Sample records for coplanar surface barrier

  1. Coplanar surface barrier discharge ignited in water vapor—a selective source of OH radicals proved by (TA)LIF measurement

    NASA Astrophysics Data System (ADS)

    Procházka, V.; Tučeková, Z.; Dvořák, P.; Kováčik, D.; Slavíček, P.; Zahoranová, A.; Voráč, J.

    2018-01-01

    Coplanar dielectric barrier discharge (DBD) was ignited in pure water vapor at atmospheric pressure in order to generate highly oxidizing plasma with one specific type of reactive radicals. In order to prevent water condensation the used plasma reactor was heated to 120 {}\\circ C. The composition of the radical species in the discharge was studied by methods based on laser-induced fluorescence (LIF) and compared with analogous measurements realized in the same coplanar DBD ignited in air. Fast collisional processes and laser-surface interaction were taken into account during LIF data processing. It was found that coplanar DBD ignited in water vapor produces hydroxyl (OH) radicals with concentration in the order of 1020 m-3, which is 10× higher than the value measured in discharge in humid air (40% relative humidity at 21 {}\\circ C). The concentration of atomic hydrogen radicals in the DBD ignited in water vapor was below the detection limit, which proves that the generation of oxidizing plasma with dominance of one specific type of reactive radicals was achieved. The temporal evolution, spatial distribution, power dependence and rotational temperature of the OH radicals was determined in the DBD ignited in both water vapor and air.

  2. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    NASA Astrophysics Data System (ADS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-11-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N2 gas, while the production of oxygen radicals was determined by ozone production in pure O2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness.

  3. Diagnostics of pre-breakdown light emission in a helium coplanar barrier discharge: the presence of neutral bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Morávek, Tomáš; Ráheľ, Jozef; Čech, Jan; Lalinský, Ondřej; Trunec, David

    2017-05-01

    Weak light emission (˜10-3 of active discharge signal; average count rate ˜ 1 photon s-1 nm-1) associated with surface charge relaxation during the dark phase of a helium diffuse coplanar barrier discharge was studied by optical emission spectroscopy, using a technique of phase-resolved single photon counting. The optical emission spectra of the dark phase contained luminescent bands of the dielectrics used (Al2O3, AlN) and spectral lines from the gas constituents (OH*, {{{N}}}2* , {{{N}}}2+* , He*, He{}2* , O*). During the charge relaxation event, a broad continuum appeared in the optical emission spectra, consisting of bremsstrahlung radiation and amplified luminescence of the dielectric barrier. The analysis presented suggests that the bremsstrahlung radiation originated from slow electrons colliding with neutral helium atoms. The fitting procedure we developed reproduced well the observed shape of the continuum. Moreover, it provided a method for the determination of electric field strength in the discharge during this particular phase. The electric field reached 1 kV cm-1 during the charge relaxation event.

  4. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam.

    PubMed

    Reshmi, S; Akshaya, M V; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K

    2018-05-18

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS 2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS 2 . In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS 2 sheets.

  5. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam

    NASA Astrophysics Data System (ADS)

    Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K.

    2018-05-01

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS2. In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS2 sheets.

  6. Comparison of three dielectric barrier discharges regarding their physical characteristics and influence on the adhesion properties on maple, high density fiberboards and wood plastic composite

    NASA Astrophysics Data System (ADS)

    Peters, F.; Hünnekens, B.; Wieneke, S.; Militz, H.; Ohms, G.; Viöl, W.

    2017-11-01

    In this study, three different dielectric barrier discharges, based on the same setup and run with the same power supply, are characterized by emission spectroscopy with regards to the reduced electrical field strength, and the rotational, vibrational and electron temperature. To compare discharges common for the treatment on wood, a coplanar surface barrier discharge, a direct dielectric barrier discharge and a jet system/remote plasma are chosen. To minimize influences due to the setups or power, the discharges are realized with the same electrodes and power supply and normalized to the same power. To evaluate the efficiency of the different discharges and the influence on treated materials, the surface free energy is determined on a maple wood, high density fiberboard and wood plastic composite. The influence is measured depending on the treatment time, with the highest impact in the time of 5 s.

  7. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    PubMed

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  8. Minimum required capture radius in a coplanar model of the aerial combat problem

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.; Merz, A. W.

    1977-01-01

    Coplanar aerial combat is modeled with constant speeds and specified turn rates. The minimum capture radius which will always permit capture, regardless of the initial conditions, is calculated. This 'critical' capture radius is also the maximum range which the evader can guarantee indefinitely if the initial range, for example, is large. A composite barrier is constructed which gives the boundary, at any heading, of relative positions for which the capture radius is less than critical.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odraskova, M.; Szalay, Z.; Zahoranova, A.

    Diffuse Coplanar Surface Barrier Discharge was successfully tested for creating a water-repellent surface from HMDSO and HMDS compounds on samples of spruce wood (Picea abies, Karst). The best results were achieved when the treated sample was in continuous motion during the course of film deposition. Best hydrophobic coating was achieved for 29% of total gas flow through the HMDSO and HMDS liquid. The surface free energy of modified surface was 30 mJ/m{sup 2} for HMDSO and 24 mJ/m{sup 2} for HMDS mixtures. The 50 {mu}l water droplet required (180{+-}30) min to penetrate into the modified spruce in HMDSO mixture andmore » (213{+-}30) min in HMDS mixture. This is more than 20 fold increase compared to the unmodified spruce. The chemical composition of deposited layer was analyzed by ATR-FTIR. The presence of Si-O-Si and Si(CH{sub 3}) functional groups was confirmed.« less

  10. Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Sung, Ji Ho; Heo, Hoseok; Si, Saerom; Kim, Yong Hyeon; Noh, Hyeong Rae; Song, Kyung; Kim, Juho; Lee, Chang-Soo; Seo, Seung-Young; Kim, Dong-Hwi; Kim, Hyoung Kug; Yeom, Han Woong; Kim, Tae-Hwan; Choi, Si-Young; Kim, Jun Sung; Jo, Moon-Ho

    2017-11-01

    Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T‧) and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.

  11. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC.

    PubMed

    Asadinezhad, Ahmad; Novák, Igor; Lehocký, Marián; Sedlarík, Vladimir; Vesel, Alenka; Junkar, Ita; Sáha, Petr; Chodák, Ivan

    2010-06-01

    Medical-grade polyvinyl chloride was surface modified by a multistep physicochemical approach to improve bacterial adhesion prevention properties. This was fulfilled via surface activation by diffuse coplanar surface barrier discharge plasma followed by radical graft copolymerization of acrylic acid through surface-initiated pathway to render a structured high density brush. Three known antibacterial agents, bronopol, benzalkonium chloride, and chlorhexidine, were then individually coated onto functionalized surface to induce biological properties. Various modern surface probe techniques were employed to explore the effects of the modification steps. In vitro bacterial adhesion and biofilm formation assay was performed. Escherichia coli strain was found to be more susceptible to modifications rather than Staphylococcus aureus as up to 85% reduction in adherence degree of the former was observed upon treating with above antibacterial agents, while only chlorhexidine could retard the adhesion of the latter by 50%. Also, plasma treated and graft copolymerized samples were remarkably effective to diminish the adherence of E. coli. Copyright 2010 Elsevier B.V. All rights reserved.

  12. A half millimeter thick coplanar flexible battery with wireless recharging capability.

    PubMed

    Kim, Joo-Seong; Ko, Dongah; Yoo, Dong-Joo; Jung, Dae Soo; Yavuz, Cafer T; Kim, Nam-In; Choi, In-Suk; Song, Jae Yong; Choi, Jang Wook

    2015-04-08

    Most of the existing flexible lithium ion batteries (LIBs) adopt the conventional cofacial cell configuration where anode, separator, and cathode are sequentially stacked and so have difficulty in the integration with emerging thin LIB applications, such as smart cards and medical patches. In order to overcome this shortcoming, herein, we report a coplanar cell structure in which anodes and cathodes are interdigitatedly positioned on the same plane. The coplanar electrode design brings advantages of enhanced bending tolerance and capability of increasing the cell voltage by in series-connection of multiple single-cells in addition to its suitability for the thickness reduction. On the basis of these structural benefits, we develop a coplanar flexible LIB that delivers 7.4 V with an entire cell thickness below 0.5 mm while preserving stable electrochemical performance throughout 5000 (un)bending cycles (bending radius = 5 mm). Also, even the pouch case serves as barriers between anodes and cathodes to prevent Li dendrite growth and short-circuit formation while saving the thickness. Furthermore, for convenient practical use wireless charging via inductive electromagnetic energy transfer and solar cell integration is demonstrated.

  13. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    NASA Astrophysics Data System (ADS)

    Li, Ailin; Yan, Tianying; Shen, Panwen

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.

  14. Complex interaction of subsequent surface streamers via deposited charge: a high-resolution experimental study

    NASA Astrophysics Data System (ADS)

    Hoder, T.; Synek, P.; Chorvát, D.; Ráhel', J.; Brandenburg, R.; Černák, M.

    2017-07-01

    The coplanar barrier discharge in synthetic air at 30 kPa pressure was studied by time-correlated single photon counting enhanced optical emission spectroscopy, far-field microscopy enhanced intensified CCD camera and sensitive current measurements. The discharge operated in a regime where two subsequent microdischarges appeared within the same voltage half-period. The electrical analysis of the barrier discharge setup enabled us to quantify charge transfer and the effective electric field development. During the second microdischarge the positive surface streamers follow the interface (triple-line) between the area of deposited charge from the previous one and the area of uncharged dielectric surface. It is shown that additional branching and flashes of surface streamers are responsible for the increased spatial complexity of the deposited surface charges at high overvoltage. A suppressed streamer propagating over the area of deposited surface charge was tracked and the evidence of surface streamer reconnection is presented. A spatiotemporal distribution (resolution of 120 ps and 100 μm) of the reduced electric field strength was obtained for both microdischarges from the recorded luminosities of the molecular nitrogen. The reduced electric field of positive streamers in the first microdischarge reached 1200 Td. For the second one, the electric field values for the streamer at the triple-line are slightly lower than that, while for the suppressed streamers are even higher.

  15. Enhancement of carbon-steel peel adhesion to rubber blend using atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kršková, Jana; Skácelová, Dana; Kováčik, Dušan; Ráhel', Jozef; Pret'o, Jozef; Černák, Mirko

    2016-08-01

    The surface of carbon-steel plates was modified by non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) in order to improve the adhesive properties to the NR (natural rubber) green rubber compound. The effect of different treatment times as well as different input power and frequency of supplied high voltage was investigated. The samples were characterized using contact angle and surface free energy measurement, measurement of adhesive properties, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface chemical composition was studied by energy-dispersive X-ray spectroscopy (EDX). Significant increase in wettability was observed even after 2 s of plasma exposure. The surface modification was confirmed also by peel test, where the best results were obtained for 6 s of plasma treatment. In addition the ageing effect was studied to investigate the durability of modification, which is crucial for the industrial applications. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  16. Detecting Planar Surfaces in Outdoor Urban Environments

    DTIC Science & Technology

    2008-09-01

    coplanar or parallel scene points and lines. Sturm and Maybank (18) perform 3D reconstruction given user-provided coplanarity, perpendicularity, and... Maybank , S. J. A method for intactive 3d reconstruction of piercewise planar objects from single images. in BMVC, 1999, 265–274 [19] Schaffalitzky, F

  17. Single and multiple streamer DBD micro-discharges for testing inactivation of biologically contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Prukner, Vaclav; Dolezalova, Eva; Simek, Milan

    2014-10-01

    Highly reactive environment produced by atmospheric-pressure, non-equilibrium plasmas generated by surface dielectric barrier discharges (SDBDs) may be used for inactivation of biologically contaminated surfaces. We investigated decontamination efficiency of reactive environment produced by single/multiple surface streamer micro-discharge driven by amplitude-modulated AC power in coplanar electrode geometry on biologically contaminated surface by Escherichia coli. The discharges were fed by synthetic air with water vapor admixtures at atmospheric pressure, time of treatment was set from 10 second to 10 minutes, diameters of used SDBD electrodes (single and multiple streamer) and homogeneously contaminated disc samples were equal (25 mm), the distance between the electrode and contaminated surface was 2 mm. Both a conventional cultivation and fluorescent method LIVE/DEAD Bacterial Viability kit were applied to estimate counts of bacteria after the plasma treatment. Inactivation was effective and bacteria partly lost ability to grow and became injured and viable/active but non-cultivable (VBNC/ABNC). Work was supported by the MEYS under Project LD13010, VES13 COST CZ (COST Action MP 1101).

  18. Line spring model and its applications to part-through crack problems in plates and shells

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Aksel, Bulent

    1988-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  19. Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Aksel, B.

    1986-01-01

    The line spring model is described and extended to cover the problem of interaction of multiple internal and surface cracks in plates and shells. The shape functions for various related crack geometries obtained from the plane strain solution and the results of some multiple crack problems are presented. The problems considered include coplanar surface cracks on the same or opposite sides of a plate, nonsymmetrically located coplanar internal elliptic cracks, and in a very limited way the surface and corner cracks in a plate of finite width and a surface crack in a cylindrical shell with fixed end.

  20. Design and optimization of surface profilometer based on coplanar guide rail

    NASA Astrophysics Data System (ADS)

    Chen, Shuai; Dai, Yifan; Hu, Hao; Tie, Guipeng

    2017-10-01

    In order to implement the sub-micron precision measurement, a surface profilometer which based on the coplanar guide rail is designed. This profilometer adopts the open type air floating load and is driven by the magnetic force. As to achieve sub-micron accuracy, the flatness of granite guide working face and aerodynamic block are both processed to the micron level based on the homogenization of air flotation film theory. Permanent magnet which could reduce the influence of the driving disturbance to the measurement accuracy is used as the driving part. In this paper, the bearing capacity and the air floating stiffness of air floating block are both simulated and analyzed as to optimize the design parameters firstly. The layout and magnetic force of the magnet are also simulated. According to the simulation results, type selection and the position arrangement of the magnets are then confirmed. The test results on the experimental platform show that the surface profilometer based on coplanar guide rail possess the basis for realizing the submicron precision measurement.

  1. Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-12-02

    A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.

  2. Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Haixin, HU; Feng, HE; Ping, ZHU; Jiting, OUYANG

    2018-05-01

    A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length, ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.

  3. Coplanar Doppler Lidar Retrieval of Rotors from T-REX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Michael; Calhoun, Ron; Fernando, H. J. S.

    2010-03-01

    Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The levelmore » of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.« less

  4. Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis

    PubMed Central

    Lesser-Rojas, Leonardo; Sriram, K. K.; Liao, Kuo-Tang; Lai, Shui-Chin; Kuo, Pai-Chia; Chu, Ming-Lee; Chou, Chia-Fu

    2014-01-01

    We have developed a two-step electron-beam lithography process to fabricate a tandem array of three pairs of tip-like gold nanoelectronic detectors with electrode gap size as small as 9 nm, embedded in a coplanar fashion to 60 nm deep, 100 nm wide, and up to 150 μm long nanochannels coupled to a world-micro-nanofluidic interface for easy sample introduction. Experimental tests with a sealed device using DNA-protein complexes demonstrate the coplanarity of the nanoelectrodes to the nanochannel surface. Further, this device could improve transverse current detection by correlated time-of-flight measurements of translocating samples, and serve as an autocalibrated velocimeter and nanoscale tandem Coulter counters for single molecule analysis of heterogeneous samples. PMID:24753731

  5. Folded Coplanar Waveguide Slot Antenna on Silicon Substrates With a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Bacon, Andrew; Ponchak, George E.; Papapolymerou, John; Bushyager, Nathan; Tentzeris, Manos; Williams, W. D. (Technical Monitor)

    2002-01-01

    A novel mm-wave Coplanar Waveguide (CPW) folded slot antenna is characterized on low-resistivity Si substrate (1 omega-cm) and a high resistivity Si substrate with a polyimide interface layer for the first time. The antenna resonates around 30 GHz with a return loss greater than 14.6 dB. Measured radiation patterns indicate the existence of a main lobe, but the radiation pattern is affected by a strong surface wave mode, which is greater in the high resistivity Si wafer.

