Science.gov

Sample records for copan isotopic evidence

  1. Evidence disputing deforestation as the cause for the collapse of the ancient Maya polity of Copan, Honduras

    PubMed Central

    McNeil, Cameron L.; Burney, David A.; Burney, Lida Pigott

    2009-01-01

    Archaeologists have proposed diverse hypotheses to explain the collapse of the southern Maya lowland cities between the 8th and 10th centuries A.D. Although it generally is believed that no single factor was responsible, a commonly accepted cause is environmental degradation as a product of large-scale deforestation. To date, the most compelling scientific evidence used to support this hypothesis comes from the archaeological site of Copan, Honduras, where the analysis of a sediment core suggested a dramatic increase in forest clearance in the Late Classic period (A.D. 600–900). By contrast, in the work presented here, the authors’ analysis of a longer sediment core demonstrates that forest cover increased from A.D. 400 to A.D. 900, with arboreal pollen accounting for 59.8–71.0% of the pollen assemblage by approximately A.D. 780–980. The highest levels of deforestation are found about 900 B.C. when, at its peak, herb pollen made up 89.8% of the assemblage. A second, although less pronounced, period of elevated deforestation peaked at approximately A.D. 400 when herb pollen reached 65.3% of the assemblage. The first deforestation event likely coincided with the widespread adoption of agriculture, a pattern found elsewhere in Mesoamerica. The second period of forest clearance probably was associated with the incursion of Maya speakers into the Copan Valley and their subsequent construction of the earliest levels of the Copan Acropolis. These results refute the former hypothesis that the ancient Maya responded to their increasingly large urban population by exhausting, rather than conserving, natural resources. PMID:20018691

  2. Appendix C: The sources of Copan Valley obsidian

    SciTech Connect

    Harbottle, G.; Neff, H.; Bishop, R.L.

    1995-05-01

    One hundred thirty-nine obsidian samples from the Copan Valley were subjected to neutron activation analysis at Brookhaven National Laboratory (BNL). Obsidian sources from Mesoamerica have been characterized by a number of different laboratories using several techniques. Over 1,800 samples from Mesoamerica have been analyzed by neutron activation at BNL. These data are now housed both at BNL and in the Smithsonian Archaeometric Research Collections and Records (SARCAR) data base. Previous statistical analysis of the Mesoamerican obsidian artifacts and source samples has produced reference groups representing many of the sources, including Ixtepeque, San Martin Jilotepeque, and El Chayal, the three sources closest to the Copan Valley and therefore most likely to be represented in the analyzed sample. As anticipated, the overwhelming majority of obsidian recovered in the Copan Valley comes from the closest source, Ixtepeque. Of the seven El Chayal specimens, four pertain to CV-43 and three pertain to CV-20. These data provide no evidence of a difference between the two localities in external obsidian exchange relations. Thus, the authors find no grounds for questioning the assumption that the minor quantities of El Chayal obsidian that reached the Copan Valley were distributed through the same channels responsible for distribution of the more common Ixtepeque obsidian.

  3. Geology of Platanares geothermal area, Copan, Honduras

    SciTech Connect

    Heiken, G.; Duffield, W.; Wohletz, K.; Priest, S.; Ramos, N.; Flores, W.; Eppler, D.; Ritchie, A.; Escobar, C.

    1987-05-01

    The Platanares, Copan (Honduras) geothermal area is located in a highly faulted terrain of Paleozoic(.) metamorphic rocks, Cretaceous clastic sedimentary rocks, and Tertiary volcanic rocks. All thermal manifestations are located along faults. The volcanic rocks are probably too old to represent the surface expression of an active crustal magma body. Thus, the thermal water is interpreted to be heated during deep circulation in a regime of elevated heat flow. The water chemistry suggests that the geothermal reservoir originates within the Cretaceous sedimentary sequence and that the reservoir temperature may be as high as 240/sup 0/ C. Two exploration coreholes penetrated the volcanic sequence and bottomed within Cretaceous redbeds. Well PLTG-1 is 650 m deep and flows at 3 Mw thermal from a 160/sup 0/ C permeable zone. Well PLTG-2 is 401 m deep and has a thermal gradient of 139/sup 0/ C/km. Exploration drilling is continuing, with a third corehole to be drilled in May, 1987.

  4. Easter microplate evolution: Pb isotope evidence

    NASA Astrophysics Data System (ADS)

    Hanan, Barry B.; Schilling, Jean-Guy

    1989-06-01

    of the plum pudding model across fracture zones, where smaller degrees of melting might have prevailed and preferential melting of the LILE-rich veins or plums may take place, were found to be inconclusive. In contrast, the overall variation in Pb isotopes, (La/Sm)N, and tectonic and kinematic evolution of the EPR, strongly support that the hotspot source-migrating ridge model may indeed be applicable to the region. Independent evidence suggests that the tectonic and geochemical anomaly associated with the Easter microplate is the result of the influence of a lateral mantle plume flow at shallow depth in the upper-mantle, connecting the Sala y Gomez plume with the westward migrating EPR. A small discontinuity in Pb isotope variation associated with the 25°S propagating East Rift, as also found across the 95.5°W propagator on the Galapagos Spreading Center, further supports the concept that the flux of the plume may pulsate; that is, the plume is discontinuous and probably rises in the form of a chain of blobs. The repeated tectonic disturbances and propagation of new rifts which characterize the evolution of the Easter microplate may coincide and be caused by the appearance of such blobs in the upper most mantle, as we have previously suggested for the Galapagos. There is a remarkable similarity in the geochemical, petrological, and tectonic configuration of the Easter microplate-Sala y Gomez hotspot system with that of the Galapagos, which suggests that very similar processes are at work in the two regions.

  5. Geology of the platanares geothermal area, Departamento de Copan, Honduras

    USGS Publications Warehouse

    Heiken, G.; Ramos, N.; Duffield, W.; Musgrave, J.; Wohletz, K.; Priest, S.; Aldrich, J.; Flores, W.; Ritchie, A.; Goff, F.; Eppler, D.; Escobar, C.

    1991-01-01

    Platanares is located 16 km west of Santa Rosa de Copan, Honduras, along the Quebrada del Agua Caliente. The thermal manifestations are along faults in tuffs, tuffaceous sedimentary rocks, and lavas of the Padre Miguel Group. These tuffs are silicified near the faults, are fractured, and may provide the fracture permeability necessary for the hydrothermal system. Tuffs are overlain by a wedge of terrace gravels up to 60 m thick. Quaternary conglomerates of the Quebrada del Agua Caliente are cemented by silica sinter. The Platanares area contains numerous faults, all of which appear to be extensional. There are four groups of faults (N80/sup 0/E to N70/sup 0/W, N30/sup 0/ to 60/sup 0/W, N40/sup 0/ to 65/sup 0/E, and N00/sup 0/ to 05/sup 0/W). All hot springs at this site are located along faults that trend mostly northwest and north. Twenty-eight spring groups were described over an area of 0.2 km/sup 2/; half were boiling. Based on surface temperatures and flow rates, between 0.7 and 1.0 MW thermal energy is estimated for the area. The increased temperature of the stream flowing through the thermal area indicates that several megawatts of thermal energy are being added to the stream. We recommend that a dipole-dipole resistivity line be run along the Quebrada del Agua Caliente to identify zones of fracture permeability associated with buried faults and hot water reservoirs within those fault zones. A thermal gradient corehole should be drilled at Platanares to test temperatures, lithologies, and permeability of the hydrothermal system.

  6. Stable Isotope Evidence for Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Shahar, A.; Mao, W. L.; Schauble, E. A.; Caracas, R.; Reagan, M. M.; Gleason, A. E.

    2015-12-01

    Planetary differentiation occurred at high temperature and varying oxygen fugacity, on bodies with varying compositions and internal pressures. The specific conditions at which bodies differentiated and the chemical fingerprints left by differentiation can be investigated by measuring stable isotope ratios in natural samples. Much can be learned by combining those data with experiments that systematically investigate the chemical and physical conditions within differentiating bodies. In this talk we focus on one variable in particular that has not been well defined with respect to stable isotope fractionation: pressure. We will present new iron isotope data on how pressure affects isotope fractionation factors for a number of iron compounds relative to silicate. The processes governing iron isotope fractionation in igneous rocks have been debated extensively over the past decade. Analyses of natural samples show that iron isotopes are fractionated at both the whole rock and mineral scales. This fractionation has been interpreted to be a result of several processes including a possible signature of high pressure core formation. We have collected new high pressure synchrotron nuclear resonant inelastic x-ray scattering data from Sector 16-ID-D at the Advanced Photon Source on 57Fe enriched Fe, FeO, FeHx and Fe3C. Our data show clear trends with pressure implying that not only does pressure have an effect on the iron isotope beta factors but also a fractionation amongst the alloys. This suggests that depending on the light element in the core, there will be a different resulting signature in the iron isotope record. We will discuss the likelihood of different light elements in the core based on these results, as well as the theoretical predictions for the same phases. Finally, we will present the fractionation expected between metal and silicate at high pressure and high temperature in order to determine if core formation would indeed leave an isotopic signature in

  7. Isotopic evidence of early hominin diets

    PubMed Central

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Manthi, Fredrick Kyalo; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-01-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  8. Isotopic evidence of early hominin diets

    NASA Astrophysics Data System (ADS)

    Sponheimer, Matt; Alemseged, Zeresenay; Cerling, Thure E.; Grine, Frederick E.; Kimbel, William H.; Leakey, Meave G.; Lee-Thorp, Julia A.; Kyalo Manthi, Fredrick; Reed, Kaye E.; Wood, Bernard A.; Wynn, Jonathan G.

    2013-06-01

    Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants.

  9. Recommendations report for the platanares geothermal site, Department of Copan, Honduras. Reporte de recomendaciones para el sitio geotermico de platanares, Departamento de Copan, Honduras

    SciTech Connect

    Not Available

    1988-11-01

    A geothermal assessment of six previously identified sites in Honduras has been conducted by a team comprised of staff from the Los Alamos National Laboratory, the US Geological Survey, and the Empresa Nacional de Energia Electrica. The application of both reconnaissance and detailed scale techniques lead to the selection of Platanares in the Department of Copan as the highest potential site. Additional work resulted in the completion of a prefeasibility study at Platanares. We present here a tabulation of the work completed and short summaries of the results from these technical studies. We also present a brief model of the geothermal system and recommendations for additional feasibility work. Both English and Spanish versions of this report are provided in the same document. 18 figs., 5 tabs.

  10. Zinc isotopic evidence for the origin of the Moon.

    PubMed

    Paniello, Randal C; Day, James M D; Moynier, Frédéric

    2012-10-18

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon. PMID:23075987

  11. Zinc isotopic evidence for the origin of the Moon.

    PubMed

    Paniello, Randal C; Day, James M D; Moynier, Frédéric

    2012-10-18

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

  12. Osmium isotope evidence for a large Late Triassic impact event.

    PubMed

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio ((187)Os/(188)Osi) of ~0.477 to unradiogenic values of ~0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous-Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3-7.8 km in diameter) produced a global decrease in seawater (187)Os/(188)Os ratios in the Late Triassic.

  13. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  14. Osmium isotope evidence for a large Late Triassic impact event.

    PubMed

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio ((187)Os/(188)Osi) of ~0.477 to unradiogenic values of ~0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous-Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3-7.8 km in diameter) produced a global decrease in seawater (187)Os/(188)Os ratios in the Late Triassic. PMID:24036603

  15. Zinc isotopic evidence for the origin of the Moon

    NASA Astrophysics Data System (ADS)

    Paniello, Randal C.; Day, James M. D.; Moynier, Frédéric

    2012-10-01

    Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks, but is hardly fractionated during terrestrial igneous processes, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

  16. Paleoclimate and Amerindians: Evidence from stable isotopes and atmospheric circulation

    USGS Publications Warehouse

    Lovvorn, M.B.; Frison, G.C.; Tieszen, L.L.

    2001-01-01

    Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ???11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills-mountains vs. plains biomes; and from 8,000-5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric "Altithermal" conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ???12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.

  17. Radiogenic isotope evidence for transatlantic atmospheric dust transport

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Abouchami, Wafa; Garrison, Virginia H.; Galer, Stephen J. G.; Andreae, Meinrat O.

    2013-04-01

    Early studies by Prospero and colleagues [1] have shown that African dust reaches all across the Atlantic and into the Caribbean. It may contribute to fertilizing the Amazon rainforest [2,3,4], in addition to enhancing the ocean biological productivity via delivery of iron, a key nutrient element[5]. Radiogenic isotope ratios (Sr, Nd, Pb) are robust tracers of dust sources and can thus provide information on provenance and pathways of dust transport. Here we report Sr, Nd and Pb isotope data on atmospheric aerosols, collected in 2008 on quartz filters, from three different locations in Mali (12.6° N, 8.0° W; 555 m a.s.l.), Tobago (11.3° N, 60.5° W; 329 m a.s.l.) and the U.S. Virgin Islands (17.7° N, 64.6° W; 27 m a.s.l.) to investigate the hypothesis of dust transport across the Atlantic. About 2 cm2 of filter were acid-leached in 0.5 N HBr for selective removal of the anthropogenic labile Pb component (leachate) and possibly the fine soluble particle fraction. The remainder of the filter was subsequently dissolved using a mixture of HF and HNO3 acids, and should be representative of the silicate fraction. Isotopic compositions were measured by TIMS on a ThermoFisher Triton at MPIC, with Pb isotope ratios determined using the triple-spike method. Significant Pb isotope differences between leachates and residues were observed. The variability in Pb isotopic composition among leachates may be attributed to variable and distinct anthropogenic local Pb sources from Africa and South America [6], however, residues are imprinted by filter blank contribution suggesting to avoid the quartz fiber filter for isotopic study of aerosols. The Nd and Sr isotope ratios of aerosol leachates show similar signatures at all three locations investigated. The nearly identical Nd and Sr isotopic compositions in the Mali, Tobago and Virgin islands leachates are comparable to those obtained on samples from the Bodélé depression, Northern Chad [7] and suggest a possible common

  18. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.

    PubMed

    Farquhar, James; Peters, Marc; Johnston, David T; Strauss, Harald; Masterson, Andrew; Wiechert, Uwe; Kaufman, Alan J

    2007-10-11

    The evolution of the Earth's atmosphere is marked by a transition from an early atmosphere with very low oxygen content to one with an oxygen content within a few per cent of the present atmospheric level. Placing time constraints on this transition is of interest because it identifies the time when oxidative weathering became efficient, when ocean chemistry was transformed by delivery of oxygen and sulphate, and when a large part of Earth's ecology changed from anaerobic to aerobic. The observation of non-mass-dependent sulphur isotope ratios in sedimentary rocks more than approximately 2.45 billion years (2.45 Gyr) old and the disappearance of this signal in younger sediments is taken as one of the strongest lines of evidence for the transition from an anoxic to an oxic atmosphere around 2.45 Gyr ago. Detailed examination of the sulphur isotope record before 2.45 Gyr ago also reveals early and late periods of large amplitude non-mass-dependent signals bracketing an intervening period when the signal was attenuated. Until recently, this record has been too sparse to allow interpretation, but collection of new data has prompted some workers to argue that the Mesoarchaean interval (3.2-2.8 Gyr ago) lacks a non-mass-dependent signal, and records the effects of earlier and possibly permanent oxygenation of the Earth's atmosphere. Here we focus on the Mesoarchaean interval, and demonstrate preservation of a non-mass-dependent signal that differs from that of preceding and following periods in the Archaean. Our findings point to the persistence of an anoxic early atmosphere, and identify variability within the isotope record that suggests changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet transparency of an evolving early atmosphere.

  19. Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1982-01-01

    Oxygen isotopic analysis of wollastonites from the Willsboro Mine, Adirondack Mountains, New York reveals a 400-ft wide zone of 18O depletion at anorthosite contacts. Values of ??18O vary more sharply with distance and are lower (to -1.3) than any yet reported for a granulite fades terrain. Exchange with circulating hot meteoric water best explains these results and implies that the anorthosite was emplaced at relatively shallow depths, <10 km, in marked contrast to the depth of granulite fades metamorphism (23 km). These 18O depletions offer the first strong evidence for shallow emplacement of anorthosite within the Grenville Province and suggest that regional metamorphism was a later and tectonically distinct event. ?? 1982 Nature Publishing Group.

  20. Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways.

    PubMed

    Albarède, Francis; Telouk, Philippe; Lamboux, Aline; Jaouen, Klervia; Balter, Vincent

    2011-09-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zinc shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes is isotopically light with respect to serum, whereas Cu is heavy. Iron and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  1. Helium isotope evidence for plume metasomatism of Siberian continental lithosphere

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Howarth, G. H.; Pernet-Fisher, J. F.; Day, J. M.; Taylor, L. A.

    2013-12-01

    activity), large degree partial-melts percolated through the SCLM towards crustal magma chambers. As a result, xenoliths from the younger Obnazhennaya pipe show strong petrological evidence for plume-related basaltic metasomatism, whereas older Udachnaya samples do not [4]. Thus, we interpret the marked He-isotope disparity between ';pre-plume' Udachnaya and ';post-plume' Obnazhennaya xenoliths to be the direct result of metasomatic refertilization associated with the emplacement of the SFB. The lower He concentrations in Obnazhennaya xenoliths may also point to extensive He-loss during the SFB, that may also be coupled with key volatiles that are outgassed into the atmosphere during flood basalt volcanism (e.g.,CO2). Our new results provide compelling evidence that mantle plume impingement can profoundly modify continental regions and that He isotopes are a very sensitive tracer of metasomatism. [1] Basu et al., 1995. Science, 822-825. [2] Day et al., 2012, AGU Abstract V53A-2796. [3] Pearson et al., 1995. GCA, 59, 959-977. [4] Howarth et al., 2013 Lithos, In review.

  2. Isotopic evidence for nitrogen mobility in peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost

    2014-05-01

    Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution

  3. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  4. Recharge in Volcanic Systems: Evidence from Isotope Profiles of Phenocrysts

    PubMed

    Davidson; Tepley

    1997-02-01

    Strontium isotope ratios measured from core to rim across plagioclase feldspar crystals can be used to monitor changes in the isotope composition of the magma from which they grew. In samples from three magma systems from convergent margin volcanoes, sudden changes in major element composition, petrographic features, and strontium isotope composition were found to correspond to discrete magmatic events, most likely repeated recharge of more mafic magma with lower ratios of strontium-87 to strontium-86 into a crustally contaminated magma. PMID:9012348

  5. Sulphur isotope evidence for an oxic Archaean atmosphere.

    PubMed

    Ohmoto, Hiroshi; Watanabe, Yumiko; Ikemi, Hiroaki; Poulson, Simon R; Taylor, Bruce E

    2006-08-24

    The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.

  6. Evidence of magnetic isotope effects during thermochemical sulfate reduction

    PubMed Central

    Oduro, Harry; Harms, Brian; Sintim, Herman O.; Kaufman, Alan J.; Cody, George; Farquhar, James

    2011-01-01

    Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for 33S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed 36S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant 36S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples. PMID:21997216

  7. MYCORRHIZAL VS. SAPROTROPHIC STATUS OF FUNGI: THE ISOTOPIC EVIDENCE

    EPA Science Inventory

    Relative abundance of carbon (C) and nitrogen (N) isotopes in fungal sporocarps may prove useful in unraveling fungal roles in ecosystems. Sporocarps of known mycorrhizal or saprotrophic genera were collected from a single site in Oregon and isotopically compared to foliage, litt...

  8. Meteorites and their parent bodies: Evidence from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.

    1978-01-01

    Isotopic abundance variations among meteorites are used to establish genetic associations between meteorite classes. Oxygen isotope distributions between group II E irons with H-group ordinary chondrites and enstatic meteorites indicate that the parent bodies were formed out of pre-solar material that was not fully mixed at the time condensation occurred within the solar nebula.

  9. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests

    PubMed Central

    Houlton, Benjamin Z.; Sigman, Daniel M.; Hedin, Lars O.

    2006-01-01

    The nitrogen isotopic composition (15N/14N) of forested ecosystems varies systematically worldwide. In tropical forests, which are elevated in 15N relative to temperate biomes, a decrease in ecosystem 15N/14N with increasing rainfall has been reported. This trend is seen in a set of well characterized Hawaiian rainforests, across which we have measured the 15N/14N of inputs and hydrologic losses. We report that the two most widely purported mechanisms, an isotopic shift in N inputs or isotopic discrimination by leaching, fail to explain this climate-dependent trend in 15N/14N. Rather, isotopic discrimination by microbial denitrification appears to be the major determinant of N isotopic variations across differences in rainfall. In the driest climates, the 15N/14N of total dissolved outputs is higher than that of inputs, which can only be explained by a 14N-rich gas loss. In contrast, in the wettest climates, denitrification completely consumes nitrate in local soil environments, thus preventing the expression of its isotope effect at the ecosystem scale. Under these conditions, the 15N/14N of bulk soils and stream outputs decrease to converge on the low 15N/14N of N inputs. N isotope budgets that account for such local isotopic underexpression suggest that denitrification is responsible for a large fraction (24–53%) of total ecosystem N loss across the sampled range in rainfall. PMID:16728510

  10. Retrograde fluids in granulites: Stable isotope evidence of fluid migration

    SciTech Connect

    Morrison, J. ); Valley, J.W. )

    1991-07-01

    Widespread retrograde alteration assemblages document the migration of mixed H{sub 2}O-CO{sub 2} fluids into granulite facies rocks in the Adirondack Mountains. Fluid migration is manifest by (1) veins and patchy intergrowths of chlorite {plus minus} sericite {plus minus} calcite, (2) small veins of calcite, many only identifiable by cathodoluminescence, and (3) high-density, CO{sub 2}-rich or mixed H{sub 2}O-CO{sub 2} fluid inclusions. The distinct and varied textural occurrences of the alteration minerals indicate that fluid-rock ratios were low and variable on a local scale. Stable isotope ratios of C, O, and S have been determined in retrograde minerals from samples of the Marcy anorthosite massif and adjacent granitic gneisses (charnockites). Retrograde calcite in the anorthosite has a relatively small range in both {delta}{sup 18}O{sub SMOW} and {delta}{sup 13}C{sub PDB} (8.6 to 14.9% and {minus}4.1 to 0.4%, respectively), probably indicating that the hydrothermal fluids that precipitated the calcite had exchanged with a variety of crustal lithologies including marbles and orthogneisses, and that calcite was precipitated over a relatively narrow temperature interval. Values of {delta}{sup 34}S{sub CDT} that range from 2.8 to 8.3% within the anorthosite can also be interpreted to reflect exchange between orthogneisses and metasediments. The recognition of retrograde fluid migration is particularly significant in granulite facies terranes because the controversy surrounding the origin of granulites arises in part from differing interpretations of fluid inclusion data, specifically, the timing of entrapment of high-density, CO{sub 2}-rich inclusions. Results indicate that retrograde fluid migration, which in some samples may leave only cryptic petrographic evidence, is a process capable of producing high-density, CO{sub 2}-rich fluid inclusions.

  11. Geology of the platanares geothermal site, Departamento de Copan, Honduras, Central America. Field report

    SciTech Connect

    Heiken, G.; Eppler, D.; Wohletz, K.; Flores, W.; Ramos, N.; Ritchie, A.

    1986-05-01

    Platanares is located 16 km west of Santa Rosa de Copan, Honduras, along the Quebrada del Agua Caliente. The thermal manifestations are along faults in tuffs, tuffaceous sedimentary rocks, and lavas of the Padre Miguel Group. These tuffs are silicified near the faults, are fractured, and may provide the fracture permeability necessary for the hydrothermal system. Tuffs are overlain by a wedge of terrace gravels up to 60 m thick. Quaternary conglomerates of the Quebrada del Agua Caliente are cemented by silica sinter. The Platanares area contains numerous faults, all of which appear to be extensional. There are four groups of faults (N80/sup 0/E to N70/sup 0/W, N30/sup 0/ to 60/sup 0/W, N40/sup 0/ to 65/sup 0/E, and N00/sup 0/ to 05/sup 0/W). All hot springs at this site are located along faults that trend mostly northwest and north. Twenty-eight spring groups were described over an area of 0.2 km/sup 2/; half were boiling. Based on surface temperatures and flow rates, between 0.7 and 1.0 MW thermal energy is estimated for the area. The increased temperature of the stream flowing through the thermal area indicates that several megawatts of thermal energy are being added to the stream. We recommend that a dipole-dipole resistivity line be run along the Quebrada del Agua Caliente to identify zones of fracture permeability associated with buried faults and hot water reservoirs within those fault zones. A thermal gradient corehole should be drilled at Platanares to test temperatures, lithologies, and permeability of the hydrothermal system.

  12. Automatic Digital Analysis of Chromogenic Media for Vancomycin-Resistant-Enterococcus Screens Using Copan WASPLab.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Coon, Christopher; Liebregts, Theo; van Bree, Anita; Jansz, Arjan R; Soucy, Genevieve; Korver, John; Ledeboer, Nathan A

    2016-10-01

    Vancomycin-resistant enterococci (VRE) are an important cause of health care-acquired infections (HAIs). Studies have shown that active surveillance of high-risk patients for VRE colonization can aid in reducing HAIs; however, these screens generate a significant cost to the laboratory and health care system. Digital imaging capable of differentiating negative and "nonnegative" chromogenic agar can reduce the labor cost of these screens and potentially improve patient care. In this study, we evaluated the performance of the WASPLab Chromogenic Detection Module (CDM) (Copan, Brescia, Italy) software to analyze VRE chromogenic agar and compared the results to technologist plate reading. Specimens collected at 3 laboratories were cultured using the WASPLab CDM and plated to each site's standard-of-care chromogenic media, which included Colorex VRE (BioMed Diagnostics, White City, OR) or Oxoid VRE (Oxoid, Basingstoke, United Kingdom). Digital images were scored using the CDM software after 24 or 40 h of growth, and all manual reading was performed using digital images on a high-definition (HD) monitor. In total, 104,730 specimens were enrolled and automation agreed with manual analysis for 90.1% of all specimens tested, with sensitivity and specificity of 100% and 89.5%, respectively. Automation results were discordant for 10,348 specimens, and all discordant images were reviewed by a laboratory supervisor or director. After a second review, 499 specimens were identified as representing missed positive cultures falsely called negative by the technologist, 1,616 were identified as containing borderline color results (negative result but with no package insert color visible), and 8,234 specimens were identified as containing colorimetric pigmentation due to residual matrix from the specimen or yeast (Candida). Overall, the CDM was accurate at identifying negative VRE plates, which comprised 84% (87,973) of the specimens in this study.

  13. Automatic Digital Analysis of Chromogenic Media for Vancomycin-Resistant-Enterococcus Screens Using Copan WASPLab.

    PubMed

    Faron, Matthew L; Buchan, Blake W; Coon, Christopher; Liebregts, Theo; van Bree, Anita; Jansz, Arjan R; Soucy, Genevieve; Korver, John; Ledeboer, Nathan A

    2016-10-01

    Vancomycin-resistant enterococci (VRE) are an important cause of health care-acquired infections (HAIs). Studies have shown that active surveillance of high-risk patients for VRE colonization can aid in reducing HAIs; however, these screens generate a significant cost to the laboratory and health care system. Digital imaging capable of differentiating negative and "nonnegative" chromogenic agar can reduce the labor cost of these screens and potentially improve patient care. In this study, we evaluated the performance of the WASPLab Chromogenic Detection Module (CDM) (Copan, Brescia, Italy) software to analyze VRE chromogenic agar and compared the results to technologist plate reading. Specimens collected at 3 laboratories were cultured using the WASPLab CDM and plated to each site's standard-of-care chromogenic media, which included Colorex VRE (BioMed Diagnostics, White City, OR) or Oxoid VRE (Oxoid, Basingstoke, United Kingdom). Digital images were scored using the CDM software after 24 or 40 h of growth, and all manual reading was performed using digital images on a high-definition (HD) monitor. In total, 104,730 specimens were enrolled and automation agreed with manual analysis for 90.1% of all specimens tested, with sensitivity and specificity of 100% and 89.5%, respectively. Automation results were discordant for 10,348 specimens, and all discordant images were reviewed by a laboratory supervisor or director. After a second review, 499 specimens were identified as representing missed positive cultures falsely called negative by the technologist, 1,616 were identified as containing borderline color results (negative result but with no package insert color visible), and 8,234 specimens were identified as containing colorimetric pigmentation due to residual matrix from the specimen or yeast (Candida). Overall, the CDM was accurate at identifying negative VRE plates, which comprised 84% (87,973) of the specimens in this study. PMID:27413193

  14. Origin of petroporphyrins. 2. Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.

    1990-01-01

    Compared with the carbon-13 isotopic composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 isotopic composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 isotopic composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 isotopic composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.

  15. Pb isotopic evidence for early Archaean crust in South Greenland

    NASA Technical Reports Server (NTRS)

    Taylor, P. N.; Kalsbeek, F.

    1986-01-01

    The results of an isotopic remote sensing study focussed on delineating the extent of Early Archean crust north and south of the Nuuk area and in south Greenland is presented. Contamination of the Late Archean Nuk gneisses and equivalents by unradiogenic Pb uniquely characteristic of Amitsoq gneiss was detected as far south as Sermilik about 70 km south of Nuuk and only as far north as the mouth of Godthabsfjord. This study was extended to the southern part of the Archean craton and the adjoining Early Proterozoic Ketilidian orogenic belt where the Pb isotopes suggest several episodes of reworking of older uranium depleted continental crust. The technique of using the Pb isotope character of younger felsic rocks, in this case Late Archean and Early Proterozoic gneisses and granites to sense the age and isotopic character of older components, is a particularly powerful tool for reconstructing the evolutionary growth and development of continental crust.

  16. Stellar condensates in meteorites - Isotopic evidence from noble gases

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Alaerts, L.; Matsuda, J.-I.; Anders, E.

    1979-01-01

    The Murchison carbonaceous chondrite contains three isotopically anomalous noble-gas components of apparently presolar origin: two kinds of Ne-E, (Ne-20)/(Ne-22) less than 0.6, and s-process Kr + Xe (enriched in the even isotopes 82, 84, 86, 128, 130, 132). Their carriers are tentatively identified as spinel and two carbonaceous phases, the principal high-temperature stellar condensates at low and high C/O ratios, respectively.

  17. Stable isotopes may provide evidence for starvation in reptiles.

    PubMed

    McCue, Marshall D; Pollock, Erik D

    2008-08-01

    Previous studies have attempted to correlate stable isotope signatures of tissues with the nutritional condition of birds, mammals, fishes, and invertebrates. Unfortunately, very little is known about the relationship between food limitation and the isotopic composition of reptiles. We examined the effects that starvation has on delta13C and delta15N signatures in the tissues (excreta, carcass, scales, and claws) of six, distantly related squamate reptiles (gaboon vipers, Bitis gabonica; ball pythons, Python regius; ratsnakes, Elaphe obsoleta; boa constrictors, Boa constrictor; western diamondback rattlesnakes, Crotalus atrox, and savannah monitor lizards, Varanus exanthematicus). Analyses revealed that the isotopic composition of reptile carcasses did not change significantly in response to bouts of starvation lasting up to 168 days. In contrast, the isotopic signatures of reptile excreta became significantly enriched in 15N and depleted in 13C during starvation. The isotopic signatures of reptile scales and lizard claws were less indicative of starvation time than those of excreta. We discuss the physiological mechanisms that might be responsible for the starvation-induced changes in 13C and 15N signatures in the excreta, and present a mixing model to describe the shift in excreted nitrogen source pools (i.e. from a labile source pool to a nonlabile source pool) that apparently occurs during starvation in these animals. The results of this study suggest that naturally occurring stable isotopes might ultimately have some utility for characterizing nitrogen and carbon stress among free-living reptiles.

  18. Isotope evidence of hexavalent chromium stability in ground water samples.

    PubMed

    Čadková, Eva; Chrastný, Vladislav

    2015-11-01

    Chromium stable isotopes are of interest in many geochemical studies as a tool to identify Cr(VI) reduction and/or dilution in groundwater aquifers. For such studies the short term stability of Cr(VI) in water samples is required before the laboratory analyses can be carried out. Here the short term stability of Cr(VI) in groundwater samples was studied using an isotope approach. Based on commonly available methods for Cr(VI) stabilization, water samples were filtered and the pH value was adjusted to be equal to or greater than 8 before Cr isotope analysis. Based on our Cr isotope data (expressed as δ(53)CrNIST979), Cr(VI) was found to be unstable over short time periods in anthropogenically contaminated groundwater samples regardless of water treatment (e.g., pH adjustment, different storage temperatures). Based on our laboratory experiments, δ(53)CrNIST979 of the Cr(VI) pool was found to be unstable in the presence of dissolved Fe(II), Mn(IV) and/or SO2. Threshold concentrations of Fe(II) causing Cr(VI) reduction range between 10 mg L(-1) and 100 mg L(-1)and less than 1 mg L(-1) for Mn. Hence our isotope data show that water samples containing Cr(VI) should be processed on-site through anion column chemistry to avoid any isotope shifts.

  19. Palladium Isotopic Evidence for Nucleosynthetic and Cosmogenic Isotope Anomalies in IVB Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Wittig, Nadine; Humayun, Munir; Leya, Ingo

    2015-08-01

    The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, β-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(α,n)25Mg neutron source for the solar system s-process.

  20. Possible evidence for fluid-rock oxygen isotope disequilibrium in hydrothermal systems

    SciTech Connect

    Cole, D.R.

    1992-01-01

    There is ample evidence from geothermal systems that isotope temperatures estimated from the oxygen isotope fractionation between alteration phases and coexisting aquifer fluids agree closely with measured bore-hole temperatures. Similar, but limited evidence is found in epithermal vein deposits where isotopes temperature agree well with fluid inclusion homogenization temperature. Conversely, many hydrothermal systems exhibit varying degrees of fluid-rock oxygen isotope equilibration. There appears to be a crude relationship between increasing degree of equilibrium and increasing temperature and salinity. The observed variations in the degree of exchange may have resulted from local, self-sealing of the fracture network prior to equilibration. The ability for fracture to remain open or to propogate allowing continued fluid flow may be the deciding factor in the attainment of isotopic equilibration.

  1. Possible evidence for fluid-rock oxygen isotope disequilibrium in hydrothermal systems

    SciTech Connect

    Cole, D.R.

    1992-04-01

    There is ample evidence from geothermal systems that isotope temperatures estimated from the oxygen isotope fractionation between alteration phases and coexisting aquifer fluids agree closely with measured bore-hole temperatures. Similar, but limited evidence is found in epithermal vein deposits where isotopes temperature agree well with fluid inclusion homogenization temperature. Conversely, many hydrothermal systems exhibit varying degrees of fluid-rock oxygen isotope equilibration. There appears to be a crude relationship between increasing degree of equilibrium and increasing temperature and salinity. The observed variations in the degree of exchange may have resulted from local, self-sealing of the fracture network prior to equilibration. The ability for fracture to remain open or to propogate allowing continued fluid flow may be the deciding factor in the attainment of isotopic equilibration.

  2. Isotopic evidence of Cr partitioning into Earth's core.

    PubMed

    Moynier, Frederic; Yin, Qing-Zhu; Schauble, Edwin

    2011-03-18

    The distribution of chemical elements in primitive meteorites (chondrites), as building blocks of terrestrial planets, provides insight into the formation and early differentiation of Earth. The processes that resulted in the depletion of some elements [such as chromium (Cr)] in the bulk silicate Earth relative to chondrites, however, remain debated between leading candidate causes: volatility versus core partitioning. We show through high-precision measurements of Cr stable isotopes in a range of meteorites, which deviate by up to ~0.4 per mil from those of the bulk silicate Earth, that Cr depletion resulted from its partitioning into Earth's core, with a preferential enrichment in light isotopes. Ab initio calculations suggest that the isotopic signature was established at mid-mantle magma ocean depth as Earth accreted planetary embryos and progressively became more oxidized. PMID:21350126

  3. Isotopic evidence of Cr partitioning into Earth's core.

    PubMed

    Moynier, Frederic; Yin, Qing-Zhu; Schauble, Edwin

    2011-03-18

    The distribution of chemical elements in primitive meteorites (chondrites), as building blocks of terrestrial planets, provides insight into the formation and early differentiation of Earth. The processes that resulted in the depletion of some elements [such as chromium (Cr)] in the bulk silicate Earth relative to chondrites, however, remain debated between leading candidate causes: volatility versus core partitioning. We show through high-precision measurements of Cr stable isotopes in a range of meteorites, which deviate by up to ~0.4 per mil from those of the bulk silicate Earth, that Cr depletion resulted from its partitioning into Earth's core, with a preferential enrichment in light isotopes. Ab initio calculations suggest that the isotopic signature was established at mid-mantle magma ocean depth as Earth accreted planetary embryos and progressively became more oxidized.

  4. Isotopic evidence for reduced productivity in the glacial Southern Ocean

    SciTech Connect

    Shemesh, A. ); Macko, S.A. ); Charles, C.D. ); Rau, G.H. )

    1993-10-15

    Records of carbon and nitrogen isotopes in biogenic silica and carbon isotopes in planktonic foraminifera from deep-sea sediment cores from the Southern Ocean reveal that the primary production during the last glacial maximum was lower than Holocene productivity. These observations conflict with the hypothesis that the low atmospheric carbon dioxide concentrations were introduced by an increase in the efficiency of the high-latitude biological pump. Instead, different oceanic sectors may have had high glacial productivity, or alternative mechanisms that do not involve the biological pump must be considered as the primary cause of the low glacial atmospheric carbon dioxide concentrations.

  5. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Teng, Fang-Zhen; Zhang, Hong-Fu; Xiao, Yan; Su, Ben-Xun

    2016-07-01

    High-precision Mg isotopic measurements on diverse mantle pyroxenite xenoliths collected from Hannuoba, North China Craton, revealed multi-stage interactions between the lithospheric mantle and melts of different origins. The garnet-bearing pyroxenites yield variable δ26Mg values from -0.48‰ to -0.10‰, consistent with their origin as reaction products between mantle peridotites and melts from subducted oceanic slab with highly heterogeneous δ26Mg. Most of their constituent olivine, clinopyroxene, and orthopyroxene have indistinguishable δ26Mg ratios around the normal mantle range (-0.25 ± 0.07‰, Teng et al., 2010). The lack of fractionation among these three mineral phases agrees with their similar bonding environments for Mg (6-fold), and hence indicates a general isotopic equilibrium among them. By contrast, garnet has variably lighter δ26Mg values (-0.75‰ to -0.37‰, n = 15), consistent with its higher coordination number for Mg (8-fold), and thus weaker Mg-O bonds. The magnitude of fractionation between garnet and olivine/pyroxene, however, is not correlated with equilibrium temperature, and therefore reflects disequilibrium Mg isotope partitioning. Considering the metasomatic origin of these garnets, the disequilibrium isotopic fractionation is most likely the result of rapid and incomplete metasomatic reaction during which garnets were formed at the expense of isotopically heavier co-existing minerals, particularly spinels. The two garnet-free clinopyroxenites, which display highly enriched light rare earth element (LREE) patterns and very low Ti/Eu ratios, are characterized by extremely light δ26Mg (as low as -1.51‰). Their formation possibly indicates an episode of carbonatite infiltration. In comparison, the three Cr websterites and one Al websterite, as well as an orthopyroxenite, all have mantle-like whole-rock and mineral δ26Mg ratios, with equilibrated clinopyroxene-orthopyroxene pairs. Their presence thus implies different episodes

  6. Origins of etioporphyrins in sediments - Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, Christopher J.; Fookes, Christopher J. R.; Popp, Brian N.; Hayes, J. M.

    1989-01-01

    In samples of the Julia Creek and Condor oil shales (Australia, Albian, and early Tertiary, respectively) etioporphyrin III is significantly depleted in C-13 (4 per mil) relative to porphyrins derived from chlorophylls. This isotopic difference suggests a large contribution from some independent source. The haem group found in cytochromes derived from microbial sources is the most likely candidate.

  7. Origins of etioporphyrins in sediments: Evidence from stable carbon isotopes

    SciTech Connect

    Boreham, C.J. ); Fookes, C.J.R. ); Popp, B.N.; Hayes, J.M. )

    1989-09-01

    In samples of the Julia Creek and Condor oil shales (Australia, Albian, and early Tertiary, respectively) etioporphyrin III is significantly depleted in {sup 13}C (4{per thousand}) relative to porphyrins derived from chlorophylls. This isotopic difference suggest a large contribution from some independent source. The haem group found in cytochromes derived from microbial sources is the most likely candidate.

  8. Runoff generation mechanism at two distinct headwater catchments - isotopic evidence

    NASA Astrophysics Data System (ADS)

    Dohnal, Michal; Votrubová, Jana; Šanda, Martin; Tesař, Miroslav; Vogel, Tomáš; Dušek, Jaromír

    2016-04-01

    Data from two headwater catchments indicate considerably different runoff formation mechanisms. The contributions of different surface and subsurface runoff mechanisms to the catchment discharge formation at these two small forested headwater catchments are studied with help of the natural isotopic signatures of the observed fluxes. The Uhlirska catchment (1.78 sq. km, Jizera Mts., Czech Republic) is situated in headwater area of Cerna Nisa stream. Deluviofluvial granitic sediments in the valley bottom areas (riparian zones/wetlands) are surrounded by gentle hillslopes with shallow soils developed on crystalline bedrock. The Liz catchment (0.99 sq. km, Bohemian Forest, Czech Republic) belongs to hillslope-type catchments without riparian zones situated in headwater area of Volynka River. The soil at Liz is developed on biotite paragneiss bedrock. Autocorrelation analysis of the measured catchment discharge rates reveals different hydrograph characteristics for each of the two catchments. Estimated autocorrelation lengths differ by an order of magnitude. Variations of oxygen-18 isotope concentrations in precipitation, groundwater and streamflow were analyzed. Several significant rainfall-runoff events at each of the two catchments were analyzed in detail. These events exhibit substantial difference in isotopic compositions of event and pre-event water, which facilitates hydrograph separation. Clockwise and counterclockwise hysteretic relationships between the stream discharge and its isotope concentration were identified. Results were confronted with the previously published concepts of the runoff formation at the catchments under study. The research was funded by the Czech Science Foundation, project No. 14-15201J.

  9. Isotope evidence for N2-fixation in Sphagnum peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Jackova, Ivana; Buzek, Frantisek; Stepanova, Marketa; Veselovsky, Frantisek; Curik, Jan; Prechova, Eva

    2016-04-01

    Waterlogged organic soils store as much as 30 % of the world's soil carbon (C), and 15 % of the world's soil nitrogen (N). In the era of climate change, wetlands are vulnerable to increasing temperatures and prolonged periods of low rainfall. Higher rates of microbial processes and/or changing availability of oxygen may lead to peat thinning and elevated emissions of greenhouse gases (mostly CO2, but also CH4 and N2O). Biogeochemical cycling of C and N in peat bogs is coupled. Under low levels of pollution by reactive nitrogen (NO3-, NH4+), increasing N inputs may positively affect C storage in peat. Recent studies in North America and Scandinavia have suggested that pristine bogs are characterized by significant rates of microbial N2 fixation that augments C storage in the peat substrate. We present a nitrogen isotope study aimed at corroborating these findings. We conducted an isotope inventory of N fluxes and pools at two Sphagnum-dominated ombrotrophic peat bogs in the Czech Republic (Central Europe). For the first time, we present a time-series of del15N values of atmospheric input at the same locations as del15N values of living Sphagnum and peat. The mean del15N values systematically increased in the order: input NH4+ (-10.0 ‰) < input NO3- (-7.9 ‰) < peat porewater (-5.6 ‰) < Sphagnum (-5.0 ‰) < shallow peat (-4.2 ‰) < deep peat (-2.2 ‰) < runoff (-1.4 ‰) < porewater N2O (1.4 ‰). Importantly, N of Sphagnum was isotopically heavier than N of the atmospheric input (p < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N from atmospheric N2 (del15N N2 = 0 ‰). We conlude that the N isotope systematics at the two Czech sites is consistent with the concept of significant N2 fixation

  10. The origin of epigenetic graphite: evidence from isotopes

    USGS Publications Warehouse

    Weis, P.L.; Friedman, I.; Gleason, J.P.

    1981-01-01

    Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.

  11. Isotopic Evidence for a Martian Regolith Component in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Sutton, S.

    2009-01-01

    Noble gas measurements in gas-rich impact-melt (GRIM) glasses in EET79001 shergottite showed that their elemental and isotopic composition is similar to that of the Martian atmosphere [1-3]. The GRIM glasses contain large amounts of Martian atmospheric gases. Those measurements further suggested that the Kr isotopic composition of Martian atmosphere is approximately similar to that of solar Kr. The (80)Kr(sub n) - (80)Kr(sub M) mixing ratio in the Martian atmosphere reported here is approximately 3%. These neutron-capture reactions presumably occurred in the glass-precursor regolith materials containing Sm- and Br- bearing mineral phases near the EET79001/ Shergotty sites on Mars. The irradiated materials were mobilized into host rock voids either during shock-melting or possibly by earlier aeolian / fluvial activity.

  12. Isotopic evidence for long term warmth in the Mesozoic

    PubMed Central

    Price, Gregory D.; Twitchett, Richard J.; Wheeley, James R.; Buono, Giuseppe

    2013-01-01

    Atmospheric CO2 concentrations appear to have been considerably higher than modern levels during much of the Phanerozoic and it has hence been proposed that surface temperatures were also higher. Some studies have, however, suggested that Earth's temperature (estimated from the isotopic composition of fossil shells) may have been independent of variations in atmospheric CO2 (e.g. in the Jurassic and Cretaceous). If large changes in atmospheric CO2 did not produce the expected climate responses in the past, predictions of future climate and the case for reducing current fossil-fuel emissions are potentially undermined. Here we evaluate the dataset upon which the Jurassic and Cretaceous assertions are based and present new temperature data, derived from the isotopic composition of fossil brachiopods. Our results are consistent with a warm climate mode for the Jurassic and Cretaceous and hence support the view that changes in atmospheric CO2 concentrations are linked with changes in global temperatures. PMID:23486483

  13. Stable lead isotopes evidence anthropogenic contamination in Alaskan sea otters

    SciTech Connect

    Smith, D.R.; Estes, J.A.; Flegal, A.R. ); Niemeyer, S. )

    1990-10-01

    Lead concentrations and stable isotopic compositions were measured in teeth of preindustrial and contemporary sea otters (Enhydra lutris) from Amchitka Island, AK, to determine if changes had occurred in the magnitude and source of assimilated lead. Although there was no significant difference in lead concentrations between the two groups of otters ({bar x} {plus minus} {sigma}Pb/Ca atomic = 3.6 {plus minus} 2.9 {times} 10{sup {minus}8}), differences in stable lead isotopic compositions revealed a pronounced change in the source of accumulated lead. Lead {bar x} {plus minus} 2{sigma}{sub {bar x}} in the preindustrial otters ({sup 207}Pb/{sup 206}Pb = 0.828 {plus minus} 0.006) was derived from natural deposits in the Aleutian arc, while lead in the contemporary animals ({sup 207}Pb/{sup 206}Pb = 0.856 {plus minus} 0.003) was primarily industrial lead from Asia and western Canada. The isotopic ratios demonstrate anthropogenic perturbations of the lead cycle in present-day coastal food webs and indicate that lead concentration measurements alone are inadequate in assessing the introduction and transport of contaminant lead in the environment.

  14. Isotopic evidence for chaotic imprint in upper mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Armienti, Pietro; Gasperini, Daniela

    2010-05-01

    The intrinsic structure of the isotope data set of samples from the Mid-Atlantic Ridge and East Pacific Rise, believed to represent the isotopic composition of their mantle source, reveals a close relationship between sample spatial distribution and their geochemical features. The spatial distribution of their isotopic heterogeneity is self-similar on a scale between 5000 and 6000 km (about 1/6 of Earth's circumference), suggesting a self-organized structure for the underlying mantle. This implies the imprint of chaotic mantle processes, induced by mantle flow and likely related to an early phase of highly dynamic behavior of the Earth's mantle. The size of the identified self-organized region reflects the large length scale of upper mantle chemical variability, and it is likely frozen since the Proterozoic. The geochemical heterogeneity of the asthenosphere along the ridges is believed to record a transition in the thermal conditions of the Earth's mantle and to be reflected in the l = 6 peak expansion of several geophysical observables.

  15. EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK

    SciTech Connect

    Larsen, Kirsten K.; Trinquier, Anne; Paton, Chad; Schiller, Martin; Wielandt, Daniel; Connelly, James N.; Nordlund, Ake; Krot, Alexander N.; Bizzarro, Martin; Ivanova, Marina A.

    2011-07-10

    With a half-life of 0.73 Myr, the {sup 26}Al-to-{sup 26}Mg decay system is the most widely used short-lived chronometer for understanding the formation and earliest evolution of the solar protoplanetary disk. However, the validity of {sup 26}Al-{sup 26}Mg ages of meteorites and their components relies on the critical assumption that the canonical {sup 26}Al/{sup 27}Al ratio of {approx}5 x 10{sup -5} recorded by the oldest dated solids, calcium-aluminium-rich inclusions (CAIs), represents the initial abundance of {sup 26}Al for the solar system as a whole. Here, we report high-precision Mg-isotope measurements of inner solar system solids, asteroids, and planets demonstrating the existence of widespread heterogeneity in the mass-independent {sup 26}Mg composition ({mu}{sup 26}Mg*) of bulk solar system reservoirs with solar or near-solar Al/Mg ratios. This variability may represent heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk at the time of CAI formation and/or Mg-isotope heterogeneity. By comparing the U-Pb and {sup 26}Al-{sup 26}Mg ages of pristine solar system materials, we infer that the bulk of the {mu}{sup 26}Mg* variability reflects heterogeneity in the initial abundance of {sup 26}Al across the solar protoplanetary disk. We conclude that the canonical value of {approx}5 x 10{sup -5} represents the average initial abundance of {sup 26}Al only in the CAI-forming region, and that large-scale heterogeneity-perhaps up to 80% of the canonical value-may have existed throughout the inner solar system. If correct, our interpretation of the Mg-isotope composition of inner solar system objects precludes the use of the {sup 26}Al-{sup 26}Mg system as an accurate early solar system chronometer.

  16. Evidence for an ancient osmium isotopic reservoir in Earth.

    PubMed

    Meibom, Anders; Frei, Robert

    2002-04-19

    Iridosmine grains from placer deposits associated with peridotite-bearing ophiolites in the Klamath mountains have extremely radiogenic 186Os/188Os ratios and old Re-Os minimum ages, from 256 to 2644 million years. This indicates the existence of an ancient platinum group element reservoir with a supra-chondritic Pt/Os ratio. Such a ratio may be produced in the outer core as a result of inner core crystallization that fractionates Os from Pt. However, if the iridosmine Os isotopic compositions are a signature of the outer core, then the inner core must have formed very early, within several hundred million years after the accretion of Earth. PMID:11964475

  17. Isotopic Evidence For Chaotic Imprint In The Upper Mantle Heterogeneity

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Gasperini, D.

    2006-12-01

    Heterogeneities of the asthenospheric mantle along mid-ocean ridges have been documented as the ultimate effect of complex processes dominated by temperature, pressure and composition of the shallow mantle, in a convective regime that involves mass transfer from the deep mantle, occasionally disturbed by the occurrence of hot spots (e.g. Graham et al., 2001; Agranier et al., 2005; Debaille et al., 2006). Alternatively, upper mantle heterogeneity is seen as the natural result of basically athermal processes that are intrinsic to plate tectonics, such as delamination and recycling of continental crust and of subducted aseismic ridges (Meibom and Anderson, 2003; Anderson, 2006). Here we discuss whether the theory of chaotic dynamical systems applied to isotopic space series along the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) can delimit the length-scale of upper mantle heterogeneities, then if the model of marble-cake mantle (Allègre and Turcotte, 1986) is consistent with a fractal distribution of such heterogeneity. The correlations between the isotopic (Sr, Nd, Hf, Pb) composition of MORB were parameterized as a function of the ridge length. We found that the distribution of isotopic heterogenity along both the MAR and EPR is self- similar in the range of 7000-9000 km. Self-similarity is the imprint of chaotic mantle processes. The existence of strange attractors in the distribution of isotopic composition of the asthenosphere sampled at ridge crests reveals recursion of the same mantle process(es), endured over long periods of time, up to a stationary state. The occurrence of the same fractal dimension for both the MAR and EPR implies independency of contingent events, suggesting common mantle processes, on a planetary scale. We envisage the cyclic route of "melting, melt extraction and recycling" as the main mantle process which could be able to induce scale invariance. It should have happened for a significant number of times over the Earth

  18. Evidence for an ancient osmium isotopic reservoir in Earth.

    PubMed

    Meibom, Anders; Frei, Robert

    2002-04-19

    Iridosmine grains from placer deposits associated with peridotite-bearing ophiolites in the Klamath mountains have extremely radiogenic 186Os/188Os ratios and old Re-Os minimum ages, from 256 to 2644 million years. This indicates the existence of an ancient platinum group element reservoir with a supra-chondritic Pt/Os ratio. Such a ratio may be produced in the outer core as a result of inner core crystallization that fractionates Os from Pt. However, if the iridosmine Os isotopic compositions are a signature of the outer core, then the inner core must have formed very early, within several hundred million years after the accretion of Earth.

  19. Persistently strong Indonesian Throughflow during marine isotope stage 3: evidence from radiogenic isotopes

    NASA Astrophysics Data System (ADS)

    Stumpf, Roland; Kraft, Steffanie; Frank, Martin; Haley, Brian; Holbourn, Ann; Kuhnt, Wolfgang

    2015-03-01

    The Indonesian Throughflow (ITF) connects the western Pacific Ocean with the eastern Indian Ocean, thus forming one of the major near surface current systems of the global thermohaline circulation. The intensity of the ITF has been found to be sensitive to changes in global ocean circulation, fluctuations in sea level, as well as to the prevailing monsoonal conditions of the Indonesian Archipelago and NW Australia. This study presents the first reconstruction of ITF dynamics combining radiogenic isotope compositions of neodymium (Nd), strontium (Sr), and lead (Pb) of the clay-size detrital fraction to investigate changes in sediment provenance, and paleo seawater Nd signatures extracted from the planktonic foraminifera and authigenic Fe-Mn oxyhydroxide coatings of the marine sediments focussing on marine isotope stage 3 (MIS3). Sediment core MD01-2378 was recovered within the framework of the International Marine Global Change Study (IMAGES) and is located in the area of the ITF outflow in the western Timor Sea (Scott Plateau, 13° 04.95‧ S and 121° 47.27‧ E, 1783 m water depth). In order to produce reliable seawater signatures, several extraction methods were tested against each other. The results of the study show that at this core location the extraction of surface water Nd isotope compositions from planktonic foraminifera is complicated by incomplete removal of contributions from Fe-Mn oxyhydroxides carrying ambient bottom water signatures. The bottom water Nd isotope signatures reliably obtained from the sediment coatings (average ɛNd = -5.0) document an essentially invariable water mass composition similar to today throughout the entire MIS3. The radiogenic Nd, Sr, and Pb isotope records of the clay-sized detrital fraction suggest that the Indonesian Archipelago rather than NW Australia was the main particle source at the location of core MD01-2378, and thus indicating a persistently strong ITF during MIS3. Furthermore, the variations of the detrital

  20. Multi-Isotopic evidence from West Eifel Xenoliths

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Sprung, P.

    2015-12-01

    Mantle Xenoliths from the West Eifel intraplate volcanic field of Germany provide insights into the nature and evolution of the regional continental lithospheric mantle. Previous isotope studies have suggested a primary Paleoproterozoic depletion age, a second partial melting event in the early Cambrian, and a Variscan metasomatic overprint. Textural and Sr-Nd isotopic observations further suggest two episodes of melt infiltration of early Cretaceous and Quaternary age. We have investigated anhydrous, vein-free lherzolites from this region, focusing on the Dreiser Weiher and Meerfelder Maar localities. Hand separated spinel, olivine, ortho- and clinopryoxene, along with host and bulk rocks were dissolved and purified for Rb-Sr, Sm-Nd, and Lu-Hf analysis on the Cologne/Bonn Neptune MC-ICP-MS. We find an unexpected discontinuity between mineral separates and whole rocks. While the latter have significantly more radiogenic ɛNd and ɛHf, mineral separates imply close-to chondritic compositions. Our Lu-Hf data imply resetting of the Lu-Hf systematic after 200 Ma. Given the vein-free nature of the lherzolites, this appears to date to the second youngest metasomatic episode. We suggest that markedly radiogenic Nd and Hf were introduced during the Quarternary metasomatic episode and most likely reside on grain boundaries.

  1. Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost

    NASA Technical Reports Server (NTRS)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.

  2. Strontium isotope evidence for landscape use by early hominins.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; de Ruiter, Darryl J; Lee-Thorp, Julia A; Codron, Daryl; le Roux, Petrus J; Grimes, Vaughan; Richards, Michael P

    2011-06-01

    Ranging and residence patterns among early hominins have been indirectly inferred from morphology, stone-tool sourcing, referential models and phylogenetic models. However, the highly uncertain nature of such reconstructions limits our understanding of early hominin ecology, biology, social structure and evolution. We investigated landscape use in Australopithecus africanus and Paranthropus robustus from the Sterkfontein and Swartkrans cave sites in South Africa using strontium isotope analysis, a method that can help to identify the geological substrate on which an animal lived during tooth mineralization. Here we show that a higher proportion of small hominins than large hominins had non-local strontium isotope compositions. Given the relatively high levels of sexual dimorphism in early hominins, the smaller teeth are likely to represent female individuals, thus indicating that females were more likely than males to disperse from their natal groups. This is similar to the dispersal pattern found in chimpanzees, bonobos and many human groups, but dissimilar from that of most gorillas and other primates. The small proportion of demonstrably non-local large hominin individuals could indicate that male australopiths had relatively small home ranges, or that they preferred dolomitic landscapes. PMID:21637256

  3. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records

    USGS Publications Warehouse

    Klemm, V.; Frank, M.; Levasseur, S.; Halliday, A.N.; Hein, J.R.

    2008-01-01

    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10??Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12??Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the No??rdlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum. ?? 2008 Elsevier B.V.

  4. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials

    PubMed

    Kennett; Cannariato; Hendy; Behl

    2000-04-01

    Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to -6 per mil) coinciding with smaller shifts (up to -3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations.

  5. Neodymium isotope evidence for a chondritic composition of the Moon.

    PubMed

    Rankenburg, K; Brandon, A D; Neal, C R

    2006-06-01

    Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle. PMID:16741118

  6. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials

    PubMed

    Kennett; Cannariato; Hendy; Behl

    2000-04-01

    Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to -6 per mil) coinciding with smaller shifts (up to -3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations. PMID:10753115

  7. Thermophysiology of Tyrannosaurus rex: Evidence from Oxygen Isotopes.

    PubMed

    Barrick, R E; Showers, W J

    1994-07-01

    The oxygen isotopic composition of vertebrate bone phosphate (delta(p)) is related to ingested water and to the body temperature at which the bone forms. The delta(p) is in equilibrium with the individual's body water, which is at a physiological steady state throughout the body. Therefore, intrabone temperature variation and the mean interbone temperature differences of well-preserved fossil vertebrates can be determined from the deltap variation. Values of delta(p) from a well-preserved Tyrannosaurus rex suggest that this species maintained homeothermy with less than 4 degrees C of variability in body temperature. Maintenance of homeothermy implies a relatively high metabolic rate that is similar to that of endotherms.

  8. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  9. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons.

    PubMed

    Freeman, K H; Hayes, J M; Trendel, J M; Albrecht, P

    1990-01-18

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  10. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds

    NASA Astrophysics Data System (ADS)

    Burnham, A. D.; Thomson, A. R.; Bulanova, G. P.; Kohn, S. C.; Smith, C. B.; Walter, M. J.

    2015-12-01

    Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions of their inclusions, which implies that they formed by a mixing process. The proposed model for this mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed trace element chemistries of diamond inclusions from these localities and with the experimental phase relations of carbonated subducted crust. The 18O-enriched nature of the inclusions demonstrates that they incorporate material from crustal protoliths that previously interacted with seawater, thus confirming the subduction-related origin of superdeep diamonds. These samples also provide direct evidence of an isotopically anomalous reservoir in the deep (≥350 km) mantle.

  11. Isotopic evidence for the diets of European Neanderthals and early modern humans

    PubMed Central

    Richards, Michael P.; Trinkaus, Erik

    2009-01-01

    We report here on the direct isotopic evidence for Neanderthal and early modern human diets in Europe. Isotopic methods indicate the sources of dietary protein over many years of life, and show that Neanderthals had a similar diet through time (≈120,000 to ≈37,000 cal BP) and in different regions of Europe. The isotopic evidence indicates that in all cases Neanderthals were top-level carnivores and obtained all, or most, of their dietary protein from large herbivores. In contrast, early modern humans (≈40,000 to ≈27,000 cal BP) exhibited a wider range of isotopic values, and a number of individuals had evidence for the consumption of aquatic (marine and freshwater) resources. This pattern includes Oase 1, the oldest directly dated modern human in Europe (≈40,000 cal BP) with the highest nitrogen isotope value of all of the humans studied, likely because of freshwater fish consumption. As Oase 1 was close in time to the last Neanderthals, these data may indicate a significant dietary shift associated with the changing population dynamics of modern human emergence in Europe. PMID:19706482

  12. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-12-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including `snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.

  13. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere.

    PubMed

    Pogge von Strandmann, Philip A E; Stüeken, Eva E; Elliott, Tim; Poulton, Simon W; Dehler, Carol M; Canfield, Don E; Catling, David C

    2015-12-18

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ(82/76)Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ(82/76)Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ(82/76)Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.

  14. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere.

    PubMed

    Pogge von Strandmann, Philip A E; Stüeken, Eva E; Elliott, Tim; Poulton, Simon W; Dehler, Carol M; Canfield, Don E; Catling, David C

    2015-01-01

    Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ(82/76)Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ(82/76)Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ(82/76)Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  15. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    PubMed Central

    Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.

    2015-01-01

    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529

  16. Nd-isotopic evidence for the origin of the Sudbury complex by meteoritic impact

    NASA Technical Reports Server (NTRS)

    Faggart, B. E.; Basu, A. R.; Tatsumoto, M.

    1985-01-01

    A Neodymium isotopic investigation was undertaken in order to determine the possibility that the Sudbury geological structure in Ontario, Canada was formed by meteoritic impact. Conclusive evidence points to the melting of crustal rocks by way of meteoritic impact in the forming of the Sudbury structure.

  17. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California

    NASA Astrophysics Data System (ADS)

    Tipper, Edward T.; Gaillardet, Jérôme; Louvat, Pascale; Capmas, Françoise; White, Art F.

    2010-07-01

    inputs. A consistent interpretation is only possible if Mg isotope ratios are fractionated either by the precipitation of a secondary Mg bearing phase, not detected by conventional methods, or selective leaching of 24Mg from smectite. There is therefore dual control on the Mg isotopic composition of the pore-waters, mixing of two inputs with distinct isotopic compositions, modified by fractionation. The data provide (1) further evidence for Mg isotope fractionation at the surface of the Earth and (2) the first field evidence of Mg isotope fractionation during uptake by natural plants. The coherent behaviour of Mg isotope ratios in soil environments is encouraging for the development of Mg isotope ratios as a quantitative tracer of both weathering inputs of Mg to waters, and the physicochemical processes that cycle Mg, a major cation linked to the carbon cycle, during continental weathering.

