

    2015-12-01

    The effect of solvents (water and ethanol) on liquefaction characteristics of rice stalk (RS) was investigated in an autoclave. The highest conversion and liquid yield in water and ethanol were 84.95 wt%, 72.62 wt% and 78.93wt%, 63.84 wt%, respectively. FTIR and GC-MS of the bio-oils obtained from subcritical water (SubH2O, 300°C) and supercritical ethanol (scEtOH, 300°C) indicated that the behavior of RS liquefaction depended on solvents used. The major components of bio-oil produced in SubH2O were ketones and phenols, while esters and phenols dominated in scEtOH. ICP-OES analysis showed that the concentrations of potassium (K) and sodium (Na) in the bio-oil obtained from scEtOH were 14-15 times higher than that obtained from SubH2O. Ethanol gave rise to an improvement in the bio-oil properties including water content, density, acidity and HHV. It was concluded that the bio-oil from RS can be effectively upgraded in scEtOH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Plant Oil-Derived Epoxy Polymers toward Sustainable Biobased Thermosets.

    PubMed

    Wang, Zhongkai; Yuan, Liang; Ganewatta, Mitra S; Lamm, Meghan E; Rahman, Md Anisur; Wang, Jifu; Liu, Shengquan; Tang, Chuanbing

    2017-06-01

    Epoxy polymers (EPs) derived from soybean oil with varied chemical structures are synthesized. These polymers are then cured with anhydrides to yield soybean-oil-derived epoxy thermosets. The curing kinetic, thermal, and mechanical properties are well characterized. Due to the high epoxide functionality per epoxy polymer chain, these thermosets exhibit tensile strength over an order of magnitude higher than a control formulation with epoxidized soybean oil. More importantly, thermosetting materials ranging from soft elastomers to tough thermosets can be obtained simply by using different EPs and/or by controlling feed ratios of EPs to anhydrides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The use of isotope ratios (13C/12C) for vegetable oils authentication

    NASA Astrophysics Data System (ADS)

    Cristea, G.; Magdas, D. A.; Mirel, V.

    2012-02-01

    Stable isotopes are now increasingly used for the control of the geographical origin or authenticity of food products. The falsification may be more or less sophisticated and its sophistication as well as its costs increases with the improvement of analytical methods. In this study 22 vegetable oils (olive, sunflower, palm, maize) commercialized on Romanian market were investigated by mean of δ13C in bulk oil and the obtained results were compared with those reported in literature in order to check the labeling of these natural products. The obtained results were in the range of the mean values found in the literature for these types of oils, thus providing their accurate labeling.

  3. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production

    PubMed Central

    Patel, Vinay R.; Dumancas, Gerard G.; Kasi Viswanath, Lakshmi C.; Maples, Randall; Subong, Bryan John J.

    2016-01-01

    Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production. PMID:27656091

  4. Feasibility of low frequency ultrasound for water removal from crude oil emulsions.

    PubMed

    Antes, Fabiane G; Diehl, Liange O; Pereira, Juliana S F; Guimarães, Regina C L; Guarnieri, Ricardo A; Ferreira, Bianca M S; Dressler, Valderi L; Flores, Erico M M

    2015-07-01

    The feasibility of indirect application of low frequency ultrasound for demulsification of crude oil was investigated without using chemical demulsifiers. Experiments were performed in an ultrasonic bath with frequency of 35 kHz. Synthetic emulsions with water content of 12%, 35% and 50% and median of droplet size distribution (DSD), median D(0.5), of 5, 10 and 25 μm were prepared from crude oil with API density of 19 (heavy crude oil) and submitted to the proposed ultrasound-assisted demulsification procedure. Experimental conditions as temperature, time of exposition to ultrasound and ultrasonic power were evaluated. Separation of water from crude oil emulsion was observed for all emulsions investigated. Demulsification efficiency up to 65% was obtained for emulsion with 50% of water content and DSD of 10 μm. Higher efficiency of demulsification was achieved using US temperature of 45 °C and ultrasound power of 160 W by 15 min. Results obtained in this study showed that ultrasound could be considered a promising technology for industrial crude oil treatment and respective water removal. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Composition of plasma and atheromatous plaque among coronary artery disease subjects consuming coconut oil or sunflower oil as the cooking medium.

    PubMed

    Palazhy, Sabitha; Kamath, Prakash; Rajesh, P C; Vaidyanathan, Kannan; Nair, Shiv K; Vasudevan, D M

    2012-12-01

    Coconut oil, which is rich in medium-chain saturated fatty acids, is the principal cooking medium of the people of Kerala, India. Replacement of saturated fat with polyunsaturated fat is effective in reducing serum cholesterol levels. However, the effect of substituting coconut oil with sunflower oil on the fatty acid composition of plaque has not been thoroughly investigated. We therefore evaluated and compared the fatty acid composition of plasma and plaque among subjects consuming coconut oil or sunflower oil as the cooking medium. Endarterectomy samples and plasma samples were obtained from subjects who underwent coronary artery bypass grafts (n = 71). The subjects were grouped based on the type of oil they were using as their cooking medium (coconut oil or sunflower oil). The fatty acid composition in the plaques and the plasma was determined by HPLC and the data were analyzed statistically. Sunflower oil consumers had elevated concentrations of linoleic acid (p = 0.001) in plasma, while coconut oil users had higher myristic acid levels (p = 0.011) in plasma. Medium-chain fatty acids did not differ significantly between the two groups in the plasma. Medium-chain fatty acids were detected in the plaques in both groups of subjects. In contrast to previous reports, long-chain saturated fatty acids dominated the lipid content of plaque in this population, and the fatty acid composition of plaque was not significantly different between the two groups. No correlation between fatty acids of plasma and plaque was observed in either group. A change in cooking medium, although it altered the plasma fatty acid composition, was not reflected in the plaque composition.

  6. PCDD/Fs and DL-PCBs in feeding fats obtained as co-products or by-products derived from the food chain.

    PubMed

    Abalos, M; Parera, J; Abad, E; Rivera, J

    2008-04-01

    Among the tasks included in the "Quality and safety of feeding fats obtained from co-products or by-products of the food chain" Project, supported by the European Union and included in the 6th Framework Program, a number of fats and oils collected as co- or by-products from the food chain were selected for the determination of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and 'dioxin-like' polychlorinated biphenyls (DL-PCBs). In the majority of the cases these samples are currently employed as feed ingredients. Nevertheless, additional fats, which are forbidden for feedstuff purposes were also considered in this study. In general terms, fats and oils were classified taking into account their nature and the processes applied to obtain these co- or by-products. PCDD/F and DL-PCB levels were evaluated in a first group of samples composed of fish oils, animal fats and lecithins. As expected, fats and oils with an animal origin presented higher concentrations, expressed in pg WHO-TEQ/g, compared to the levels found in vegetable samples like lecithins. The category of fish oils had the highest values for both PCDD/Fs and the sum of PCDD/Fs and DL-PCBs, with some samples showing levels above the maximum established at the present legislation related to the presence of PCDD/Fs and DL-PCBs in animal feed [Commission Directive 2006/13/EC of 3 February 2006 amending Annexes I and II to Directive 2002/32/EC of the European Parliament and of the Council on undesirable substances in animal feed as regards dioxins and dioxin-like PCBs. Official Journal of the European Communities L32, 44-53]. In a second group, fats and oils with a more complex composition obtained from different transformation processes or even mixtures of fats were considered; thus, acid oils from chemical refining, acid oils from physical refining, recycled cooking oils, oils extracted from exhausted bleaching earths, hydrogenated by-products, fatty acids calcium soaps and

  7. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    PubMed

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. Copyright © 2010 SETAC.