  6. Electronic structure studies of Ni( 1 0 0 ) surface reconstructions resulting from carbon, nitrogen, or oxygen atom adsorption

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Harris, Suzanne

    2003-01-01

    Solid-state Fenske-Hall band structure calculations have been used to study the different surface structures which result from adsorption of a half monolayer of C, N, or O atoms on the Ni(1 0 0) surface. C or N atoms sit nearly coplanar with the surface Ni atoms and induce the "clock" reconstruction of the surface. In contrast, adsorbed O atoms sit slightly above the Ni(1 0 0) surface plane and have little effect on the overall surface structure. The local environments of the C, N, and O atoms on these surfaces are similar to their environments in a series of late transition metal carbonyl clusters, suggesting that some of the same electronic factors may play a role in favoring the different structures. Results of the calculations indicate that when adsorbates occupy coplanar sites on Ni(1 0 0), much of the Ni-Ni bonding within the surface layer and between the surface- and second-layers is disrupted. On the C- and N-covered surfaces the disruption is more than compensated for by the formation of strong adsorbate-Ni bonds and by new Ni-Ni surface bonds resulting from the clock reconstruction. When O is forced into a coplanar site, however, both the higher electron count and increased electronegativity of the O atoms lead to severe disruption of the surface bonding and weak Ni-O bonds. When O atoms sit above the surface, they form more polar Ni-O bonds, contribute less electron density to the Ni surface bands, and cause less disruption to Ni-Ni surface bonds. These results suggest that, similar to the organometallic clusters, the site preferences of C, N, and O atoms are directly related to their electron count, and in turn to the relative occupation of both Ni-Ni and X-Ni (X=C, N, O) antibonding bands.

  7. Synthesis, crystal structure and computational studies of a new Schiff base compound: (E)-4-bromo-2-eth-oxy-6-{[(2-meth-oxy-phen-yl)imino]meth-yl}phenol.

    PubMed

    Özek Yıldırım, Arzu; Gülsu, Murat; Albayrak Kaştaş, Çiğdem

    2018-03-01

    The title compound, C 16 H 16 BrNO 3 , which shows enol-imine tautomerism, crystallizes in the monoclinic P 2 1 / c space group. All non-H atoms of the mol-ecule are nearly coplanar, with a maximum deviation of 0.274 (3) Å. In the crystal, mol-ecules are held together by weak C-H⋯O, π-π and C-H⋯π inter-actions. The E / Z isomerism and enol/keto tautomerism energy barriers of the compound have been calculated by relaxed potential energy surface scan calculations with DFT methods. To observe the changes in the aromatic ring, HOMA aromaticity indexes were calculated during the scan process. Total energy and HOMA change curves were obtained to visualize results of the scan calculations.

  8. Characteristics of depth-sensing coplanar grid CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    He, Zhong; Sturm, Ben W.

    2005-12-01

    The latest depth-sensing coplanar grid CdZnTe detectors have been tested. Two of these have dimensions 1.5×1.5×1.0 cm 3 and one is a cylindrical detector with 1.5 cm diameter and 1.0 cm length, all of them using the third-generation coplanar anode design. Energy resolutions of 2.0% and 2.4% FWHM at 662 keV γ-ray energies were obtained. Detector performance has been observed experimentally as a function of depth of the γ-ray interaction, and as a function of radial position near the anode surface. The measured results show the improvement of the third-generation anode design. Material uniformity of CdZnTe crystals manufactured by eV Products have been directly observed and compared on two 1.5×1.5×1.0 cm 3 detectors.

  9. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.

    PubMed

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao

    2018-01-01

    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. SU-F-T-339: Comparison Between Coplanar and Non-Coplanar RapidArc Approach of Hippocampal-Sparing Whole Brain Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B; Kim, J

    Purpose: To compare the dosimetry of coplanar and non-coplanar RapidArc whole brain plans for hippocampal sparing Methods: We studied the RapidArc plans of patient with brain metastases, with the prescription of 3750 cGy in 15 fractions. The coplanar approach used a full clockwise (CW) arc and a full counterclockwise (CCW) arc, with the couch angle to be 0°. The non-coplanar approach used a full arc with a couch angle of 0°, and a partial arc with a couch angle of 90°. Treatment planning system is Eclipse Ver. 11. Constraints for eyes, lens, brainstem, optical nerves and chiasm are employed inmore » the optimization so that these OARs’ dose are below tolerance. Constraints for hippocampus are employed so that they receive dose as low as possible while maintain good coverage to whole brain. The beam delivery machine is Varian 21 IX. T1-weighted MRI images were used for hippocampus contouring. Results: The target coverage index for coplanar and non-coplanar RapidArc plans are 94.9% and 95.4%, respectively, with homogeneity index of 0.223 vs 0.226, which is defined as (D2% – D98%)/Dmean of target volume. V95 and V100 are 99.0% and 94.8% for coplanar plan, vs 99.1% and 95.4% for non-coplanar plan, while the mean dose of hippocampus are 1244.5 cGy for coplanar plan vs 1212.3 cGy for non-coplanar plan. Dose for eyes, lens, optical nerves, optical chiasm and brainstem are all below tolerance. Conclusion: Coplanar RapidArc plan provides good target coverage while achieves good hippocampal sparing, and there is no benefit to use non-coplanar approach.« less

  11. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    NASA Astrophysics Data System (ADS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  12. Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite.

    PubMed

    Mignon, Pierre; Sodupe, Mariona

    2012-01-14

    In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).

  13. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    PubMed

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  14. Coplanar PCB distribution between chorioallantoic membranes and eggs of alligators and Loggerhead sea turtles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargar, T.A.; Cobb, G.P.

    1995-12-31

    The relative distribution of coplanar polychlorinated biphenyls (PCBs) between chorioallantoic membranes (CAMS) and eggs was investigated in inviable American alligator (Alligator mississippiensis) and Loggerhead sea turtle (Caretta caretra) eggs. Cam and egg extracts were fractionated by HPLC using a porous graphitic column (PGC) and an in line switching valve to separate coplanar from non-coplanar PCBs. The fractions were collected, concentrated by nitrogen evaporation, and injected on GC-ECD (60M DB-5 capillary column) for quantification. Alligator and Loggerhead sea turtle eggs contain toxicologically significant coplanar PCBs. Mono-ortho substituted PCBs were present with greater frequency relative to non-ortho substituted PCBs in both eggsmore » and CAMS. The presence of coplanar PCBs in eggs appears to be correlated to coplanar PCB presence in CAMS. The chorioallantoic membrane could serve as a biomarker of embryo exposure to coplanar PCBs.« less

  15. EEsoF MICAD and ACADEMY macro files for coplanar waveguide and finite ground plan coplanar waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1995-01-01

    A collection of macro files is presented which when appended to either the EEsoF MICAD.ELE or EEsoF ACADEMY.ELE file permits the layout of coplanar waveguide and finite ground plane coplanar waveguide circuits.

  16. Absorption enhancement in non-coplanar silver nanowire networks

    NASA Astrophysics Data System (ADS)

    He, Zhihui; Zhou, Zhiping; Ren, Xincheng; Bai, Shaomin; Li, Hongjian; Cao, Dongmei; Li, Gang; Cao, Guangtao

    2018-07-01

    We propose non-coplanar silver nanowire (AgNW) networks placed on a SiO2 layer. A notable absorption peak is observed in our proposed structure, and compared with the absorption of coplanar periodic AgNW networks and periodic AgNW gratings, the absorption performance of the non-coplanar AgNW networks demonstrates obvious advantages. It could be determined that the absorption ratio in this non-coplanar AgNW networks can reach 95%. In addition, several parameters that have important effects on the absorption of the non-coplanar AgNW networks are discussed in detail. Our research may provide guidance for the fundamental exploration of plasmonic absorption device applications.

  17. Utilizing Schottky barriers to suppress short-channel effects in organic transistors

    NASA Astrophysics Data System (ADS)

    Fernández, Anton F.; Zojer, Karin

    2017-10-01

    Transistors with short channel lengths exhibit profound deviations from the ideally expected behavior. One of the undesired short-channel effects is an enlarged OFF current that is associated with a premature turn on of the transistor. We present an efficient approach to suppress the OFF current, defined as the current at zero gate source bias, in short-channel organic transistors. We employ two-dimensional device simulations based on the drift-diffusion model to demonstrate that intentionally incorporating a Schottky barrier for injection enhances the ON-OFF ratio in both staggered and coplanar transistor architectures. The Schottky barrier is identified to directly counteract the origin of enlarged OFF currents: Short channels promote a drain-induced barrier lowering. The latter permits unhindered injection of charges even at reverse gate-source bias. An additional Schottky barrier hampers injection for such points of operations. We explain how it is possible to find the Schottky barrier of the smallest height necessary to exactly compensate for the premature turn on. This approach offers a substantial enhancement of the ON-OFF ratio. We show that this roots in the fact that such optimal barrier heights offer an excellent compromise between an OFF current diminished by orders of magnitude and an only slightly reduced ON current.

  18. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor

    PubMed Central

    Hammond, Jules L.; Rosamond, Mark C.; Sivaraya, Siva; Marken, Frank; Estrela, Pedro

    2016-01-01

    Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)−DNA binding events using dielectric spectroscopy with the horizontal coplanar device. PMID:27983655

  19. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Salman, Fadheela; Plant, Nick, E-mail: N.Plant@Surrey.ac.uk

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation ofmore » PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.« less

  20. SU-F-T-416: Dosimetric Comparison of Coplanar and Non-Coplanar IMRT Plans for Peripheral Lung Lesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, J; Zhang, S; Philbrook, S

    2016-06-15

    Purpose: The purpose of this study was to compare dosimetric parameters of treatment plans between coplanar and non-coplanar techniques for treating peripheral lung lesions. Methods: The planning CT scans of 6 patients in supine positions were used in this study. The size of the PTV ranges from 163 c.c. to 782 c.c.. The locations of PTV are mostly at the peripheral of Lung, some spreading to the mediastinum. For each patient, we generated two IMRT plans, one with and the other without non-coplanar beams. The non-coplanar beams were carefully selected so that the beams would never exit patient bodies throughmore » the contralateral lung. The IMRT plans were generated with Pinnacle 9.8 treatment planning software. The IMRT optimization objectives were kept the same for the corresponding pairs of plans. All plans were normalized such that 95% of PTV receives the prescription dose (full dose). Results: The conformity index (mean±standard deviation of the mean) is 1.49±0.14 and 1.58±0.23 for the coplanar and noncoplanar plans, respectively. The heterogeneity index (mean±standard deviation of the mean) is 7.74 ±2.33 and 6.34±1.40 for the coplanar and non-coplanar plans, respectively. The maximum heart dose is 60.94±6.22 and 60.42±7.21 Gy, and mean heart dose is 10.22 ±7.57, 9.07 ±6.32 Gy, for the coplanar and non-coplanar plans, respectively. The ipsilateral lung V20 is 48.0%±2.4% and 47.5%±3.3%, and V5 is 68.2%±10.0% and 69.1%±7.3%, for the coplanar and noncoplanar plans, respectively. Furthermore, with the non-coplanar beam arrangement, the contralateral lung V20 was reduced from 3.3%±3.7% to 1.3%±0.8%, and the contralateral Lung V5 is reduced significantly from 65.6%±9.3% to 33.5%±20.9% (p value =0.008). Conclusion: The IMRT plans with non-coplanar beam arrangement could reduce the exit dose to the contralateral lung, and therefore reduce the contralateral lung V5 significantly. This method is especially helpful while the lung lesion doesn’t have a symmetric shape.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Jeffrey Wayne

    An RFID backscatter interrogator for transmitting data to an RFID tag, generating a carrier for the tag, and receiving data from the tag modulated onto the carrier, the interrogator including a single grounded-coplanar wave-guide circuit board and at least one surface mount integrated circuit supported by the circuit board.

  2. Tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays for the coupling between localized and delocalized surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Xie, Ze Tao; Ni, Feng Chao; Ma, Qi Chang; Tao, Jin; Li, Jian; Meng, Hongyun; Huang, Xu Guang

    2018-07-01

    Graphene metasurface has attracted a lot of attentions due to the unique tunability for exotic electromagnetic properties. In this work, we propose and numerically investigate a tunable metasurface with two non-coplanar and inter-perpendicular graphene nanoribbon arrays. The variation of transmission at different substrate thickness and the coupled mode are analyzed. It is shown that the Rabi-like splitting can be achieved by the coupling between localized and delocalized graphene surface plasmon polaritons. Tunable coupling strength and positions with different gate-voltages have been discussed. The effect of relaxation time and oblique incidences to resonant responses are also investigated. Additionally, we find an optical analogue of a spring, where the spectral dip vibrates around its equilibrium position at a certain wavelength. Our study suggests that the proposed structure is potentially attractive for realization of tunable double-channel filter, optical switch, and variable optical attenuator based on the graphene metasurface.

  3. Application of the coplanar principle to dynamic epidural pressure measurements.

    PubMed

    Beck, J; Schettini, A; Salton, R

    1984-10-01

    The application of the coplanar principle to dynamic epidural pressure measurements was investigated in vitro. The authors used a coplanar pressure-displacement transducer, commonly employed to measure the viscoelastic properties of brain tissue in vivo. The present studies were performed using canine dura and a specially constructed fluid-filled chamber. The accuracy of the technique was assessed by comparing the pressure in the chamber recorded by the coplanar transducer to the pressure measured by a transducer directly vented to the chamber. The results show that the coplanar principle remained valid for dynamic measurements with the transducer under a variety of conditions.

  4. Dual-foci detection in photoacoustic computed tomography with coplanar light illumination and acoustic detection: a phantom study.

    PubMed

    Lin, Xiangwei; Liu, Chengbo; Meng, Jing; Gong, Xiaojing; Lin, Riqiang; Sun, Mingjian; Song, Liang

    2018-05-01

    A dual-foci transducer with coplanar light illumination and acoustic detection was applied for the first time. It overcame the small directivity angle, low-sensitivity, and large datasets in conventional circular scanning or array-based photoacoustic computed tomography (PACT). The custom-designed transducer is focused on both the scanning plane with virtual-point detection and the elevation direction for large field of view (FOV) cross-sectional imaging. Moreover, a coplanar light illumination and acoustic detection configuration can provide ring-shaped light irradiation with highly efficient acoustic detection, which in principle has a better adaptability when imaging samples of irregular surfaces. Phantom experiments showed that our PACT system can achieve high resolution (∼0.5  mm), enhanced signal-to-noise ratio (16-dB improvement), and a more complete structure in a greater FOV with an equal number of sampling points compared with the results from a flat aperture transducer. This study provides the proof of concept for the fabrication of a sparse array with the dual-foci property and large aperture size for high-quality, low-cost, and high-speed photoacoustic imaging. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor

    NASA Astrophysics Data System (ADS)

    Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.

    2017-12-01

    Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar

  6. Evaluation of microsurgical tasks with OCT-guided and/or robot-assisted ophthalmic forceps

    PubMed Central

    Yu, Haoran; Shen, Jin-Hui; Shah, Rohan J.; Simaan, Nabil; Joos, Karen M.