  18. Lunar tungsten isotopic evidence for the late veneer.

    PubMed

    Kruijer, Thomas S; Kleine, Thorsten; Fischer-Gödde, Mario; Sprung, Peter

    2015-04-23

    According to the most widely accepted theory of lunar origin, a giant impact on the Earth led to the formation of the Moon, and also initiated the final stage of the formation of the Earth's core. Core formation should have removed the highly siderophile elements (HSE) from Earth's primitive mantle (that is, the bulk silicate Earth), yet HSE abundances are higher than expected. One explanation for this overabundance is that a 'late veneer' of primitive material was added to the bulk silicate Earth after the core formed. To test this hypothesis, tungsten isotopes are useful for two reasons: first, because the late veneer material had a different (182)W/(184)W ratio to that of the bulk silicate Earth, and second, proportionally more material was added to the Earth than to the Moon. Thus, if a late veneer did occur, the bulk silicate Earth and the Moon must have different (182)W/(184)W ratios. Moreover, the Moon-forming impact would also have created (182)W differences because the mantle and core material of the impactor with distinct (182)W/(184)W would have mixed with the proto-Earth during the giant impact. However the (182)W/(184)W of the Moon has not been determined precisely enough to identify signatures of a late veneer or the giant impact. Here, using more-precise measurement techniques, we show that the Moon exhibits a (182)W excess of 27 ± 4 parts per million over the present-day bulk silicate Earth. This excess is consistent with the expected (182)W difference resulting from a late veneer with a total mass and composition inferred from HSE systematics. Thus, our data independently show that HSE abundances in the bulk silicate Earth were established after the giant impact and core formation, as predicted by the late veneer hypothesis. But, unexpectedly, we find that before the late veneer, no (182)W anomaly existed between the bulk silicate Earth and the Moon, even though one should have arisen through the giant impact. The origin of the homogeneous (182

  19. Lunar tungsten isotopic evidence for the late veneer.

    PubMed

    Kruijer, Thomas S; Kleine, Thorsten; Fischer-Gödde, Mario; Sprung, Peter

    2015-04-23

    According to the most widely accepted theory of lunar origin, a giant impact on the Earth led to the formation of the Moon, and also initiated the final stage of the formation of the Earth's core. Core formation should have removed the highly siderophile elements (HSE) from Earth's primitive mantle (that is, the bulk silicate Earth), yet HSE abundances are higher than expected. One explanation for this overabundance is that a 'late veneer' of primitive material was added to the bulk silicate Earth after the core formed. To test this hypothesis, tungsten isotopes are useful for two reasons: first, because the late veneer material had a different (182)W/(184)W ratio to that of the bulk silicate Earth, and second, proportionally more material was added to the Earth than to the Moon. Thus, if a late veneer did occur, the bulk silicate Earth and the Moon must have different (182)W/(184)W ratios. Moreover, the Moon-forming impact would also have created (182)W differences because the mantle and core material of the impactor with distinct (182)W/(184)W would have mixed with the proto-Earth during the giant impact. However the (182)W/(184)W of the Moon has not been determined precisely enough to identify signatures of a late veneer or the giant impact. Here, using more-precise measurement techniques, we show that the Moon exhibits a (182)W excess of 27 ± 4 parts per million over the present-day bulk silicate Earth. This excess is consistent with the expected (182)W difference resulting from a late veneer with a total mass and composition inferred from HSE systematics. Thus, our data independently show that HSE abundances in the bulk silicate Earth were established after the giant impact and core formation, as predicted by the late veneer hypothesis. But, unexpectedly, we find that before the late veneer, no (182)W anomaly existed between the bulk silicate Earth and the Moon, even though one should have arisen through the giant impact. The origin of the homogeneous (182

  20. Osmium isotopic evidence for mesozoic removal of lithospheric mantle beneath the sierra nevada, california

    PubMed

    Lee; Yin; Rudnick; Chesley; Jacobsen

    2000-09-15

    Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust. PMID:10988067

  1. Osmium isotopic evidence for mesozoic removal of lithospheric mantle beneath the sierra nevada, california

    PubMed

    Lee; Yin; Rudnick; Chesley; Jacobsen

    2000-09-15

    Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.

  2. Petrogenesis of Challis volcanics from central and southwestern Idaho - Trace element and Pb isotopic evidence

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.; Mertzman, Stanley A.

    1991-01-01

    An analysis of the lava flows and ash-flow tuffs in Idaho is conducted to determine the composition of the volcanics in terms of major and trace elements and Pb isotopic substances. Al2O3 is found to be low, MgO content is high, and the concentration of K2O is higher or equal to that of Na2O with respect to the lavas of mafic to intermediate composition. Trace elements and element ratios are compatible with the crustal component, and the Pb isotopic compositions suggest a lack of assimilation during crystallization. The evidence does not support the notion of a magma system related to subduction, and the data regarding Pb isotopes and trace elements point to a connection with the lithosphere. A model is proposed for the Challis volcanics in which they resulted from completely melting within the lithosphere and then extending during the late Mesozoic and early Cenozoic compression.

  3. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic

    PubMed Central

    Richards, Michael P.; Pettitt, Paul B.; Stiner, Mary C.; Trinkaus, Erik

    2001-01-01

    New carbon and nitrogen stable isotope values for human remains dating to the mid-Upper Paleolithic in Europe indicate significant amounts of aquatic (fish, mollusks, and/or birds) foods in some of their diets. Most of this evidence points to exploitation of inland freshwater aquatic resources in particular. By contrast, European Neandertal collagen carbon and nitrogen stable isotope values do not indicate significant use of inland aquatic foods but instead show that they obtained the majority of their protein from terrestrial herbivores. In agreement with recent zooarcheological analyses, the isotope results indicate shifts toward a more broad-spectrum subsistence economy in inland Europe by the mid-Upper Paleolithic period, probably associated with significant population increases. PMID:11371652

  4. Mercury Isotopic Evidence for Contrasting Mercury Transport Pathways to Coastal versus Open Ocean Fisheries (Invited)

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Senn, D. B.; Chesney, E. J.; Bank, M. S.; Maage, A.; Shine, J. P.

    2009-12-01

    Mercury stable isotopes provide a new method for tracing the sources and chemical transformations of Hg in the environment. In this study we used Hg isotopes to investigate Hg sources to coastal versus migratory open-ocean species of fish residing in the northern Gulf of Mexico (nGOM). We report Hg isotope ratios as δ202Hg (mass dependent fractionation relative to NIST 3133) and Δ201Hg (mass independent fractionation of odd isotopes). In six coastal and two open ocean species (blackfin and yellowfin tuna), Hg isotopic compositions fell into two non-overlapping ranges. The tuna had significantly higher δ202Hg (0.1 to 0.7‰) and Δ201Hg (1.0 to 2.2‰) than the coastal fish (δ202Hg = 0 to -1.0‰; Δ201Hg = 0.4 to 0.5‰). The observations can be best explained by largely disconnected food webs with isotopically distinct MeHg sources. The ratio Δ199Hg/Δ201Hg in nGOM fish is 1.30±0.10 which is consistent with laboratory studies of photochemical MeHg degradation and with ratios measured in freshwater fish (Bergquist and Blum, 2007). The magnitude of mass independent fractionation of Hg in the open-ocean fish suggests that this source of MeHg was subjected to extensive photodegradation (~50%) before entering the base of the open-ocean food web. Given the Mississippi River’s large, productive footprint in the nGOM and the potential for exporting prey and MeHg to the adjacent oligotrophic GOM, the different MeHg sources are noteworthy and consistent with recent evidence in other systems of important open-ocean MeHg sources. Bergquist, B. A. and Blum, J. D., 2007. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417-420.

  5. Long Term Trends in Subantarctic Nutrient Consumption: Evidence from Sedimentary and Diatom-Bound Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Bedsole, P.

    2014-12-01

    It has been proposed that the long term increase in Subantarctic opal export during glacial periods, centered around 1 Ma, is related to enhanced iron deposition and, potentially, carbon dioxide drawdown. New bulk sedimentary and diatom-bound nitrogen isotope records are used in combination with opal accumulation data from ODP Site 1090 to investigate controls on export production over the last 3 Ma. Sedimentary nitrogen content tracks opal during periods of high iron accumulation, especially after ~1 Ma. Bulk sedimentary nitrogen isotope trends are negatively correlated with sedimentary N-content and opal accumulation. This may be signal weaker nutrient consumption during times of high production, perhaps as a result of enhanced vertical nutrient supply. Alternatively, this variation in bulk, where high values occur in organic poor intervals, is consistent with other evidence for nitrogen isotopic alteration during periods of low export to the seafloor. The diatom-bound nitrogen isotope record does not have a clear relationship with opal or iron accumulation. A long term shift in the diatom-bound N isotope values is apparent, where the average diatom-bound δ15N from 0.5-1 Ma is 4.4 ‰, and from 2-2.6 Ma is 5.9 ‰. This decrease may reflect long-term changes in nitrate availability. A first order comparison to planktonic/benthic carbon isotopic gradients suggests that enhanced vertical mixing may explain the observed productivity peaks and lower overall diatom-bound N isotope values in the interval centered around 1 Ma.

  6. Mantle fluids in the Karakoram fault: Helium isotope evidence

    NASA Astrophysics Data System (ADS)

    Klemperer, Simon L.; Kennedy, B. Mack; Sastry, Siva R.; Makovsky, Yizhaq; Harinarayana, T.; Leech, Mary L.

    2013-03-01

    The Karakoram fault (KKF) is the 1000 km-long strike-slip fault separating the western Himalaya from the Tibetan Plateau. From geologic and geodetic data, the KKF is argued either to be a lithospheric-scale fault with hundreds of km of offset at several cm/a, or to be almost inactive with cumulative offset of only a few tens of kilometers and to be just the upper-crustal localization of distributed deformation at depth. Here we show 3He/4He ratios in geothermal springs along a 500-km segment of the KKF are 3-100 times the normal ratio in continental crust, providing unequivocal evidence that a component of these hydrologic systems is derived from tectonically active mantle. Mantle enrichment is absent along the Indus-Yarlung suture zone (ISZ) just 35 km southwest of the KKF, suggesting that the mantle fluids flow only within the KKF. Within the last few Ma, the KKF must have accessed tectonically active Tibetan mantle northeast of the "mantle suture" which we therefore locate vertically beneath the KKF, very close to the surface trace of the ISZ. Hence, in southwestern Tibet, Indian crust may not now be underthrusting substantially north of the ISZ, even though Miocene underthrusting may have placed Indian crust north of the ISZ in the lower half of the Tibetan Plateau crust. This is in significant contrast to central and eastern Tibet where underthrust Indian material not only forms the lower half of the Tibetan crust but is also currently underthrusting for ∼200 km north of the ISZ. Our new constraint on KKF penetration to the mantle allows an improved description of the continuously evolving Karakoram fault, as a tectonically significant yet perhaps geologically ephemeral lithospheric structure.

  7. Evidence from Lake Baikal for Siberian glaciation during oxygen-isotope substage 5d

    USGS Publications Warehouse

    Karabanov, E.B.; Prokopenko, A.A.; Williams, D.F.; Colman, Steven M.

    1998-01-01

    The paleoclimatic record from bottom sediments of Lake Baikal (eastern Siberia) reveals new evidence for an abrupt and intense glaciation during the initial part of the last interglacial period (isotope substage 5d). This glaciation lasted about 12 000 yr from 117 000 to 105 000 yr BP according to correlation with the SPEC-MAP isotope chronology. Lithological and biogeochemical evidence of glaciation from Lake Baikal agrees with evidence for the advance of ice sheet in northwestern Siberia during this time period and also with cryogenic features within the strata of Kazantzevo soils in Southern Siberia. The severe 5d glaciation in Siberia was caused by dramatic cooling due to the decrease in solar insolation (as predicted by the model of insulation changes for northern Asia according to Milankovich theory) coupled with western atmospheric transport of moisture from the opea areas of Northern Atlantic and Arctic seas (which became ice-free due to the intense warming during preceeding isotope substage 5e). Other marine and continental records show evidence for cooling during 5d, but not for intense glaciation. Late Pleistocene glaciations in the Northern Hemisphere may have begun in northwestern Siberia.

  8. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1984-01-01

    premetamorphic isotopic compositions. Such preservation is particularly evident in instances of high ??18O calcites (25.0 to 27.2), low ??18O wollastonites (-1.3 to 3.5), and sharp gradients in ??18O (18 permil/15m between marble and anorthosite, 8 permil/25 m in metasediments, and 6 permil/1 m in skarn). Isotopic exchange is seen across marble-anorthosite and marble-granite contacts only at the scale of a few meters. Small (<5 m) marble xenoliths are in approximate exchange equilibrium with their hosts, but for larger xenoliths and layers of marble there is no evidence of exchange at distances greater than 10 m from meta-igneous contacts. ?? 1984 Springer-Verlag.

  9. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan.

    PubMed

    Arnold, Elizabeth R; Hartman, Gideon; Greenfield, Haskel J; Shai, Itzhaq; Babcock, Lindsay E; Maeir, Aren M

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900-2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan. PMID:27322197

  10. Isotopic Evidence for Early Trade in Animals between Old Kingdom Egypt and Canaan

    PubMed Central

    Greenfield, Haskel J.; Shai, Itzhaq; Babcock, Lindsay E.; Maeir, Aren M.

    2016-01-01

    Isotope data from a sacrificial ass and several ovicaprines (sheep/goat) from Early Bronze Age household deposits at Tell es-Safi/Gath, Israel provide direct evidence for the movement of domestic draught/draft and husbandry animals between Old Kingdom Egypt (during the time of the Pyramids) and Early Bronze Age III Canaan (ca. 2900–2500 BCE). Vacillating, bi-directional connections between Egypt and Canaan are known throughout the Early Bronze Age, but here we provide the first concrete evidence of early trade in animals from Egypt to Canaan. PMID:27322197

  11. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.

    PubMed

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-04-28

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

  12. Keratin decomposition by trogid beetles: evidence from a feeding experiment and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, Shinji; Ikeda, Hiroshi

    2014-03-01

    The decomposition of vertebrate carcasses is an important ecosystem function. Soft tissues of dead vertebrates are rapidly decomposed by diverse animals. However, decomposition of hard tissues such as hairs and feathers is much slower because only a few animals can digest keratin, a protein that is concentrated in hairs and feathers. Although beetles of the family Trogidae are considered keratin feeders, their ecological function has rarely been explored. Here, we investigated the keratin-decomposition function of trogid beetles in heron-breeding colonies where keratin was frequently supplied as feathers. Three trogid species were collected from the colonies and observed feeding on heron feathers under laboratory conditions. We also measured the nitrogen (δ15N) and carbon (δ13C) stable isotope ratios of two trogid species that were maintained on a constant diet (feathers from one heron individual) during 70 days under laboratory conditions. We compared the isotopic signatures of the trogids with the feathers to investigate isotopic shifts from the feathers to the consumers for δ15N and δ13C. We used mixing models (MixSIR and SIAR) to estimate the main diets of individual field-collected trogid beetles. The analysis indicated that heron feathers were more important as food for trogid beetles than were soft tissues under field conditions. Together, the feeding experiment and stable isotope analysis provided strong evidence of keratin decomposition by trogid beetles.

  13. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits.

    PubMed

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ(114/110)Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ(114/110)Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  14. Stable isotope evidence for hydrologic conditions during regional metamorphism in the Panamint Mountains, California

    SciTech Connect

    Bergfeld, D.; Nabelek, P.I. . Dept. of Geological Sciences); Labotka, T.C. . Dept. of Geological Sciences)

    1992-01-01

    The Kingston Peak Formation forms part of the Panamint Mountains, California, metamorphic core-complex. Peak tremolite-grade metamorphism as exhibited in Wildrose Canyon occurred in the Jurassic; a retrograde thermal event may have occurred in the Cretaceous. The formation consists dominantly of interbedded siliceous limestones and graphitic calcareous schists. Stable isotopic analysis shows two distinct groups of data. delta O-18 values of calcite from the limestones range between 15.3 and 17.3[per thousand], probably reflecting their original Proterozoic depositional values. Likewise the delta C-13 values are also unshifted, ranging from +1% to +3.8%o. In contrast, delta O-18 values of calcite from the schists are for the most part > 20[per thousand]. These high values could reflect the original depostional conditions; however, they may be due to equilibration with silicate minerals which range from 14.9 to 17.9[per thousand]. Overall, the combined oxygen and carbon isotopic data indicate that most isotopic changes can be explained by closed-system equilibration. Only a limited amount of interaction with externally-derived fluids during metamorphism is evident in the isotopic data. The interaction may have been confined to vicinities of faults and fractures which are common in Wildrose Canyon.

  15. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago.

    PubMed

    Hren, M T; Tice, M M; Chamberlain, C P

    2009-11-12

    Stable oxygen isotope ratios (delta(18)O) of Precambrian cherts have been used to establish much of our understanding of the early climate history of Earth and suggest that ocean temperatures during the Archaean era ( approximately 3.5 billion years ago) were between 55 degrees C and 85 degrees C (ref. 2). But, because of uncertainty in the delta(18)O of the primitive ocean, there is considerable debate regarding this conclusion. Examination of modern and ancient cherts indicates that another approach, using a combined analysis of delta(18)O and hydrogen isotopes (deltaD) rather than delta(18)O alone, can provide a firmer constraint on formational temperatures without independent knowledge of the isotopic composition of ambient waters. Here we show that delta(18)O and deltaD sampled from 3.42-billion-year-old Buck Reef Chert rocks in South Africa are consistent with formation from waters at varied low temperatures. The most (18)O-enriched Buck Reef Chert rocks record the lowest diagenetic temperatures and were formed in equilibrium with waters below approximately 40 degrees C. Geochemical and sedimentary evidence suggests that the Buck Reef Chert was formed in shallow to deep marine conditions, so our results indicate that the Palaeoarchaean ocean was isotopically depleted relative to the modern ocean and far cooler (

  16. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago.

    PubMed

    Hren, M T; Tice, M M; Chamberlain, C P

    2009-11-12

    Stable oxygen isotope ratios (delta(18)O) of Precambrian cherts have been used to establish much of our understanding of the early climate history of Earth and suggest that ocean temperatures during the Archaean era ( approximately 3.5 billion years ago) were between 55 degrees C and 85 degrees C (ref. 2). But, because of uncertainty in the delta(18)O of the primitive ocean, there is considerable debate regarding this conclusion. Examination of modern and ancient cherts indicates that another approach, using a combined analysis of delta(18)O and hydrogen isotopes (deltaD) rather than delta(18)O alone, can provide a firmer constraint on formational temperatures without independent knowledge of the isotopic composition of ambient waters. Here we show that delta(18)O and deltaD sampled from 3.42-billion-year-old Buck Reef Chert rocks in South Africa are consistent with formation from waters at varied low temperatures. The most (18)O-enriched Buck Reef Chert rocks record the lowest diagenetic temperatures and were formed in equilibrium with waters below approximately 40 degrees C. Geochemical and sedimentary evidence suggests that the Buck Reef Chert was formed in shallow to deep marine conditions, so our results indicate that the Palaeoarchaean ocean was isotopically depleted relative to the modern ocean and far cooler (

  17. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  18. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    NASA Astrophysics Data System (ADS)

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-04-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits.

  19. The Origin of Dark Inclusions in Allende: New Evidence from Lithium Isotopes

    NASA Technical Reports Server (NTRS)

    Sephton, Mark A.; James, Rachael H.; Zolensky, Michael E.

    2006-01-01

    Aqueous and thermal processing of primordial material occurred prior to and during planet formation in the early solar system. A record of how solid materials were altered at this time is present in the carbonaceous chondrites, which are naturally delivered fragments of primitive asteroids. It has been proposed that some materials, such as the clasts termed dark inclusions found in type III chondrites, suggest a sequence of aqueous and thermal events. Lithium isotopes (Li-6 and Li-7) can reveal the role of liquid water in dark inclusion history. During aqueous alteration, Li-7 passes preferentially into solution leaving Li-6 behind in the solid phase and, consequently, any relatively extended periods of interaction with Li-7-rich fluids would have left the dark inclusions enriched in the heavier isotope when compared to the meteorite as a whole. Our analyses of lithium isotopes in Allende and its dark inclusions reveal marked isotopic homogeneity and no evidence of greater levels of aqueous alteration in dark inclusion history.

  20. Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene

    USGS Publications Warehouse

    Nielsen, S.G.; Mar-Gerrison, S.; Gannoun, A.; LaRowe, D.; Klemm, V.; Halliday, A.N.; Burton, K.W.; Hein, J.R.

    2009-01-01

    The first high resolution thallium (Tl) isotope records in two ferromanganese crusts (Fe-Mn crusts), CD29 and D11 from the Pacific Ocean are presented. The crusts record pronounced but systematic changes in 205Tl/203Tl that are unlikely to reflect diagenetic overprinting or changes in isotope fractionation between seawater and Fe-Mn crusts. It appears more likely that the Fe-Mn crusts track the Tl isotope composition of seawater over time. The present-day oceanic residence time of Tl is estimated to be about 20,000??yr, such that the isotopic composition should reflect ocean-wide events. New and published Os isotope data are used to construct age models for these crusts that are consistent with each other and significantly different from previous age models. Application of these age models reveals that the Tl isotope composition of seawater changed systematically between ~ 55??Ma and ~ 45??Ma. Using a simple box model it is shown that the present day Tl isotope composition of seawater depends almost exclusively on the ratio between the two principal output fluxes of marine Tl. These fluxes are the rate of removal of Tl from seawater via scavenging by authigenic Fe-Mn oxyhydroxide precipitation and the uptake rate of Tl during low temperature alteration of oceanic crust. It is highly unlikely that the latter has changed greatly. Therefore, assuming that the marine Tl budget has also not changed significantly during the Cenozoic, the low 205Tl/203Tl during the Paleocene is best explained by a more than four-fold higher sequestration of Tl by Fe-Mn oxyhydroxides compared with at the present day. The calculated Cenozoic Tl isotopic seawater curve displays a striking similarity to that of S, providing evidence that both systems may have responded to the same change in the marine environment. A plausible explanation is a marked and permanent increase in organic carbon export from ~ 55??Ma to ~ 45??Ma, which led to higher pyrite burial rates and a significantly reduced

  1. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean.

    PubMed

    Garvin, Jessica; Buick, Roger; Anbar, Ariel D; Arnold, Gail L; Kaufman, Alan J

    2009-02-20

    The nitrogen cycle provides essential nutrients to the biosphere, but its antiquity in modern form is unclear. In a drill core though homogeneous organic-rich shale in the 2.5-billion-year-old Mount McRae Shale, Australia, nitrogen isotope values vary from +1.0 to +7.5 per mil (per thousand) and back to +2.5 per thousand over approximately 30 meters. These changes evidently record a transient departure from a largely anaerobic to an aerobic nitrogen cycle complete with nitrification and denitrification. Complementary molybdenum abundance and sulfur isotopic values suggest that nitrification occurred in response to a small increase in surface-ocean oxygenation. These data imply that nitrifying and denitrifying microbes had already evolved by the late Archean and were present before oxygen first began to accumulate in the atmosphere.

  2. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident

    PubMed Central

    Zheng, Jian; Tagami, Keiko; Watanabe, Yoshito; Uchida, Shigeo; Aono, Tatsuo; Ishii, Nobuyoshi; Yoshida, Satoshi; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2012-01-01

    The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as 129mTe, 131I, 134Cs, 136Cs and 137Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu isotopes remains uncertain almost one year after the accident. Here we report the isotopic evidence for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20–30 km zones. The high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term 241Pu dose assessment, and the ingrowth of 241Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination. PMID:22403743

  3. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    SciTech Connect

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  4. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments

    NASA Astrophysics Data System (ADS)

    Hu, Ningjing; Huang, Peng

    2016-04-01

    Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments Hu Ning-jinga, Huang Pengb,, Liu Ji-huaa, a First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China To investigate the source of Pb within Bohai Bay, Pb concentrations and Pb isotopic compositions (204Pb, 206Pb, 207Pb, and 208Pb) of surface sediments in this area were determined. The Pb concentration in this bay varied widely from 6.9 to 39.2 μg/g (average: 21.8 ± 7.8 μg/g), and the Pb isotopic compositions ranged from 0.8338 to 0.8864 (average: 2.0997 ± 0.0180) for 208Pb/206Pb and from 2.0797 to 2.1531 (average: 0.8477 ± 0.0135) for 207Pb/206Pb, presenting in three distinct clusters. The Pb isotopic ratios of sediments from the northeastern (NE zone) and northwestern (NW zone) coastal areas were significantly influenced by anthropogenic sources such as coal combustion and automobile emission. In sediments from the central and southern Bohai Bay (C-S zone); however, Pb mainly originated from the Yellow River catchment, as a result of lithogenic sediment (from rock weathering) accumulation. The Pb isotopic ratios further indicate that, apart from riverine inputs, the neighboring large-scale ports and aerosols significantly contributed to the anthropogenic Pb contained in these sediments. Pb contamination in the Haihe and Luanhe river mouths as well as in the regions near ports is also suggested from anthropogenic enrichment factors. As cities and ports continue to develop around Bohai Bay, a long-term extensive sewage monitoring program is highly recommended.

  5. Comparative Evaluation of Inoculation of Urine Samples with the Copan WASP and BD Kiestra InoqulA Instruments.

    PubMed

    Iversen, Jesper; Stendal, Gitta; Gerdes, Cecilie M; Meyer, Christian H; Andersen, Christian Østergaard; Frimodt-Møller, Niels

    2016-02-01

    This study evaluated the quantitative results from and quality of the inoculation patterns of urine specimens produced by two automated instruments, the Copan WASP and the BD InoqulA. Five hundred twenty-six urine samples submitted in 10-ml canisters containing boric acid were processed within 30 min on an InoqulA instrument plating 10 μl of specimen, and on two WASP instruments, one plating 1 μl of specimen (WASP-1), and the second plating 10 μl of WASP (WASP-10). All samples were incubated, analyzed, and digitally imaged using the BD Kiestra total lab automation system. The results were evaluated using a quantitative protocol and assessed for the presence or absence of ≥5 distinct colonies. Separate studies were conducted using quality control (QC) organisms to determine the relative accuracy of WASP-1, WASP-10, and InoqulA instruments compared to the results obtained with a calibrated pipette. The results with QC organisms were calculated as the ratios of the counts of the automated instruments divided by the counts for the calibrated pipette (the gold standard method). The ratios for the InoqulA instrument were closest to 1.0, with the smallest standard deviations indicating that compared to a calibrated pipette, the InoqulA results were more accurate than those with the WASP instrument. For clinical samples, the WASP instruments produced higher colony counts and more commensals than the InoqulA instrument, with differences most notable for WASP-1. The InoqulA instrument was significantly better at dispersing organisms with counts of ≥10(5) bacteria/ml of urine than were the WASP-1 and WASP-10 instruments (P < 0.05). Our results suggest that the InoqulA quantitative results are more accurate than the WASP results, and, moreover, the number of isolated colonies produced by the InoqulA instrument was significantly greater than that produced by the WASP instrument. PMID:26607980

  6. Comparative Evaluation of Inoculation of Urine Samples with the Copan WASP and BD Kiestra InoqulA Instruments

    PubMed Central

    Iversen, Jesper; Stendal, Gitta; Gerdes, Cecilie M.; Meyer, Christian H.; Andersen, Christian Østergaard

    2015-01-01

    This study evaluated the quantitative results from and quality of the inoculation patterns of urine specimens produced by two automated instruments, the Copan WASP and the BD InoqulA. Five hundred twenty-six urine samples submitted in 10-ml canisters containing boric acid were processed within 30 min on an InoqulA instrument plating 10 μl of specimen, and on two WASP instruments, one plating 1 μl of specimen (WASP-1), and the second plating 10 μl of WASP (WASP-10). All samples were incubated, analyzed, and digitally imaged using the BD Kiestra total lab automation system. The results were evaluated using a quantitative protocol and assessed for the presence or absence of ≥5 distinct colonies. Separate studies were conducted using quality control (QC) organisms to determine the relative accuracy of WASP-1, WASP-10, and InoqulA instruments compared to the results obtained with a calibrated pipette. The results with QC organisms were calculated as the ratios of the counts of the automated instruments divided by the counts for the calibrated pipette (the gold standard method). The ratios for the InoqulA instrument were closest to 1.0, with the smallest standard deviations indicating that compared to a calibrated pipette, the InoqulA results were more accurate than those with the WASP instrument. For clinical samples, the WASP instruments produced higher colony counts and more commensals than the InoqulA instrument, with differences most notable for WASP-1. The InoqulA instrument was significantly better at dispersing organisms with counts of ≥105 bacteria/ml of urine than were the WASP-1 and WASP-10 instruments (P < 0.05). Our results suggest that the InoqulA quantitative results are more accurate than the WASP results, and, moreover, the number of isolated colonies produced by the InoqulA instrument was significantly greater than that produced by the WASP instrument. PMID:26607980

  7. Osmium Isotopic Evidence Against an Impact at the Frasnian-Famennian Boundary

    NASA Astrophysics Data System (ADS)

    Gordon, G. W.; Turekian, K. K.; Rockman, M.; Over, J.

    2007-12-01

    Two sections across the Frasnian-Famennian boundary were analyzed for Re and Os concentrations and 187Os/188Os ratios to evaluate evidence for a meteoritic input coincident with this boundary and its associated mass extinction. These sections are from a siltstone and shale sequence at Irish Gulf in New York, US and a calcareous shale and ferromanganese oxide sequence at La Serre in France. The Irish Gulf section, with an initial 187Os/188Os of ~0.49, does not show the characteristic meteoritic Os imprint with a 187Os/188Os value of about 0.13. Both Re and Os are retained in this section, as indicated by the construction of an isochron with an age of 388 ±41 Ma, consistent with independently determined ages for the Frasnian-Famennian boundary. Although the La Serre section, with Os concentrations as high as 33 ppb and Re concentrations ranging from 1.4 to 7.4 ppb, might be expected to show excellent evidence for a meteoritic contribution, the highly radiogenic isotopic composition (187Os/188Os ranges from 2.42-3.61) instead suggests recent massive Re loss or addition of radiogenic Os. This open system behavior prevents the reconstruction of an initial 187Os/188Os value for the boundary at La Serre. Assuming reasonable Re concentrations prior to loss, however, the Os isotopic value is inconsistent with a large meteoritic component. In addition, this study reinforces the need for Os isotopic evidence, not only enriched PGE concentrations, as substantiation for a meteoritic impact.

  8. Stable isotope and DNA evidence for ritual sequences in Inca child sacrifice

    PubMed Central

    Wilson, Andrew S.; Taylor, Timothy; Ceruti, Maria Constanza; Chavez, Jose Antonio; Reinhard, Johan; Grimes, Vaughan; Meier-Augenstein, Wolfram; Cartmell, Larry; Stern, Ben; Richards, Michael P.; Worobey, Michael; Barnes, Ian; Gilbert, M. Thomas P.

    2007-01-01

    Four recently discovered frozen child mummies from two of the highest peaks in the south central Andes now yield tantalizing evidence of the preparatory stages leading to Inca ritual killing as represented by the unique capacocha rite. Our interdisciplinary study examined hair from the mummies to obtain detailed genetic and diachronic isotopic information. This approach has allowed us to reconstruct aspects of individual identity and diet, make inferences concerning social background, and gain insight on the hitherto unknown processes by which victims were selected, elevated in social status, prepared for a high-altitude pilgrimage, and killed. Such direct information amplifies, yet also partly contrasts with, Spanish historical accounts. PMID:17923675

  9. Neodymium and lead isotope evidence for enriched early Archean crust in North America

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Housh, Todd B.; Isachsen, Clark E.; Podosek, Frank A.; King, Janet E.

    1989-01-01

    Neodymium and lead isotope measurements and uranium-lead zircon geochronology from Archaean gneisses of the Slave Province in the Northwest Territories of Canada are reported. The gneisses contain zircons with cores older than 3.842 Gyr and an epsilon(Nd) (3.7 Gyr) of - 4.8. This is the oldest reported chondritic model age for a terrestrial sample and provides evidence for strongly enriched pre-3.8-Gyr crust, a reservoir complementary to the depleted mantle already in existence by 3.8 Gyr before the present.

  10. Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield

    SciTech Connect

    Stacey, J.S.; Hedge, C.E.

    1984-05-01

    The authors report zircon U-Pb, feldspar common Pb, whole-rock Sm-Nd, and Rb-Sr data from sample Z-103, a fine-grained granodiorite from the Jabal Khida region of the Saudi Arabian Shield (lat 21/sup 0/19'N; long 44/sup 0/50'W). The measurements yield conclusive evidence for continental crust of early Proterozoic age (approx.1630 Ma) at that locality. Furthermore, lead-isotope data indicate an even earlier, perhaps Archean, crustal history for the source of the lower Proterozoic rocks. 17 references, 4 figures, 1 table.

  11. Re-Os isotopic evidence for a lower crustal origin of massif-type anorthosites

    PubMed

    Schiellerup; Lambert; Prestvik; Robins; McBride; Larsen

    2000-06-15

    Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe-Ti oxides--the 930-Myr-old Rogaland anorthosite province in southwest Norway represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400-1,550 Myr. PMID:10866196

  12. Re-Os isotopic evidence for a lower crustal origin of massif-type anorthosites

    PubMed

    Schiellerup; Lambert; Prestvik; Robins; McBride; Larsen

    2000-06-15

    Massif-type anorthosites are large igneous complexes of Proterozoic age. They are almost monomineralic, representing vast accumulations of plagioclase with subordinate pyroxene or olivine and Fe-Ti oxides--the 930-Myr-old Rogaland anorthosite province in southwest Norway represents one of the youngest known expressions of such magmatism. The source of the magma and geodynamic setting of massif-type anorthosites remain long-standing controversies in Precambrian geology, with no consensus existing as to the nature of the parental magmas or whether these magmas primarily originate in the Earth's mantle or crust. At present, massif-type anorthosites are believed to have crystallized from either crustally contaminated mantle-derived melts that have fractionated olivine and pyroxenes at depth or primary aluminous gabbroic to jotunitic melts derived from the lower continental crust. Here we report rhenium and osmium isotopic data from the Rogaland anorthosite province that strongly support a lower crustal source for the parental magmas. There is no evidence of significantly older crust in southwest Scandinavia and models invoking crustal contamination of mantle-derived magmas fail to account for the isotopic data from the Rogaland province. Initial osmium and neodymium isotopic values testify to the melting of mafic source rocks in the lower crust with an age of 1,400-1,550 Myr.

  13. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes

    NASA Astrophysics Data System (ADS)

    Saunders, James A.; Mathur, Ryan; Kamenov, George D.; Shimizu, Toru; Brueseke, Matthew E.

    2016-01-01

    New Cu, S, and Pb isotope data provide evidence for a magmatic source of metal(loid)s and sulfur in epithermal Au-Ag deposits even though their ore-forming solutions are composed primarily of heated meteoric (ground) waters. The apparent isotopic discrepancy between ore metals and ore-forming solutions, and even between the ore and associated gangue minerals, indicates two different sources of epithermal ore-forming constituents: (1) a shallow geothermal system that not only provides the bulk of water for the ore-forming solutions but also major chemical constituents leached from host rocks (silica, aluminum, potassium, sodium, calcium) to make gangue minerals and (2) metals and metalloids (As, Te, Sb, etc.) and sulfur (±Se) derived from deeper magma bodies. Isotopic data are consistent with either vapor-phase transport of metal(loids) and sulfur and their subsequent absorption by shallow geothermal waters or formation of metallic (Au, Ag, Cu phases) nanoparticles at depth from magmatic fluids prior to encountering the geothermal system. The latter is most consistent with ore textures that indicate physical transport and aggregation of nanoparticles were significant ore-forming processes. The recognition that epithermal Au-Ag ores form in tectonic settings that produce magmas capable of releasing metal-rich fluids necessary to form these deposits can refine exploration strategies that previously often have focused on locating fossil geothermal systems.

  14. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Kelly, W.R.; Hwang, H.-H.

    2006-01-01

    Anthropogenic nitrate (NO3-) within the Mississippi-Atchafalaya River basin and discharge to the Gulf of Mexico has been linked to serious environmental problems. The sources of this NO 3- have been estimated by others using mass balance methods; however, there is considerable uncertainty in these estimates. Part of the uncertainty is the degree of denitrification that the NO3- has undergone. The isotopic composition of NO3- in the Mississippi River adjacent to Illinois and tile drain (subsurface drain) discharge in agricultural areas of east-central Illinois was examined using N and O isotopes to help identify the major sources of NO 3- and assess the degree of denitrification in the samples. The isotopic evidence suggests that most of the NO3- in the river is primarily derived from synthetic fertilizers and soil organic N, which is consistent with published estimates of N inputs to the Mississippi River. The 1:2 relationship between ??18O and ??15N also indicate that, depending on sample location and season, NO3- in the river and tile drains lias undergone significant denitrification, ranging from about 0 to 55%. The majority of the denitrification appears to have occurred before discharge into the Mississippi River. ?? ASA, CSSA, SSSA.

  15. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    SciTech Connect

    Akram, W.; Schönbächler, M.; Sprung, P.; Vogel, N.

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  16. Zirconium—Hafnium Isotope Evidence from Meteorites for the Decoupled Synthesis of Light and Heavy Neutron-rich Nuclei

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.; Sprung, P.; Vogel, N.

    2013-11-01

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope 96Zr (<=1ɛ in 96Zr/90Zr) for bulk chondrites and CAIs (~2ɛ). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the 96Zr isotope variations are of nucleosynthetic origin. The 96Zr enrichments are coupled with 50Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A <= 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. 96Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M ⊙) SNII.

  17. Sr-isotopic, paleomagnetic, and biostratigraphic calibration of horse evolution: Evidence from the Miocene of Florida

    SciTech Connect

    MacFadden, B.J.; Bryant, J.D.; Mueller, P.A. )

    1991-03-01

    During the middle Miocene an explosive adaptive radiation resulted in the advent of grazing horses with high-crowned teeth in North America. New Sr isotopic, paleomagnetic, and biostratigrahic evidence from the Miocene marine and nonmarine sequence of the Florida panhandle calibrates the base of this adaptive radiation. The transition from the primitive outgroup species 'Parahippus' leonensis to the most primitive high-crowned horse, 'Merychippus' gunteri occured after about 17.7 Ma. After this event, the lowest known stratigraphic level at which diversification (i.e., presence of two or more sympatric species) of grazing merychippine horses occurs is about 16.2 Ma, or within the early part of Chron C5BR. Although this currently is the only sequence where the parahippine-merychippine transition is directly calibrated, biochronologic evidence from other important, contemporaneous localities in Texas, Nebraska, and California indicate that diversification occured rapidly throughout North America between 15 and 16 Ma.

  18. Geochronological and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield.

    USGS Publications Warehouse

    Stacey, J.S.; Hedge, C.E.

    1984-01-01

    Zircon U/Pb, feldspar common Pb, whole-rock Sm/Nd, and Rb/Sr data indicate that the fine-grained granodiorite (Z103) has yielded conclusive evidence for rocks of early Proterozoic age in the eastern Arabian Shield (21o19' N, 44o50' W). Z103 may have been emplaced approx 1630 m.y. ago and subsequently was severely deformed or perhaps even remobilized at approx 660 m.y. Furthermore, lead isotope data, along with other evidence, show that the 1630 m.y. crustal rocks inherited material from an older, probably Archaean, source at the time of their formation. At that time addition of mantle material considerably modified the Rb-Sr and Sm-Nd systems so that they now yield similar, or only slightly older apparent ages (1600-1800 m.y.).-L.diH.

  19. Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence.

    PubMed

    Schidlowski, M

    1979-09-01

    The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary delta 34S patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the delta 34S spread observed in the Isua banded iron formation (3.7 x 10(9) yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope pattersn notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (approximately 3.0 x 10(9) yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75 x 10(9) yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8--3.1 x 10(9) yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO4(2-) Utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO4(2-) in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir.

  20. Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence.

    PubMed

    Schidlowski, M

    1979-09-01

    The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary delta 34S patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the delta 34S spread observed in the Isua banded iron formation (3.7 x 10(9) yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope pattersn notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (approximately 3.0 x 10(9) yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75 x 10(9) yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8--3.1 x 10(9) yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO4(2-) Utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO4(2-) in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir. PMID:503456

  1. Mineralogical, Chemical, and Isotopic Heterogeneity in Zagami: Evidence for a Complex Petrogenesis

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Misawa, K.; Shih, C-Y.; Niihara, T.; Park, J.

    2013-01-01

    Textural variations in the shergottite Zagami were initially interpreted as evidence that it formed in a heterogeneous lava flow. Variations in initial Sr-87/Sr-86 ratios between a Coarse Grained (CG) and a Fine Grained (FG) lithology and evidence for more extensive fractionation of the Rb/Sr ratio in a Dark Mottled Lithology (DML) are consistent with such an interpretation. More recently, Niihara et al. and Misawa et al. have reported the mineralogy and Sr-isotopic systematics of an Olivine Rich Lithology (ORL) found in association with the coarse-grained DML lithology in the Kanagawa Zagami specimen [6,7]. Here we call this lithology DML(Ka) to maintain a distinction with DML(USNM) as studied. An Ar-Ar study by Park et al. of a late stage K-rich melt enriched in K2O to approx 7% and intruded into ORL yielded an Ar-Ar age of 202+/0 7 Ma. The present work extends the study of Kanagawa Zagami to Nd-isotopes.

  2. PRESOLAR GRAINS FROM NOVAE: EVIDENCE FROM NEON AND HELIUM ISOTOPES IN COMET DUST COLLECTIONS

    SciTech Connect

    Pepin, Robert O.; Palma, Russell L.; Gehrz, Robert D.; Starrfield, Sumner

    2011-12-01

    Presolar grains in meteorites and interplanetary dust particles carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable {sup 3}He in these particles indicates space exposure to solar wind irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured {sup 4}He/{sup 20}Ne, {sup 20}Ne/{sup 22}Ne, {sup 21}Ne/{sup 22}Ne, and {sup 20}Ne/{sup 21}Ne isotope ratios, and a low upper limit on {sup 3}He/{sup 4}He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low {sup 4}He/{sup 20}Ne and high {sup 20}Ne/{sup 22}Ne ratios are the most diagnostic, reflecting the large predicted {sup 20}Ne abundances in the ejecta of such novae. The correspondence of measured Ne and He compositions in cometary matter with theoretical predictions is evidence for the presence of presolar grains from novae in the early solar system.

  3. Evidence for extinct 135Cs from Ba isotopes in Allende CAIs?

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Mezger, K.; Desch, S. J.; Scherer, E. E.; Horstmann, M.

    2014-05-01

    The abundance and distribution of isotopes throughout the Solar System can be used to constrain the number and type of nucleosynthetic events that contributed material to the early nebula. Barium is particularly well suited to quantifying the degree of isotope heterogeneity in the Solar System because it comprises seven stable isotopes that were synthesized by three different nucleosynthetic processes (s-, r-, and p-processes), all of which contributed material to the Solar System. There is also potential contribution to 135Ba from short-lived radioisotope 135Cs, conclusive evidence for which is yet to be reported. Four Allende (CV3) Ca,Al-rich inclusions (CAI 1, CAI 2, CAI 4, CAI 5) and one Allende dark inclusion (DI) were analyzed for Ba isotope variability. Two CAIs (CAI 2 and CAI 5) display 135Ba excesses that are not accompanied by 137Ba anomalies. Calcium-aluminum-rich inclusion 1 displays a 135Ba excess that is possibly coupled with a 137Ba excess, and the remaining refractory inclusions (CAI 2 and DI) have terrestrial Ba isotope compositions. These Ba isotope data are presented in conjunction with published whole rock Ba isotope data from individual Allende CAIs. The enrichment in 135Ba and absence of coupled 137Ba excesses in CAI 2 and CAI 5 is interpreted to indicate that the anomalies are not purely nucleosynthetic in origin but also contain contributions (16-48 ppm) from the decay of short-lived 135Cs. The majority of Allende CAIs studied to date may also have similar contributions from 135Cs on the basis of higher than expected 135Ba excesses if the Ba isotope anomalies were purely nucleosynthetic in origin. The 135Ba anomalies appear not to be coupled with superchondritic Cs/Ba, which may imply that the contribution to 135Ba did not occur via in situ decay of live 135Cs. However, it is feasible that the CAIs had a superchondritic Cs/Ba during decay of 135Cs, but Cs was subsequently removed from the system during aqueous alteration on the parent body

  4. Isotopic and physical evidence for persistently high eruption temperatures for Yellowstone-Snake River Plain rhyolites

    NASA Astrophysics Data System (ADS)

    Loewen, M.; Bindeman, I. N.; Melnik, O. E.

    2015-12-01

    Low crystallinity rhyolite lavas and tuffs from the Yellowstone-Snake River plain system were long-thought to erupt at high 800-900 °C temperatures with evidence derived from experimental work and geothermometry (e.g., QUILF, Ti-in-quartz). Despite this evidence, newer experimental phase equilibria studies as well as a reformulation of zircon saturation temperatures support lower temperature magma eruption conditions. Here we present two independent lines of evidence for 850 °C and greater temperatures. We present high precision oxygen isotope thermometry for coexisting quartz, glass, pyroxene, and magnetite in order make temperature estimates independent of phase equilibria. For all analyzed Snake River Plain-Yellowstone rhyolites, we determine 800-1100 °C temperatures for clinopyroxene and 850-1100 °C temperatures for magnetite. Extremely slow oxygen diffusion in pyroxene will preserve oxygen isotope crystal composition for millions of years stored at magmatic temperatures. Interestingly, oxygen in magnetite will reequilibrate in <1000 years, so systematically higher magnetite-quartz temperatures suggests a short lifespan of magmas from liquidus crystallization to eruption. In an alternative approach, we have modeled the physical emplacement of the large volume (up to 70 km3) rhyolite lavas of the recent Central Plateau Member group. Using simple solutions to gravity-driven viscous fluid flow, we have made first-order estimates for extremely high discharge rates in order to enable effusion of sufficient volume in relatively axisymmetric morphologies—where glacial ice caps or prexisiting topography did not otherwise restrict flow. Using these results and simple conductive cooling models, we show that flows erupted at >800 °C and probably ~850 °C in order to be emplaced before cooling below the melt-glass transition and forming a more dome-like and lobate morphology.

  5. Molybdenum Isotopic evidence of anoxia at Permo-Triassic boundary from Spiti Valley Himalaya

    NASA Astrophysics Data System (ADS)

    Rai, V. K.; Shukla, A. D.; Kamath, S.

    2013-12-01

    Permo-Triassic (PT) extinction was the most devastating event in the history of life on Earth which occurred around 251 Ma ago. The exact cause of extinction remains uncertain. To understand the cause of extinction, we studied the redox sensitive elements, sulfur and Mo isotopes from the PT section of Spiti valley of Himalaya, India. In Spiti valley, 1-10 cm of ferruginous band of sediments separates the Permian shale from Triassic limestone. Analyses of redox sensitive elements such as As, Mo, As, Ni, Sb, Th, Mn and Fe show clear evidence of anoxia or euxinia. Here we present molybdenum abundance and isotopes analysis of PT sedimentary section which has potential to distinguish between sulfidic deep water (Euxinia), suboxic and oxic conditions. Mo is redox sensitive and the most abundant transition metal in present day ocean. It enters the ocean through rivers (δ98/95Mo~ 0‰) and remains in the water as moderately unreactive MoO4-- form. Under the oxidizing marine conditions similar to present day, Mo from water column is slowly removed by incorporation into ferromanganese phases with preferential removal of lighter Mo isotopes (δ98/95Mo ~-0.7‰). As a result, the ocean water is enriched in heavier isotope (δ98/95Mo ~2.3‰). However, in euxinic conditions with sulfidic deep water ([H2S]>100μM), Mo is quantitatively removed from the solution as MoS4-- without isotopic fractionation. Therefore Mo isotopic composition of sediments deposited under these conditions represents the Mo composition of water. Earlier studies of different PT sections showed prevalence of anoxic or euxinic condition during P-T transition, therefore the Mo isotope analysis of PT sediments should let us know about extent of anoxia at the Spiti site which was open towards and well connected to super-ocean during end Permian. Mo concentration in the PT sedimentary section from Spiti showed clear enrichment with Mo content of 77 ppm at the boundary with δ98/95Mo value of 0.75‰. Whereas

  6. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    PubMed Central

    Fleming, Nicholas E.C.; Newton, Jason; Houghton, Jonathan D.R.

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position) were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that

  7. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    USGS Publications Warehouse

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (<5 Ma), Fiji) indicate that the fluids from which these minerals precipitated were of mixed magmatic and non-magmatic sources. The non-magmatic component of the fluid from the island arc deposits (Koloula, Waisoi) was ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  8. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    PubMed

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions

  9. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    PubMed

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions

  10. Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.; Agostini, S.; Cannaò, E.

    2012-12-01

    Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones by Serpentinized Mantle M. Scambelluri (1), S. Tonarini (2), S. Agostini (2), E. Cannaò (1) (1) Dipartimento di Scienze della Terra, Ambiente e vita, University of Genova, Italy (2) Istituto di Geoscienze e Georisorse-CNR, Pisa, Italy In subduction zones, fluid-mediated chemical exchange between slabs and mantle dictates volatile and incompatible element cycles and influences arc magmatism. Outstanding issues concern the sources of water for arc magmas and its slab-to-mantle wedge transport. Does it occur by slab dehydration beneath arc fronts, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? So far, the deep slab dehydration hypothesis had strong support, but the hydrated mantle wedge idea is advancing supported by studies of fluid-mobile elements in serpentinized wedge peridotites and their subducted high-pressure (HP) equivalents. Serpentinites are volatile and fluid-mobile element reservoirs for subduction: their dehydration causes large fluid and element flux to the mantle.However, direct evidence for their key role in arc magmatism and identification of dehydration environments has been elusive and boron isotopes can trace the process. Until recently, the altered oceanic crust (AOC) was considered the 11B reservoir for arcs, which largely display positive δ11B. However, shallow slab dehydration transfers 11B to the fore-arc mantle and leaves the residual AOC very depleted in 11B below arcs. Here we present high positive δ11B of HP serpentinized peridotites from Erro Tobbio (Ligurian Alps), recording subduction metamorphism from hydration at low-grade to eclogite-facies dehydration. We show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. The dataset is completed by B isotope data on other HP Alpine serpentinites from Liguria and Lanzo Massif. In general, the δ11B of these rocks is heavy (16 to + 30 permil

  11. Evidence for dilution of deep, confined ground water by vertical recharge of isotopically heavy Pleistocene water

    SciTech Connect

    Siegel, D.I. )

    1991-05-01

    New analyses of the isotopic composition of water, {sup 14}C-dating of dissolved inorganic carbon, and order-of-magnitude Darcy calculations suggest that a dilute body of water, trending north-south in the Cambrian-Ordovician aquifer of Iowa, was emplaced as vertical recharge of Pleistocene-age water from the base of the Des Moines lobe of late Wisconsin time. The recharge occurred through more than 300 m of overlaying Silurian to Mississippian age rocks. The {delta}{sup 18}O values range from {minus}10{per thousand} to {minus}9{per thousand} for the dilute water body and are consistent with a mixture of Des Moines lobe meltwater and precipitation found today in the north-central US. These results suggest that (1) the climate at the end of the last glaciation was mild and (2) a ground-water stable isotope signature similar to that of modern precipitation in an aquifers recharge area is not a priori evidence for relatively recent recharge.

  12. Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees

    PubMed Central

    Fahy, Geraldine E.; Richards, Michael; Riedel, Julia; Hublin, Jean-Jacques; Boesch, Christophe

    2013-01-01

    Observations of hunting and meat eating in our closest living relatives, chimpanzees (Pan troglodytes), suggest that among primates, regular inclusion of meat in the diet is not a characteristic unique to Homo. Wild chimpanzees are known to consume vertebrate meat, but its actual dietary contribution is, depending on the study population, often either unknown or minimal. Constraints on continual direct observation throughout the entire hunting season mean that behavioral observations are limited in their ability to accurately quantify meat consumption. Here we present direct stable isotope evidence supporting behavioral observations of frequent meat eating among wild adult male chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d’Ivoire. Meat eating among some of the male chimpanzees is significant enough to result in a marked isotope signal detectable on a short-term basis in their hair keratin and long-term in their bone collagen. Although both adult males and females and juveniles derive their dietary protein largely from daily fruit and seasonal nut consumption, our data indicate that some adult males also derive a large amount of dietary protein from hunted meat. Our results reinforce behavioral observations of male-dominated hunting and meat eating in adult Taï chimpanzees, suggesting that sex differences in food acquisition and consumption may have persisted throughout hominin evolution, rather than being a recent development in the human lineage. PMID:23530185

  13. Stable isotope evidence for an amphibious phase in early proboscidean evolution

    PubMed Central

    Liu, Alexander G. S. C.; Seiffert, Erik R.; Simons, Elwyn L.

    2008-01-01

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring δ18O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low δ18O values and low δ18O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. δ13C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C3 terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors. PMID:18413605

  14. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    PubMed

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  15. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    PubMed

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.

  16. Isotopic evidence for microbial sulphate reduction in the early Archaean era.

    PubMed

    Shen, Y; Buick, R; Canfield, D E

    2001-03-01

    Sulphate-reducing microbes affect the modern sulphur cycle, and may be quite ancient, though when they evolved is uncertain. These organisms produce sulphide while oxidizing organic matter or hydrogen with sulphate. At sulphate concentrations greater than 1 mM, the sulphides are isotopically fractionated (depleted in 34S) by 10-40/1000 compared to the sulphate, with fractionations decreasing to near 0/1000 at lower concentrations. The isotope record of sedimentary sulphides shows large fractionations relative to seawater sulphate by 2.7 Gyr ago, indicating microbial sulphate reduction. In older rocks, however, much smaller fractionations are of equivocal origin, possibly biogenic but also possibly volcanogenic. Here we report microscopic sulphides in approximately 3.47-Gyr-old barites from North Pole, Australia, with maximum fractionations of 21.1/1000, about a mean of 11.6/1000, clearly indicating microbial sulphate reduction. Our results extend the geological record of microbial sulphate reduction back more than 750 million years, and represent direct evidence of an early specific metabolic pathway--allowing time calibration of a deep node on the tree of life.

  17. Isotopic Evidence for Neogene Hominid Paleoenvironments in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Kingston, John D.; Marino, Bruno D.; Hill, Andrew

    1994-05-01

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition (δ13C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed δ13C values offer no evidence for a shift from more-closed C3 environments to C4 grassland habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  18. Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley

    SciTech Connect

    Kingston, J.D.; Hill, A. ); Marino, B.D. )

    1994-05-13

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition ([delta][sup 13]C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed [delta][sup 13]C values offer no evidence for a shift from more-closed C3 environments to C4 grasslands habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  19. A Randomized Controlled Trial of the Plastic-Housing BioSand Filter and Its Impact on Diarrheal Disease in Copan, Honduras

    PubMed Central

    Fabiszewski de Aceituno, Anna M.; Stauber, Christine E.; Walters, Adam R.; Meza Sanchez, Rony E.; Sobsey, Mark D.

    2012-01-01

    Point of use drinking water treatment with the BioSand filter (BSF) allows people to treat their water in the home. The purpose of this research was to document the ability of the Hydraid plastic-housing BSF to reduce diarrheal disease in households who received a BSF in a randomized controlled trial. The trial of the Hydraid plastic-housing BSF was carried out in rural, mountainous communities in Copan, Honduras during April of 2008 to February of 2009. A logistic regression adjusting for clustering showed that the incidence of diarrheal disease in children under 5 years was reduced by approximately 45% (odds ratio = 0.55, 95% confidence interval = 0.28, 1.10) in households that had a BSF compared with those households without a BSF, but this finding fluctuated depending on season and was not statistically significant. Households with a BSF had significantly better drinking water quality regardless of water source or season. PMID:22665593

  20. Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy.

    PubMed

    Valley, J W; Eiler, J M; Graham, C M; Gibson, E K; Romanek, C S; Stolper, E M

    1997-03-14

    The martian meteorite ALH84001 contains small, disk-shaped concretions of carbonate with concentric chemical and mineralogical zonation. Oxygen isotope compositions of these concretions, measured by ion microprobe, range from delta18O = +9.5 to +20.5 per thousand. Most of the core of one concretion is homogeneous (16.7 +/- 1.2 per thousand) and over 5 per thousand higher in delta18O than a second concretion. Orthopyroxene that hosts the secondary carbonates is isotopically homogeneous (delta18O = 4.6 +/- 1.2 per thousand). Secondary SiO2 has delta18O = 20.4 per thousand. Carbon isotope ratios measured from the core of one concretion average delta13C = 46 +/- 8 per thousand, consistent with formation on Mars. The isotopic variations and mineral compositions offer no evidence for high temperature (>650 degrees C) carbonate precipitation and suggest non-equilibrium processes at low temperatures (< approximately 300 degrees C). PMID:9054355

  1. Low-temperature carbonate concretions in the Martian meteorite ALH84001: evidence from stable isotopes and mineralogy

    NASA Technical Reports Server (NTRS)

    Valley, J. W.; Eiler, J. M.; Graham, C. M.; Gibson, E. K.; Romanek, C. S.; Stolper, E. M.

    1997-01-01

    The martian meteorite ALH84001 contains small, disk-shaped concretions of carbonate with concentric chemical and mineralogical zonation. Oxygen isotope compositions of these concretions, measured by ion microprobe, range from delta18O = +9.5 to +20.5 per thousand. Most of the core of one concretion is homogeneous (16.7 +/- 1.2 per thousand) and over 5 per thousand higher in delta18O than a second concretion. Orthopyroxene that hosts the secondary carbonates is isotopically homogeneous (delta18O = 4.6 +/- 1.2 per thousand). Secondary SiO2 has delta18O = 20.4 per thousand. Carbon isotope ratios measured from the core of one concretion average delta13C = 46 +/- 8 per thousand, consistent with formation on Mars. The isotopic variations and mineral compositions offer no evidence for high temperature (>650 degrees C) carbonate precipitation and suggest non-equilibrium processes at low temperatures (< approximately 300 degrees C).

  2. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica.

    PubMed

    Sugiyama, Nawa; Somerville, Andrew D; Schoeninger, Margaret J

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1-550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma's zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29). PMID:26332042

  3. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica

    PubMed Central

    Sugiyama, Nawa; Somerville, Andrew D.; Schoeninger, Margaret J.

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1–550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma’s zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29). PMID:26332042

  4. Stable Isotopes and Zooarchaeology at Teotihuacan, Mexico Reveal Earliest Evidence of Wild Carnivore Management in Mesoamerica.

    PubMed

    Sugiyama, Nawa; Somerville, Andrew D; Schoeninger, Margaret J

    2015-01-01

    From Roman gladiatorial combat to Egyptian animal mummies, the capture and manipulation of carnivores was instrumental in helping to shape social hierarchies throughout the ancient world. This paper investigates the historical inflection point when humans began to control animals not only as alimental resources but as ritual symbols and social actors in the New World. At Teotihuacan (A.D. 1-550), one of the largest pre-Hispanic cities, animal remains were integral components of ritual caches expressing state ideology and militarism during the construction of the Moon and the Sun Pyramids. The caches contain the remains of nearly 200 carnivorous animals, human sacrificial victims and other symbolic artifacts. This paper argues the presence of skeletal pathologies of infectious disease and injuries manifest on the carnivore remains show direct evidence of captivity. Stable isotope analysis (δ13C and δ15N) of bones and teeth confirms that some of these carnivores were consuming high levels of C4 foods, likely reflecting a maize-based anthropocentric food chain. These results push back the antiquity of keeping captive carnivores for ritualistic purposes nearly 1000 years before the Spanish conquistadors described Moctezuma's zoo at the Aztec capital. Mirroring these documents the results indicate a select group of carnivores at Teotihuacan may have been fed maize-eating omnivores, such as dogs and humans. Unlike historical records, the present study provides the earliest and direct archaeological evidence for this practice in Mesoamerica. It also represents the first systematic isotopic exploration of a population of archaeological eagles (n = 24) and felids (n = 29).

  5. Global mantle convection: Evidence from carbon and nitrogen isotopes in super-deep diamonds (Invited)

    NASA Astrophysics Data System (ADS)

    Palot, M.; Cartigny, P.; Harris, J.; Kaminsky, F. V.; Stachel, T.

    2009-12-01

    Constraining the convective regime of the Earth’s mantle has profound implications for our understanding of the Earth’s cooling and the geodynamics of plate tectonics. Although subducting plates seem to be occasionally deflected at 660 km, evidence from seismic tomography and fluid dynamics suggest that substantial amounts of material reach the core-mantle boundary. Most geochemists, on the other hand, based on evidence from noble gases, would argue for the presence of separate upper and lower mantle reservoirs. Diamond provides a unique opportunity to sample those parts of the mantle that remains inaccessible by any other means. Some mineral associations in diamond, such as majoritic garnet, calcic and magnesian perovskite and manganoan ilmenite with ferropericlase have been recognised as originated from the transition zone down to the lower mantle (Stachel et al., 1999; Kaminsky et al., 2001). In addition, nitrogen in these diamonds is potentially a good tracer for mantle geodynamics. Exchanges between an inner reservoir (characterised by negative δ15N) via degassing at oceanic ridges with an outer reservoir (characterised by positive δ15N) via recycling at a subduction zones can lead to isotopic contrast in a stratified mantle. Because of common super-deep mineral inclusion assemblages in diamonds from Juina (Brazil) and Kankan (Guinea), we carried out a detailed study of nitrogen and carbon isotopes. The Juina diamonds show broadly similar ranges of δ15N from +3.8‰ down to -8.8‰ for both upper (UM) and lower (LM) mantle diamonds. This important feature is also found for UM and LM diamonds from Kankan, although the range of δ15N differs with values from +9.6‰ down to -39.4‰. Both sets of results suggest extensive material-isotopic exchange through the 660km discontinuity, contrary to the idea of an isolated reservoir. Transition zone (TZ) diamonds are enriched in 13C with δ13C from -3.1‰ up to +3.8‰ at Kankan but those of Juina are depleted

  6. Isotopic inhomogeneity of leaf water: Evidence and implications for the use of isotopic signals transduced by plants

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; DeNiro, Michael J.; Rundel, Philip W.

    1989-10-01

    Variations as large as 11%. in δ18O values and 50%. in δD values were observed among different fractions of water in leaves of ivy (Hedera helix) and sunflower (Helianthus annuus). This observation contradicts previous experimental approaches to leaf water as an isotopically uniform pool. Using ion analysis of the water fractions to identify sources within the leaf, we conclude that the isotopic composition of the water within cells, which is involved in biosynthesis and therefore recorded in the plant organic matter, differs substantially from that of total leaf water. This conclusion must be taken into account in studies in which isotope ratios of fossil plant cellulose are interpreted in paleoclimatic terms. In addition, our results have implications for attempts to explain the Dole effect and to account for the variations of 18O/16O ratios in atmospheric carbon dioxide, since the isotopic composition of cell water, not of total leaf water, influences theδ18O values of O2 and CO2 released from plants into the atmosphere.

  7. Oxygen isotope evidence for orbital-scale glacio-eustasy during middle Paleozoic greenhouse climates

    NASA Astrophysics Data System (ADS)

    Theiling, B. P.; Elrick, M.