  8. In vitro scolicidal effect of Satureja khuzistanica (Jamzad) essential oil

    PubMed Central

    Moazeni, Mohammad; Saharkhiz, Mohammad Jamal; Hoseini, Ali Akbar; Alavi, Amir Mootabi

    2012-01-01

    Objective To investigate the scolicidal effect of the Satureja khuzistanica (S. khuzistanica)essential oil from aerial parts of this herbal plant. Methods The essential oil was obtained by hydrodistillation method. Gas chromatography (GC) and gas chromatography mass spectrometry (GC-MS) were employed to determine the chemical composition of the essential oil. Protoscolices were collected aseptically from sheep livers containing hydatid cyst. Protoscolices were exposed to various concentrations of the oil (3, 5 and 10 mg/mL) for 10, 20, 30, and 60 min. Viability of protoscolices was confirmed by 0.1% eosin staining. Results : A total of 19 compounds representing 97.6% of the total oil, were identified. Carvacrol (94.9%) was found to be the major essential oil constituent. Scolicidal activity of S. khuzistanica essential oil at concentration of 3 mg/mL was 28.58, 32.71, 37.20 and 42.02%, respectively. This essential oil at concentration of 5 mg/mL killed 51.33, 66.68, 81.12, and 100% of protoscolices after 10, 20, 30 and 60 min, respectively. One hundred scolicidal effect was observed with S. khuzistanica essential oil at the concentration of 10 mg/mL after 10 min (comparing with 7.19% for control group). Conclusions The essential oil of S. khuzistanica is rich in carvacrol and may be used as a natural scolicidal agent. PMID:23569981

  9. Screening of biodiesel production from waste tuna oil (Thunnus sp.), seaweed Kappaphycus alvarezii and Gracilaria sp.

    NASA Astrophysics Data System (ADS)

    Alamsjah, Mochammad Amin; Abdillah, Annur Ahadi; Mustikawati, Hutami; Atari, Suci Dwi Purnawa

    2017-09-01

    Biodiesel has several advantages over solar. Compared to solar, biodiesel has more eco-friendly characteristic and produces lower greenhouse gas emissions. Biodiesel that is made from animal fats can be produced from fish oil, while other alternative sources from vegetable oils are seaweed Kappaphycus alvarezii and Gracilaria sp. Waste tuna oil (Thunnus sp.) in Indonesia is commonly a side product of tuna canning industries known as tuna precook oil; on the other hand, seaweed Gracilaria sp. and Kappaphycus alvarezii are commonly found in Indonesia's seas. Seaweed waste that was used in the present study was 100 kg and in wet condition, and the waste oil was 10 liter. The seaweed was extracted with soxhletation method that used n-hexane as the solvent. To produce biodiesel, trans esterification was performed on the seaweed oil that was obtained from the soxhletation process and waste tuna oil. Biodiesel manufactured from seaweed K. alvarezii obtained the best score in flash point, freezing point, and viscosity test. However, according to level of manufacturing efficiency, biodiesel from waste tuna oil is more efficient and relatively easier compared to biodiesel from waste K. alvarezii and Gracilaria sp.

  10. Linear least-squares method for global luminescent oil film skin friction field analysis

    NASA Astrophysics Data System (ADS)

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  11. Chemoprevention by thyme oils of Aspergillus parasiticus growth and aflatoxin production.

    PubMed

    Rasooli, Iraj; Owlia, Parviz

    2005-12-01

    The essential oils from Thymus eriocalyx and Thymus X-porlock obtained by hydrodistillation were analyzed by GC/MS. The major components of T. eriocalyx and T. X-porlock oils were thymol (63.8, 31.7%), beta-phellandrene (13.30, 38.7%), cis-sabinene hydroxide (8.1, 9.6%), 1,8-cineole (2, 1.7%), and beta-pinene (1.31, 2%), respectively. Antifungal activities of the oils were studied with special reference to the inhibition of Aspergillus parasiticus growth and aflatoxin production. Minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of the oils were determined. Static effects of the above oils against A. parasiticus were at 250 ppm and lethal effects of T. eriocalyx and T. X-porlock were 500 and 1000 ppm of the oils, respectively. Aflatoxin production was inhibited at 250 ppm of both oils with that of T. eriocalyx being stronger inhibitor. Transmission electron microscopy (TEM) of A. parasiticus exposed to MIC level (250 ppm) of the oils showed irreversible damage to cell wall, cell membrane, and cellular organelles. It is concluded that the essential oils could be safely used as preservative materials on some kinds of foods at low concentrations to protect them from fungal infections.

  12. Detection of oil spills using a 13.3-GHz radar scatterometer.

    NASA Technical Reports Server (NTRS)

    Krishen, K.

    1973-01-01

    This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.

  13. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage.

    PubMed

    Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro

    2012-01-01

    Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage.

  14. Chemical study and larvicidal activity against Aedes aegypti of essential oil of Piper aduncum L. (Piperaceae).

    PubMed

    Oliveira, Gisele L; Cardoso, Sheila K; Lara, Célio R; Vieira, Thallyta M; Guimarães, Elsie F; Figueiredo, Lourdes S; Martins, Ernane R; Moreira, Davyson L; Kaplan, Maria Auxiliadora C

    2013-01-01

    Piper aduncum L. is used in folk medicine to treat respiratory and inflammatory diseases. The aim of this study was to analyze the essential oil from leaves of P. aduncum collected in the Brazilian Cerrado, North of Minas Gerais, as well as to evaluate the larvicidal activity of this oil and of its major constituent. The essential oil was analyzed by gas chromatography coupled to flame ionization detector and gas chromatography coupled to mass spectrometry that allowed characterizing 23 compounds (monoterpenes: 90.4%; sesquiterpenes: 7.0%). The major component was 1,8-cineole (53.9%). This oil showed to be very different from those obtained from the same species. Larvae of A. aegypti were exposed to different concentrations of the essential oil and 1,8-cineole. The mortality rate of 100% was obtained after 24 h of treatment with the oil at concentrations of 500 and 1,000 ppm. After 48 h of treatment, the mortality rate was 80% and 50% for concentrations of 250 and 100 ppm, respectively. The LC₅₀ obtained after 24h was estimated in 289.9 ppm and after 48 h was 134.1 ppm. The major compound 1,8-cineole showed no larvicidal activity.

  15. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    USGS Publications Warehouse

    Starliper, Clifford E.; Ketolab, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.

    2015-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments for captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine if selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBC’s (0.02 to 0.04%) were obtained with three different sources of cinnamon oil. MBC’s for three sources of oregano and lemongrass oils ranged from 0.14 to 0.30% and 0.10 to 0.65%, respectively, and for two thyme oils were 2.11 and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBC’s to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBC’s for all but one isolate

  16. An investigation of the bactericidal activity of selected essential oils to Aeromonas spp.

    PubMed Central

    Starliper, Clifford E.; Ketola, Henry G.; Noyes, Andrew D.; Schill, William B.; Henson, Fred G.; Chalupnicki, Marc A.; Dittman, Dawn E.

    2014-01-01

    Diseases of fishes caused by Aeromonas spp. are common, have broad host ranges and may cause high mortality. Treatments of captive-reared populations using antimicrobials are limited with concerns for bacterial resistance development and environmental dissemination. This study was done to determine whether selected plant-derived essential oils were bactericidal to Aeromonas spp. Initially, twelve essential oils were evaluated using a disk diffusion assay to an isolate of A. salmonicida subsp. salmonicida, cause of fish furunculosis. The greatest zones of inhibition were obtained with oils of cinnamon Cinnamomum cassia, oregano Origanum vulgare, lemongrass Cymbopogon citratus and thyme Thymus vulgaris. Minimum bactericidal concentrations (MBC’s) were determined for these four oils, Allimed® (garlic extract, Allium sativum) and colloidal silver to sixty-nine isolates representing nine Aeromonas spp. The lowest mean MBCs (0.02–0.04%) were obtained with three different sources of cinnamon oil. MBCs for three sources of oregano and lemongrass oils ranged from 0.14% to 0.30% and 0.10% to 0.65%, respectively, and for two thyme oils were 2.11% and 2.22%. The highest concentration (5%) of Allimed® tested resulted in MBCs to twelve isolates. A concentration of silver greater than 15 mg/L would be required to determine MBCs for all but one isolate. PMID:25685547

  17. Influence of spike lavender (Lavandula latifolia Med.) essential oil in the quality, stability and composition of soybean oil during microwave heating.

    PubMed

    Rodrigues, Nuno; Malheiro, Ricardo; Casal, Susana; Asensio-S-Manzanera, M Carmen; Bento, Albino; Pereira, José Alberto

    2012-08-01

    Lipids oxidation is one of the main factors leading to quality losses in foods. Its prevention or delay could be obtained by the addition of antioxidants. In this sense the present work intend to monitor the protective effects of Lavandula latifolia essential oil during soybean oil microwave heating. To achieve the proposed goal quality parameters (free acidity, peroxide value, specific coefficients of extinction and ΔK), fatty acids profile, tocopherols and tocotrienols composition, antioxidant activity and oxidative stability were evaluated in soybean oil with and without spike lavender essential oils (EO) submitted to different microwave heating exposure times (1, 3, 5, 10 and 15 min; 1000 Watt) with a standard domestic microwave equipment. Microwave heating induced severe quality and composition losses, mainly above 3 min of microwave heating, regardless the sample tested. However, spike lavender EO addition counteracts the oxidation comparatively to control oils, by presenting enhanced values in quality parameters. A higher protection in unsaturated fatty acids loss was also observed as well as a higher antioxidant activity and oxidative stability. The microwave heating effects were clearly different in the samples with essential oils addition, allowing discrimination from plain soybean oils by a principal component analysis, being also capable to discriminate the different heating times tested within each sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. [Contributions to the chemical study of the essential oil isolated from coriander fruits (Sandra cultivar)].