    2015-01-01

    Real-time intraocular optical coherence tomography (OCT) visualization of tissues with surgical feedback can enhance retinal surgery. An intraocular 23-gauge B-mode forward-imaging co-planar OCT-forceps, coupling connectors and algorithms were developed to form a unique ophthalmic surgical robotic system. Approach to the surface of a phantom or goat retina by a manual or robotic-controlled forceps, with and without real-time OCT guidance, was performed. Efficiency of lifting phantom membranes was examined. Placing the co-planar OCT imaging probe internal to the surgical tool reduced instrument shadowing and permitted constant tracking. Robotic assistance together with real-time OCT feedback improved depth perception accuracy. The first-generation integrated OCT-forceps was capable of peeling membrane phantoms despite smooth tips. PMID:25780736

  7. Spoof Surface Plasmon Polaritons Power Divider with large Isolation.

    PubMed

    Zhou, Shiyan; Lin, Jing-Yu; Wong, Sai-Wai; Deng, Fei; Zhu, Lei; Yang, Yang; He, Yejun; Tu, Zhi-Hong

    2018-04-13

    Periodic corrugated metal structure is designed to support and propagate spoof surface plasmon polaritons (SSPPs) wave in the microwave frequencies. In this paper, firstly a plasmonic waveguide consisting of oval-ring shaped cells is proposed with the performance of high transmission efficiency in a wide frequency range. The coplanar waveguides (CPWs) with 50 Ω impedance are adopted to feed the energies or extract signals at both ends of the plasmonic waveguide. Then a well-isolated power divider is constructed based on the SSPPs waveguides aiming to equally split the energy of the SSPPs wave into two equal parts. The stepped-impedances are co-designed with the three input/output ports of the power divider to achieve the impedance-matching between the SSPPs waveguides and the coplanar waveguides. Besides, a single resistor is placed in the middle of two symmetrical half oval-rings to realize the isolation between the two output ports over the spectrum of 4.5-7.5 GHz. Finally, both plasmonic waveguide and the power divider are fabricated and tested to verify the predicted characteristics.

  8. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time.

    PubMed

    Wild, Esther; Bangert, Mark; Nill, Simeon; Oelfke, Uwe

    2015-05-01

    The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. The authors' study reconfirms the dosimetric benefits of noncoplanar irradiation of nasopharyngeal tumors. Both SnS using optimized noncoplanar beam ensembles and VMAT using an optimized, arbitrary, noncoplanar trajectory enabled dose reductions in organs at risk compared to coplanar SnS and VMAT. Using great circles or simple couch rotations to implement noncoplanar VMAT, however, was not sufficient to yield meaningful improvements in treatment plan quality. The authors estimate that noncoplanar VMAT using arbitrary optimized irradiation trajectories comes at an increased delivery time compared to coplanar VMAT yet at a decreased delivery time compared to noncoplanar SnS IMRT.

  9. PCDDs, PCDFs, and coplanar PCBs in albatross from the North Pacific and Southern Oceans: levels, patterns, and toxicological implications.

    PubMed

    Tanabe, Shinsuke; Watanabe, Mafumi; Minh, Tu Binh; Kunisue, Tatsuya; Nakanishi, Shigeyuki; Ono, Hitoshi; Tanaka, Hiroyuki

    2004-01-15

    Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (coplanar PCBs) were determined in five albatross species collected from the North Pacific and Southern Oceans to assess the north-south differences in residue levels, accumulation patterns, and toxic potential. Black-footed and Laysan albatrosses from the North Pacific Ocean contained higher levels of PCDD/Fs and coplanar PCBs than albatrosses from the Southern Ocean, indicating that emission sources of these contaminants were predominant in the northern hemisphere. Residue levels in albatrosses from the remote North Pacific Ocean far from the point source of pollution were comparable to or higher than those in terrestrial and coastal birds from contaminated areas in developed nations, suggesting the specific exposure and accumulation of PCDD/Fs and coplanar PCBs in albatross. The long life span and ingestion of plastic resin pellets by albatrosses could be the plausible explanations for the elevated accumulation of persistent and lipophilic contaminants including PCDD/Fs and coplanar PCBs in these birds. Relative proportions of PCDFs and coplanar PCBs in albatross were higher than those observed in birds inhabiting terrestrial and coastal areas, suggesting that these toxic chemicals may have higher transportability by air and water than PCDDs. Congener patterns of PCDD/Fs in albatross showed less variability as compared to those in terrestrial species, indicating that contamination patterns of PCDD/Fs were similar within the open ocean environment. Contributions of PCDD/Fs to total TEQs in albatrosses from the open ocean were generally lower than those in terrestrial birds, suggesting different toxic potency of PCDD/Fs and coplanar PCBs on animals inhabiting open ocean and terrestrial environment. Whereas albatrosses from southern oceans retained lower TEQ concentrations, possible adverse effects of PCDD/Fs and coplanar PCBs to black-footed and Laysan albatrosses of the North Pacific Ocean may be suspected from TEQ levels.

  10. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark; Nill, Simeon

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directionsmore » and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. Conclusions: The authors’ study reconfirms the dosimetric benefits of noncoplanar irradiation of nasopharyngeal tumors. Both SnS using optimized noncoplanar beam ensembles and VMAT using an optimized, arbitrary, noncoplanar trajectory enabled dose reductions in organs at risk compared to coplanar SnS and VMAT. Using great circles or simple couch rotations to implement noncoplanar VMAT, however, was not sufficient to yield meaningful improvements in treatment plan quality. The authors estimate that noncoplanar VMAT using arbitrary optimized irradiation trajectories comes at an increased delivery time compared to coplanar VMAT yet at a decreased delivery time compared to noncoplanar SnS IMRT.« less

  11. IMRT for Image-Guided Single Vocal Cord Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, Sarah O.S., E-mail: s.osman@erasmusmc.nl; Astreinidou, Eleftheria; Boer, Hans C.J. de

    2012-02-01

    Purpose: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques. Methods and Materials: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRTmore » plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions. Results: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose {+-} standard deviation to the planning target volume was 67 {+-} 1 Gy. The contralateral vocal cord dose was reduced from 66 {+-} 1 Gy in the conventional plans to 39 {+-} 8 Gy and 36 {+-} 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk. Conclusions: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.« less

  12. Terrain Traversing Device Having a Wheel with Microhooks

    NASA Technical Reports Server (NTRS)

    Parness, Aaron (Inventor); McKenzie, Clifford F. (Inventor)

    2014-01-01

    A terrain traversing device includes an annular rotor element with a plurality of co-planar microspine hooks arranged on the periphery of the annular rotor element. Each microspine hook has an independently flexible suspension configuration that permits the microspine hook to initially engage an irregularity in a terrain surface at a preset initial engagement angle and subsequently engage the irregularity with a continuously varying engagement angle when the annular rotor element is rotated for urging the terrain traversing device to traverse a terrain surface.

  13. Optimizing Parking Orbits for Roundtrip Mars Missions

    NASA Technical Reports Server (NTRS)

    Qu, Min; Merill, Raymond G.; Chai, Patrick; Komar, David R.

    2017-01-01

    A roundtrip Mars mission presents many challenges to the design of a transportation system and requires a series of orbital maneuvers within Mars vicinity to capture, reorient, and then return the spacecraft back to Earth. The selection of a Mars parking orbit is crucial to the mission design; not only can the parking or-bit choice drastically impact the ?V requirements of these maneuvers but also it must be properly aligned to target desired surface or orbital destinations. This paper presents a method that can optimize the Mars parking orbits given the arrival and departure conditions from heliocentric trajectories, and it can also en-force constraints on the parking orbits to satisfy other architecture design requirements such as co-planar subperiapsis descent to planned landing sites, due east or co-planar ascent back to the parking orbit, or low cost transfers to and from Phobos and Deimos.

  14. A comparison of dioxins, dibenzofurans and coplanar PCBs in uncooked and broiled ground beef, catfish and bacon.

    PubMed

    Schecter, A; Dellarco, M; Päpke, O; Olson, J

    1998-01-01

    The primary source of dioxins (PCDDs), dibenzofurans (PCDFs) and coplanar PCBs for the general population is food, especially meat, fish, and dairy products. However, most data on the levels of these chemicals is from food in the raw or uncooked state. We report here the effect of one type of cooking (broiling) on the levels of PCDDs, PCDFs, and coplanar PCBs in ground beef (hamburger), bacon and catfish. Samples of hamburger, bacon, and catfish were broiled and compared to uncooked samples in order to measure changes in the amounts of dioxins in cooked food. The total amount of PCDD, PCDF, and coplanar PCB TEQ decreased by approximately 50% on average for each portion as a result of broiling the hamburger, bacon and catfish specimens. The mean concentration (pg TEQ/kg, wet weight) of PCDDs, PCDFs, and coplanar PCBs, however, remained the same in the hamburger, increased by 83% in the bacon, and decreased by 34% in the catfish. On average, the total measured concentration (pg/kg) of the congeners of PCDDs, PCDFs, and coplanar PCBs increased 14% in the hamburger, increased 29% in the bacon, and decreased 33% in the catfish.

  15. Kinematic Methods of Designing Free Form Shells

    NASA Astrophysics Data System (ADS)

    Korotkiy, V. A.; Khmarova, L. I.

    2017-11-01

    The geometrical shell model is formed in light of the set requirements expressed through surface parameters. The shell is modelled using the kinematic method according to which the shell is formed as a continuous one-parameter set of curves. The authors offer a kinematic method based on the use of second-order curves with a variable eccentricity as a form-making element. Additional guiding ruled surfaces are used to control the designed surface form. The authors made a software application enabling to plot a second-order curve specified by a random set of five coplanar points and tangents.

  16. Coplanar Waveguide Radial Line Double Stub and Application to Filter Circuits

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1993-01-01

    Coplanar waveguide (CPW) and grounded coplanar waveguide (GCPW) radial line double stub resonators are experimentally characterized with respect to stub radius and sector angle. A simple closed-form design equation, which predicts the resonance radius of the stub, is presented. Use of a double stub resonator as a lowpass filter or as a harmonic suppression filter is demonstrated, and design rules are given.

  17. SU-F-BRB-04: Comparison of Coplanar VMAT, Non-Coplanar VMAT, and 4π Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, K; Nguyen, D; Tran, A

    2015-06-15

    Purpose: The 4π non-coplanar radiotherapy delivery technique has demonstrated significantly better normal tissue sparing and dose conformality than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The non-coplanar basis of 4π is incorporated into VMAT treatment planning to compare its effect on plan quality. Methods: Clinical stereotactic body radiation therapy plans for 9 liver patients treated with 30–60 Gy using coplanar VMAT (cVMAT) were re-planned using non-coplanar VMAT (nVMAT) with 3 arcs and 4 π with 20 intensity-modulated non-coplanarmore » fields. All plans were optimized to deliver 100% of the prescribed dose to 95% of the planning target volume (PTV), and nVMAT and 4π plans were tailored to match the maximum and mean PTV dose from the clinical plan. The conformality index (CI), 50% dose spillage volume (R50), normal liver volume receiving >15 Gy (VL>15), and doses to organs at risk (OARs) were compared for all three treatment plans. Results: Compared to cVMAT, the nVMAT and 4π plans reduced VL>15 by an average of 30.6 cm3 and 96.3 cm3, respectively. The average CI was also reduced from 1.22 (cVMAT) to 1.17 (nVMAT) and 1.14 (4π), indicating higher conformality in the same order. Similarly, R50 was reduced from 3.87 (cVMAT) to 3.58 (nVMAT) and 2.74 (4π). With the exception of the mean right kidney dose, which increased by an average of only 0.6 Gy for nVMAT, the dose differences to OARs were not statistically significant between the two VMAT plans. 4π plans either significantly decreased or maintained OAR doses. Conclusion: While the manual selection of intuitive non-coplanar arcs does show some improvement over coplanar VMAT, the automated beam selection for 4π still results in superior plan quality. This project is supported in part by Varian Medical Systems and NIH R43 CA183390.« less

  18. SU-E-T-217: Comprehensive Dosimetric Evaluation On 3D-CRT, IMRT and Non-Coplanar Arc Treatment for Prone Accelerated Partial Breast Irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Yan, Y; Ramirez, E

    2015-06-15

    Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less

  19. Pulse-shape discrimination of surface events in CdZnTe detectors for the COBRA experiment

    NASA Astrophysics Data System (ADS)

    Fritts, M.; Tebrügge, J.; Durst, J.; Ebert, J.; Gößling, C.; Göpfert, T.; Gehre, D.; Hagner, C.; Heidrich, N.; Homann, M.; Köttig, T.; Neddermann, T.; Oldorf, C.; Quante, T.; Rajek, S.; Reinecke, O.; Schulz, O.; Timm, J.; Wonsak, B.; Zuber, K.

    2014-06-01

    Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.

  20. An Experimental and Numerical Study on Cracking Behavior of Brittle Sandstone Containing Two Non-coplanar Fissures Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Tian, Wen-Ling; Huang, Yan-Hua; Ranjith, P. G.; Ju, Yang

    2016-04-01

    To understand the fracture mechanism in all kinds of rock engineering, it is important to investigate the fracture evolution behavior of pre-fissured rock. In this research, we conducted uniaxial compression experiments to evaluate the influence of ligament angle on the strength, deformability, and fracture coalescence behavior of rectangular prismatic specimens (80 × 160 × 30 mm) of brittle sandstone containing two non-coplanar fissures. The experimental results show that the peak strength of sandstone containing two non-coplanar fissures depends on the ligament angle, but the elastic modulus is not closely related to the ligament angle. With the increase of ligament angle, the peak strength decreased at a ligament angle of 60°, before increasing up to our maximum ligament angle of 120°. Crack initiation, propagation, and coalescence were all observed and characterized from the inner and outer tips of pre-existing non-coplanar fissures using photographic monitoring. Based on the results, the sequence of crack evolution in sandstone containing two non-coplanar fissures was analyzed in detail. In order to fully understand the crack evolution mechanism of brittle sandstone, numerical simulations using PFC2D were performed for specimens containing two non-coplanar fissures under uniaxial compression. The results are in good agreement with the experimental results. By analyzing the stress field, the crack evolution mechanism in brittle sandstone containing two non-coplanar fissures under uniaxial compression is revealed. These experimental and numerical results are expected to improve the understanding of the unstable fracture mechanism of fissured rock engineering structures.

  1. Electrical isolation, thermal stability and rf loss in a multilayer GaAs planar doped barrier diode structure bombarded by H+ and Fe+ ions

    NASA Astrophysics Data System (ADS)

    Vo, V. T.; Koon, K. L.; Hu, Z. R.; Dharmasiri, C. N.; Subramaniam, S. C.; Rezazadeh, A. A.

    2004-04-01

    Electrical isolation in multilayer GaAs planar doped barrier (PDB) diode structures produced by H+ and Fe+ ion implantation were investigated. For an H+ bombardment with a dose of 1×1015cm-2, a sheet resistivity as high as 3×108 Ω/sq and thermal stability up to 400 °C has been achieved. For samples bombarded by Fe+ ions, a similar high sheet resistivity has also been achieved although a longer annealing time (15 min) and a higher annealing temperature (550 °C) were needed. The rf dissipation losses of coplanar waveguide (CPW) "thru" lines fabricated on bombarded multilayer PDBD structure samples were also examined. The measured rf losses were 1.65 dB/cm at 10 GHz and 3 dB/cm at 40 GHz, similar to the values that a CPW line exhibits on a semi-isolating GaAs substrate.