    2011-12-01

    Orbital-scale cycles (or parasequences) are pervasive throughout Phanerozoic and Precambrian marine deposits. Cycles deposited under cool (icehouse) conditions are commonly attributed to orbitally-driven glacio-eustasy whereas cycles forming during warm (greenhouse) climates, which lack direct evidence for glacial ice, are not well understood because autogenic and tectonic processes can often be eliminated. This study utilizes δ18O of marine apatite to explore whether orbital-scale glacio-eustasy controlled cycle formation during Paleozoic greenhouse time intervals. Stacked orbital-scale carbonate cycles within the Upper Silurian Henryhouse Formation of central Oklahoma and the Upper Devonian Devil's Gate Formation of central Nevada were sampled for conodont apatite. Both successions accumulated in shallow epicontinental seas on the flooded North American craton in southern tropical paleolatitudes. Subtidal cycles (2-7 m thick) at both locations are generally composed of deeper subtidal skeletal mudstone-wackestone that coarsen upward into shallow subtidal skeletal wackestone-packstone at cycle tops which show no evidence of subaerial exposure. Conodont δ18O values from the Silurian range from 15.8-19.5% and the Devonian from 16.3-19.0%. The majority of sampled Silurian and Devonian cycles record low δ18O values in the deepest water facies (during sea-level rise and highstand) and higher δ18O values in the shallowest water facies (during sea-level fall and lowstand). The magnitude of isotopic shift across individual cycles ranges from 2.2-3.1% for Silurian and ≤1.6% for Devonian cycles. If the intracycle isotopic shifts were due only to seawater temperature changes, then subtropical surface seawater temperature (SST) fluctuated between ~6-14°C during individual cycle formation. This magnitude of shift is greater than that recorded in the tropics since the Last Glacial Maximum, suggesting that the Silurian and Devonian isotopic shifts were not just the result

  8. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Chen, James H.; Zhang, Junjun; Papanastassiou, Dimitri A.; Davis, Andrew M.; Travaglio, Claudia

    2014-12-01

    Thermal ionization mass spectrometry (TIMS) was used to measure the calcium isotopic compositions of carbonaceous, ordinary, enstatite chondrites as well as eucrites and aubrites. We find that after correction for mass-fractionation by internal normalization to a fixed 42Ca/44Ca ratio, the 43Ca/44Ca and 46Ca/44Ca ratios are indistinguishable from terrestrial ratios. In contrast, the 48Ca/44Ca ratios show significant departure from the terrestrial composition (from -2 ε in eucrites to +4 ε in CO and CV chondrites). Isotopic anomalies in ε48Ca correlate with ε50Ti: ε 48Ca=(1.09±0.11)×ε 50Ti+(0.03±0.14). Further work is needed to identify the carrier phase of 48Ca-50Ti anomalies but we suggest that it could be perovskite and that the stellar site where these anomalies were created was also responsible for the nucleosynthesis of the bulk of the solar system inventory of these nuclides. The Earth has identical 48Ca isotopic composition to enstatite chondrites (EH and EL) and aubrites. This adds to a long list of elements that display nucleosynthetic anomalies at a bulk planetary scale but show identical or very similar isotopic compositions between enstatite chondrites, aubrites, and Earth. This suggests that the inner protoplanetary disk was characterized by a uniform isotopic composition (IDUR for Inner Disk Uniform Reservoir), sampled by enstatite chondrites and aubrites, from which the Earth drew most of its constituents. The terrestrial isotopic composition for 17O, 48Ca, 50Ti, 62Ni, and 92Mo is well reproduced by a mixture of 91% enstatite, 7% ordinary, and 2% carbonaceous chondrites. The Earth was not simply made of enstatite chondrites but it formed from the same original material that was later modified by nebular and disk processes. The Moon-forming impactor probably came from the same region as the other embryos that made the Earth, explaining the strong isotopic similarity between lunar and terrestrial rocks.

  9. STABLE ISOTOPIC EVIDENCE OF CARBON AND NITROGEN USE IN CULTURED ECTOMYCORRHIZAL AND SAPROTROPHIC FUNGI

    EPA Science Inventory

    Stable isotopes in sporocarps have proven useful for inferring ectomycorrhizal or saprotrophic status and understanding carbon (C) and nitrogen (N) utilization. However, greater understanding of processes producing isotopic concentrations is needed. We measured natural abundanc...

  10. Carbon Retention and Isotopic Evolution in Deeply Subducted Sediments: Evidence from the Italian Alps

    NASA Astrophysics Data System (ADS)

    Cook-Kollars, J.; Bebout, G. E.; Agard, P.; Angiboust, S.

    2012-12-01

    Subduction-zone metamorphism of oceanic crust and carbonate-rich seafloor sediments plays an important regulatory role in the global C cycle by controlling the fraction of subducting C entering long-term storage in the mantle and the fraction of subducting C emitted into the atmosphere in arc volcanic gases. Modeling studies suggest that the extent of decarbonation of subducting sediments could be strongly affected by extents of infiltration by external H2O-rich fluids and that, in cool subduction zones, the dehydration of subducting oceanic slabs may not release sufficient H2O to cause significant decarbonation of overlying sediments [Gorman et al. (2006), G-cubed; Hacker (2008), G-cubed]. Metasedimentary suites in the Western Alps (sampled from the Schistes Lustres, Zermatt-Saas ophiolite, and at Lago di Cignana) were subducted to depths corresponding to 1.5-3.2 GPa, over a range of peak temperatures of 350-600°C, and are associated with HP/UHP-metamorphosed Jurassic ophiolitic rocks [Agard et al. (2001), Bull. soc. geol. France; Frezzotti et al. (2011), Nature Geoscience]. These metasedimentary suites are composed of interlayered metapelites and metacarbonates and represent a range of peak P-T conditions experienced in modern, relatively cool subduction zones. Integrated petrologic and isotopic study of these rocks allows an analysis of decarbonation and isotopic exchange among oxidized and reduced C reservoirs along prograde subduction-zone P-T paths. Petrographic work on Schistes Lustres metacarbonates indicates only minor occurrences of calc-silicate phases, consistent with the rocks having experienced only very minor decarbonation during prograde metamorphism. Carbonate δ13CVPDB values (-1.5 to 1‰) are similar to values typical of marine carbonates. Higher grade, UHP-metamorphosed carbonates at Cignana show mineralogic evidence of decarbonation; however, the δ13C of the calcite in these samples remains similar to that of marine carbonate. With

  11. Isotopic evidence of dietary variations and weaning practices in the Gaya cemetery at Yeanri, Gimhae, South Korea.

    PubMed

    Choy, Kyungcheol; Jeon, Ok-Ryun; Fuller, Benjamin T; Richards, Micheal P

    2010-05-01

    Stable carbon and nitrogen isotope analyses were conducted to investigate dietary variation in human skeletons (n = 109) from the Gaya cemetery at Yeanri located near Gimhae City, South Korea. The cemetery contained three distinct grave types dating to 4th-7th century AD. The main purposes of this research were to reconstruct palaeodiet in the Gaya population and to explore correlations between stable isotope compositions and burial types, inferred age, and sex of these individuals. The isotopic data indicate that the people at Yeanri consumed a predominantly C(3)-based terrestrial diet supplemented with freshwater and/or marine resources. The comparison of isotopic results reveals significant differences in delta(13)C values among three adult burial types (wood-cist coffin: -18.5 +/- 0.5 per thousand, stone-cist coffin: -18.1 +/- 0.6 per thousand, mausoleum: -17.8 +/- 0.9 per thousand). Males in wood-cist and stone-cist coffins have relatively more elevated mean delta(13)C and delta(15)N values than females. The isotopic ratios from the two adult age groups (21-40 years and 40-60 years) indicate that there was no significant dietary change in individuals with age. The isotope data from the infants and children suggest the weaning was a gradual process that was completed between 3 and 4 years of age in the Gaya population. This evidence indicates that the dietary variations within the cemetery reflect social status, sex, and childhood consumption patterns.

  12. Isotopic equilibration between dissolved and suspended particulate lead in the Atlantic Ocean - Evidence from Pb-210 and stable Pb isotopes

    NASA Technical Reports Server (NTRS)

    Sherrell, Robert M.; Boyle, Edward A.; Hamelin, Bruno

    1992-01-01

    Vertical profiles of, on one hand, the stable Pb isotopic composition, and on the other, the ratio of total Pb to Pb-210 in suspended particles, are noted to closely track contemporaneous depth variations in these ratios for dissolved Pb throughout the upper 2 km of the Sargasso Sea near Bermuda. A simple flux model suggests that the effect of deep ocean scavenging processes on the flux and isotopic composition of Pb sinking on large particles was minor throughout the preanthropogenic, and most of the anthropogenic era: but it has become more important as surface inputs decrease to preleaded gasoline levels, perhaps exceeding the contribution of surface-derived Pb flux in the next decade.

  13. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence.

    PubMed

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J

    2016-01-19

    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction. PMID:26709616

  14. Evidence from Hydrogen Isotopes in Meteorites for a Subsurface Hydrogen Reservoir on Mars

    NASA Technical Reports Server (NTRS)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have conducted in situ hydrogen isotope (D/H) analyses of quenched and impact glasses in three Martian meteorites (Yamato 980459, EETA79001, LAR 06319) by Cameca ims-6f at Digital Terrain Models (DTM) following the methods of [1]. The hydrogen isotope analyses provide evidence for the existence of a distinct but ubiquitous water/ice reservoir (D/H = 2-3 times Earth's ocean water: Standard Mean Ocean Water (SMOW)) that lasted from at least the time when the meteorites crystallized (173-472 Ma) to the time they were ejected by impacts (0.7-3.3 Ma), but possibly much longer [2]. The origin of this reservoir appears to predate the current Martian atmospheric water (D/H equals approximately 5-6 times SMOW) and is unlikely to be a simple mixture of atmospheric and primordial water retained in the Martian mantle (D/H is approximately equal to SMOW [1]). Given the fact that this intermediate-D/H reservoir (2-3 times SMOW) is observed in a diverse range of Martian materials with different ages (e.g., SNC (Shergottites, Nakhlites, Chassignites) meteorites, including shergottites such as ALH 84001; and Curiosity surface data [3]), we conclude that this intermediate-D/H reservoir is likely a global surficial feature that has remained relatively intact over geologic time. We propose that this reservoir represents either hydrated crust and/or ground ice interbedded within sediments. Our results corroborate the hypothesis that a buried cryosphere accounts for a large part of the initial water budget of Mars.

  15. Isotopic evidence of source variations in commingled magma systems: Colorado River extensional corridor, Arizona and Nevada

    SciTech Connect

    Metcalf, R.V.; Smith, E.I.; Martin, M.W. . Dept. of Geoscience); Gonzales, D.A.; Walker, J.D. . Isotope Geochronology Lab.)

    1993-04-01

    Mixing of mantle derived mafic and crustal derived felsic magmas is a major Province-wide process forming Tertiary intermediate magmas within the Basin and Range. Major variations in magma sources, however, may exist in temporally and spatially related systems. Such variations are exemplified by two closely spaced plutons within the northern Colorado River extensional corridor. The 15.96 Ma Mt. Perkins pluton (MPP) was emplaced in three major phases: phase 1 (oldest) gabbro; phase 2 quartz diorite to hornblende granodiorite; and phase 3 biotite granodiorite ([+-]hbld). Phases 2 and 3 contain mafic microgranitoid enclaves (MME) that exhibit evidence of magma mingling. Combined data from phase 2 and 3 rocks, including MMW, shows positive [sup 87]Sr/[sup 86]Sr and negative [var epsilon]Nd correlations vs. SiO[sub 2] (50--72 wt %). Phase 2 rocks, which plot between phase 2 MME and MME-free phase 3 granodiorite, represent hybrid magmas formed by mixing of mantle and crustal derived magmas. Phase 1 gabbro falls off isotope-SiO[sub 2] trends and represents a separate mantle derived magma. The 13.2 Ma Wilson Ridge pluton (WRP), <20 km north of MPP, is cogenetic with the river Mountains volcano (RMV). In WRP an early diorite was intruded by a suite of monzodiorite to quartz monzonite. The monzodiorite portion contains MME and mafic schlieren representing mingled and mixed mafic magmas. The WRP and MPP represent two closely spaced isotopically distinct and separate magma systems. There are five magma sources. The two felsic mixing end members represent two different crustal magma sources. Two mantle sources are presented by MPP phase 1 gabbro and phase 2 MME, reflecting lithospheric and asthenospheric components, respectively. The latter represents the oldest reported Tertiary asthenospheric component within the region. A single lithospheric mantle source, different from the MPP gabbro, is indicated for the mafic mixing end member in the WRP-RMV suite.

  16. Identification of groundwater nitrate contamination from explosives used in road construction: Isotopic, chemical, and hydrologic evidence

    USGS Publications Warehouse

    Degnan, James R.; Bohlke, John Karl; Pelham, Krystle; David M. Langlais,; Walsh, Gregory J.

    2015-01-01

    Explosives used in construction have been implicated as sources of NO3– contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3– can be complicated by other NO3– sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3– transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3– sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3– (low δ15N, high δ18O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3– subjected to partial denitrification (high δ15N, high δ18O); (3) relatively persistent concentrations of blasting-related biogenic NO3– derived from nitrification of NH4+ (low δ15N, low δ18O); and (4) stable but spatially variable biogenic NO3– concentrations, consistent with recharge from septic systems (high δ15N, low δ18O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ15N/Δδ18O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  17. Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed.

    PubMed

    Brunet, F; Potot, C; Probst, A; Probst, J-L

    2011-10-15

    The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the

  18. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

  19. Submarine Hydrothermal Activity on the Aeolian Arc: New Evidence from Helium Isotopes

    NASA Astrophysics Data System (ADS)

    Lupton, J.; de Ronde, C.; Baker, E.; Sprovieri, M.; Bruno, P.; Italiano, F.; Walker, S.; Faure, K.; Leybourne, M.; Britten, K.; Greene, R.

    2008-12-01

    In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of δ3He = 23% at 610 m depth compared with background values of ~7%. We also found smaller but distinct δ3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had δ3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about δ3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He

  20. Stable Isotope Evidence of Variation in Nitrogen Fixation by Cyanobacteria in Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Paul, V.; Clementz, M.

    2006-12-01

    Increased nutrient loading via both natural and anthropogenic factors has been reported as one possible mechanism for the recent increase in the occurrence and intensity of harmful algal blooms (HAB) in coastal ecosystems. Influx of iron, phosphorous, and organic carbon have proven to be significant stimulating factors for HAB, since the benthic cyanobacteria that often make up these blooms are capable of nitrogen-fixation and require these nutrients for this process as well as photosynthesis. These cyanobacteria can switch to direct uptake of dissolved inorganic nitrogen (DIN), however, when concentrations are high enough to energetically favor this source, suggesting that high nitrogen input may also stimulate HAB. Given the distinct isotope differences between atmospheric N2 (0‰) and anthropogenic sources of DIN (>6‰), measurement of the δ15N composition of cyanobacteria can provide a means of gauging the relative significance of anthropogenic versus atmospheric nitrogen to the growth of these blooms. Likewise, the δ13C composition of these primary producers is controlled by the δ13C composition of the DIC, and can be a second tracer of anthropogenic influx into marine ecosystems. A combined approach using both isotope tracers was employed to determine the significance of anthropogenic nitrogen on HAB in subtropical/tropical coastal marine ecosystems. Samples of cyanobacteria and associated macroalgae were collected from three coastal sites in Guam (Facpi Point, Tanguisson, and Ypao Beach), one locality in Hawaii, and three sites in southern Florida (Pepper Park, Fort Lauderdale, Florida Keys). Following removal of marine carbonates via an acid rinse, the δ13C and δ15N values were determined for each species. Cyanobacterial δ15N values ranged from -2.3‰ to 7.7‰ with the highest values reported from sites in Guam. Only cyanobacteria sampled from Hawaii showed no isotope evidence of an anthropogenic source for nitrogen. A strong negative correlation

  1. Reply to: “Recycled” volatiles in mantle derived diamonds—Evidence from nitrogen and noble gas isotopic data

    NASA Astrophysics Data System (ADS)

    Gautheron, Cécile; Cartigny, Pierre; Moreira, Manuel; Harris, Jeff W.; Allègre, Claude J.

    2006-11-01

    In a reinterpretation of our published rare gas data obtained on polycrystalline diamonds from the Orapa kimberlite (Botswana) [C.E. Gautheron, P. Cartigny, M. Moreira, J.W. Harris and C.J. Allègre, Evidence for a mantle component shown by rare gases, C. and N isotopes in polycrystalline diamonds from Orapa (Botswana), Earth Planet. Sci. Lett., 240 (2005) 559-572.], Mohapatra and Honda [R.K. Mohapatra, and M. Honda, "Recycled" volatiles in mantle derived diamonds-evidence from nitrogen and noble gas isotopic data, Earth Planet. Sci. Lett., this issue, 2006.] claim that mixing between a-priori defined proportions of subducted seawater, subducted recycled oceanic crust, recycled sediments, air and the mantle would be more appropriate to account for the observations. This view sharply contrasts with our conclusions that the chemical and isotope compositions of rare gases record diamond formation from mantle-derived fluid(s) together with mantle post-crystallization radiogenic/nucleogenic/fissiogenic ingrowth and preferential diffusion of the lightest atoms out of the diamonds in the mantle [C.E. Gautheron, P. Cartigny, M. Moreira, J.W. Harris and C.J. Allègre, Evidence for a mantle component shown by rare gases, C and N isotopes in polycrystalline diamonds from Orapa (Botswana), Earth Planet. Sci. Lett., 240 (2005) 559-572.]. We present here reasons why the alternative view of Mohapatra and Honda [R.K. Mohapatra and M. Honda, "Recycled" volatiles in mantle derived diamonds-evidence from nitrogen and noble gas isotopic data, Earth Planet. Sci. Lett., this issue, 2006.] is not supportable.

  2. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  3. Evidence of fissiogenic Cs estimated from Ba isotopic deviations in an Oklo natural reactor zone

    NASA Astrophysics Data System (ADS)

    Hidaka, Hiroshi; Holliger, Philippe; Masuda, Akimasa

    1993-01-01

    Isotopic studies of many elements from the uranium ore natural nuclear reactors at Oklo provide useful information on the migration of radioactive nuclides. The fissiogenic isotopic composition of Ba is particularly interesting, as it is an important indication in the search for fissiogenic Cs. In this report we detail the detection of remarkable isotopic deviations of Ba in the Oklo samples and estimate the geochemical behaviour of fissiogenic Cs from excess Ba isotopes. Six samples systematically collected from borehole SF84 (zone 10) at the Oklo uranium mine have been analyzed. Isotopic deviations of Ba indicate the existence of fissiogenic Cs and Ba. A good correlation between the elemental abundance of Cs and isotopic abundances of excess 135Ba and 137Ba suggests that fissiogenic 135Ba and 137Ba behaved as Cs rather than Ba.

  4. Evidence of a warm early instrumental period found in temperature related water isotope records from high elevation Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Schöner, Wolfgang; Wagenbach, Dietmar

    2015-04-01

    reason for the systematic discrepancies within the EIP is not settled, we discuss their implications with respect to performing a calibration of the ice core isotope thermometer against instrumental data over the entire instrumental period. In order to illustrate dating uncertainties and the intricate role of snow deposition, the inter-core isotope comparison is supplemented by impurity time series, including a tentative look at evidence of volcanic eruptions within the EIP. Finally, newest ice core isotope evidence is evaluated in the light of inconsistencies between the multi-decadal temperature variability derived from instrumental and other proxy sources, including the possibility of the EIP-correction of instrumental data being overestimated, at least, with respect to the high Alpine air temperature.

  5. Mesoproterozoic graphite deposits, New Jersey Highlands: Geologic and stable isotopic evidence for possible algal origins

    USGS Publications Warehouse

    Volkert, R.A.

    2000-01-01

    Graphite deposits of Mesoproterozoic age are locally abundant in the eastern New Jersey Highlands, where they are hosted by sulphidic biotite-quartz-feldspar gneiss, metaquartzite, and anatectic pegmatite. Gneiss and metaquartzite represent a shallow marine shelf sequence of locally organic-rich sand and mud. Graphite from massive deposits within metaquartzite yielded ??13C values of -26 ?? 2??? (1??), and graphite from massive deposits within biotite-quartz-feldspar gneiss yielded ??13C values of -23 ??4???. Disseminated graphite from biotite-quartz-feldspar gneiss country rock was -22 ??3???, indistinguishable from the massive deposits hosted by the same lithology. Anatectic pegmatite is graphitic only where generated from graphite-bearing host rocks; one sample gave a ??13C value of -15???. The ??34S values of trace pyrrhotite are uniform within individual deposits, but vary from 0 to 9??? from one deposit to another. Apart from pegmatitic occurrences, evidence is lacking for long-range mobilization of carbon during Grenvillian orogenesis or post-Grenvillian tectonism. The field, petrographic, and isotope data suggest that massive graphite was formed by granulite-facies metamorphism of Proterozoic accumulations of sedimentary organic matter, possibly algal mats. Preservation of these accumulations in the sedimentary environment requires anoxic basin waters or rapid burial. Anoxia would also favour the accumulation of dissolved ferrous iron in basin waters, which may explain some of the metasediment-hosted massive magnetite deposits in the New Jersey Highlands. ?? 2000 NRC.

  6. Isotopic and elemental evidence for Scabland Flood sediments offshore Vancouver Island

    NASA Astrophysics Data System (ADS)

    Gombiner, Joel H.; Hemming, Sidney R.; Hendy, Ingrid L.; Bryce, Julia G.; Blichert-Toft, Janne

    2016-05-01

    Geological records contain evidence for catastrophic ice-sheet processes such as megafloods and massive ice discharges. Such large-scale phenomena, associated with ice sheet collapse, rapid sea-level rise, and disruptions to ocean circulation, have never been directly observed, but are forecast as a consequence of global warming. Here we use potassium-argon (K/Ar) ages and neodymium (Nd) isotopes as provenance tools to show that cyclical megafloods from the Cordilleran Ice Sheet of western North America traveled through the Channeled Scabland of Washington and transported sediments to the continental slope of Vancouver Island during the last glacial, laying down a sequence of rhythmically bedded sediments in deep-sea core MD02-2496. This work addresses longstanding questions about the absolute timing of Scabland Floods, their cyclicity, and the fate of their sediments and freshwater in the marine realm. Our data suggest that, between ˜19.3 and ˜14.9 ka, Scabland Floods repeatedly generated far-traveled sediment-water plumes in the NE Pacific Ocean, requiring a hydrologically active ice sheet system capable of producing catastrophic megafloods for about 4500 years.

  7. Granitoid formation is ineffective in isotopically homogenizing continental crust: Evidence from archean rocks of the Wind River Mountains, Wyoming

    SciTech Connect

    Frost, C.D. ); Hulsebosch, T.P. ); Chamberlain, K.R.; Frost, B.R. )

    1992-01-01

    The Archean core of the Laramide Wind River uplift records evidence of at least three major granitoid-forming episodes. The oldest, the Dry Creek gneiss (DCG), was emplaced by 2.8 Ga and occupies the northeastern part of the range. Mafic, pelitic and ultramafic inclusions occur in the DCG. Elsewhere in the Wind River Mountains there is evidence for crustal components as old as 3.8 Ga. The Bridger batholith (BB), intruded at 2.67 Ga, is found in the west-central Wind River Mountains. The Wind River batholith (WRB) refers to the youngest Late Archean granodiorites and granites which are found throughout the range and includes granitoids previously name the Louis Lake, Bears Ears, Popo Agie, and Middle Mountain intrusions. Although granitoids of the Wind River batholith have been dated at 2.63 and 2.55 Ga, they are considered together here because there is a complete gradation in rock type and because definite intrusive contacts are scarce. The DCG, BB, and WRB each span the metaluminous/peraluminous boundary and are indistinguishable on Harker diagrams. Each has variable trace element and isotopic characteristics which do not correlate with silica content. Although the isotopic characteristics of these granitoids may be explained by mixing of variable amounts of preexisting continental crust and contemporary depleted mantle, this hypothesis is difficult to reconcile with the evolved nature of even those samples with the most mantle-like isotopic signatures. The authors suggest that each of these granitoid batholiths was formed primarily by remelting of pre-existing heterogeneous continental crust, and that the granite-forming process was not effective in obliterating these trace element and isotopic heterogeneities. Isotopic homogeneity in granitoid batholiths may reflect the isotopic homogeneity of their sources rather than an effective magmatic mixing process.

  8. Sources and Transformations of Nitrate from Streams Draining Varying Land Uses: Evidence from Dual Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Boyer, E. W.; Elliott, E. M.; Kendall, C.

    2008-12-01

    Dual isotope analysis revealed evidence of varying sources and processes that affect the transport of nitrate (NO3-) in six watersheds of different land uses in New York. Samples from two streams draining forested watersheds indicated that NO3- derived from nitrification was dominant at baseflow. Values of δ18ONO3 were greater than previously measured in forested watersheds in this region, a difference attributed to a new, more accurate sample preparation method. A watershed dominated by suburban land use, but with all waste water discharged outside the watershed had three δ18ONO3 values > 25‰ indicating a large direct contribution of atmospheric NO3- transported to the stream during some high flow periods. Two watersheds with large proportions of agricultural land use had many samples with δ15NNO3 > 9‰ suggesting a waste source consistent with direct application of manure to fields associated with dairy farming practices in the region. These data showed a linear seasonal pattern with a δ15NNO3:δ18ONO3 close to 1:2 consistent with seasonally-varying denitrification that peaked in late summer to early fall with the warmest temperatures and lowest streamflow of the year. The large annual range of δ18ONO3 (~ 10‰) in these streams suggests a large fractionation associated with denitrification, indicative of a dominance of denitrification outside of the stream environment. Mixing of two or more NO3- sources may also have affected the patterns observed in these two agricultural streams. At a larger basin scale in a mixed land use watershed that represented the average proportions of land uses in this study, none of the source and process patterns observed in the small streams were evident. These results emphasize that observations at small to medium size watersheds of a few to several hundred km2 may be necessary to adequately quantify the relative roles of various NO3- transport and process patterns that contribute to streamflow in large basins.

  9. Isotopic Evidence That Dragonflies (Pantala flavescens) Migrating through the Maldives Come from the Northern Indian Subcontinent

    PubMed Central

    Hobson, Keith A.; Anderson, R. Charles; Soto, David X.; Wassenaar, Leonard I.

    2012-01-01

    Large numbers of the Globe Skimmer dragonfly (Pantala flavescens) appear in the Maldives every October–December. Since they cannot breed on these largely waterless islands, it has recently been suggested that they are “falling out” during a trans-oceanic flight from India to East Africa. In addition, it has been suggested that this trans-oceanic crossing is just one leg of a multi-generational migratory circuit covering about 14,000–18,000 km. The dragonflies are presumed to accomplish this remarkable feat by riding high-altitude winds associated with the Inter-tropical Convergence Zone (ITCZ). While there is considerable evidence for this migratory circuit, much of that evidence is circumstantial. Recent developments in the application of stable isotope analyses to track migratory dragonflies include the establishment of direct associations between dragonfly wing chitin δ2H values with those derived from long-term δ2H precipitation isoscapes. We applied this approach by measuring wing chitin δ2H values in 49 individual Pantala flavescens from the November–December migration through the Maldives. Using a previously established spatial calibration algorithm for dragonflies, the mean wing δ2H value of −117±16 ‰ corresponded to a predicted mean natal ambient water source of −81 ‰, which resulted in a probabilistic origin of northern India, and possibly further north and east. This strongly suggests that the migratory circuit of this species in this region is longer than previously suspected, and could possibly involve a remarkable trans-Himalayan high-altitude traverse. PMID:23285106

  10. Old mantle beneath the Avalon terrane: evidence from Osmium isotopes in spinel peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Minarik, W. G.; Hermes, O. D.; Walker, R. J.

    2002-05-01

    Spinel lherzolite xenoliths from mid-Jurassic lamprophyre dikes near Ashaway, R.I. have been analyzed for Os isotopic ratios and Re and Os concentrations. The xenoliths were collected from freshly exposed outcrops, and are minimally serpentinized. Most contain evidence of carbonate metasomatism. Two grams of powdered peridotite was dissolved in aqua regia in sealed Carius tubes, purified using solvent extraction (Os) and anion resin exchange (Re) and analyzed using NTIMS. The bulk xenoliths contain approx. 4 ppb Os, and have 187Re/188Os ratios of 0.04 to 0.2. These low Re concentrations result in minimal correction back to an initial Jurassic 187Os/188Os ratio of 0.1165, which corresponds to a sub-chondritic initial γ Os of -7.4. The minimum model age (TRD) of melt extraction and separation of these lherzolites from the convecting upper mantle using these 187Os/188Os ratios is 1.5 to 1.7 Ga (after Meisel et al., 2001). Major and trace element compositions will be used to estimate the degree of melt depletion in order to refine the constraints on formation of this subcontinental lithospheric mantle. Avalonian supercrustal rocks range from the Neoproterozoic to Permian in age. These preliminary model ages imply that Mesoproterozoic (or older) mantle remains under the Hope Valley subterrane of Avalonia in Rhode Island. This supports evidence from Archean-age zircon cores found in the surrounding Permian-age granites that significantly older lithosphere exists at depth. This lithosphere could be either an old lithosphere core to the Avalonian arc or underthrust West African craton. Models that call for the introduction of asthenospheric mantle during the Alleghanian orogeny or the initiation of Atlantic rifting are not supported by these data.

  11. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    SciTech Connect

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    Based on the mineralogy and petrography, coarse-grained, igneous, anorthite-rich (Type C) calcium-aluminum-rich inclusions (CAIs) in the CV3 carbonaceous chondrite Allende have been recently divided into three groups: (i) CAIs with melilite and Al,Ti-diopside of massive and lacy textures (coarse grains with numerous rounded inclusions of anorthite) in a fine-grained anorthite groundmass (6-1-72, 100, 160), (ii) CAI CG5 with massive melilite, Al,Ti-diopside and anorthite, and (iii) CAIs associated with chondrule material: either containing chondrule fragments in their peripheries (ABC, TS26) or surrounded by chondrule-like, igneous rims (93) (Krot et al., 2007a,b). Here, we report in situ oxygen isotopic measurements of primary (melilite, spinel, Al,Ti-diopside, anorthite) and secondary (grossular, monticellite, forsterite) minerals in these CAIs. Spinel ({Delta}{sup 17}O = -25{per_thousand} to -20{per_thousand}), massive and lacy Al,Ti-diopside ({Delta}{sup 17}O = -20{per_thousand} to -5{per_thousand}) and fine-grained anorthite ({Delta}{sup 17}O = -15{per_thousand} to -2{per_thousand}) in 100, 160 and 6-1-72 are {sup 16}O-enriched relative spinel and coarse-grained Al,Ti-diopside and anorthite in ABC, 93 and TS26 ({Delta}{sup 17}O ranges from -20{per_thousand} to -15{per_thousand}, from -15{per_thousand} to -5{per_thousand}, and from -5{per_thousand} to 0{per_thousand}, respectively). In 6-1-72, massive and lacy Al,Ti-diopside grains are {sup 16}O-depleted ({Delta}{sup 17}O {approx} -13{per_thousand}) relative to spinel ({Delta}{sup 17}O = -23{per_thousand}). Melilite is the most {sup 16}O-depleted mineral in all Allende Type C CAIs. In CAI 100, melilite and secondary grossular, monticellite and forsterite (minerals replacing melilite) are similarly {sup 16}O-depleted, whereas grossular in CAI 160 is {sup 16}O-enriched ({Delta}{sup 17}O = -10{per_thousand} to -6{per_thousand}) relative to melilite ({Delta}{sup 17}O = -5{per_thousand} to -3{per_thousand}). We infer

  12. Uranium Isotope Evidence for Temporary Ocean Oxygenation Following the Sturtian Glaciation

    NASA Astrophysics Data System (ADS)

    Lau, K. V.; Maher, K.; Macdonald, F. A.; Payne, J.

    2015-12-01

    The link between widespread ocean oxygenation in the Neoproterozoic and the rise of animals has long been debated, largely because the timing and nature of oxygenation of the oceans remain poorly constrained. Strata deposited during the Cryogenian non-glacial interlude (660 to 635 Ma), between the Sturtian and Marinoan Snowball Earth glaciations, contain the earliest fossil evidence of animals. To quantitatively estimate patterns of seafloor oxygenation during this critical interval, we present uranium isotope (δ238U) data from limestone of the Taishir Formation (Fm) in Mongolia in two stratigraphic sections that are separated by ~75 km across the basin. The Taishir Fm hosts two large δ13C excursions that co-vary in total organic and inorganic (carbonate) carbon: a basal carbonate δ13C excursion to -4‰ in the Sturtian cap carbonate, followed by a rise to enriched values of +8‰, a second negative δ13C excursion to -7‰ referred to as the Taishir excursion, followed by a second rise to +10‰. Above the Sturtian glacial deposits, in the stratigraphic interval below the Taishir excursion, δ238U compositions have a mean value that is similar to that of modern seawater. After the Taishir excursion, the δ238U record exhibits a step decrease of ~0.3‰, and δ238U remains approximately constant until the erosional unconformity at the base of the Marinoan glacial deposits. We use a box model to constrain the uranium cycle behavior that best explains our observations. In the model, the best explanation for the less negative post-Sturtian values of δ238U is extensive oxygenation of the seafloor. Moreover, the model demonstrates that the higher δ238U values of the post-Sturtian limestones are inconsistent with an increased flux of uranium to the oceans due to post-Snowball weathering as the primary driver of the excursion. Thus, we favor a scenario in which there was a rise in oxygen levels following the Sturtian glaciation followed by a decrease in seafloor

  13. Sources and transformations of nitrate from streams draining varying land uses: Evidence from dual isotope analysis

    USGS Publications Warehouse

    Burns, Douglas A.; Boyer, E.W.; Elliott, E.M.; Kendall, C.

    2009-01-01

    Knowledge of key sources and biogeochemical processes that affect the transport of nitrate (NO3-) in streams can inform watershed management strategies for controlling downstream eutrophication. We applied dual isotope analysis of NO3- to determine the dominant sources and processes that affect NO3- concentrations in six stream/river watersheds of different land uses. Samples were collected monthly at a range of flow conditions for 15 mo during 2004-05 and analyzed for NO3- concentrations, ?? 15NNO3, and ??18ONO3. Samples from two forested watersheds indicated that NO3- derived from nitrification was dominant at baseflow. A watershed dominated by suburban land use had three ??18ONO3 values greater than +25???, indicating a large direct contribution of atmospheric NO 3- transported to the stream during some high flows. Two watersheds with large proportions of agricultural land use had many ??15NNO3 values greater than +9???, suggesting an animal waste source consistent with regional dairy farming practices. These data showed a linear seasonal pattern with a ??18O NO3:??15NNO3 of 1:2, consistent with seasonally varying denitrification that peaked in late summer to early fall with the warmest temperatures and lowest annual streamflow. The large range of ?? 15NNO3 values (10???) indicates that NO 3- supply was likely not limiting the rate of denitrification, consistent with ground water and/or in-stream denitrification. Mixing of two or more distinct sources may have affected the seasonal isotope patterns observed in these two agricultural streams. In a mixed land use watershed of large drainage area, none of the source and process patterns observed in the small streams were evident. These results emphasize that observations at watersheds of a few to a few hundred km2 may be necessary to adequately quantify the relative roles of various NO 3- transport and process patterns that contribute to streamflow in large basins. Copyright ?? 2009 by the American Society of

  14. The Rurutu Hotspot: Isotopic and Trace Element Evidence of HIMU Hotspot Volcanism in the Tuvalu Islands

    NASA Astrophysics Data System (ADS)

    Finlayson, V.; Konter, J. G.; Konrad, K.; Koppers, A. A. P.; Jackson, M. G.

    2014-12-01

    Current Pacific absolute plate motion (APM) models include 2 major, long-lived hotspot tracks: the ~85 Ma Hawaiian-Emperor and the ~76 Ma Louisville tracks. Prior to ~50 Ma, these two hotspot tracks show significant inter-hotspot drift, mainly due to large southern motion of the Hawaiian hotspot [1,2]. A third track would allow for a more robust evaluation of the relationship between APM models and inter-hotspot drift. We present trace element and Pb isotope evidence for a potential third long-lived Pacific hotspot trail—the Rurutu hotspot—anchored in the Cook-Austral Islands. Based on high 206Pb/204Pb ratios, 70-55 Ma volcanism in the Gilbert Ridge has been linked to the Rurutu hotspot [3]. The Gilbert Ridge may continue south into the Tuvalu Islands, where APM models predict that the Rurutu hotspot track captures the change in Pacific plate motion around 50 Ma at the intersection of Tuvalu and Samoa. Sampling of the deep submarine flanks of atolls and seamounts in Tuvalu and westernmost Samoa took place during the 2013 RR1310 (R/V Roger Revelle) expedition. We present new Pb isotope and HFSE trace element data on 28 samples that support a Rurutu origin for Tuvalu volcanism and confirm HIMU signatures previously observed in 5 Tuvalu samples (206Pb/204Pb >20.1, several >21.0; 87Sr/86Sr < 0.705). Statistical tests indicate that Tuvalu HFSE element ratios show similarities with Cook-Austral HIMU and differences with Samoa EMII volcanism. Low Hf/Nb ratios are often a predictor of HIMU samples (206Pb/204Pb > 20.8). Moderately HIMU compositions (206Pb/204Pb = 20.0) correspond to slightly higher Hf/Nb. In an effort to test if compositional agreement with the Cook-Australs is reflected in an age progression, 40Ar/39Ar ages will be presented by Konrad et al. (this volume). [1] Tarduno et al., (2003) DOI:10.1126/science.1086442 [2] Koppers et al., (2012) DOI: 10.1038/ngeo1638 [3] Konter et al., (2008) DOI: 10.1016/j.epsl.2008.08.023

  15. Coupled iron, sulfur and carbon isotope evidences for arsenic enrichment in groundwater

    NASA Astrophysics Data System (ADS)

    Wang, Yanxin; Xie, Xianjun; Johnson, Thomas M.; Lundstrom, Craig C.; Ellis, Andre; Wang, Xiangli; Duan, Mengyu; Li, Junxia

    2014-11-01

    It is generally accepted that microbial processes play a key role in the mobilization and enrichment of arsenic (As) in groundwater. However, the detailed mechanism of the metabolic processes remain poorly understand. We apply isotopic measurements of iron (δ56Fe vs. IRMM-14), sulfur (δ34SSO4 vs. V-CDT) and carbon (δ13CDIC vs. V-PDB) to an experimental field plot in the Datong Basin, northern China. An array of monitoring wells was installed in a ≈1700-m2 plot in which high concentrations of As, ranging from 4.76 to 469.5 μg/L, were detected in the groundwater. The measured range of δ34SSO4 values from 10.0‰ to 24.7‰ indicates the prevalence of microbial sulfate reduction within aquifers. The range of δ56Fe values measured in the groundwater suggests microbial Fe(III) reduction and the occurrence of isotopic exchange between Fe(II)aq and FeS precipitation. The low δ13CDIC values (up to -33.6‰) measured in groundwater are evidences for the microbial oxidation of organic matter, which is interpreted as the light carbon pool within the aquifer sediments. The high As (As > 50 μg/L) groundwater, which has higher δ34SSO4 and δ56Fe values and lower δ13C values, indicates the following: (1) microbial reduction of sulfate causes the mobilization of As through HS- abiotic reduction of Fe(III) minerals and/or formation of As-sulfur components; and (2) direct microbial reduction of Fe(III) oxides, hydroxides and oxyhydroxides cannot increase As concentrations to greater than 50 μg/L. Re-oxidation of Fe-sufide explains how sample C1-2 can have a high As concentration and low δ34SSO4 and high δ56Fe values. The results provide new insight into the mechanism of As enrichment in groundwater.

  16. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution

    NASA Astrophysics Data System (ADS)

    Lewicki, Jennifer L.; Fischer, Tobias; Williams, Stanley N.

    2000-08-01

    We present chemical and isotopic data for fumarolic vapor and thermal spring discharges from Cumbal Volcano, SW Colombia. In 1988 Cumbal showed signs of apparent reactivation. Gases and steam condensates were sampled from summit fumaroles (83-375°C) of Cumbal in 1988-1996 and discharges from thermal springs (15-37°C) on its flanks in 1995-1996. Based on relative CO2, total S (H2S+SO2), and HCl contents, fumarolic discharges are principally magmatic in composition. Fumarolic steam condensates (1993-1996) have δ18O values of -11.4 to +2.5‰ and δD values of -91 to -43‰. δ18O and δD compositions indicate mixing between local meteoric and magmatic waters. 3He/4He ratios in 1993-1996 samples (5.3-7.9 Rcor) are consistent with addition of mantle-derived helium. δ13CCO2 values for 1996 samples (-6.7 to -5.0‰) likely indicate contribution of marine-carbonate, organic sediment, and mantle-derived CO2. δ34SStotal compositions (-4.6 to +5.6‰) of 1988-1996 fumarolic discharges have magmatic signatures and may reflect cycles of deposition and remobilization of native sulfur. Thermal waters are acid-sulfate or bicarbonate in composition. Relative concentrations of chemical constituents of thermal waters imply that the composition of waters is controlled by absorption of magmatic volatiles into shallow ground- and surface waters, dilution with meteoric waters along flow paths, and dissolution of host rocks. δ18O and δD compositions are consistent with a meteoric origin of waters. δ34SStotal values for thermal spring gas discharges (9.6-10.5‰) suggest deposition of δ34S-depleted sulfur minerals along flow paths. Chemical and isotopic compositions of 1988-1995 fumarolic discharges provide evidence for input of magmatic volatiles into the Cumbal hydrothermal system. From 1995 to 1996, geochemical data show increasing hydrothermal signatures, suggesting a decline in magmatic volatile input.

  17. Potassium isotopic evidence for a high-energy giant impact origin of the Moon

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Jacobsen, Stein B.

    2016-10-01

    The Earth–Moon system has unique chemical and isotopic signatures compared with other planetary bodies; any successful model for the origin of this system therefore has to satisfy these chemical and isotopic constraints. The Moon is substantially depleted in volatile elements such as potassium compared with the Earth and the bulk solar composition, and it has long been thought to be the result of a catastrophic Moon-forming giant impact event. Volatile-element-depleted bodies such as the Moon were expected to be enriched in heavy potassium isotopes during the loss of volatiles; however such enrichment was never found. Here we report new high-precision potassium isotope data for the Earth, the Moon and chondritic meteorites. We found that the lunar rocks are significantly (>2σ) enriched in the heavy isotopes of potassium compared to the Earth and chondrites (by around 0.4 parts per thousand). The enrichment of the heavy isotope of potassium in lunar rocks compared with those of the Earth and chondrites can be best explained as the result of the incomplete condensation of a bulk silicate Earth vapour at an ambient pressure that is higher than 10 bar. We used these coupled constraints of the chemical loss and isotopic fractionation of K to compare two recent dynamic models that were used to explain the identical non-mass-dependent isotope composition of the Earth and the Moon. Our K isotope result is inconsistent with the low-energy disk equilibration model, but supports the high-energy, high-angular-momentum giant impact model for the origin of the Moon. High-precision potassium isotope data can also be used as a ‘palaeo-barometer’ to reveal the physical conditions during the Moon-forming event.

  18. Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Porcelli, Don; James, Rachael H.; van Calsteren, Peter; Schaefer, Bruce; Cartwright, Ian; Reynolds, Ben C.; Burton, Kevin W.

    2014-11-01

    Variations in lithium and silicon isotope ratios in groundwaters of the Great Artesian Basin in Australia, and the causes of these variations, have been explored. The chemistries of Li and Si in groundwater are influenced by the dissolution of primary phases, the formation of secondary minerals, and the reaction of solid phases with dissolved constituents, while isotopic variations are generated by uptake into clays, which preferentially incorporate the light isotopes. The lithium isotopic composition (expressed as δ 7Li) of the groundwaters ranges from +9 to +16‰ , and clearly reflects changes in aquifer conditions. Reaction-transport modelling indicates that changes in Li concentrations are principally controlled by the ratio of the weathering rate of primary minerals to the precipitation rate of secondary minerals, whereas δ 7Li is affected by the extent of isotope fractionation during secondary mineral formation (which is dependent on mineralogy). The patterns of groundwater Si concentrations and δ 30Si values versus flow distance suggest that Si is at steady state in the aquifer. The δ 30Si value of most of the groundwater samples is close to -1‰ , which is significantly lower than the δ 30Si value of the reservoir rocks (∼0‰ ). Since precipitation of clays preferentially removes the light Si isotopes from solution, the most plausible explanation for these low groundwater δ 30Si values is addition of Si by dissolution of isotopically light secondary minerals. These data, together with model calculations, show that Li isotopes are extremely sensitive to changes in the chemical and physical conditions in the aquifer, whereas Si is not. Importantly, the model suggests that even in large aquifers with long fluid residence times, where steady-state would be expected to be reached, the concentrations and isotopic fractionation of trace elements are not controlled by Li adsorption. The model developed here provides a basis for using Li isotopes measured

  19. Ancient recycled crust beneath the Ontong Java Plateau: Isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akira; Kuritani, Takeshi; Makishima, Akio; Nakamura, Eizo

    2007-07-01

    We present a Sr, Nd, Hf and Pb isotope investigation of a set of garnet clinopyroxenite xenoliths from Malaita, Solomon Islands in order to constrain crustal recycling in the Pacific mantle. Geological, thermobarometric and petrochemical evidence from previous studies strongly support an origin as a series of high-pressure (> 3 GPa) melting residues of basaltic material incorporated in peridotite, which was derived from Pacific convective mantle related to the Ontong Java Plateau magmatism. The present study reveals isotopic variations in the pyroxenites that are best explained by different extents of chemical reaction with ambient peridotite in the context of a melting of composite source mantle. Isotopic compositions of bimineralic garnet clinopyroxenites affected by ambient peridotite fall within the oceanic basalt array, similar to those of Ontong Java Plateau lavas. In contrast, a quartz-garnet clinopyroxenite, whose major element compositions remain intact, has lower 206Pb/ 204Pb- 143Nd/ 144Nd and higher 87Sr/ 86Sr- 207Pb/ 204Pb ratios than most oceanic basalts. These isotopic signatures show some affinity with proposed recycled sources such as the so-called EM-1 or DUPAL types. Constraints from major and trace element characteristics of the quartz-garnet clinopyroxenite, the large extent of Hf-Nd isotopic decoupling and the good coincidence of Pb isotopes to the Stacey-Kramers curve, all indicate that pollution of southern Pacific mantle occurred by the subduction or delamination of Neoproterozoic granulitic lower crust (0.5-1 Ga). This crustal recycling could have taken place around the suture of Rodinia supercontinent, a part of which resurfaced during mantle upwelling responsible for creating the Cretaceous Ontong Java Plateau.

  20. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at area 6, Dover Air Force Base.

    PubMed

    Sherwood Lollar, B; Slater, G F; Sleep, B; Witt, M; Klecka, G M; Harkness, M; Spivack, J

    2001-01-15

    Area 6 at Dover Air Force Base (Dover, DE) has been the location of an in-depth study by the RTDF (Remediation Technologies Development Forum Bioremediation of Chlorinated Solvents Action Team) to evaluate the effectiveness of natural attenuation of chlorinated ethene contamination in groundwater. Compound-specific stable carbon isotope measurements for dissolved PCE and TCE in wells distributed throughout the anaerobic portion of the plume confirm that stable carbon isotope values are isotopically enriched in 13C consistent with the effects of intrinsic biodegradation. During anaerobic microbial reductive dechlorination of chlorinated hydrocarbons, the light (12C) versus heavy isotope (13C) bonds are preferentially degraded, resulting in isotopic enrichment of the residual contaminant in 13C. To our knowledge, this study is the first to provide definitive evidence for reductive dechlorination of chlorinated hydrocarbons at a field site based on the delta13C values of the primary contaminants spilled at the site, PCE and TCE. For TCE, downgradient wells show delta13C values as enriched as -18.0/1000 as compared to delta13C values for TCE in the source zone of -25.0 to -26.0/1000. The most enriched delta13C value on the site was observed at well 236, which also contains the highest concentrations of cis-DCE, VC, and ethene, the daughter products of reductive dechlorination. Stable carbon isotope signatures are used to quantify the relative extent of biodegradation between zones of the contaminant plume. On the basis of this approach, it is estimated that TCE in downgradient well 236 is more than 40% biodegraded relative to TCE in the proposed source area.

  1. Isotopic evidence for a marine ammonium source in rainwater at Bermuda

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Hastings, M. G.; Peters, A. J.; Oleynik, S.; Sigman, D. M.

    2014-10-01

    Emissions of anthropogenic nitrogen (N) to the atmosphere have increased tenfold since preindustrial times, resulting in increased N deposition to terrestrial and coastal ecosystems. The sources of N deposition to the ocean, however, are poorly understood. Two years of event-based rainwater samples were collected on the island of Bermuda in the western North Atlantic, which experiences both continent- and ocean-influenced air masses. The rainwater ammonium concentration ranged from 0.36 to 24.6 μM, and the ammonium δ15N from -12.5 to 0.7‰; and neither has a strong relationship with air mass history (6.0 ± 4.2 μM, -4.1 ± 2.6‰ in marine air masses and 5.9 ± 3.2 μM, -5.8 ± 2.5‰ in continental air masses; numerical average ± standard deviation). A simple box model suggests that the ocean can account for the concentration and isotopic composition of ammonium in marine rainwater, consistent with the lack of correlation between ammonium δ15N and air mass history. If so, ammonium deposition reflects the cycling of N between the ocean and the atmosphere, rather than representing a net input to the ocean. The δ15N data appear to require that most of the ammonium/a flux to the ocean is by dissolution in surface waters rather than atmospheric deposition. This suggests that the atmosphere and surface ocean are near equilibrium with respect to air/sea gas exchange, implying that anthropogenic ammonia will equilibrate near the coast and not reach the open marine atmosphere. Whereas ~90% of the ammonium deposition to the global ocean has previously been attributed to anthropogenic sources, the evidence at Bermuda suggests that the anthropogenic contribution could be much smaller.

  2. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    PubMed Central

    Van Kooten, Elishevah M. M. E.; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Olsen, Mia B.; Nordlund, Åke; Krot, Alexander N.; Bizzarro, Martin

    2016-01-01

    The short-lived 26Al radionuclide is thought to have been admixed into the initially 26Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent 54Cr and 26Mg*, the decay product of 26Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling 26Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived 26Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a 26Mg*-depleted and 54Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived 26Al. The 26Mg* and 54Cr compositions of bulk metal-rich chondrites require significant amounts (25–50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants. PMID:26858438

  3. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites.

    PubMed

    Van Kooten, Elishevah M M E; Wielandt, Daniel; Schiller, Martin; Nagashima, Kazuhide; Thomen, Aurélien; Larsen, Kirsten K; Olsen, Mia B; Nordlund, Åke; Krot, Alexander N; Bizzarro, Martin

    2016-02-23

    The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.

  4. Atmospheric oxygen levels in the precambrian: a review of isotopic and geological evidence

    NASA Astrophysics Data System (ADS)

    Lambert, I. B.; Donnelly, T. H.

    1991-12-01

    The significant change in the sulfur isotope record in the early Proterozoic implies global scale oxidation of the previously reduced and sulfate-poor hydrosphere. Changes in the nature/abundance of uranium, iron and manganese deposits are consistent with the evolution of significant oxygen levels in the atmosphere in this period. It is suggested that global oxidation occurred in the early Proterozoic as a result of widespread development of sedimentary environments favourable for the proliferation of phytosynthetic organisms, coupled with steadily decreasing availability of ferrous iron, an important oxygen buffer, because of generally declining igneous and hydrothermal activity. There is a predominance of positive δ34S values for sulfides in Proterozoic carbonaceous strata and sediment-hosted mineral deposits, although the uncommonly preserved evaporitic sulfate deposits do not provide evidence of unusual 34S-enrichment in contemporaneous seawater. These data can be explained in terms of a supercontinent on which there was extensive sedimentation in major intracratonic troughs and platforms. This model is consistent with geological and palaeomagnetic data for this era. In the many sedimentary basins which had only occasional, or no, access to the open ocean, variably 34S-enriched sulfides accumulated by high rates and high degrees of biological sulfate reduction, and also by hydrothermal processes. Pyrite in Proterozoic open marine strata should have had mainly variable negative δ34S values, but few examples of such sequences occur in the geological record for this era. Late Proterozoic carbonates (ca. 900-600 m.y.) from different regions are characterised by mainly positive δ13C values. These are explained as the result of long-term global oceanic anoxia, which may have been a function of prolonged crustal stability preceding continental dispersion around the Proterozoic-Cambrian boundary. Significant rises in atmospheric oxygen levels would have resulted

  5. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  6. Modern monsoon extent and moisture dynamics over eastern Asian: evidence from precipitation and water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Kei, Yoshimura; Bowen, Gabriel J.; Tian, Lide

    2013-04-01

    The climate of eastern Asia is dominated by the Asia monsoon (AM) system, which controls seasonal patterns of moisture sources and transport to the region. Measurements of water isotopes can provide insight into monsoon extent and moisture dynamics. Here we present an analysis of a spatially dense network of precipitation isotopes (d18O and dD) from a ground-based network and water vapor dD retrieved from satellite measurements. The results show that isotopic seasonality for both precipitation and water vapor exhibits two distinctly different, spatially coherent modes. Summer-season isotope ratios are relatively low to the south of ~35°N and high to the north, with the transition between these zones reflecting the approximate northward extent of Asia summer monsoon influence. In the southern monsoon domain, low isotope values with relatively low precipitation d-excess (9.4‰ in SE China) in summer appear not to reflect the amount effect, but rather the dominance of monsoon moisture with long-distance transport from the Indian and southern Pacific oceans and continental convective recycling (contribute to about 30-48% moisture in SE China). In contrast, other seasons are dominated by dry continental masses, characterized by high d-excess (12.7‰) and isotope values. In northern China, a region that is beyond extent of monsoon, the moisture is derived overwhelmingly from the dry continental air masses. Here, water isotope ratios exhibit stronger temperature dependence, with enriched values in summer and depleted values in other seasons. The relatively low precipitation d-excess (<8‰) in northern China and inverse spatial isotope patterns between precipitation and water vapor across China during the summer further suggest that re-evaporation of falling raindrops is a key driver of water isotope behavior in northern China.

  7. Evidence of a connection between the Atlantic and Mediterranean during the Messinian Salinity Crisis from Pb and Nd isotopes

    NASA Astrophysics Data System (ADS)

    Modestou, Sevasti; Gutjahr, Marcus; Fietzke, Jan; Rodés, Ángel; Frank, Martin; Bolhão Muiños, Susana; Ellam, Rob; Flecker, Rachel

    2014-05-01

    Prior to the opening of the Gibraltar Strait at 5.33 Ma, the Betic (southern Spain) and Rifian (northern Morocco) marine palaeocorridors linked the Mediterranean to the Atlantic. Although the central regions of these corridors have been heavily eroded due to uplift, evidence published to date indicates that both closed before the onset of the Messinian Salinity Crisis (MSC; 5.97 to 5.33 Ma [1, 2]). However, pre-MSC corridor closure presents a paradox, as the volume of halite deposited within the Mediterranean basin requires several times the volume of seawater contained in the basin itself. In this regard, radiogenic isotopes such as Sr, Pb, and Nd can provide key information about the timing of exchange through the Betic and Rifian palaeogateways. Due to the resolvable isotopic difference in Nd isotope signatures of outgoing Mediterranean and incoming Atlantic water masses, demonstrated both for the present day as well as the past environment, this isotope system can be used to identify exchange between these two water bodies. Although less well constrained to date, the Pb isotope system can be used in a similar manner due to its short residence time in seawater and interbasin variability. A high resolution Pb isotope record extracted using laser ablation from ferromanganese crust 3514-6 (recovered from the Lion Seamount, NE Atlantic, water depth 690-940 m) indicates a relatively constant Pb isotope signature before, during and after the MSC period. The previously published [3] Nd isotope record of crust 3514-6 corroborates that the crust was deposited in a current distinct from NE Atlantic Deep water or Antarctic Intermediate Water, the principal currents in the region of the Lion Seamount. The combined Pb and Nd isotope evolution suggests that Mediterranean Outflow Water (MOW) was continuously advected into the NE Atlantic during and after the MSC. Furthermore, preliminary Nd isotope records from Late Miocene sediments collected in the Sorbas Basin, Spain

  8. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of <110 Ma have systematically heavy δ66Zn (relative to JMC 3-0749L) ranging from 0.30‰ to 0.63‰ (n = 44) compared to the mantle (0.28 ± 0.05‰; 2sd) and >120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the <110 Ma basalts negatively correlate with parameters that are sensitive to the degree of partial melting (e.g., Sm/Yb, Nb/Y, [Nb]) and with the concentration of Zn, which also behaves incompatibly during mantle melting. This is inconsistent with a volatile-poor peridotite source and instead suggests partial melting of carbonated peridotites which, at lower degree of melting, generates more Si-depleted (and more Ca-rich) melts. Zinc isotopic compositions are positively correlated with Sm/Yb, Nb/Y, [Nb] and [Zn], indicating that melts produced by lower degrees of melting have heavier Zn isotopic compositions. Carbonated peridotites have a lower solidus than volatile-poor peridotites and therefore at lower melting extents, contribute more to the melts, which will have heavier Zn isotopic compositions. Together with the positive relationships of δ66Zn with CaO and CaO/Al2O3, we propose that the heavy Zn isotopic compositions of the <110 Ma basalts were generated by incongruent partial melting of carbonated peridotites. Combined with previously reported Mg and Sr isotope data, we suggest that the large-scale Zn isotope anomaly indicates the widespread presence of recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic

  9. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    PubMed

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-01

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability. PMID:17024091

  10. Isotopic evidence for trapped fissiogenic REE and nucleogenic Pu in apatite and Pb evolution at the Oklo natural reactor

    NASA Astrophysics Data System (ADS)

    Horie, Kenji; Hidaka, Hiroshi; Gauthier-Lafaye, François

    2004-01-01

    A part of the boundary layer of reactor zone 10 at the Oklo natural reactor shows a unique petrologic texture, which contains high-grade uraninite and massive apatite concretions. In order to study distribution behavior of fission products around the boundary between the reactor zone and the wall rock and to clarify the relation of migration mechanisms of fission products with geochemical factors, in-situ isotopic analyses of Nd, Sm, Gd, Pb and U in uraninite and apatite from the sample were performed by Sensitive High Resolution Ion Microprobe (SHRIMP). Sm and Gd isotopic ratios of uraninite and apatite show evidence of neutron irradiation with fluence between 4.4-6.8×10 19 n/cm 2. Judging from the isotopic anomalies of Nd and U, the apatite coexisting with the uraninite plays an important role in trapping fissiogenic LREE and nucleogenic 239Pu into the structure. Systematic Pb isotopic data from apatite, uraninite, galena and minium suggest the following chronological interpretations. The apatite formed 1.92±0.01 Ga ago and trapped fissiogenic light REE and nucleogenic 239Pu that migrated from the reactor during the criticality. The uraninite around the boundary between reactor and sandstone dissolved once 1.1˜1.2 Ga ago. Galena grains were formed by U-Pb mobilization in association with the intrusion of dolerite dyke 0.45˜0.83 Ga ago. Minium was derived from recent dissolution of galena under locally oxidizing conditions.

  11. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    PubMed

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-01

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.

  12. Barium isotopes in Allende meteorite: evidence against an extinct superheavy element

    SciTech Connect

    Lewis, R.S.; Anders, E.; Shimamura, T.; Lugmair, G.W.

    1983-12-02

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10/sup 11/ atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  13. Barium isotopes in allende meteorite: evidence against an extinct superheavy element.

    PubMed

    Lewis, R S; Anders, E; Shimamura, T; Lugmair, G W

    1983-12-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10(11) atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  14. Neodymium and strontium isotope evidence for crustal contamination of continental volcanics.

    PubMed

    Carter, S R; Evensen, N M; Hamilton, P J; O'nions, R K

    1978-11-17

    Combined neodymium and strontium isotope studies on Tertiary volcanics from northwest Scotland indicate that their parental mantle isotopic compositions have been substantially modified in many instances by contamination with the Precambrian continental crust through which they were erupted. The occurrence of samarium-neodymium and rubidium-strontium "pseudoisochrons" of different ages in these contaminated continental volcanics indicates that they are artifacts of the contamination processes and have no temporal significance with respect to mantle fractionation events.

  15. Mercury isotopic evidence for multiple mercury sources in coal from the Illinois basin.

    PubMed

    Lefticariu, Liliana; Blum, Joel D; Gleason, James D

    2011-02-15

    Coal combustion is the largest source of anthropogenic mercury (Hg) emissions to the atmosphere and, thus, has vast environmental implications. Recent developments in Hg stable isotope geochemistry offer a new tool for tracing sources and chemical transformations of anthropogenic Hg in the environment. We present here the first isotopic study of mercury in organic and inorganic constituents of four Pennsylvanian-age coal seams in the Illinois Basin, one of the main coal-producing areas in the USA. We report mass dependent isotopic variations relative to the NIST 3133 standard as δ(202)Hg and mass independent fractionation as Δ(199)Hg and Δ(201)Hg values. The data for Illinois coals show a wide range of δ(202)Hg (-0.75 to -2.68‰), Δ(201)Hg (0.04 to -0.22‰), and Δ(199)Hg (0.02 to -0.23‰). In contrast, vein pyrite from two coal seams is isotopically unfractionated relative to NIST 3133. Collectively, these data suggest that isotopically distinct Hg sources contributed to the organic and inorganic fractions of Illinois coals. The Δ(201)Hg/ Δ(199)Hg ratio of Illinois coals is 1:1, consistent with isotopic fractionation by photochemical reduction of Hg(2+) prior to deposition in coal-forming environments. The isotopic composition of Hg in pyrite is more likely derived from hydrothermal fluids that precipitated reduced sulfur in Illinois coal seams. These results demonstrate, for the first time, the potential of Hg isotopes to discriminate between syngenetic (depositional) and epigenetic (hydrothermal) sources of Hg in coal. Our findings may be useful in distinguishing among various geological processes controlling the distribution of Hg in coal and monitoring the fractions of Hg in emissions associated with organic versus inorganic components of coal.

  16. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  17. Genetic relations among basic lavas and ultramafic nodules: Evidence from oxygen isotope compositions

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.; Carmichael, I.S.E.

    1982-01-01

    ??18O values of unaltered basic lavas range from 4.9 to 8.3 but different types of basalts are usually restricted to narrow and distinct ranges of isotopic composition. The average ??18O values for Hawaiian tholeiites, mid-ocean ridge tholeiites, and alkali basalts are 5.4, 5.7, and 6.2 permil, respectively. Potassic lavas and andesites tend to be more 18O rich with ??18O values between 6.0 and 8.0 permil. The differences among the oxygen isotopic compositions of most of these lavas can be attributed to partial melting of isotopically distinct sources. The oxygen isotope compositions of the sources may be a function of prior melting events which produce 18O-depleted partial melts and 18O-enriched residues as a consequence of relatively large isotopic fractionations that exist at high temperatures. It is proposed that lavas with relatively low ??18O values are derived from primitive, 18O-depleted sources whereas 18O-rich basalts are produced from refractory sources that have already produced partial melts. High temperature fractionations among silicate liquids and coexisting minerals can be used in conjunction with the oxygen isotope compositions of ultramafic nodules to place constraints on the genetic relations between some nodules and different types of basic lavas. ?? 1982 Springer-Verlag.