    PubMed

    Trifan, Adriana; Aprotosoaie, Ana Clara; Spac, A; Hăncianu, Monica; Miron, Anca; Stănescu, Ursula

    2011-01-01

    Coriandrum sativum L. (Apiaceae) is a well known herb, native to the Mediterranean region, also intensively cultivated in Romania. The essential oil obtained from Coriandri fructus posseses antimicrobial, antioxidant and anxiolytic effects. Many parameters such as genetic and climatic factors or agronomical practices can influence the yield and composition of the volatile fraction. Plant density is an important factor for the microenvironment in coriander field. In order to study the effect of planting density on the yield of the essential oil and its composition, a bifactorial experiment was carried out on coriander plants (Sandra cultivar). The experiment was performed with three plant densities on the row (0, 15 and 20 cm); the distance between plant rows was 12.5, 25 and 50 cm, respectively. So, it resulted nine experimental variants. The essential oils obtained by hydrodistillation from fruits have been characterized using gas chromatography and mass spectroscopy analysis (GC-MS). The highest yield (7.9866 kg/ha) was obtained for the plants spaced at 20 cm in between and 25 cm row spacing. The highest content of monoterpene alcohols (50.96%) was obtained with 25 cm row spacing and plant spaced at 0 cm on the row. The main components in all oils were monoterpene alcohols (40.75% - 50.96%) and monoterpenes (32.43-38.44%). The essential oil of coriander fruits (Sandra cultivar) does not meet the requirements of the European Pharmacopoeia, especially concerning the content in linalool. Nevertheless, the high content in monoterpene alcohols and monoterpenes recommends the use of the essential oil as immunomodulatory, analgesic and antiinflammatory agent in rheumatology and also as an antibacterial and antiviral agent. Consequently, the changes in yield and composition of the essential oil of Sandra coriander should be assesed during several periods of vegetation in order to conclude on its pharmaceutical quality.

  19. Material flow analysis for resource management towards resilient palm oil production

    NASA Astrophysics Data System (ADS)

    Kamahara, H.; Faisal, M.; Hasanudin, U.; Fujie, K.; Daimon, H.

    2018-03-01

    Biomass waste generated from palm oil mill can be considered not only as the feedstock of renewable energy but also as the nutrient-rich resources to produce organic fertilizer. This study explored the appropriate resource management towards resilient palm oil production by applying material flow analysis. This study was conducted based on two palm oil mills in Lampung, Indonesia. The results showed that the empty fruit bunch (EFB) has the largest potential in terms of amount and energy among the biomass waste. The results also showed that the palm oil mills themselves had already self-managed their energy consumption thatwas obtained from palm kernel shell and palm press fiber. Finally, this study recommended the several utilization options of EFB for improvement of soil sustainability to contribute towards resilient palm oil production.

  20. Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan

    2017-12-01

    We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.

  1. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale)

    PubMed Central

    Satyal, Prabodh; Craft, Jonathan D.; Dosoky, Noura S.; Setzer, William N.

    2017-01-01

    Garlic, Allium sativum, is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale, has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum, cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species. PMID:28783070

  2. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale).

    PubMed

    Satyal, Prabodh; Craft, Jonathan D; Dosoky, Noura S; Setzer, William N

    2017-08-05

    Garlic, Allium sativum , is broadly used around the world for its numerous culinary and medicinal uses. Wild garlic, Allium vineale , has been used as a substitute for garlic, both in food as well as in herbal medicine. The present study investigated the chemical compositions of A. sativum and A. vineale essential oils. The essential oils from the bulbs of A. sativum , cultivated in Spain, were obtained by three different methods: laboratory hydrodistillation, industrial hydrodistillation, and industrial steam distillation. The essential oils of wild-growing A. vineale from north Alabama were obtained by hydrodistillation. The resulting essential oils were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Both A. sativum and A. vineale oils were dominated by allyl polysulfides. There were minor quantitative differences between the A. sativum oils owing to the distillation methods employed, as well as differences from previously reported garlic oils from other geographical locations. Allium vineale oil showed a qualitative similarity to Allium ursinum essential oil. The compositions of garlic and wild garlic are consistent with their use as flavoring agents in foods as well as their uses as herbal medicines. However, quantitative differences are likely to affect the flavor and bioactivity profiles of these Allium species.

  3. Multi-capillary column-ion mobility spectrometry: a potential screening system to differentiate virgin olive oils.

    PubMed

    Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel

    2012-01-01

    The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.

  4. Chemical composition and antibacterial activity of oils from Chrysicthys nigrodigitatus and Hepsetus odoe, two freshwater fishes from Yabassi, Cameroon.

    PubMed

    Simplice, Mouokeu Raymond; Macaire, Womeni Hilaire; Hervé, Njike Ngamga Fabrice; Fabrice, Tonfack Djikeng; Justin, Djopnang DJimbie; François, Tchoumbougnang; Jules-Roger, Kuiate

    2018-03-12

    Oils of fish origin are a very rich source of Omega - 3 and Omega - 6 fatty acids. They have been suggested to provide numerous health benefits for humans involving antimicrobial properties. Chrysichthys nigrodigitatus and Hepsetus odoe are two fishes well known in Cameroon. The chemical composition and the antibacterial activity of these fishes derived oils are unknown. The study was designed to valorise C. nigrodigitatus and H.s odoe oils activity against food poisoning bacteria. Oils were extracted by pressing and maceration methods. Their quality was assessed by analysing quality indexes including peroxides, acid, iodine, anisidine and thiobarbituric acid values. Chemical analysis was established by gas chromatography coupled to flame ionization detector. Antibacterial activity was evaluated by broth microdilution method. C. nigrodigitatus oil obtained by maceration exhibited highest acid (7.33 ± 0.00 mg KOH/g), anisidine (34.5 ± 1.84) and thiobarbituric acid (7.50 ± 0.30 μmol MDA/Kg) values compared to that obtained by pressing method (9.13 ± 0.64 and 6.72 ± 0.34 μmol MDA/Kg) respectively. H. odoe oil obtained by pressing method showed highest peroxide value (6.22 ± 1.31 meq O 2 /kg). Oil chemical analysis revealed long chain polyunsaturated fatty acids of the ω-3 family: linolenic acid (C18:3); eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) and ω-6 family; arachidonic acid (C20:4). In addition, C. nigrodigitatus oil obtained by pressing and maceration methods showed Minimum Inhibitory Concentrations (MIC) values ranging from 32 to 64 mg/ml. H. odoe oil obtained by pressing method revealed MIC values ranging between 8 and 64 mg/ml. C. nigrodigitatus and H. odoe oils have activity against food poisoning bacteria, due to their chemical composition.

  5. Organogels of vegetable oil with plant wax – trans/saturated fat replacements

    USDA-ARS?s Scientific Manuscript database

    This featured article reviews recent advances on the development of trans fat-free, low saturated fat food products from organogels formed by a plant wax in a vegetable oil. Plant waxes are of great interest in this research area because they are obtained as by-products during the oil refining proce...

  6. Investigation on Nonlinear-Optical Properties of Palm Oil/Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zamiri, R.; Parvizi, R.; Zakaria, A.; Sadrolhosseini, A. R.; Zamiri, G.; Darroudi, M.; Husin, M. S.

    2012-06-01

    We have investigated the spatial self phase modulation of palm oil containing silver nanoparticles (palm oil/Ag-NPs). The study carried out using continuous wave diode pumped solid state laser with wavelength of 405 nm and power of 50 mW. The strong spatial self phase modulation patterns were observed that suggest the palm oil/Ag-NPs have a relatively large nonlinear refractive index. The obtained values of nonlinear refractive index were increased with the increment in the volume fractions. The observed experimental patterns were also theoretically modeled which are in good agreement with experimental results.

  7. Comparison of geochemical data obtained using four brine sampling methods at the SECARB Phase III Anthropogenic Test CO2 injection site, Citronelle Oil Field, Alabama

    USGS Publications Warehouse

    Conaway, Christopher; Thordsen, James J.; Manning, Michael A.; Cook, Paul J.; Trautz, Robert C.; Thomas, Burt; Kharaka, Yousif K.