  2. Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen

    2018-05-01

    We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.

  3. Do π-conjugative effects facilitate SN2 reactions?

    PubMed

    Wu, Chia-Hua; Galabov, Boris; Wu, Judy I-Chia; Ilieva, Sonia; Schleyer, Paul von R; Allen, Wesley D

    2014-02-26

    Rigorous quantum chemical investigations of the SN2 identity exchange reactions of methyl, ethyl, propyl, allyl, benzyl, propargyl, and acetonitrile halides (X = F(-), Cl(-)) refute the traditional view that the acceleration of SN2 reactions for substrates with a multiple bond at Cβ (carbon adjacent to the reacting Cα center) is primarily due to π-conjugation in the SN2 transition state (TS). Instead, substrate-nucleophile electrostatic interactions dictate SN2 reaction rate trends. Regardless of the presence or absence of a Cβ multiple bond in the SN2 reactant in a series of analogues, attractive Cβ(δ(+))···X(δ(-)) interactions in the SN2 TS lower net activation barriers (E(b)) and enhance reaction rates, whereas repulsive Cβ(δ(-))···X(δ(-)) interactions increase E(b) barriers and retard SN2 rates. Block-localized wave function (BLW) computations confirm that π-conjugation lowers the net activation barriers of SN2 allyl (1t, coplanar), benzyl, propargyl, and acetonitrile halide identity exchange reactions, but does so to nearly the same extent. Therefore, such orbital interactions cannot account for the large range of E(b) values in these systems.

  4. Parametric Phase-Sensitive Detector Using Two-cell SQUID

    DTIC Science & Technology

    2010-08-01

    an attenuator of -20 dB. The microwave was fed into the coplanar resonator by a coplanar capacitance of 9 fF, and corresponding response was coupled...transmission line between the two coupled coplanar capacitances . With a network analyzer, the resonant frequency was confirmed to be 8.985 GHz and the...microwave directional sensors based on two-cell SQUIDs. Two SQUID circuits with different values of McCumber parameter βc have been tested. Observed

  5. Efficient Charge Collection in Coplanar-Grid Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Kunc, J.; Praus, P.; Belas, E.; Dědič, V.; Pekárek, J.; Grill, R.

    2018-05-01

    We model laser-induced transient-current waveforms in radiation coplanar-grid detectors. Poisson's equation is solved by the finite-element method and currents induced by a photogenerated charge are obtained using the Shockley-Ramo theorem. The spectral response on a radiation flux is modeled by Monte Carlo simulations. We show a 10 × improved spectral resolution of the coplanar-grid detector using differential signal sensing. We model the current waveform dependence on the doping, depletion width, diffusion, and detector shielding, and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data, and further model simplifications are proposed. The space charge below electrodes and a nonhomogeneous electric field on a coplanar-grid anode are found to be the dominant contributions to laser-induced transient-current waveforms.

  6. Design and performance of a high-Tc superconductor coplanar waveguide filter

    NASA Technical Reports Server (NTRS)

    Chew, Wilbert; Riley, A. L.; Rascoe, Daniel L.; Hunt, Brian D.; Foote, Marc C.; Cooley, Thomas W.; Bajuk, Louis J.

    1991-01-01

    The design of a coplanar waveguide low-pass filter made of YBa2Cu3O(7-delta) (YBCO) on an LaAlO3 substrate is described. Measurements were incorporated into simple models for microwave CAD analysis to develop a final design. The patterned and packaged coplanar waveguide low-pass filter of YBCO, with dimensions suited for integrated circuits, exhibited measured insertion losses when cooled in liquid nitrogen superior to those of a similarly cooled thin-film copper filter throughout the 0 to 9.5 GHz passband. Coplanar waveguide models for use with thin-film normal metal (with thickness either greater or less than the skin depth) and YBCO are discussed and used to compare the losses of the measured YBCO and copper circuits.

  7. Ac electroosmotic flows above coplanar electrodes

    NASA Astrophysics Data System (ADS)

    Kweon Suh, Yong

    2009-03-01

    Interactive numerical method has been proposed to calculate the ac electroosmotic flows above a pair of coplanar electrodes. The thin electrical triple layer (ETL) has been modeled by an asymptotic theory developed by the authors. The model corresponds to a simple dynamic equation for the surface charge density representing the integrated charge over the inner layer. Interactive calculation of the dynamic equation and the Laplace equation for several periods of ac frequency then yielded steady-state distribution of potential and the potential drop across the Stern and inner layers. The Smoluchowski's slip velocity was then determined from those two set of data and used as the boundary condition for the calculation of the Stokes' flow above the electrodes. We have shown that our solutions compared well with the experimental data reported in the literature. We investigated the effect of various parameters on the slip velocity distribution, such as the ac frequency, the electrode length, the effective Stern-layer thickness and the adsorption coefficients.

  8. Design aspects and comparison between high Tc superconducting coplanar waveguide and microstrip line

    NASA Technical Reports Server (NTRS)

    Kong, K. S.; Bhasin, K. B.; Itoh, T.

    1991-01-01

    The high T sub c superconducting microstrip line and coplanar waveguide are compared in terms of the loss characteristics and the design aspects. The quality factor Q values for each structure are compared in respect to the same characteristic impedance with the comparable dimensions of the center conductor of the coplanar waveguide and the strip of the microstrip line. Also, the advantages and disadvantages for each structure are discussed in respect to passive microwave circuit applications.

  9. Design and Measurement of Self-Matched, Dual-Frequency Coplanar-Waveguide-Fed Slot Antennas

    NASA Technical Reports Server (NTRS)

    Omar, Amjad A.; Scardelletti, Maxmilian C.; Hejazi, Zuhair M.; Dib, Nihad

    2007-01-01

    This report presents two new designs of dual-frequency, coplanar-waveguide-fed, double-folded slot antennas. An important advantage of these antennas is that, because they are self-matched to the feeding coplanar waveguide, they do not need an external matching circuit. This reduces the antenna size and simplifies its design. To verify the designs, the authors measured and compared the return loss and radiation patterns with those obtained using available commercial software with good agreement. Dual-frequency slot antennas;

  10. Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d.

    PubMed

    Doxey, Andrew C; Cheng, Zhenyu; Moffatt, Barbara A; McConkey, Brendan J

    2010-08-03

    Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB) for coplanar aromatic motifs similar to those found in known glycan-binding proteins. The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO) enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192) in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.

  11. General technique for the integration of MIC/MMIC'S with waveguides

    NASA Technical Reports Server (NTRS)

    Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)

    1987-01-01

    A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.

  12. Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry

    NASA Astrophysics Data System (ADS)

    Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.

    2003-10-01

    The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.

  13. Coplanar monolithic integrated circuits for low-noise communication and radar systems

    NASA Astrophysics Data System (ADS)

    Bessemoulin, Alexandre; Verweyen, Ludger; Marsetz, Waldemar; Massler, Hermann; Neumann, Markus; Hulsmann, Axel; Schlechtweg, Michael

    1999-12-01

    This paper presents coplanar millimeter-wave monolithic integrated circuits with high performance and small size for use in low noise communication and radar system applications. Technology and modeling issues with respect to active and passive elements are discussed first. In a second step, the potential of coplanar waveguides to realize compact ICs is illustrated through various design examples, such as low noise amplifiers, mixers and power amplifiers. The performance of multifunctional ICs is also presented by comparing simulated and measured results for a complete 77 GHz Transceive MMIC.

  14. SU-F-T-649: Dosimetric Evaluation of Non-Coplanar Arc Therapy Using a Novel Rotating Gamma Ray System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Chibani, O; Jin, L

    2016-06-15

    Purpose: Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. Methods: The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plansmore » were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. Results: The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.« less

  15. Finite Ground Coplanar (FGC) Waveguide: It's Characteristics and Advantages for Use in RF and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1998-01-01

    To solve many of the problems encountered when using conventional coplanar waveguide (CPW) with its semi-infinite ground planes, a new version of coplanar waveguide with electrically narrow ground planes has been developed. This new transmission line which we call Finite Ground Coplanar (FGC) waveguide has several advantages which make it a better transmission line for RF and wireless circuits. Since the ground planes are electrically narrow, spurious resonances created by the CPW ground planes and the metal carrier or package base are eliminated. In addition, lumped and distributed circuit elements may now be integrated into the ground strips in the same way as they traditionally have been integrated into the center conductor to realize novel circuit layouts that are smaller and have less parasitic reactance. Lastly, FGC is shown to have lower coupling between adjacent transmission lines than conventional CPW.

  16. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    PubMed

    Salman, Karrar Naji; Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  17. A new unified approach to analyze wing-body-tail configurations with control surfaces in steady, oscillatory and fully unsteady, subsonic and supersonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.

  18. Concentric Coplanar Capacitive Sensor System with Quantitative Model

    NASA Technical Reports Server (NTRS)

    Chen, Tianming (Inventor); Bowler, Nicola (Inventor)

    2014-01-01

    A concentric coplanar capacitive sensor includes a charged central disc forming a first electrode, an outer annular ring coplanar with and outer to the charged central disc, the outer annular ring forming a second electrode, and a gap between the charged central disc and the outer annular ring. The first electrode and the second electrode may be attached to an insulative film. A method provides for determining transcapacitance between the first electrode and the second electrode and using the transcapacitance in a model that accounts for a dielectric test piece to determine inversely the properties of the dielectric test piece.

  19. Cockpit Displays to Support Hazard Awareness in Free Flight

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Carbonari, Ron; Merwin, Dave; Morphew, Ephimia; OBrien, Janelle V.

    1997-01-01

    Three experiments are described which each examine different aspects of the formatting and integration of cockpit displays of traffic information to support pilots in traffic avoidance planning. The first two experiments compared two-dimensional (coplanar) with three-dimensional (perspective) versions of a cockpit display of traffic information. In Experiment 1, 30 certified flight instructors flew a series of traffic conflict detection and avoidance maneuvers around an intruder aircraft, sometimes in the presence of a second intruder. The results revealed an advantage for the coplanar display, particularly when there was vertical intruder behavior. In Experiment 2, 17 instructors flew with the coplanar and perspective formats when weather information was either overlaid or displayed separately. Again performance was best with the coplanar display, particularly when the weather data were overlaid. The results of both experiments are also discussed in ten-ns of the traffic maneuver stereotypes exhibited by the pilots. Experiment 3 examined the benefits of the two different predictor elements used in the coplanar displays of Experiments 1 and 2. The study was carried out in a multitask context. These elements were both found to improve safety (reduce actual and predicted conflicts) and to reduce workload, although the different elements affected workload in different ways. Neither predictor element imposed a cost to concurrent task performance.

  20. Evaluation of Perspective and Coplanar Cockpit Displays of Traffic Information to Support Hazard Awareness in Free Flight

    NASA Technical Reports Server (NTRS)

    Merwin, David H.; Wickens, Christopher D.

    1996-01-01

    We examined the cockpit display representation of traffic, to support the pilot in tactical planning and conflict avoidance. Such displays may support the "free flight" concept, but can also support greater situation awareness in a non-free flight environment. Two perspective views and a coplanar display were contrasted in scenarios in which pilots needed to navigate around conflicting traffic, either in the absence (low workload) or presence (high workload) of a second intruder aircraft. All three formats were configured with predictive aiding vectors that explicitly represented the predicted point of closest pass, and predicted penetration of an alert zone around ownship. Ten pilots were assigned to each of the display conditions, and each flew a series of 60 conflict maneuvers that varied in their workload and the complexity of the conflict geometry. Results indicated a tendency to choose vertical over lateral maneuvers, a tendency which was amplified with the coplanar display. Vertical maneuvers by the intruder produced an added source of workload. Importantly, the coplanar display supported performance in all measures that was equal to or greater than either of the perspective displays (i.e., fewer predicted and actual conflicts, less extreme maneuvers). Previous studies that have indicated perspective superiority have only contrasted these with UNIplanar displays rather than the coplanar display used here.

  1. S,N-Heteroacene-Based Copolymers for Highly Efficient Organic Field Effect Transistors and Organic Solar Cells: Critical Impact of Aromatic Subunits in the Ladder π-System.

    PubMed

    Chung, Chin-Lung; Chen, Hsieh-Chih; Yang, Yun-Siou; Tung, Wei-Yao; Chen, Jian-Wei; Chen, Wen-Chang; Wu, Chun-Guey; Wong, Ken-Tsung

    2018-02-21

    Three novel donor-acceptor alternating polymers containing ladder-type pentacyclic heteroacenes (PBo, PBi, and PT) are synthesized, characterized, and further applied to organic field effect transistors (OFETs) and polymer solar cells. Significant aspects of quinoidal characters, electrochemical properties, optical absorption, frontier orbitals, backbone coplanarity, molecular orientation, charge carrier mobilities, morphology discrepancies, and the corresponding device performances are notably different with various heteroarenes. PT exhibits a stronger quinoidal mesomeric structure, linear and coplanar conformation, smooth surface morphology, and better bimodal crystalline structures, which is beneficial to extend the π-conjugation and promotes charge transport via 3-D transport pathways and in consequence improves overall device performances. Organic photovoltaics based on the PT polymer achieve a power conversion efficiency of 6.04% along with a high short-circuit current density (J SC ) of 14.68 mA cm -2 , and a high hole mobility of 0.1 cm 2 V -1 s -1 is fulfilled in an OFET, which is superior to those of its counterparts, PBi and PBo.

  2. Characterization of the dominant loss mechanisms in superconducting coplanar waveguide resonators

    NASA Astrophysics Data System (ADS)

    Calusine, Greg; Melville, Alexander; Woods, Wayne; Kim, David K.; Miloshi, Xhovalin; Sevi, Arjan; Yoder, Jonilyn; Oliver, William D.

    The characterization of losses in superconducting coplanar waveguide (CPW) resonators is commonly used as a surrogate means to probe relaxation in superconducting qubit capacitor structures. However, this method is complicated by device-to-device variations that result from a sensitivity to variations in fabrication processes, packaging, and measurement methods. We present results on characterizing ensembles of aluminum, niobium, and titanium nitride superconducting CPW resonators to determine the statistical significance of the effects of fabrication process changes on resonator intrinsic quality factor. Furthermore, we report progress on experiments aimed at determining the impact of other competing loss mechanisms such as vortex trapping, package coupling, and substrate loss. These results are then applied to the study of relaxation in superconducting qubits and investigations into the microscopic origins of surface losses. This research was funded in part by the Intelligence Advanced Research Projects Activity (IARPA). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA or the US Government.

  3. Synthesis, characterization stereochemistry and anti-bacterial evaluation of certain N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Kayalvizhi, R.; Jamesh, M.; Uma Maheswari, J.; Thenmozhi, M.; Ponnuswamy, M. N.

    2016-09-01

    A new series of N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones 2-6 has been synthesized and characterized using IR, mass, 1H, 13C, DEPT and 2D (COSY and HSQC) NMR spectral techniques. The NMR spectral data indicate that the N-acylpiperidin-4-ones 2-6 prefer to exist in a distorted boat conformation B1 with coplanar orientation of N-C=O moiety. The stereodynamics of these systems have been studied by recording the dynamic 1H NMR spectra of compound 4, and the energy barrier for N-CO rotation is determined to be 52.75 kJ/mol. Furthermore the compounds 1-5 show significant antibacterial activity.