  18. Soil, the orphan hydrological compartment: evidence from O and H stable isotopes?

    NASA Astrophysics Data System (ADS)

    Hissler, Christophe; Legout, Arnaud; Barnich, François; Pfister, Laurent

    2015-04-01

    O and H stable isotopes have been successfully used for decades for studying the exchange of waters between the hydrosphere, the pedosphere and the biosphere. They greatly contribute to improve our understanding of soil-water-plant interactions. In particular, the recent hydrological concept of "two water worlds" (separation of meteoric water that infiltrates the soil as (i) mobile water, which can reach the groundwater and can enter the stream, and as (ii) tightly bound water, which is trapped in the soil microporosity and used by plants) calls for a substantial revision of our perceptual models of runoff generation. Nevertheless, there is a need for testing the applicability of this concept over a large range of ecosystemic contexts (i.e.soil and vegetation types). To date, many investigations have focused on the relationship between the various processes triggering isotope fractionation within soils. So far, the dominating perception is that the isotope profile of water observed in soils is solely due to evaporative fractionation and its shape is dependent on climate and soil parameters. However, as of today the influence of biogeochemical processes on the spatio-temporal variability of δ18O and δD of the soil solutions has been rarely quantified. O and H exchanges between soil water and other soil compartments (living organisms, minerals, exchange capacity, organic matter) remain poorly known and require deeper investigations. Eventually, we need to better understand the distribution of O and H isotopes throughout the soil matrix. In order to address these issues, we have designed and carried out two complementary isotope experiments that use one liter soil columns of a 2mm-sieved and air-dried soil. Our objectives were (1) to observe the temporal evolution of the water O and H isotopic composition starting from the field capacity to the complete drying of the soil and (2) to determine the impact of soil biogeochemical properties on the isotopic composition

  19. Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria.

    PubMed

    Kappler, A; Johnson, C M; Crosby, H A; Beard, B L; Newman, D K

    2010-05-10

    Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)(aq) and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in (56)Fe/(54)Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ(56)Fe(Fe(OH)3 - Fe(II)aq) fractionation factor of +3.0 ‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)(aq) and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)(aq) by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)(aq) oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)(aq) and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of

  20. Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr.

    PubMed

    Turner, Simon; Tonarini, Sonia; Bindeman, Ilya; Leeman, William P; Schaefer, Bruce F

    2007-06-01

    Evidence for the deep recycling of surficial materials through the Earth's mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and location of parent-daughter fractionation are not known. Conversely, while stable isotopes can provide irrefutable evidence for low-temperature fractionation, their range in most unaltered oceanic basalts is limited and the age of any variation is unconstrained. Here we show that delta(18)O ratios in basalts from the Azores are often lower than in pristine mantle. This, combined with increased Nb/B ratios and a large range in delta(11)B ratios, provides compelling evidence for the recycling of materials that had undergone fractionation near the Earth's surface. Moreover, delta(11)B is negatively correlated with (187)Os/(188)Os ratios, which extend to subchondritic values, constraining the age of the high Nb/B, (11)B-enriched endmember to be more than 2.5 billion years (Gyr) old. We infer this component to be melt- and fluid-depleted lithospheric mantle from a subducted oceanic plate, whereas other Azores basalts contain a contribution from approximately 3-Gyr-old melt-enriched basalt. We conclude that both components are most probably derived from an Archaean oceanic plate that was subducted, arguably into the deep mantle, where it was stored until thermal buoyancy caused it to rise beneath the Azores islands approximately 3 Gyr later.

  1. Late Quaternary vegetation changes around Lake Rutundu, Mount Kenya, East Africa: evidence from grass cuticles, pollen and stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Wooller, M. J.; Swain, D. L.; Ficken, K. J.; Agnew, A. D. Q.; Street-Perrott, F. A.; Eglinton, G.

    2003-01-01

    Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755-cm-long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon-isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold-tolerant NADP-MEC4 subpathway.

  2. Early Eocene carbon isotope excursions: Evidence from the terrestrial coal seam in the Fushun Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Chen, Zuoling; Ding, Zhongli; Tang, Zihua; Wang, Xu; Yang, Shiling

    2014-05-01

    A series of transient global warming events between 56 and 50 Ma are characterized by a pronounced negative carbon isotope excursion (CIE). However, the documents of these hyperthermals, such as Eocene Thermal Maximum 2 and H2 events, have come chiefly from marine sediments, and their expression in terrestrial organic carbon is still poorly constrained. Here we yield a high-resolution carbon isotope record of terrestrial organic material from the Fushun Basin, which displays four prominent CIEs with magnitudes larger than 2.5‰. Based on age constraint and comparisons with deep-sea records, our data provide the first evidence of the four hyperthermals in coal seams and suggest a global significance of these events. Moreover, the difference of CIE magnitudes between marine and terrestrial records shows a significant linear correlation with the marine carbonate CIE, implying that these events are likely attributable to recurring injections of 13C-depleted carbon from submarine methane hydrates and/or permafrost.

  3. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia

    PubMed Central

    Wallace, Michael P.; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H. E.; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices. PMID:26061494

  4. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia.

    PubMed

    Wallace, Michael P; Jones, Glynis; Charles, Michael; Fraser, Rebecca; Heaton, Tim H E; Bogaard, Amy

    2015-01-01

    In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp.) was regularly grown in wetter conditions than barley (Hordeum sp.), indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia) indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices. PMID:26061494

  5. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  6. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes.

    PubMed

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons.

  7. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes.

    PubMed

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. PMID:27096630

  8. Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence.

    PubMed

    Ishikawa, Naoto F; Togashi, Hiroyuki; Kato, Yoshiyazu; Yoshimura, Mayumi; Kohmatsu, Yukihiro; Yoshimizu, Chikage; Ogawa, Nanako O; Ohte, Nobuhito; Tokuchi, Naoko; Ohkouchi, Naohiko; Tayasu, Ichiro

    2016-05-01

    Long-term monitoring of ecosystem succession provides baseline data for conservation and management, as well as for understanding the dynamics of underlying biogeochemical processes. We examined the effects of deforestation and subsequent afforestation of a riparian forest of Japanese cedar (Cryptomeria japonica) on stable isotope ratios of carbon (δ¹³C) and nitrogen (δ¹⁵N) and natural abundances of radiocarbon (Δ¹⁴C) in stream biota in the Mt. Gomadan Experimental Forest and the Wakayama Forest Research Station, Kyoto University, central Japan. Macroinvertebrates, periphytic algae attached to rock surfaces (periphyton), and leaf litter of terrestrial plants were collected from six headwater streams with similar climate, topography, and bedrock geology, except for the stand ages of riparian forests (from 3 to 49 yr old in five stands and > 90 yr old in one reference stand). Light intensity and δ¹³C values of both periphyton and macroinvertebrates decreased synchronously with forest age in winter. A Bayesian mixing model indicates that periphyton contributions to the stream food webs are maximized in 23-yr-old forests. Except for grazers, most macroinvertebrates showed Δ¹⁴C values similar to those of terrestrial leaf litter, reflecting the influence of modern atmospheric CO₂ Δ¹⁴C values. On the other hand, the Δ¹⁴C values of both periphyton and grazers (i.e., aquatic primary consumers) were significantly lower than that of modern atmospheric CO₂, and were lowest in 23-yr-old forest stands. Previous studies show that root biomass of C. japonica peaks at 15-30 yr after planting. These evidences suggest that soil CO₂ released by root respiration and dispersed by groundwater weathers carbonate substrata, and that dissolved inorganic carbon (DIC) with low Δ¹⁴C is incorporated into stream periphyton and some macroinvertebrates. The ecological response in the studied streams to clear-cutting and replanting of Japanese cedar is much

  9. Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence.

    PubMed

    Ishikawa, Naoto F; Togashi, Hiroyuki; Kato, Yoshiyazu; Yoshimura, Mayumi; Kohmatsu, Yukihiro; Yoshimizu, Chikage; Ogawa, Nanako O; Ohte, Nobuhito; Tokuchi, Naoko; Ohkouchi, Naohiko; Tayasu, Ichiro

    2016-05-01

    Long-term monitoring of ecosystem succession provides baseline data for conservation and management, as well as for understanding the dynamics of underlying biogeochemical processes. We examined the effects of deforestation and subsequent afforestation of a riparian forest of Japanese cedar (Cryptomeria japonica) on stable isotope ratios of carbon (δ¹³C) and nitrogen (δ¹⁵N) and natural abundances of radiocarbon (Δ¹⁴C) in stream biota in the Mt. Gomadan Experimental Forest and the Wakayama Forest Research Station, Kyoto University, central Japan. Macroinvertebrates, periphytic algae attached to rock surfaces (periphyton), and leaf litter of terrestrial plants were collected from six headwater streams with similar climate, topography, and bedrock geology, except for the stand ages of riparian forests (from 3 to 49 yr old in five stands and > 90 yr old in one reference stand). Light intensity and δ¹³C values of both periphyton and macroinvertebrates decreased synchronously with forest age in winter. A Bayesian mixing model indicates that periphyton contributions to the stream food webs are maximized in 23-yr-old forests. Except for grazers, most macroinvertebrates showed Δ¹⁴C values similar to those of terrestrial leaf litter, reflecting the influence of modern atmospheric CO₂ Δ¹⁴C values. On the other hand, the Δ¹⁴C values of both periphyton and grazers (i.e., aquatic primary consumers) were significantly lower than that of modern atmospheric CO₂, and were lowest in 23-yr-old forest stands. Previous studies show that root biomass of C. japonica peaks at 15-30 yr after planting. These evidences suggest that soil CO₂ released by root respiration and dispersed by groundwater weathers carbonate substrata, and that dissolved inorganic carbon (DIC) with low Δ¹⁴C is incorporated into stream periphyton and some macroinvertebrates. The ecological response in the studied streams to clear-cutting and replanting of Japanese cedar is much

  10. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes

    USGS Publications Warehouse

    Jonathan, Patchett P.; Kouvo, O.; Hedge, C.E.; Tatsumoto, M.

    1982-01-01

    We present initial 176Hf/177 Hf ratios for many samples of continental crust 3.7-0.3 Gy old. Results are based chiefly on zircons (1% Hf) and whole rocks: zircons are shown to be reliable carriers of essentially the initial Hf itself when properly chosen on the basis of U-Pb studies. Pre-3.0 Gy gneisses were apparently derived from an unfractionated mantle, but both depleted and undepleted mantle are evident as magma sources from 2.9 Gy to present. This mantle was sampled mainly from major crustal growth episodes 2.8, 1.8 and 0.7 Gy ago, all of which show gross heterogeneity of 176Hf/177Hf in magma sources from ??Hf=0 to +14, or about 60% of the variability of the present mantle. The approximate ??Hf=2??Nd relationship in ancient and modern igneous rocks shows that 176Lu/177Hf fractionates in general twice as much as 147Sm/144Nd in mantle melting processes. This allows an estimation of the relative value of the unknown bulk solid/liquid distribution coefficient for Hf. DLu/DHf=??? 2.3 holds for most mantle source regions. For garnet to be an important residual mantle phase, it must hold Hf strongly in order to preserve Hf-Nd isotopic relationships. The ancient Hf initials are consistent with only a small proportion of recycled older cratons in new continental crust, and with quasi-continuous, episodic growth of the continental crust with time. However, recycling of crust less than 150 My old cannot realistically be detected using Hf initials. The mantle shows clearly the general positive ??Hf resulting from a residual geochemical state at least back to 2.9 Gy ago, and seems to have repeatedly possessed a similar degree of heterogeneity, rather than a continuously-developing depletion. This is consistent with a complex dynamic disequilibrium model for the creation, maintenance and destruction of heterogeneity in the mantle. ?? 1981 Springer-Verlag.

  11. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, USA

    NASA Astrophysics Data System (ADS)

    Shelton, K. L.; Burstein, I. B.; Hagni, R. D.; Vierrether, C. B.; Grant, S. K.; Hennigh, Q. T.; Bradley, M. F.; Brandom, R. T.

    1995-08-01

    Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in δ34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar δ34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (δ34S approaching 25‰) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (δ34S < 5‰) may reflect fluids moving through underlying granitic basement. Two areas containing Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The δ34S values of West Dome sulfides are 0.9 to 6.5‰ and pyrite-chalcopyrite indicate a temperature of 525° ± 50 °C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, δ34S values of Central Dome sulfides are 9.4 to 20.0‰ and pyrite-chalcopyrite indicate temperatures of 275° ± 50 °C. Similar δ34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary

  12. The Cl Isotope Composition of the Moon as evidence for an Anhydrous Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Shearer, C., Jr.; McKeegan, K. D.; Barnes, J.; Wang, Y.

    2010-12-01

    The chlorine isotope composition of primitive terrestrial basalts and carbonaceous chondrites cover a narrow range centered around 0‰ with a total variation of ± 0.5‰. In contrast, the chlorine isotope composition of bulk samples and in situ ion microprobe analyses of lunar basalts and glasses cover a range of 25‰. Three possibilities were considered to explain the large spread: 1) initial isotopic heterogeneities, 2) devolatilization from solar wind/micrometeorite bombardment, 3) degassing under anhydrous conditions. The first of these possibilities is rejected because the Moon went through an magma ocean stage which would have homogenized any isotopic heterogeneities. To examine surface effects, we chose samples that have extremely different degrees of surface exposure. We find no correlation between the Cl isotope composition and surface exposure. We also conducted a laboratory experiment in which a thin film of NaCl was bombarded with a proton source for 24 hours with no change in Cl isotope composition. The third possibility is that the fractionation is explained by the anhydrous character of the Moon. On Earth, the volatiling Cl species is HCl. HCl is known to preferentially incorporate 37Cl relative to 35Cl due to the high bond strength of the molecule. This is offset by the higher translational velocity of H35Cl, so that overall, there is very little Cl isotope fractionation during degassing. We propose that lunar basalts were anhydrous and the volatile Cl species were metal chlorides, such as ZnCl2, NaCl, FeCl2, etc. The bond strength of metal chlorides and Cl dissolved in a basalt are similar, so that fractionation is caused mainly by volatilization, with the light isotopologue preferentially lost to the vapor phase. This idea is supported by the consistent lower Cl isotope ratios of water soluble salt fraction (~10 ‰ lower) and the lowest lunar Cl isotope values close to those of bulk Earth. The H content of lunar magmas must have been lower

  13. Calcium isotope evidence for pulses of increased continental weathering during the early Toarcian (Early Jurassic)

    NASA Astrophysics Data System (ADS)

    Suan, Guillaume; Brazier, Jean-Michel; Balter, Vincent; Simon, Laurent; Mattioli, Emanuela

    2014-05-01

    The Toarcian interval is punctuated by a number of episodes of environmental changes and mass extinctions that are considered as some of the most severe of the Mesozoic era. Significantly, the corresponding strata record marked negative carbon isotope excursions that point to pulses of massive injection of isotopically light carbon to the superficial reservoirs. Potential causes of these perturbations include gas hydrate dissociation, wildfires, and massive inputs of thermogenic and volcanogenic carbon related to the onset of volcanic activity of the Karoo-Ferrar province. All these scenarii imply large increases in chemical weathering rate as key drivers of the accompanying biotic and environmental perturbations (e.g., productivity-driven anoxia and coastal eutrophication). Nevertheless, detailed examination of most likely cause(s) of these events has been hampered by the uncertainty surrounding the timing and intensity of coeval changes in continental weathering. In this study, we reconstruct changes in continental weathering during the Toarcian using new calcium isotope ratios δ44/42Ca of brachiopods and bulk rock sediments from the Peniche section in Portugal. The data reveal two marked (>0.4permil) negative Ca-isotope excursions near the Pliensbachian-Toarcian transition (Pl-To) and at the base of the levisoni ammonite Zone recording the Early Toarcian Oceanic Anoxic Event (T-OAE). The comparison of the brachiopod and bulk rock Ca isotope data indicates that these excursions reflect changes in the global Ca-isotope composition of seawater rather than changes in the dominant mineralogy of calcifying organisms. Mass balance calculations suggest that the Ca-isotope excursions recorded across the Pl-To transition and T-OAE interval can be explained by the Ca inputs from rivers corresponding respectively to 90% and 34% of the initial mass of oceanic Ca. Based on these values, the injection of tens of thousands of gigatons of carbon with a C-isotope composition

  14. Experimental evidence for Mo isotope fractionation between metal and silicate liquids

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Burkhardt, Christoph; Schmidt, Max W.; Bourdon, Bernard; Kleine, Thorsten

    2013-10-01

    Stable isotope fractionation of siderophile elements may inform on the conditions and chemical consequences of core-mantle differentiation in planetary objects. The extent to which Mo isotopes fractionate during such metal-silicate segregation, however, is so far unexplored. We have therefore investigated equilibrium fractionation of Mo isotopes between liquid metal and liquid silicate to evaluate the potential of Mo isotopes as a new tool to study core formation. We have performed experiments at 1400 and 1600 °C in a centrifuging piston cylinder. Tin was used to lower the melting temperature of the Fe-based metal alloys to <1400 °C, while variable Fe-oxide contents were used to vary oxygen fugacity in graphite and MgO capsules. Isotopic analyses were performed using a double spike technique. In experiments performed at 1400 °C, the 98Mo/95Mo ratio of silicate is 0.19±0.03‰ (95% confidence interval) heavier than that of metal. This fractionation is not significantly affected by the presence or absence of carbon. Molybdenum isotope fractionation is furthermore independent of oxygen fugacity in the range IW -1.79 to IW +0.47, which are plausible values for core formation. Experiments at 1600 °C show that, at equilibrium, the 98Mo/95Mo ratio of silicate is 0.12±0.02‰ heavier than that of metal and that the presence or absence of Sn does not affect this fractionation. Equilibrium Mo isotope fractionation between liquid metal and liquid silicate as a function of temperature can therefore be described as ΔMoMetal-Silicate98/95=-4.70(±0.59)×105/T2. Our experiments show that Mo isotope fractionation may be resolvable up to metal-silicate equilibration temperatures of about 2500 °C, rendering Mo isotopes a novel tool to investigate the conditions of core formation in objects ranging from planetesimals to Earth sized bodies.

  15. Noble Gas Isotopic Evidence for Primordial Evolution of the Earth's Atmosphere in Three Distinct Stages

    NASA Astrophysics Data System (ADS)

    Harper, C. L., Jr.; Jacobsen, S. B.

    1995-09-01

    The deep Earth is the key to understanding the primordial evolution of the Earth's atmosphere. However the atmosphere was not derived by degassing of the Earth, as widely held. Isotopic characterization of mantle noble gases and modeling based on this information [1] suggests the atmosphere experienced a 3-stage early history. This follows from 5 basic observations: (i) Ne in the mantle is solar-like, with light (high) 20Ne/22Ne relative to the atmosphere [2]; (ii) mantle Xe has higher 128Xe/130Xe than the atmosphere [3], which carries an extreme heavy isotope enriched mass fractionation signature of >3%/amu (iii) most of the radiogenic Xe from l29I and 244Pu decay in the Earth is not present either in the mantle or in the atmosphere; (iv) the inferred abundances of noble gases in the deep Earth "plume source" are insufficient to generate the present atmospheric abundances, even for whole mantle degassing; and (v) mantle noble gases indicate a 2 component structure, with solar light gases (He and Ne) and planetary heavy gases [4]. The present day noble gas budgets (and likely also N2) must derive from late accretion of a volatile-rich "veneer." This is stage III. Stage II is a naked (no atmosphere) epoch indicated by evidence for Hadean degassing of 244Pu (T1/2 = 80 Ma) fission Xe from the whole mantle, which was not retained in the present atmosphere. The naked stage must have lasted for more than ~200 Ma, and was supported by the early intense solar EUV luminosity. Stage I, a massive solar-composition protoatmosphere, occurred during the Earth's early accretion phase. Its existence is indicated by the presence of the solar gas component in the Earth. This is not attributable to subduction of solar wind rich cosmic dust, or solar wind irradiation of coagulating objects. It is best explained by accretion of a solar composition atmosphere from the nebula. This provided a thermal blanket supporting a magma ocean in which solar gases dissolved. Under these conditions

  16. Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.

    2005-01-01

    The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].

  17. Origin and subsurface history of geothermal water of Murtazabad area, Pakistan--an isotopic evidence.

    PubMed

    Ahmad, M; Akram, W; Hussain, S D; Sajjad, M I; Zafar, M S

    2001-11-01

    The Murtazabad area represents one of the major geothermal fields in Pakistan, with seven hot springs lying along the Main Karakoram Thrust. Discharge of the springs is 50-1200 l per minute with the surface temperature from 40 to 94 degrees C. Environmental isotopes and chemical concentrations have been used to investigate the origin and subsurface history of thermal water. Four sets of water samples were collected and analyzed for various isotopes including 18O, 2H and 3H of water; 34S and 18O of dissolved sulphates and chemical contents. Isotopic and chemical data show that the origin of thermal water is meteoric water. On the delta-diagram, delta18O and delta2H data plotting below the local meteoric water line with a slope around 12.3 show that the original thermal water receives recharge from precipitation at higher altitude (3000 m) and undergoes delta18O shift of about 1 per thousand due to exchange with rocks. Different correlations between isotopes, temperature and Cl indicate that the observed isotopic compositions have evolved due to mixing of different proportions of shallow water at different spring paths during movement of thermal water towards the surface. It is also inferred from the tritium data along with delta18O and delta2H that the circulation time is long and is estimated to be more than 50 years.

  18. Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts.

    PubMed

    Nielsen, Sune G; Rehkämper, Mark; Norman, Marc D; Halliday, Alex N; Harrison, Darrell

    2006-01-19

    Ocean island basalts are generally thought to be the surface expression of mantle plumes, but the nature of the components in the source regions of such mantle plumes is a subject of long-standing debate. The lavas erupted at Hawaii have attracted particular attention, as it has been proposed that coupled 186Os and 187Os anomalies reflect interaction with the Earth's metallic core. It has recently been suggested, however, that such variations could also result from addition of oceanic ferromanganese sediments to the mantle source of these lavas. Here we show that Hawaiian picrites with osmium isotope anomalies also exhibit pronounced thallium isotope variations, which are coupled with caesium/thallium ratios that extend to values much lower than commonly observed for mantle-derived rocks. This correlation cannot be created by admixing of core material, and is best explained by the addition of ferromanganese sediments into the Hawaii mantle source region. However, the lack of correlation between thallium and osmium isotopes and the high thallium/osmium ratios of ferromanganese sediments preclude a sedimentary origin for the osmium isotope anomalies, and leaves core-mantle interaction as a viable explanation for the osmium isotope variations of the Hawaiian picrites.

  19. The Leadville Mine Drainage Tunnel Catastrophe: A Case Study of How Isotope Geochemistry Provided Forensic Evidence to Inform Policy Decisions

    NASA Astrophysics Data System (ADS)

    Williams, M. W.; Wireman, M.; Liu, F.; Gertson, J.

    2008-12-01

    A state of emergency was declared in February 2008 because of fears that a blocked drainage tunnel in the Leadville mining district of Colorado could cause a catastrophic flood. An estimated 1 billion gallons of metals-laden water poses an eminent threat to the city of Leadville and the headwaters of the Arkansas river. Within days of the declaration of a state of emergency, Governor Ritter and Senator Salazer of Colorado, along with a host of other local and statewide politicians, visited the site and emphasized the need to develop a fast yet safe mitigation plan. Here we provide information from a case study that illustrates how a suite of isotopic and hydrologic tools enables identification of critical, site-specific variables essential in developing a science plan to guide targeted remediation of the Leadville drainage tunnel. The isotopic tools, including both stable and radiogenic isotopes, provided clear and compelling evidence of water sources and flowpaths in an area that has undergone extensive perturbations, including the drilling of more than 2,000 mine shafts. This forensic evidence was the key information in developing a plan to plug the drainage tunnel several hundred feet underground, divert a major source of polluted water from reaching the collapsed tunnel and piping it to an existing treatment plant, and guidance on where to place pumps in additional mine shafts, and the drilling of new wells to pump water in case the plugging of the tunnel caused water to pool up and raise the water table to dangerous heights. This particular case of forensic hydrology using isotopic tools not only provides the scientific basis for an operational plan to defuse a life- and property-threatening situation, it also provides the basis for decommissioning an existing water treatment plant, which will result in savings of over 1 million annually in operational costs. Decommissioning the existing water treatment plant will pay for the tunnel mitigation within several

  20. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  1. Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust

    SciTech Connect

    Peck, W.H.; Valley, J.W.

    1996-06-01

    Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallow emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.

  2. New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages

    USGS Publications Warehouse

    Hart, G.L.; Johnson, C.M.; Hildreth, W.; Shirey, S.B.

    2003-01-01

    New 187Os/188Os ratios of Quaternary Mount Adams volcanic rocks from the Cascade arc in southern Washington vary by >300% (187Os/188Os = 0.165-0.564) and fall into high (>0.319) and low (0.166 to 0.281) groups of 187Os/188Os ratios that are substantially more radiogenic than mantle values. These Os isotope compositions and groupings are interpreted to reflect recycling of discrete intracrustal domains with high 187Os/188Os ratios but differing ages, thus recording the process of crustal hybridization and homogenization. Os isotope compositions provide new constraints on amounts of intracrustal recycling in young subduction-zone environments that reflect the magmatic history of the arc. Sr, Nd, Hf, and Pb isotope variations in this young, mafic are complex are too small to allow such constraints.

  3. Isotopic evidence of complex ground-water flow at Yucca mountain, Nevada, USA

    USGS Publications Warehouse

    Peterman, Zell E.; Stuckless, John S.

    1993-01-01

    Strontium isotopes (expressed as per mill deviation from mean sea water, ??87Sr) reflect interaction between ground water and the aquifer through which it is flowing. In the Cenozoic aquifer of the Yucca Mountain region, ??87Sr values increase from north to south downgradient in the flow system. The largest ??87Sr values occur in the Amargosa Desert where ground water probably encounters alluvial basin fill derived from Precambrian rocks in the Funeral Range. Similarly, large ??87Sr values for ground water in the Paleozoic aquifer at the western end of the Spring Mountains also probably reflect an encounter with Precambrian rocks. In several wells into the volcanic rocks, apparent isotopic disequilibrium between ground water and the producing units suggests that the ground water probably integrates over a substantial part of the saturated section in attaining its strontium isotope signature.

  4. Absence of magnetic isotope fractionation for Hg during dark biological processes: experimental evidence and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Barkay, T.; Blum, J. D.

    2008-12-01

    The complex biogeochemistry and toxicity of Hg compounds warrants the search for new strategies that could be used to decipher the relative importance of its multiple abiotic and microbial transformations in ecosystems. In this regard, the emerging mercury isotope systematics is showing tremendous potential. We have studied the extent of fractionation of Hg stable isotopes during 1) degradation of MMHg and 2) Hg(II) reduction by multiple Hg(II) reducing strains, and irrespective of the extent of mass dependent fractionation (MDF) we did not observe any mass independent fractionation (MIF) of Hg isotopes. On the other hand, photo-chemical degradation of MMHg and reduction of Hg(II) cause a very high extent of MIF (Bergquist and Blum, 2007). Because there are many more unexamined microbial processes that influence Hg cycling in addition to the microbial transformations examined experimentally, and because some of these (e.g., oxidative degradation of MMHg) are not amenable to pure culture studies, a crucial question facing Hg biogeochemists is "Can microbial/biological processes cause MIF or are MIF signatures unique to photo- chemical transformations?" Based on the high spin orbit coupling in Hg compounds, the low likelihood of suppression of spin orbit coupling during dark biological processes, and the nature of known enzyme-Hg and microbe-Hg interactions, we suggest that the nuclear spin dependent MIF is unlikely to occur during dark biological processes. Because of the important implications of the absence of MIF during biological processes on Hg isotope systematics, we will also discuss experimental strategies that could be used to confirm this suggestion (Kritee et al., 2008). Bergquist B. A. and Blum J. D. (2007) Mass-dependent and mass-independent fractionation of Hg isotopes by photo-reduction in aquatic systems. Science 318(5849), 417-420. Kritee K., Barkay T., and Blum J. D. (2008) Mass dependent mercury stable isotope fractionation during microbial

  5. Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Walter, S.; Kock, A.; Steinhoff, T.; Fiedler, B.; Fietzek, P.; Kaiser, J.; Krol, M. C.; Popa, M. E.; Chen, Q.; Tanhua, T.; Röckmann, T.

    2015-10-01

    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (-629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (-249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors.

  6. Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Walter, S.; Kock, A.; Steinhoff, T.; Fiedler, B.; Fietzek, P.; Kaiser, J.; Krol, M.; Popa, M. E.; Chen, Q.; Tanhua, T.; Röckmann, T.

    2016-01-01

    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during 5 cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauritania.

    The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (-629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (-249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with the biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production, a significant different source should be considered.

    The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors.

  7. Origin of the sudbury complex by meteoritic impact: neodymium isotopic evidence.

    PubMed

    Faggart, B E; Basu, A R; Tatsumoto, M

    1985-10-25

    Samarium-neodymium isotopic data on whole rocks and minerals of the Sudbury Complex in Canada gave an igneous crystallization age of 1840 +/- 21 x 10(6) years. The initial epsilon neodymium values for 15 whole rocks are similar to those for average upper continental crust, falling on the crustal trend of neodymium isotopic evolution as defined by shales. The rare earth element concentration patterns of Sudbury rocks are also similar to upper crustal averages. These data suggest that the Sudbury Complex formed from melts generated in the upper crust and are consistent with a meteoritic impact.

  8. Sulfur isotope ratios as evidence of dissolved sulfur uptake by salt marsh cordgrass. [Spartina alterniflora

    SciTech Connect

    Carlson, P.R. Jr.; Forrest, J.

    1985-06-01

    The difference in stable sulfur isotope ratios of sulfate and sulfide in marsh porewater was used to verify the uptake of hydrogen sulfide by the salt marsh cordgrass, Spartina alterniflora, in North Carlina salt marsh. Most of the plant sulfur derived from porewater sulfide was recovered as sulfate indicating that the sulfide had been oxidized within the plant. The analysis of sulfur isotope ratios of other marsh halophytes is suggested as a technique to determine whether sulfide is taken up by plants. 15 refs., 2 figs., 1 tab.

  9. Isotopic evidence for variations in the marine calcium cycle over the Cenozoic.

    PubMed

    De La Rocha, C L; DePaolo, D J

    2000-08-18

    Significant variations in the isotopic composition of marine calcium have occurred over the last 80 million years. These variations reflect deviations in the balance between inputs of calcium to the ocean from weathering and outputs due to carbonate sedimentation, processes that are important in controlling the concentration of carbon dioxide in the atmosphere and, hence, global climate. The calcium isotopic ratio of paleo-seawater is an indicator of past changes in atmospheric carbon dioxide when coupled with determinations of paleo-pH. PMID:10947981

  10. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact.

    PubMed

    Young, Edward D; Kohl, Issaku E; Warren, Paul H; Rubie, David C; Jacobson, Seth A; Morbidelli, Alessandro

    2016-01-29

    Earth and the Moon are shown here to have indistinguishable oxygen isotope ratios, with a difference in Δ'(17)O of -1 ± 5 parts per million (2 standard error). On the basis of these data and our new planet formation simulations that include a realistic model for primordial oxygen isotopic reservoirs, our results favor vigorous mixing during the giant impact and therefore a high-energy, high-angular-momentum impact. The results indicate that the late veneer impactors had an average Δ'(17)O within approximately 1 per mil of the terrestrial value, limiting possible sources for this late addition of mass to the Earth-Moon system.

  11. Origin of the Sudbury Complex by meteoritic impact: Neodymium isotopic evidence

    USGS Publications Warehouse

    Faggart, B.E.; Basu, A.R.; Tatsumoto, M.

    1985-01-01

    Samarium-neodymium isotopic data on whole rocks and minerals of the Sudbury Complex in Canada gave an igneous crystallization age of 1840 ?? 21 ?? 106 years. The initial epsilon neodymium values for 15 whole rocks are similar to those for average upper continental crust, falling on the crustal trend of neodymium isotopic evolution as defined by shales. The rare earth element concentration patterns of Sudbury rocks are also similar to upper crustal averages. These data suggest that the Sudbury Complex formed from melts generated in the upper crust and are consistent with a meteoritic impact.

  12. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the Proterozoic mantle

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Wooden, J. L.

    1983-01-01

    The Nd and Sr isotopic compositions presently reported for anorthosites and related rocks from the Grenville and Nain Provinces of the eastern Canadian shield indicate that the massifs were delivered from at least two distinct mantle source regions which were established before 1650 Myr ago. These regions were episodically involved in magmatism over about 500 Myr. One reservoir was isotopically similar to the depleted, modern midocean ridge basalt source. The other reservoir was chondritic-to-moderately-enriched, and is most easily identified in the Nain Province, but may have occurred scattered throughout Superior Province, as well.

  13. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    NASA Technical Reports Server (NTRS)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  14. Lead isotope evidence for a young formation age of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Connelly, J. N.; Bizzarro, M.

    2016-10-01

    A model of a giant impact between two planetary bodies is widely accepted to account for the Earth-Moon system. Despite the importance of this event for understanding early Earth evolution and the inventory of Earth's volatiles critical to life, the timing of the impact is poorly constrained. We explore a data-based, two-stage Pb isotope evolution model in which the timing of the loss of volatile Pb relative to refractory U in the aftermath of the giant impact is faithfully recorded in the Pb isotopes of bulk silicate Earth. Constraining the first stage Pb isotopic evolution permits calculating an age range of 4.426-4.417 Ga for the inflection in the U/Pb ratio related to the giant impact. This model is supported by Pb isotope data for angrite meteorites that we use to demonstrate volatility-driven, planetary-scale Pb loss was an efficient process during the early Solar System. The revised age is ∼100 Myr younger than most current estimates for the age of the Moon but fully consistent with recent ages for lunar ferroan anorthosite and the timing of Earth's first crust inferred from the terrestrial zircon record. The estimated loss of ∼98% of terrestrial Pb relative to the Solar System bulk composition by the end of the Moon-forming process implies that the current inventory of Earth's most volatile elements, including water, arrived during post-impact veneering by volatile-rich bodies.

  15. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core.

    PubMed

    Scherstén, Anders; Elliott, Tim; Hawkesworth, Chris; Norman, Marc

    2004-01-15

    Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets (187)Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled (186)Os-(187)Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile ('iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also 'incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted (186)Os-(187)Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.

  16. Ultrahigh-Temperature Metamorphism in Madurai Granulites, Southern India: Evidence from Carbon Isotope Thermometry.

    PubMed

    Satish-Kumar

    2000-07-01

    Ultrahigh-temperature (UHT) metamorphism in the Madurai Block of the southern Indian granulite terrain has been verified using the calcite-graphite isotope exchange thermometer. Carbon isotope thermometry has been applied to marbles from a locality near the reported occurrence of sapphirine granulites that have yielded temperature estimates of around 1000 degrees C. The delta(13)C and delta(18)O values of calcite are homogenous, implying equilibration of the isotopes during metamorphism. However, the delta(13)C values of single graphite crystals show variations in the order of 1 per thousand within a hand specimen. Detailed isotopic zonation studies indicate that graphite preserves either the time-integrated crystal growth history or reequilibrium fractionation during its cooling history. The graphite cores preserve higher delta(13)C values than the rims. The fractionation between calcite and graphite cores gives the highest metamorphic temperature of about 1060 degrees C, which matches the petrologically inferred temperature estimates in the high-magnesian pelites. The fractionation between graphite rims and calcite suggests a temperature of around 750 degrees C, which is interpreted to reflect retrograde cooling. This event is also observed in the sapphirine granulites. Calcite-graphite thermometry thus provides a useful tool to define UHT metamorphism in granulite terrains.

  17. Isotopic evidence for climatic influence on alluvial-fan development in Death Valley, California

    SciTech Connect

    Dorn, R.I.; DeNiro, M.J.; Ajie, H.O.

    1987-02-01

    At least three semiarid to arid cycles are recorded by ..delta../sup 13/C values of organic matter in layers of rock varnishes on surfaces of Hanaupah Canyon and Johnson Canyon alluvial fans, Death Valley, California. These isotopic paleoenvironmental signals are interpreted as indicating major periods of fan aggradation during relatively more humid periods and fan entrenchment during subsequent lengthy arid periods.

  18. Intrapopulation Variability Shaping Isotope Discrimination and Turnover: Experimental Evidence in Arctic Foxes

    PubMed Central

    Lecomte, Nicolas; Ahlstrøm, Øystein; Ehrich, Dorothée; Fuglei, Eva; Ims, Rolf A.; Yoccoz, Nigel G.

    2011-01-01

    Background Tissue-specific stable isotope signatures can provide insights into the trophic ecology of consumers and their roles in food webs. Two parameters are central for making valid inferences based on stable isotopes, isotopic discrimination (difference in isotopic ratio between consumer and its diet) and turnover time (renewal process of molecules in a given tissue usually measured when half of the tissue composition has changed). We investigated simultaneously the effects of age, sex, and diet types on the variation of discrimination and half-life in nitrogen and carbon stable isotopes (δ15N and δ13C, respectively) in five tissues (blood cells, plasma, muscle, liver, nail, and hair) of a top predator, the arctic fox Vulpes lagopus. Methodology/Principal Findings We fed 40 farmed foxes (equal numbers of adults and yearlings of both sexes) with diet capturing the range of resources used by their wild counterparts. We found that, for a single species, six tissues, and three diet types, the range of discrimination values can be almost as large as what is known at the scale of the whole mammalian or avian class. Discrimination varied depending on sex, age, tissue, and diet types, ranging from 0.3‰ to 5.3‰ (mean  = 2.6‰) for δ15N and from 0.2‰ to 2.9‰ (mean  = 0.9‰) for δ13C. We also found an impact of population structure on δ15N half-life in blood cells. Varying across individuals, δ15N half-life in plasma (6 to 10 days) was also shorter than for δ13C (14 to 22 days), though δ15N and δ13C half-lives are usually considered as equal. Conclusion/Significance Overall, our multi-factorial experiment revealed that at least six levels of isotopic variations could co-occur in the same population. Our experimental analysis provides a framework for quantifying multiple sources of variation in isotopic discrimination and half-life that needs to be taken into account when designing and analysing ecological field studies. PMID:21731715

  19. Isotopic evidence for the source and fate of P in the Everglades wetlands

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, Y.

    2007-12-01

    High phosphorus (P) influx into wetland ecosystems in the Florida Everglades continues to be a problem. The increased P loading has been linked to changes in flora and fauna and the degradation of water quality in the wetlands. The number and species of animals have dramatically declined due to the agricultural and urban development since 1900. The plant community has also shifted from P-limited sawgrass (Cladium) to P-adapted cattail (Typha) in areas impacted by agricultural runoff. Although the effects of P loading on ecosystem have been recognized, little is known about how those changes affect the biogeochemical processes regulating P availability and cycling in freshwater ecosystems. The P-O bond in phosphate is resistant to hydrolysis in inorganic systems. However, the P-O bond can be easily broken in enzyme-mediated biochemical reactions, resulting in rapid oxygen isotope exchange with surrounding water within organisms. Thus, oxygen isotopic composition of phosphate should indicate the environment and processes of its formation. Oxygen isotopes in phosphate may provide a useful tool for tracing the source and recycling of phosphorus in aquatic systems. Here, I present the results of an oxygen isotopic study of phosphate in a constructed wetland (Storm water Treatment Area STA-1W) in northern Everglades as well as in a relatively pristine wetland in the Everglades National Park (ENP). Oxygen isotopic compositions of dissolved inorganic phosphate (DIP) in water and of total phosphate in sediment were determined using a High Temperature Conversion Elemental Analyzer (TC/EA) interfaced to a Finnigan MAT Delta Plus XP stable isotope ratio mass spectrometer (IRMS) at NHMFL. The data show: 1) there is no clear relationship between the d18O of DIP and P concentration in the water; 2) the d18O value of DIP is correlated with hydrological data (what kind?); 3) d18O value of DIP is not in equilibrium with water. The DIP samples collected in July are closer to isotopic

  20. Isotopic evidence for Last Glacial climatic impacts on Neanderthal gazelle hunting territories at Amud Cave, Israel.

    PubMed

    Hartman, Gideon; Hovers, Erella; Hublin, Jean-Jacques; Richards, Michael

    2015-07-01

    The Middle Paleolithic site of Amud Cave, Israel, was occupied by Neanderthals at two different time periods, evidenced by two chronologically and stratigraphically distinct depositional sub-units (B4 and B2/B1) during MIS 4 and MIS 3, respectively. The composition of both hunted large fauna and naturally-deposited micromammalian taxa is stable at the site over time, despite a ∼ 10 ky gap between the two occupation phases. However, while gazelle is the most ubiquitous hunted species throughout the occupation, isotopic analysis showed that there is a marked change in Neanderthal hunting ranges between the early (B4) and late (B2/B1) phases. Hunting ranges were reconstructed by comparing oxygen, carbon, and strontium isotopes from gazelle tooth enamel with modern isotope data from the Amud Cave region. This region is characterized by extensive topographic, lithological, and pedological heterogeneity. During the early occupation phase negative oxygen isotope values, low radiogenic (87)Sr/(86)Sr ratios, and low Sr concentrations reveal restricted gazelle hunting in the high elevations west of Amud Cave. In the late occupation phase, hunting ranges became more diverse, but concentrate at low elevations closer to the site. Climatic proxies indicate that conditions were drier in the early occupation phase, which may have pushed gazelle populations into higher, more productive foraging areas. This study showed that Neanderthals adjusted their hunting territories considerably in relation to varying environmental conditions over the course of occupation in Amud Cave. It highlights the utility of multiple isotope analysis in enhancing the resolution of behavioral interpretations based on faunal remains and in reconstructing past hunting behaviors of Paleolithic hominins. PMID:25957654

  1. Lithium Isotope Evidence for Cryogenian Post-Glaciation Enhanced Weathering and CO2 Drawdown

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, P.; Ridgwell, A. J.; Kasemann, S.; Elliott, T.

    2014-12-01

    The growth of continental ice sheets at equatorial sealevel during the Neoproterozoic Marinoan are of considerable interest, because they may have served as a filter for animal evolution and atmospheric oxygenation. Further, the hypothesised post-glacial extreme greenhouse state provides the opportunity to test climate system responses to rapid warming. In particular, the debate focuses on whether the ubiquitous post-glacial deposition of cap carbonates and associated negative δ13C excursion was caused by an enhanced weathering-driven delivery of atmospheric CO2 to the oceans, or by the thermal destabilisation of marine methane hydrates. Lithium isotopes are a relatively novel tracer of continental weathering. Li is almost entirely situated in silicates, rather than carbonates, and its isotopic fractionation in rivers is demonstrably due to the intensity of silicate weathering. In addition, Li isotope fractionation remains constant in marine carbonates, regardless of changes in temperature or type of skeletal calcite. Determination of Li isotope ratios through several well-characterised sections of the Otavi Group, NW Namibia, indicates similar trends, with δ7Li decreasing sharply by ~13‰, with the isotopic minimum occurring within the cap carbonates, and before the δ13C minimum. The δ7Li values are the lowest ever recorded in carbonate. These trends strongly suggest a significant increase in the intensity of silicate weathering during the deglaciation. Combining these data with a series of Earth system models coupled to δ13C allows a comprehensive interpretation of the changes in continental weathering and atmospheric pCO2, and the link between the two, during the deposition of the cap carbonates. Together, this data-model approach helps elucidate climate system behaviour during this period of rapid and extreme climate warming.

  2. The Robustness of Clumped Isotope Temperatures to Bond Reordering: Evidence from Deeply Buried Carbonate Reservoirs

    NASA Astrophysics Data System (ADS)

    MacDonald, J.; John, C. M.; Girard, J. P.

    2014-12-01

    Numerous studies have shown that clumped isotope thermometry records the temperature of precipitation for carbonate minerals in surface and near-surface environments. However, the ability of a mineral to retain its clumped isotope signature at deeper, hotter burial conditions is still debated. Dolomite has been shown to be more robust to clumped isotope bond reordering than calcite. In this contribution we measure clumped isotopes in calcite veins from Southern Europe that have been buried to up to 7 km to test the robustness of calcite and dolomite to bond reordering. First, we analysed finely crystalline dolostone matrix samples collected in industry wells from Southwest France and buried to between 2 and 5.5 km, Results indicated a temperatures of ~40-60 °C, interpreted to represent formation in an early burial environment. By contrast, coarser dolomite crystals that are petrographically distinct from the fine-grained dolomite record higher temperatures and are interpreted to reflect a deeper, hotter phase of dolomite formation. Preliminary analysis of a calcite vein from a Cretaceous dolostone in Southern Europe buried to 6.3 km records a temperature of 41±3 °C; the calcite matrix around this records a similarly low temperature. This is well below the present-day well temperature of 130-140 °C. Our results indicate that both calcite and dolomite are not affected by bond reordering at the range of depths and temperatures investigated here. Furthermore, this suggests that clumped isotope thermometry can be applied to deeply-buried samples (i.e. >5km).

  3. Trans-Atlantic slavery: isotopic evidence for forced migration to Barbados.

    PubMed

    Schroeder, Hannes; O'Connell, Tamsin C; Evans, Jane A; Shuler, Kristrina A; Hedges, Robert E M

    2009-08-01

    The question of the ultimate origin of African slaves is one of the most perplexing in the history of trans-Atlantic slavery. Here we present the results of a small, preliminary isotopic study that was conducted in order to determine the geographical origin of 25 enslaved Africans who were buried at the Newton plantation, Barbados, sometime between the late 17th and early 19th century. In order to gain a more nuanced understanding of the slaves' origin, we used a combination of carbon, nitrogen, oxygen, and strontium isotope analyses. Carbon and nitrogen isotope ratios were determined in bone and dentinal collagen; oxygen and strontium isotopes were measured in tooth enamel. Results suggest that the majority of individuals were born on the island, if not the estate itself. Seven individuals, however, yielded enamel oxygen and strontium ratios that are inconsistent with a Barbadian origin, which strongly suggests that we are dealing with first-generation captives who were brought to the island with the slave trade. This idea is also supported by the fact that their carbon and nitrogen stable isotope values differ markedly between their teeth and bones. These intra-skeletal shifts reflect major dietary changes that probably coincided with their enslavement and forced migration to Barbados. While it is impossible to determine their exact origins, the results clearly demonstrate that the slaves did not all grow up in the same part of Africa. Instead, the data seem to suggest that they originated from at least three different areas, possibly including the Gold Coast and the Senegambia.

  4. Isotopic evidence for the diversity of late Quaternary loess in Nebraska: Glaciogenic and nonglaciogenic sources

    USGS Publications Warehouse

    Aleinikoff, John N.; Muhs, Daniel R.; Bettis, E. Arthur; Johnson, William C.; Fanning, C. Mark; Benton, Rachel

    2008-01-01

    Pb isotope compositions of detrital K-feldspars and U-Pb ages of detrital zircons are used as indicators for determining the sources of Peoria Loess deposited during the last glacial period (late Wisconsin, ca. 25–14 ka) in Nebraska and western Iowa. Our new data indicate that only loess adjacent to the Platte River has Pb isotopic characteristics suggesting derivation from this river. Most Peoria Loess in central Nebraska (up to 20 m thick) is non-glaciogenic, on the basis of Pb isotope ratios in K-feldspars and the presence of 34-Ma detrital zircons. These isotopic characteristics suggest derivation primarily from the Oligocene White River Group in southern South Dakota, western Nebraska, southeastern Wyoming, and northeastern Colorado. The occurrence of 10–25 Ma detrital zircons suggests additional minor contributions of silt from the Oligocene-Miocene Arikaree Group and Miocene Ogallala Group. Isotopic data from detrital K-feldspar and zircon grains from Peoria Loess deposits in eastern Nebraska and western Iowa suggest that the immediate source of this loess was alluvium of the Missouri River. We conclude that this silt probably is of glaciogenic origin, primarily derived from outwash from the western margin of the Laurentide Ice Sheet. Identification of the White River Group as the main provenance of Peoria Loess of central Nebraska and the Missouri River valley as the immediate source of western Iowa Peoria Loess indicates that paleowind directions during the late Wisconsin were primarily from the northwest and west, in agreement with earlier studies of particle size and loess thickness variation. In addition, the results are in agreement with recent simulations of non-glaciogenic dust sources from linked climate-vegetation modeling, suggesting dry, windy, and minimally vegetated areas in parts of the Great Plains during the last glacial period.

  5. Low-temperature carbonate concretions in the martian meteorite ALH84001: Evidence from stable isotopes and mineralogy

    SciTech Connect

    Valley, J.W.; Eiler, J.M.; Stolper, E.M.

    1997-03-14

    The martian meteorite ALH84001 contains small, disk-shaped concentrations of carbonate with concentric chemical and mineralogical zonation. Oxygen isotope compositions of these concretions, measured by ion microprobe, range from {delta}{sup 18}O = +9.5 to +20.5{per_thousand}. Most of the core of one concretion is homogeneous (16.7 {+-} 1.2{per_thousand}) and over 5{per_thousand} higher in ({delta}{sup 18}O = 4.6 {+-} 1.2{per_thousand}). Secondary SiO{sub 2} has {delta}{sup 18}O = 20.4{per_thousand}. Carbon isotope ratios measured from the core of one concretion average {delta}{sup 13}C = 46 {+-} 8{per_thousand}, consistent with formation on Mars. The isotopic variations and mineral compositions offer no evidence for high temperature (>650{degrees}C) carbonate precipitation and suggest non-equilibrium processes at low temperatures (<{approximately} 300{degrees}C). 44 refs., 3 figs., 1 tab.

  6. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir

    NASA Astrophysics Data System (ADS)

    Scott, Clint; Wing, Boswell A.; Bekker, Andrey; Planavsky, Noah J.; Medvedev, Pavel; Bates, Steven M.; Yun, Misuk; Lyons, Timothy W.

    2014-03-01

    Earth's oxygenation is often described in terms of two unidirectional steps at the beginning and end of the Proterozoic Eon, separated by a long-lived intermediate redox state. Recent work defines a more complicated path to oxygenation, exemplified by an apparent drop in oxidation state following the early Paleoproterozoic Lomagundi carbon isotope excursion. The timing of this proposed drop in oxidation state is not well constrained, and it is not clear how it relates to redox conditions during the remainder of the Proterozoic. Here we present a study of pyrite multiple-sulfur isotopes, supported by Fe speciation and organic carbon isotopes, from early Paleoproterozoic black shales. We find evidence for the rapid expansion of the seawater sulfate reservoir during the Great Oxidation Event at ca. 2.3 Ga followed by a subsequent contraction in the size of the seawater sulfate reservoir at ca. 2.05 Ga. This scenario is consistent with the emerging view of a rise and fall in surface oxidation state during the early Paleoproterozoic. Comparison of our new data to other records of the seawater sulfate reservoir suggests that the elevated sulfate concentrations that characterize the early Paleoproterozoic did not return until the late Neoproterozoic.

  7. Ancient feeding ecology inferred from stable isotopic evidence from fossil horses in South America over the past 3 Ma

    PubMed Central

    2011-01-01

    Background Stable isotope ratios (13C/12C and 18O/16O) in fossil teeth and bone provide key archives for understanding the ecology of extinct horses during the Plio-Pleistocene in South America; however, what happened in areas of sympatry between Equus (Amerhippus) and Hippidion is less understood. Results Here, we use stable carbon and oxygen isotopes preserved in 67 fossil tooth and bone samples for seven species of horses from 25 different localities to document the magnitude of the dietary shifts of horses and ancient floral change during the Plio-Pleistocene. Dietary reconstructions inferred from stable isotopes of both genera of horses present in South America document dietary separation and environmental changes in ancient ecosystems, including C3/C4 transitions. Stable isotope data demonstrate changes in C4 grass consumption, inter-species dietary partitioning and variation in isotopic niche breadth of mixed feeders with latitudinal gradient. Conclusions The data for Hippidion indicate a preference varying from C3 plants to mixed C3-C4 plants in their diet. Equus (Amerhippus) shows three different patterns of dietary partitioning Equus (A.) neogeus from the province of Buenos Aires indicate a preference for C3 plants in the diet. Equus (A.) andium from Ecuador and Equus (A.) insulatus from Bolivia show a preference for to a diet of mixed C3-C4 plants, while Equus (A.) santaeelenae from La Carolina (sea level of Ecuador) and Brazil are mostly C4 feeders. These results confirm that ancient feeding ecology cannot always be inferred from dental morphology. While the carbon isotope composition of horses skeletal material decreased as latitude increased, we found evidence of boundary between a mixed C3/C4 diet signal and a pure C4 signal around 32° S and a change from a mixed diet signal to an exclusively C3 signal around 35°S. We found that the horses living at high altitudes and at low to middle latitude still have a C4 component in their diet, except the

  8. Provenance of sedimentary kaolin deposits in Egypt: Evidences from the Pb, Sr and Nd isotopes

    NASA Astrophysics Data System (ADS)

    Baioumy, Hassan

    2014-12-01

    This work reports, for the first time, the Pb, Sr and Nd isotopes of the clay fractions (<2 μm) from sedimentary kaolin deposits in Egypt of different ages (Carboniferous and lower Cretaceous), localities (Sinai, Red Sea and Aswan), lithologies (flint and plastic) and clay minerals composition (pure kaolinite and mixture of kaolinite, illite and chlorite) to determine their source area compositions and examine the effect of provenance on their isotopic compositions. Measured (present day) and age-corrected Pb isotopes data (100 and 300 My for the Cretaceous and Carboniferous deposits, respectively) are more or less homogeneous in all deposits regardless of their ages, localities, and compositions. This, therefore, suggests that the Pb isotopes cannot be used as a tracer for source area compositions of these kaolin deposits. On the other hand, the studied kaolin deposits show variations in their measured and age-corrected Sr and Nd isotopes regarding to their ages and compositions. The Carboniferous illite-rich kaolin deposits in the Khaboba and Hasbar areas, Sinai have higher measured and age-corrected 87Sr/86Sr ratios (average of 0.715742 and 0.711156 for measured and age-corrected, respectively) compared to the non-illitic Carboniferous deposit at Abu Natash area (average of 0.70772 and 0.70769 for measured and age-corrected, respectively) and the lower Cretaceous deposits in all areas (average of 0.70827 and 0.70821 for measured and age-corrected, respectively). The Carboniferous kaolin deposits in the Khaboba and Hasbar areas also have lower 143Nd/144Nd ratios (average of 0.51206 and 0.51180 for measured and age-corrected, respectively) compared to the Carboniferous Abu Natash deposit (average of 0.51253 and 0.51231 for measured and age-corrected, respectively) as well as the lower Cretaceous deposits in all areas (average of 0.51248 and 0.51239 for measured and age-corrected, respectively). Initial εNd values are negative in the Carboniferous kaolin deposits

  9. Martian carbonates in ALH 84001: Textural, elemental, and stable isotopic compositional evidence on their formation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Romanek, C. S.; Mittlefehldt, D. W.; Gibson, E. K., Jr.; Socki, R. A.

    1994-01-01

    Martian orthopyroxenite ALH 84001 is unusual compared to other martian meteorites in its abundance of Mg-Fe-Ca carbonites. Becasue textural evidence indicates that these carbonates are undoubtedly of martian origin, we have undertaken stable isotopic studies to elucidate their origin by evaluating whether they represent primordial martian C that was outgassing from the mantle of Mars, or volatile additions to the ALH 84001 protolith that equilibrated with the martian atmosphere. If precipitation occurred in a closed system then the isotopic results are compatible with the observed chemical zonation. A unique temperature of formation can be calculated using the difference in C-13 and O-18 between the Fe and Mg carbonates, assuming that precipitation occurred at a constant temperature. Precipitation of approximately one-half of the CO2 reservoir at 320 C can account for the observed values, with the original CO2 reservoir having a delta C-13 of approximately 45% and delta O-18 of approximately 22%. If carbonate precipitated in equilibrium with a large isotopically homogeneous CO2 reservoir (open system), isotopic differences must be attributed to a change in temperature of at least several hundreds of degrees. This temperature change is compatible with a calculated range of temperatures based on carbonate geothermometry. Clearly, carbonate in ALH 84001 is in delta O-18 disequilibrium with orthopyroxene groundmass. Most likely, the carbonate precipitated from a fluid that equilibrated with the martian atmosphere. The deposits or fluids in equilibrium with these deposits were remobilized in the crust producing the carbonate in ALH 84001. This observation establishes a link for the first time between the atmospheric and lithospheric C and O pools that reside on Mars.

  10. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands: Strontium, neodymium, lead, and oxygen isotopic evidence

    SciTech Connect

    Cousens, B.L. ); Spera, F.J. ); Dobson, P.F. )

    1993-02-01

    Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from Gran Canaria, Canary Islands, provide evidence for posteruptive mobility of Rb, Sr, and O. Calculated initial [sup 87]Sr/[sup 86]Sr ratios in whole-rock samples from basaltic lavas and feldspar mineral separates from ignimbrites define a magmatic trend in the stratigraphic section, from ratios of 0.70340 at the base of the Mogan Formation to 0.70305 in the lower Fataga Formation. However, calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios in hydrated vitrophyre and devitrified matrix separates range from 0.7035 to 0.7090. [delta][sup 18]O ratios in basalts and feldspars vary little, from +5.7 to +6.1, yet range from +6.5 to +15.0 in the ignimbrite matrices. In contrast to the Sr and O isotope ratios, Pb and Nd isotope ratios are identical within analytical error in feldspars and their silicic ignimbrite matrices. Sequential leaching experiments and the oxygen data suggest that low-temperature, posteruptive interaction with meteoric water, perhaps containing a small seawater component, has modified Rb and Sr concentrations in the matrices, such that calculated apparent initial [sup 87]Sr/[sup 86]Sr ratios are not those of the magmas when they were erupted. Mobilization of Rb and Sr must occur significantly after eurption. Nd and Pb isotope systems appear to be unaffected by this process. Therefore, [sup 87]Sr/[sup 86]Sr ratios determined by whole rock analysis of silicic rocks from hotspot-type oceanic islands are suspect and should not be incorporated into mantle tracer studies, although analysis of phenocrysts may produce useful data. 40 refs., 5 figs., 3 tabs.

  11. Lithium isotopes and light lithophile element abundances in shergottites: Evidence for both magmatic degassing and subsolidus diffusion

    NASA Astrophysics Data System (ADS)

    Udry, Arya; McSween, Harry Y.; Hervig, Richard L.; Taylor, Lawrence A.

    2016-01-01

    Degassed magmatic water was potentially the major source of surficial water on Mars. We measured Li, B, and Be abundances and Li isotope profiles in pyroxenes, olivines, and maskelynite from four compositionally different shergottites—Shergotty, QUE 94201, LAR 06319, and Tissint—using secondary ion mass spectrometry (SIMS). All three light lithophile elements (LLE) are incompatible: Li and B are soluble in H2O-rich fluids, whereas Be is insoluble. In the analyzed shergottites, Li concentration decreases and Be concentration increases from cores to rims in pyroxenes. However, B concentrations do not vary consistently with Li and Be abundances, except in QUE 94201 pyroxenes. Additionally, abundances of these three elements in olivines show a normal igneous-fractionation trend consistent with the crystallization of olivine before magma ascent and degassing. We expect that kinetic effects would lead to fractionation of 6Li in the vapor phase compared to 7Li during degassing. The Li isotope profiles, with increasing δ7Li from cores to rims, as well as Li and B profiles indicate possible degassing of hydrous fluids only for the depleted shergottite QUE 94201, as also supported by degassing models. Conversely, Shergotty, LAR 06319, and Tissint appear to have been affected by postcrystallization diffusion, based on their LLE and Li isotope profiles, accompanied by diffusion models. This process may represent an overlay on a degassing pattern. The LLE profiles and isotope profiles in QUE 94201 support the hypothesis that degassing of some basaltic shergottite magmas provided water to the Martian surface, although evidence may be obscured by subsolidus diffusion processes.

  12. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York

    USGS Publications Warehouse

    Böhlke, J.K.; Hatzinger, P.B.; Sturchio, N.C.; Gu, B.; Abbene, I.; Mroczkowski, S.J.

    2009-01-01

    Perchlorate (ClO4-) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO4- is past agricultural application of ClO4--bearing natural NO3- fertilizer imported from the Atacama Desert, Chile, but evidence for this hasbeenlargely circumstantial. Here we report ClO4- stable isotope data (??37Cl, ??18O, and ??17O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO4- contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO4- apparently was not affected by biodegradation within the aquifers. Synthetic ClO4- was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO4- was indicated in agricultural and urbanizing areas in groundwaters with apparent ages >20 years. In an agricultural area, ClO4- concentrations and ClO4-/NO3- ratios increased withgroundwaterage, possiblybecauseof decreasing application rates of Atacama NO3- fertilizers and/or decreasing ClO4- concentrations in Atacama NO 3- fertilizers in recent years. Because ClO 4-/NO3- ratios of Atacama NO 3- fertilizers imported in the past (???2 ?? 10-3 mol mol-1) were much higher than the ClO 4-/NO3- ratio of recommended drinking-water limits (7 ?? 10-5 mol mol-1 in New York), ClO4- could exceed drinkingwater limits even where NO3- does not, and where Atacama NO3- was only a minor source of N. Groundwater ClO4- with distinctive isotopic composition was a sensitive indicator of past Atacama NO3- fertilizer use on Long Island and may be common in other areas that received NO3- fertilizers from the late 19th century through the 20th century. ?? 2009 American Chemical Society.

  13. Helium isotopes in lithospheric mantle: Evidence from Tertiary basalts of the western USA

    SciTech Connect

    Dodson, A.; DePaolo, D.J.; Kennedy, B.M. |

    1998-12-01

    The isotopic compositions of He, Sr, and Nd were measured in Tertiary-age basalts from the Basin and Range province of the western USA to evaluate models for the He isotopic character of subcontinental mantle lithosphere (SCML) and assess the role of recycled SCML in models of mantle evolution. Previous isotopic and trace element measurements suggested that most of these basalts were formed by melting of SCML. {sup 3}He/{sup 4}He ratios, measured by in-vacuo crushing of olivine phenocrysts, vary from 2.9 to 7.8 times the atmospheric value (2.9 to 7.8 Ra) consistently below the MORB value of 8.7 {+-} 0.5 Ra. The lowest R/Ra values, associated with low {epsilon}{sub Nd}, high {sup 87}Sr/{sup 86}Sr, and high La/Nb, are attributable to lithosphere mantle, and indicate that SCML is not dominated by MORB-type He, nor by high R/Ra, plume-type He. Consideration of geographic variability indicates there are two, and possibly three, distinct regions of SCML with differing He isotopic characteristics. SCML beneath the eastern Sierra Nevada is inferred to have {sup 3}He/{sup 4}He of {approximately}5.5 Ra and a He/Nd ratio slightly less than MORB-type mantle; SCML beneath the central Basin and Range has {sup 3}He/{sup 4}He of {approximately}4 Ra and a higher He/Nd ratio than MORB-type mantle. The SCML under southwestern Utah shows less systematic correlation of He isotopes with other geochemical parameters, but also has a lower bound R/Ra value of about 4 Ra. The inferred SCML helium ratios are consistent with retention of radiogenic {sup 4}He over 800 Ma for the eastern Sierra Nevada and 1700 Ma for the other two regions. The results are not consistent with models of He infiltration from the underlying asthenosphere and suggest the lithosphere of the Basin and Range region was not delaminated during the early Tertiary. The He, Sr, Nd, and Pb isotopic compositions inferred for the SCML of the southwestern USA are a reasonably good match to the characteristics of the EMII

  14. Isotopic Evidence for Internal Oxidation of the Earth's Mantle During Accretion

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Wood, B. J.; Wade, J.; Frost, D. J.; Tuff, J.