    2016-01-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a characterization well in the Citronelle Oil Field, Alabama, as part of the Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Anthropogenic Test, which is an integrated carbon capture and storage project. In this study, formation water and gas samples were obtained from well D-9-8 #2 at Citronelle using gas lift, electric submersible pump, U-tube, and a downhole vacuum sampler (VS) and subjected to both field and laboratory analyses. Field chemical analyses included electrical conductivity, dissolved sulfide concentration, alkalinity, and pH; laboratory analyses included major, minor and trace elements, dissolved carbon, volatile fatty acids, free and dissolved gas species. The formation water obtained from this well is a Na–Ca–Cl-type brine with a salinity of about 200,000 mg/L total dissolved solids. Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity. There was little gas in samples, and gas composition results were strongly influenced by sampling methods. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the VS and U-tube system performing most favorably in this aspect.

  8. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...

  9. Uncertainty in predictions of oil spill trajectories in a coastal zone

    NASA Astrophysics Data System (ADS)

    Sebastião, P.; Guedes Soares, C.

    2006-12-01

    A method is introduced to determine the uncertainties in the predictions of oil spill trajectories using a classic oil spill model. The method considers the output of the oil spill model as a function of random variables, which are the input parameters, and calculates the standard deviation of the output results which provides a measure of the uncertainty of the model as a result of the uncertainties of the input parameters. In addition to a single trajectory that is calculated by the oil spill model using the mean values of the parameters, a band of trajectories can be defined when various simulations are done taking into account the uncertainties of the input parameters. This band of trajectories defines envelopes of the trajectories that are likely to be followed by the spill given the uncertainties of the input. The method was applied to an oil spill that occurred in 1989 near Sines in the southwestern coast of Portugal. This model represented well the distinction between a wind driven part that remained offshore, and a tide driven part that went ashore. For both parts, the method defined two trajectory envelopes, one calculated exclusively with the wind fields, and the other using wind and tidal currents. In both cases reasonable approximation to the observed results was obtained. The envelope of likely trajectories that is obtained with the uncertainty modelling proved to give a better interpretation of the trajectories that were simulated by the oil spill model.

  10. Toxicities of Selected Essential Oils, Silicone Oils, and Paraffin Oil against the Common Bed Bug (Hemiptera: Cimicidae).

    PubMed

    Zha, Chen; Wang, Changlu; Li, Andrew

    2018-02-09

    The common bed bug [Cimex lectularius L. (Hemiptera: Cimicidae)] and tropical bed bug [Cimex hemipterus F. (Hemiptera: Cimicidae)] resurged in the United States and many other countries over the past decades. The need for safe and effective bed bug control products propelled the development of numerous 'green insecticides', mostly with essential oils listed as active ingredients. Various inorganic and organic oils also were used for bed bug management. However, there are no published studies on their toxicities against bed bugs. In this study, we screened 18 essential oils, three silicone oils, and paraffin oil (C5-20 paraffins) for their toxicities against bed bugs. All the oils exhibited insecticidal activity in topical assays. Their toxicities varied significantly; all of the evaluated essential oils were less effective than silicone oils and paraffin oil. The LD50 values of the most effective essential oil (blood orange), paraffin oil, and the most effective silicone oil (dodecamethylpentasiloxane) are 0.184 ± 0.018, 0.069 ± 0.012, and 0.036 ± 0.005 mg per bug, respectively. Direct spray of 1% water solution of 3-[hydroxy (polyethyleneoxy) propyl] heptamethyltrisiloxane, the only silicone oil that mixes well with water, resulted in 92% bed bug mortality after 1 d. Results of this study indicate silicone oils and paraffin oil have the potential to be used as safer alternative bed bug control materials. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Conversion of cornstalk to bio-oil in hot-compressed water: effects of ultrasonic pretreatment on the yield and chemical composition of bio-oil, carbon balance, and energy recovery.

    PubMed

    Shi, Wen; Gao, Yahui; Yang, Guohui; Zhao, Yaping

    2013-08-07

    An ultrasonic pretreatment method was developed to enhance the yield of bio-oil obtained from the liquefaction of cornstalks in hot-compressed water at different reaction temperatures (260-340 °C) and residence times (0-40 min). Influences of ultrasonic pretreatment on the physicochemical properties of cornstalks and bio-oil yields were investigated. The results show that ultrasonic pretreatment obviously increases surface areas of cornstalks, decreases crystallinities, and erodes the structures of lignin, leading to more exposure of cellulose and hemicellulose. The yield of bio-oil was increased remarkably by 10.1% for 40 min sonicated cornstalks under the optimum liquefied conditions (300 °C for 0 min of residence time). Carbon balance indicates that ultrasonic pretreatment increases the carbon conversion of cornstalks to heavy oil and water-soluble oil. Energy balance indicates that the sonicated cornstalks have positive energy efficiencies. GC-MS analyses demonstrate ultrasonic pretreatment increases the contents of the phenols in heavy oil and water-soluble oil.

  12. Chemical composition and in vitro antibacterial activity of Pistacia terebinthus essential oils derived from wild populations in Kosovo.

    PubMed

    Pulaj, Bledar; Mustafa, Behxhet; Nelson, Kate; Quave, Cassandra L; Hajdari, Avni

    2016-05-26

    Plant material from different organs of Pistacia terebinthus L., (Anacardiaceae) were collected in Kosovo with aim to analyze the chemical variability of the essential oils among native populations and to test them for potential antibacterial activity against Staphylococcus aureus. Essential oils obtained from leaves, pedicels, fruits and galls were analyzed by GC-FID and GC/MS. Minimum inhibitory concentration (MIC) against three clinically relevant strains of S. aureus (NRS385, LAC and UAMS-1) were used to evaluate the antibacterial activity of essential oils. In total, 33 different compounds were identified. The main constituents were α-pinene (12.58-66.29 %), D-limonene (13.95-46.29 %), β-ocimene (0.03-40.49 %), β-pinene (2.63-20.47 %), sabinene (0.00-5.61 %) and (Z)-β-ocimene (0.00-44.85 %). Antibacterial testing of the essential oils against three clinical isolates of S. aureus revealed that seven of the eight samples had some activity at the concentration range tested (0.04-0.512 % v/v). The gall tissues from both sites produced the highest yield of essential oil (3.24 and 6 %), and both exhibited growth inhibitory activity against S. aureus. The most bioactive essential oils, which exhibited MIC90 values ranging from 0.032-0.128 % v/v, obtained from the fruits of the Ura e Shejtë collection site. Likewise, the leaf and pedicel essential oil from the same site was highly active with MIC90 values of 0.064-0.128 and 0.032-0.256 % v/v, respectively. Principle Component Analyses demonstrated that there is a variation in the chemical composition of essential oil depending on the plant organs from which essential oil are obtained and the geographical origin of the plant populations. The highest variability regarding the chemical composition of essential oil was found between oils obtained from different organs originating from the Prizren site. The MIC90 activity of Pistacia terebinthus was on par or superior compared with Tea Tree Oil control (0

  13. Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution

    NASA Astrophysics Data System (ADS)

    Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia

    2015-12-01

    This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.

  14. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles.

    PubMed

    Specos, M M Miró; García, J J; Tornesello, J; Marino, P; Vecchia, M Della; Tesoriero, M V Defain; Hermida, L G

    2010-10-01

    Microcapsules containing citronella essential oil were prepared by complex coacervation and applied to cotton textiles in order to study the repellent efficacy of the obtained fabrics. Citronella released from treated textiles was indirectly monitored by the extractable content of its main components. Repellent activity was assessed by exposure of a human hand and arm covered with the treated textiles to Aedes aegypti mosquitoes. Fabrics treated with microencapsulated citronella presented a higher and longer lasting protection from insects compared to fabrics sprayed with an ethanol solution of the essential oil, assuring a repellent effect higher than 90% for three weeks. Complex coacervation is a simple, low cost, scalable and reproducible method of obtaining encapsulated essential oils for textile application. Repellent textiles were achieved by padding cotton fabrics with microcapsules slurries using a conventional pad-dry method. This methodology requires no additional investment for textile finishing industries, which is a desirable factor in developing countries. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  15. Multifractal analysis on international crude oil markets based on the multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Gu, Rongbao; Chen, Hongtao; Wang, Yudong

    2010-07-01

    The multifractal nature of WTI and Brent crude oil markets is studied employing the multifractal detrended fluctuation analysis. We find that two crude oil markets become more and more efficient for long-term and two Gulf Wars cannot change time scale behavior of crude oil return series. Considering long-term influence caused by Gulf Wars, we find such “turning windows” in generalized Hurst exponents obtained from three periods divided by two Gulf Wars so that WTI and Brent crude oil returns possess different properties above and below the windows respectively. Comparing with the results obtained from three periods we conclude that, before the First Gulf War, international crude oil markets possessed the highest multifractality degree, small-scope fluctuations presented the strongest persistence and large-scope fluctuations presented the strongest anti-persistence. We find that, for two Gulf Wars, the first one made a greater impact on international oil markets; for two markets, Brent was more influenced by Gulf Wars. In addition, we also verified that the multifractal structures of two markets’ indices are not only mainly attributed to the broad fat-tail distributions and persistence, but also affected by some other factors.