  4. The effect of internal rotation in p-methyl anisole studied by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferres, Lynn; Stahl, Wolfgang; Kleiner, Isabelle; Nguyen, Ha Vinh Lam

    2018-01-01

    The Fourier transform microwave spectrum of p-methyl anisole, CH3C6H4OCH3, was measured in the frequency range from 2 to 26.5 GHz under molecular jet conditions. The conformational analysis yielded only one stable conformer, in which all heavy atoms are co-planar, and which was identified after analyzing the spectrum by comparison with the results from quantum chemical calculations. The barrier of the V3 potential of the ring methyl rotor was found to be 49.6370(1) cm-1, and was compared with that found in other para-substituted toluenes as well as in o-methyl anisole. A comparison between two theoretical approaches treating internal rotations, the rho axis method (program BELGI-Cs) and combined axis method (program XIAM), was also performed.

  5. Ultrafast photocurrents in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Parzinger, Eric; Wurstbauer, Ursula; Holleitner, Alexander W.

    Two-dimensional transition metal dichalcogenides such as MoS2 have emerged as interesting materials for optoelectronic devices. In particular, the ultrafast dynamics and lifetimes of photoexcited charge carriers have attracted great interest during the last years. We investigate the photocurrent response of monolayer MoS2 on a picosecond time scale utilizing a recently developed pump-probe spectroscopy technique based on coplanar striplines. We discuss the ultrafast dynamics within MoS2 including photo-thermoelectric currents and the impact of built-in fields due to Schottky barriers as well as the Fermi level pinning at the contact region. We acknowledge support by the ERC via Project 'NanoREAL', the DFG via excellence cluster 'Nanosystems Initiative Munich' (NIM), and through the TUM International Graduate School of Science and Engineering (IGSSE) and BaCaTeC.

  6. DISTRIBUTION OF DIOXINS, FURANS, AND COPLANAR PCBS IN DIFFERENT FAT MATRICES IN CATTLE

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) and the United States Department of Agriculture (USDA) recently collaborated on a statistically-based, national survey of dioxin-like compounds, including dioxins, furans, and coplanar PCBs, in the back fat from slaughtered ...

  7. Magnetic resonance imaging of the long head of the biceps tendon: benefit of coplanar image.

    PubMed

    Lin, Anderson; Ting, Julius; Lee, Kwo-Whei

    2007-01-01

    To evaluate coplanar imaging of the long head of the biceps tendon. We retrospectively compared coronal oblique magnetic resonance images aligned with the principal supraspinatus tendon and with the intra-articular biceps tendon in 21 patients. Magnetic resonance images were analyzed for lesions depicted, including superior labral anteroposterior (SLAP) tears. Arthroscopic findings were reviewed. Coronal oblique images aligned with intra-articular biceps tendon depicted 18 (86%) of 21 coplanar intra-articular biceps tendons. Coplanar images identified 6 cases of tendinosis, 1 tear, 3 intra-articular ruptures, and 20 (95.2%) of 21 exact origins of the tendon. Arthroscopy revealed 18 SLAP tears. The detection of SLAP lesions between both coronal oblique magnetic resonance images was significantly different (P = 0.007). Advantages included imaging of the intra-articular biceps tendon with least partial-volume effects, definition of SLAP lesions and the tendinous origin at the supraglenoid tubercle, depiction of intra-articular bicipital ruptures, and increased sensitivity and specificity for intra-articular lesions.

  8. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications

    PubMed Central

    Ismail, Alyani; Raja Abdullah, Raja Syamsul Azmir; Saeedi, Tale

    2017-01-01

    In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860–960 MHz) based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations. PMID:28570706

  9. Terrain Traversing Device Having a Wheel with Microhooks

    NASA Technical Reports Server (NTRS)

    Wiltsie, Nicholas (Inventor); Carpenter, Kalind C. (Inventor); Parness, Aaron (Inventor)

    2015-01-01

    A terrain traversing device is described. The device includes an annular rotor element with a plurality of co-planar microspine hooks arranged on the periphery of the annular rotor element. Each microspine hook has an independently flexible suspension configuration that permits the microspine hook to initially engage an irregularity in a terrain surface at a preset initial engagement angle and subsequently engage the irregularity with a continuously varying engagement angle when the annular rotor element is rotated for urging the terrain traversing device to traverse a terrain surface. Improvements related to the design, fabrication and use of the microspine hooks in the device are also described.

  10. Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays

    NASA Astrophysics Data System (ADS)

    Goodrick, L.

    2015-03-01

    Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The CLEAN algorithm is an iterative two-dimensional deconvolution method that can further improve image fidelity by removing the effects of the point spread function which can obscure source data.

  11. SU-D-BRB-01: A Comparison of Learning Methods for Knowledge Based Dose Prediction for Coplanar and Non-Coplanar Liver Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, A; Ruan, D; Woods, K

    Purpose: The predictive power of knowledge based planning (KBP) has considerable potential in the development of automated treatment planning. Here, we examine the predictive capabilities and accuracy of previously reported KBP methods, as well as an artificial neural networks (ANN) method. Furthermore, we compare the predictive accuracy of these methods on coplanar volumetric-modulated arc therapy (VMAT) and non-coplanar 4π radiotherapy. Methods: 30 liver SBRT patients previously treated using coplanar VMAT were selected for this study. The patients were re-planned using 4π radiotherapy, which involves 20 optimally selected non-coplanar IMRT fields. ANNs were used to incorporate enhanced geometric information including livermore » and PTV size, prescription dose, patient girth, and proximity to beams. The performance of ANN was compared to three methods from statistical voxel dose learning (SVDL), wherein the doses of voxels sharing the same distance to the PTV are approximated by either taking the median of the distribution, non-parametric fitting, or skew-normal fitting. These three methods were shown to be capable of predicting DVH, but only median approximation can predict 3D dose. Prediction methods were tested using leave-one-out cross-validation tests and evaluated using residual sum of squares (RSS) for DVH and 3D dose predictions. Results: DVH prediction using non-parametric fitting had the lowest average RSS with 0.1176(4π) and 0.1633(VMAT), compared to 0.4879(4π) and 1.8744(VMAT) RSS for ANN. 3D dose prediction with median approximation had lower RSS with 12.02(4π) and 29.22(VMAT), compared to 27.95(4π) and 130.9(VMAT) for ANN. Conclusion: Paradoxically, although the ANNs included geometric features in addition to the distances to the PTV, it did not perform better in predicting DVH or 3D dose compared to simpler, faster methods based on the distances alone. The study further confirms that the prediction of 4π non-coplanar plans were more accurate than VMAT. NIH R43CA183390 and R01CA188300.« less

  12. Low energy electron-impact ionization of hydrogen atom for coplanar equal-energy-sharing kinematics in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Song Bin; Ye, Bang Jiao; Wang, Jian Guo; Janev, R. K.

    2016-12-01

    Low energy electron-impact ionization of hydrogen atom in Debye plasmas has been investigated by employing the exterior complex scaling method. The interactions between the charged particles in the plasma have been represented by Debye-Hückel potentials. Triple differential cross sections (TDCS) in the coplanar equal-energy-sharing geometry at an incident energy of 15.6 eV for different screening lengths are reported. As the screening strength increases, TDCS change significantly. The evolutions of dominant typical peak structures of the TDCS are studied in detail for different screening lengths and for different coplanar equal-energy-sharing geometries.

  13. Intelligent mapping of alluvial aquifer characteristics in the Otago region, New Zealand

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Rawlinson, Zara; Westerhoff, Rogier

    2015-04-01

    We adopt a hybrid approach to map the 3D hydrostratigraphy of an alluvial aquifer using big data collected in the Ettrick basin, Otago New Zealand. First, a subset (1%) of the 18 million regional helicopter frequency-domain electromagnetic (HEM) sounding measurements (300 Hz, Horizontal co-planar; 3300 Hz, vertical co-planar; 8200 Hz, horizontal co-planar; 40 kHz, horizontal co-planar; 137 kHz horizontal coplanar) and their numerically-inverted 1D resistivity (50¬-100 Ω-m) profiles are randomly split. For example, 50% of these data are used for training an unsupervised machine-learning (ML) network, and 50% of these data are used for performance at independent locations. The remaining set of HEM measurements are then presented to the vetted ML network to estimate regional resistivity structure which is compared to previously inverted resistivity. Second, about 50 borehole autocorrelation functions are computed based on cross-component correlations of quantized borehole locations sampled for lithology and HEM sounding data. Third, an unsupervised ML network is trained and performance tested using sparse borehole lithology (fractions of sand, silt, clay, mudstone, schist) and hydraulic properties (storage, hydraulic conductivity), and those HEM sounding data occurring within a radius defined by the maximum borehole autocorrelation distances. Fourth, this ML network is then used together with independent HEM sounding measurements to map the spatial distribution of physical aquifer properties and hydraulic properties across the basin.

  14. New coplanar waveguide to rectangular waveguide end launcher

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1992-01-01

    A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.

  15. Dielectrophoretic capture of low abundance cell population using thick electrodes.

    PubMed

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-09-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).

  16. Second-order Born calculation of coplanar symmetric (e, 2e) process on Mg

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Zhi; Wang, Yang; Zhou, Ya-Jun

    2014-06-01

    The second-order distorted wave Born approximation (DWBA) method is employed to investigate the triple differential cross sections (TDCS) of coplanar doubly symmetric (e, 2e) collisions for magnesium at excess energies of 6 eV-20 eV. Comparing with the standard first-order DWBA calculations, the inclusion of the second-order Born term in the scattering amplitude improves the degree of agreement with experiments, especially for backward scattering region of TDCS. This indicates that the present second-order Born term is capable to give a reasonable correction to DWBA model in studying coplanar symmetric (e, 2e) problems of two-valence-electron target in low energy range.

  17. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  18. Preliminary report on electromagnetic model studies

    USGS Publications Warehouse

    Frischknecht, F.C.; Mangan, G.B.

    1960-01-01

    More than 70 resopnse curves for various models have been obtained using the slingram and turam electromagnetic methods. Results show that for the slingram method, horizontal co-planar coils are usually more sensitive than vertical, co-axial or vertical, co-planar coils. The shape of the anomaly usually is simpler for the vertical coils.

  19. Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptic Coplanar Orbits

    NASA Technical Reports Server (NTRS)

    daSilvaFernandes, Sandro; dasChagasCarvalho, Francisco

    2007-01-01

    In this work, a complete first order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through Hamilton-Jacobi theory and a perturbation method based on Lie series.

  20. Levels of coplanar PCBs in human breast milk at different times of lactation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, M.J.; Ramos, L.; Hernandez, L.M.

    PCBs are a highly lipophilic group of global pollutants, consisting of 209 congeners which exhibit wide differences in their toxic and biological effects. The coplanar PCB (non-, mono- and di-ortho Chlorine substituted) congeners, the most toxic ones, induce similar toxic effects as 2,3,7,8 TCDD. Thus for risk assessment of exposure to PCBs, the analysis of these coplanar congeners is required. The PCB levels in human breast milk are of specific concern because of the potential health damage which may be caused to the nursing baby. The PCB levels in this sample come from previously accumulated quantities in body fat whosemore » principal source is food, and pass directly to the nursing baby who accumulates the PCBs in adipose tissue. The amount of total PCBs and other organochlorine compounds (OCC) in human milk at different time intervals after birth was reported earlier, but data concerning individual and coplanar PCBs are sparse in the literature. The results from some studies showed a gradual decrease of residual levels in milk and milk fat. However, other research has shown differences in this respect. We present our first result concerning the concentration of 14 individual PCBs (13 coplanars) in breast milk from the same mother, during weeks 8 to 12 of lactation. We related the different concentration variations observed among the individual PCBs to their molecular structure and % fat in human breast milk. 17 refs., 1 fig., 2 tabs.« less

  1. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  2. The looped adhesive strip: An example of coplanar delamination interaction

    NASA Technical Reports Server (NTRS)

    Bottega, W. J.

    1990-01-01

    The phenomenon of peeling and debonding of thin layers is a subject of interest to those concerned with adhesives, thin films, and layered materials. In recent years much attention has been focused on such problems as a result of increased interest and application of advanced composites and thin film coatings. A related problem which is of interest for its own sake but also represents a simple example of a tangled adhesive strip and of coplanar delamination interaction, is the problem of a looped adhesive strip. This is the subject of the present study. Researchers consider here the problem of an elastic strip which possesses an adherend on (at least) one of its surfaces. If the strip is deformed so that two portions of such a surface are brought into contact, a position of the strip becomes bonded and a loop is formed. Researchers are interested in determining the equilibrium configuration of such a strip and investigating the behavior of the strip when its edges are pulled apart. The problem is approached as a moving interior boundary problem in the calculus of variations with the strip modeled as an inextensible elastica and the bond strength characterized by its surface energy. A Griffith type energy criterion is employed for debonding, and solutions corresponding to the problem of interest obtained. The solution obtained will be seen to predict the interesting phenomenon of bond point propagation, as well as the more standard peeling type behavior. Numerical results demonstrating the phenomena of interest are presented as well and will be seen to reveal both stable and unstable propagation of the boundaries of the bonded portion of the strip, depending upon the loading conditions.

  3. A Survey of Polychlorinated Dibenzo-p-dioxins, Polychlorinated Dibenzofurans and Co-planar Polychlorinated Biphenyls in U.S. Meat and Poultry, 2007-2008

    USDA-ARS?s Scientific Manuscript database

    A statistically-based survey of dioxins and dioxin-like compounds in domestic meat and poultry was conducted by the U.S. Department of Agriculture (USDA) from September 2007 to September 2008. Seventeen toxic polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and three coplanar pol...

  4. A flexible CPW package for a 30 GHz MMIC amplifier. [coplanar waveguide

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Taub, Susan R.

    1992-01-01

    A novel package, which consists of a carrier housing, has been developed for monolithic-millimeter wave Integrated Circuit amplifiers which operate at 30 giga-Hz. The carrier has coplanar waveguide (CPW) interconnects and provides heat-sinking, tuning, and cascading capabilities. The housing provides electrical isolation, mechanical protection and a feed-thru for biasing.

  5. Coplanar electrowetting-induced stirring as a tool to manipulate biological samples in lubricated digital microfluidics. Impact of ambient phase on drop internal flow patterna)

    PubMed Central

    Davoust, Laurent; Fouillet, Yves; Malk, Rachid; Theisen, Johannes

    2013-01-01

    Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz). PMID:24404038

  6. DEVELOPMERNT OF A LOW-LEVEL ANALYTICAL METHOD FOR CO-PLANAR PCB CONGENERS IN SOIL/SEDIMENT MATRICES USING GC/ECD.

    EPA Science Inventory

    The method development is on-going in the Region 10 Laboratory. The conditions of the separation technique is complete. The MDLs have been determined to be between 3 to 6 ppt in marine sediment for co-planar PCB congeners #77; #81; #126 and #169. The procedure has been used fo...

  7. Low-loss LIGA-micromachined conductor-backed coplanar waveguide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, Michael A.

    2004-12-01

    A mesoscale low-loss LIGA-micromachined conductor-backed coplanar waveguide is presented. The 517 {micro}m lines are the tallest uniplanar LIGA-fabricated microwave transmission lines to date, as well as the first to be constructed of copper rather than nickel. The conductor-backed micromachined CPW on quartz achieves a measured attenuation of 0.064 dB/cm at 15.5 GHz.