    2010-12-01

    The Earth’s mantle is currently oxidised and out of chemical equilibrium with the core. Why this should be the case, and why the Earth’s mantle should be more oxidised relative to other terrestrial planets is poorly understood. It has been proposed that the oxidised nature and high ferric iron (Fe3+) content of the Earth’s mantle was produced internally by disproportionation of ferrous iron (Fe2+) into Fe3+ and metallic iron by perovskite crystallisation during accretion [1]. Here we show that there is a substantial Fe isotope fractionation between experimentally equilibrated metal and perovskite, where perovskite is isotopically heavy relative to metal. This fractionation can explain the heavy Fe isotope compositions of terrestrial basalts relative to equivalent samples derived from Mars and Vesta [2, 3], as the latter planets are too small to stabilise significant perovskite. Mass balance calculations indicate that all of the mantle’s Fe3+ could have been generated from a single disproportionation event, which is consistent with complete dissolution of perovskite in the lower mantle during the Moon-forming giant impact. The similar Fe isotope compositions of terrestrial and lunar basalts are consistent with equilibration between the mantles of the Earth and Moon in the aftermath of the giant impact [4] and implies that the heavy Fe isotope composition of the Earth’s mantle was established prior to, or during this event. The oxidation state and ferric iron content of the Earth’s mantle was therefore plausibly set by the end of accretion, and is decoupled from late volatile additions and the rise of oxygen in the Earth’s atmosphere at 2.45 Ga [5]. [1] Frost, D. J.et al., Nature 428, p. 409 (2004). [2] Poitrasson, F.et al., Earth and Planetary Science Letters 223 (3-4), p. 253 (2004). [3] Weyer, S. et al., Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240 (2), p. 251 (2005). [4] Pahlevan, K. and

  15. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures

    PubMed Central

    Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W. N.; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn

    2013-01-01

    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ199Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude. PMID:24270081

  16. Hydrogen-isotope evidence for extrusion mechanisms of the Mount St Helens lava dome

    NASA Technical Reports Server (NTRS)

    Anderson, Steven W.; Fink, Jonathan H.

    1989-01-01

    Hydrogen isotope analyses were used to determine water content and deuterium content for 18 samples of the Mount St Helens dome dacite in an attempt to identify the triggering mechanisms for periodic dome-building eruptions of lava. These isotope data, the first ever collected from an active lava dome, suggest a steady-state process of magma evolution combining crystallization-induced volatile production in the chamber with three different degassing mechanisms: closed-system volatile loss in the magma chamber, open-system volatile release during ascent, and kinetically controlled degassing upon eruption at the surface. The data suggest the future dome-building eruptions may require a new influx of volatile-rich magma into the chamber.

  17. Strontium isotopic evidence for a higher water table at Yucca Mountain

    USGS Publications Warehouse

    Marshall, Brian D.; Peterman, Zell E.; Stuckless, John S.

    1993-01-01

    At Yucca Mountain, calcite occurs as open-space fillings and coatings on fractures within much of the host volcanic rocks in both the saturated and unsaturated zones. Strontium isotope analyses of these calcites divide the samples into two groups corresponding to their location in either the saturated or unsaturated zones. The group of samples from the unsaturated zone corresponds very well with pedogenic carbonate samples, indicating that the strontium came from the surface during infiltration events. However, four samples from the unsaturated zone show strontium isotopic ratios similar to present-day ground water. Since these samples are closest to the water table, they are interpreted as the result of a higher water-table stand (approx.85 m higher than present-day) in the past.

  18. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-02-22

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction.

  19. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Rino, Shuji; Maruyama, Shigenori; Hirata, Takafumi

    2010-04-01

    We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga. The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than

  20. Stable Isotopic Evidence for a Pedogenic Origin of Carbonates in Trench 14 near Yucca Mountain, Nevada.

    PubMed

    Quade, J; Cerling, T E

    1990-12-14

    Layered carbonate and silica encrust fault fractures exposed in Trench 14 near Yucca Mountain, site of the proposed high-level nuclear waste repository in southern Nevada. Comparison of the stable carbon and oxygen isotopic compositions of the fracture carbonates with those of modern soil carbonates in the area shows that the fracture carbonates are pedogenic in origin and that they likely formed in the presence of vegetation and rainfall typical of a glacial climate. Their isotopic composition differs markedly from that of carbonate associated with nearby springs. The regional water table therefore remained below the level of Trench 14 during the time that the carbonates and silica precipitated, a period probably covering parts of at least the last 300,000 years. PMID:17818282

  1. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    NASA Astrophysics Data System (ADS)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  2. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  3. Isotopic evidences of groundwater circulation in the Kaidu River, South Tianshan Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    FAN, Yuting; Métivier, François; Chen, Yaning; He, Qing; Wang, Yun

    2015-04-01

    Water demand always exceeds supply in many parts of the world, especially in the arid and semi-arid regions. Groundwater is the primary input to hydrological systems like surface water bodies in polar and high mountain regions. A reasonable application of water isotopes requires a good understanding of the isotopic fractionation in processes controlling the isotopic composition of surface water and groundwater. Through the review of published papers, we find there is still scope for improving the understanding of groundwater isotopes: (1) quite few studies on groundwater circulation via kinetic fractionation of stable isotopes in the arid region of Central Asia; (2) several shortcomings on the quantitative assessment of water recycling for mountain-plain area. Tianshan Mountains, located in Xinjiang Province, is always called water tower in Central Asia and play an important role in the water cycle. In this paper, we implemented hydro-chemical index and Stable isotope mass balance method to study transformation of groundwater with surface water and to quantify recharge proportion between water bodies of typical regions. As a first step towards quantifying the contribution of groundwater, three-component mixing model of Kaidu River Basin into its constituent components has been done. Chemistry type of headstreams in this basin is mainly Ca-Mg-HCO3, while major ions and salinity of surface water show an increasing trend with the water rising time, which could be attributable to significant features of surface water evaporation and concentration. After that chemistry type of oasis-plain area in the basin is mainly Ca-HCO3-CO4. Groundwater recharge ratio was processed via spatial scale, it is only about 15% in upstream areas, while it accounted for 45% or more in the middle and lower reaches. Two groundwater recharge districts were divided according to the distribution characteristics of surface water. The first recharge district is from mountain area with spring

  4. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction

    PubMed Central

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A.

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes (32S, 33S, 34S and 36S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ34S with negative Δ33S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  5. Oxygen Isotope Evidence for the Relationship between CM and CO Chondrites: Could they Both Coexist on a Single Asteroid

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Howard, K. T.; Franchi, I. A.; Zolensky, M. E.; Buchanan, P. C.; Gibson, J. M.

    2014-01-01

    Water played a critical role in the early evolution of asteroids and planets, as well as being an essential ingredient for life on Earth. However, despite its importance, the source of water in the inner solar system remains controversial. Delivery of water to Earth via comets is inconsistent with their relatively elevated D/H ratios, whereas carbonaceous chondrites (CCs) have more terrestrial-like D/H ratios [1]. Of the eight groups into which the CCs are divided, only three (CI, CM, CR) show evidence of extensive aqueous alteration. Of these, the CMs form the single most important group, representing 34% of all CC falls and a similar percentage of finds (Met. Bull. Database). CM material also dominates the population of CC clasts in extraterrestrial samples [2, 3]. The Antarctic micrometeorites population is also dominated by CM and CI-like material and similar particles may have transported water and volatiles to the early Earth [4]. CCs, and CMs in particular, offer the best opportunity for investigating the evolution of water reservoirs in the early solar system. An important aspect of this problem involves identifying the anhydrous silicate component which co-accreted with ice in the CM parent body. A genetic relationship between the essentially anhydrous CO group and the CMs was proposed on the basis of oxygen isotope evidence [5]. However, previous CM whole-rock oxygen isotope data scattered about a line of approximately 0.5 that did not intersect the field of CO chondrites [5]. Here we discuss new oxygen isotope data which provides additional constraints on the relationship between CO and CM chondrites.

  6. Isotopic evidence for internal oxidation of the Earth's mantle during accretion

    NASA Astrophysics Data System (ADS)

    Williams, Helen M.; Wood, Bernard J.; Wade, Jon; Frost, Daniel J.; Tuff, James

    2012-03-01

    The Earth's mantle is currently oxidised and out of chemical equilibrium with the core. The reasons for this and for the relatively oxidised state of Earth's mantle relative to the mantles of other terrestrial planets are unclear. It has been proposed that the oxidised nature and high ferric iron (Fe3 +) content of Earth's mantle was produced internally by disproportionation of ferrous iron (Fe2 +) into Fe3 + and metallic iron by perovskite crystallisation during accretion. Here we show that there is substantial Fe isotope fractionation between experimentally equilibrated metal and Fe3 +-bearing perovskite (≥ 0.45‰/amu), which can account for the heavy Fe isotope compositions of terrestrial basalts relative to equivalent samples derived from Mars and Vesta as the latter bodies are too small to stabilise significant perovskite. Mass balance calculations indicate that all of the mantle's Fe3 + could readily have been generated from a single disproportionation event, consistent with dissolution of perovskite in the lower mantle during a process such as the Moon-forming giant impact. The similar Fe isotope compositions of primitive terrestrial and low-titanium lunar basalts is consistent with models of equilibration between the mantles of the Earth and Moon in the aftermath of the giant impact and suggests that the heavy Fe isotope composition of the Earth's mantle was established prior to, or during the giant impact. The oxidation state and ferric iron content of the Earth's mantle was therefore plausibly set by the end of accretion, and may be decoupled from later volatile additions and the rise of oxygen in the Earth's atmosphere at 2.45 Ga.

  7. Manganese oxide shuttling in pre-GOE oceans - evidence from molybdenum and iron isotopes

    NASA Astrophysics Data System (ADS)

    Kurzweil, Florian; Wille, Martin; Gantert, Niklas; Beukes, Nicolas J.; Schoenberg, Ronny

    2016-10-01

    The local occurrence of oxygen-rich shallow marine water environments has been suggested to significantly predate atmospheric oxygenation, which occurred during the Great Oxidation Event (GOE) ca. 2.4 billion years ago. However, the potential influence of such 'oxygen oases' on the mobility, distribution and isotopic composition of redox sensitive elements remains poorly understood. Here, we provide new molybdenum and iron isotopic data from shallow marine carbonate and silicate iron formations of the Koegas Subgroup, South Africa, that confirm local ocean redox stratification prior to the GOE. Mn concentrations correlate negatively with both δ98 Mo and δ56 Fe values, which highlights the substantial role of particulate manganese for the cycling of Mo and Fe in the Paleoproterozoic oceans. Based on these trends we propose that pore water molybdate was recharged (1) by the diffusional transport of seawater molybdate with high δ98 Mo and (2) by the re-liberation of adsorbed molybdate with low δ98 Mo during Mn oxide dissolution within the sediment. The relative contribution of isotopically light Mo is highest close to a Mn chemocline, where the flux of Mn oxides is largest, causing the negative correlation of Mn concentrations and δ98 Mo values in the Koegas sediments. The negative correlation between δ56 Fe values and Mn concentrations is likely related to Fe isotope fractionation during Fe(II) oxidation by Mn oxides, resulting in lower δ56 Fe values in the uppermost water column close to a Mn chemocline. We argue that the preservation of these signals within Paleoproterozoic sediments implies the existence of vertically extended chemoclines with a smoother gradient, probably as a result of low atmospheric oxygen concentrations. Furthermore, we suggest that abiotic oxidation of Fe(II) by a Mn oxide particle shuttle might have promoted the deposition of the Koegas iron formations.

  8. Isotopic Evidence for Microbial Activity in Crystalline Bedrock Fractures - a Case Study from Olkiluoto, SW Finland

    NASA Astrophysics Data System (ADS)

    Sahlstedt, E. K.; Karhu, J.; Pitkänen, P.

    2015-12-01

    Changes in the geochemical environment in crystalline bedrock fractures were investigated using the stable isotopes of C, O and S in fracture filling minerals as tracers. Of special interest were the possible changes which may occur in the subsurface at low temperatures. Especially, the influence of microbial activity was recognized as a catalyst for inducing changes in the geochemical environment. The study site is the Olkiluoto island located on the western coast of Finland, planned to host a geological repository for nuclear waste. Fracture surfaces were investigated to recognize the latest mineralizations at the site. These fillings were comprised of thin plates or small euhedral crystals of calcite and pyrite. The carbon and sulfur isotope compositions of calcite and pyrite were measured from bulk material by conventional IRMS, and in situ by secondary ion mass spectrometry. A notable feature of the late-stage fillings was high variabilities in the δ13C values of calcite and the δ34S values of pyrite, which ranged from -53.8 ‰ to +31.6 ‰ and from -50.4 ‰ to +77.7 ‰, respectively. Based on the isotopic compositions of the fillings, several features in the past hydrogeochemical environment could be recognized. The isotopic composition of the fracture fillings indicate an environment which was stratified with respect to depth. Characteristic features include bacterial sulfate reduction (BSR) occurring at depths <111 m (bsl), and a methanogenetic environment at depths >50 m. It appears that methanic conditions were replaced by sulfate reduction at depths >50 m likely due to infiltration of SO42--rich brackish waters. Sulfate reducing bacteria used mainly surface derived organic carbon as electron donors. Some indication of minor methanotrophic activity was recognized in anomalously low δ13C values of calcite, down to -53.8 ‰, at the depth range of 34-54 m. This methanotrophic activity may have been related to bacteria using CH4 as an electron donor in

  9. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean.

    PubMed

    Blake, Ruth E; Chang, Sae Jung; Lepland, Aivo

    2010-04-15

    Oxygen and silicon isotope compositions of cherts and studies of protein evolution have been interpreted to reflect ocean temperatures of 55-85 degrees C during the early Palaeoarchaean era ( approximately 3.5 billion years ago). A recent study combining oxygen and hydrogen isotope compositions of cherts, however, makes a case for Archaean ocean temperatures being no greater than 40 degrees C (ref. 5). Ocean temperature can also be assessed using the oxygen isotope composition of phosphate. Recent studies show that (18)O:(16)O ratios of dissolved inorganic phosphate (delta(18)O(P)) reflect ambient seawater temperature as well as biological processing that dominates marine phosphorus cycling at low temperature. All forms of life require and concentrate phosphorus, and as a result of biological processing, modern marine phosphates have delta(18)O(P) values typically between 19-26 per thousand (VSMOW), highly evolved from presumed source values of approximately 6-8 per thousand that are characteristic of apatite in igneous rocks and meteorites. Here we report oxygen isotope compositions of phosphates in sediments from the 3.2-3.5-billion-year-old Barberton Greenstone Belt in South Africa. We find that delta(18)O(P) values range from 9.3 per thousand to 19.9 per thousand and include the highest values reported for Archaean rocks. The temperatures calculated from our highest delta(18)O(P) values and assuming equilibrium with sea water with delta(18)O = 0 per thousand (ref. 12) range from 26 degrees C to 35 degrees C. The higher delta(18)O(P) values are similar to those of modern marine phosphate and suggest a well-developed phosphorus cycle and evolved biologic activity on the Archaean Earth. PMID:20393560

  10. Isotopic and palynological evidence for a new Early Jurassic environmental perturbation

    NASA Astrophysics Data System (ADS)

    Riding, James B.; Leng, Melanie J.; Kender, Sev; Hesselbo, Stephen P.; Feist-Burkhardt, Susanne

    2013-04-01

    The Early Jurassic Epoch was a predominantly greenhouse phase of Earth history, but a comprehensive understanding of its climate dynamics is hampered by a lack of high resolution multi-proxy environmental records. Here we report a geologically brief (approximately several hundred thousand years) negative carbon isotope excursion (CIE) of 2-3‰ in both marine and terrestrial materials, recognised for the first time for the Late Sinemurian Substage (Early Jurassic, ~194 Ma) of eastern England. The Late Sinemurian carbon isotope excursion, which is termed the S-CIE herein, is accompanied by peaks in the abundance of the pollen grain Classopollis classoides and the dinoflagellate cyst Liasidium variabile. Classopollis classoides was thermophilic and is a reliable proxy for hot/warm climatic conditions. Liasidium variabile is interpreted as thermophilic and eutrophic using multivariate statistics, its fluorescence properties being similar to living heterotrophic dinoflagellate cysts, and its association with Classopollis classoides. Moreover, the morphological and ecological similarities of Liasidium variabile to the Cenozoic genus Apectodinium are noteworthy. The co-occurrence of the acmes of Classopollis classoides and Liasidium variabile with a negative CIE is interpreted here as having wide geographical significance due to the marine and terrestrial carbon isotope signals being precisely in phase within an open marine setting. This is consistent with an oceanic-atmospheric injection of isotopically-light carbon, coupled with global warming and increased marginal marine nutrient supply, possibly the result of increased precipitation due to an enhanced hydrological cycle or a seasonally-stratified water column. A probable sea level rise of at least regional extent has been identified at the Liasidium variabile event in other records, which supports this putative phase of global warming. All these features are common to the Paleocene/Eocene thermal maximum (PETM, ~56

  11. Speleothem isotopic evidence for rapid human-induced expansion of grasslands in Madagascar at 890 CE

    NASA Astrophysics Data System (ADS)

    Burns, S. J.; Godfrey, L.; Faina, P.; McGee, D.; Hardt, B. F.; Ranivoharimanana, L.; Randrianasy, J.

    2015-12-01

    The degree to which human activity impacted the landscape, vegetation and fauna of Madagascar remains under debate. Since the early 1920's, the prevailing hypothesis has been that the savannah grasslands that now cover 70% of Madagascar were the result of deforestation, which has also been tied to the disappearance of much of the island's endemic megafauna. Other studies suggest that Madagascar's grasslands are largely natural and that megafaunal extinctions may be climatically induced, leading some authors to question the entire narrative of extensive alteration of the landscape by early human activity. We collected two stalagmites, M14-AB2 and M14-AB3, from Anjohibe Cave in northwestern Madagascar (15.55°S, 46.89°E, 100 masl). Age models were constructed using 8 U/Th age determinations from AB2 and 10 from AB3. The samples began to grow at ~500 CE and were active at the time of collection. Carbon and oxygen stable isotope ratios were measured on 266 samples from AB2 and 173 samples from AB3, yielding sub-decadal temporal resolution. A rapid, more than 10 per mil increase in stalagmite carbon stable isotope ratios documents an almost complete transformation of the landscape from one with a flora dominated by C3 plants to a C4 grassland system. This transformation, well replicated in both stalagmites, occurred at approximately 890 +/- 20 CE and was complete in 100 years. Further, relatively constant oxygen isotope ratios across the carbon isotope transition demonstrate that landscape alteration was not related to changes in climate. We hypothesize that the transformation was caused primarily by expansion of the use of fire by early inhabitants of Madagascar to promote agriculture and the growth of grass as fodder for cattle. The resulting loss of forest habitat very likely increased environmental pressures on Madagascar's megafauna and accelerated their disappearance.

  12. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean.

    PubMed

    Blake, Ruth E; Chang, Sae Jung; Lepland, Aivo

    2010-04-15

    Oxygen and silicon isotope compositions of cherts and studies of protein evolution have been interpreted to reflect ocean temperatures of 55-85 degrees C during the early Palaeoarchaean era ( approximately 3.5 billion years ago). A recent study combining oxygen and hydrogen isotope compositions of cherts, however, makes a case for Archaean ocean temperatures being no greater than 40 degrees C (ref. 5). Ocean temperature can also be assessed using the oxygen isotope composition of phosphate. Recent studies show that (18)O:(16)O ratios of dissolved inorganic phosphate (delta(18)O(P)) reflect ambient seawater temperature as well as biological processing that dominates marine phosphorus cycling at low temperature. All forms of life require and concentrate phosphorus, and as a result of biological processing, modern marine phosphates have delta(18)O(P) values typically between 19-26 per thousand (VSMOW), highly evolved from presumed source values of approximately 6-8 per thousand that are characteristic of apatite in igneous rocks and meteorites. Here we report oxygen isotope compositions of phosphates in sediments from the 3.2-3.5-billion-year-old Barberton Greenstone Belt in South Africa. We find that delta(18)O(P) values range from 9.3 per thousand to 19.9 per thousand and include the highest values reported for Archaean rocks. The temperatures calculated from our highest delta(18)O(P) values and assuming equilibrium with sea water with delta(18)O = 0 per thousand (ref. 12) range from 26 degrees C to 35 degrees C. The higher delta(18)O(P) values are similar to those of modern marine phosphate and suggest a well-developed phosphorus cycle and evolved biologic activity on the Archaean Earth.

  13. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Horner, Tristan J.; Stein, Holly J.; Hannah, Judith L.; Bingen, Bernard; Rehkämper, Mark

    2015-01-01

    Earth's most extreme extinction event near the end of the Late Permian decimated more than 90% of all extant marine species. Widespread and intensive oceanic anoxia almost certainly contributed to the catastrophe, though the driving mechanisms that sustained such conditions are still debated. Of particular interest is whether water column anoxia was a consequence of a 'stagnant ocean', or if it was controlled by increases in nutrient supply, primary productivity, and subsequent heterotrophic respiration. Testing these competing hypotheses requires deconvolving sedimentary/bottom water redox conditions from changes in surface water productivity in marine sediments. We address this issue by studying marine shales from East Greenland and the mid-Norwegian shelf and combining sedimentary redox proxies with cadmium-isotopic analyses. Sedimentary nitrogen-isotopic data, pyrite framboid analyses, and organic and inorganic shale geochemistry reveal sulfidic conditions with vigorous upwelling, and increasingly anoxic conditions with a strengthening upwelling in the Greenland and Norwegian sections, respectively. Detailed analysis of sedimentary metal budgets illustrates that Cd is primarily associated with organic carbon and records primary geochemical signatures, thus enabling reconstruction of surface water nutrient utilization. Cadmium-isotopic analyses of the authigenic shale fraction released by inverse aqua regia digestion yield an average δ114Cd110 of + 0.15 ± 0.01 ‰ (2 SE, n = 12; rel. NIST SRM 3108), indicative of incomplete surface water nutrient utilization up-section. The constant degree of nutrient utilization combined with strong upwelling requires increasing primary productivity - and not oceanic stagnation - to balance the larger nutrient fluxes to both study sites during the development of the Late Permian water column anoxia. Overall, our data illustrate that if bottom water redox and upwelling can be adequately constrained, Cd-isotopic analyses of

  14. MAGNESIUM ISOTOPE EVIDENCE FOR SINGLE STAGE FORMATION OF CB CHONDRULES BY COLLIDING PLANETESIMALS

    SciTech Connect

    Olsen, Mia B.; Schiller, Martin; Krot, Alexander N.; Bizzarro, Martin

    2013-10-10

    Chondrules are igneous spherical objects preserved in chondritic meteorites and believed to have formed during transient heating events in the solar protoplanetary disk. Chondrules present in the metal-rich CB chondrites show unusual chemical and petrologic features not observed in other chondrite groups, implying a markedly distinct formation mechanism. Here, we report high-precision Mg-isotope data for 10 skeletal olivine chondrules from the Hammadah al Hamra 237 (HH237) chondrite to probe the formation history of CB chondrules. The {sup 27}Al/{sup 24}Mg ratios of individual chondrules are positively correlated to their stable Mg-isotope composition (μ{sup 25}Mg), indicating that the correlated variability was imparted by a volatility-controlled process (evaporation/condensation). The mass-independent {sup 26}Mg composition (μ{sup 26}Mg*) of chondrules is consistent with single stage formation from an initially homogeneous magnesium reservoir if the observed μ{sup 25}Mg variability was generated by non-ideal Rayleigh-type evaporative fractionation characterized by a β value of 0.5142, in agreement with experimental work. The magnitude of the mass-dependent fractionation (∼300 ppm) is significantly lower than that suggested by the increase in {sup 27}Al/{sup 24}Mg values, indicating substantial suppression of isotopic fractionation during evaporative loss of Mg, possibly due to evaporation at high Mg partial pressure. Thus, the Mg-isotope data of skeletal chondrules from HH237 are consistent with their origin as melts produced in the impact-generated plume of colliding planetesimals. The inferred μ{sup 26}Mg* value of –3.87 ± 0.93 ppm for the CB parent body is significantly lower than the bulk solar system value of 4.5 ± 1.1 ppm inferred from CI chondrites, suggesting that CB chondrites accreted material comprising an early formed {sup 26}Al-free component.

  15. Isotopic evidence for the composition of runoff in a watershed on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    LI, Z.; Xiang, W.; Lin, X.

    2015-12-01

    Determining the sources of runoff can provide important information for water resource management, especailly for regions subject to water scaricity. Isotope mass balance method was used to separate and quantify different runoff component in the Heihe watershed on the Loess Plateau of China. Event-based precipitation samples, monthly-based groundwater samples, and runoff samples for non-flood and flood season were collected to analyze the isotopic compositions. After investigating the feasibility of using mass balance method for hydrograph separation, the contributions of precipitation and groundwater to runoff were quantified for flood and non-flood season and for different reaches of the river. Results showed that the isotopic compositions of precipitation had obvious seasonal variation, and the values in the first half year (-5.75‰) were greater than those in the second half year (-11.10‰); however, the isotopic compositions of groundwater were relatively constant (-10.3±0.6‰). The characterisics of the isotopc compositions of precipitation and groundwater made the mass balance equation feasible for hydrograph separaton. The contributions of precipitation and groundwater to runoff had obvious spatiotmeporal variations. During June, the contributions were both about 50% for the upper reach while they were 20% and 80% for the lower reach, respectively. During August, the contributions were 67% and 33% for the upper reach while they were 43% and 57% for the lower reach, respectively. Runoff in the upper reach was mianly from precipitation, while that in the lower reach was mainly from groundwater. Different measures should be taken to manage the water resoureces of different reach.

  16. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth.

    PubMed

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I F; Nogueira, Afonso C R; Agrinier, Pierre; Ader, Magali

    2016-07-22

    The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope ((34)S/(32)S) excursions in Earth's history, with strong variability and maximum values averaging δ(34)S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes ((33)S/(32)S, (34)S/(32)S and (36)S/(32)S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere.

  17. Fluid inclusion and isotopic evidence on dolomitization, Devonian of Western Canada

    SciTech Connect

    Aulstead, K.L.; Spencer, R.J.; Krouse, H.R. )

    1988-05-01

    The Presqu'ile and Manetoe Facies are diagenetic features developed in Lower and Middle Devonian Formations of the Elk Point Basin (Presqu'ile) and the Mackenzie Shelf (Manetoe). Both facies contain coarsely crystalline dolomite and white sparry dolomite cement. Less extensive diagenetic phases, in order of paragenesis, include fluorite, anhydrite, barite, calcite, quartz, sphalerite and galena. Conditions of dolomitization are outlined from core and outcrop examination, thin section and cathodoluminescent petrography, fluid inclusion analyses, and C and O isotopic data. Fluid inclusion and stable isotope analyses from dolomite are combined to determine the isotopic composition of the dolomitizing fluids. Chemical analyses of fluid inclusion waters are compared with formation water analyses to derive a proposed origin for the diagenetic fluids. Dolomite formed from hot, high salinity fluids early in the diagenetic history of the basin. Limestone was dolomitized as a result of the same process that created white sparry dolomite cement in the Manetoe Facies. Remnants of the dolomitizing fluids are present as formation waters in some Devonian formations in Alberta. Subsequent invasion of meteoric waters produced more dilute diagenetic fluids which resulted in the precipitation of calcite and quartz cement in the Manetoe Facies. These fluids are present in fluid inclusions and are responsible for the low {sup 18}O content of the calcite cement. The temperatures of calcite and quartz formation differ as a function of burial depth within the Manetoe Facies during the Mesozoic and Cenozoic, while the temperature of formation for dolomite does not.

  18. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Riccardi, Anthony L.; Arthur, Michael A.; Kump, Lee R.

    2006-12-01

    The latest Permian was a time of major change in ocean chemistry, accompanying the greatest mass extinction of the Phanerozoic. To examine the nature of these changes, samples from two well-studied marine sections that span the Permian-Triassic boundary have been analyzed: the Meishan and Shangsi sections located in Southern China. Isotopic analysis of the carbonate-associated sulfate in these samples provides a detailed record of several isotopic shifts in δ 34S CAS approaching and across the PTB, ranging from +30 to -15‰ (VCDT), with repeated asynchronous fluctuations at the two locations. We interpret the patterns of isotopic shifts, in conjunction with other data, to indicate a shallow unstable chemocline overlying euxinic deep-water which periodically upwelled into the photic zone. These chemocline upward excursion events introduced sulfide to the photic zone stimulating a bloom of phototrophic sulfur oxidizing bacteria. We hypothesize that elemental sulfur globules produced by these organisms and 34S-depleted pyrite produced in the euxinic water column were deposited in the sediment; later oxidation led to incorporation as CAS. This created the large changes to the δ 34S CAS observed in the latest Permian at these locations.

  19. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth

    NASA Astrophysics Data System (ADS)

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I. F.; Nogueira, Afonso C. R.; Agrinier, Pierre; Ader, Magali

    2016-07-01

    The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope (34S/32S) excursions in Earth's history, with strong variability and maximum values averaging δ34S~+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere.

  20. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth

    PubMed Central

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I. F.; Nogueira, Afonso C. R.; Agrinier, Pierre; Ader, Magali

    2016-01-01

    The terminal Neoproterozoic Era (850–542 Ma) is characterized by the most pronounced positive sulfur isotope (34S/32S) excursions in Earth's history, with strong variability and maximum values averaging δ34S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes (33S/32S, 34S/32S and 36S/32S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere. PMID:27447895

  1. Strontium isotope evidence for a highly mobile population on the Pamir Plateau 2500 years ago

    PubMed Central

    Wang, Xueye; Tang, Zihua; Wu, Jing; Wu, Xinhua; Wu, Yiqun; Zhou, Xinying

    2016-01-01

    Archeological researches have proposed arguments for human mobility and long-distance trading over the Eurasia before the Silk Roads. Here we utilize biologically available strontium isotope analysis to assess the extent of pre-Silk Road population movements and cultural communications across the Asian interior. From an early Iron Age cemetery (ca. 2500 yr B.P.) on the eastern Pamir Plateau, mean 87Sr/86Sr ratios from 34 individuals display considerable isotopic variability, and 10 individuals are distinguished as migrants based on the local strontium isotope range of 0.710296–0.710572 defined by 12 ovicaprine bones. Comparison of the proportion (10/34) with the regional census data completed in 1909 A.D. (3% non-locals) suggests a highly migratory behavior on the plateau 2500 years ago. Furthermore, exotic mortuary objects, such as silk fabrics from eastern China and angular harp originated from the Near East, clearly demonstrate an interaction between different cultures on the plateau before the establishment of the Silk Road. PMID:27762330

  2. Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska.

    PubMed

    Hobbie, Erik A; Rice, Samuel F; Weber, Nancy S; Smith, Jane E

    2016-01-01

    We assessed the nutritional strategy of true morels (genus Morchella) collected in 2003 and 2004 in Oregon and Alaska, 1 or 2 y after forest fires. We hypothesized that the patterns of stable isotopes (δ(13)C and δ(15)N) in the sporocarps would match those of saprotrophic fungi and that radiocarbon (Δ(14)C) analyses would indicate that Morchella was assimilating old carbon not current-year photosynthate. We compared radiocarbon and stable isotopes in Morchella with values from concurrently collected foliage, the ectomycorrhizal Geopyxis carbonaria (Alb. & Schwein.) Sacc., the saprotrophic Plicaria endocarpoides (Berk.) Rifai, and with literature to determine isotopic values for ectomycorrhizal or saprotrophic fungi. Geopyxis, Plicaria and Morchella, respectively, were 3‰, 5‰ and 6‰ higher in 13C than foliage and 5‰, 7‰ and 7‰ higher in (15)N. High (15)N enrichment in Morchella indicated that recent litter was not the primary source for Morchella nitrogen, and similar (13)C and (15)N enrichments to Plicaria suggest that Morchella assimilates its carbon and nitrogen from the same source pool as this saprotrophic fungus. From radiocarbon analyses Morchella averaged 11 ± 6 y old (n = 19), Plicaria averaged 17 ± 5 y old (n = 3), foliage averaged 1 ± 2 y old (n = 8) and Geopyxis (n = 1) resembled foliage in Δ(14)C. We conclude that morels fruiting in post-fire environments in our study assimilated old carbon and were saprotrophic.

  3. Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence.

    PubMed

    Mango, Helen; Ryan, Peter

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ(34)S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to >2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from -5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in (34)S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ(34)S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ(34)S values.

  4. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth.

    PubMed

    Sansjofre, Pierre; Cartigny, Pierre; Trindade, Ricardo I F; Nogueira, Afonso C R; Agrinier, Pierre; Ader, Magali

    2016-01-01

    The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope ((34)S/(32)S) excursions in Earth's history, with strong variability and maximum values averaging δ(34)S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes ((33)S/(32)S, (34)S/(32)S and (36)S/(32)S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere. PMID:27447895

  5. Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence.

    PubMed

    Mango, Helen; Ryan, Peter

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ(34)S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to >2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from -5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in (34)S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ(34)S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ(34)S values. PMID:24726513

  6. New isotopic evidence of lead contamination in wheat grain from atmospheric fallout.

    PubMed

    Yang, Jun; Chen, Tongbin; Lei, Mei; Zhou, Xiaoyong; Huang, Qifei; Ma, Chuang; Gu, Runyao; Guo, Guanghui

    2015-10-01

    Crops could accumulate trace metals by soil-root transfer and foliar uptake from atmospheric fallout, and an accurate assessment of pollution sources is a prerequisite for preventing heavy metal pollution in agricultural products. In this study, we examined Pb isotope rates to trace the sources of Pb in wheat grain grown in suburbs. Results showed that, even in zones with scarcely any air pollution spots, atmospheric fallout was still a considerable source of Pb accumulation in wheat. The concentration of Pb in wheat grain has poor correlation with that in farm soil. The Pb concentration in wheat grains with dust in bran coat was significantly higher than that in wheat grains, which indicates that Pb may accumulate by foliar uptake. The Pb isotope rate has obvious differences between the soil and atmospheric fallout, and scatter ratio is significantly closer between the wheat grain and atmospheric fallout. Atmospheric fallout is a more significant source of Pb concentration in wheat grains than in soil. As far as we know, this is the first study on the main sources of lead in grain crop (wheat) samples with isotope. This study aims to improve our understanding of the translocation of foliar-absorbed metals to nonexposed parts of plants.

  7. Mantle CO2 degassing through the Icelandic crust: Evidence from carbon isotopes in groundwater

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Sveinbjörnsdóttir, Árný E.; Heinemeier, Jan; Arnórsson, Stefán; Kjartansdóttir, Ríkey; Kristmannsdóttir, Hrefna

    2016-10-01

    Carbon isotopes of groundwater in Iceland were studied in order to determine the source and reactions of carbon at divergent plate boundaries not associated with active volcanic systems. All the waters were of meteoric origin, with temperatures of 1-130 °C, pH of ∼4.5-10.5 and dissolved inorganic carbon (∑CO2) between 1.8 and 4100 ppm. The measured range of δ13CO2 and 14CO2 in these waters was large, -27.4 to +2.0‰ and 0.6-118 pMC, respectively. The sources and reactions of dissolved inorganic carbon were studied by comparing the measured chemical and isotope composition with those simulated using isotope geochemical models. Three major sources of CO2 were identified: (1) dissolution of partially degassed basaltic rocks formed at the surface or shallow depths, (2) atmospheric CO2 through air-water exchange at surface, and (3) input of gas at depth into the groundwater systems that has similar carbon and isotope composition as the pre-erupted melt of the upper mantle and lower crust beneath Iceland. In the groundwater systems the CO2 chemistry and isotope content are modified due to carbonate mineral precipitation and changes in aqueous species distribution upon progressive water-rock interaction; these changes needed to be quantified in order to reveal the various CO2 sources. The CO2 flux of the Icelandic crust was estimated to be ∼5-10 · 1010 mol/yr with as high as 50% of the flux not associated with active volcanic centers but placed off-axis where a significant proportion of the CO2 may originate from the mantle. The mantle input of the groundwater off-axis corresponds to CO2 partial pressures of ∼10-6-1 bar and to a mantle CO2 flux of <5 · 105 mol/km2/yr for most areas and up to 125 · 105 and 1600 · 105 for the Southern Lowlands and Snæfellsnes Peninsula, respectively. The CO2 flux from active volcanic geothermal systems in Iceland was estimated to be ∼500-3000 · 105 mol CO2/km2/yr, considerably greater than the highest values observed off-axis.

  8. Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Qiu, Lin; Ash, Richard D.; McDonough, William F.; Teng, Fang-Zhen; Rudnick, Roberta L.; Taylor, Lawrence A.

    2016-06-01

    Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low-Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low-Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high-Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low-Ti mare basalt 15555, the highest concentrations of Li occur in late-stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low- and high-Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low-Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high-Ti: δ7Li >6‰ δ56Fe >0.18‰ δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large-degree, high-temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late-stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile-poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between -2.5‰ and 4

  9. Zn and C isotopic evidence of climatic change during the Marinoan

    NASA Astrophysics Data System (ADS)

    Thiemens, M. M.; Moynier, F.; Koeberl, C.; Thiemens, M. H.; Shaheen, R.; Gyollai, I.; Popp, F.; Chong, K.

    2011-12-01

    The "Snowball Earth" events of the Cryogenian period are renowned for their remarkable chemical and isotopic signatures left in the geological record. Through analysis of post Marinoan glaciation cap carbonates from Namibia, specifically from Fransfontein, the Khowarib Valley, and Naraachamspos, a multi isotopic study was undertaken. We analyzed the δ 13C of chemically isolated calcite and dolomite. A moderate depletion of 13C in calcite (δ 13C<0% V-PDB) associated with global glaciations was observed, confirming the event. Associated dolomites also show a 13C depletion, but at a much lower magnitude. Zinc is a trace element that is necessary for all forms of life. Zn does not undergo redox cycling under normal environmental conditions, and biological uptake is one of the few processes that produces isotopic fractionation. This fractionation is in the range of 0.1 permil for the 66Zn/64Zn ratio (δ 66Zn in permil deviation), however with the advent of multi-collection inductively-coupled plasma mass spectrometry (MC-ICP-MS) such variations have become resolvable. We also have measured the Zinc composition of multiple species of lab cultured archaea, and found that the cells are enriched in the light isotopes of Zn compared to the culture medium. By measuring Zn levels in the Cap Carbonates, we seek corroboration for the carbon depletion we find during the glaciation. Zinc should undergo a similarly significant alteration at the mass extinction from climatic shifts inherent to a worldwide glaciation. We find the samples to be relatively consistent, with a δ 66Zn of approximately 0.30 to 0.40 in most places, with a δ 68Zn of double that, values typical of terrestrial rocks. Several sites have a much larger fractionation, with δ 66Zn of up to 0.90 in the Khowarib Valley, and up to 1.06 in the clays at the entrance to the South Valley. These isotopic compositions may be indicative of the massive climatic event leading to the formation of the cap carbonates.

  10. Evidence for deep sea hydrothermal fluid-mineral equilibrium from multiple S isotopes

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Ono, S.; Tivey, M. K.; Seewald, J.

    2010-12-01

    The multiple sulfur isotope systematics of hydrothermal fluids and associated sulfide mineral deposits collected in 2006 in the eastern Manus Basin, Papua New Guinea, provide an opportunity to better understand the processes of mineral precipitation, pore fluid composition, chemosynthetic energy sources, and metal-rich ore deposition in a felsic-hosted back arc hydrothermal system. Recent advances in multiple-stable isotope analytical techniques now enable the precise determination of all four stable isotopes of sulfur in hydrothermal vent fluids and co-precipitated sulfide mineral deposits, which may be used as a tracer to distinguish between sulfide derived from igneous rock, microbial sulfate reduction, and thermochemical reduction of seawater sulfate [1]. Multiple-stable isotopes of sulfur may also help constrain the relative contribution of sulfur derived by degassing of magmatic SO2 and sedimentary sulfide mineral inputs, as either process could generate the isotopically light δ34S (< 0‰) observed in some vent fluids, chalcopyrite chimney linings, and native sulfur collected at Manus Basin. We have analyzed the sulfur isotopic composition of high temperature black smoker vent fluid and associated chalcopyrite lining the inner walls of active conduits from two vent fields within the Manus Basin, including PACMANUS, located on the neovolcanic Pual ridge, and vents on discrete volcanic domes at SuSu Knolls. Preliminary results yield vent fluid δ34SH2S values ranging from -4.89 ± 0.02 to 5.41 ± 0.01, which closely match coexisting inner wall δ34Schalcopyrite values, ranging from -4.43 ± 0.01 to 5.64 ± 0.01. These results contrast with previous studies that report systematic differences in vent fluid δ34SH2S and sulfide minerals from the inner conduits of chimney structures [1, 2, 3]. The Δ33SH2S values of vent fluids range from -0.031 ± 0.027 to 0.011 ± 0.016, and those of chalcopyrite range from -0.042 ± 0.012 to 0.012 ± 0.010. Preliminary results

  11. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    PubMed

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-31

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  12. Os isotope evidence for a differentiated plume head reservoir for the Ontong Java Nui source

    NASA Astrophysics Data System (ADS)

    Schaefer, B. F.; Hoernle, K.; Parkinson, I. J.; Golowin, R.; Portnyagin, M.; Turner, S.; Werner, R.

    2015-12-01

    Previous Os isotopic investigations of lavas from the Ontong Java Plateau1 observed that geographically widely dispersed samples of differing chemistries preserved an isochron of 123±8 Ma with an initial 187Os/188Os = 0.1289±0.0095. Samples from the Manihiki Plateau, itself a portion of the greater Ontong Java Nui (OJN) magmatic event, preserve a far greater range in Os isotopic signatures than previously reported for the OJP alone. In contrast to the OJP data which points towards a near-chondritic, primitive mantle source for both Kroenke and Kwambaita lavas, the low Ti Manihiki samples preserve 187Os/188Os(i) ranging from 0.1056-0.1714. High Ti Manihiki samples preserve 187Os/188Os(i) = 0.1094-0.1288. Such strongly subchondritic signatures require some component of recycled material in the mantle source, possibly SCLM (TRD low Ti samples ~3.1Ga; and ~2.3-2.6Ga for the high Ti samples). Higher initial Os isotope ratios could indicate the presence of metasomatised lithosphere and/or lower crust. The low Ti samples from Manihiki have been interpreted as the result of a two stage melting process, analogous to boninites2, the depleted source of which has itself been metasomatised by a HIMU component entrained within the plume head. Collectively the Ontong Java and Manihiki samples could conceivably contain mantle sourced from both an undifferentiated, near-chondritic source, as well as ancient, unradiogenic recycled sources. Thus the greater OJN province samples a heterogeneous source containing both primitive and recycled components. It is probable that greater degress of partial melting beneath Ontong Java homogenised these heterogeneities, whereas more complex, multi stage melting processes near the plume margin at Manihiki allowed sampling of the inherent heterogeneities within the plume head. 1: Parkinson et al., 2002, GCA 66(15A) A580. 2: Golowin et al., in prep.

  13. Patterns of mortality among South Florida Manatees: Evidence from oxygen, sulfur and deuterium stable isotopes

    NASA Astrophysics Data System (ADS)

    MacAvoy, S. E.; Bacalan, V.; Kazantseva, M.; Rhodes, J.; Kim, K.

    2012-12-01

    The Florida manatee (Trichechus manatus latirostris) is an endangered marine mammal whose coastal habitat has been heavily altered by human development. Sources of mortality include anthropogenic and environmental causes. Necropsies were completed on 75 deceased individuals, and tissues, including bone samples, were collected for later analysis. This study investigates the utility of manatee bone stable oxygen (δ18O), sulfur (δ34S) and deuterium (δD) for determining where the animals lived (which may not be where they where their bodies were recovered), and the relative importance of marine versus freshwater for the individual animals. The isotopes can provide a "geochemical map" showing the distribution of mortality, aiding in the evaluation of geographical patterns in mortality. The δ18O signatures of the bones ranged from 14 to 18.5‰, with no significant difference between male and female mean values. δ18O significantly decreased with increasing latitude (p=.0016), a trend positively correlated with coastal Florida seawater δ18O literature values obtained from the NASA Global Seawater Oxygen-18 Database (http://data.giss.nasa.gov/o18data/) and the EAIA stable isotope database (http://www.univie.ac.at/cartography/project/wiser/). Bone δ34S indicated the influence of marine versus coastal freshwater dietary sources on the animals. Most individuals showed 34S-depleted signatures, which indicated a non-marine sulfur source; however some individuals clearly had taken up marine sulfate (mean 4.9 ± 3.7‰, range 0.8 to 13.8‰). Deuterium values were not available at the time this abstract was written, however we hypothesize that those values will co-vary with δ18O. We conclude that manatee diets are based on both marine and freshwater sources, but freshwater sources exert more influence. Marine water and manatee δ18O co-vary with latitude, suggesting that stable oxygen isotopes may be useful indicators of the latitude where manatees lived.

  14. Prolonged and recurrent global seafloor anoxia in the Early Triassic from uranium isotopic evidence

    NASA Astrophysics Data System (ADS)

    Lau, K. V.; Maher, K.; Kelley, B. M.; Yu, M.; Lehrmann, D. J.; Payne, J.

    2013-12-01

    The end-Permian extinction and prolonged Early Triassic recovery of marine ecosystems have been attributed in part to marine anoxia. However, the spatial and temporal extent of anoxic waters during Early Triassic time remains poorly understood. To better constrain the evolution of seawater conditions, we present a record of δ238/235U and uranium concentrations collected from the Great Bank of Guizhou, a Late Permian to Late Triassic isolated carbonate platform in the Nanpanjiang Basin, South China. The isotopic composition and concentration of uranium are independent constraints on paleoredox conditions and can be used as indicators for the global extent of ocean anoxia. Our δ238/235U results demonstrate that two large negative excursions of up to ~-0.4‰ occurred in the Induan and in the Spathian, before stabilizing in the Middle Triassic at Late Permian values. Uranium concentrations mirror the isotopic trends, reaching sustained minima of less than 0.2 ppm that correspond to the most negative isotopic values. By placing these observational constraints on a box model of the geological uranium cycle, we calculate that up to half of the continental shelves may have been affected during the two pulses of bottom-water anoxia. The expansion, contraction, and re-expansion of extreme low-oxygen conditions could explain many unresolved aspects of the prolonged recovery of marine ecosystems. The recurrence of widespread anoxia during Spathian time may have interrupted the recovery of marine organisms that began in the more oxic waters of the Smithian. These episodes of significant and prolonged bottom-water anoxia coincide with the most negative δ13C values, suggesting that Early Triassic perturbations to the global carbon cycle were tightly coupled to changes in ocean redox chemistry.

  15. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon.

    PubMed

    Touboul, Mathieu; Puchtel, Igor S; Walker, Richard J

    2015-04-23

    Characterization of the hafnium-tungsten systematics ((182)Hf decaying to (182)W and emitting two electrons with a half-life of 8.9 million years) of the lunar mantle will enable better constraints on the timescale and processes involved in the currently accepted giant-impact theory for the formation and evolution of the Moon, and for testing the late-accretion hypothesis. Uniform, terrestrial-mantle-like W isotopic compositions have been reported among crystallization products of the lunar magma ocean. These observations were interpreted to reflect formation of the Moon and crystallization of the lunar magma ocean after (182)Hf was no longer extant-that is, more than about 60 million years after the Solar System formed. Here we present W isotope data for three lunar samples that are more precise by a factor of ≥4 than those previously reported. The new data reveal that the lunar mantle has a well-resolved (182)W excess of 20.6 ± 5.1 parts per million (±2 standard deviations), relative to the modern terrestrial mantle. The offset between the mantles of the Moon and the modern Earth is best explained by assuming that the W isotopic compositions of the two bodies were identical immediately following formation of the Moon, and that they then diverged as a result of disproportional late accretion to the Earth and Moon. One implication of this model is that metal from the core of the Moon-forming impactor must have efficiently stripped the Earth's mantle of highly siderophile elements on its way to merge with the terrestrial core, requiring a substantial, but still poorly defined, level of metal-silicate equilibration.

  16. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon.

    PubMed

    Touboul, Mathieu; Puchtel, Igor S; Walker, Richard J

    2015-04-23

    Characterization of the hafnium-tungsten systematics ((182)Hf decaying to (182)W and emitting two electrons with a half-life of 8.9 million years) of the lunar mantle will enable better constraints on the timescale and processes involved in the currently accepted giant-impact theory for the formation and evolution of the Moon, and for testing the late-accretion hypothesis. Uniform, terrestrial-mantle-like W isotopic compositions have been reported among crystallization products of the lunar magma ocean. These observations were interpreted to reflect formation of the Moon and crystallization of the lunar magma ocean after (182)Hf was no longer extant-that is, more than about 60 million years after the Solar System formed. Here we present W isotope data for three lunar samples that are more precise by a factor of ≥4 than those previously reported. The new data reveal that the lunar mantle has a well-resolved (182)W excess of 20.6 ± 5.1 parts per million (±2 standard deviations), relative to the modern terrestrial mantle. The offset between the mantles of the Moon and the modern Earth is best explained by assuming that the W isotopic compositions of the two bodies were identical immediately following formation of the Moon, and that they then diverged as a result of disproportional late accretion to the Earth and Moon. One implication of this model is that metal from the core of the Moon-forming impactor must have efficiently stripped the Earth's mantle of highly siderophile elements on its way to merge with the terrestrial core, requiring a substantial, but still poorly defined, level of metal-silicate equilibration. PMID:25855299

  17. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California

    USGS Publications Warehouse

    Schiffman, P.; Williams, A.E.; Evarts, R.C.

    1984-01-01

    The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock ??18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4??? (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock ??18O can be best explained by isotopic exchange with discharging 18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500??C. 18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center. ?? 1984.

  18. Isotopic Evidence for Reductive Immobilization of Uranium Across a Roll-Front Mineral Deposit.

    PubMed

    Brown, Shaun T; Basu, Anirban; Christensen, John N; Reimus, Paul; Heikoop, Jeffrey; Simmons, Ardyth; Woldegabriel, Giday; Maher, Kate; Weaver, Karrie; Clay, James; DePaolo, Donald J

    2016-06-21

    We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The (238)U/(235)U of groundwater varies by approximately 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in (238)U and have the lowest U concentrations. Activity ratios of (234)U/(238)U are ∼5.5 up-gradient of the ore zone, ∼1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of (234)U/(238)U and (238)U/(235)U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. These results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.

  19. Cement paragenesis in septarian concretions: Evidence from clumped isotopes and microscopic examination

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Dickson, T.; Boles, J. R.; Tripati, A.

    2013-12-01

    Septarian concretions generally exhibit multiple generations of cements including body, isopachous fringe and sparry phases. Classic paragenetic interpretations of these phases include initial precipitation of the body followed by fringe cements followed by spar in more or less discrete events. Here we present carbonate clumped isotope, δ13C and δ18O values from various septarian concretions taken from four localities in order to track diagenetic evolution. δ13Ccarb and δ18Ocarb values range from very negative (~ -30‰ VPDB) to neutral (~0‰) and vary significantly among concretion body, fringe and spar cements. Clumped isotope compositions reflect carbonate precipitation temperatures between ~20 and 100°C and reconstructed δ18Ofluid compositions range from ~ -15 to +5‰ (VSMOW). For the most part, the specific phases group together, however comparative values among phases indicate potentially complex and non-systematic parageneses (as in progressive precipitation with burial, for example). The high variability in isotope geochemistry and temperature suggests cement precipitation from very different fluids with cementation events perhaps separated by long timescales. In some cases, concretion body precipitation temperatures are quite high and inconsistent with early diagenetic indices (such as high minus-cement porosity and external laminae deflection). Examination via backscatter SEM reveals that concretion bodies from all sites are composed of at least two distinct phases that exhibit straight-edged boundaries, suggesting that the later phase replaced precursory cement, rather than precipitated into open pore space. We suggest that the concretion bodies are composed of at least one early diagenetic cement phase and at least one later (potentially high temperature) diagenetic phase. This type of precipitation is similar to the pervasive style of cement precipitation recognized in concretions, although it is genetically different due to the replacive

  20. Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Touboul, Mathieu; Puchtel, Igor S.; Walker, Richard J.

    2015-04-01

    Characterization of the hafnium-tungsten systematics (182Hf decaying to 182W and emitting two electrons with a half-life of 8.9 million years) of the lunar mantle will enable better constraints on the timescale and processes involved in the currently accepted giant-impact theory for the formation and evolution of the Moon, and for testing the late-accretion hypothesis. Uniform, terrestrial-mantle-like W isotopic compositions have been reported among crystallization products of the lunar magma ocean. These observations were interpreted to reflect formation of the Moon and crystallization of the lunar magma ocean after 182Hf was no longer extant--that is, more than about 60 million years after the Solar System formed. Here we present W isotope data for three lunar samples that are more precise by a factor of >=4 than those previously reported. The new data reveal that the lunar mantle has a well-resolved 182W excess of 20.6 +/- 5.1 parts per million (+/-2 standard deviations), relative to the modern terrestrial mantle. The offset between the mantles of the Moon and the modern Earth is best explained by assuming that the W isotopic compositions of the two bodies were identical immediately following formation of the Moon, and that they then diverged as a result of disproportional late accretion to the Earth and Moon. One implication of this model is that metal from the core of the Moon-forming impactor must have efficiently stripped the Earth's mantle of highly siderophile elements on its way to merge with the terrestrial core, requiring a substantial, but still poorly defined, level of metal-silicate equilibration.

  1. Novel insights into Fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers.

    PubMed

    Evrard, Olivier; Pointurier, Fabien; Onda, Yuichi; Chartin, Caroline; Hubert, Amélie; Lepage, Hugo; Pottin, Anne-Claire; Lefèvre, Irène; Bonté, Philippe; Laceby, J Patrick; Ayrault, Sophie

    2014-08-19

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurements of Pu isotopic atom and activity ratios are required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we used a double-focusing sector field ICP-MS to measure Pu atom and activity ratios in recently deposited sediment along rivers draining the most contaminated part of the inland radioactive plume. Results showed that plutonium isotopes (i.e., (239)Pu, (240)Pu, (241)Pu, and (242)Pu) were detected in all samples, although in extremely low concentrations. The (241)Pu/(239)Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113 ± 0.00008 on average for the Northern Hemisphere between 31°-71° N: Kelley, J. M.; Bond, L. A.; Beasley, T. M. Global distribution of Pu isotopes and (237)Np. Sci. Total. Env. 1999, 237/238, 483-500). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout that represented up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (∼45 km) from FDNPP and been deposited in rivers representing a potential source of Pu to the ocean. In future, the high (241)Pu/(239)Pu atom ratio of the Fukushima accident sourced-Pu should be measured to quantify the supply of continental-originating material from Fukushima Prefecture to the Pacific Ocean.

  2. Isotopic Evidence for Reductive Immobilization of Uranium Across a Roll-Front Mineral Deposit.

    PubMed

    Brown, Shaun T; Basu, Anirban; Christensen, John N; Reimus, Paul; Heikoop, Jeffrey; Simmons, Ardyth; Woldegabriel, Giday; Maher, Kate; Weaver, Karrie; Clay, James; DePaolo, Donald J

    2016-06-21

    We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The (238)U/(235)U of groundwater varies by approximately 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in (238)U and have the lowest U concentrations. Activity ratios of (234)U/(238)U are ∼5.5 up-gradient of the ore zone, ∼1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of (234)U/(238)U and (238)U/(235)U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. These results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary. PMID:27203292

  3. Biodilution of heavy metals in a stream macroinvertebrate food web: evidence from stable isotope analysis.

    PubMed

    Watanabe, Kozo; Monaghan, Michael T; Takemon, Yasuhiro; Omura, Tatsuo

    2008-05-01

    Analysis of carbon (delta13C) and nitrogen (delta15N) stable isotopes provides an increasingly important means of understanding the complex trophic structure of macroinvertebrate communities in streams. We coupled a stable isotope approach with a contaminant analysis of six metals (Pb, Ag, Zn, Hg, Cu, As) to trace the accumulation and dilution of metals from an abandoned mine across trophic levels of the benthic community in Ginzan Creek, Japan. The delta15N signature increased with trophic level, with mean increases of 4.70 per thousand from producers to primary consumers and 3.06 per thousand from primary to secondary consumers. Tissue Pb and Ag concentrations were negatively correlated with delta15N, indicating biodilution of both metals through the food web. Although macroinvertebrate taxon body mass was negatively correlated with tissue metal concentration at several sites, it did not increase with trophic level (as delta15N) in any of the sites, suggesting that changes in body mass were not the cause of biodilution. Our findings suggest invertebrates at higher trophic levels may exhibit increasingly efficient excretion of metals. Autotrophic epilithon (mean delta13C= -21.3 per thousand) had a much higher concentration of mined metals than did riparian vegetation (mean delta13C= -29.3 per thousand); nonetheless, a carbon-mixing model indicated that taxa feeding on autochthonous carbon sources did not accumulate more metal than allochthonous feeders. It is likely that the notably high metal concentration of allochthonous FPOM plays an important role in the trophic transfer of metals. Our data suggest the strong potential for stable isotope analysis to enhance our understanding of metal transfer through stream macroinvertebrate food webs.

  4. Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit

    DOE PAGES

    Brown, Shaun T.; Basu, Anirban; Christensen, John N.; Reimus, Paul; Heikoop, Jeffrey; Simmons, Ardyth; Woldegabriel, Giday; Maher, Kate; Weaver, Karrie; Clay, James; et al

    2016-05-20

    We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The 238U/235U of groundwater varies by approximatelymore » 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in 238U and have the lowest U concentrations. Activity ratios of 234U/238U are ~5.5 up-gradient of the ore zone, ~1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of 234U/238U and 238U/235U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. Lastly, these results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.« less

  5. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation.

    PubMed

    Bao, Huiming; Lyons, J R; Zhou, Chuanming

    2008-05-22

    Understanding the composition of the atmosphere over geological time is critical to understanding the history of the Earth system, as the atmosphere is closely linked to the lithosphere, hydrosphere and biosphere. Although much of the history of the lithosphere and hydrosphere is contained in rock and mineral records, corresponding information about the atmosphere is scarce and elusive owing to the lack of direct records. Geologists have used sedimentary minerals, fossils and geochemical models to place constraints on the concentrations of carbon dioxide, oxygen or methane in the past. Here we show that the triple oxygen isotope composition of sulphate from ancient evaporites and barites shows variable negative oxygen-17 isotope anomalies over the past 750 million years. We propose that these anomalies track those of atmospheric oxygen and in turn reflect the partial pressure of carbon dioxide (P(CO2)) in the past through a photochemical reaction network linking stratospheric ozone to carbon dioxide and to oxygen. Our results suggest that P(CO2) was much higher in the early Cambrian than in younger eras, agreeing with previous modelling results. We also find that the (17)O isotope anomalies of barites from Marinoan (approximately 635 million years ago) cap carbonates display a distinct negative spike (around -0.70 per thousand), suggesting that by the time barite was precipitating in the immediate aftermath of a Neoproterozoic global glaciation, the P(CO2) was at its highest level in the past 750 million years. Our finding is consistent with the 'snowball Earth' hypothesis and/or a massive methane release after the Marinoan glaciation. PMID:18497821

  6. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation.

    PubMed

    Bao, Huiming; Lyons, J R; Zhou, Chuanming

    2008-05-22

    Understanding the composition of the atmosphere over geological time is critical to understanding the history of the Earth system, as the atmosphere is closely linked to the lithosphere, hydrosphere and biosphere. Although much of the history of the lithosphere and hydrosphere is contained in rock and mineral records, corresponding information about the atmosphere is scarce and elusive owing to the lack of direct records. Geologists have used sedimentary minerals, fossils and geochemical models to place constraints on the concentrations of carbon dioxide, oxygen or methane in the past. Here we show that the triple oxygen isotope composition of sulphate from ancient evaporites and barites shows variable negative oxygen-17 isotope anomalies over the past 750 million years. We propose that these anomalies track those of atmospheric oxygen and in turn reflect the partial pressure of carbon dioxide (P(CO2)) in the past through a photochemical reaction network linking stratospheric ozone to carbon dioxide and to oxygen. Our results suggest that P(CO2) was much higher in the early Cambrian than in younger eras, agreeing with previous modelling results. We also find that the (17)O isotope anomalies of barites from Marinoan (approximately 635 million years ago) cap carbonates display a distinct negative spike (around -0.70 per thousand), suggesting that by the time barite was precipitating in the immediate aftermath of a Neoproterozoic global glaciation, the P(CO2) was at its highest level in the past 750 million years. Our finding is consistent with the 'snowball Earth' hypothesis and/or a massive methane release after the Marinoan glaciation.

  7. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process. PMID:9545216

  8. Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies.

    PubMed

    Guerrieri, Rossella; Vanguelova, Elena I; Michalski, Greg; Heaton, Timothy H E; Mencuccini, Maurizio

    2015-12-01

    This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep ) for four forests in the United Kingdom subjected to different Ndep : Scots pine and beech stands under high Ndep (HN, 13-19 kg N ha(-1)  yr(-1) ), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha(-1)  yr(-1) ). Changes of NO3 -N and NH4 -N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ(18) O, Δ(17) O and δ(15) N in NO3 (-) and δ(15) N in NH4 (+) , were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4 -N and NO3 -N concentrations in RF compared to the LN sites. Similar values of δ(15) N-NO3 (-) and δ(18) O in RF suggested similar source of atmospheric NO3 (-) (i.e. local traffic), while more positive values for δ(15) N-NH4 (+) at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N-forms changed after interacting with tree canopies. Indeed, (15) N-enriched NH4 (+) in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ(18) O and Δ(17) O, we quantified for the first time the proportion of NO3 (-) in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ(17) O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ(17) O.

  9. Boron-isotope systematics of Halmahera arc (Indonesia) lava: Evidence for involvement of the subducted slab

    SciTech Connect

    Palmer, M.R. )

    1991-03-01

    Dehydration of sediments and oceanic crust within the subducting slab at convergent plate margins is probably a ubiquitous feature. This leads to fractionation of elements between fluids and solids so that the slab-derived component of island-arc lavas is modified from the originally subducted material. Sediments and altered oceanic crust are enriched in boron and cesium relative to uncontaminated mantle products, and these elements are highly mobile during fluid-rock interaction. The combination of B-isotope systematics and Cs concentrations in lavas from the Halmahera arc (Indonesia) suggests that they have been influenced by fluids derived from dehydration and/or melting of the subducted slab.

  10. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.