  16. Mid-Term Probabilistic Forecast of Oil Spill Trajectories

    NASA Astrophysics Data System (ADS)

    Castanedo, S.; Abascal, A. J.; Cardenas, M.; Medina, R.; Guanche, Y.; Mendez, F. J.; Camus, P.

    2012-12-01

    There is increasing concern about the threat posed by oil spills to the coastal environment. This is reflected in the promulgation of various national and international standards among which are those that require companies whose activities involves oil spill risk, to have oil pollution emergency plans or similar arrangements for responding promptly and effectively to oil pollution incidents. Operational oceanography systems (OOS) that provide decision makers with oil spill trajectory forecasting, have demonstrated their usefulness in recent accidents (Castanedo et al., 2006). In recent years, many national and regional OOS have been setup focusing on short-term oil spill forecast (up to 5 days). However, recent accidental marine oil spills (Prestige in Spain, Deep Horizon in Gulf of Mexico) have revealed the importance of having larger prediction horizons (up to 15 days) in regional-scale areas. In this work, we have developed a methodology to provide probabilistic oil spill forecast based on numerical modelling and statistical methods. The main components of this approach are: (1) Use of high resolution long-term (1948-2009) historical hourly data bases of wind, wind-induced currents and astronomical tide currents obtained using state-of-the-art numerical models; (2) classification of representative wind field patterns (n=100) using clustering techniques based on PCA and K-means algorithms (Camus et al., 2011); (3) determination of the cluster occurrence probability and the stochastic matrix (matrix of transition of probability or Markov matrix), p_ij, (probability of moving from a cluster "i" to a cluster "j" in one time step); (4) Initial state for mid-term simulations is obtained from available wind forecast using nearest-neighbors analog method; (5) 15-days Stochastic Markov Chain simulations (m=1000) are launched; (6) Corresponding oil spill trajectories are carried out by TESEO Lagrangian transport model (Abascal et al., 2009); (7) probability maps are

  17. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis.

    PubMed

    Mori Cortés, Noelia; Lorenzo, Gabriel; Califano, Alicia N

    2018-05-01

    Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    SciTech Connect

    None

    1989-12-01

    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt. The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, publishedmore » work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degrees} C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3--5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).« less

  19. Novel edible oil sources: Microwave heating and chemical properties.

    PubMed

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira

    2017-02-01

    The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Influence of copper on the by-products of different oil-paper insulations

    NASA Astrophysics Data System (ADS)

    Hao, Jian; Liao, Ruijin; Chen, George; Ma, Chao

    2011-08-01

    Transformer failure caused by the corrosion of copper material in transformer attracts great attention of researchers and engineers. In this paper, Karamay No. 25 naphthenic mineral oil, Karamay No. 25 paraffinic mineral oil, Kraft paper and copper were used to compose four combinations of oil-paper insulation samples. The ageing by-products and dielectric properties of the four combinations of oil-paper insulation samples were compared after they were thermally aged at 130°C. The influence of copper on the by-products and dielectric properties of different oil-paper insulations was obtained. The results show that copper can accelerate the ageing rate of insulation oils and reduce their AC breakdown voltage. The content of copper substance dissolved in insulating oil increases with ageing time at first and then decreases. The paper aged in the oil-paper insulation sample with copper has higher moisture content than the one without copper. Results of energy dispersive spectroscopy (EDS) in the scanning electron microscope (SEM) show that there is copper product deposited on the surface of insulation paper. The insulation oil and paper aged in the oil-paper insulation sample with copper have higher dielectric loss and conductivity than that without copper.

  1. Penetration enhancing effects of selected natural oils utilized in topical dosage forms.

    PubMed

    Viljoen, Joe M; Cowley, Amé; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta

    2015-01-01

    Various natural products, including oils, have been utilized as penetration enhancers due to their "safety profiles". These oils contain fatty acids promoting skin permeability through lipid fluidization within the stratum corneum; and might therefore be able to effectively enhance transdermal drug delivery. We investigated possible penetration enhancing properties of selected oils, utilizing flurbiprofen as marker compound in emulgel formulations. The formulations were compared to a liquid paraffin emulgel and a hydrogel to establish any significant penetration enhancing effects. Gas chromatographic analysis of the natural oils was performed at ambient temperature to determine the fatty acid composition in each selected natural oils. Franz cell diffusion studies and tape stripping methods were employed to study delivery of the marker into, and through the skin. The following rank order for the emulgel flux-values was obtained: Hydrogel > olive oil > liquid paraffin > coconut oil > grape seed oil > Avocado oil ≥ Crocodile oil > Emu oil. Results suggested that oils containing predominantly mono-unsaturated oleic acid, on average increased the flux of the marker to a larger extent than oils containing an almost even mixture of both mono- and poly-unsaturated fatty acids. Oils comprising saturated fatty acids (SFAs) with alkyl chains between C12 and C14, increased the marker flux to a higher extent than oils containing C16-C18 SFAs. Effects observed for branched fatty acids, however, did not vary significantly from effects for unbranched fatty acids with the same carbon chain length. Natural oils possess penetration enhancing effects.

  2. Chemical constituents and antimicrobial activity of the essential oil of Lantana xenica.

    PubMed

    Juliani, Hector R; Biurrun, Fernando; Koroch, Adolfina R; Oliva, M M; Demo, Mirta S; Trippi, Victorio S; Zygadlo, Julio A

    2002-08-01

    The aim of this work was to evaluate the chemical composition of Lantana xenica essential oil and its antimicrobial activity. The oil from the aerial parts of Lantana xenica Mold. (Verbenacea) was obtained by steam distillation and analyzed by gas chromatography/mass spectrometry. The major constituent of the oil was (E)-caryophyllene (35.2 %), with minor amounts of gamma-cadinene (13.3 %), alpha-pinene (9.3 %), ocimene (9.2 %) and germacrene D (6.6 %). The antimicrobial assays showed that the essential oil of L. xenica inhibited the growth of Bacillus cereus and Proteus mirabilis and both bacteria were inhibited by (E)-caryophyllene, the major component of the oil. Enterococcus faecalis, Staphylococcus epidermidis and S. aureus showed a lower inhibition. The bacteria Micrococcus luteus, Klebsiella sp., Escherichia coli and the yeast Candida albicans were insensitive to both the oil and (E)-caryophyllene.

  3. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  4. Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species

    PubMed Central

    Pinheiro, Marcelo de Almeida; Magalhães, Rafael Matos; Torres, Danielle Mesquita; Cavalcante, Rodrigo Cardoso; Mota, Francisca Sheila Xavier; Oliveira Coelho, Emanuela Maria Araújo; Moreira, Henrique Pires; Lima, Glauber Cruz; Araújo, Pamella Cristina da Costa; Cardoso, José Henrique Leal; de Souza, Andrelina Noronha Coelho; Diniz, Lúcio Ricardo Leite

    2015-01-01

    Background: Alpha-pinene (α-pinene) is a monoterpene commonly found in essential oils with gastroprotective activity obtained from diverse medicinal plants, including Hyptis species. The genus Hyptis (lamiaceae) consists of almost 400 species widespread in tropical and temperate regions of America. In the north and northeastern Brazil, some Hyptis species are used in traditional medicine to treat gastrointestinal disturbances. Objective: The present study has investigated the gastoprotective effect of purified α-pinene in experimental gastric ulcer induced by ethanol and indomethacin in mice. Materials and Methods: Gastric ulcers were induced in male Swiss mice (20-30 g) by oral administration of absolute ethanol or indomethacin 45 min after oral pretreatment with vehicle, standard control drugs or α-pinene (10, 30, and 100 mg/kg). One hour after the ulcerative challenges, the stomach were removed, and gastric lesions areas measured. The effects of α-pinene on the gastric juice acidity were determined by pylorus ligation model. The gastrointestinal motility and mucus depletion were determined by measuring the gastric levels of phenol red and alcian blue, respectively. Hematoxylin and eosin stained sections of gastric mucosa of the experimental groups were used for histology analysis. Results: α-pinene pretreatment inhibited ethanol-induced gastric lesions, reduced volume and acidity of the gastric juice and increased gastric wall mucus (P < 0.05). Furthermore, we showed an interesting correlation between concentration of α-pinene and gastroprotective effect of Hyptis species (P Pearson = 0.98). Conclusion: Our data showed that the α-pinene exhibited significant antiulcerogenic activity and a great correlation between concentration of α-pinene and gastroprotective effect of Hyptis species was also observed. PMID:25709221