  8. Reference values of coplanar and non-coplanar PCBs in serum samples from two Italian population groups.

    PubMed

    Turci, Roberta; Finozzi, Enrico; Catenacci, Giovanni; Marinaccio, Alessandro; Balducci, Claudio; Minoia, Claudio

    2006-04-10

    The main goal of this study is to establish the reference values of individual Polychlorinated biphenyl (PCB) congeners in non-occupationally exposed subjects. Since the PCB pattern in human serum is related to the living area, two different population groups from North and Central Italy, were compared. Serum concentrations of both coplanar and non-coplanar PCB congeners were measured by using gas chromatography coupled with low-resolution mass spectrometry (HRGC-LRMS). A fast and reliable method for the determination of 60 congeners had been previously validated. Its reliability was further verified by using high-resolution mass spectrometry. Thirty-one congeners out of 60 were found at detectable concentrations in at least one sample. The mean value for total PCBs was found to be 2.48 and 3.93 microg/L for the two population groups. Eight dioxin-like PCBs were detected. In accordance with the findings from the literature, the most abundant congeners were found to be 153, 138, 180, and 170. Both univariate and multivariate analysis showed that age is a significant determinant of PCB concentrations. The correlation increased with increasing chlorination. Slight differences in the PCB pattern were observed in the two population groups.

  9. A Class of Selenocentric Retrograde Orbits With Innovative Applications to Human Lunar Operations

    NASA Technical Reports Server (NTRS)

    Adamo, Daniel R.; Lester, Daniel F.; Thronson, Harley A.; Barbee, Brent

    2014-01-01

    Selenocentric distant retrograde orbits with radii from approx. 12,500 km to approx. 25,000 km are assessed for stability and for suitability as crewed command and control infrastructure locations in support of telerobotic lunar surface operations and interplanetary human transport. Such orbits enable consistent transits to and from Earth at virtually any time if they are coplanar with the Moon's geocentric orbit. They possess multiple attributes and applications distinct from NASA's proposed destination orbit for a redirected asteroid about 70,000 km from the Moon.

  10. Characterization of Finite Ground Coplanar Waveguide with Narrow Ground Planes

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Tentzeris, Emmanouil M.; Katehi, Linda P. B.

    1997-01-01

    Coplanar waveguide with finite width ground planes is characterized through measurements, conformal mapping, and the Finite Difference Time Domain (FDTD) technique for the purpose of determining the optimum ground plane width. The attenuation and effective permittivity of the lines are related to its geometry. It is found that the characteristics of the Finite Ground Coplanar line (FGC) are not dependent on the ground plane width if it is greater than twice the center conductor width, but less than lambda(sub d)/8. In addition, electromagnetic field plots are presented which show for the first time that electric fields in the plane of the substrate terminate on the outer edge of the ground plane, and that the magnitude of these fields is related to the ground plane width.

  11. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    NASA Technical Reports Server (NTRS)

    Myhre, R. W.

    1979-01-01

    A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.

  12. Surface Participation Effects in Titanium Nitride and Niobium Resonators

    NASA Astrophysics Data System (ADS)

    Dove, Allison; Kreikebaum, John Mark; Livingston, William; Delva, Remy; Qiu, Yanjie; Lolowang, Reinhard; Ramasesh, Vinay; O'Brien, Kevin; Siddiqi, Irfan

    Improving the coherence time of superconducting qubits requires a precise understanding of the location and density of surface defects. Superconducting microwave resonators are commonly used for quantum state readout and are a versatile testbed to systematically characterize materials properties as a function of device geometry and fabrication method. We report on sputter deposited titanium nitride and niobium on silicon coplanar waveguide resonators patterned using reactive ion etches to define the device geometry. We discuss the impact of different growth conditions (temperature and electrical bias) and processing techniques on the internal quality factor (Q) of these devices. In particular, to investigate the effect of surface participation, we use a Bosch process to etch many-micron-deep trenches in the silicon substrate and quantify the impact of etch depth and profile on the internal Q. This research was supported by the ARO.

  13. Suppression of alpha-induced lateral surface events in the COBRA experiment using CdZnTe detectors with an instrumented guard-ring electrode

    NASA Astrophysics Data System (ADS)

    Arling, J.-H.; Gerhardt, M.; Gößling, C.; Gehre, D.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Quante, T.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Zatschler, S.; Zuber, K.

    2017-11-01

    The COBRA collaboration searches for neutrinoless double beta-decay (0νββ-decay) using CdZnTe semiconductor detectors with a coplanar-grid readout and a surrounding guard-ring structure. The operation of the COBRA demonstrator at the Gran Sasso underground laboratory (LNGS) indicates that alpha-induced lateral surface events are the dominant source of background events. By instrumenting the guard-ring electrode it is possible to suppress this type of background. In laboratory measurements this method achieved a suppression factor of alpha-induced lateral surface events of 5300+2660-1380, while retaining (85.3 ±0.1%) of gamma events occurring in the entire detector volume. This suppression is superior to the pulse-shape analysis methods used so far in COBRA by three orders of magnitude.

  14. New Techniques for Exciting Linearly Tapered Slot Antennas with Coplanar Waveguide

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.; Perl, T. D.

    1992-01-01

    Two new techniques for exciting a linearly tapered slot antenna (LTSA) with coplanar waveguide (CPW) are introduced. In the first approach, an air bridge is used to couple power from a CPW to an LTSA. In the second approach, power is electromagnetically coupled from a finite CPW (FCPW) to an LTSA. Measured results at 18 GHz show excellent return loss and radiation patterns.

  15. Coplanar waveguide discontinuities for P-I-N diode switches and filter applications

    NASA Technical Reports Server (NTRS)

    Dib, N. I.; Katehi, P. B.; Ponchak, George E.; Simons, Rainee N.

    1990-01-01

    A full wave space domain integral equation (SDIE) analysis of coplanar waveguide (CPW) two port discontinuities is presented. An experimental setup to measure the S-parameters of such discontinuities is described. Experimental and theoretical results for CPW realizations of pass-band and stop-band filters are presented. The S-parameters of such structures are plotted in the frequency range 5 to 25 GHz.

  16. Journal Article: the National Dioxin Air Monitoring Network (Ndamn): Measurements of CDDs, CDFs and Coplanar PCBs at 15 Rural and 6 National Park Areas of the U.S.: June 1998-December 1999.

    EPA Science Inventory

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric CDDs, CDFs and coplanar PCBs at rural and nonimpacted locations throughout the United States. Currently operating at 32 sampling st...

  17. Temperature Dependence of Attenuation of Coplanar Waveguide on 4H High Resistivity SIC Through 540C

    NASA Technical Reports Server (NTRS)

    Ponchak, G. E.; Schwartz, Z.; Alterovitz, S. A.; Downey, A. N.; Freeman, J. C.

    2003-01-01

    For the first time, the temperature and frequency dependence of the attenuation of a Coplanar Waveguide (CPW) on 4H, High Resistivity Sic substrate is reported. The low frequency attenuation increases by 2 dB/cm at 500 C and the high frequency attenuation increases by 3.3 dB/cm at 500 C compared to room temperature.

  18. Minimum fuel coplanar aeroassisted orbital transfer using collocation and nonlinear programming

    NASA Technical Reports Server (NTRS)

    Shi, Yun Yuan; Young, D. H.

    1991-01-01

    The fuel optimal control problem arising in coplanar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) without plane change. The basic approach here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the coplanar aeroassisted HEO to LEO orbit transfer consists of three phases. In the first phase, the transfer begins with a deorbit impulse at HEO which injects the vehicle into a elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and drag modulation to satisfy heating constraints and to exit the atmosphere with the desired flight path angle and velocity so that the apogee of the exit orbit is the altitude of the desired LEO. Finally, the second impulse is required to circularize the orbit at LEO. The performance index is maximum final mass. Simulation results show that the coplanar aerocapture is quite different from the case where orbital plane changes are made inside the atmosphere. In the latter case, the vehicle has to penetrate deeper into the atmosphere to perform the desired orbital plane change. For the coplanar case, the vehicle needs only to penetrate the atmosphere deep enough to reduce the exit velocity so the vehicle can be captured at the desired LEO. The peak heating rates are lower and the entry corridor is wider. From the thermal protection point of view, the coplanar transfer may be desirable. Parametric studies also show the maximum peak heating rates and the entry corridor width are functions of maximum lift coefficient. The problem is solved using a direct optimization technique which uses piecewise polynomial representation for the states and controls and collocation to represent the differential equations. This converts the optimal control problem into a nonlinear programming problem which is solved numerically by using a modified version of NPSOL. Solutions were obtained for the described problem for cases with and without heating constraints. The method appears to be more robust than other optimization methods. In addition, the method can handle complex dynamical constraints.

  19. SU-E-T-321: Dosimetric Evaluation of Non-Coplanar Arcs in VMAT Planning for SBRT Lung Cases: A Planning Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S; Gardner, S; Doemer, A

    Purpose: Investigate use of standardized non-coplanar arcs to improve plan quality in lung Stereotactic Body Radiation Therapy(SBRT) VMAT planning. Methods: VMAT planning was performed for 9 patients previously treated with SBRT for peripheral lung tumors (tumor size:12.7cc to 32.5cc). For each patient, 7 VMAT plans (couch rotation values:0,5,10,15,20,25,and 30 deg) were generated; the coplanar plans were pushed to meet the RTOG0915 constraints and each non-coplanar plans utilized the same optimization constraints. The following plan dose metrics were used (taken from RTOG 0915): D-2cm: the maximum dose at 2 cm from the PTV, conformality index (CI), gradient index (GI), lung volumemore » receiving 5 Gy (V5) and lung volume receiving 20 Gy (V20). The couch collision clearance was checked for each plan through a dry run using the couch position from the patient’s treatment. Results: Of the 9 cases, one coplanar plan failed to meet two protocol guidelines (both gradient index and D-2cm parameter), and an additional plan failed the D-2cm parameter. When introducing at least 5 degree couch rotation, all plans met the protocol guidelines. The largest feasible couch angle available was 15 to 20 degrees due to gantry collision issues. Non-coplanar plans resulted in the average (standard deviation) reduction of the following metrics: GI by 7.3% (3.7%); lung V20 by 11.1% (3.2%); D-2cm by 12.7% (3.9%). The CI was unchanged (−0.3%±0.6%), and lung V5 increased (3.8%±8.2%). Conclusion: The use of couch rotations as little as 5 degrees allows for plan quality that will meet RTOG0915 constraints while reducing D-2cm, GI, and lung V20. Using default couch rotations while planning SBRT cases will allow for more efficient planning with the stated goal of meeting RTOG0915 criteria for all clinical cases. Gantry clearance checks in the treatment room may be necessary to ensure safe treatments for larger couch rotation values.« less

  20. Levels of non-ortho-substituted (coplanar), mono- and di-ortho-substituted polychlorinated biphenyls, dibenzo-p-dioxins, and dibenzofurans in human serum and adipose tissue.

    PubMed Central

    Patterson, D G; Todd, G D; Turner, W E; Maggio, V; Alexander, L R; Needham, L L

    1994-01-01

    We have measured non-ortho-substituted (coplanar) polychlorinated biphenyl (PCB) levels as well as polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) levels in human adipose tissue and serum collected in Atlanta, Georgia. The results show that the concentrations of the coplanar PCBs can be more than an order of magnitude higher than the concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Our measurements in pooled serum collected in 1982, 1988, and 1989 show a decrease in coplanar PCB levels from 1982 to 1989. We found that the pattern of relative amounts of coplanar PCBs in adipose tissue varied greatly from person to person unlike the PCDD and PCDF patterns, which were more nearly the same. Age was significantly correlated with the concentrations of 2,3,7,8-TCDD,3,3'4,4'-PCB, 3,3',4,4',5-PCB, and 3,3'4,4',5,5'-PCB in adipose tissue. We also measured levels of the mono- and di-ortho chlorine-substituted PCBs in human serum. The levels for some of these PCB congeners were three orders of magnitude higher than the coplanar PCBs, PCDDs, and PCDFs. We used the international toxicity equivalency factors (TEFs) for PCDDs and PCDFs and the TEFs proposed by Safe for PCBs to calculate the 2,3,7,8-TCDD equivalents. Four PCBs (3,3',4,4',5-; 2,3',4,4',5-;2,3,3',4,4'-;2,3,3',4,4',5-) make a larger contribution than 2,3,7,8-TCDD, while four other PCBs (3,3',4,4'5,5'-; 2,2',3,4,4',5'-;2,2',4,4',5,5'-;2,2',3,4,4',5,5'-) make nearly the same contribution as 2,3,7,8-TCDD. The mono-ortho-chlorine-substituted 2,3',4,4',5-PCB, however, is the major contributor to the total 2,3,7,8-TCDD equivalents in general population samples from the United States, Sweden, and Japan.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8187709

  1. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistributionmore » of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.« less

  3. Tunnel barrier schottky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Rongming; Cao, Yu; Li, Zijian

    2018-02-20

    A diode includes: a semiconductor substrate; a cathode metal layer contacting a bottom of the substrate; a semiconductor drift layer on the substrate; a graded aluminum gallium nitride (AlGaN) semiconductor barrier layer on the drift layer and having a larger bandgap than the drift layer, the barrier layer having a top surface and a bottom surface between the drift layer and the top surface, the barrier layer having an increasing aluminum composition from the bottom surface to the top surface; and an anode metal layer directly contacting the top surface of the barrier layer.

  4. Comparison of the extent of hippocampal sparing according to the tilt of a patient's head during WBRT using linear accelerator-based IMRT and VMAT.

    PubMed

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2016-05-01

    In this paper, we report the results of our investigation into whole brain radiotherapy (WBRT) using linear accelerator-based intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in lung cancer patients with a high risk of metastasis to the brain. Specifically, we assessed the absorbed dose and the rate of adverse effects for several organs at risk (OAR), including the hippocampus, according to the tilt of a patient's head. We arbitrarily selected five cases where measurements were made with the patients' heads tilted forward and five cases without such tilt. We set the entire brain as the planning target volume (PTV), and the hippocampi, the lenses, the eyes, and the cochleae as the main OAR, and formulated new plans for IMRT (coplanar, non-coplanar) and VMAT (coplanar, non-coplanar). Using the dose-volume histogram (DVH), we calculated and compared the effective uniform dose (EUD), normal tissue complication probability (NTCP) of the OAR and the mean and the maximum doses of hippocampus. As a result, if the patient tilted the head forward when receiving the Linac-based treatment, for the same treatment effect in the PTV, we confirmed that a lower dose entered the OAR, such as the hippocampus, eye, lens, and cochlea. Moreover, the damage to the hippocampus was expected to be the least when receiving coplanar VMAT with the head tilted forward. Accordingly, if patients tilt their heads forward when undergoing Linac-based WBRT, we anticipate that a smaller dose would be transmitted to the OAR, resulting in better quality of life following treatment. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. results obtained by the application of two different methods for the calculation of optimal coplanar orbital maneuvers with time limit

    NASA Astrophysics Data System (ADS)

    Rocco, Emr; Prado, Afbap; Souza, Mlos

    In this work, the problem of bi-impulsive orbital transfers between coplanar elliptical orbits with minimum fuel consumption but with a time limit for this transfer is studied. As a first method, the equations presented by Lawden (1993) were used. Those equations furnishes the optimal transfer orbit with fixed time for this transfer, between two elliptical coplanar orbits considering fixed terminal points. The method was adapted to cases with free terminal points and those equations was solved to develop a software for orbital maneuvers. As a second method, the equations presented by Eckel and Vinh (1984) were used, those equations provide the transfer orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer, or minimum time transfer for a prescribed fuel consumption, considering free terminal points. But in this work only the problem with fixed time transfer was considered, the case of minimum time for a prescribed fuel consumption was already studied in Rocco et al. (2000). Then, the method was modified to consider cases of coplanar orbital transfer, and develop a software for orbital maneuvers. Therefore, two software that solve the same problem using different methods were developed. The first method, presented by Lawden, uses the primer vector theory. The second method, presented by Eckel and Vinh, uses the ordinary theory of maxima and minima. So, to test the methods we choose the same terminal orbits and the same time as input. We could verify that we didn't obtain exactly the same result. In this work, that is an extension of Rocco et al. (2002), these differences in the results are explored with objective of determining the reason of the occurrence of these differences and which modifications should be done to eliminate them.