    PubMed

    Ohmoto, H; Kakegawa, T; Lowe, D R

    1993-10-22

    Laser ablation mass spectroscopy analyses of sulfur isotopic compositions of microscopic-sized grains of pyrite that formed about 3.4 billion years ago in the Barberton Greenstone Belt, South Africa, show that the pyrite formed by bacterial reduction of seawater sulfate. These data imply that by about 3.4 billion years ago sulfate-reducing bacteria had become active, the oceans were rich in sulfate, and the atmosphere contained appreciable amounts (>10(-13) of the present atmospheric level) of free oxygen. PMID:11539502

  11. Isotope-Geochmical Evidence For Uranium Retardation in Zeolitized Tuffs at Yucca Mountain, Nevada, USA

    SciTech Connect

    L.A. Neymark; J.B. Paces

    2007-02-14

    Retardation of radionuclides by sorption on minerals in the rocks along downgradient groundwater flow paths is a positive attribute of the natural barrier at Yucca Mountain, Nevada, the site of a proposed high-level nuclear waste repository. Alteration of volcanic glass in nonwelded tuffs beneath the proposed repository horizon produced thick, widespread zones of zeolite- and clay-rich rocks with high sorptive capacities. The high sorptive capacity of these rocks is enhanced by the large surface area of tabular to fibrous mineral forms, which is about 10 times larger in zeolitic tuffs than in devitrified tuffs and about 30 times larger than in vitric tuffs. The alteration of glass to zeolites, however, was accompanied by expansion that reduced the matrix porosity and permeability. Because water would then flow mainly through fractures, the overall effectiveness of radionuclide retardation in the zeolitized matrix actually may be decreased relative to unaltered vitric tuff. Isotope ratios in the decay chain of {sup 238}U are sensitive indicators of long-term water-rock interaction. In systems older than about 1 m.y. that remain closed to mass transfer, decay products of {sup 238}U are in secular radioactive equilibrium where {sup 234}U/{sup 238}U activity ratios (AR) are unity. However, water-rock interaction along flow paths may result in radioactive disequilibrium in both the water and the rock, the degree of which depends on water flux, rock dissolution rates, {alpha}-recoil processes, adsorption and desorption, and the precipitation of secondary minerals. The effects of long-term water-rock interaction that may cause radionuclide retardation were measured in samples of Miocene-age subrepository zeolitized tuffs of the Calico Hills Formation (Tac) and the Prow Pass Tuff (Tcp) from borehole USW SD-9 near the northern part of the proposed repository area (sampled depth interval from 451.1 to 633.7 m; Engstrom and Rautman, 1996). Mineral abundances and whole

  12. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence

    NASA Technical Reports Server (NTRS)

    Ohmoto, H.; Kakegawa, T.; Lowe, D. R.

    1993-01-01

    Laser ablation mass spectroscopy analyses of sulfur isotopic compositions of microscopic-sized grains of pyrite that formed about 3.4 billion years ago in the Barberton Greenstone Belt, South Africa, show that the pyrite formed by bacterial reduction of seawater sulfate. These data imply that by about 3.4 billion years ago sulfate-reducing bacteria had become active, the oceans were rich in sulfate, and the atmosphere contained appreciable amounts (>>10(-13) of the present atmospheric level) of free oxygen.

  13. Early solar system aqueous activity - Sr isotope evidence from the Orgueil CI meteorite

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Lugmair, G. W.; Kerridge, J. F.

    1984-01-01

    The Sr isotopic composition and Rb-87/Sr-86 ratio have been measured in carbonates and sulfate separated from the Orgueil meteorite in order to determine the time when liquid water may have acted on the parent body. Both of the studied phases probably precipitated from aqueous solution. The results show that carbonate deposition occurred contemporaneously with parent body formation or shortly after it, probably within 100 Myr. On the other hand, at least some of the calcium sulfate seems to have been formed recently.

  14. Investigation of Isotopic and Geochemical Evidence for an Active Planktonic Biota in the Precambrian

    NASA Technical Reports Server (NTRS)

    Kump, Lee R.

    1997-01-01

    The funded research was motivated by the earlier study of Burdett et al. (1990), who collected carbon and oxygen isotopic data from Paleoproterozoic rocks of the Northwest Territories from deep-and shallow-water facies of the Rocknest Platform. Their results displayed a possible decrease in (delta)C-13 with depth when arranged by increasing distance from the paleoshore. The most C-13-depleted samples were seafloor cements and fans from the underlying siliciclastic Odjick Formation, and slope carbonates of the Rocknest platform.

  15. 3.4-Billion-Year-Old Biogenic Pyrites from Barberton, South Africa: Sulfur Isotope Evidence

    NASA Astrophysics Data System (ADS)

    Ohmoto, Hiroshi; Kakegawa, Takeshi; Lowe, Donald R.

    1993-10-01

    Laser ablation mass spectroscopy analyses of sulfur isotopic compositions of microscopic-sized grains of pyrite that formed about 3.4 billion years ago in the Barberton Greenstone Belt, South Africa, show that the pyrite formed by bacterial reduction of seawater sulfate. These data imply that by about 3.4 billion years ago sulfate-reducing bacteria had become active, the oceans were rich in sulfate, and the atmosphere contained appreciable amounts (> > 10-13 of the present atmospheric level) of free oxygen.

  16. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Strauss, Harald; Summons, Roger E.; Hayes, J. M.

    1992-01-01

    The oxidation of the Earth's crust and the increase in atmospheric oxygen early in Earth history have been linked to the accumulation of reduced carbon in sedimentary rocks. Trends in the carbon isotope composition of sedimentary organic carbon and carbonate show that during the Proterozoic aeon (2.5-0.54 Gyr ago) the organic carbon reservoir grew in size, relative to the carbonate reservoir. This increase, and the concomitant release of oxidizing power in the environment, occurred mostly during episodes of global rifting and orogeny.

  17. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Strauss, Harald; Summons, Roger E.; Hayes, J. M.

    1992-01-01

    The oxidation of the earth's crust and the increase in atmospheric oxygen early in earth history have been linked to the accumulation of reduced carbon in sedimentary rocks. Trends in the carbon isotope composition of sedimentary organic carbon and carbonate show that during the Proterozoic aeon (2.5-0.54 Gyr ago) the organic carbon reservoir grew in size, relative to the carbonate reservoir. This increase, and the concomitant release of oxidizing power in the environment, occurred mostly during episodes of global rifting and orogeny.

  18. 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence.

    PubMed

    Ohmoto, H; Kakegawa, T; Lowe, D R

    1993-10-22

    Laser ablation mass spectroscopy analyses of sulfur isotopic compositions of microscopic-sized grains of pyrite that formed about 3.4 billion years ago in the Barberton Greenstone Belt, South Africa, show that the pyrite formed by bacterial reduction of seawater sulfate. These data imply that by about 3.4 billion years ago sulfate-reducing bacteria had become active, the oceans were rich in sulfate, and the atmosphere contained appreciable amounts (>10(-13) of the present atmospheric level) of free oxygen.

  19. Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1988-01-01

    The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.

  20. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.

  1. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment

    PubMed

    Des Marais, D J; Strauss, H; Summons, R E; Hayes, J M

    1992-10-15

    The oxidation of the Earth's crust and the increase in atmospheric oxygen early in Earth history have been linked to the accumulation of reduced carbon in sedimentary rocks. Trends in the carbon isotope composition of sedimentary organic carbon and carbonate show that during the Proterozoic aeon (2.5-0.54 Gyr ago) the organic carbon reservoir grew in size, relative to the carbonate reservoir. This increase, and the concomitant release of oxidizing power in the environment, occurred mostly during episodes of global rifting and orogeny.

  2. Isotopic Evidence for Oil Sands Petroleum Coke in the Peace-Athabasca Delta.

    PubMed

    Jautzy, Josué J; Ahad, Jason M E; Gobeil, Charles; Smirnoff, Anna; Barst, Benjamin D; Savard, Martine M

    2015-10-20

    The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region. PMID:26404505

  3. Evidence for a smooth onset of deformation in the neutron-rich Kr isotopes

    NASA Astrophysics Data System (ADS)

    Albers, Michael; Warr, N.; Blazhev, A.; Jolie, J.; Nomura, K.; Muecher, D.

    2012-10-01

    The aim of this work was to investigate the behaviour of the even-even Z=36 (Kr) isotopes in the phase transition region around A=100 by determining the energies of the 2^+1 states and their E2 decay transition strengths to the ground state in ^94Kr (N=58) and ^96Kr (N=60). Information on the energies of the first excited 2^+ states exist only for the Kr isotopes up to N=58. For N=60, contradictory results on this observable were published recently. To clarify this contradiction several experimental runs were performed at the REX-ISOLDE facility at CERN, utilizing the high-efficiency MINIBALL γ-ray spectrometer and analyzing the emitted γ -rays and scattered particles after the Coulomb-excitation reactions. The results of these experiments will be presented and discussed in the framework of the proton-neutron interacting boson model based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.

  4. Food sources of the Manila clam Ruditapes philippinarum in intertidal areas: evidence from stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Zhao, Liqiang; Yan, Xiwu; Yang, Feng

    2013-07-01

    Based on stable isotope analysis, we characterized the dietary regime of the Manila clam Ruditapes philippinarum inhabiting intertidal areas along the Liaodong Peninsula, Northern China. Samples, including particulate organic matter (POM; n =30), benthic microalgae (BMI; n =30) and R. philippinarum ( n =60), were collected from six sampling sites displaying the same ecological conditions. Of the two primary food sources, POM was more depleted in δ 13C (-20.61‰ to -22.89‰) than BMI was (-13.90‰ to -16.66‰). With respect to 15N, BMI was more enriched (2.90‰ to 4.07‰) than POM was (4.13‰ to 5.12‰). The δ 13C values of R. philippinarum ranged from -18.78‰ to -19.35‰ and the δ 15N values from 7.96‰ to 8.63‰, which were intermediate between the POM and BMI values. In a two-source isotope mixing model, we estimated the relative contributions of POM and BMI to the diet of R. philippinarum to be 74.2% and 25.8%, respectively. We conclude that R. philippinarum feeds mainly on POM, and BMI is also an important supplemental food source in intertidal areas.

  5. Isotopic Evidence of a Wide Spectrum of Feeding Strategies in Southern Hemisphere Humpback Whale Baleen Records.

    PubMed

    Eisenmann, Pascale; Fry, Brian; Holyoake, Carly; Coughran, Douglas; Nicol, Steve; Bengtson Nash, Susan

    2016-01-01

    Our current understanding of Southern hemisphere humpback whale (Megaptera novaeangliae) ecology assumes high-fidelity feeding on Antarctic krill in Antarctic waters during summer, followed by fasting during their annual migration to and from equatorial breeding grounds. An increase in the number of reported departures from this feeding/fasting model suggests that the current model may be oversimplified or, alternatively, undergoing contemporary change. Information about the feeding and fasting cycles of the two Australian breeding populations of humpback whales were obtained through stable isotope analysis of baleen plates from stranded adult individuals. Comparison of isotope profiles showed that individuals from the West Australian breeding population strongly adhered to the classical feeding model. By contrast, East Australian population individuals demonstrated greater heterogeneity in their feeding. On a spectrum from exclusive Antarctic feeding to exclusive feeding in temperate waters, three different strategies were assigned and discussed: classical feeders, supplemental feeders, and temperate zone feeders. Diversity in the inter-annual feeding strategies of humpback whales demonstrates the feeding plasticity of the species, but could also be indicative of changing dynamics within the Antarctic sea-ice ecosystem. This study presents the first investigation of trophodynamics in Southern hemisphere humpback whales derived from baleen plates, and further provides the first estimates of baleen plate elongation rates in the species. PMID:27244081

  6. Paleosol Stable Isotope Evidence for Early Hominid Occupation of East Asian Temperate Environments

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Ambrose, Stanley H.; Liu, Chao-Li Jack; Follmer, Leon R.

    1997-09-01

    Hominids left Africa and occupied mainland Asia by 1.8 myr ago. About 1.15 myr ago Homo erectusand an associated Stegodon-Ailuropodafauna migrated from subtropical China across the Qinling Mountains into the temperate Loess Plateau. This migration may be an evolutionary milestone in human adaptability because it may represent the first occupation of a nontropical environment. Loess-paleosol stable isotope ratios from the last interglacial-glacial cycle provide comparative data for reconstructing the hominid paleoenvironments. The climate during Gongwangling hominid occupation about 1.15 myr ago was influenced by both Siberian-Mongolian winter and Indian summer monsoon systems characterized as a cold/cool, dry winter and warm/mild, semihumid summer and fall. The Gongwangling hominids preyed mainly on warm-climate-adapted animals such as Stegodon-Ailuropodafauna, suggesting a warm season occupation. The stable isotope ratios also indicate that the Chenjiawo hominids occupied an environment similar to that of the Gongwangling about 650,000 yr ago. The associated fauna, with a mixture of forest and steppe, warm- and cold/cool-climate-adapted animal assemblage's, suggests a permanent occupation by this time. Thus, the reliable earliest and permanent occupation of temperate environments may have occurred 150,000 yr earlier in eastern Asia rather than in Europe.

  7. Isotopic Evidence of a Wide Spectrum of Feeding Strategies in Southern Hemisphere Humpback Whale Baleen Records

    PubMed Central

    Holyoake, Carly; Coughran, Douglas; Nicol, Steve

    2016-01-01

    Our current understanding of Southern hemisphere humpback whale (Megaptera novaeangliae) ecology assumes high-fidelity feeding on Antarctic krill in Antarctic waters during summer, followed by fasting during their annual migration to and from equatorial breeding grounds. An increase in the number of reported departures from this feeding/fasting model suggests that the current model may be oversimplified or, alternatively, undergoing contemporary change. Information about the feeding and fasting cycles of the two Australian breeding populations of humpback whales were obtained through stable isotope analysis of baleen plates from stranded adult individuals. Comparison of isotope profiles showed that individuals from the West Australian breeding population strongly adhered to the classical feeding model. By contrast, East Australian population individuals demonstrated greater heterogeneity in their feeding. On a spectrum from exclusive Antarctic feeding to exclusive feeding in temperate waters, three different strategies were assigned and discussed: classical feeders, supplemental feeders, and temperate zone feeders. Diversity in the inter-annual feeding strategies of humpback whales demonstrates the feeding plasticity of the species, but could also be indicative of changing dynamics within the Antarctic sea-ice ecosystem. This study presents the first investigation of trophodynamics in Southern hemisphere humpback whales derived from baleen plates, and further provides the first estimates of baleen plate elongation rates in the species. PMID:27244081

  8. Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes

    NASA Astrophysics Data System (ADS)

    Kobashi, Takuro; Grossman, Ethan L.; Yancey, Thomas E.; Dockery, David T., III

    2001-11-01

    Oxygen isotope data from planktonic foraminifera for the warm Eocene epoch suggest that tropical sea-surface temperatures (SSTs) may have been cooler than at present. Such data have stimulated various explanations involving, e.g., major changes in ocean heat transport. However, the planktonic data disagree with terrestrial climate proxies, which suggest significantly warmer low-latitude temperatures. We examined this discrepancy by analyzing seasonal oxygen isotope variations in shallow-marine mollusks from the Mississippi Embayment. Results indicate that mean annual SSTs decreased from 26 27 °C in the early Eocene to 22 23 °C in the Oligocene, agreeing well with temperatures inferred from terrestrial climate proxies. These cooling trends, with more significant winter cooling (5 °C) than summer cooling (3 °C), are consistent with the predicted consequences of decreasing atmospheric CO2 concentration through the Paleogene, suggesting that atmospheric CO2 change was a major controlling factor for Paleogene climate change. That winter SST estimates from the mollusks agree well with the foraminiferal SST estimates suggests that planktonic foraminiferal growth in low latitudes occurred mainly during the cooler winter months throughout the Eocene. We hypothesize that the unusual hydrography of Eocene oceans shifted foraminiferal productivity primarily to winter, biasing foraminiferal SST estimates of mean annual SSTs.

  9. Isotopic evidence from the eastern Canadian shield for geochemical discontinuity in the proterozoic mantle

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1983-01-01

    Most workers agree that Proterozoic anorthosite massifs represent the crystallization products of mantle-derived magmas1,2, although the composition of the parental melts is a major unsolved petrological problem 3. As mantle-derived rocks, the massifs can be used as geochemical probes of their late Precambrian upper mantle sources. We report here Nd and Sr isotopic compositions of anorthosites and related rocks from the Grenville and Nain Provinces of the eastern Canadian shield. Here 75% of the Earth's known anorthosite is found in a 1,600-km belt from the Adirondack Mountains of northern New York State to the eastern coast of Labrador4 (Fig. 1). The results indicate that the massifs were derived from at least two distinct mantle source regions which were established before 1,650 Myr ago, and were episodically involved in magmatism over ???500 Myr. One reservoir, below the Grenville Province, and probably below much of the eastern Superior Province, was isotopically similar to the depleted, modern-day mid-ocean ridge basalt (MORB) source. The other reservoir was chondritic to moderately enriched, and is most easily identified in the Nain Province, but may have occurred scattered throughout the Superior Province. ?? 1983 Nature Publishing Group.

  10. Paleosol stable isotope evidence for early hominid occupation of East Asian temperate environments

    USGS Publications Warehouse

    Wang, Hongfang; Ambrose, S.H.; Liu, Chen; Follmer, L.R.

    1997-01-01

    Hominids left Africa and occupied mainland Asia by 1.8 myr ago. About 1.15 myr ago Homo erectus and an associated Stegodon-Ailuropoda fauna migrated from subtropical China across the Qinling Mountains into the temperate Loess Plateau. This migration may be an evolutionary milestone in human adaptability because it may represent the first occupation of a nontropical environment. Loess-paleosol stable isotope ratios from the last interglacial-glacial cycle provide comparative data for reconstructing the hominid paleoenvironments. The climate during Gongwangling hominid occupation about 1.15 myr ago was influenced by both Siberian-Mongolian winter and Indian summer monsoon systems characterized as a cold/cool, dry winter and warm/mild, semihumid summer and fall. The Gongwangling hominids preyed mainly on warm-climate-adapted animals such as Stegodon-Ailuropoda fauna, suggesting a warm season occupation. The stable isotope ratios also indicate that the Chenjiawo hominids occupied an environment similar to that of the Gongwangling about 650,000 yr ago. The associated fauna, with a mixture of forest and steppe, warm-and cold/cool-climate-adapted animal assemblage's, suggests a permanent occupation by this time. Thus, the reliable earliest and permanent occupation of temperate environments may have occurred 150,000 yr earlier in eastern Asia rather than in Europe. ?? 1997 University of Washington.

  11. Radiocarbon isotopic evidence for assimilation of atmospheric CO2 by the seagrass Zostera marina

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Kuwae, T.

    2015-10-01

    Submerged aquatic vegetation takes up water-column dissolved inorganic carbon (DIC) as a carbon source across its thin cuticle layer. It is expected that marine macrophytes also use atmospheric CO2 when exposed to air during low tide, although assimilation of atmospheric CO2 has never been quantitatively evaluated. Using the radiocarbon isotopic signatures (Δ14C) of the seagrass Zostera marina, DIC and particulate organic carbon (POC), we show quantitatively that Z. marina takes up and assimilates atmospheric modern CO2 in a shallow coastal ecosystem. The Δ14C values of the seagrass (-40 to -10 ‰) were significantly higher than those of aquatic DIC (-46 to -18 ‰), indicating that the seagrass uses a 14C-rich carbon source (atmospheric CO2, +17 ‰). A carbon-source mixing model indicated that the seagrass assimilated 0-40 % (mean, 17 %) of its inorganic carbon as atmospheric CO2. CO2 exchange between the air and the seagrass might be enhanced by the presence of a very thin film of water over the air-exposed leaves during low tide. Our radiocarbon isotope analysis, showing assimilation of atmospheric modern CO2 as an inorganic carbon source, improves our understanding of the role of seagrass meadows in coastal carbon dynamics.

  12. Isotopic Evidence for Oil Sands Petroleum Coke in the Peace-Athabasca Delta.

    PubMed

    Jautzy, Josué J; Ahad, Jason M E; Gobeil, Charles; Smirnoff, Anna; Barst, Benjamin D; Savard, Martine M

    2015-10-20

    The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region.

  13. Evidence for benzylsuccinate synthase subtypes obtained by using stable isotope tools.

    PubMed

    Kümmel, Steffen; Kuntze, Kevin; Vogt, Carsten; Boll, Matthias; Heider, Johann; Richnow, Hans H

    2013-10-01

    We studied the benzylsuccinate synthase (Bss) reaction mechanism with respect to the hydrogen-carbon bond cleavage at the methyl group of toluene by using different stable isotope tools. Λ values (slopes of linear regression curves for carbon and hydrogen discrimination) for two-dimensional compound-specific stable isotope analysis (2D-CSIA) of toluene activation by Bss-containing cell extracts (in vitro studies) were found to be similar to previously reported data from analogous experiments with whole cells (in vivo studies), proving that Λ values generated by whole cells are caused by Bss catalysis. The Bss enzymes of facultative anaerobic bacteria produced smaller Λ values than those of obligate anaerobes. In addition, a partial exchange of a single deuterium atom in benzylsuccinate with hydrogen was observed in experiments with deuterium-labeled toluene. In this study, the Bss enzymes of the tested facultative anaerobes showed 3- to 8-fold higher exchange probabilities than those for the enzymes of the tested obligate anaerobic bacteria. The phylogeny of the Bss variants, determined by sequence analyses of BssA, the gene product corresponding to the α subunit of Bss, correlated with the observed differences in Λ values and hydrogen exchange probabilities. In conclusion, our results suggest subtle differences in the reaction mechanisms of Bss isoenzymes of facultative and obligate anaerobes and show that the putative isoenzymes can be differentiated by 2D-CSIA.

  14. Evidence of a kinetic isotope effect in nanoaluminum and water combustion.

    PubMed

    Tappan, Bryce C; Dirmyer, Matthew R; Risha, Grant A

    2014-08-25

    The normally innocuous combination of aluminum and water becomes violently reactive on the nanoscale. Research in the field of the combustion of nanoparticulate aluminum has important implications in the design of molecular aluminum clusters, hydrogen storage systems, as well as energetic formulations which could use extraterrestrial water for space propulsion. However, the mechanism that controls the reaction speed is poorly understood. While current models for micron-sized aluminum water combustion reactions place heavy emphasis on diffusional limitations, as reaction scales become commensurate with diffusion lengths (approaching the nanoscale) reaction rates have long been suspected to depend on chemical kinetics, but have never been definitely measured. The combustion analysis of nanoparticulate aluminum with H2O or D2O is presented. Different reaction rates resulting from the kinetic isotope effect are observed. The current study presents the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate.

  15. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Hauri, Erik H.; Elkins-Tanton, Linda T.; Brown, Stephanie M.

    2014-05-01

    The Siberian Traps flood basalts transferred a large mass of volatiles from the Earth's mantle and crust to the atmosphere. The eruption of the large igneous province temporally overlapped with the end-Permian mass extinction. Constraints on the sources of Siberian Traps volatiles are critical for determining the overall volatile budget, the role of crustal assimilation, the genesis of Noril'sk ore deposits, and the environmental effects of magmatism. We measure sulfur isotopic ratios ranging from -10.8‰ to +25.3‰ Vienna Cañon Diablo Troilite (V-CDT) in melt inclusions from Siberian Traps basaltic rocks. Our measurements, which offer a snapshot of sulfur cycling far from mid-ocean ridge and arc settings, suggest the δ34S of the Siberian Traps mantle melt source was close to that of mid-ocean ridge basalts. In conjunction with previously published whole rock measurements from Noril'sk, our sulfur isotopic data indicate that crustal contamination was widespread and heterogeneous—though not universal—during the emplacement of the Siberian Traps. Incorporation of crustal materials likely increased the total volatile budget of the large igneous province, thereby contributing to Permian-Triassic environmental deterioration.

  16. New isotopic evidence for the origin of groundwater from the Nubian Sandstone Aquifer in the Negev, Israel

    USGS Publications Warehouse

    Vengosh, A.; Hening, S.; Ganor, J.; Mayer, B.; Weyhenmeyer, C.E.; Bullen, T.D.; Paytan, A.

    2007-01-01

    SO4-rich groundwater from the underlying Jurassic aquifer contributes significantly to the salt budget of the Nubian Sandstone aquifer. The unique chemical and isotopic composition of the Jurassic groundwater (??34SSO4 ??? +14???; ??18OSO4 ??? 14???; 87Sr/86Sr ???0.70764) is interpreted as reflecting dissolution of Late Triassic marine gypsum deposits. In the southern Arava Valley the authors postulate that SO4-rich groundwater with distinctively high Br/Cl (3 ?? 10-3) low 87Sr/86Sr (0.70734), and high ??34SSO4 values (+15???) is derived from mixing with underlying brines from the Paleozoic units. The radiocarbon measurements reveal low 14C activities (0.2-5.8 pmc) in both the northeastern Negev and southern Arava Valley. Taking into account dissolution of carbonate rocks and bacterial SO4 reduction in the unconfined area, estimated mean residence times of groundwater in the confined zone in the northeastern Negev are on the order of 21-38 ka, which suggests recharge predominantly during the last glacial period. The 14C signal in groundwater from the southern Arava Valley is equally low but due to evidence for mixing with external water sources the residence time estimates are questionable. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Tungsten isotope evidence for post-giant impact equilibration of the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Kruijer, T.; Kleine, T.; Fischer-Gödde, M.

    2015-12-01

    The Moon is thought to have formed by re-accretion of material ejected by a giant impact on Earth [e.g., 1]. This model, at least in its classical form, predicts an isotopic difference between the Earth and Moon, because the Moon would largely consist of impactor material. Yet Earth and Moon show an unexpected isotopic similarity for many elements [e.g., 2]. Here we use variations in 182W—the decay-product of short-lived 182Hf (t1/2~9 Myr)—between the Moon and the bulk silicate Earth (BSE) to shed new light on this issue. We precisely determined the lunar 182W value by analysing KREEP-rich samples with MC-ICPMS and a new approach for quantifying cosmogenic 182W variations using Hf isotopes [6]. We find that the Moon shows a 27±4 ppm 182W excess over the modern BSE, in excellent agreement with [7]. This excess agrees with the predicted 182W change resulting from disproportional late accretion to the Earth and Moon after Earth's core had fully formed [6,7]. Thus, the pre-late-veneer BSE and the Moon were indistinguishable in 182W. However, the giant impact itself should have caused a notable Earth-Moon 182W difference by (1) changing the ɛ182W of the proto-Earth mantle by adding impactor mantle and core material, both carrying distinct 182W anomalies, and (2) by supplying W-rich but 182W-depleted impactor core material into the lunar accretion disk [6]. Thus, the Earth-Moon 182W homogeneity is an unexpected outcome of the giant impact. Unlike for Ti and O isotopes, the 182W homogeneity cannot be explained by accretion of impactor and proto-Earth from a homogeneous inner disk reservoir [3] or by making the Moon fully from proto-Earth mantle [4,5]. Thus, the 182W results require an efficient post-impact isotopic equilibration of the BSE and the Moon, but the mechanism for this has yet to be explored. One option is that Earth's mantle and its vapour atmosphere remained connected with the lunar accretion disk just after the giant impact [8]. [1] Canup R

  18. Stable isotopic evidence of salinity change: Influence on the evolution of melanopsid gastropods in the late miocene pannonian basin

    SciTech Connect

    Geary, D.H.; Rich, J.; Valley, J.W.; Baker, K. )

    1989-11-01

    The radiation of the gastropod Melanopsis in the Pannonian basin of eastern and central Europe provides an excellent case study of the tempo and mechanisms of evolutionary diversification. We analyzed the carbon and oxygen isotopic ratios of melanopsid shells from before, during, and after the radiation in order to provide a more detailed paleoenvironmental frame-work in which to interpret the morphological changes observed. The authors samples fall into two groups: those from before and during the radiation (late Sarmatian and Pannonian stages) form a tight cluster; a second, more scattered group of points represents samples from after the radiation (Pontian Stage). The late Sarmatian-Pannonian samples have higher ratios of both isotopes (means of {minus}2.11 for {delta}{sup 18}O, and 1.27 for {delta}{sup 13}C) than do the succeeding Pontian Stage samples ({minus}4.16 for {minus}2.22, respectively). We interpret this shift as indicative of a basinwide drop in salinity, an interpretation supported by paleofaunal evidence. Our isotopic data refine the environmental scenario in two important ways. The tight cluster of late Sarmatian-Pannonian data indicates that the shallow waters of the basin were relatively uniform and relatively stable with respect to salinity, rather than locally variable or steadily changing across this time interval. The shift to fresher water in the Pontian Stage coincides with the extinction of two widespread and abundant melanopsid species, but several species go extinct earlier than the salinity drop, and two species pass through it seemingly unaffected.

  19. Dietary shift after 3600 cal yr BP and its influencing factors in northwestern China: Evidence from stable isotopes

    NASA Astrophysics Data System (ADS)

    Ma, Minmin; Dong, Guanghui; Jia, Xin; Wang, Hui; Cui, Yifu; Chen, Fahu

    2016-08-01

    Human diets rely on natural resource availability and can reflect social and cultural values. When environments, societies, and cultures change, diets may also shift. This study traced the extent of dietary change and the factors influencing such change. Through stable carbon and nitrogen isotopic analysis of late Neolithic and early Bronze Age human and animal bone collagen, we found that significant shifts in human diets were closely associated with intercontinental cultural exchanges in Eurasia and climate change in northwestern China. The isotopic evidence indicated that human diets mainly consisted of C4 foodstuffs (presumably millet and/or animals fed with C4 foods) around 4000 calibrated years before the present (cal yr BP), corresponding to the flourishing of millet agriculture in the context of the optimal climate conditions of the mid-Holocene. Subsequently, more C3 foods (probably wheat, barley, and animals fed with C3 foods) were added to human diets post-3600 cal yr BP when the climate became cooler and drier. Such dietary variation is also consistent with the increasing intensity of long-distance exchange after 4000 cal yr BP. While many factors can lead to human dietary shifts (e.g. climate change, population growth, cultural factors, and human migration), climate may have been a key factor in Gansu and Qinghai.

  20. Recent environmental changes in the shallow Lake Pamvotis (NW Greece): evidence from sedimentary organic matter, hydrocarbons, and stable isotopes.

    PubMed

    Daskalou, Victoria; Vreca, Polona; Muri, Gregor; Stalikas, Constantine

    2009-07-01

    Lake Pamvotis is a shallow Mediterranean lake located in northwestern Greece that has been recognized as an internationally important conservation site. Here, an unprecedented investigation was undertaken to obtain and evaluate data related to sedimentary organic matter, hydrocarbon content, and stable isotopes of Lake Pamvotis sediments, thus tracking the origin of organic inputs and providing a record of environmental status. The study revealed a distinct spatial distribution of polycyclic aromatic hydrocarbons (PAHs) with values between 34.7 and 1600 microg/kg and a rather uniform pattern for n-alkanes with concentrations falling below 41.4 microg/g. A significant contribution of an unresolved complex mixture indicated anthropogenic petroleum contamination. Further study of relevant indexes and geochemical biomarkers supported a mixed-source input of aliphatic hydrocarbons. With regard to PAHs, there was strong evidence that their dominant origin is pyrogenic. Finally, considerable excursion in delta(13)C(org) was attributed to changes in dissolved inorganic carbon accompanied by increased input of effluents and recycling of organic carbon within the lake, whereas the rise in isotopic composition of nitrogen was associated with agricultural runoff and sewage input from the town of Ioannina. PMID:18931963

  1. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation

    NASA Astrophysics Data System (ADS)

    Czaja, Andrew D.; Johnson, Clark M.; Roden, Eric E.; Beard, Brian L.; Voegelin, Andrea R.; Nägler, Thomas F.; Beukes, Nicolas J.; Wille, Martin

    2012-06-01

    Most geochemical proxies and models of atmospheric evolution suggest that the amount of free O2 in Earth’s atmosphere stayed below 10-5 present atmospheric level (PAL) until the Great Oxidation Event (GOE) that occurred between ∼2.2 and 2.4 Ga, at which time free O2 in the atmosphere increased to approximately 10-1 to 10-2 PAL. Although photosynthetically produced “O2 oases” have been proposed for the photic zone of the oceans prior to the GOE, it has been difficult to constrain absolute O2 concentrations and fluxes in such paleoenvironments. Here we constrain free O2 levels in the photic zone of a Late Archean marine basin by the combined use of Fe and Mo isotope systematics of Ca-Mg carbonates and shales from the 2.68 to 2.50 Ga Campbellrand-Malmani carbonate platform of the Kaapvaal Craton in South Africa. Correlated Fe and Mo isotope compositions require a key role for Fe oxide precipitation via oxidation of aqueous Fe(II) by photosynthetically-derived O2, followed by sorption of aqueous Mo to the newly formed Fe oxides. A dispersion/reaction model illustrates the effects of Fe oxide production and Mo sorption to Fe oxides, and suggests that a few to a few tens of μM free O2 was available in the photic zone of the Late Archean marine basin, consistent with some previous estimates. The coupling of Fe and Mo isotope systematics provides a unique view into the processes that occurred in the ancient shallow ocean after production of free O2 began, but prior to oxygenation of the deep ocean, or significant accumulation of free O2 in the atmosphere. These results require oxygenic photosynthesis to have evolved by at least 2.7 Ga and suggest that the Neoarchean ocean may have had a different oxygenation history than that of the atmosphere. The data also suggest that the extensive iron formation deposition that occurred during this time was unlikely to have been produced by anoxygenic photosynthetic Fe(II) oxidation. Finally, these data indicate that the ocean

  2. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China.

    PubMed

    Cao, Di; Cao, Wenzhi; Liang, Ying; Huang, Zheng

    2016-10-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ(13)C, δ(15)N and C/N compositions of POM from XW and SY (-21.18±2.11‰, 10.30±5.54‰, and 5.35±0.69 and -20.80±1.34‰, 7.06±3.95‰, and 5.77±2.15, respectively) showed statistically significant variations with the season. The δ(13)C and δ(15)N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ(15)N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management. PMID:27232965

  3. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China.

    PubMed

    Cao, Di; Cao, Wenzhi; Liang, Ying; Huang, Zheng

    2016-10-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ(13)C, δ(15)N and C/N compositions of POM from XW and SY (-21.18±2.11‰, 10.30±5.54‰, and 5.35±0.69 and -20.80±1.34‰, 7.06±3.95‰, and 5.77±2.15, respectively) showed statistically significant variations with the season. The δ(13)C and δ(15)N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ(15)N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management.

  4. High continental weathering rate during Early Cambrian: Evidence from Os isotopic composition of Early Cambrian Ocean

    NASA Astrophysics Data System (ADS)

    Jiang, S.-Y.; Yang, J.-H.; Ling, H.-F.; Feng, H.-Z.; Chen, Y.-Q.; Chen, J.-H.

    2003-04-01

    The paleo-ocean environmental change during the Precambrian-Cambrian transition is a key issue related to the causes for an explosive radiation of different metazoan phyla during Early Cambrian. The chemical and isotopic compositions of marine sediments and chemical precipitates such as carbonates, phosphorites, siliceous rocks, and black shales record the changing composition and physical conditions of the seawater in which these rocks accumulated. Organic carbon-rich black shales from marine environments are commonly enriched in a number of trace elements such as Ni, Mo, V, Co, Cr, Au, U, As, Pb, Zn, Cu, Re, and platinum-group-elements (PGE). Recent researches have demonstrated that Re-Os isotopes and PGE contents in black shales are useful proxies for seawater chemistry. It is believed that Re and Os in orgainc-carbon rich black shales are mostly hydrogeneous in origin which were largely sequestered from seawater at the time of deposition. In South China, the Lower Cambrian black shale sequence of the Niutitang Formation (and lateral equivalents) exists broadly several thousands kilometers. The lowermost sequence of this formation contain a thin sulfide ore horizon with an apparently unique and extreme case of metal enrichments such as Mo, Ni, Se, Re, Os, As, Hg, Sb, Ag, Au, Pt, and Pd. In this study, we conducted a preliminary investigation of Re-Os isotopes and Plantium Group Element (PGE) distribution patterns of the balck shales and intercalated Ni-Mo polymetallic sulfide bed from Guizhou and Hunan Provinces. The high rOs(t) values of the black shales indicate that the Early Cambrian ocean in Yangtze Platform had a highly radiogenic Os, possibly as a result of high continental weathering rate at that time. The Ni-Mo polymetallic sulfide ores within the black shales have lower rOs(t) values than the black shales, and they show similar REE and PGE patterns as the hydrothermal siliceous rocks within the Lower Cambrian strata, which suggest that the Ni

  5. Involvement of pore water in the Izu-Ogasawara subduction process: Evidence from argon isotope ratio

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Sumino, H.; Nagao, K.; Notsu, K.; Hirano, N.; Machida, S.; Ishii, T.

    2006-12-01

    The Izu-Ogasawara volcanic arc is located along the boundary between two oceanic plates, the Pacific plate and the Philippine Sea plate, parallel to the Izu-Ogasawara trench. This arc is suitable to investigate the origin of fluid, which is released from the subducting materials, and play an important role in arc magma generation. This is due to the fact that the contribution of continental crustal component in arc magma can be negligible. How noble gases subduct and are recycled to Earth's surface via arc volcanism in the subduction system is an important issue in the understanding of the evolution history of the Earth's interior. Here we report the recycling of noble gases concurrent with the subduction process, based on the different behaviors of different noble gas species, to investigate the volatile behavior in slab-derived fluid during the subduction processes. We measured noble gas isotopic composition of subducting sediments, basalts and gabbros as input materials, serpentine in the Izu-Ogasawara forearc as a mantle wedge material, and volcanic products in this arc as output materials. The volcanic products show 3He/4He ratios of about 8.0 Ra, which are in the range of the MORB value (8±1 Ra). The 40Ar/36Ar ratios of these samples range from 300 to 620, which are significantly lower than that of the MORB source (up to 40000). On the other hand, subducting gabbros show a similar 3He/4He ratio of the MORB value and the 40Ar/36Ar ratios of input materials range from 420 to 800, some of which are higher than that of the volcanic products. These observations revealed that pore water derived atmospheric argon (40Ar/36Ar = 296) in the subducting slab significantly affects the noble gases in arc magma rather than the input materials measured in this study. The serpentine sample also shows an atmospheric argon isotopic feature, suggesting that the serpentine, which is generated by the interaction of pore water related fluids with wedge mantle peridotite, is a

  6. Carbon dioxide in the Paleozoic atmosphere: Evidence from carbon-isotope compositions of pedogenic carbonate

    NASA Astrophysics Data System (ADS)

    Mora, Claudia I.; Driese, Steven G.; Seager, Paula G.

    1991-10-01

    Stable carbon-isotope compositions of pedogenic carbonate occurring in three clay-rich vertic paleosols within Paleozoic red-bed successions in central Pennsylvania provide a record of past pedogenic environments and can be used to estimate CO2 pressure (PCO2) of the Paleozoic atmosphere. The δ13C values of carbonate nodules from paleosols in the deltaic lower Bloomsburg Formation (Upper Silurian) reflect the contribution of carbon from marine groundwater or fossils, coupled with low biological activity. The δ13C values of carbonate rhizocretions from stratigraphically high paleosols in the Bloomsburg Formation, and in the alluvial Catskill (Upper Devonian) and Mauch Chunk (Upper Mississippian) Formations, suggest an extensive C3 flora and significant contribution of atmospheric CO2. Paleozoic atmospheric CO2 levels inferred from δ13C of pedogenic carbonate are significantly higher than present levels.

  7. Hf isotopic evidence for a cogenetic magma source for the Bushveld Complex and associated felsic magmas

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.; Zirakparvar, N. A.; Mathez, E. A.

    2016-04-01

    Here, we test the hypothesis that the rhyolitic lavas of the Rooiberg Group and granophyres associated with the roof of the Bushveld Complex are differentiation products of Bushveld-age mafic liquids. We present Lu-Hf isotopic compositions in zircons from roof rocks that have been interpreted to represent thermally metamorphosed and remelted Rooiberg Group lavas and from granophyres interpreted to be differentiation products of the cumulate rocks that make up the Bushveld Complex. All of these rocks were found to possess εHf (2.06 Ga) statistically indistinguishable from the intrusion-wide average εHf (2.06 Ga) value of - 8.6 ± 1.2 of the Bushveld Complex. Our results, combined with chronologic and field relations, suggest that the felsic rocks were generated by fractional crystallization of Bushveld mafic liquids, including those that gave rise to the cumulate rocks of the Bushveld Complex.

  8. Plume impingement on the Siberian SCLM: Evidence from Re-Os isotope systematics

    NASA Astrophysics Data System (ADS)

    Pernet-Fisher, J. F.; Howarth, G. H.; Pearson, D. G.; Woodland, S.; Barry, P. H.; Pokhilenko, N. P.; Pokhilenko, L. N.; Agashev, A. M.; Taylor, L. A.

    2015-03-01

    We report Re-Os and platinum group element (PGE) systematics for a suite of 16 mantle peridotites from the Udachnaya (360 Ma) and Obnazhennaya (160 Ma) kimberlite pipes, Siberia. Xenoliths from these pipes bracket the thermal climax of the Siberian plume, which is represented by the emplacement of the ~ 250 Ma Siberian Flood Basalts (SFBs). Thus, these xenoliths represent snapshots of the sub-continental lithospheric mantle (SCLM) before and after plume modification. Pre-plume Udachnaya peridotite xenoliths generally display unradiogenic Os-isotopes with respect to CI-chondrite (expressed by γOs, the percentage difference between the Os-isotope composition of a sample and the average chondrite composition; 187Os/188Os - 0.127), coupled with low [Pd/Ir]N, for both whole-rock and olivine mineral-fraction analyses. Such signatures are typical of an ancient depleted cratonic mantle that underwent melt extraction. The preservation of unradiogenic Os-isotope compositions (γOs - 5 to - 14), coupled with low (< 0.4) 187Re/188Os ratios, provides robust melt extraction age estimates, ranging from ~ 3 Ga to ~ 1.2 Ga. This indicates that craton stabilization/growth events not only occurred during the Archean, but also extended into the Proterozoic. A number (4) of post-plume Obnazhennaya peridotites display 187Os/188Os ratios (> 0.1292), which overlap the convecting mantle range. At first glance, these observations are in agreement with garnet chemistry data, which indicate that high-degrees of silicate-melt percolated through the lithosphere during the emplacement of the SFB. However, Obnazhennaya olivine mineral-separates display 'depleted' systematics (> Fo 92 and low [Pd/Ir]N), consistent with 'pristine' melt residues. We suggest that these Obnazhennaya xenoliths represent 'newly formed' residues associated with partial melts extracted from the impinging Siberian plume on the SCLM. During plume impingement, thermo-chemical erosion of the lithosphere is thought to be an

  9. Evidence for Meltwater Pulse 1a in the Gulf of Mexico based on radiogenic isotopes

    NASA Astrophysics Data System (ADS)

    Biller, N. B.; Martin, E. E.; Flower, B. P.

    2011-12-01

    Meltwater pulse 1a (MWP-1a) is associated with a rapid sea level rise of more than 20 m in less than 500 yrs during the last deglaciation. This event has been dated at between 14.17 and 13.6 ka based on U/Th dating of Barbados corals, but other studies suggest it coincided with the onset of the Bolling warm interval at ca 14.6 ka. The contribution of inferred meltwater from the Antarctic ice sheet and Northern Hemisphere ice sheets is under debate. Relative contributions from the northern versus southern hemisphere have implications for variations in ocean surface salinity, North Atlantic Deep Water formation and related climate responses. A study of bulk sediment δ18O values from core MD02-2550 from the anoxic Orca Basin in the Gulf of Mexico produced peak δ18O values of -5.5 % during a foraminifera-barren interval dated at ca. 14.54-14.35 ka based on an age model using >40 AMS 14C dates on Globigerinoides ruber. This δ18O value is unusual for marine sediments and has been interpreted to represent material eroded by the Laurentide Ice Sheet and delivered to the Gulf of Mexico during or just before MWP-1a. This interpretation is consistent with data from detrital carbonate grains recovered from Heinrich Events in the North Atlantic that are believed to represent lower Paleozoic basin sediments from northeastern Canada (Hodell and Curtis, 2008). For this study, we evaluated radiogenic isotopes of Nd and Pb (Sr isotopes will be added in the near future) on dilute 0.1N HCl leachates of bulk sediments from MD02-2550 to identify changes in input sources during the foraminifera-barren interval. There are few data on modern Nd and Pb isotopes for Gulf of Mexico sediments, but limited data support our expectation that leachates of older continental material sourced from Canada should contribute more radiogenic Pb and less radiogenic Nd than leachates of younger sediments derived from the Mississippi River drainage basin. Measured 206Pb/204Pb values are ~19.0 before and

  10. Neanderthals versus Modern Humans: Evidence for Resource Competition from Isotopic Modelling

    PubMed Central

    Fabre, Virginie; Condemi, Silvana; Degioanni, Anna; Herrscher, Estelle

    2011-01-01

    During later MOIS3, in Europe two populations were present, autochthonous Neanderthals and modern humans. Ecological competition between these two populations has often been evoked but never demonstrated. Our aim is to establish whether resource competition occurred. In this paper, in order to examine the possibility of ecological competition between these two populations, 599 isotopic data were subjected to rigorous statistical treatment and analysis through mixing models. The aim of this paper was to compare dietary strategies of Neanderthals and modern humans over time. Our conclusions suggest that Neanderthals and modern humans shared dietary habits in the particular environmental context of MOIS3 characterised in Europe by climatic deterioration. In this environmental context, the resource competition between Neanderthals and modern humans may have accelerated the disappearance of the Neanderthal population. PMID:21941674

  11. Radiogenic and Radioactive Isotopic Evidence for a Dynamic Residence Time of the Athabasca Glacier Subglacial Water

    NASA Astrophysics Data System (ADS)

    Arendt, C. A.; Aciego, S.; Sims, K. W.; Aarons, S. M.

    2011-12-01

    Little is known about the time it takes precipitation, input of water from reservoirs, surface melt, and basal melt to migrate to the base of a glacier and discharge. Previous work on the residence time of subglacial water has proven to be either inconclusive or inconsistent. Our research will address the primary subglacial water questions; the flux of subglacial water correlates directly to the mass balance of a glacier but what role does subglacial water storage play in that mass balance? Can we determine residence time of subglacial water? And, how variable is residence time seasonally and on longer time scales? The regional focus of our research is the Athabasca Glacier, part of the Columbia Icefield located in Jasper National Park, Alberta, Canada. Uranium-series (U-series) dating methods based on the ingrowth of daughter isotopes from parents (234U, 230Th and 222Rn from the primary parent 238U) have been used to study the residence time of aquifer systems. Here we show the feasibility of applying these techniques to subglacial water. Samples were collected over two 25-day field periods to account for hydrological and chemical fluctuations between the onset of melt and peak melt. Daily physical observations, 222Rn concentrations (from a Durridge RAD7), conductivity, total alkalinity, pH, maximum velocity, and discharge measurements were taken. Fifty daily 10-40L subglacial water and filtered sediment samples were collected and filtered at our collection site in the main channel at the toe of the Athabasca Glacier. The 238U /234U and 87Sr/86Sr isotopic compositions and U, Th, and Sr concentrations of the filtrate and captured sediments is pending. We will extrapolate the residence time of the water based on the accumulation of 234U and 230Th in our samples from alpha decay, which can be coupled to a radiometric timescale. Given that the 238U /234U and 234U/230Th isotopic composition of subglacial water is dependent on recoil and sediment dissolution processes

  12. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    USGS Publications Warehouse

    Battaglin, W.A.; Kendall, C.; Chang, Cecily C.Y.; Silva, S.R.; Campbell, D.H.

    2001-01-01

    Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (??15N and ??18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the ??15N and ??18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area ??? 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the ??15N and ??18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.

  13. Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Lake, J. A.; Berner, R. A.; Hickey, L. J.; Taylor, D. W.; Royer, D. L.

    2002-11-01

    Theoretical models predict a marked increase in atmospheric O2 to ∼35% during the Permo-Carboniferous (∼300 Ma) occurring against a low (∼0.03%) CO2 level. An upper O2 value of 35%, however, remains disputed because ignition data indicate that excessive global forest fires would have ensued. This uncertainty limits interpretation of the role played by atmospheric oxygen in Late Paleozoic biotic evolution. Here, we describe new results from laboratory experiments with vascular land plants that establish that a rise in O2 to 35% increases isotopic fractionation (Δ13C) during growth relative to control plants grown at 21% O2. Despite some effect of the background atmospheric CO2 level on the magnitude of the increase, we hypothesize that a substantial Permo-Carboniferous rise in O2 could have imprinted a detectable geochemical signature in the plant fossil record. Over 50 carbon isotope measurements on intact carbon from four fossil plant clades with differing physiological ecologies and ranging in age from Devonian to Cretaceous reveal a substantial Δ13C anomaly (5‰) occurring between 300 and 250 Ma. The timing and direction of the Δ13C excursion is consistent with the effects of a high O2 atmosphere on plants, as predicted from photosynthetic theory and observed in our experiments. Preliminary calibration of the fossil Δ13C record against experimental data yields a predicted O2/CO2 mixing ratio of the ancient atmosphere consistent with that calculated from long-term models of the global carbon and oxygen cycles. We conclude that further work on the effects of O2 in the combustion of plant materials and the spread of wildfire is necessary before existing data can be used to reliably set the upper limit for paleo-O2 levels.

  14. Origin of Paleozoic volcanics, northern Sierra Nevada, California: trace element and isotopic evidence

    SciTech Connect

    Hannah, J.L.; Crock, J.G.; Goldberg, S.A.

    1985-01-01

    Oceanic arc settings for Devonian and Permian volcanic sequences in the northern Sierra Nevada are suggested by: 1) abundant andesites and dacites; 2) the overwhelming predominance of submarine pyroclastic and epiclastic rocks; 3) localized vent facies; 4) absence of phenocrystic K-feldspar, hornblende, or biotite. Abundances of relatively immobile rare earth elements (REE), Ti, Y, Zr, and Nb, are typical of island arc tholeiites. Whole rock delta/sup 18/O values of 9.2 to 13.1 per thousand reflect low-temperature alteration. Relict quartz and augite phenocrysts, however, have retained original igneous isotopic signatures, yielding average delta/sup 18/O values of 8.2 and 6.0 per thousand, respectively. These low values preclude significant crustal contamination during magma ascent. Initial /sup 87/Sr//sup 86/Sr ratios for unaltered relict augite from Devonian andesite average 0.7082; initial ratios for augite from the Permian volcanics average 0.7045, suggesting a more primitive (back-arc.) magma source. Relatively high initial ratios from the Devonian volcanics require contamination of the magma by older, high Rb/Sr material. The contaminant is most likely a slab-derived component, as crustal assimilation or alteration processes would also increase oxygen isotope ratios. Whole rock initial /sup 87/Sr//sup 86/Sr and La/Yb ratios increase systematically through the Devonian sequence. These variations, which are not readily attributed to alteration, may reflect increasing contribution of subducted sedimentary material during arc maturation and accretionary prism growth.

  15. The origin of aubrites: Evidence from lithophile trace element abundances and oxygen isotope compositions

    NASA Astrophysics Data System (ADS)

    Barrat, J. A.; Greenwood, R. C.; Keil, K.; Rouget, M. L.; Boesenberg, J. S.; Zanda, B.; Franchi, I. A.

    2016-11-01

    We report the abundances of a selected set of "lithophile" trace elements (including lanthanides, actinides and high field strength elements) and high-precision oxygen isotope analyses of a comprehensive suite of aubrites. Two distinct groups of aubrites can be distinguished: (a) the main-group aubrites display flat or light-REE depleted REE patterns with variable Eu and Y anomalies; their pyroxenes are light-REE depleted and show marked negative Eu anomalies; (b) the Mount Egerton enstatites and the silicate fraction from Larned display distinctive light-REE enrichments, and high Th/Sm ratios; Mount Egerton pyroxenes have much less pronounced negative Eu anomalies than pyroxenes from the main-group aubrites. Leaching experiments were undertaken to investigate the contribution of sulfides to the whole rock budget of the main-group aubrites. Sulfides contain in most cases at least 50% of the REEs and of the actinides. Among the elements we have analyzed, those displaying the strongest lithophile behaviors are Rb, Ba, Sr and Sc. The homogeneity of the Δ17O values obtained for main-group aubrite falls [Δ17O = +0.009 ± 0.010‰ (2σ)] suggests that they originated from a single parent body whose differentiation involved an early phase of large-scale melting that may have led to the development of a magma ocean. This interpretation is at first glance in agreement with the limited variability of the shapes of the REE patterns of these aubrites. However, the trace element concentrations of their phases cannot be used to discuss this hypothesis, because their igneous trace-element signatures have been modified by subsolidus exchange. Finally, despite similar O isotopic compositions, the marked light-REE enrichments displayed by Mount Egerton and Larned suggest that they are unrelated to the main-group aubrites and probably originated from a distinct parent body.

  16. Evidence of a dynamic microbial community structure and predation through combined microbiological and stable isotope characterization

    NASA Astrophysics Data System (ADS)

    Druhan, J. L.; Bill, M.; Lim, H. C.; Wu, C.; Conrad, M. E.; Williams, K. H.; DePaolo, D. J.; Brodie, E.

    2014-12-01

    The speciation, reactivity and mobility of carbon in the near surface environment is intimately linked to the prevalence, diversity and dynamics of native microbial populations. We utilize this relationship by introducing 13C-labeled acetate to sediments recovered from a shallow aquifer system to track both the cycling of carbon through multiple redox pathways and the associated spatial and temporal evolution of bacterial communities in response to this nutrient source. Results demonstrate a net loss of sediment organic carbon over the course of the amendment experiment. Furthermore, these data demonstrated a source of isotopically labeled inorganic carbon that was not attributable to primary metabolism by acetate-oxidizing microorganisms. Fluid samples analyzed weekly for microbial composition by pyrosequencing of ribosomal RNA genes showed a transient microbial community structure, with distinct occurrences of Azoarcus, Geobacter and multiple sulfate reducing species over the course of the experiment. In combination with DNA sequencing data, the anomalous carbon cycling process is shown to occur exclusively during the period of predominant Geobacter species growth. Pyrosequencing indicated, and targeted cloning and sequencing confirmed the presence of several bacteriovorous protozoa, including species of the Breviata, Planococcus and Euplotes genera. Cloning and qPCR analysis demonstrated that Euplotes species were most abundant and displayed a growth trajectory that closely followed that of the Geobacter population. These results suggest a previously undocumented secondary turnover of biomass carbon related to protozoan grazing that was not sufficiently prevalent to be observed in bulk concentrations of carbon species in the system, but was clearly identifiable in the partitioning of carbon isotopes. The impact of predator-prey relationships on subsurface microbial community dynamics and therefore the flux of carbon through a system via the microbial biomass

  17. A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes

    NASA Astrophysics Data System (ADS)

    Fontorbe, Guillaume; Frings, Patrick J.; De La Rocha, Christina L.; Hendry, Katharine R.; Conley, Daniel J.

    2016-11-01

    Despite being one of Earth's major geochemical cycles, the evolution of the silicon cycle has received little attention and changes in oceanic dissolved silica (DSi) concentration through geologic time remain poorly constrained. Silicon isotope ratios (expressed as δ30Si) in marine microfossils are becoming increasingly recognised for their ability to provide insight into silicon cycling. In particular, the δ30Si of siliceous sponge spicules has been demonstrated to be a useful proxy for past DSi concentrations. We analysed δ30Si in radiolarian tests and sponge spicules from the Blake Nose Palaeoceanographic Transect (ODP Leg 171B) spanning the Palaeocene-Eocene (ca. 60-30 Ma). Our δ30Si results range from +0.32 to + 1.67 ‰ and -0.48 to + 0.63 ‰ for the radiolarian and sponge records, respectively. Using an established relationship between ambient dissolved Si (DSi) concentrations and the magnitude of silicon isotope fractionation in siliceous sponges, we demonstrate that the Western North Atlantic was DSi deplete during the Palaeocene-Eocene throughout the water column, a conclusion that is robust to a range of assumptions and uncertainties. These data can constitute constraints on reconstructions of past-ocean circulation. Previous work has suggested ocean DSi concentrations were higher than modern ocean concentrations prior to the Cenozoic and has posited a drawdown during the Early Palaeogene due to the evolutionary expansion of diatoms. Our results challenge such an interpretation. We suggest here that if such a global decrease in oceanic DSi concentrations occurred, it must predate 60 Ma.

  18. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond

    NASA Astrophysics Data System (ADS)

    Palot, M.; Cartigny, P.; Harris, J. W.; Kaminsky, F. V.; Stachel, T.

    2012-12-01

    Diamond, as the deepest sample available for study, provides a unique opportunity to sample and examine parts of the Earth's mantle not directly accessible. In order to provide further constraints on mantle convection and deep volatile cycles, we analysed nitrogen and carbon isotopes and nitrogen abundances in 133 diamonds from Juina (Brazil) and Kankan (Guinea). Host syngenetic inclusions within these diamonds indicate origins from the lithosphere, the asthenosphere-transition zone and the lower mantle. Juina and Kankan diamonds both display overall carbon isotopic compositions within the current upper mantle range but the δ13C signatures of diamonds from the asthenosphere-transition zone extend toward very negative and positive values, respectively. Two Kankan diamonds with both lower mantle and asthenosphere-transition zone inclusions (KK-45 and KK-83) are zoned in δ13C, and have signatures consistent with multiple growth steps likely within both the lower mantle and the asthenosphere-transition zone illustrating the transfer of material through the 670 km seismic discontinuity. At a given locality, diamonds from the upper and the lower mantle show similar δ15N distributions with coinciding modes within the range defined by typical upper mantle samples, as one might expect for a well stirred reservoir resulting from whole mantle convection. Kankan diamonds KK-11 (lower mantle), KK-21 and KK-92 (both lithospheric) display the lowest δ15N values (-24.9%, -39.4% and -30.4%) ever measured in terrestrial samples, which we interpret as reflecting primordial heterogeneity preserved in an imperfectly mixed convective mantle. Our diamond data thus provide support for deeply rooted convection cells, together with the preservation of primordial volatiles in an imperfectly mixed convecting mantle, thereby reconciling the conflicting interpretations regarding mantle homogeneity derived from geochemical and geophysical studies.

  19. Diffuse migratory connectivity in two species of shrubland birds: evidence from stable isotopes

    USGS Publications Warehouse

    Knick, Steven T.; Leu, Matthias; Rotenberry, John T.; Hanser, Steven E.; Fesenmyer, Kurt A.

    2014-01-01

    Connecting seasonal ranges of migratory birds is important for understanding the annual template of stressors that influence their populations. Brewer’s sparrows (Spizella breweri) and sagebrush sparrows (Artemisiospiza nevadensis) share similar sagebrush (Artemisia spp.) habitats for breeding but have different population trends that might be related to winter location. To link breeding and winter ranges, we created isoscapes of deuterium [stable isotope ratio (δ) of deuterium; δ2H] and nitrogen (δ15N) for each species modeled from isotope ratios measured in feathers of 264 Brewer’s and 82 sagebrush sparrows and environmental characteristics at capture locations across their breeding range. We then used feather δ2Hf and δ15Nf measured in 1,029 Brewer’s and 527 sagebrush sparrows captured on winter locations in southwestern United States to assign probable breeding ranges. Intraspecies population mixing from across the breeding range was strong for both Brewer’s and sagebrush sparrows on winter ranges. Brewer’s sparrows but not sagebrush sparrows were linked to more northerly breeding locations in the eastern part of their winter range. Winter location was not related to breeding population trends estimated from US Geological Survey Breeding Bird Survey routes for either Brewer’s or sagebrush sparrows. Primary drivers of population dynamics are likely independent for each species; Brewer’s and sagebrush sparrows captured at the same winter location did not share predicted breeding locations or population trends. The diffuse migratory connectivity displayed by Brewer’s and sagebrush sparrows measured at the coarse spatial resolution in our analysis also suggests that local environments rather than broad regional characteristics are primary drivers of annual population trends.

  20. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust

    NASA Astrophysics Data System (ADS)

    Guitreau, Martin; Blichert-Toft, Janne; Martin, Hervé; Mojzsis, Stephen J.; Albarède, Francis

    2012-07-01

    Combined whole-rock and zircon MC-ICP-MS Lu-Hf isotope data are reported for a large collection of Archean granitoids belonging to typical tonalite-trondhjemite-granodiorite (TTG) suites. Our data demonstrate that the time-integrated Lu/Hf of the mantle source of TTGs has not significantly changed over the last 4 Gy. Continents therefore most likely grew from nearly primordial unfractionated material extracted from the deep mantle via rising plumes that left a depleted melt residue in the upper mantle. The deep mantle could retain its primitive relative element abundances over time because sinking plates are largely stripped barren of their oceanic and continental crust components at subduction zones; this process results in only small proportions (<15-25%) of present-day continental mass getting recycled to great depths. Zircon populations extracted from the analyzed TTGs have Hf isotopic compositions broadly consistent with those of their host whole-rocks, whereas the U-Pb system in the same grains is often disturbed, causing a discrepancy that creates spurious initial ɛHf values. This problem is endemic to the Archean detrital zircon record and consistent with experimental results bearing on the relative retentivity of Hf vs. U and Pb in zircon. We argue that this behavior biases the Archean zircon record toward negative ɛHf values, which are at odds with the present TTG data set. If Hadean Jack Hills zircons are considered in light of these results, the mantle source of continents has remained unchanged for the last 4.3 Gy.

  1. Astronomical Oxygen Isotopic Evidence for Supernova Enrichment of the Solar System Birth Environment

    NASA Astrophysics Data System (ADS)

    Young, Edward; Gounelle, M.; Smith, R. L.; Morris, M. R.; Pontoppidan, K. M.

    2010-01-01

    Ratios among [C16O], [C17O] and [C18O] from young stellar objects (YSOs) obtained by high-resolution infrared spectroscopy (CRIRES, NIRSPEC) suggest that the solar system is indeed unusual in its 18O/17O compared with the present-day Galaxy at a variety of scales of observation. Galactic chemical evolution (GCE) models suggest that 18O/17O is independent of time. A nearly constant Galactic 18O/17O with time is indicated by existing data showing a systematic variation in oxygen isotopologue ratios with distance from the Galactic center. In this context, we show that the disparity between present-day Galactic and solar 18O/17O is explained if the solar system was born in an environment enriched by type II supernovae from low-mass progenitors. Enrichment by ejecta from exploding B stars (not O stars) on the order of 1 % by mass can account for the enhancement in 18O/17O of the birth environment of the solar system compared with normal Galactic values. Analysis of the stochastic nature of star formation utilizing a well-known mass generation function shows that the parental molecular cloud complex that produced the solar system was proximal to a cluster composed of order 500 stars. Larger clusters produce SNe II with oxygen isotope ratios that are inconsistent with enhancement in 18O/17O. This cluster predated the solar system by approximately 10 to 30 Myrs. Enrichment by B star ejecta explains not only the anomalous 18O/17O of the solar system but also its anomalous Si isotopic composition and the former presence of extinct 60Fe.

  2. Subduction of continental lithosphere in the Banda Sea region: Combining evidence from full waveform tomography and isotope ratios

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; De Wit, Maarten; van Bergen, Manfred

    2010-09-01

    We provide new insight into the subduction of old continental lithosphere to depths of more than 100 km beneath the Banda arc, based on a spatial correlation of full waveform tomographic images of its lithosphere with He, Pb, Nd and Sr isotope signatures in its arc volcanics. The thickness of the subducted lithosphere of around 200 km coincides with the thickness of Precambrian lithosphere as inferred from surface wave tomography. While the deep subduction of continental material in continent-continent collisions is widely recognised, the analogue process in the arc-continent collision of the Banda region is currently unique. The integrated data suggest that the late Jurassic ocean lithosphere north of the North Australian craton was capable of entraining large volumes of continental lithosphere. The Banda arc example demonstrates that continental lithosphere in arc-continent collisions is not generally preserved, thus increasing the complexity of tectonic reconstructions. In the particular case of Timor, the tomographic images indicate that this island is not located directly above the northern margin of the North Australian craton, and that decoupled oceanic lithosphere must be located at a considerable distance north of Timor, possibly as far north as the northern margin of the volcanically extinct arc sector. The tomographic images combined with isotope data suggest that subduction of the continental lithosphere did not lead to the delamination of its complete crust. A plausible explanation involves delamination within the continental crust, separating upper from lower crustal units. This interpretation is consistent with the existence of a massive accretionary complex on Timor island, with evidence from Pb isotope analysis for lower-crust involvement in arc volcanism; and with the approximate gravitational stability of the subducted lithosphere as inferred from the tomographic images. The subduction of continental lithosphere including crustal material beneath

  3. Atacama perchlorate as an agricultural contaminant in groundwater: isotopic and chronologic evidence from Long Island, New York.