  5. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties

    PubMed Central

    Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin

    2017-01-01

    Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737

  6. Pilot-scale production of conjugated linoleic acid-rich soy oil by photoirradiation.

    PubMed

    Jain, V P; Proctor, A; Lall, R

    2008-05-01

    Conjugated linoleic acid (CLA) is found naturally in dairy and beef products at levels of 0.2% to 2% of the total fat. A more concentrated source of dietary CLA, low in saturated fat, would be highly desirable to obtain optimum CLA levels of about 3 g/d. We recently reported photoisomerization of soy oil with iodine catalysis to be a simple way of producing CLA in laboratory without high-energy input or expensive enzymes and microorganisms. However, a long irradiation time of 144 h has been a limitation for this technique to be of practical value. The objectives of this study were to build a pilot plant unit to rapidly produce high-CLA soy oil by photoirradiation and optimize the processing parameters to obtain high-CLA soy oil. Degassed oil with dissolved-iodine catalyst was irradiated by UV lamps in an illuminated laminar flow unit (ILFU). The ILFU consists of 2 borosilicate glass plates in a silicone lined stainless steel frame. The static mode of operation yielded 5.7% of total CLA isomers and performed twice as well than the continuous mode with 2.5% of total CLA. Irradiating oil in a static mode with reflective surfaces increased the CLA yields 3-fold to 16.4%. About 22% of total CLA isomers can be rapidly produced from soy oil linoleic acid with 0.35% iodine catalyst in a 0.5-cm-thick oil layer maintained at 48 degrees C for 12 h. The peroxide value and GC-MS analysis did not identify any volatile compounds characteristic of lipid oxidation. This study is a definitive step toward the commercialization of large-scale production of CLA-rich soy oil.

  7. Characteristics of rapeseed oil cake using nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Sokołowska, Z.; Bowanko, G.; Boguta, P.; Tys, J.; Skiba, K.

    2013-09-01

    Adsorption of nitrogen on the rapeseed oil cake and rapeseed oil cake with wheat meal extrudates was investigated. The results are presented as adsorption-desorption isotherms. The Brunauer-Emmet and Teller equation was used to analyse the experimental sorption data. To obtain estimates of the surface area and surface fractal dimension, the sorption isotherms were analyzed using the Brunauer-Emmet and Teller and Frenkel-Halsey-Hill equations. Mesopore analysis was carried out using the Dollimore and Heal method. The properties and surface characteristic of rapeseed oil cake extrudates are related to different basic properties of particular samples and duration of the extrusion process. Extrusion conditions lead to essential differences in particular products. For all kinds of rapeseed oil cakes the amount of adsorbed nitrogen was different, but for the rapeseed oil cake extrudates a large amount of adsorbed nitrogenwas observed. The average surface area of the rapeseed oil cake extrudates was about 6.5-7.0 m2 g-1, whereas it was equal to about 4.0-6.0 m2 g-1 for rapeseed oil cake with the wheat meal extrudates. In the case of non-extruded rapeseed oil cake and wheat meal, the dominant group included ca. 2 and 5 nmpores. The values of surface fractal dimension suggested that the surface of the extrudates was more homogenous than that of the raw material. Duration of the extrusion process to 80 s resulted in a decrease in the specific surface area, surface fractal dimension, and porosity of the extrudates.

  8. Chemical composition and antimicrobial evaluation of the essential oils of Bocageopsis pleiosperma Maas.

    PubMed

    Soares, Elzalina R; da Silva, Felipe M A; de Almeida, Richardson A; de Lima, Bruna R; Koolen, Hector H F; Lourenço, Caroline C; Salvador, Marcos J; Flach, Adriana; da Costa, Luiz Antonio M A; de Souza, Antonia Q L; Pinheiro, Maria L B; de Souza, Afonso D L

    2015-01-01

    Essential oils from the leaves, twigs and barks of Bocageopsis pleiosperma Maas were obtained by using hydrodistillation and analysed by using gas chromatography coupled to mass spectrometry. Several compounds (51) were detected and identified, being β-bisabolene the main component in all aerial parts of the plant, with higher concentration in the leaves (55.77%), followed by barks (38.53%) and twigs (34.37%). In order to increase the biological knowledge about the essential oil of Bocageopsis species, antimicrobial activities were evaluated against the microorganisms Escherichia coli, Staphylococcus epidermidis, Enterobacter aerogenes, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida albicans. The essential oil obtained from the barks exhibited a moderate effect against S. epidermidis ATCC 1228 (MIC = 250 μg/mL), while the other oils did not exhibit antimicrobial activity. These results represent the first report about the chemical composition of B. pleiosperma and the first antimicrobial evaluation with a Bocageopsis species.

  9. 26 CFR 1.43-2 - Qualified enhanced oil recovery project.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... not obtained, to obtain a chemical or physical reaction (other than pressure) between the oil and the... following requirements— (1) The project involves the application (in accordance with sound engineering... engineering principles and whether the change in method will result in more than an insignificant increase in...

  10. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  11. Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion

    NASA Astrophysics Data System (ADS)

    Aisyah, Y.; Irwanda, L. P.; Haryani, S.; Safriani, N.

    2018-05-01

    This study aimed to formulate corn starch-based edible films by varying concentrations of nutmeg oil nanoemulsion and glycerol. Furthermore, the resulted edible film was characterized by its mechanical properties and antibacterial activity. The edible films were made using corn starch, nutmeg oil nanoemulsion, and glycerol. Concentrations of nutmeg oil nanoemulsion were 1%, 2%, and 3%, and glycerol were 10%, 20%, and 30%. Results indicated that the increase of nutmeg oil nanoemulsion concentration could increase the film thickness. However, the nutmeg oil had no effect on the film tensile strength and elongation. Glycerol had no effect on the film tensile strength. The best treatment of the corn starch-based film was obtained by adding 1% of nutmeg oil and 30% of glycerol, yielding a tensile strength of 18.73 Kgf/mm2, elongation of 69.44% and thickness of 0.0840. The addition of 1% nutmeg oil nanoemulsion has been able to inhibit the growth of two types of the bacteria tested (Staphylococcus aureus and Escherichia coli).

  12. Characterization of microbial communities in heavy crude oil from Saudi Arabia.

    PubMed

    Albokari, Majed; Mashhour, Ibrahim; Alshehri, Mohammed; Boothman, Chris; Al-Enezi, Mousa

    The complete mineralization of crude oil into carbon dioxide, water, inorganic compounds and cellular constituents can be carried out as part of a bioremediation strategy. This involves the transformation of complex organic contaminants into simpler organic compounds by microbial communities, mainly bacteria. A crude oil sample and an oil sludge sample were obtained from Saudi ARAMCO Oil Company and investigated to identify the microbial communities present using PCR-based culture-independent techniques. In total, analysis of 177 clones yielded 30 distinct bacterial sequences. Clone library analysis of the oil sample was found to contain Bacillus , Clostridia and Gammaproteobacteria species while the sludge sample revealed the presence of members of the Alphaproteobacteria , Betaproteobacteria , Gammaproteobacteria , Clostridia , Spingobacteria and Flavobacteria . The dominant bacterial class identified in oil and sludge samples was found to be Bacilli and Flavobacteria , respectively. Phylogenetic analysis showed that the dominant bacterium in the oil sample has the closest sequence identity to Enterococcus aquimarinus and the dominant bacterium in the sludge sample is most closely related to the uncultured Bacteroidetes bacterium designated AH.KK.

  13. Studies on the lipophilicity of vehicles (or co-vehicles) and botanical oils used in cosmetic products.

    PubMed

    Mbah, C J

    2007-05-01

    The lipophilic character of five vehicles (or co-vehicles): diethylhexylmaleate, dimethicone, light mineral oil, octyldodecanol and oleyl alcohol and eight botanical oils: Aloe vera oil, coconut oil, extra virgin olive oil, grape leaf oil, grape seed oil, hazelnut oil, jojoba oil and safflower oil was determined by partitioning esters of p-hydroxybenzoic acid (parabens) between them and phosphate buffer (pH 7.4). The results were compared to those obtained with 1-octanol. The most lipophilic effects were observed with octyldodecanol and oleyl alcohol for the vehicles (or co-vehicles), coconut oil, jojoba oil and safflower oil for botanical oils. Light mineral oil showed the least lipophilic effect. With butylparaben, it was observed that oleyl alcohol, octyldodecanol, coconut oil and jojoba oil were 0.94, 0.91, 0.74 and 0.68 times as lipophilic as 1-octanol respectively. The study indicates that octyldodecanol and oleyl alcohol could be good substitutes for 1-octanol in partition coefficient determination. The estimated permeability coefficients of the parabens suggest that octyldodecanol, oleyl alcohol, coconut oil and jojoba oil could be potential dermal permeation enhancers.