  6. Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer

    NASA Astrophysics Data System (ADS)

    Yang, J.; Li, J.; Chen, L.; Price, R.; McNeeley, S.; Qin, L.; Wang, L.; Xiong, W.; Ma, C.-M.

    2005-03-01

    The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (Dmin), the dose received by 98% of the target volume (D98), dose at the isocentre (Diso), mean target dose (Dmean) and the maximum critical structure dose (Dmax) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.

  7. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.

    2013-11-01

    Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.

  8. Altered thyroid status in lake trout (Salvelinus namaycush) exposed to co-planar 3,3',4,4',5-pentachlorobiphenyl.

    PubMed

    Brown, Scott B; Evans, Robert E; Vandenbyllardt, Lenore; Finnson, Ken W; Palace, Vince P; Kane, Andrew S; Yarechewski, Alvin Y; Muir, Derek C G

    2004-03-30

    Recent studies indicate that co-planar 3,3',4,4',5-pentachlorobiphenyl (PCB) congeners or their metabolites may disrupt thyroid function in fishes. Although co-planar PCB have been detected at microgram per kilogram levels in fish from contaminated areas, few studies have examined mechanisms whereby, co-planar PCBs may alter thyroid function in fish. We treated immature lake trout by intraperitoneal (i.p.)-injection or dietary gavage with vehicle containing 0, 0.7, 1.2, 25 or 40 microg 3,3',4,4',5-pentachlorobiphenyl (PCB 126) per kgBW. Blood and tissue samples were collected at various times up to 61 weeks following exposure. The treatments produced sustained dose-dependent elevations of tissue (PCB 126) concentrations. Thyroid epithelial cell height (TECH), plasma thyroxine (T4) and 3,3',5-triiodo-l-thyronine (T3) concentrations, hepatic 5'-monodeiodinase, hepatic glucuronidation of T4 and T3, as well as plasma T4 kinetics and fish growth were analyzed. Exposure to the highest doses of PCB 126 caused increased TECH, plasma T4 dynamics and T4-glucuronidation (T4-G). PCB 126 did not affect 5'-monodeiodinase and T3-glucuronidation (T3-G) and there were no effects on fish growth or condition. Because T3 status and growth were unaffected, the thyroid system was able to compensate for the alterations caused by the PCB 126 exposure. It is clear that concentrations of co-planar PCBs similar to those found in predatory fish from contaminated areas in the Great Lakes are capable of enhancing metabolism of T4. These changes may be of significance when T4 requirements are high for other reasons (e.g. periods of rapid growth, warm temperatures, metamorphosis, and parr-smolt transformation).

  9. Further studies on criteria for the onset of dynamical instability in general three-body systems

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Black, D. C.

    1983-01-01

    Numerical experiments designed for the elucidation of the conditions under which self-gravitating, three-body systems become dynamically unstable are examined of the cases of four orbital configuration types: circular, prograde, and coplanar; circular, retrograde, and coplanar; circular, direct, and inclined; and eccentric, direct, and coplanar. Results indicate that orbital inclination does not significantly affect stability in 'outer planet' configurations, while the stability of 'inner planet' configurations, where the tertiary is in close orbit about one member of the binary, is markedly less affected, once the relative orbital inclination is greater than 50 deg. It is found that the onset of dynamical instability is only weakly dependent on the eccentricity of either the binary or tertiary orbit, as long as the mass of the tertiary is comparable to the reduced mass of the binary.

  10. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  11. Phase diagram of the Shastry-Sutherland Kondo lattice model with classical localized spins: a variational calculation study

    NASA Astrophysics Data System (ADS)

    Shahzad, Munir; Sengupta, Pinaki

    2017-08-01

    We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.

  12. Laser ablated YBa2Cu3O(7-x) high temperature superconductor coplanar waveguide resonator

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Blemker, A. R.; Bhasin, K. B.

    1992-01-01

    Several 8.8-GHz coplanar waveguide resonators are fabricated and tested that are made from laser ablated YBa2Cu3O(7-x) thin films on LaAlO3 substrates. A quality factor of 1250 at 77 K was measured. A correlation between the microwave performance of the resonators and the critical temperature and morphology of the films was observed.

  13. The Application of the FDTD Method to Millimeter-Wave Filter Circuits Including the Design and Analysis of a Compact Coplanar

    NASA Technical Reports Server (NTRS)

    Oswald, J. E.; Siegel, P. H.

    1994-01-01

    The finite difference time domain (FDTD) method is applied to the analysis of microwave, millimeter-wave and submillimeter-wave filter circuits. In each case, the validity of this method is confirmed by comparison with measured data. In addition, the FDTD calculations are used to design a new ultra-thin coplanar-strip filter for feeding a THz planar-antenna mixer.

  14. Non-line-of-sight ultraviolet link loss in noncoplanar geometry.

    PubMed

    Wang, Leijie; Xu, Zhengyuan; Sadler, Brian M

    2010-04-15

    Various path loss models have been developed for solar blind non-line-of-sight UV communication links under an assumption of coplanar source beam axis and receiver pointing direction. This work further extends an existing single-scattering coplanar analytical model to noncoplanar geometry. The model is derived as a function of geometric parameters and atmospheric characteristics. Its behavior is numerically studied in different noncoplanar geometric settings.

  15. Journal Article: the National Dioxin Air Monitoring Network (Ndamn): Measurements of CDDs, CDFs, and Coplanar PCBs at 18 Rural, 8 National Parks, and 2 Suburban Areas of the U.S.: Results for the Year 2000.

    EPA Science Inventory

    In June, 1998, the U.S. EPA established the National Dioxin Air Monitoring Network (NDAMN). The primary goal of NDAMN is determine the temporal and geographical variability of atmospheric CDDs, CDFs, and coplanar PCBs at rural and nonimpacted locations throughout the United Stat...

  16. Effects and Location of Coplanar and Noncoplanar PCB in a Lipid Bilayer: A Solid-State NMR Study.

    PubMed

    Totland, Christian; Nerdal, Willy; Steinkopf, Signe

    2016-08-02

    Coplanar and noncoplanar polychlorinated biphenyls (PCBs) are known to have different routes and degree of toxicity. Here, the effects of noncoplanar PCB 52 and coplanar PCB 77 present at 2 mol % in a model system consisting of POPC liposomes (50% hydrated) are investigated by solid-state (13)C and (31)P NMR at 298 K. Both PCBs intercalate horizontally in the outer part of the bilayer, near the segments of the acyl chain close to the glycerol group. Despite similar membrane locations, the coplanar PCB 77 shows little effect on the bilayer properties overall, except for the four nearest neighboring lipids, while the effect of PCB 52 is more dramatic. The first ∼2 layers of lipids around each PCB 52 in the bilayer form a high fluidity lamellar phase, whereas lipids beyond these layers form a lamellar phase with a slight increase in fluidity compared to a bilayer without PCB 52. Further, a third high mobility domain is observed. The explanation for this is the interference of several high fluidity lamellar phases caused by interactions of PCB 52 molecules in different leaflets of the model bilayer. This causes formation of high curvature toroidal region in the bilayer and might induce formation of channels.

  17. A secondary, coplanar design Ni/MCM-41/Zn microbattery

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    A secondary Ni/Zn microbattery (∼200 µm thick) has been developed in a coplanar electrode configuration. The cell is essentially of a circular shape (∼30 mm in diameter) consisting of a fine circular ring (cathode) and a circle (anode) split apart (~800 µm). Unlike the stacking cell architecture, coplanar configuration offers simple design, ease of fabrication and eventually cost saving. The use of MCM-41 mesoporous silica as the membrane separator cum electrolyte reservoir enables the successful implementation of coplanar configuration. The fabrication of Ni/Zn microbattery first begins with electrodeposition of zinc (Zn) and nickel hydroxide (Ni(OH)2) thin films onto patterned FR4 printed circuit board, followed by deposition of zinc oxide (ZnO) slurry onto the zinc active layer, and finally ends by multiple drop-coating procedures of MCM-41 from its precursor solution at ambient temperature. Once a potassium hydroxide (6 M KOH)/MCM-41 electrolyte-separator mixture is incorporated, the cell is sealed with an acrylic sheet and epoxy adhesive. The fabricated microbatteries were capable to sustain around 130 deep charge-discharge cycles. When rated at 0.1 mA, the energy density of the microbattery was around 3.82 Wh l-1 which is suitable for low rate applications and storage for micro energy harvesters such as piezoelectric generators.

  18. SU-D-BRA-02: Motion Assessment During Open Face Mask SRS Using CBCT and Surface Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, BB; Fox, CJ; Hartford, AC

    Purpose: To assess the robustness of immobilization using open-face mask technology for linac-based stereotactic radiosurgery (SRS) with multiple non-coplanar arcs via repeated CBCT acquisition, with comparison to contemporaneous optical surface tracking data. Methods: 25 patients were treated in open faced masks with cranial SRS using 3–4 non-coplanar arcs. Repeated CBCT imaging was performed to verify the maintenance of proper patient positioning during treatment. Initial patient positioning was performed based on prescribed shifts and optical surface tracking. Positioning refinements employed rigid 3D-matching of the planning CT and CBCT images and were implemented via automated 6DOF couch control. CBCT imaging was repeatedmore » following the treatment of all non-transverse beams with associated couch kicks. Detected patient translations and rotations were recorded and automatically corrected. Optical surface tracking was applied throughout the treatments to monitor motion, and this contemporaneous patient positioning data was recorded to compare against CBCT data and 6DOF couch adjustments. Results: Initial patient positions were refined on average by translations of 3±1mm and rotations of ±0.9-degrees. Optical surface tracking corroborated couch corrections to within 1±1mm and ±0.4-degrees. Following treatment of the transverse and subsequent superior-oblique beam, average translations of 0.6±0.4mm and rotations of ±0.4-degrees were reported via CBCT, with optical surface tracking in agreement to within 1.1±0.6mm and ±0.6-degrees. Following treatment of the third beam, CBCT indicated additional translations of 0.4±0.2mm and rotations of ±0.3-degrees. Cumulative couch corrections resulted in 0.7 ± 0.4mm average magnitude translations and rotations of ±0.4-degrees. Conclusion: Based on CBCT measurements of patients during SRS, the open face mask maintained patient positioning to within 1.5mm and 1-degree with >95% confidence. Patient positioning determined by optical surface tracking agreed with CBCT assessment to within 1±1mm and ±0.6-degree rotations. These data support the use of 1–2mm PTV margins and repeated CBCT to maintain stereotactic positioning tolerances.« less

  19. Focal plane alignment and detector characterization for the Subaru prime focus spectrograph

    NASA Astrophysics Data System (ADS)

    Hart, Murdock; Barkhouser, Robert H.; Carr, Michael; Golebiowski, Mirek; Gunn, James E.; Hope, Stephen C.; Smee, Stephen A.

    2014-07-01

    We describe the infrastructure being developed to align and characterize the detectors for the Subaru Measure- ment of Images and Redshifts (SuMIRe) Prime Focus Spectrograph (PFS). PFS will employ four three-channel spectrographs with an operating wavelength range of 3800 °A to 12600 °A. Each spectrograph will be comprised of two visible channels and one near infrared (NIR) channel, where each channel will use a separate Schmidt camera to image the captured spectra onto their respective detectors. In the visible channels, Hamamatsu 2k × 4k CCDs will be mounted in pairs to create a single 4k × 4k detector, while the NIR channel will use a single Teledyne 4k × 4k H4RG HgCdTe device. The fast f/1.1 optics of the Schmidt cameras will give a shallow depth of focus necessitating an optimization of the focal plane array flatness. The minimum departure from flatness of the focal plane array for the visible channels is set the by the CCD flatness, typically 10 μm peak-to-valley. We will adjust the coplanarity for a pair of CCDs such that the flatness of the array is consistent with the flatness of the detectors themselves. To achieve this we will use an optical non-contact measurement system to measure surface flatness and coplanarity at both ambient and operating temperatures, and use shims to adjust the coplanarity of the CCDs. We will characterize the performance of the detectors for PFS consistent with the scientific goals for the project. To this end we will measure the gain, linearity, full well, quantum efficiency (QE), charge diffusion, charge transfer inefficiency (CTI), and noise properties of these devices. We also desire to better understand the non-linearity of the photon transfer curve for the CCDs, and the charge persistence/reciprocity problems of the HgCdTe devices. To enable the metrology and characterization of these detectors we are building two test cryostats nearly identical in design. The first test cryostat will primarily be used for the coplanarity measurements and sub- pixel illumination testing, and the second will be dedicated to performance characterization requiring at field illumination. In this paper we will describe the design of the test cryostats. We will also describe the system we have built for measuring focal plane array flatness, and examine the precision and error with which it operates. Finally we will detail the methods by which we plan to characterize the performance of the detectors for PFS, and provide preliminary results.

  20. Microstructural Characteristics of GeSbTe Thin Films Grown by RF Sputtering

    NASA Astrophysics Data System (ADS)

    Nelson, M. J.; Inglefield, C. E.; Olson, J. K.; Li, H.; Taylor, P. C.

    2004-10-01

    Thin films of GeSbTe are of interest due to their potential use in rewritable optical data storage media and reconfigurable electronics. The amorphous and crystalline phases of GeSbTe exhibit very different reflectivity and electrical conductivity. Films of nominally amorphous Ge_2Sb_2Te5 were grown to various thicknesses using RF sputtering on quartz substrates. The surfaces of the films were analyzed using Atomic Force Microscopy (AFM) and surface roughness measurements were taken. The thicker films had a truly isotropic surface while the thinnest films displayed crystalline features, such as angular steps. Conductivity measurements of the films in both coplanar and sandwich geometries correlate with the AFM data and indicate a high degree of crystallinity during the initial stages of growth. This work was supported by the Air Force Research Laboratory under grant number F29601-03-01-0229 and by Weber State University through the Phyllis Crosby Gardner fellowship.

  1. A steady and oscillatory kernel function method for interfering surfaces in subsonic, transonic and supersonic flow. [prediction analysis techniques for airfoils

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1976-01-01

    The theory, results and user instructions for an aerodynamic computer program are presented. The theory is based on linear lifting surface theory, and the method is the kernel function. The program is applicable to multiple interfering surfaces which may be coplanar or noncoplanar. Local linearization was used to treat nonuniform flow problems without shocks. For cases with imbedded shocks, the appropriate boundary conditions were added to account for the flow discontinuities. The data describing nonuniform flow fields must be input from some other source such as an experiment or a finite difference solution. The results are in the form of small linear perturbations about nonlinear flow fields. The method was applied to a wide variety of problems for which it is demonstrated to be significantly superior to the uniform flow method. Program user instructions are given for easy access.

  2. Attenuation of epsilon(sub eff) of coplanar waveguide transmission lines on silicon substrates

    NASA Technical Reports Server (NTRS)

    Taub, Susan R.; Young, Paul G.

    1993-01-01

    Attenuation and epsilon(sub eff) of Coplanar Waveguide (CPW) transmission lines were measured on Silicon substrates with resistivities ranging from 400 to greater than 30,000 ohm-cm, that have a 1000 angstrom coating of SiO2. Both attenuation and epsilon(sub eff) are given over the frequency range 5 to 40 GHz for various strip and slot widths. These measured values are also compared to the theoretical values.