    PubMed

    Böhlke, John Karl; Hatzinger, Paul B; Sturchio, Neil C; Gu, Baohua; Abbene, Irene; Mroczkowski, Stanley J

    2009-08-01

    Perchlorate (ClO4-) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO4- is past agricultural application of ClO4(-)-bearing natural NO3- fertilizer imported from the Atacama Desert, Chile, but evidence for this has been largely circumstantial. Here we report ClO4- stable isotope data (delta37Cl, delta18O, and delta17O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO4 contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO4- apparently was not affected by biodegradation within the aquifers. Synthetic ClO4- was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO4- was indicated in agricultural and urbanizing areas in groundwaters with apparent ages > 20 years. In an agricultural area, ClO4- concentrations and ClO4-/NO3- ratios increased with groundwater age, possibly because of decreasing application rates of Atacama NO3- fertilizers and/or decreasing ClO4- concentrations in Atacama NO3- fertilizers in recent years. Because ClO4-/NO3- ratios of Atacama NO3- fertilizers imported in the past (approximately 2 x 10(-3) mol mol(-1)) were much higher than the CO4-/NO3- ratio of recommended drinking-water limits (7 x 10(-5) mol mol(-1) in New York), ClO4- could exceed drinking-water limits even where NO3- does not, and where Atacama NO3- was only a minor source of N. Groundwater ClO4- with distinctive isotopic composition was a sensitive indicator of past Atacama NO3- fertilizer use on Long Island and may be common in other areas that received NO3- fertilizers from the late 19th century through the 20th century.

  4. Ca, Sr, Mo and U isotopes evidence ocean acidification and deoxygenation during the Late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Silva-Tamayo, Juan Carlos; Payne, Jon; Wignall, Paul; Newton, Rob; Eisenhauer, Anton; Weyer, Stenfan; Neubert, Nadja; Lau, Kim; Maher, Kate; Paytan, Adina; Lehrmann, Dan; Altiner, Demir; Yu, Meiyi

    2014-05-01

    The most catastrophic extinction event in the history of animal life occurred at the end of the Permian Period, ca. 252 Mya. Ocean acidification and global oceanic euxinia have each been proposed as causes of this biotic crisis, but the magnitude and timing of change in global ocean chemistry remains poorly constrained. Here we use multiple isotope systems - Ca, Sr, Mo and U - measured from well dated Upper Permian- Lower Triassic sedimentary sections to better constrain the magnitude and timing of change in ocean chemistry and the effects of ocean acidification and de-oxygenation through this interval. All the investigated carbonate successions (Turkey, Italy and China) exhibit decreasing δ44/40Ca compositions, from ~-1.4‰ to -2.0‰ in the interval preceding the main extinction. These values remain low during most of the Griesbachian, to finally return to -1.4‰ in the middle Dienerian. The limestone succession from southern Turkey also displays a major decrease in the δ88/86Sr values from 0.45‰ to 0.3‰ before the extinction. These values remain low during the Griesbachian and finally increase to 0.55‰ by the middle Dienerian. The paired negative anomalies on the carbonate δ44/40Ca and δ88/86Sr suggest a decrease in the carbonate precipitation and thus an episode of ocean acidification coincident with the major biotic crisis. The Mo and U isotope records also exhibit significant rapid negative anomalies at the onset of the main extinction interval, suggesting rapid expansion of anoxic and euxinic marine bottom waters during the extinction interval. The rapidity of the isotope excursions in Mo and U suggests substantially reduced residence times of these elements in seawater relative to the modern, consistent with expectations for a time of widespread anoxia. The large C-isotope variability within Lower Triassic rocks, which is similar to that of the Lower-Middle Cambrian, may reflect biologically controlled perturbations of the oceanic carbon cycle

  5. Atacama perchlorate as an agricultural contaminant in groundwater: isotopic and chronologic evidence from Long Island, New York.

    PubMed

    Böhlke, John Karl; Hatzinger, Paul B; Sturchio, Neil C; Gu, Baohua; Abbene, Irene; Mroczkowski, Stanley J

    2009-08-01

    Perchlorate (ClO4-) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO4- is past agricultural application of ClO4(-)-bearing natural NO3- fertilizer imported from the Atacama Desert, Chile, but evidence for this has been largely circumstantial. Here we report ClO4- stable isotope data (delta37Cl, delta18O, and delta17O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO4 contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO4- apparently was not affected by biodegradation within the aquifers. Synthetic ClO4- was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO4- was indicated in agricultural and urbanizing areas in groundwaters with apparent ages > 20 years. In an agricultural area, ClO4- concentrations and ClO4-/NO3- ratios increased with groundwater age, possibly because of decreasing application rates of Atacama NO3- fertilizers and/or decreasing ClO4- concentrations in Atacama NO3- fertilizers in recent years. Because ClO4-/NO3- ratios of Atacama NO3- fertilizers imported in the past (approximately 2 x 10(-3) mol mol(-1)) were much higher than the CO4-/NO3- ratio of recommended drinking-water limits (7 x 10(-5) mol mol(-1) in New York), ClO4- could exceed drinking-water limits even where NO3- does not, and where Atacama NO3- was only a minor source of N. Groundwater ClO4- with distinctive isotopic composition was a sensitive indicator of past Atacama NO3- fertilizer use on Long Island and may be common in other areas that received NO3- fertilizers from the late 19th century through the 20th century. PMID:19731653

  6. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York

    SciTech Connect

    Bohlke, J. K.; Hatzinger, Paul B.; Sturchio, N. C.; Gu, Baohua; Abbene, I.; Mroczkowki, S. J.

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO{sub 4}{sup -} is past agricultural application of ClO{sub 4}{sup -}-bearing natural NO{sub 3}{sup -} fertilizer imported from the Atacama Desert, Chile, but evidence for this has been largely circumstantial. Here we report ClO{sub 4}{sup -} stable isotope data ({delta}{sup 37}Cl, {delta}{sup 18}O, and {Delta}{sup 17}O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO{sub 4}{sup -} contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO{sub 4}{sup -} apparently was not affected by biodegradation within the aquifers. Synthetic ClO{sub 4}{sup -} was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO{sub 4}{sup -} was indicated in agricultural and urbanizing areas in groundwaters with apparent ages >20 years. In an agricultural area, ClO{sub 4}{sup -} concentrations and ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios increased with groundwater age, possibly because of decreasing application rates of Atacama NO{sub 3}{sup -} fertilizers and/or decreasing ClO{sub 4}{sup -} concentrations in Atacama NO{sub 3}{sup -} fertilizers in recent years. Because ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios of Atacama NO{sub 3}{sup -} fertilizers imported in the past (2 x 10{sup -3} mol mol{sup -1}) were much higher than the ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratio of recommended drinking-water limits (7 x 10{sup -5} mol mol{sup -1} in New York), ClO{sub 4}{sup -} could exceed drinking-water limits even where NO{sub 3}{sup -} does not, and where Atacama NO{sub 3}{sup -} was only a minor source of N. Groundwater ClO{sub 4}{sup -} with distinctive isotopic composition was a sensitive indicator of past Atacama NO{sub 3}{sup -} fertilizer use on Long Island and may be common in

  7. Subarctic Pacific stratification and seasonality changes upon Northern Hemisphere Glaciation - New evidence from diatom-bound nitrogen isotopes

    NASA Astrophysics Data System (ADS)

    Studer, A. S.; Jaccard, S.; Martinez Garcia, A.; Girault, F. E.; Sigman, D. M.; Haug, G. H.

    2011-12-01

    Coincident with the intensification of Northern Hemisphere Glaciation (NHG) around 2.73 million years (Ma) ago, sediment cores from both the open subarctic North Pacific and the Antarctic indicate a rapid decline in diatom opal accumulation flux to the seabed, representing one of the most abrupt and dramatic changes in the marine sediment record associated with the development of Pleistocene glacial cycles. In the North Pacific, bulk sediment nitrogen isotope data and alkenone-derived sea surface temperature (SST) estimates suggest that the productivity decline was driven by reduced exchange between surface and deep water ("stratification"), due to weaker wind-driven upwelling and/or a strengthening of the halocline. In this study of the 2.73 Ma transition at Ocean Drilling Program (ODP) Site 882 in the western subarctic North Pacific, we report measurements of diatom-bound nitrogen isotopes (δ15Ndb), alkenone mass accumulation rate, and alkenone- and TEXL86 based SST that support the stratification hypothesis. The data after the 2.73 Ma transition corroborate previous evidence for increased relative nitrate utilization and greater seasonal variation in SST. In agreement with diatom taxonomic data, measurements of the δ15Ndb of large and small size fractions of the diatom taxon Coscinodiscus spp. suggest that these diatoms grew mostly during the spring bloom during the late Pliocene, switching to their current fall-to-winter growth period at the 2.73 Ma transition. Such a change in seasonality provides further evidence for an increase in spring to summer stratification in the North Pacific after 2.73 Ma. The δ15Ndb data indicate that, at the 2.73 Ma transition, nitrate consumption did not immediately increase to late Pleistocene ice age levels. The mass accumulation rate and N isotope data suggest that this is due to relatively weak eolian dust inputs in the early post-2.73 Ma period. If deep water was being formed in North Pacific prior to 2.73 Ma, then the ice

  8. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected

  9. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming)

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Clyde, William C.; O'Neil, James R.; Gingerich, Philip D.

    1998-07-01

    Oxygen isotope records of Cenozoic sea water temperatures indicate that a rapid warming event known as the Latest Paleocene Thermal Maximum (LPTM) occurred during the otherwise gradual increase in world temperatures during the Late Paleocene and Early Eocene. Oxygen isotope analysis of the carbonate and phosphate components of hydroxyapatite found in mammalian tooth enamel and body scales of river-dwelling fish from the Bighorn Basin in Wyoming were made to investigate corresponding changes in the terrestrial climate. A comparison of carbonate and phosphate isotope data from modern and fossil material indicates that some diagenetic alteration of the fossil material has occurred, although systematically larger intra-tooth ranges in the oxygen isotope composition of carbonate indicate that it is more likely to have been affected than phosphate. Carbonate and phosphate from the ecologically diverse mammals and fishes both record a shift to higher oxygen isotope ratios at the same time and of the same duration as the LPTM. These shifts reflect a change in the isotopic composition of regional precipitation, which in turn provides the first evidence for continental climate change during the LPTM. Assuming the present-day relation between the oxygen isotope composition of precipitation and temperature applies to conditions in the past, and that animal physiology and behavior is relatively invariant over time, the isotopic shift is equivalent to an increase of surface temperature in western North America of several degrees. This result is consistent with the magnitude of high-latitude ocean warming, and provides a basis for relating marine and terrestrial oxygen isotope records to records of terrestrial biotic change.

  10. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    NASA Astrophysics Data System (ADS)

    Battaglin, William A.; Kendall, Carol; Chang, Cecily C. Y.; Silva, Steven R.; Campbell, D. H.

    2001-05-01

    An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1129-1130.Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (15N and 18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the 15N and isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer

  11. The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

    NASA Astrophysics Data System (ADS)

    Jeffreys, R. M.; Fisher, E. H.; Gooday, A. J.; Larkin, K. E.; Billett, D. S. M.; Wolff, G. A.

    2015-03-01

    The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope from 100 to 1000 m water depth. We compared the trophic ecology of foraminifera on the Oman and Pakistan margins of the Arabian Sea (140-3185 m water depth). These two margins are contrasting both in terms of the abundance of sedimentary organic matter and the intensity of the OMZ. Organic carbon concentrations of surficial sediments were higher on the Oman margin (3.32 ± 1.4%) compared to the Pakistan margin (2.45 ± 1.1%) and sedimentary organic matter (SOM) quality estimated from the Hydrogen Index was also higher on the Oman margin (300-400 mg HC mg TOC-1) compared to the Pakistan margin (< 250 mg HC mg TOC-1). The δ13C and δ15N values of sediments were similar on both margins (-20 and 8‰, respectively). Stable isotope analysis (SIA) showed that foraminiferal cells had a wide range of δ13C values (-25.5 to -11.5‰), implying that they utilise multiple food sources; indeed δ13C values varied between depths, foraminiferal types and between the two margins. Foraminifera had broad ranges in δ15N values (-7.8 to 27.3‰). The enriched values suggest that some species may store nitrate to utilise in respiration; this was most notable on the Pakistan margin. Depleted foraminiferal δ15N values, particularly at the Oman margin, may reflect feeding on chemosynthetic bacteria. We suggest that differences in productivity regimes may be responsible for the differences observed in foraminiferal isotopic composition. In addition, at the time of sampling, whole jellyfish carcasses (Crambionella orsini) and a carpet of jelly detritus were observed across the Oman margin transect. Associated chemosynthetic bacteria may have

  12. Isotopic Evidence for the Source and Fate of Phosphorus in Everglades Wetland Ecosystems

    NASA Technical Reports Server (NTRS)

    Li, Xin; Wang, Yang; Stern, Jennifer; Gu, Binhe

    2011-01-01

    Phosphorus has historically been a limiting nutrient in the Florida Everglades. Increased P loading to the Everglades over the past several decades has led to significant changes in water quality and plant communities. Stormwater runoff that drains agricultural lands and enters the Water Conservation Areas (WCAs) are known to contain elevated levels of P, but the exact source of this P has not been fully determined. Here the results of an O isotope study of dissolved inorganic phosphate (DIP) in both polluted and relatively pristine (or reference) areas of the Everglades are reported. The data reveal spatial and temporal variations in the delta 18O signature of DIP, reflecting the source and the degree of cycling of P. The delta 18O values of DIP collected from the Everglades National Park were close or equal to the predicted delta 18O values of DIP formed in situ in equilibrium with ambient water, indicating that P is quickly cycled in the water column in oligotrophic ecosystems with very low P concentrations. However, most DIP samples collected from areas impacted by agricultural runoff yielded delta 18O values that deviated from the predicted equilibrium DIP delta 18O values based on the delta 18O of water and water temperature, suggesting that biological cycling of P was not rapid enough to remove the fertilizer ?18O signature in the DIP pool from areas receiving high P loading. The delta 18O signature of DIP in impacted areas reflects a mixing of fertilizer P and biologically cycled P, where the relative proportions of biologically cycled vs. fertilizer DIP are controlled by both biological (microbial activities and plant uptake) and hydrologic factors (loading rate and residence time). Using a two-end-member (i.e., fertilizer P and biologically cycled P) mixing model, fertilizers were estimated to contribute about 15 100% of the DIP pool in the highly impacted areas of the northern Everglades, whereas the DIP pool in the reference (i.e., relatively pristine

  13. The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

    NASA Astrophysics Data System (ADS)

    Jeffreys, R. M.; Fisher, E. H.; Gooday, A. J.; Larkin, K. E.; Wolff, G. A.; Billett, D. S. M.

    2014-12-01

    The Arabian Sea is a region of elevated productivity with the highest globally recorded fluxes of particulate organic matter (POM) to the deep ocean, providing an abundant food source for fauna at the seafloor. However, benthic communities are also strongly influenced by an intense oxygen minimum zone (OMZ), which impinges on the continental slope at bathyal depths. We compared the trophic ecology of foraminifera on the Oman and Pakistan margins of the Arabian Sea (140-3185 m water depth). Organic carbon concentrations of surficial sediments were higher on the Oman margin (3.32 ± 1.4%) compared to the Pakistan margin (2.45 ± 1.1%) and sedimentary organic matter (SOM) quality estimated from the Hydrogen Index was also higher on the Oman margin (300-400 mg HC (mg TOC)-1) compared to the Pakistan margin (<250 mg HC (mg TOC)-1). δ13C and δ15N values of sediments were similar on both margins (-20 and 8‰, respectively). Stable isotope analysis (SIA) showed that foraminiferal cells had a wide range of δ13C values (-25.5 to -11.5‰), implying that they utilise multiple food sources; indeed δ13C values varied between depths, foraminiferal types and between the two margins. Foraminifera had broad ranges in δ15N values (-7.8 to 27.3‰). The enriched values suggest that some species may store nitrate to utilise in respiration; this was most notable on the Pakistan margin. Depleted foraminiferal δ15N values were identified on both margins, particularly the Oman margin, and may reflect feeding on chemosynthetic bacteria. We suggest that differences in productivity regimes between the two margins may be responsible for the differences observed in foraminiferal isotopic composition. In addition, at the time of sampling, whole jellyfish carcasses (Crambionella orsini) and a carpet of jelly detritus were observed across the Oman margin transect. Associated chemosynthetic bacteria may have provided an organic-rich food source for foraminifera at these sites. Our data

  14. Stable isotope evidence for the Bottom Convective Layer homogeneity in the Black Sea

    PubMed Central

    2014-01-01

    The Black Sea is the largest euxinic basin on the Earth. The anoxic zone consists of the upper part water mass stratified by density, and the lower water mass homogenized relative to density (depth >1750 m), named the Bottom Convective Layer. To assess homogeneity and possible exchange of matter across the upper and lower boundaries of the Bottom Convective Layer, new data on stable isotope composition of S, O and H were obtained. Samples were collected in August 2008 and March 2009 from two stations located in the eastern central part of the Black Sea. Distribution of δ18O and δD values of water for the entire water column did not vary seasonally. Appreciable differences were marked for δD value variation in the picnocline area (water depth 200-400 m) and in the BCL 5 m above the bottom that might be caused by penetration of intrusions with elevated portion of shelf modified Mediterranean Water. Observed linear relationship between δ18O (or δD) and salinity indicates that mixing water and salt occurs at the same time, and the deep water of the Black Sea has two end members: the high-salinity Mediterranean seawater and freshwater input. In the Bottom Convective Layer, the average δ34S (H2S) was -40.6 ± 0.5‰ and did not vary seasonally. At the bottom (depth > 2000 m), 34S depletion down to –41.0‰ was observed. Our δ34S (SO4) data are by 2-3‰ higher than those measured previously for the Bottom Convective Layer. Sulfate from the aerobic zone with δ34S (SO4) = +21‰ corresponds to ocean water sulfate and that has not been subjected to sulfate reduction. Average δ34S (SO4) values for depths > 1250 m were found to be +23.0 ± 0.2‰ (1σ). Sulfur isotope composition of sulfate does not change in the Bottom Convective Layer and on its upper and lower boundaries, and does not depend on the season of observation. PMID:24739078

  15. Stable isotope evidence for the Bottom Convective Layer homogeneity in the Black Sea.

    PubMed

    Dubinin, Alexander V; Dubinina, Elena O; Demidova, Tatyana P; Kokryatskaya, Nataliya M; Rimskaya-Korsakova, Maria N; Kosova, Sofia A; Yakushev, Evgeniy V

    2014-01-01

    The Black Sea is the largest euxinic basin on the Earth. The anoxic zone consists of the upper part water mass stratified by density, and the lower water mass homogenized relative to density (depth >1750 m), named the Bottom Convective Layer. To assess homogeneity and possible exchange of matter across the upper and lower boundaries of the Bottom Convective Layer, new data on stable isotope composition of S, O and H were obtained. Samples were collected in August 2008 and March 2009 from two stations located in the eastern central part of the Black Sea. Distribution of δ(18)O and δD values of water for the entire water column did not vary seasonally. Appreciable differences were marked for δD value variation in the picnocline area (water depth 200-400 m) and in the BCL 5 m above the bottom that might be caused by penetration of intrusions with elevated portion of shelf modified Mediterranean Water. Observed linear relationship between δ(18)O (or δD) and salinity indicates that mixing water and salt occurs at the same time, and the deep water of the Black Sea has two end members: the high-salinity Mediterranean seawater and freshwater input. In the Bottom Convective Layer, the average δ(34)S (H2S) was -40.6 ± 0.5‰ and did not vary seasonally. At the bottom (depth > 2000 m), (34)S depletion down to -41.0‰ was observed. Our δ(34)S (SO4) data are by 2-3‰ higher than those measured previously for the Bottom Convective Layer. Sulfate from the aerobic zone with δ(34)S (SO4) = +21‰ corresponds to ocean water sulfate and that has not been subjected to sulfate reduction. Average δ(34)S (SO4) values for depths > 1250 m were found to be +23.0 ± 0.2‰ (1σ). Sulfur isotope composition of sulfate does not change in the Bottom Convective Layer and on its upper and lower boundaries, and does not depend on the season of observation. PMID:24739078

  16. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, Genming; Kump, Lee R.; Wang, Yongbiao; Tong, Jinnan; Arthur, Michael A.; Yang, Hao; Huang, Junhua; Yin, Hongfu; Xie, Shucheng

    2010-11-01

    The cataclysmic end-Permian mass extinction was immediately followed by a global expansion of microbial ecosystems, as demonstrated by widespread microbialite sequences (disaster facies) in shallow water settings. Here we present high-resolution carbonate carbon ( δ13C carb) and carbonate-associated sulfate-sulfur isotope ( δ34S CAS) records from the microbialite in the Cili Permian-Triassic (P-Tr) section in South China. A stepwise decline in δ13C carb begins in the underlying skeletal limestone, predating the main oceanic mass extinction and the first appearance of microbialite, and reaches its nadir in the upper part of the microbialite layer. The corresponding δ34S CAS, in the range of 17.4‰ to 27.4‰, is relatively stable in the underlying skeletal limestone, and increases gradually from 2 m below the microbialite rising to a peak at the base of the microbialite. Two episodes of positive and negative shifts occurred within the microbialite layer, and exhibit a remarkable co-variance of sulfur and carbon isotope composition. The large amplitude of the variation in δ34S CAS, as high as 7‰ per 100 kiloyears, suggests a small oceanic sulfate reservoir size at this time. Furthermore, the δ13C carb and δ34S CAS records co-vary without phase lag throughout the microbialite interval, implying a marine-driven C cycle in an anoxic ocean with anomalously low oceanic sulfate concentrations. On the basis of a non-steady-state box model, we argue that the oceanic sulfate concentration may have fallen to less than 15%, perhaps as low as 3%, of that in the modern oceans. Low oceanic sulfate concentration likely was the consequence of evaporite deposition and widespread anoxic/sulfidic conditions prior to the main mass extinction. By promoting methanogenesis and a build-up of atmospheric CH 4 and CO 2, low oceanic sulfate may have intensified global warming, exacerbating the inimical environmental conditions of the latest Permian.

  17. Isotopic evidence for residential mobility of farming communities during the transition to agriculture in Britain.

    PubMed

    Neil, Samantha; Evans, Jane; Montgomery, Janet; Scarre, Chris

    2016-01-01

    Development of agriculture is often assumed to be accompanied by a decline in residential mobility, and sedentism is frequently proposed to provide the basis for economic intensification, population growth and increasing social complexity. In Britain, however, the nature of the agricultural transition (ca 4000 BC) and its effect on residence patterns has been intensely debated. Some authors attribute the transition to the arrival of populations who practised a system of sedentary intensive mixed farming similar to that of the very earliest agricultural regimes in central Europe, ca 5500 BC, with cultivation of crops in fixed plots and livestock keeping close to permanently occupied farmsteads. Others argue that local hunter-gatherers within Britain adopted selected elements of a farming economy and retained a mobile way of life. We use strontium and oxygen isotope analysis of tooth enamel from an Early Neolithic burial population in Gloucestershire, England, to evaluate the residence patterns of early farmers. Our results are consistent with the hypothesis that early farming communities in Britain were residentially mobile and were not fully sedentary. Results highlight the diverse nature of settlement strategies associated with early farming in Europe and are of wider significance to understanding the effect of the transition to agriculture on residence patterns.

  18. Oxygen Isotope Evidence for Mn(II)-Catalyzed Recrystallization of Manganite (γ-MnOOH).

    PubMed

    Frierdich, Andrew J; Spicuzza, Michael J; Scherer, Michelle M

    2016-06-21

    Manganese is biogeochemically cycled between aqueous Mn(II) and Mn(IV) oxides. Aqueous Mn(II) often coexists with Mn(IV) oxides, and redox reactions between the two (e.g., comproportionation) are well known to result in the formation of Mn(III) minerals. It is unknown, however, whether aqueous Mn(II) exchanges with structural Mn(III) in manganese oxides in the absence of any mineral transformation (similar to what has been reported for aqueous Fe(II) and some Fe(III) minerals). To probe whether atoms exchange between a Mn(III) oxide and water, we use a (17)O tracer to measure oxygen isotope exchange between structural oxygen in manganite (γ-MnOOH) and water. In the absence of aqueous Mn(II), about 18% of the oxygen atoms in manganite exchange with the aqueous phase, which is close to the estimated surface oxygen atoms (∼11%). In the presence of aqueous Mn(II), an additional 10% (for a total of 28%) of the oxygen atoms exchange with water, suggesting that some of the bulk manganite mineral (i.e., beyond surface) is exchanging with the fluid. Exchange of manganite oxygen with water occurs without any observable change in mineral phase and appears to be independent of the rapid Mn(II) sorption kinetics. These experiments suggest that Mn(II) catalyzes manganese oxide recrystallization and illustrate a new pathway by which these ubiquitous minerals interact with their surrounding fluid. PMID:27249316

  19. Isotopic evidence for residential mobility of farming communities during the transition to agriculture in Britain

    PubMed Central

    Neil, Samantha; Evans, Jane; Montgomery, Janet; Scarre, Chris

    2016-01-01

    Development of agriculture is often assumed to be accompanied by a decline in residential mobility, and sedentism is frequently proposed to provide the basis for economic intensification, population growth and increasing social complexity. In Britain, however, the nature of the agricultural transition (ca 4000 BC) and its effect on residence patterns has been intensely debated. Some authors attribute the transition to the arrival of populations who practised a system of sedentary intensive mixed farming similar to that of the very earliest agricultural regimes in central Europe, ca 5500 BC, with cultivation of crops in fixed plots and livestock keeping close to permanently occupied farmsteads. Others argue that local hunter–gatherers within Britain adopted selected elements of a farming economy and retained a mobile way of life. We use strontium and oxygen isotope analysis of tooth enamel from an Early Neolithic burial population in Gloucestershire, England, to evaluate the residence patterns of early farmers. Our results are consistent with the hypothesis that early farming communities in Britain were residentially mobile and were not fully sedentary. Results highlight the diverse nature of settlement strategies associated with early farming in Europe and are of wider significance to understanding the effect of the transition to agriculture on residence patterns. PMID:26909177

  20. Isotopic evidence for an early shift to C₄ resources by Pliocene hominins in Chad.

    PubMed

    Lee-Thorp, Julia; Likius, Andossa; Mackaye, Hassane T; Vignaud, Patrick; Sponheimer, Matt; Brunet, Michel

    2012-12-11

    Foods derived from C(4) plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in (13)C, indicating a dependence on C(4) resources. As these sites are over 3 million years in age, the results extend the pattern of C(4) dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C(4) plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats.

  1. Sr isotopic evidence for fluid mixing in ore-stage dolomites, Pine Point, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Gleeson, S. A.; Gromek, P.; Simonetti, A.

    2009-05-01

    The carbonate hosted Pb-Zn deposits of the Pine Point district (Northwest Territories) are located close to the eastern edge of the present day Western Canadian Sedimentary Basin. The deposits have been classified as Mississippi Valley Type deposits and are thought to have formed as the result of basin-wide fluid flow in the Presqu'ile barrier, the host to the ore deposits. Laser multi-collector ICP-MS study of 87Sr/86Sr ratios of ore- related dolomites from Pine Point indicate two sources of Sr were present in the mineralizing system. Fluid "A" has a range in Sr isotopic values from 0.07070 to 0.7120 and is a brine derived from Middle Devonian seawater which has undergone some interaction with clastic units in the basin. Fluid "B" has is more enriched in 87Sr and has 87Sr/86Sr ratios up to up to 0.7152, values similar to those found in Canadian Shield Brines, and represents a fluid which has interacted with crystalline basement rocks. The presence of this second Sr source in the ore forming system suggests that sulfide deposition at Pine Point occurred as a result of fluid mixing.

  2. Isotopic evidence for an early shift to C4 resources by Pliocene hominins in Chad

    PubMed Central

    Lee-Thorp, Julia; Likius, Andossa; Mackaye, Hassane T.; Vignaud, Patrick; Sponheimer, Matt; Brunet, Michel

    2012-01-01

    Foods derived from C4 plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in 13C, indicating a dependence on C4 resources. As these sites are over 3 million years in age, the results extend the pattern of C4 dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C4 plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats. PMID:23150583

  3. Isotopic evidence for an early shift to C₄ resources by Pliocene hominins in Chad.

    PubMed

    Lee-Thorp, Julia; Likius, Andossa; Mackaye, Hassane T; Vignaud, Patrick; Sponheimer, Matt; Brunet, Michel

    2012-12-11

    Foods derived from C(4) plants were important in the dietary ecology of early Pleistocene hominins in southern and eastern Africa, but the origins and geographic variability of this relationship remain unknown. Carbon isotope data show that Australopithecus bahrelghazali individuals from Koro Toro in Chad are significantly enriched in (13)C, indicating a dependence on C(4) resources. As these sites are over 3 million years in age, the results extend the pattern of C(4) dependence seen in Paranthropus boisei in East Africa by more than 1.5 million years. The Koro Toro hominin fossils were found in argillaceous sandstone levels along with abundant grazing and aquatic faunal elements that, in combination, indicate the presence of open to wooded grasslands and stream channels associated with a greatly enlarged Lake Chad. In such an environment, the most abundant C(4) plant resources available to A. bahrelghazali were grasses and sedges, neither of which is usually considered as standard great ape fare. The results suggest an early and fundamental shift in hominin dietary ecology that facilitated the exploitation of new habitats. PMID:23150583

  4. Stable isotopic evidence for anaerobic maintained sulphate discharge in a polythermal glacier

    NASA Astrophysics Data System (ADS)

    Ansari, A. H.

    2016-03-01

    To understand the sources and sinks of sulphate and associated biogeochemical processes in a High Arctic environment, late winter snowpacks, the summer melt-waters and rock samples were collected and analysed for major ions and stable isotope tracers (δ18O, δ34S). The SO42bar/Clbar ratio reveal that more than 87% of sulphate (frequently > 95%) of total sulphate carried by the subglacial runoff and proglacial streams was derived from non-snowpack sources. The proximity of non-snowpack sulphate δ34S (∼8-19‰) to the δ34S of the major rocks in the vicinity (∼-6 to +18‰) suggest that the non-snowpack sulphate was principally derived from rock weathering. Furthermore, Ca2++Mg2+/SO42ˉ molar shows that sulphate acquisition in the meltwaters was controlled by two major processes: 1) coupled-sulphide carbonate weathering (molar ratio ∼ 2) and, 2) re-dissolution of secondary salts (molar ratio ∼ 1). The δ34S-SO4 = +19.4‰ > δ34S-S of rock, accompanied by increased sulphate concentration also indicates an input from re-dissolution of secondary salts. Overall, δ18O composition of these non-snowpack sulphate (-11.9 to -2.2‰) mostly stayed below the threshold δ18O value (-6.7 to -3.3‰) for minimum O2 condition, suggesting that certain proportion of sulphate was regularly supplied from anaerobic sulphide oxidation.

  5. Evidence of long-term seasonal climate forcing in rhizolith isotopes during the last glaciation

    USGS Publications Warehouse

    Wang, Hongfang; Ambrose, S.H.; Fouke, B.W.

    2004-01-01

    High density carbonate rhizoliths were found from a loess-paleosol succession from the late Wisconsin period (21-11 ka) in Illinois. Their morphology shows that they formed in a close contact with living and decomposing roots, suggesting a root/microbial respiration origin. Carbon (??13C) and oxygen (??18O) isotopic analyses were performed on 36 and 37 individual rhizoliths of two separate 10 cm intervals and 98 bulk rhizoliths of all 10 cm intervals. The results of the individual rhizolith ??13C and ??18O analyses suggest that the carbon source was largely derived from respiring C3, C4 and microbial biomass, and that meteoric water was controlled mainly by warm-season precipitation. The results of bulk rhizolith ??13C and ??18O analyses show that warm-season proxies varied in phase with glacial fluctuations at submillennial scales, suggesting long-term seasonal forcing may have played an important role on climate change during the late Wisconsin glaciation in North America. Copyright 2004 by the American Geophysical Union.

  6. Oxygen Isotope Evidence for Mn(II)-Catalyzed Recrystallization of Manganite (γ-MnOOH).

    PubMed

    Frierdich, Andrew J; Spicuzza, Michael J; Scherer, Michelle M

    2016-06-21

    Manganese is biogeochemically cycled between aqueous Mn(II) and Mn(IV) oxides. Aqueous Mn(II) often coexists with Mn(IV) oxides, and redox reactions between the two (e.g., comproportionation) are well known to result in the formation of Mn(III) minerals. It is unknown, however, whether aqueous Mn(II) exchanges with structural Mn(III) in manganese oxides in the absence of any mineral transformation (similar to what has been reported for aqueous Fe(II) and some Fe(III) minerals). To probe whether atoms exchange between a Mn(III) oxide and water, we use a (17)O tracer to measure oxygen isotope exchange between structural oxygen in manganite (γ-MnOOH) and water. In the absence of aqueous Mn(II), about 18% of the oxygen atoms in manganite exchange with the aqueous phase, which is close to the estimated surface oxygen atoms (∼11%). In the presence of aqueous Mn(II), an additional 10% (for a total of 28%) of the oxygen atoms exchange with water, suggesting that some of the bulk manganite mineral (i.e., beyond surface) is exchanging with the fluid. Exchange of manganite oxygen with water occurs without any observable change in mineral phase and appears to be independent of the rapid Mn(II) sorption kinetics. These experiments suggest that Mn(II) catalyzes manganese oxide recrystallization and illustrate a new pathway by which these ubiquitous minerals interact with their surrounding fluid.

  7. Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the nascent solar system

    SciTech Connect

    Wiens, Roger C; Marty, Bernard; Zimmermann, Laurent; Burnard, Peter G; Burnett, Donald L; Heber, Veronika S; Wieler, Rainer; Bochsler, Peter

    2009-01-01

    Nitrogen, the fifth most abundant element in the universe, displays the largest stable isotope variations in the solar system reservoirs after hydrogen. Yet the value of isotopic composition of solar nitrogen, presumably the best proxy of the protosolar nebula composition, is not known. Nitrogen isotopes trapped in Genesis spacecraft target material indicate a 40 % depletion of {sup 15}N in solar wind N relative to inner planets and meteorites, and define a composition for the present-day Sun undistinguishable from that of Jupiter's atmosphere. These results indicate that the isotopic composition of of nitrogen in the outer convective zone of the Sun (OCZ) has not changed through time, and is representative of the protosolar nebula. Large {sup 15}N enrichments during e.g., irradiation, or contributions from {sup 15}N-rich presolar components, are required to account for planetary values.

  8. Comparison of Acetate Turnover in Methanogenic and Sulfate-Reducing Sediments by Radiolabeling and Stable Isotope Labeling and by Use of Specific Inhibitors: Evidence for Isotopic Exchange

    PubMed Central

    de Graaf, W.; Wellsbury, P.; Parkes, R. J.; Cappenberg, T. E.

    1996-01-01

    Acetate turnover in the methanogenic freshwater anoxic sediments of Lake Vechten, The Netherlands, and in anoxic sediments from the Tamar Estuary, United Kingdom, and the Grosser Jasmunder Bodden, Germany, the latter two dominated by sulfate reduction, was determined. Stable isotopes and radioisotopes, inhibitors (chloroform and fluoroacetate), and methane flux were used to provide independent estimates of acetate turnover. Pore water acetate pool sizes were determined by gas chromatography with a flame ionization detector, and stable isotope-labeled acetate was determined by gas chromatography-mass spectrometry. The appearance of acetates with a different isotope labeling pattern from that initially added demonstrated that isotopic exchange occurred during methanogenic acetate metabolism. The predominant exchange processes were (i) D-H exchange in the methyl group and (ii) (sup13)C-(sup12)C exchange at the carboxyl carbon. These exchanges are most probably caused by the activity of the enzyme complex carbon monoxide dehydrogenase and subsequent methyl group dehydrogenation by tetrahydromethanopterine or a related enzyme. The methyl carbon was not subject to exchange during transformation to methane, and hence acetate with the methyl carbon labeled will provide the most reliable estimate of acetate turnover to methane. Acetate turnover rate estimates with these labels were consistent with independent estimates of acetate turnover (acetate accumulation after inhibition and methane flux). Turnover rates from either radioisotope- or stable isotope-labeled methyl carbon isotopes are, however, dependent on accurate determination of the acetate pool size. The additions of large amounts of stable isotope-labeled acetate elevate the acetate pool size, stimulating acetate consumption and causing deviation from steady-state kinetics. This can, however, be overcome by the application of a non-steady-state model. Isotopic exchange in sediments dominated by sulfate reduction

  9. Evidence for a possible dietary effect on the isotopic composition of Zn in blood via isotopic analysis of food products by multi-collector ICP-mass spectrometry.

    PubMed

    Costas-Rodríguez, Marta; Van Heghe, Lana; Vanhaecke, Frank

    2014-01-01

    In this work, the hypothesis of a possible dietary effect on the isotopic composition of Zn in blood from populations with different feeding habits, i.e. lacto-ovo vegetarians and omnivores, was investigated through isotopic analysis of Zn in common food products by multi-collector ICP - mass spectrometry (MC-ICP-MS). Several certified reference materials (CRMs) were also included in the sample set for comparison purposes. For these CRMs, the isotopic composition of Zn is expressed as δ-values, calculated with respect to both IRMM-3702 and JMC-ZnLyon, as isotopic standards. The range of δ(66)Zn values observed in food products was approximately 1.9‰. In general, vegetables, cereals and derived products showed an enrichment of the heavier Zn isotopes, whereas a depletion was observed in products of animal origin (meat, fish, egg and semi-skimmed milk), relative to human blood samples. Mussel, however, showed a significant enrichment of the heavier isotopes, which is hypothetically attributed to its accumulation behaviour. Thus, the lower δ(66)Zn values found in food products of animal origin appear to be reflected in the lower δ(66)Zn value observed in blood from an omnivorous population compared to that for a vegetarian population.

  10. Oxygen isotope evidence of Little Ice Age aridity on the Caribbean slope of the Cordillera Central, Dominican Republic

    NASA Astrophysics Data System (ADS)

    Lane, Chad S.; Horn, Sally P.; Orvis, Kenneth H.; Thomason, John M.

    2011-05-01

    Climate change during the so-called Little Ice Age (LIA) of the 15th to 19th centuries was once thought to be limited to the high northern latitudes, but increasing evidence reflects significant climate change in the tropics. One of the hypothesized features of LIA climate in the low latitudes is a more southerly mean annual position of the Intertropical Convergence Zone (ITCZ), which produced more arid conditions through much of the northern tropics. High-resolution stable oxygen isotope data and other sedimentary evidence from Laguna de Felipe, located on the Caribbean slope of the Cordillera Central of the Dominican Republic, support the hypothesis that the mean annual position of the ITCZ was displaced significantly southward during much of the LIA. Placed within the context of regional paleoclimate and paleoceanographic records, and reconstructions of global LIA climate, this shift in mean annual ITCZ position appears to have been induced by lower solar insolation and internal dynamical responses of the global climate system. Our results from Hispaniola further emphasize the global nature of LIA climate change and the sensitivity of circum-Caribbean climate conditions to what are hypothesized to be relatively small variations in global energy budgets.

  11. Isotopic Evidence For The Primary Production, Provenance And Trade Of Late Bronze Age Glass In The Mediterranean.

    NASA Astrophysics Data System (ADS)

    Henderson, J.; Evans, J.; Nikita, K.

    The earliest known man made glass comes from Mesopotamia and dates to the 23rd century BC. By the 16th century BC the first glass vessels appear in Mesopotamia, but the earliest evidence for the fusion of glass from raw materials has been found at the 13th century BC Egyptian site of Qantir. Chemical analyses of this elite Late Bronze Age material have produced compositional distinctions between glasses found in Mesopotamia and Egypt. It is however debatable whether trace element concentrations provide a (geological) provenance for the glasses. By using neodymium and strontium isotopes to fingerprint well-dated chemically analysed 15th to 11th century BC glass samples, we show that independent primary production probably occurred in both Egypt and Mesopotamia in the 14th century BC, and that both of these areas exported glass to Greece. We also discuss the technological implications for glass manufacture and colouring that these new data provide. The results add significant new scientific evidence for glass trade between Late Bronze Age palatial societies. Moreover, it is the first time that this methodology has been used to investigate Bronze Age glass.

  12. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    NASA Astrophysics Data System (ADS)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    , besides the detailed geochemical analyses along downstream sections, we present new evidences of non-equilibrium calcite-water fractionation in lower temperature range (13.3 to 51.3 °C). Our measurements and calculations on natural hot water travertine precipitations at Pamukkale and Egerszalók revealed that the δ 18O travertine is equal with the δ 18O HCO3 at the orifice of the thermal springs, which means that practically there is no oxygen isotope fractionation between these two phases. High rate of CO 2 degassing with rapid precipitation of carbonate could be responsible for this as it was theoretically supposed by O'Neil et al. (1969). Thus, for the determination of the deposition temperature of a fossil travertine deposit we propose to use the water-bicarbonate oxygen isotope equilibrium fractionation instead of the water-travertine fractionation, which can result 8-9 °C difference in the calculated values. Our study is the first detailed empirical proof of O'Neil's hypothesis on a natural carbonate depositing system. The presented observations can be used to identify more precisely the deposition temperature of fossil travertines during paleoclimate studies.

  13. Evidence for a Carbonaceous Chondrite Parent Body With Near-TFL Oxygen Isotopes From Unique Metachondrite Northwest Africa 2788

    NASA Astrophysics Data System (ADS)

    Bunch, T. E.; Irving, A. J.; Rumble, D.; Korotev, R. L.

    2006-12-01

    Metachondrites: Metachondrites are newly recognized groups of stony meteorites that lack chondrules, but which have elemental and oxygen isotopic compositions and textures suggesting that they have been transformed by metamorphism or partial melting from precursor ordinary and carbonaceous chondrites on relatively large parent bodies [1]. The best known examples have affinities to CR (e.g., LEW 88763), CV (e.g., NWA 3133), H, L and LL chondrites; conversely there is evidence that winonaites and acapulcoites also are metachondrites derived from chondritic precursors (represented by rare chondrites such as NWA 1463 and Monument Draw). With increased sampling of new meteorites from both hot and cold desert regions, there is an emerging realization that the early solar system was populated with many relatively large differentiated planetary bodies complete with metallic cores, silicate mantles and chondritic regoliths of various types. The affinity of a particular metachondrite to a specific chondrite class relies mainly on oxygen isotopic analysis combined with distinctive elemental ratios in bulk rocks and constituent minerals (notably Fe/Mn and Ca/Na ratios, which are quite different for ordinary vs. various carbonaceous chondrite classes). Northwest Africa 2788: This specimen exhibits a metamorphic texture with triple grain junctions (grain size is mostly <0.5 mm, a few grains reach nearly 1 mm), and is composed of orthopyroxene (63 vol.%, Fs18.0Wo1.3, FeO/MnO = 30), olivine (27 vol.%, Fa21.4, FeO/MnO = 57-61), clinopyroxene (5 vol.%, Fs7.4Wo49.8, TiO2 = 0.74 wt.%, Cr2O3 = 0.63 wt.%, FeO/MnO = 19), plagioclase (5 vol.%, An53.9Or3), and accessory merrillite, troilite and metal. Replicate oxygen isotopic analyses of acid-washed bulk samples by laser fluorination gave δ18O = 6.004, 6.082; δ17O = 3.082, 3.102; Δ17O = -0.076, -0.097 per mil (for TFL slope of 0.526); these values plot close to but below the TFL. The elevated Fe/Mn ratios in the mafic silicates coupled

  14. Origin of low-Ca pyroxene in amoeboid olivine aggregates: Evidence from oxygen isotopic compositions

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Fagan, Timothy J.; Nagashima, Kazuhide; Petaev, Michael I.; Yurimoto, Hisayoshi

    2005-04-01

    Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Fa <2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk <15). ˜10% of AOAs contain low-Ca pyroxene (Fs 1-3Wo 1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: ( i) thin (<15 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; ( ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and ( iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ 17O < -20‰). Low-Ca pyroxenes of the textural occurrences ( i) and ( ii) are 16O-enriched (Δ 17O < -20‰), whereas those of ( iii) are 16O-depleted (Δ 17O = -6‰ to -4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ 17O ˜ -22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ 17O ˜ -11‰). We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and

  15. A Delayed Noeproterozoic Oceanic Oxygenation: Evidence from the Mo Isotope of the Cryogenian Datangpo Formation

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Li, C.; Algeo, T. J.; Zhou, L.; Liu, X. D.; Feng, L. J.

    2015-12-01

    The onset of the Neoproterozoic oxygenation event (NOE) is usually considered to be at 750-800Ma, which was supposed to have triggered the subsequent oxygenation of the earth's atmosphere-ocean system, thus removing the barrier for the emergence and rapid diversification of animals. However, the subsequent oceanic redox responses in the Cryogenian are poorly constrained. Here, we conducted an integrated Fe-S-C-Mo biogeochemical study on black shales of the Cryogenian Datangpo Formation (~660Ma, Nanhua Basin, South China). Iron speciation data indicate that these black shales were deposited under euxinic water conditions. Co-variation between Mo and TOC suggests an increasing isolation of the basin from open ocean during the deposition of the black shales. Correspondingly, the Datangpo black shales show higher δ98Mo values (+0.97‰ to +1.12‰) for the lower part (0-10m) and lower δ98Mo values (+0.44‰ to +0.53‰) for the upper part (10-20m) consistent with a global scale seawater δ98Mo recorded in the lower part but only a basin scale seawater δ98Mo recorded in the upper part. Accordingly, we estimate the seawater Mo isotope closed to +1.1‰ at ~660 Ma, which suggests substantial oceanic anoxia compared to modern oceans (+2.3‰). The seawater δ98Mo reconstructed by the Datangpo black shales is exactly the same to previously reported seawater δ98Mo at ~750 Ma and ~640 Ma, indicating a continuous oceanic anoxia throughout the Cryogenian although widespread oceanic oxygenation was suggested for the subsequent Ediacaran by multiple geochemical records. Thus, in light of previous studies, our findings indicate a delayed oceanic oxygenation relative to the onset of NOE, which may help to explain the first presence of metazoa in Cryogenian but rapid diversification occurred in Ediacaran.

  16. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    PubMed

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon. PMID:25673416

  17. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study.

    PubMed

    Kao, Yu-Hsuan; Wang, Sheng-Wei; Liu, Chen-Wuing; Wang, Pei-Ling; Wang, Chung-Ho; Maji, Sanjoy Kumar

    2011-10-15

    Arsenic (As) contamination of groundwater, accompanied by critical salinization, occurs in the southwestern coastal area of Taiwan. Statistical analyses and geochemical calculations indicate that a possible source of aqueous arsenic is the reductive dissolution of As-bearing iron oxyhydroxides. There are few reports of the influence of sulfate-sulfide redox cycling on arsenic mobility in brackish groundwater. We evaluated the contribution of sulfate reduction and sulfide re-oxidation on As enrichment using δ(34)S([SO(4)]) and δ(18)O([SO(4)]) sulfur isotopic analyses of groundwater. Fifty-three groundwater samples were divided into groups of high-As content and salinized (Type A), low-As and non-salinized (Type B), and high-As and non-salinized (Type C) groundwaters, based on hydro-geochemical analysis. The relatively high enrichment of (34)S([SO(4)]) and (18)O([SO(4)]) present in Type A, caused by microbial-mediated reduction of sulfate, and high (18)O enrichment factor (ε([SO(4)-H(2)O])), suggests that sulfur disproportionation is an important process during the reductive dissolution of As-containing iron oxyhydroxides. Limited co-precipitation of ion-sulfide increased the rate of As liberation under anaerobic conditions. In contrast to this, Type B and Type C groundwater samples showed high δ(18)O([SO(4)]) and low δ(34)S([SO(4)]) values under mildly reducing conditions. Base on (18)O mass balance calculations, the oxide sources of sulfate are from infiltrated atmospheric O(2), caused by additional recharge of dissolved oxygen and sulfide re-oxidation. The anthropogenic influence of extensive pumping also promotes atmospheric oxygen entry into aquifers, altering redox conditions, and increasing the rate of As release into groundwater.

  18. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    PubMed

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon.

  19. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    USGS Publications Warehouse

    Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.

    2004-01-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.

  20. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  1. Stable isotopic evidence for large-scale seawater infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France

    NASA Astrophysics Data System (ADS)

    Wickham, Stephen M.; Taylor, Hugh P.

    1985-10-01

    Oxygen isotopic analyses of 95 metamorphic and igneous rocks and minerals from a Hercynian metamorphic sequence in the Trois Seigneurs Massif, Pyrenees, France, indicate that all lithologies at higher metamorphic grades than the “andalusite in” isograd have relatively homogeneous δ 18O values. The extent of homogenization is shown by the similarity of δ 18O values in metacarbonates, metapelites and granitic rocks (+11 to +13), and by the narrow range of oxygen isotopic composition shown by quartz from these lithologies. These values contrast with the δ 18O values of metapelites of lower metamorphic grade ( δ 18O about +15). Homogenization was caused by a pervasive influx of hydrous fluid. Mass-balance calculations imply that the fluid influx was so large that its source was probably high-level groundwaters or connate formation water. Hydrogen isotopic analyses of muscovite from various lithologies are uniform and exceptionally heavy at δD=-25 to -30, suggesting a seawater origin. Many lines of petrological evidence from the area independently suggest that metamorphism and anatexis of pelitic metasediment occurred at depths of 6 12 km in the presence of this water-rich fluid, the composition of which was externally buffered. Deep penetration of surface waters in such environments has been hitherto unrecognized, and may be a key factor in promoting major anatexis of the continental crust at shallow depth. Three types of granitoid are exposed in the area. The leucogranites and the biotite granite-quartz diorite are both mainly derived from fusion of local Paleozoic pelitic metasediment, because all these rocks have similar whole-rock δ 18O values (+11 to +13). The post-metamorphic biotite granodiorite has a distinctly different δ 18O (+9.5 to +10.0) and was probably derived from a deeper level in the crust. Rare mafic xenoliths within the deeper parts of the biotite granite-quartz diorite also have different δ 18O (+8.0 to +8.5) and possibly represent

  2. Isotopic evidence for lateral flow and diffusive transport, but not sublimation, in a sloped seasonal snowpack, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Evans, Samantha L.; Flores, Alejandro N.; Heilig, Achim; Kohn, Matthew J.; Marshall, Hans-Peter; McNamara, James P.

    2016-04-01

    Oxygen and hydrogen isotopes in snow were measured in weekly profiles during the growth and decline of a sloped subalpine snowpack, southern Idaho, 2011-2012. Isotopic steps (10‰, δ18O; 80‰, δD) were preserved relative to physical markers throughout the season, albeit with some diffusive smoothing. Melting stripped off upper layers without shifting isotopes within the snowpack. Meltwater is in isotopic equilibrium with snow at the top but not with snow at each respective collection height. Transport of meltwater occurred primarily along pipes and lateral flow paths allowing the snowpack to melt initially in reverse stratigraphic order. Isotope diffusivities are ~2 orders of magnitude faster than estimated from experiments but can be explained by higher temperature and porosity. A better understanding of how snowmelt isotopes change during meltout improves hydrograph separation methods, whereas constraints on isotope diffusivities under warm conditions improve models of ice core records in low-latitude settings.

  3. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record.

    PubMed

    Ravizza, G; Peucker-Ehrenbrink, B

    2003-11-21

    Continental flood basalt (CFB) volcanism is hypothesized to have played a causative role in global climate change and mass extinctions. Uncertainties associated with radiometric dating preclude a clear chronological assessment of the environmental consequences of CFB volcanism. Our results document a 25% decline in the marine 187Os/188Os record that predates the Cretaceous-Tertiary boundary (KTB) and coincides with late Maastrichtian warming. We argue that this decline provides a chemostratigraphic marker of Deccan volcanism and thus constitutes compelling evidence that the main environmental consequence of Deccan volcanism was a transient global warming event of 3 degrees to 5 degrees C that is fully resolved from the KTB mass extinction.

  4. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc

    NASA Astrophysics Data System (ADS)

    Freymuth, Heye; Ivko, Ben; Gill, James B.; Tamura, Yoshihiko; Elliott, Tim

    2016-08-01

    We address the question of whether melting of the mafic oceanic crust occurs beneath ordinary volcanic arcs using constraints from U-Series (238U/232Th, 230Th/232Th and 226Ra/230Th) measurements. Alteration of the top few hundred meters of the mafic crust leads to strong U enrichment. Via decay of 238U to 230Th, this results in elevated (230Th/232Th) (where brackets indicate activity ratios) over time-scales of ∼350 ka. This process leads to the high (230Th/232Th), between 2.6 and 11.0 in the mafic altered oceanic crust (AOC) sampled at ODP Sites 801 and 1149 near the Izu-Bonin-Mariana arc. Th activity ratios in the Izu arc lavas range from (230Th/232Th) = 1.2-2.0. These values are substantially higher than those in bulk sediment subducting at the Izu trench and also extend to higher values than in mid-ocean ridge basalts and the Mariana arc. We show that the range in Th isotope ratios in the Izu arc lavas is consistent with the presence of a slab melt from a mixed source consisting of AOC and subducted sediments with an AOC mass fraction of up to approximately 80 wt.% in the component added to the arc lava source. The oceanic plate subducting at the Izu arc is comparatively cold which therefore indicates that temperatures high enough for fluid-saturated melting of the AOC are commonly achieved beneath volcanic arcs. The high ratio of AOC/sediments of the slab melt component suggested for the Izu arc lavas requires preferential melting of the AOC. This can be achieved when fluid-saturated melting of the slab is triggered by fluids derived from underlying subducted serpentinites. Dehydration of serpentinites and migration of the fluid into the overlying crust causes melting to start within the AOC. The absence of a significant sediment melt component suggests there was insufficient water to flux both AOC and overlying sediments.

  5. Diets and environments of late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfu; Wang, Yang; Li, Qiang; Wang, Xiaoming; Deng, Tao; Tseng, Zhijie J.; Takeuchi, Gary T.; Xie, Gangpu; Xu, Yingfeng

    2012-06-01

    The timing history and driving mechanisms of C4 expansion and Tibetan uplift are hotly debated issues. Paleoenvironmental evidence from within the Tibetan Plateau is essential to help resolve these issues. Here we report results of stable C and O isotope analyses of tooth enamel samples from a variety of late Cenozoic mammals, including deer, giraffe, horse, rhino, and elephant, from the Qaidam Basin in the northeastern Tibetan Plateau. The enamel-δ13C values are <-8‰ for modern samples and ≤-7‰ for fossils, except for one late Miocene rhino (CD0722, with δ13C values up to -4.1‰). If the Qaidam Basin was as arid as today in the Mio-Pliocene, these data would indicate that the majority of the animals had C3 diets and only a few individuals (besides the exceptional rhino CD0722) may have consumed some C4 plants. Based on geological evidence, however, the Qaidam Basin was probably warmer and more humid during the late Miocene and early Pliocene than today. Thus, these δ13C values likely indicate that many individuals had significant dietary intakes of C4 plants, and the Qaidam Basin had more C4 plants in the late Miocene and early Pliocene than today. Moreover, the Qaidam Basin likely had much denser vegetation at those times in order to support such large mammals as rhinos and elephants. While the δ18O values did not increase monotonously with time, the range of variation seems to have increased considerably since the early Pliocene, indicating increased aridification in the basin. The mean δ18O values of large mammals and those reconstructed for local meteoric waters display a significant negative shift in the late Miocene, consistent with the marine δ18O record which shows a cooling trend in the same period. Taken together, the isotope data suggest a warmer, wetter, and perhaps lower Qaidam Basin during the late Miocene and early Pliocene. Increased aridification after the early Pliocene is likely due to a combined effect of regional tectonism, which

  6. Zircon from East Antarctica: evidence for Archean intracrustal recycling in the Kaapvaal-Grunehogna Craton from O and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Marschall, H. R.; Hawkesworth, C. J.; Storey, C.; Leat, P. T.; Dhuime, B.

    2010-12-01

    The Grunehogna Craton (GC, East Antarctica) is interpreted as part of the Archean Kaapvaal Craton of southern Africa prior to Gondwana breakup. The basement of the GC is only exposed within a small area comprising the dominantly leucocratic Annandagstoppane (ADT) granite. The granite (and hence the craton) has been dated previously only by Rb-Sr and Pb-Pb mica and whole-rock methods. Here, the crystallisation age of the granite was determined to 3,067 ± 8 Ma by U-Pb dating of zircon. This age is coeval with granitoids and volcanics in the Swaziland and Witwatersrand blocks of the Kaapvaal Craton. Inherited grains in the ADT granite were discovered with ages of up to 3,433 ±7 Ma, and are the first evidence of Palaeoarchean basement in Dronning-Maud Land. The age spectrum of the inherited grains reflects well-known tectono-magmatic events in the Kaapvaal Craton and form important pieces of evidence for the connection of the GC to the Kaapvaal Craton for at least three billion years and probably longer. Whole-rock chemistry and zircon O isotopes demonstrate a supracrustal sedimentary source for the granite, and Hf model ages show that at least two or three different crustal sources were contributing to the magma with model ages of ~3.50, ~3.75 and possibly ~3.90 Ga, respectively. 3.1 Ga granites covering ~60 % of the outcrop area of the Kaapvaal-Grunehogna Craton played a major role in the mechanical stabilisation of the continental crust during the establishment of the craton in the Mesoarchean. Combined zircon Hf-O isotope data and the lack of juvenile additions to the crust in the Mesoarchean strongly suggest that crustal melting and granite formation was caused by the deep burial of clastic sediments and subsequent incubational heating of the crust. Intracrustal recycling of this type may be an important process during cratonisation and the long-term stabilisation of continental crust.

  7. Age and origin of anorthosites, charnockites, and granulites in the Central Virginia Blue Ridge: Nd and Sr isotopic evidence

    USGS Publications Warehouse

    Pettingill, H.S.; Sinha, A.K.; Tatsumoto, M.

    1984-01-01

    Rb-Sr isotopic data for anorthosites, charnockites, ferrodioritic to quartz monzonitic plutons, and high-grade gneisses of the Blue Ridge of central Virginia show evidence of post-emplacement metamorphism, but in some cases retain Grenville ages. The Pedlar River Charnockite Suite yields an isochron age of 1021 +/-36 Ma, (initial 87Sr/86Sr ratio of 0.7047 +/-6), which agrees with published U-Pb zircon ages. Five samples of that unit which contain Paleozoic mylonitic fabrics define a regression line of 683 Ma, interpreted as a mixing line with no age significance. Samples of the Roseland Anorthosite Complex show excessive scatter on a Rb-Sr evolution diagram probably due to Paleozoic (475 m.y.) metamorphism. Data from the ferrodioritic to quartz monzonitic plutons of the area yield an age of 1009 +/-26 Ma (inital ratio=0.7058 +/-4), which is in the range of the U-Pb zircon ages of 1000-1100 Ma. The Stage Road Layered Gneiss yields an age of 1147 +/-34 Ma (initial ratio of 0.7047 +/- 5). Sm-Nd data for the Pedlar River Charnockite Suite reflect a pre-Grenville age of 1489 +/-118 Ma (e{open}Nd=+6.7 +/-1.2). Data for the Roseland Anorthosite Complex and the ferrodioritic to quartz monzonitic plutons yield Grenville isochron ages of 1045 +/44 Ma (e{open}Nd=+1.0 +/-0.3) and 1027 +/-101 Ma (e{open}Nd=+1.4 +/-1.0), respectively. Two Roseland Anorthosite samples plot far above the isochron, demonstrating the effects of post-emplacement disturbance of Sm-Nd systematics, while mylonitized Pedlar River Charnockite Suite samples show no evidence of Sm-Nd redistribution. The disparity of the Sm-Nd age and other isotopic ages for the Pedlar River Charnockite Suite probably reflects a Sm-Nd "source" age, suggesting the presence of an older crust within this portion of the ca. 1 Ga old basement. ?? 1984 Springer-Verlag.

  8. Sources of continental crust: neodymium isotope evidence from the sierra nevada and peninsular ranges.

    PubMed

    Depaolo, D J

    1980-08-01

    Granitic rocks from batholiths of the Sierra Nevada and Peninsular Ranges exhibit initial (143)Nd/(144)Nd ratios that vary over a large range and correlate with (87)Sr/(86)Sr ratios. The data suggest that the batholiths represent mixtures of materials derived from (i) chemically depleted mantle identical to the source of island arcs and (ii) old continental crust, probably sediments or metasediments with a provenance age of approximately 1.6 x 10(9) years. These conclusions are consistent with a model for continental growth whereby new crustal additions are repeatedly extracted from the same limited volume of the upper mantle, which has consequently become depleted in elements that are enriched in the crust. There is little evidence that hydrothermally altered, subducted oceanic crust is a primary source of the magmas. PMID:17821189

  9. Sources of continental crust: neodymium isotope evidence from the Sierra Nevada and Peninsular ranges

    SciTech Connect

    DePaolo, D.J.

    1980-08-08

    Granitic rocks from batholiths of the Sierra Nevada and Peninsular Ranges exhibit initial /sup 143/Nd//sup 144/Nd ratios that vary over a large range and correlate with /sup 87/Sr//sup 86/Sr ratios. The data suggest that the batholiths represent mixtures of materials derived from (i) chemically depleted mantle identical to the source of island arcs and (ii) old continental crust, probably sediments or metasediments with a provenance age of approx. 1.6 x 10/sup 9/ years. These conclusions are consistent with a model for continental growth whereby new crustal additions are repeatedly extracted from the same limited volume of the upper mantle, which has consequently become depleted in elements that are enriched in the crust. There is little evidence that hydrothermally altered, subducted oceanic crust is a primary source of the magmas.

  10. Spectroscopic evidence for a nonrigid—rigid transition in isotopically labelled (benzene) 13

    NASA Astrophysics Data System (ADS)

    Easter, David C.; Baronavski, A. P.; Hawley, Michael

    1993-04-01

    In a recent report by Easter, Khoury and Whetten, analysis of the ultraviolet (B 2u←A 1g(6 01)) REMPI spectroscopy of cold (C 6H 6) (C 6D 6) n-1 clusters, n = 12-20, yielded striking conclusions: observed C 6H 6 resonances derived almost exclusively from molecules in the cluster's interior site; and the 13-cluster is found to have only one dominant isomeric form, giving rise to a single prominent spectral feature. Here we report the evolution of the benzene- h6 transition in (C 6H 6) (C 6D 6) 12 as a function of distance (time) from the nozzle in the supersonic jet expansion, and present the first experimental evidence for a nonrigid—rigid transition in a single-size molecular cluster. Initially (benzene) 13 condenses in a nonrigid state and solidification into a well-defined configuration occurs during subsequent free jet expansion.

  11. Nitrates on Mars: Evidence from the 15/14N isotopic ratio

    NASA Astrophysics Data System (ADS)

    Manning, C. V.; McKay, C. P.; Zahnle, K. J.