  14. Geothermal studies in oil field districts of North China

    NASA Astrophysics Data System (ADS)

    Wang, Ji-An; Wang, Ji-Yang; Yan, Shu-Zhen; Lu, Xiu-Wen

    In North China, Tertiary sediments give the main oil-genetic series. The mean value of terrestrial heat flow density has been considered to be 60 - 65 mW/m2, and the geothermal gradient in Tertiary sediments usually ranges from 30 to 40° C/km in the region studied. Supposing that the onset of oil generation lies at about 90° C, the upper limit of the depth of oil-generation is at about 2000 to 2500 m depth. Recent paleogeothermal studies using vitrinite reflectance, clay and authigenic minerals, as well as other methods showed that in Eocene the geothermal gradient has been higher than at present. Some results were obtained and discussed.

  15. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth

    PubMed Central

    Ballester-Costa, Carmen; Viuda-Martos, Manuel

    2017-01-01

    In the organic food industry, no chemical additives can be used to prevent microbial spoilage. As a consequence, the essential oils (EOs) obtained from organic aromatic herbs and spices are gaining interest for their potential as preservatives. The organic Thymus zygis, Thymus mastichina, Thymus capitatus and Thymus vulgaris EOs, which are common in Spain and widely used in the meat industry, could be used as antibacterial agents in food preservation. The aims of this study were to determine (i) the antibacterial activity using, as culture medium, extracts from meat homogenates (minced beef, cooked ham or dry-cured sausage); and (ii) the antioxidant properties of organic EOs obtained from T. zygis, T. mastichina, T. capitatus and T. vulgaris. The antioxidant activity was determined using different methodologies, such as Ferrous ion-chelating ability assay, Ferric reducing antioxidant power, ABTS radical cation (ABTS•+) scavenging activity assay and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method; while the antibacterial activity was determined against 10 bacteria using the agar diffusion method in different meat model media. All EOs analyzed, at all concentrations, showed antioxidant activity. T. capitatus and T. zygis EOs were the most active. The IC50 values, for DPPH, ABTS and FIC assays were 0.60, 1.41 and 4.44 mg/mL, respectively, for T. capitatus whilst for T. zygis were 0.90, 2.07 and 4.95 mg/mL, respectively. Regarding antibacterial activity, T. zygis and T. capitatus EOs, in all culture media, had the highest inhibition halos against all tested bacteria. In general terms, the antibacterial activity of all EOs assayed was higher in the medium made with minced beef than with the medium elaborated with cooked ham or dry-cured sausage. PMID:28788051

  16. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth.

    PubMed

    Ballester-Costa, Carmen; Sendra, Esther; Fernández-López, Juana; Pérez-Álvarez, Jose A; Viuda-Martos, Manuel

    2017-07-28

    In the organic food industry, no chemical additives can be used to prevent microbial spoilage. As a consequence, the essential oils (EOs) obtained from organic aromatic herbs and spices are gaining interest for their potential as preservatives. The organic Thymus zygis , Thymus mastichina , Thymus capitatus and Thymus vulgaris EOs, which are common in Spain and widely used in the meat industry, could be used as antibacterial agents in food preservation. The aims of this study were to determine (i) the antibacterial activity using, as culture medium, extracts from meat homogenates (minced beef, cooked ham or dry-cured sausage); and (ii) the antioxidant properties of organic EOs obtained from T. zygis , T. mastichina , T. capitatus and T. vulgaris . The antioxidant activity was determined using different methodologies, such as Ferrous ion-chelating ability assay, Ferric reducing antioxidant power, ABTS radical cation (ABTS • +) scavenging activity assay and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method; while the antibacterial activity was determined against 10 bacteria using the agar diffusion method in different meat model media. All EOs analyzed, at all concentrations, showed antioxidant activity. T. capitatus and T. zygis EOs were the most active. The IC 50 values, for DPPH, ABTS and FIC assays were 0.60, 1.41 and 4.44 mg/mL, respectively, for T. capitatus whilst for T. zygis were 0.90, 2.07 and 4.95 mg/mL, respectively. Regarding antibacterial activity, T. zygis and T. capitatus EOs, in all culture media, had the highest inhibition halos against all tested bacteria. In general terms, the antibacterial activity of all EOs assayed was higher in the medium made with minced beef than with the medium elaborated with cooked ham or dry-cured sausage.

  17. Anti-wear additive content in fully synthetic PAO and PAG base oils and its effect on electrostatic and tribological phenomena in a rotating shaft-oil-lip seal system

    NASA Astrophysics Data System (ADS)

    Gajewski, Juliusz B.; Głogowski, Marek J.

    2013-03-01

    The paper presents the results of experiments on electrostatic and tribological aspects of different anti-wear additive's contents when an additive is blended with different fully synthetic (poly-α-olefin) and PAG (polyalkylene glycol) base oils in a rotating shaft-oil and oil-lip seal interfacial system. The experimental results are the relationships of electric potential induced in a lip seal's stiffening ring to angular velocity of a rotating metal shaft and to temperature of the oils tested. The braking torque of a shaft is measured with a torquemeter sensor connected directly with a microprocessor-based system for controlling the rotational speed and for measuring the shaft's braking torque and oil temperature. The beneficial and promising results are obtained for PAG when an external DC electric field is applied to the system and the braking torque is then reduced for a certain combination of the base oil and additive's contents. On the basis of the former and present research results an analysis is made to permit one to show how the type of the oils and additives tested can affect both interfaces: rotating shaft-oil and oil-lip of the lip seal and especially the braking torque.

  18. Characterization of potent anticholinesterase plant oil based microemulsion.

    PubMed

    Chaiyana, Wantida; Saeio, Kiattisak; Hennink, Wim E; Okonogi, Siriporn

    2010-11-30

    In the present study, essential oils of three edible Thai plants, Cymbopogon citratus (Gramineae), Citrus hystrix (Rutaceae) and Zingiber cassumunar (Zingiberaceae) were comparatively tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities using Ellman's colorimetric method. C. citratus oil exhibited the highest activity with IC(50) values of 0.34±0.07μl/ml and 2.14±0.18μl/ml against BChE and AChE activity, respectively. It was further investigated whether microemulsions of this oil could be obtained. The effects of type of surfactant and co-surfactant as well as pH and ionic strength on the phase behavior of the oil/water system were investigated. Brij 97, Triton X-114, Tween 20 and Tween 85 were employed as surfactant whereas ethanol and hexanol were used as cosurfactants. The size analysis, electrical conductivity measurements and cholinesterase inhibition assays were done in selected microemulsion. The results revealed that the type and concentration of surfactant and co-surfactant exhibited a distinct influence on the C. citratus oil microemulsions. Moreover, the inhibitory activities of the microemulsion formulation were remarkable. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Quality characteristics of Bali sardinella (Sardinella lemuru) oil purified with bentonite as an adsorbent

    NASA Astrophysics Data System (ADS)

    Nadhiro, U.; Subekti, S.; Tjahjaningsih, W.; Patmawati

    2018-04-01

    Crude fish oil extracted from fish canning industry a low quality, therefore refining process is required to obtain feasible fish oil for food purposes. Purification of fish oil can through steps of degumming, neutralization, and bleaching by using bentonite as the adsorbent. This study aims to analyze the results of the purification process of crude fish oil by-product of canning industry of lemuru fish by using bentonite adsorbent with different concentrations. The method used was an experimental method by descriptive data analysis. The results showed that the highest yield (33.418 %) obtained from oil purification of lemuru with bentonite concentration of 6 % are classified as follows: free fatty acid content of 0.265 %, peroxide value of 6.343 mEq / kg, produce clarity 60.275 % T, 88.075 % T, 87.5 % T, 87.425 % T, 87.975 % T at a wavelength (λ) of 450 nm, 550 nm, 620 nm, 665 nm, 700 nm, para-anisidine value of 3.725 mEq / kg; and value of oxidation total of 16.41 meq / kg.