    2007-12-01

    I. The 14/15N isotopic ratio of nitrogen in the bulk atmosphere of Mars is 170 +/- 15, while primitive nitrogen in SNCs is about 278, a fractionation factor of 1.62. Fractionating effects imply the 14/15N ratio of loss to space is between about 265 and 296 [1,2], consistent with primitive N. Estimates of N escape, 3--8E5 cm-2 s-1, imply the current time-scale for its removal is between 500 and 1300 Myr. These findings imply a source of primitive nitrogen, and a steady state fractionation, as suggested by Wallis [1]. However, our modeling of juvenile outgassing predicts an outgassing rate an order of magnitude lower than modeled escape. Here, we suggest that nitrate decomposition by impacts is the source. II. Judging from estimates of the water inventory [3], and comparison to Earth, Mars probably had between 250 and 600 mbars of N2 [1]. With the approximate 20:1 C:N ratio, this suggests between about 5 and 10 bars of CO2. During the period of intense bombardment, atmospheric nitrogen is subjected to shock heating which allows equilibrium reactions between the dissociated atoms [4,5]. Simulation of impact processes under the evolving impact flux [6] suggests that about a quarter of the initial, atmospheric nitrogen is fixed, forming nitrates in the soil -- about 60-150 mbars. III. During Mars' history, fractionating loss of N to space increases the bulk atmospheric fractionation. However, in analogy to carbonates [7], nitrates may be decomposed by the shock/heating of impacts, a process that moderates 14/15N. Nitrates are decomposed to a radius about twice that of the impactor, providing a slow recycling of N. IV. However, the distribution of nitrates in the soil affects the quantity needed to explain the current 62% fractionation. This is because the distribution of impactors is heavily weighted towards the low-mass end [8]. A concentrated surface deposit minimizes the amount of nitrates needed, while deep nitrates are out of reach of the numerous, small impactors

  12. Stable isotopic (O, H) evidence for hydration of the central Colorado Plateau lithospheric mantle by slab-derived fluids

    NASA Astrophysics Data System (ADS)

    Marshall, E. W.; Barnes, J.; Lassiter, J. C.

    2013-12-01

    The Colorado Plateau is a tectonically stable, relatively undeformed Proterozoic lithospheric province in the North America Cordillera. Although the stability of the Colorado Plateau suggests that it is rheologically strong, evidence from xenoliths show that the lithospheric mantle is extensively hydrated (e.g., presence of hydrous minerals, 'high' water contents in nominally anhydrous minerals), and therefore weakened. In addition, LREE enrichments in clinopyroxene (cpx) imply that the lithospheric mantle has been metasomatized ([1],[2]). Here we analyze mineral separates from spinel and garnet peridotite xenoliths from the Navajo Volcanic Field (NVF), located in the center of the Plateau, for their oxygen and hydrogen isotope compositions. These compositions are compared to those of xenoliths at the margins of the Plateau: spinel peridotites from the Grand Canyon Volcanic Field (GCVF) in the west and Zuni-Bandera Volcanic Field (ZBVF) in the east. NVF xenoliths are significantly more hydrous than the xenoliths on the margins of the Colorado Plateau based on modal abundances of hydrous minerals and structural water in olivine (e.g. [3]). All hydrous phases have high δD values (antigorite = -71 to -46‰ (n = 6 xenoliths); chlorite = -49 to -31‰ (n=3); amphibole = -47‰ (n=1)) compared to normal mantle (~-80‰), suggesting the addition of a fluid that is enriched in D compared to typical mantle. δ18O values for the same hydrous minerals range from 6.0 to 6.6‰ (n=6). δ18O values of olivine from NVF spinel peridotites have a narrow range, 5.0 to 5.4‰ (n = 4), near mantle olivine values (~5.2‰). Olivines from spinel peridotites from the GCVF and ZBVF also have mantle-like δ18O values (5.1 to 5.2‰ (n=3) and 5.1 to 5.4‰ (n=7), respectively). However, olivines and orthopyroxenes (opx) from NVF garnet peridotites have a slightly larger range and some record 18O enrichment (olivine = 5.1 to 5.6‰ (n = 3); opx = 5.9‰ (n=1)). The high δ18O values of

  13. Hydrogen isotope evidence for loss of water from Mars through time

    NASA Astrophysics Data System (ADS)

    Greenwood, James P.; Itoh, Shoichi; Sakamoto, Naoya; Vicenzi, Edward P.; Yurimoto, Hisayoshi

    2008-03-01

    The high D/H of the Martian atmosphere (~5-6 × terrestrial) is considered strong evidence for the loss of Martian water to space. The timing and magnitude of the loss of water from Mars can be constrained by measurements of D/H in Martian meteorites. Previous studies of Martian meteorites have shown a large range in D/H, from terrestrial values to as high as the current Martian atmosphere. Here we show that the ancient (~4 Ga) Mars meteorite ALH84001 has a D/H 4 × terrestrial and that the young (~0.17 Ga) Shergotty meteorite has a D/H 5.6 × terrestrial. We also find that the young Los Angeles shergottite has zoning in D/H that can be correlated to igneous growth zoning, strongly suggesting assimilation of D-enriched water during igneous crystallization near the Martian surface. In contrast to previous studies, we find higher and less variable D/H ratios in these three meteorites. Our results suggest a two-stage evolution for Martian water-a significant early loss of water to space (prior to 3.9 Ga) followed by only modest loss to space in the last 4 billion years. The current Martian atmospheric D/H has remained essentially unchanged for the last 165 Ma.

  14. The two Suvasvesi impact structures, Finland: Argon isotopic evidence for a "false" impact crater doublet

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Schwarz, Winfried H.; Trieloff, Mario; Buchner, Elmar; Hopp, Jens; Tohver, Eric; Pesonen, Lauri J.; Lehtinen, Martti; Moilanen, Jarmo; Werner, Stephanie C.; Öhman, Teemu

    2016-05-01

    The two neighboring Suvasvesi North and South impact structures in central-east Finland have been discussed as a possible impact crater doublet produced by the impact of a binary asteroid. This study presents 40Ar/39Ar geochronologic data for impact melt rocks recovered from the drilling into the center of the Suvasvesi North impact structure and melt rock from glacially transported boulders linked to Suvasvesi South. 40Ar/39Ar step-heating analysis yielded two essentially flat age spectra indicating a Late Cretaceous age of ~85 Ma for the Suvasvesi North melt rock, whereas the Suvasvesi South melt sample gave a Neoproterozoic minimum (alteration) age of ~710 Ma. Although the statistical likelihood for two independent meteorite strikes in close proximity to each other is rather low, the remarkable difference in 40Ar/39Ar ages of >600 Myr for the two Suvasvesi impact melt samples is interpreted as evidence for two temporally separate, but geographically closely spaced, impacts into the Fennoscandian Shield. The Suvasvesi North and South impact structures are, thus, interpreted as a "false" crater doublet, similar to the larger East and West Clearwater Lake impact structures in Québec, Canada, recently shown to be unrelated. Our findings have implications for the reliable recognition of impact crater doublets and the apparent rate of binary asteroid impacts on Earth and other planetary bodies in the inner solar system.

  15. Cr stable isotopes in Snake River Plain aquifer groundwater: evidence for natural reduction of dissolved Cr(VI).

    PubMed

    Raddatz, Amanda L; Johnson, Thomas M; McLing, Travis L

    2011-01-15

    At Idaho National Laboratory, Cr(VI) concentrations in a groundwater plume once exceeded regulatory limits in some monitoring wells but have generally decreased over time. This study used Cr stable isotope measurements to determine if part of this decrease resulted from removal of Cr(VI) via reduction to insoluble Cr(III). Although waters in the study area contain dissolved oxygen, the basalt host rock contains abundant Fe(II) and may contain reducing microenvironments or aerobic microbes that reduce Cr(VI). In some contaminated locations, (53)Cr/(52)Cr ratios are close to that of the contaminant source, indicating a lack of Cr(VI) reduction. In other locations, ratios are elevated. Part of this shift may be caused by mixing with natural background Cr(VI), which is present at low concentrations but in some locations has elevated (53)Cr/(52)Cr. Some contaminated wells have (53)Cr/(52)Cr ratios greater than the maximum attainable by mixing between the inferred contaminant and the range of natural background observed in several uncontaminated wells, suggesting that Cr(VI) reduction has occurred. Definitive proof of reduction would require additional evidence. Depth profiles of (53)Cr/(52)Cr suggest that reduction occurs immediately below the water table, where basalts are likely least weathered and most reactive, and is weak or nonexistent at greater depth.

  16. Protracted diagenetic alteration of REE contents in fossil bioapatites: Direct evidence from Lu-Hf isotope systematics

    NASA Astrophysics Data System (ADS)

    Kocsis, László; Trueman, Clive N.; Palmer, Martin R.

    2010-11-01

    Fossil bones and teeth are potentially important repository for geochemical proxy data and a target for radiometric dating. The concentration of many trace elements in bones and teeth increases by orders of magnitude after death and it is this diagenetic incorporation that forms the basis for several areas of geochemical study. The use of bones and teeth in this context relies on two assumptions: first, that target metal ions are incorporated rapidly after death, reflecting a known environmental signal, and second, that after early incorporation, the bone or tooth remains as an essentially closed system, resistant to later diagenetic change. A wide literature has developed exploring these assumptions, but relatively little direct evidence has been used to assess the long-term diagenetic stability of trace elements within bones and teeth. In this study, we use the Lu-Hf isotope system to show that bones and teeth of Cretaceous and Triassic age from both terrestrial and marine settings experience continued, long-term diagenetic change, most likely through gradual addition of trace elements. Modelling suggests that diagenetic addition after initial recrystallisation may account for >50% of the total REE content in the sampled bones, the extent depending on initial uptake conditions. Tooth enamel and enameloid may be more resistant to late diagenetic changes, but dentine is probably altered to the same extent as bone. These results have significant implications for the use of bones and teeth as hosts of chronological, palaeoceanographic, palaeoenvironmental and taphonomic information, particularly in Mesozoic and Palaeozoic contexts.

  17. Stable Isotope Evidence for Late Medieval (14th–15th C) Origins of the Eastern Baltic Cod (Gadus morhua) Fishery

    PubMed Central

    Orton, David C.; Makowiecki, Daniel; de Roo, Tessa; Johnstone, Cluny; Harland, Jennifer; Jonsson, Leif; Heinrich, Dirk; Enghoff, Inge Bødker; Lõugas, Lembi; Van Neer, Wim; Ervynck, Anton; Hufthammer, Anne Karin; Amundsen, Colin; Jones, Andrew K. G.; Locker, Alison; Hamilton-Dyer, Sheila; Pope, Peter; MacKenzie, Brian R.; Richards, Michael; O'Connell, Tamsin C.; Barrett, James H.

    2011-01-01

    Although recent historical ecology studies have extended quantitative knowledge of eastern Baltic cod (Gadus morhua) exploitation back as far as the 16th century, the historical origin of the modern fishery remains obscure. Widespread archaeological evidence for cod consumption around the eastern Baltic littoral emerges around the 13th century, three centuries before systematic documentation, but it is not clear whether this represents (1) development of a substantial eastern Baltic cod fishery, or (2) large-scale importation of preserved cod from elsewhere. To distinguish between these hypotheses we use stable carbon and nitrogen isotope analysis to determine likely catch regions of 74 cod vertebrae and cleithra from 19 Baltic archaeological sites dated from the 8th to the 16th centuries. δ13C and δ15N signatures for six possible catch regions were established using a larger sample of archaeological cod cranial bones (n = 249). The data strongly support the second hypothesis, revealing widespread importation of cod during the 13th to 14th centuries, most of it probably from Arctic Norway. By the 15th century, however, eastern Baltic cod dominate within our sample, indicating the development of a substantial late medieval fishery. Potential human impact on cod stocks in the eastern Baltic must thus be taken into account for at least the last 600 years. PMID:22110675

  18. Mineralogical and sulfur isotopic evidence for the incursion of evaporites in the Jinshandian skarn Fe deposit, Edong district, Eastern China

    NASA Astrophysics Data System (ADS)

    Zhu, Qiaoqiao; Xie, Guiqing; Mao, Jingwen; Li, Wei; Li, Yanhe; Wang, Jian; Zhang, Ping

    2015-12-01

    Evaporites have played important role in the formation of diverse metallic ore deposits, especially in the case of magmatic-hydrothermal deposits. However, the relationship between evaporites and skarn Fe deposit remains poorly constrained. In this contribution, we present new sulfur isotope data of pyrite, as well as the composition of halogen-rich minerals (scapolite and amphibole) in the Jinshandian skarn Fe deposit. The data are used to evaluate the evidence for incursion of evaporites in the skarn Fe deposit. The δ34S values for pyrite from the early and late retrograde stage range from +17.4‰ to +18.7‰ (n = 4) and +16.4‰ to +19.4‰ (n = 13), respectively. Both these values are markedly heavier than the common δ34S values of sulfides from magmatic-hydrothermal fluid, indicating that sulfur in the Jinshandian ore-forming system was mostly derived from evaporites. Compared to the amphibole from endoskarn, the scapolite and amphibole from exoskarn show high Cl content up to 4.04% and 3.01%, respectively, suggesting that the hydrothermal fluid with high NaCl content was probably derived from evaporites. The amphiboles from endoskarn are more enriched in F which is probably of magmatic in origin. The data presented in our study suggest that the hydrothermal system of the Jinshandian skarn Fe deposit probably experienced significant incursion of evaporites before or during the late prograde stage.

  19. Cr Stable Isotopes in Snake River Plain Aquifer Groundwater: Evidence for Natural Reduction of Dissolved Cr(VI)

    SciTech Connect

    Amanda L. Raddatz; Thomas M. Johnson; Travis L. McLing

    2011-01-01

    At Idaho National Laboratory, Cr(VI) concentrations in a groundwater plume once exceeded regulatory limits in some monitoring wells but have generally decreased over time. This study used Cr stable isotope measurements to determine if part of this decrease resulted from removal of Cr(VI) via reduction to insoluble Cr(III). Although waters in the study area contain dissolved oxygen, the basalt host rock contains abundant Fe(II) and may contain reducing microenvironments or aerobic microbes that reduce Cr(VI). Insomecontaminated locations, 53Cr/52Cr ratios are close to that of the contaminant source, indicating a lack of Cr(VI) reduction. In other locations, ratios are elevated. Part of this shift may be caused by mixing with natural background Cr(VI), which is present at low concentrations but insomelocations has elevated 53Cr/52Cr.Somecontaminated wells have 53Cr/52Cr ratios greater than the maximum attainable by mixing between the inferred contaminant and the range of natural background observed in several uncontaminated wells, suggesting that Cr(VI) reduction has occurred. Definitive proof of reduction would require additional evidence. Depth profiles of 53Cr/52Cr suggest that reduction occurs immediately below the water table, where basalts are likely least weathered and most reactive, and is weak or nonexistent at greater depth.

  20. New evidence for two highstands of the sea during the last interglacial, oxygen isotope substage 5e

    NASA Astrophysics Data System (ADS)

    Sherman, C. E.; Glenn, C. R.; Jones, A. T.; Burnett, W. C.; Schwarcz, H. P.

    1993-12-01

    Sedimentologic, stratigraphic, and geochronologic analyses of a previously undescribed carbonate section on Oahu, Hawaii, provide new evidence for two distinct sea-level highstands on Oahu during the last interglacial period (oxygen isotope substage 5e). Whereas electron-spin-resonance and uranium-series ages (122 ±8 ka to 152 ±25 ka, and 115 ±10 ka to 160 ±15 ka, respectively) of in situ corals place the age of the deposits within substage 5e, it is the unique sequence of strata found in these exposures that reveals the two transgressions. A highstand lagoonal deposit of coral-algal bafflestone is overlain by large seaward-dipping slabs of beach-rock. The beachrock, deposited during a mid-5e regression, is in turn overlain by a second highstand lagoonal deposit. This sequence was deposited in a broad, shallow, back-reef embayment that was very sensitive to fluctuations in sea level. Elsewhere, along much of the shoreline of Oahu, an in situ coral-algal framestone (Waimanalo Formation), representing the initial 5e highstand, is erosionally truncated on its upper surface. This erosional unconformity represents the mid-5e lowstand and separates the framestone from overlying, seaward-dipping, planar-bedded grainstone and rudstone (Leahi Formation) that accumulated during the second 5e highstand.

  1. HETEROGENEOUS ISOTOPIC ANOMALIES OF SM AND GD IN THE NORTON COUNTY METEORITE: EVIDENCE FOR IRRADIATION FROM THE ACTIVE EARLY SUN

    SciTech Connect

    Hidaka, Hiroshi; Kondo, Tomoyo; Yoneda, Shigekazu

    2012-02-20

    Large and heterogeneous isotopic variations of {sup 150}Sm/{sup 149}Sm and {sup 158}Gd/{sup 157}Gd due to neutron capture reactions caused by cosmic-ray irradiation were found in chemical and mineral separates from the Norton County meteorite. The light-colored separates, consisting mainly of enstatite (Mg{sub 2}Si{sub 2}O{sub 6}), have a very large neutron fluence of 1.98 Multiplication-Sign 10{sup 17} n cm{sup -2}, which is 10 times higher than that of the whole rock. Furthermore, four chemical separates showed a large variation in neutron fluences, ranging from 1.82 Multiplication-Sign 10{sup 16} to 1.87 Multiplication-Sign 10{sup 17} n cm{sup -2}. The variable amounts of neutron fluences from a small single fragment of the Norton County meteorite cannot be simply explained by single-stage cosmic-ray irradiation in space. Rare earth element (REE) analyses revealed that the fractions with high neutron fluences have similar chemical properties to those in the early condensates in the solar system, showing depletions of Eu and Yb in their REE abundance patterns. The data provide evidence for an activity of the early Sun (T Tauri), suggesting the migration of early and intense irradiation materials into the Norton County meteorite's parent body.

  2. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.

    PubMed Central

    Bidartondo, Martin I.; Burghardt, Bastian; Gebauer, Gerhard; Bruns, Thomas D.; Read, David J.

    2004-01-01

    In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages. PMID:15315895

  3. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs

    SciTech Connect

    Klein, L.; Player, J.S.; Heiple, K.G.; Bahniuk, E.; Goldberg, V.M.

    1982-02-01

    Various experimental methods for producing bone and ligament atrophy have yielded contradictory results. These methods include denervation, immobilization (both internal and external), and disarticulation. We studied a model of internal skeletal fixation for twelve weeks in dogs that were chronically prelabeled with 3H-tetracycline, 45Ca, and 3H-proline. Bone resorption was analyzed by the loss of 3H-tetracycline, and bone and soft-tissue mass were analyzed by the radiochemical and chemical analysis of calcium and collagen. The strength of the anterior cruciate ligament was studied in tension to failure when a fast rate of deformation was applied. Failure of the femur-ligament-tibia complex occurred through the insertion of the ligament into the tibia for both the experimental and the control limbs. Loss of collagen was greater in the tibia and femur than in the lateral meniscus and anterior cruciate ligament, and correlated with a mechanical failure via bone. No evidence for collagen replacement in atrophied tissues was found, but one-half of the resorbed calcium was conserved. The marked loss of 3H-tetracycline indicated that bone atrophy was the result of increased resorption of bone rather than decreased bone formation. Clinical Relevance: We have demonstrated significant atrophy of the soft tissues (lateral meniscus and anterior cruciate ligament) as well as of bone in immobilized joints of dogs. It is likely that the decrease in strength of the bone-ligament-bone complex is related to this atrophy of soft tissues and bone around the joint.

  4. Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments

    NASA Astrophysics Data System (ADS)

    Santschi, Peter H.; Guo, Laodong; Baskaran, M.; Trumbore, Susan; Southon, John; Bianchi, Thomas S.; Honeyman, Bruce; Cifuentes, Luis

    1995-02-01

    Previous work has suggested that apparent old 14C ages for oceanic DOC are the result of mixing of different organic carbon fractions. This report provides direct evidence for a contemporary 14C age of a high-molecular-weight (HMW) fraction of colloidal organic carbon (≥10 kD). Colloidal organic matter, COM 10 (from 10 kDaltons (kD) to 0.2 μm), isolated from the upper water column of the Gulf of Mexico and the Middle Atlantic Bight (MAB) region, generally has a contemporary age (i.e., younger than a few decades), while COM 1 (from 1 kD to 0.2 μm), is apparently old: 380-4500 y BP. Thus, BMW COM 10 (3-5% of DOC) from the upper water column is derived from living particulate organic matter (POM) and cycles rapidly, while a significant fraction of low-molecular-weight (≤1 kD) DOM is likely more refractory, and cycles on much longer time scales. The presence of pigment biomarker compounds in COM 1 from the upper water column points to selected phytoplankton species as one of the sources of COM. Terrestrial carbon as another source of COM is suggested from the inverse correlation between Δ 14C and δ 13C values, as well as the increasing δ 13C values with increasing salinity. 234Th-derived turnover times of COM 10 and COM 1 from both the Gulf of Mexico and MAB are consistently short, 1-20 and 3-30 days, respectively. These short residence times support the hypothesis that 14C ages of colloidal fractions of DOC are the result of COM fractions being a mixture of several endmembers with fast and slow turnover rates.

  5. Nd isotopic composition of Jurassic Tethys seawater and the genesis of Alpine Mn-deposits: Evidence from Sr-Nd isotope data

    SciTech Connect

    Stille, P.; Clauer, N. ); Abrecht, J. )

    1989-05-01

    Jurassic metabasalts, metasediments and Mn ores from the Pennine realm of the Alps were examined in order to establish the Nd isotopic composition of the Jurassic Tethys seawater and to elucidate the genesis of the Mn deposits. The highly positive initial {epsilon}{sub Nd} values (+7 to +9.8) of the metabasalts and their low {sup 87}Sr/{sup 86}Sr ratios (0.7028 to 0.7049) indicate that they originated from a depleted mantle. The initial {epsilon}{sub Nd} values of the cherts range between {minus}5 and {minus}9. The Sm-Nd isotope data indicate that they are primary mixtures of basalt and continental detritus. The smaller than 2 {mu}m fractions of the cherts and of a marble, which probably represent the formerly authigenic material, show initial {epsilon}{sub Nd} values ranging between {minus}5.9 and {minus}6.6. The average initial Sr isotopic composition of five Mn ores is 0.70730 {plus minus} 22, identical to that of contemporaneous Jurassic seawater. The initial Nd isotopic composition values of the Mn ores are very homogeneous. The average value of five ores, a leachate and residue of one of them, calculated for an age of 170 Ma, is 0.512082 {plus minus} 19. It is suggested that the ores, together with the smaller than 2 {mu}m fractions of the sediments, define the Jurassic Tethys seawater isotopic composition. The resulting average {sup 143}Nd/{sup 144}Nd initial value is 0.512089 {plus minus} 17 ({epsilon}{sub Nd} {minus}6.5 {plus minus} 0.6).

  6. Nd isotopic composition of Jurassic Tethys seawater and the genesis of Alpine Mn-deposits: Evidence from Sr-Nd isotope data

    NASA Astrophysics Data System (ADS)

    Stille, P.; Clauer, N.; Abrecht, J.

    1989-05-01

    Jurassic metabasalts, metasediments and Mn ores from the Pennine realm of the Alps were examined in order to establish the Nd isotopic composition of the Jurassic Tethys seawater and to elucidate the genesis of the Mn deposits. The highly positive initial ɛNd values (+7 to +9.8) of the metabasalts and their low 87Sr /86Sr ratios (0.7028 to 0.7049) indicate that they originated from a depleted mantle. The initial ɛNd values of the cherts range between -5 and -9. The Sm-Nd isotope data indicate that they are primary mixtures of basalt and continental detritus. The smaller than 2 μm fractions of the cherts and of a marble, which probably represent the formerly authigenic material, show initial ɛnd values ranging between -5.9 and -6.6. The average initial Sr isotopic composition of five Mn ores is 0.70730 ± 22, identical to that of contemporaneous Jurassic seawater. The initial Nd isotopic composition values of the Mn ores are very homogeneous. The average value of five ores, a leachate and residue of one of them, calculated for an age of 170 Ma, is 0.512082± 19. It is suggested that the ores, together with the smaller than 2μm fractions of the sediments, define the Jurassic Tethys seawater isotopic composition. The resulting average 143Nd /144Nd initial value is 0.512089 ± 17 ( ɛNd -6.5 ± 0.6).

  7. Re - Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    USGS Publications Warehouse

    Walker, R.J.; Echeverria, L.M.; Shirey, S.B.; Horan, M.F.

    1991-01-01

    The Re - Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155??43 Ma. Subsequent episodes of volcanism produced basalts at 88.1??3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (??Nd+9??1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (??Os) ranged from 0 to +22, and model-initial ?? values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re - Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions. ?? 1991 Springer-Verlag.

  8. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.

    1983-01-01

    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  9. The trophic ecology of key megafaunal species at the Pakistan Margin: Evidence from stable isotopes and lipid biomarkers

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Wolff, George A.; Murty, Sarah J.

    2009-10-01

    The Arabian Sea is subject to intense seasonality resulting from biannual monsoons, which lead to associated large particulate fluxes and an abundance of organic carbon, a potential food source at the seafloor for benthic detritivores. We used the stable isotopes of carbon and nitrogen alongside lipid analyses to examine potential food sources (particulate and sedimentary organic matter, POM and SOM respectively) in order to determine trophic linkages for the twelve most abundant megafaunal species ( Pontocaris sp., Solenocera sp., Munidopsis aff. scobina, Actinoscyphia sp., Actinauge sp., Echinoptilum sp., Pennatula aff. grandis, Astropecten sp. Amphiura sp. Ophiura euryplax, Phormosoma placenta and Hyalinoecia sp.) at the Pakistan Margin between 140 and 1400 m water depth. This transect spans a steep gradient in oxygen concentrations and POM flux. Ranges of δ 13C and δ 15N values were narrow in POM and SOM (˜4‰ and ˜2‰ for δ 13C and δ 15N, respectively) with little evidence of temporal variability. Labile lipid compounds in SOM originating from phytoplankton did exhibit seasonal change in their concentrations at the shallowest sites, 140 and 300 m. Benthic megafauna had broad ranges in δ 13C and δ 15N (>10‰ and >8‰ for δ 13C and δ 15N, respectively) suggesting they occupy several trophic levels and utilize a variety of food sources. There is evidence for feeding niche separation between and within trophic groups. Lipid biomarkers in animal tissues indicate a mixture of food sources originating from both phytoplankton (C 20:5(n-3) and C 22:6(n-3)) and invertebrate prey (C 20:1 and C 22:1). Biomarkers originating from phytodetritus are conserved through trophic transfer to the predator/scavengers. Six species ( Pontocaris sp., Solenocera sp., Actinoscyphia sp., Echinoptilum sp., Amphiura sp. and Hyalinoecia sp.) showed a significant biochemical response to the seasonal supply of food and probably adapt their trophic strategy to low food

  10. Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin.

    PubMed

    Quinn, Rhonda L; Lepre, Christopher J; Feibel, Craig S; Wright, James D; Mortlock, Richard A; Harmand, Sonia; Brugal, Jean-Philip; Roche, Hélène

    2013-07-01

    The origin and evolution of early Pleistocene hominin lithic technologies in Africa occurred within the context of savanna grassland ecosystems. The Nachukui Formation of the Turkana Basin in northern Kenya, containing Oldowan and Acheulean tool assemblages and fossil evidence for early members of Homo and Paranthropus, provides an extensive spatial and temporal paleosol record of early Pleistocene savanna flora. Here we present new carbon isotopic (δ(13)CVPDB) values of pedogenic carbonates (68 nodules, 193 analyses) from the Nachukui Formation in order to characterize past vegetation structure and change through time. We compared three members (Kalochoro, Kaitio, and Natoo) at five locations spanning 2.4-1.4Ma and sampled in proximity to hominin archaeological and paleontological sites. Our results indicate diverse habitats showing a mosaic pattern of vegetation cover at each location yet demonstrate grassland expansion through time influenced by paleogeography. Kalochoro floodplains occurred adjacent to large river systems, and paleosols show evidence of C3 woodlands averaging 46-50% woody cover. Kaitio habitats were located along smaller rivers and lake margins. Paleosols yielded evidence for reduced portions of woody vegetation averaging 34-37% woody cover. Natoo environments had the highest percentage of grasslands averaging 21% woody cover near a diminishing Lake Turkana precursor. We also compared paleosol δ(13)CVPDB values of lithic archaeological sites with paleosol δ(13)CVPDB values of all environments available to hominins at 2.4-1.4Ma in the Nachukui and Koobi Fora Formations. Grassy environments became more widespread during this interval; woody canopy cover mean percentages steadily decreased by 12%. However, significantly more wooded savanna habitats were present in the vicinity of lithic archaeological sites and did not mirror the basin-wide trend of grassland spread. Hominin lithic archaeological sites consistently demonstrated woody cover

  11. Silicon Isotope Geochemistry of Ocean Island Basalts: Search for Deep Mantle Heterogeneities and Evidence for Recycled Altered Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.

    2014-12-01

    Analyses of Ocean Island Basalts (OIB) have shown that the Earth's mantle contains isotopically distinct components, but debate about the degree and cause of variability persists. The study of silicon (Si) isotopes in OIBs has the potential to elucidate mantle heterogeneities. Relatively large (~several per mil) Si isotopic fractionation occurs in low-temperature environments during precipitation from dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1], but only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed due to high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material in OIB source regions in a manner similar to more conventional stable isotope systems, such as oxygen. Here we present the first comprehensive suite of high-precision Si isotopic data obtained by MC-ICP-MS for a diverse set of OIBs representing the EM-1, EM-2, and HIMU mantle components. In general, the Si isotopic compositions of OIBs analyzed here are agreement with previous estimates for Bulk Silicate Earth (BSE). However, small systematic variations are present; the HIMU end-member Mangaia and HIMU-type Cape Verde island São Nicolau are enriched in the light isotopes of Si (δ30Si = -0.37 ± 0.06‰ and δ30Si = -0.39 ± 0.04‰, respectively; errors are 2sd), with compositions intermediary between Mid Ocean Ridge Basalts and chondritic values. Additionally, Iceland samples from volcanic complexes in the Northern Rift Zone show similar Si isotope compositions (on average, δ30Si = -0.40 ± 0.06‰). In contrast, the δ30Si averages of the EM-1 end-member Pitcairn (-0.28 ± 0.07‰), the EM-2 end-member Samoa (-0.31 ± 0.07‰) and other OIB localities do not show any significant difference from previous estimates for the δ30Si value of BSE [3]. The Si isotopic variability in some HIMU-type and Icelandic OIBs most likely reflects the incorporation of

  12. Variability of pesticides and nitrates concentrations along a river transect: chemical and isotopic evidence of groundwater - surface water interconnections

    NASA Astrophysics Data System (ADS)

    Baran, Nicole; Petelet-Giraud, Emmanuelle; Saplairoles, Maritxu

    2015-04-01

    concentration. Finally, downstream the quantified pesticides were different from those observed in the upper part of the Crieu but similar to those observed in groundwater. Sr isotopes together with major elements and Sr concentrations allow to identify 3 distinct end-members to explain the river quality evolution : 1) surface water, 2) groundwater and 3) sub-surface water. On this basis, we first demonstrate that the contribution of the different end-members to the river flow is highly variable from upstream to downstream. Secondly, we evidence water exchanges between the river and the groundwater compartment and vice-versa. The combination of the isotopic and geochemical approaches was essential to understand the complex relations and exchanges between surface and ground-waters occurring in few kilometers along the Crieu River. This understanding allows the comprehension of spatial variability of surface water quality. This is of primary importance when to help water managers to select relevant sampling points to be monitored in the framework of the WFD. Amalric L., et al. (2013). International Journal of Environmental Analytical Chemistry, 93: 1660-1675 Loos R. et al. (2010). Water Research, 44: 4115-4126 Stuart M. et al. (2012). Science of the Total Environment, 416: 1-21.

  13. Search for a meteoritic component in impact-melt rocks from the Lonar crater, India - Evidence from osmium isotope systematics

    NASA Astrophysics Data System (ADS)

    Schulz, T.; Luguet, A.; Koeberl, C.

    2013-12-01

    Introduction: The Lonar crater in western India (Maharashtra) is a bowl-shaped simple impact structure of 1830 m diameter and a depth of 120 m below the rim crest. The crater formed 0.656 × 0.081 Ma ago on the 65 Ma old basaltic lava flows of the Deccan Traps (Jourdan et al. 2010) and is one of the few terrestrial impact structures to have formed in basaltic host-rocks. In the absence of actual meteorite fragments, the impact origin of this structure was supported by the identification of a variety of shock metamorphic features (e.g. Fredriksson et al. 1973). However, clear indications of an extraterrestrial component in impactites based on geochemical studies are absent or remained ambiguous so far (e.g. Osae et al. 2005). As the Os isotope tool has the potential to provide firm constraints on the presence or absence of even very small (<<1%) contributions of meteoritic matter to impactite lithologies (e.g. Koeberl et al. 2002), we conduct a detailed Os isotope study of a variety of unshocked host-basalts (target rocks) and impactites (impact-melt rocks) from the Lonar crater. Samples and Method: All samples analyzed in this study were collected in 2000 and 2001 and were geochemically characterized by Osae et al. (2005). Osmium (and additional PGE) analyses were performed on about 2 g whole rock powders, which were spiked with a mixed 190Os,185Re,191Ir,194Pt tracer, and digested via high pressure Asher using inverse aqua regia. Osmium solvent extraction and microdistillation were performed as described by Cohen and Waters (1996). Osmium isotopic compositions were measured using a TRITON N-TIMS at the Department of Lithospheric Research in Vienna. Results and Discussion: Osmium data on seven target and nine impact melt rocks reveal 187Os/188Os ratios ranging from ~0.38 to ~2.23 for the target rocks and from ~0.22 to ~0.59 for the nine analyzed impact melt rocks, whereas Os concentrations range from ~7.1 to ~31.6 ppt and ~7.2 to ~134 ppt, respectively. Although in

  14. Isotopic Mass Fractionation of Solar Wind: Evidence from Fast and Slow Solar Wind Collected by the Genesis mission

    NASA Astrophysics Data System (ADS)

    Heber, Veronika S.; Baur, Heinrich; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wieler, Rainer; Wiens, Roger C.

    2012-11-01

    NASA's Genesis space mission returned samples of solar wind collected over ~2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 ± 2.1‰ for He, 4.2 ± 0.5‰ amu-1 for Ne and 2.6 ± 0.5‰ amu-1 for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  15. Physical and stable-isotope evidence for formation of secondary calcite and silica in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Whelan, J.F.; Paces, J.B.; Peterman, Z.E.

    2002-01-01

    gradual cooling of nearby plutons. The physical restriction of the deposits (and, therefore, fluid flow) to fracture footwalls and cavity floors and the heterogeneous and limited distribution of the deposits provides compelling evidence that they do not reflect flooding of the thick UZ at Yucca Mountain. The textures and isotopic and chemical compositions of these mineral deposits are consistent with deposition in a UZ setting from meteoric waters percolating downward along fracture flow paths.

  16. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    NASA Astrophysics Data System (ADS)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  17. Age and nature of the basement in northeastern Washington and northern Idaho: isotopic evidence from Mesozoic and Cenozoic granitoids

    USGS Publications Warehouse

    Whitehouse, M.J.; Stacey, J.S.; Miller, F.K.

    1992-01-01

    K-feldspar Pb and whole rock Nd isotopic analyses from 25 Mesozoic and Cenozoic plutonic rocks and two gneisses from NE Washington and northern Idaho are used to elucidate the age and nature of the concealed cratonic basement. The plutons form two highly distinct isotopic groups: Group I have isotopic compositions suggesting derivation from rocks of the Belt Supergroup or their metamorphosed equivalents, Group II have highly retarded Pb isotopic compositions relative to the present day crustal average and require a source region with long-term U depletion, characteristic of cratonic lower crust. A U-Pb zircon upper intercept age of c2600 Ma obtained from one of the Group II samples, together with Sm-Nd data from the gneisses, indicates possible late-Archean crust at depth, which acted as a source region for Eocene extension-related plutonism. -from Authors

  18. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts

    USGS Publications Warehouse

    Frank, M.; Whiteley, N.; Kasten, S.; Hein, J.R.; O'Nions, K.

    2002-01-01

    The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.

  19. Lau Basin basalts (LBB): trace element and Sr sbnd Nd isotopic evidence for heterogeneity in backarc basin mantle

    NASA Astrophysics Data System (ADS)

    Volpe, Alan M.; Douglas Macdougall, J.; Hawkins, James W.

    1988-10-01

    Diverse 87Sr/ 86Sr and 143Nd/ 144Nd isotopic compositions among basalts from the Lau Basin (LBB), an active backarc basin in the southwest Pacific, indicate heterogeneity in the underlying mantle. Isotopic compositions display bimodal distributions which are related to geographic location. Type I LBB ( 87/Sr 86Sr ⩽ 0.70366; 143Nd/ 144Nd ⩾ 0.51297) include tholeiites from the central basin, Peggy Ridge, and Rochambeau Bank, while Type II basaltic and andesitic glasses from the northeastern portion of the basin, near Niua Fo'ou island, have higher 87Sr/ 86Sr ( ⩾ 0.7038) and lower 143Nd/ 144Nd ( ⩽ 0.51288). Both depleted (e.g. N-MORB) and enriched (e.g. E-MORB) trace element abundances occur among Type I and Type II LBB. Covariation between trace element and isotopic ratios among Type I LBB is consistent with mixing between depleted mantle similar to the source for MORB and relatively enriched peridotite similar to the source for E-MORB. Relative to MORB, uniformly high 87Sr/ 86Sr ( +0.0005) among all Type I LBB for given Nd isotopic compositions ( ɛ Nd = +8 to +12) may reflect a lithospheric component, such as ancient recycled altered ocean crust. Type II LBB have Sr sbnd Nd isotopic compositions which are gradational between enriched mantle similar to the source of OIB and a component with distinct Sr isotopic composition such as that observed in Samoan post-erosional basalts. Isotopic and geographic discontinuity between Type I and Type II LBB, and isotopic affinity of Type II and Niua Fo`ou island basalts with those from Samoa suggests that volcanism in the northeastern portion of the basin is tapping deeper mantle beneath the adjoining Pacific plate, as well as Indo-Australian mantle overlying the Pacific lithosphere that is subducted into the Tonga Trench.

  20. Seasonality, hydrology and life history in a Jurassic ecosystem: isotopic evidence from the Great Estuarine Group of Scotland

    NASA Astrophysics Data System (ADS)

    Patterson, W. P.; Oakley, J. R.

    2008-12-01

    A multi-isotope study was conducted to characterize the Jurassic ecosystem of the Great Estuarine Group (GEG) of the Inner Hebrides, Scotland. The GEG has long yielded exceptionally well-preserved aragonitic remains of vertebrate and invertebrate fauna. The group includes sediment that accumulated in water ranging from fresh (S permil = 0) to marginal marine, on the basis of macroinvertebrate and microinvertebrate fossil assemblages as well as isotope data. Oxygen isotope values and temperatures derived in this study correspond to the meteorologic and hydrologic parameters of a mid-latitude maritime climate with low seasonality, a mean annual temperature of 23°C, and abundant precipitation. In a previous study of whole otoliths, it was suggested that fish were migrating to and from the restricted GEG lagoon. Indeed, micromilling of fish otoliths reveals an isotope record of an ecosystem rich in species of fish with distinctive behaviors. Several species originate in freshwater environments, migrating to marine water during ontogeny (anadromy) whereas other species emerge in marine waters to ultimately migrate into fresh water (catadromy) presumably for reproductive reasons. Micromilled mollusks provide details of isotope variability that record temperature and precipitation fluctuation throughout the year. Estuarine water oxygen isotope values are calculated to range from -5 to -2 permil VSMOW, with the fresh water endmember estimated to be -6 permil VSMOW. This range is similar to that observed in modern low-latitude fresh water dominated estuaries. Stable isotope values obtained in this study represent the most ancient quantitative fish life history stable isotope data including fish paleodiet, paleoecology, and migratory behavior to date.

  1. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, Hung-Chun; You, Chen-Feng; Liu, Hou-Chun; Chung, Chuan-Hsiung

    2015-09-01

    Radiogenic Sr isotopes (87Sr/86Sr) are robust for provenance identification in hydrology, affected mainly by the age of background lithologies and the degree of chemical weathering. However, there is limited knowledge concerning the fractionation mechanism of stable Sr isotopes (88Sr/86Sr) in rivers. In this study, river water was collected on a weekly to monthly basis throughout dry and wet seasons. Furthermore, to study the variations of radiogenic and stable Sr isotopes during intense weathering, a major flooding event (2000 mm precipitation in three days, Typhoon Morakot), water was captured within a small drainage catchment system (161 km2) along the Hou-ku River in southwestern Taiwan. For a better constraint on the end member compositions, bedload sediments, suspended particles, and several host rocks were sampled for a systematic investigation. The carbonate and silicate phases of these solids were chemically separated. Dissolved major elements indicate that the watersheds were predominated by silicate weathering. Stable Sr isotopes show no significant variation (δ88Sr = 0.24-0.31‰) temporally and spatially with an average of 0.28‰. Additionally, all solids showed lower δ88Sr values than the river water while the host rocks had higher δ88Sr values (δ88Sr = 0.20-0.26‰) than the residual weathering products (δ88Sr = 0.08-0.22‰), indicating preferential leaching of heavy Sr into the hydrosphere and leaving light Sr in the residual solids. Results of laboratory acid leaching experiments reveal that dissolution of high δ88Sr value minerals occurred at an early stage of weathering. The variation of weathering intensity does not alter stable Sr isotopes in silicate weathering dominated river water, which contains higher stable Sr isotopes than the associated sediments. The silicatic sedimentary rocks preferentially released higher stable Sr isotopes into the hydrosphere during chemical weathering, thus leaving lower stable Sr isotopes in the residual

  2. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    SciTech Connect

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  3. Geochemical and isotopic characteristics of lithospheric mantle beneath West Kettle River, British Columbia: Evidence from ultramafic xenoliths

    SciTech Connect

    Xue, Xianyu; Baadsgaard, H.; Scarfe, C.M. ); Irving, A.J. )

    1990-09-10

    A group of spinel peridotite xenoliths from West Kettle River, British Columbia, represents essentially undepleted to moderately depleted lithospheric mantle rocks in terms of major and compatible trace elements. Whole rock Sr isotopic composition for most of these xenoliths, and whole rock Sm-Nd isotopic composition and LREE contents for some of them, seem to have been perturbed by near-surface processes. Sr and Nd isotopic results for acid-cleaned clinopyroxenes separated from these spinel peridotites reveal an isotopically mid-ocean ridge basalt (MORB)-like mantle. Seven spinel lherzolites gave Nd model ages of 1.5-3.6 Ga, similar to MORB, and on a Sm-Nd isotope diagram plot close to a reference Nd isochron with an age of 0.7 Ga and an initial {var epsilon}{sub Nd} of +7. These features likely resulted from multiple mantle depletion. The isotopic similarities of these xenoliths with MORB suggest that this area is underlain by oceanic lithospheric mantle, possibly accreted to North America during the mid-Jurassic. The Nd isochron age could record the time when the oceanic lithosphere was isolated from the asthenosphere. Recent enrichment event may have acted on such a depleted mantle, as indicated by the low Sm/Nd ratios of two spinel harzburgites.

  4. The sources and time-integrated evolution of diamond-forming fluids - Trace elements and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.

    2014-01-01

    Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate

  5. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry

    NASA Astrophysics Data System (ADS)

    Richards, Jeremy P.; McCulloch, Malcolm T.; Chappell, Bruce W.; Kerrich, Robert

    1991-02-01

    The Porgera gold deposit is spatially and temporally associated with the Late Miocene, mafic, alkalic, epizonal Porgera Intrusive Complex (PIC), located in the highlands of Papua New Guinea (PNG). The highlands region marks the site of a Tertiary age continent-island-arc collision zone, located on the northeastern edge of the Australasian craton. The PIC was emplaced within continental crust near the Lagaip Fault Zone, which represents an Oligocene suture between the craton and volcano-sedimentary rocks of the Sepik terrane. Magmatism at Porgera probably occurred in response to the Late Miocene elimination of an oceanic microplate, and subsequent Early Pliocene collision between the craton margin and an arc system located on the Bismarck Sea plate. Gold mineralization occurred within 1 Ma of the time of magmatism. Metasomatism accompanying early disseminated Au mineralization in igneous host rocks resulted in additions of K, Rb, Mn, S, and CO 2, and depletions of Fe, Mg, Ca, Na, Ba, and Sr; rare-earth and high-field-strength elements remained largely immobile. Pervasive development of illite-K-feldspar-quartz-carbonate alteration assemblages suggests alteration by mildly acidic, 200 to 350°C fluids, at high water/ rock ratios. Strontium and lead isotopic compositions of minerals from early base-metal sulphide veins associated with K-metasomatism, and later quartz-roscoelite veins carrying abundant free gold and tellurides, are remarkably uniform (e.g., 87Sr /86Sr = 0.70745 ± 0.00044 [n = 10] , 207Pb /204Pb = 15.603 ± 0.004 [n = 15] ). These compositions fall between those of unaltered igneous and sedimentary host rocks, and specifically sedimentary rocks from the Jurassic Om Formation which underlies the deposit (igneous rocks: 87Sr /86Sr ≈ 0.7035 , 207Pb /204Pb ≈ 15.560 ; Om Formation: 87Sr /86Sr |t~ 0.7153 , 207Pb /204Pb ≈ 15.636 ). It is therefore suggested that the hydrothermal fluids acquired their Sr and Pb isotopic signatures by interaction with, or

  6. Isotope evidence for the microbially mediated formation of elemental sulfur: A case study from Lake Peten Itza, Guatemala

    NASA Astrophysics Data System (ADS)

    Turchyn, A. V.; Bennett, V. A.; Hodell, D. A.

    2013-12-01

    Elemental, or native, sulfur nodules or veins can be formed during aqueous diagenesis and have been found in a range of natural environments, including lake sediments. What governs the formation of elemental sulfur remains enigmatic, although it is widely thought to be microbially-mediated. While most of the literature suggests elemental sulfur is formed by partial re-oxidation of hydrogen sulphide, elemental sulfur can also form during incomplete bacterial sulfate reduction or during aborted sulfur disproportionation. Lake Peten Itza, in Northern Guatemala, which was cored during the International Continental Drilling program in 2006, is one of the few places where elemental sulfur nodules are forming during microbial diagenesis today. Sulfur isotopes are strongly partitioned during bacterial sulfate reduction and the magnitude of the partitioning yields insight into the microbial reactions and environmental conditions. For example, sulfate reduction that terminates at elemental sulfur likely requires the use of the intracellular trithonite pathway, which may drive larger overall sulfur isotope fractionation between the precursor sulfate and the elemental sulfur product. Sulfur isotopes combined with oxygen isotopes in the precursor sulfate may provide even more information about microbial mechanisms. We present coupled pore fluid sulfate concentrations and sulfur and oxygen isotope measurements, as well as co-existing nodule sulfur isotopes from the Lake Peten Itza sediments. The δ34S of the nodules in the lake sediments ranges from +12 to -13‰, often within a single nodule. This suggests formation from an open system where sulfate is replenished by diffusion, as might be expected during pore fluid diagenesis. The δ34S of the pore fluid sulfate at the depth of nodule formation is between 50 and 60‰ (versus the precursor gypsum which is 17 to 18‰) suggesting a large sulfur isotope fractionation between sulfate and elemental sulfur (38 to 73‰). Pyrite was

  7. U-Pb ages and Sr, Pb and Nd isotope data for gneisses near the Kolar Schist Belt: Evidence for the juxtaposition of discrete Archean terranes

    NASA Technical Reports Server (NTRS)

    Krogstad, E. J.; Hanson, G. N.; Rajamani, V.

    1988-01-01

    Uranium-lead ages and Sr, Pb, and Nd isotopic data for gneisses near the Kolar Schist Belt and their interpretation as evidence for the juxtaposition of discrete Archean terranes were presented. The granodioritic Kambha gneiss east of the schist belt has a zircon age of 2532 + or - 3 Ma and mantle-like initial Sr, Pb, and Nd isotopic ratios. Therefore these gneisses are thought to represent new crust added to the craton in the latest Archean. By contrast, more mafic Dod gneisses and leucocratic Dosa gneisses west of the schist belt (2632 + or - 7 and 2610 + or - 10 Ma) show evidence for contamination of their magmatic precursors (LREE-enriched mantle-derived for the Dod gneisses) by older (greater than 3.2 Ga) continental crust. Fragments of this older crust may be present as granitic and tonalitic inclusions in the 2.6-Ga gneisses and in shear zones. The antiquity of these fragments is supported by their Nd, Sr, and Pb isotopic compositions and by 2.8 to greater than 3.2 Ga zircon cores.

  8. U-Pb ages and Sr, Pb and Nd isotope data for gneisses near the Kolar Schist Belt: Evidence for the juxtaposition of discrete Archean terranes

    NASA Astrophysics Data System (ADS)

    Krogstad, E. J.; Hanson, G. N.; Rajamani, V.

    Uranium-lead ages and Sr, Pb, and Nd isotopic data for gneisses near the Kolar Schist Belt and their interpretation as evidence for the juxtaposition of discrete Archean terranes were presented. The granodioritic Kambha gneiss east of the schist belt has a zircon age of 2532 + or - 3 Ma and mantle-like initial Sr, Pb, and Nd isotopic ratios. Therefore these gneisses are thought to represent new crust added to the craton in the latest Archean. By contrast, more mafic Dod gneisses and leucocratic Dosa gneisses west of the schist belt (2632 + or - 7 and 2610 + or - 10 Ma) show evidence for contamination of their magmatic precursors (LREE-enriched mantle-derived for the Dod gneisses) by older (greater than 3.2 Ga) continental crust. Fragments of this older crust may be present as granitic and tonalitic inclusions in the 2.6-Ga gneisses and in shear zones. The antiquity of these fragments is supported by their Nd, Sr, and Pb isotopic compositions and by 2.8 to greater than 3.2 Ga zircon cores.

  9. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site

    USGS Publications Warehouse

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O'Neil, J.R.; Smit, J.

    1983-01-01

    Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low 87Sr/86Sr and high 143Nd/144Nd ratios. The ??18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor. ?? 1983.

  10. Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Ponte Nova alkaline mafic-ultramafic massif, SE Brazil

    NASA Astrophysics Data System (ADS)

    Azzone, Rogério Guitarrari; Montecinos Munoz, Patricio; Enrich, Gaston Eduardo Rojas; Alves, Adriana; Ruberti, Excelso; Gomes, Celsode Barros

    2016-09-01

    Crustal assimilation plus crystal fractionation processes of different basanite magma batches control the evolution of the Ponte Nova cretaceous alkaline mafic-ultramafic massif in SE Brazil. This massif is composed of several intrusions, the main ones with a cumulate character. Disequilibrium features in the early-crystallized phases (e.g., corrosion and sieve textures in cores of clinopyroxene crystals, spongy-cellular-textured plagioclase crystals, gulf corrosion texture in olivine crystals) and classical hybridization textures (e.g., blade biotite and acicular apatite crystals) provide strong evidence of open-system behavior. All samples are olivine- and nepheline-normative rocks with basic-ultrabasic and potassic characters and variable incompatible element enrichments. The wide ranges of whole-rock 87Sr/86Sri and 143Nd/144Ndi ratios (0.70432-0.70641 and 0.512216-0.512555, respectively) are indicative of crustal contribution from the Precambrian basement host rocks. Plagioclase and apatite 87Sr/86Sr ratios (0.70422-0.70927) obtained for the most primitive samples of each intrusion indicate disequilibrium conditions from early- to principal-crystallization stages. Isotope mixing-model curves between the least contaminated alkaline basic magma and heterogeneous local crustal components indicate that each intrusion of the massif is differentiated from the others by varied degrees of crustal contribution. The primary mechanisms of crustal contribution to the Ponte Nova massif involve the assimilation of host rock xenoliths during the development of the chamber environment and the assimilation of partial melts from the surrounding host rocks. Thermodynamic models using the melts algorithm indicate that parental alkaline basic magmas can be strongly affected by contamination processes subsequently to their initial stages of crystallization when there is sufficient energy to assimilate partial melts of crustal host rocks. The assimilation processes are considered to

  11. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites

    NASA Astrophysics Data System (ADS)

    Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten

    2016-11-01

    Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope

  12. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web.

    PubMed

    Boyle, M D; Ebert, D A; Cailliet, G M

    2012-04-01

    In this study, fishes and invertebrates collected from the continental slope (1000 m) of the eastern North Pacific Ocean were analysed using stable-isotope analysis (SIA). Resulting trophic positions (T(P) ) were compared to known diets and habitats from the literature. Dual isotope plots indicated that most species groups (invertebrates and fishes) sorted as expected along the carbon and nitrogen axes, with less intraspecific variability than interspecific variability. Results also indicated an isotopically distinct benthic and pelagic food web, as the benthic food web was more enriched in both nitrogen and carbon isotopes. Trophic positions from SIA supported this finding, resulting in the assignment of fishes to different trophic positions from those expected based on published dietary information. These differences can be explained largely by the habitat of the prey and the percentage of the diet that was scavenged. A mixing model estimated dietary contributions of prey similar to those of the known diet of Bathyraja trachura from stomach-content analysis (SCA). Linear regressions indicated that trophic positions calculated from SIA and SCA, when plotted against B. trachura total length for 32 individuals, exhibited similar variation and patterns. Only the T(P) from SCA yielded significant results (stomach content: P < 0·05, stable isotope: P > 0·05). PMID:22497394

  13. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web.

    PubMed

    Boyle, M D; Ebert, D A; Cailliet, G M

    2012-04-01

    In this study, fishes and invertebrates collected from the continental slope (1000 m) of the eastern North Pacific Ocean were analysed using stable-isotope analysis (SIA). Resulting trophic positions (T(P) ) were compared to known diets and habitats from the literature. Dual isotope plots indicated that most species groups (invertebrates and fishes) sorted as expected along the carbon and nitrogen axes, with less intraspecific variability than interspecific variability. Results also indicated an isotopically distinct benthic and pelagic food web, as the benthic food web was more enriched in both nitrogen and carbon isotopes. Trophic positions from SIA supported this finding, resulting in the assignment of fishes to different trophic positions from those expected based on published dietary information. These differences can be explained largely by the habitat of the prey and the percentage of the diet that was scavenged. A mixing model estimated dietary contributions of prey similar to those of the known diet of Bathyraja trachura from stomach-content analysis (SCA). Linear regressions indicated that trophic positions calculated from SIA and SCA, when plotted against B. trachura total length for 32 individuals, exhibited similar variation and patterns. Only the T(P) from SCA yielded significant results (stomach content: P < 0·05, stable isotope: P > 0·05).

  14. Re-Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth's upper mantle.

    PubMed

    Meibom, Anders; Sleep, Norman H; Chamberlain, C Page; Coleman, Robert G; Frei, Robert; Hren, Michael T; Wooden, Joseph L

    2002-10-17

    The geochemical composition of the Earth's upper mantle is thought to reflect 4.5 billion years of melt extraction, as well as the recycling of crustal materials. The fractionation of rhenium and osmium during partial melting in the upper mantle makes the Re-Os isotopic system well suited for tracing the extraction of melt and recycling of the resulting mid-ocean-ridge basalt. Here we report osmium isotope compositions of more than 700 osmium-rich platinum-group element alloys derived from the upper mantle. The osmium isotopic data form a wide, essentially gaussian distribution, demonstrating that, with respect to Re-Os isotope systematics, the upper mantle is extremely heterogeneous. As depleted and enriched domains can apparently remain unequilibrated on a timescale of billions of years, effective equilibration seems to require high degrees of partial melting, such as occur under mid-ocean ridges or in back-arc settings, where percolating melts enhance the mobility of both osmium and rhenium. We infer that the gaussian shape of the osmium isotope distribution is the signature of a random mixing process between depleted and enriched domains, resulting from a 'plum pudding' distribution in the upper mantle, rather than from individual melt depletion events.

  15. Helium Isotopic Compositions of Antarctic High-Mg Rocks Related to the Karoo Continental Flood Basalts: Evidence for a Depleted Upper Mantle Source?

    NASA Astrophysics Data System (ADS)

    Heinonen, J. S.; Kurz, M. D.

    2014-12-01

    The isotopic composition of helium is often considered to be one of the key elements in resolving deep mantle plume vs. upper mantle origin of hotspot-related volcanic rocks. High 3He/4He values, greater than 10 times atmospheric (Ra), are generally thought to indicate plume-related sources in the lower mantle. The use of helium isotopes in continental flood basalt (CFB) provinces has been limited by the lack of fresh rock material, poor exposures, time-integrated ingrowth of radiogenic 4He, and strong lithospheric overprinting. Vestfjella mountain range at western Dronning Maud Land, Antarctica, is comprised of lava flows and intrusive rocks that belong to the Jurassic (~180 Ma) Karoo continental flood basalt province, the bulk of which is exposed in southern Africa. The Karoo CFBs and related rocks show strong lithospheric influence in their geochemistry in general, but some high-Mg dikes from Vestfjella show geochemical evidence of derivation from sublithospheric sources. In an attempt to determine the first estimate for the helium isotopic composition of the Karoo mantle sources, we performed He isotopic measurements on six primitive Vestfjella dike samples collected from variably exposed nunataks. Helium was extracted by in-vacuo stepwise crushing and melting of separated and carefully hand-picked olivine phenocrysts (Ø = 0.25-1 mm; ~10 000 grains in total; abraded and unabraded fractions). The results of coupled crushing and melting measurements show evidence of both cosmogenic and radiogenic helium contributions within the olivines (i.e. by having high He contents and anomalously low or high 3He/4He released by melting), which complicates interpretation of the data. As a best estimate for the mantle isotopic composition, we use the sample with the highest amount of He released (> 50%) during the first crushing step of an abraded coarse fraction, which gave 3He/4He of 7.03 ± 0.23 (2σ) Ra. This value is indistinguishable from those measured from Southwest

  16. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System

    SciTech Connect

    Pili, E.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.-P.

    2010-12-15

    To characterize the origin of the fluids involved in the San Andreas Fault (SAF) system, we carried out an isotope study of exhumed faulted rocks from deformation zones, vein fillings and their hosts and the fluid inclusions associated with these materials. Samples were collected from segments along the SAF system selected to provide a depth profile from upper to lower crust. In all, 75 samples from various structures and lithologies from 13 localities were analyzed for noble gas, carbon, and oxygen isotope compositions. Fluid inclusions exhibit helium isotope ratios ({sup 3}He/{sup 4}He) of 0.1-2.5 times the ratio in air, indicating that past fluids percolating through the SAF system contained mantle helium contributions of at least 35%, similar to what has been measured in present-day ground waters associated with the fault (Kennedy et al., 1997). Calcite is the predominant vein mineral and is a common accessory mineral in deformation zones. A systematic variation of C- and O-isotope compositions of carbonates from veins, deformation zones and their hosts suggests percolation by external fluids of similar compositions and origin with the amount of fluid infiltration increasing from host rocks to vein to deformation zones. The isotopic trend observed for carbonates in veins and deformation zones follows that shown by carbonates in host limestones, marbles, and other host rocks, increasing with increasing contribution of deep metamorphic crustal volatiles. At each crustal level, the composition of the infiltrating fluids is thus buffered by deeper metamorphic sources. A negative correlation between calcite {delta}{sup 13}C and fluid inclusion {sup 3}He/{sup 4}He is consistent with a mantle origin for a fraction of the infiltrating CO{sub 2}. Noble gas and stable isotope systematics show consistent evidence for the involvement of mantle-derived fluids combined with infiltration of deep metamorphic H{sub 2}O and CO{sub 2} in faulting, supporting the involvement of

  17. New insights from old mud: Compound-specific isotopic evidence of paleoenvironmental and hydrological change at Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Wilkie, K. M.; Petsch, S.; Burns, S. J.; Brigham-Grette, J.; Lake El'Gygytgyn Scientific Party

    2010-12-01

    Recent successful drilling operations at Lake El’gygytgyn, NE Russia have recovered sediment cores back to 3.6 Ma, representing the longest time-continuous sediment record of past climate change in the terrestrial Arctic. Analysis of the deuterium/hydrogen isotopic ratio of specific organic biomarkers allows reconstruction of past hydrologic conditions, thereby providing a powerful tool for reconstructing past terrestrial Arctic climate changes. Compound-specific isotopic analysis of sedimentary lipids from this remote basin will provide new insights into the climate evolution of the Arctic, contributing to understanding the mechanisms and dynamics of glacial/interglacial and millennial-scale change from this high latitude region over the duration of the “41 kyr world” and late Cenozoic “100 kyr world”. We present compound specific isotopic measurements of individual sedimentary fatty acids representing aquatic and terrestrial sources over the past 120 ka. Compound-specific C and H isotopic evidence indicate mixed terrestrial and aquatic sources for mid- to long chain fatty acids (nC24, C26, and C28). Short chain fatty acids (nC19-23) are likely derived from aquatic sources using recycled CO2 and/ or a small contribution of methane while long chain (i.e. nC30) fatty acids are derived from a terrestrial source. Preliminary multi-proxy comparison of δDC22 and δ18Odiatom records suggests production of short chain fatty acids may not reflect surface lake water isotopic composition. δD measurements of terrestrially sourced fatty acids show significant variation between glacial-interglacial intervals as well as variation on centennial timescales (~200 yr resolution). The most depleted values occur during the Last Glacial Maximum whereas the most enriched values occur during both the Early Holocene and Marine Isotope Stage 5e. Extreme H isotope depletion during the LGM suggests markedly colder and/or drier conditions at Lake El’gygytgyn, consistent with an

  18. Stable isotope evidence for carbon transformations in the water column and the sediments of the tropical Beibu Gulf, South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Kowalski, Nicole; Dellwig, Olaf; Escher, Peter; Endler, Michael; Böttcher, Michael E.

    2013-04-01

    The depositional environment of the Beibu Gulf is highly complex, and sediments are formed under dynamic changes in hydrodynamics and sediment sources. It is an ideal natural laboratory to study biogeochemical transformation processes and its responses to changes in hydrography and depositional conditions in a tropical shelf environment. In the present study, several water column profiles and a number of short (MUC) and long (GC) sediment cores were taken during a joint German-Chinese expedition with R/V Sonne (Cruise 219; December 2011) in the Beibu Gulf. The sampling stations may be separated into three different depositional zones, namely Northern Coastal Beibu Gulf with sandy sediment, Delta Deposits in Vicinity to Qiongzhou Strait affected by strong currents, and Central Beibu Gulf with stable depositional environments. We measured the geochemical composition and carbon isotope composition of DIC in the water column and pore waters. In the sediments, the TOC, TIC, TN and TS contents, the C isotope composition of organic matter (OM), and the C and O isotope composition of carbonates were analyzed to follow the fate of organic matter during pelagic and benthic transformations. Pelagic OM transformations are already demonstrated by stable isotopes in the water column. The carbon isotopic composition of pore water DIC give further evidence for the mineralization of mainly marine OM with minor or no contributions from methane at most sites. The coupled pore water profiles indicate that sulfate reduction is the most important source for the DIC added to the pore waters. No correlation was observed between TOC contents and net sulfate reduction rates for the investigated sites. Lithostratigraphic marker and 14C age in different depositional zones indicated sedimentation rate plays an important role in determining the preservation and pathway of organic decomposition. In the central Beibu Gulf, where higher sedimentation rates dominate, pore water profiles exhibit the

  19. Isotopic composition of carbonaceous-chondrite kerogen Evidence for an interstellar origin of organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1983-01-01

    Stepwise combustion has revealed systematic patterns of isotopic