  20. Composition and antimicrobial activity of Marrubium incanum Desr. (Lamiaceae) essential oil.

    PubMed

    Petrović, Silvana; Pavlović, Milica; Maksimović, Zoran; Milenković, Marina; Couladis, Maria; Tzakouc, Olga; Niketić, Marjan

    2009-03-01

    The essential oil from the aerial parts of Marrubium incanum Desr. (Lamiaceae), obtained by hydrodistillation, was analyzed by GC and GC-MS. Forty-six compounds were identified, representing 96.3% of the total oil. The main components of the oil were (E)-caryophyllene (27.0%), germacrene D (26.2%) and bicyclogermacrene (11.5%). The microbial growth inhibitory properties of the isolated essential oil were determined using the agar diffusion and broth microdilution method against seven bacterial species (Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 12228, Micrococcus flavus ATCC 10240, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae NCIMB 9111, and Pseudomonas aeruginosa ATCC 27853), and two strains of the yeast Candida albicans (ATCC 10259 and ATCC24433). The essential oil showed activity against all the microorganisms tested, but differences in microbial susceptibility were registered.

  1. Method and apparatus for converting and removing organosulfur and other oxidizable compounds from distillate fuels, and compositions obtained thereby

    DOEpatents

    D'Alessandro, Robert N.; Tarabocchia, John; Jones, Jerald Andrew; Bonde, Steven E.; Leininger, Stefan

    2010-10-26

    The present disclosure is directed to a multi-stage system and a process utilizing said system with the design of reducing the sulfur-content in a liquid comprising hydrocarbons and organosulfur compounds. The process comprising at least one of the following states: (1) an oxidation stage; (2) an extraction state; (3) a raffinate washing stage; (4) a raffinate polishing stage; (5) a solvent recovery stage; (6) a solvent purification stage; and (7) a hydrocarbon recovery stage. The process for removing sulfur-containing hydrocarbons from gas oil, which comprises oxidizing gas oil comprising hydrocarbons and organosulfur compounds to obtain a product gas oil.

  2. Use of oil-in-water emulsions to control fungal deterioration of strawberry jams.

    PubMed

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, José M

    2016-11-15

    This work aimed to control the fungal deterioration of strawberry jams. The antifungal activity of the clove, cinnamon leaf, lemon and mandarin essential oils and their effectiveness in oil-in-water emulsions were evaluated. According to the results obtained, only clove and cinnamon leaf oils were selected to prepare emulsions. All the tested emulsions were stable, independently the amount of polymer and essential oil used. Essential oil loss was affected by the amount of polymer employed to prepare the emulsions. The oil-in-water emulsions with 5.0mg/g xanthan gum, and with 0.55mg/g clove or 0.65mg/g cinnamon leaf essential oil, were used for the in vivo tests. The jams prepared with the oil-in-water emulsions showed a lower fungal decay compared with jams without emulsion. The present work demonstrated that emulsions can be employed to prevent strawberry jam mould spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  4. Destabilization and Treatment of Emulsified Oils in Wastewaters by Electrocoagulation.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2016-11-01

      In this study, the optimum operating conditions for the treatment of emulsified oils by electrocoagulation were determined depending on droplet stability analysis. Zeta potential measurements were used as the indication of oil droplet charges. In addition, the effects of pH and ionic conductivity on the droplet sizes and surface charges were investigated. The studied emulsified oil droplet sizes were more sensitive to changes in pH rather than salt concentration. The droplets became larger and unstable in alkaline conditions. As the initial pH of wastewaters increased, the oil removal efficiency increased during the electrocoagulation experiments as well. The use of iron or aluminum electrodes resulted in higher removal efficiencies in comparison to stainless steel electrodes. In addition, the energy consumption for aluminum electrodes was much lower than iron electrodes. To obtain 98% oil removal efficiency, distance between the electrodes was recommended to be less than or equal to 1 cm.

  5. Inhibition of protein glycation by essential oils of branchlets and fruits of Juniperus communis subsp. hemisphaerica

    PubMed Central

    Asgary, S.; Naderi, G.A.; Shams Ardekani, M.R.; Sahebkar, A.; Airin, A.; Aslani, S.; Kasher, T.; Emami, S.A.

    2014-01-01

    Oxidative stress and protein glycation play pivotal roles in the pathophysiology of diabetes mellitus and its vascular complications. The present study aimed to investigate the anti-glycation properties of essential oils obtained from different parts of Juniperus communis subsp. hemisphaerica. The branchlets of male tree (BMT) and branchlets of female (BFT) tree, and fruits of J. communis subsp. hemisphaerica were extracted using steam distillation method. The oils were phytochemically analyzed using gas chromatography-mass spectrometry. Anti-glycation properties were evaluated using hemoglobin and insulin glycation assays. Overall, 18 volatile components were identified in the J. communis subsp. hemisphaerica oils, amounting to 82.1%, 100.0% and 96.4% of the BMT, BFT and fruit oils, respectively. Promising inhibitory activity was observed from all concentrations of the tested oils in the hemoglobin and insulin glycation assays. The inhibitory activities peaked to 89.9% (BFT oil; 200 μg mL-1) and 81.0% (BFT oil; 600 μg mL-1) in the hemoglobin and insulin glycation assays, respectively. The evidence from this study suggests that essential oils obtained from the fruits and branchlets of J. communis subsp. hemisphaerica possess anti-glycation properties. These activities may find implication for the prevention and treatment of diabetic complications. PMID:25657787

  6. Inhibition of protein glycation by essential oils of branchlets and fruits of Juniperus communis subsp. hemisphaerica.

    PubMed

    Asgary, S; Naderi, G A; Shams Ardekani, M R; Sahebkar, A; Airin, A; Aslani, S; Kasher, T; Emami, S A

    2014-01-01

    Oxidative stress and protein glycation play pivotal roles in the pathophysiology of diabetes mellitus and its vascular complications. The present study aimed to investigate the anti-glycation properties of essential oils obtained from different parts of Juniperus communis subsp. hemisphaerica. The branchlets of male tree (BMT) and branchlets of female (BFT) tree, and fruits of J. communis subsp. hemisphaerica were extracted using steam distillation method. The oils were phytochemically analyzed using gas chromatography-mass spectrometry. Anti-glycation properties were evaluated using hemoglobin and insulin glycation assays. Overall, 18 volatile components were identified in the J. communis subsp. hemisphaerica oils, amounting to 82.1%, 100.0% and 96.4% of the BMT, BFT and fruit oils, respectively. Promising inhibitory activity was observed from all concentrations of the tested oils in the hemoglobin and insulin glycation assays. The inhibitory activities peaked to 89.9% (BFT oil; 200 μg mL(-1)) and 81.0% (BFT oil; 600 μg mL(-1)) in the hemoglobin and insulin glycation assays, respectively. The evidence from this study suggests that essential oils obtained from the fruits and branchlets of J. communis subsp. hemisphaerica possess anti-glycation properties. These activities may find implication for the prevention and treatment of diabetic complications.

  7. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening.

    PubMed

    Cordella, Mauro; Torri, Cristian; Adamiano, Alessio; Fabbri, Daniele; Barontini, Federica; Cozzani, Valerio

    2012-09-15

    Bio-oils were produced from bench-scale slow-pyrolysis of three different biomass samples (corn stalks, poplar and switchgrass). Experimental protocols were developed and applied in order to screen their chemical composition. Several hazardous compounds were detected in the bio-oil samples analysed, including phenols, furans and polycyclic aromatic hydrocarbons. A procedure was outlined and applied to the assessment of toxicological and carcinogenic hazards of the bio-oils. The following hazardous properties were considered: acute toxicity; ecotoxicity; chronic toxicity; carcinogenicity. Parameters related to these properties were quantified for each component identified in the bio-oils and overall values were estimated for the bio-oils. The hazard screening carried out for the three bio-oils considered suggested that: (i) hazards to human health could be associated with chronic exposures to the bio-oils; (ii) acute toxic effects on humans and eco-toxic effects on aquatic ecosystems could also be possible in the case of loss of containment; and (iii) bio-oils may present a marginal potential carcinogenicity. The approach outlined allows the collection of screening information on the potential hazards posed by the bio-oils. This can be particularly useful when limited time and analytical resources reduce the possibility to obtain detailed specific experimental data. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.

    PubMed

    Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian

    2016-10-01

    In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    PubMed

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  10. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage

    PubMed Central

    Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro

    2012-01-01

    Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage. PMID:23762760

  11. Newcastle disease oil emulsion vaccines prepared with animal, vegetable, and synthetic oils.

    PubMed

    Stone, H D

    1997-01-01

    Animal, vegetable, and synthetic oils were tested as potential replacements for mineral oil in Newcastle disease oil emulsion vaccines. Emulsifying surfactants of seed oil origin comprised 10% of the the oil phase that was used to prepare water-in-oil emulsion vaccines that contained a final concentration of 20% aqueous antigen. The hemagglutination inhibition responses of chickens inoculated with 46 of the newly