  3. Picosecond Optical Electronics

    DTIC Science & Technology

    1988-08-01

    Optoelecironics, New York: Springer-Verlag, 1987 65. J. Archer, "Millimeter Wavelength Frequency Multipliers", IEEE MTr, Vol. 29, No. 6, June * 1981. 66. R. Majidi ...337-339. I 74. R. Majidi -Ahy et al., "Electrooptic Sampling Measurement of Coplanar Waveguide (Coupled Slot Line) Modes", Elect. Lett., Vol. 23, No...24, Nov. 1987, pp. 1262-1263. 1 75. R. Majidi -Ahy et al., "Electrooptic Sampling Measurement of Dispersion Characteristics of Slot line and Coplanar

  4. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  5. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T [Albuquerque, NM

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  6. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity.

    PubMed

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-21

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ± 40°). This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  7. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2015-05-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  8. Flame stabilizer for stagnation flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1999-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  9. Thermal barriers for compartments

    DOEpatents

    Kreutzer, Cory J.; Lustbader, Jason A.

    2017-10-17

    An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.

  10. Charge transfer properties of pentacene adsorbed on silver: DFT study

    NASA Astrophysics Data System (ADS)

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-01

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  11. SU-F-T-590: Modeling PTV Dose Fall-Off for Cervical Cancer SBRT Treatment Planning Using VMAT and Step-And-Shoot IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, A Brito; Cohen, D; Eng, T

    Purpose: Due to the high dose per fraction in SBRT, dose conformity and dose fall-off are critical. In patients with cervical cancer, rapid dose fall-off is particularly important to limit dose to the nearby rectum, small bowel, and bladder. This study compares the target volume dose fall-off for two radiation delivery techniques, fixed-field IMRT & VMAT, using non-coplanar beam geometries. Further comparisons are made between 6 and 10MV photon beam energies. Methods: Eleven (n=11) patients were planned in Pinnacle3 v9.10 with a NovalisTx (HD120 MLC) machine model using 6 and 10 MV photons. The following three techniques were used: (1)more » IMRT (10 non-coplanar beams) (2) Dual, coplanar 360° VMAT arcs (4° spacing), and (3) Triple, non-coplanar VMAT arcs (1 full arc and dual partial arcs). All plans were normalized such that 98% of the PTV received at least 28Gy/4Fx. Dose was calculated using a 2.0mm isotropic dose grid. To assess dose fall-off, twenty concentric 2mm thick rings were created around the PTV. The maximum dose in each ring was recorded and the data was fitted to model dose fall-off. A separate analysis was performed by separating target volumes into small (0–50cc), medium (51–80cc), and large (81–110cc). Results: Triple, non-coplanar VMAT arcs showed the best dose fall-off for all patients evaluated. All fitted regressions had an R{sup 2}≥0.99. At 10mm from the PTV edge, 10 MV VMAT3-arc had an absolute improvement in dose fall-off of 3.8% and 6.9% over IMRT and VMAT2-arc, respectively. At 30mm, 10 MV VMAT3-arc had an absolute improvement of 12.0% and 7.0% over IMRT and VMAT2-arc, respectively. Faster dose fall-off was observed for small volumes as opposed to medium and large ones—9.6% at 20mm. Conclusion: Triple, non-coplanar VMAT arcs offer the sharpest dose fall-off for cervical SBRT plans. This improvement is most pronounced when treating smaller target volumes.« less

  12. The Death Valley turtlebacks reinterpreted as Miocene­ Pliocene folds of a major detachment surface

    USGS Publications Warehouse

    Holm, Daniel K.; Fleck, Robert J.; Lux, Daniel R.

    1994-01-01

    Determining the origin of extension parallel folds in metamorphic core complexes is fundamental to understanding the development of detachment faults. An excellent example of such a feature occurs in the Death Valley region of California where a major, undulatory, detachment fault is exposed along the well-known turtleback (antiformal) surfaces of the Black Mountains. In the hanging wall of this detachment fault are deformed strata of the Copper Canyon Formation. New age constraints indicate that the Copper Canyon Formation was deposited from ~6 to 3 Ma. The formation was folded during deposition into a SE-plunging syncline with an axial surface coplanar with that of a synform in the underlying detachment. This relation suggests the turtlebacks are a folded detachment surface formed during large-scale extension in an overall constrictional strain field. The present, more planar, Black Mountains frontal fault system may be the result of out-stepping of a normal fault system away from an older detachment fault that was deactivated by folding.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournadre, Grégoire de, E-mail: gregoire.de-tournadre@univ-reims.fr; Reisdorffer, Frédéric; Simonetti, Olivier

    A scanning surface potential measurement technique suited for thin-film devices operating under high voltages is reported. A commercial atomic force microscope has been customized to enable a feedback-controlled and secure surface potential measurement based on phase-shift detection under ambient conditions. Measurements of the local potential profile along the channel of bottom-gate organic thin-film transistors (TFTs) are shown to be useful to disentangle the contributions from the channel and contacts to the device performance. Intrinsic contact current-voltage characteristics have been measured on bottom-gate, top-contact (staggered) TFTs based on the small-molecule semiconductor dinaphtho[2,3-b:2′,3-f]thieno[3,2-b]thiophene (DNTT) and on bottom-gate, bottom-contact (coplanar) TFTs based onmore » the semiconducting polymer polytriarylamine (PTAA). Injection has been found to be linear in the staggered DNTT TFTs and nonlinear in the coplanar PTAA TFTs. In both types of TFT, the injection efficiency has been found to improve with increasing gate bias in the accumulation regime. Contact resistances as low as 130 Ω cm have been measured in the DNTT TFTs. A method that eliminates the influence of bias-stress-induced threshold-voltage shifts when measuring the local charge-carrier mobility in the channel is also introduced, and intrinsic channel mobilities of 1.5 cm{sup 2} V{sup −1} s{sup −1} and 1.1 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1} have been determined for DNTT and PTAA. In both semiconductors, the mobility has been found to be constant with respect to the gate bias. Despite its simplicity, the Kelvin probe force microscopy method reported here provides robust and accurate surface potential measurements on thin-film devices under operation and thus paves the way towards more extensive studies of particular interest in emerging fields of solid-state electronics.« less

  14. Coplanar polychlorinated biphenyl congeners in shark livers from the north-western African Atlantic ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano, R.; Fernandez, M.A.; Hernandez, L.M.

    1997-01-01

    Polychlorinated biphenyls have been widely used by industry throughout the world since 1930. Although their use has been banned in many countries since the late 1970s, they still represent an important class of priority pollutants due to their persistence. Most open uses of these chemicals have been severely curtailed in industrialized nations, but a considerable fraction of past productions is probably still cycling in the ecosphere. In recent years, attention has been focused on the toxicity of PCBs, especially of those congeners showing similar toxicity as the polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDFs). It has been shown that PCB congeners`more » toxicity largely depends on the chlorine substitution pattern. The most toxic PCB cogeners are those with two para chlorines, at least two meta chlorines and 0-2 ortho chlorines. These so-called {open_quotes}coplanar{close_quotes} (non- mono- and di-ortho) PCB cogeners are able to obtain planar conformation. Recently, toxic equivalence factors have been assigned to coplanar PCBs. Thus determination of individual PCB cogeners is important for evaluating the toxic potentials of PCB residues in, for example, wildlife. This paper presents preliminary results of a study looking at levels of PCB congeners, including coplanar ones, in the liver of six shark species, collected in the North African Atlantic Ocean. 15 refs., 2 figs., 2 tabs.« less

  15. Congener-specific extraction and separation of coplanar PCBs from soil using SPME and capillary GC/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, C.L.; Mani, V.; Shirey, R.E.

    1995-12-31

    The persistence and widespread environmental occurrence of polychlorinated biphenyls (PCBs) in the air, waterways and industrial facilities has created a need for quantitative and qualitative analysis of Aroclor-like mixtures. Although there are 209 possible PCB concerns, only a limited number have shown toxic activity similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The World Health Organization recently released a list of the 13 most toxic PCB congeners. Each was rated by its Toxic Equivalency Factor relative to TCDD. These 13 PCB congeners belong to the class of toxic coplanar compounds. These congeners commonly contain chlorosubstitutions in the 3,3{prime},4,4{prime} or 3,4,4{prime} or 3{prime},4,4{prime} positions andmore » either 0, 1, or 2 chloro-substituents in the ortho positions. A new capillary column containing a bonded octylmethyl polysiloxane stationary phase (SPB-Octyl) was evaluated for its propensity to separate coplanar PCB congeners. Solid phase microextraction (SPME), a solvent-free method for extracting volatiles and semi-volatiles from drinking water, waste water, soil and sludge was used to extract PCBs from soil. GC-ECD and GC-MS separations of PCB ladened soils were examined via SPME on the SPB-Octyl column. An approach for selective extraction of coplanar PCB congeners by SPME will be described.« less

  16. Dynamics of changes in coplanar and indicator PCB in sewage sludge during mesophilic methane digestion.

    PubMed

    Rosińska, A; Karwowska, B

    2017-02-05

    Research was conducted, which aim was to evaluate the influence of mesophilic methane digestion on degradation of coplanar and indicator PCB in sewage sludge, and on dynamics of changes of these congeners during the process. For the research, sewage sludge from a municipal wastewater treatment plant were used. Mesophilic digestion was conducted at the temperature of 36°C±1°C. The anaerobic stabilization processes of sewage sludge occurred correctly what was confirmed by appropriate values of pH, content of volatile fatty acids (VFA) and ratio of VFA to alkalinity. Biodegradation of organic compounds in sewage sludge was confirmed by the decrease in total solids (by 26%) and volatile solids (by 36%). Up to the 3rd day of the digestion process no statistically significant differences in concentration of both coplanar and indicator PCB was observed. During the following days of the process, an increase in lower chlorinated PCB concentration was demonstrated and a decrease in concentration of higher chlorinated congeners (penta-, hexa-, and heptachlorobiphenyls). After the digestion, a decrease in higher chlorinated congener concentration was found. Significant degradation was demonstrated for coplanar PCB 169 (from 77.8 to 80.5%), and indicator PCB 180 (from 57.1 to 90.3%) and PCB 153 (from 60.4 to 79.2%). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two opticalmore » telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.« less

  18. Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fjodorov, V.; Ivanov, V.; Loutchanski, A.

    It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity andmore » direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)« less

  19. Multiple mechanisms of PCB neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, D.O.; Stoner, C.T.; Lawrence, D.A.

    1996-12-31

    Polychlorinated biphenyls (PCBs) have been implicated in cancer, but many of the symptoms in humans exposed to PCBs are related to the nervous system and behavior. We demonstrated three different direct mechanisms whereby PCBs are neurotoxic in rats. By using flow cytometry, we demonstrated that the orthosubstituted PCB congener 2,4,4{prime}, but neither TCDD nor the coplanar PCB congener 3,4,5,3{prime},4{prime}, causes rapid death of cerebellar granule cells. The ortho-substituted congener 2,4,4{prime} reduced long-term potentiation, an indicator of cognitive potential, in hippocampal brain slices, but a similar effect was observed for the coplanar congener 3,4,3{prime},4{prime}, indicating that this effect may be causedmore » by both ortho- and coplanar congeners by mechanisms presumably not mediated via the Ah receptor. It was previously shown that some ortho-substituted PCB congeners cause a reduction in levels of the neurotransmitter dopamine, and we present in vitro and in vivo evidence that this is due to reduction of synthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Thus, PCBs have a variety of mechanisms of primary neurotoxicity, and neurotoxicity is a characteristic of ortho-substituted, non-dioxin-like congeners as well as some coplanar congeners. The relative contribution of each of these mechanisms to the loss of cognitive function in humans exposed to PCBs remains to be determined. 42 refs., 3 figs., 1 tab.« less

  20. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye

    PubMed Central

    Bauskar, Aditi; Mack, Wendy J.; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A.; Kolar, Grant R.; Gleave, Martin E.; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C.; Wilson, Mark R.; Fini, M. Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye. PMID:26402857

  1. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    PubMed

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  2. A mechanism study of sound wave-trapping barriers.

    PubMed

    Yang, Cheng; Pan, Jie; Cheng, Li

    2013-09-01

    The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.

  3. Self-leveling 2D DPN probe arrays

    NASA Astrophysics Data System (ADS)

    Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike

    2010-02-01

    Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

  4. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Anders T., E-mail: andehans@rm.dk; Lukacova, Slavka; Lassen-Ramshad, Yasmin

    2015-01-01

    When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanarmore » volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore, compared with the standard technique, the IMRT techniques reduced the total calculated radiation dose that was delivered to the normal tissue, whereas the VMAT technique increased this dose. Additionally, the coverage of the target was significantly improved by the noncoplanar IMRT technique. Compared with the standard technique, the coplanar IMRT and the VMAT technique did not improve the coverage of the target significantly. All the new planning techniques increased the number of monitor units (MU) used—the noncoplanar IMRT technique by 99%, the coplanar IMRT technique by 122%, and the VMAT technique by 26%—causing concern for leak radiation. The noncoplanar IMRT technique covered the target better and decreased doses to organs at risk compared with the other techniques. All the new techniques increased the number of MU compared with the standard technique.« less

  5. MO-FG-CAMPUS-TeP2-05: Optimizing Stereotactic Radiosurgery Treatment of Multiple Brain Metastasis Lesions with Individualized Rotational Arc Trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, P; Xing, L; Ma, L

    Purpose: Radiosurgery of multiple (n>4) brain metastasis lesions requires 3–4 noncoplanar VMAT arcs with excessively high monitor units and long delivery time. We investigated whether an improved optimization technique would decrease the needed arc numbers and increase the delivery efficiency, while improving or maintaining the plan quality. Methods: The proposed 4pi arc space optimization algorithm consists of two steps: automatic couch angle selection followed by aperture generation for each arc with optimized control points distribution. We use a greedy algorithm to select the couch angles. Starting from a single coplanar arc plan we search through the candidate noncoplanar arcs tomore » pick a single noncoplanar arc that will bring the best plan quality when added into the existing treatment plan. Each time, only one additional noncoplanar arc is considered making the calculation time tractable. This process repeats itself until desired number of arc is reached. The technique is first evaluated in coplanar arc delivery scheme with testing cases and then applied to noncoplanar treatments of a case with 12 brain metastasis lesions. Results: Clinically acceptable plans are created within minutes. For the coplanar testing cases the algorithm yields singlearc plans with better dose distributions than that of two-arc VMAT, simultaneously with a 12–17% reduction in the delivery time and a 14–21% reduction in MUs. For the treatment of 12 brain mets while Paddick conformity indexes of the two plans were comparable the SCG-optimization with 2 arcs (1 noncoplanar and 1 coplanar) significantly improved the conventional VMAT with 3 arcs (2 noncoplanar and 1 coplanar). Specifically V16 V10 and V5 of the brain were reduced by 11%, 11% and 12% respectively. The beam delivery time was shortened by approximately 30%. Conclusion: The proposed 4pi arc space optimization technique promises to significantly reduce the brain toxicity while greatly improving the treatment efficiency.« less

  6. TU-G-BRB-01: Continuous Path Optimization for Non-Coplanar Variant SAD IMRT Delivery Using C-Arm Machines.

    PubMed

    Ruan, D; Dong, P; Low, D; Sheng, K

    2012-06-01

    To develop and investigate a continuous path optimization methodology to traverse prescribed non-coplanar IMRT beams with variant SADs, by orchestrating the couch and gantry movement with zero-collision, minimal patient motion consequence and machine travel time. We convert the given collision zone definition and the prescribed beam location/angles to a tumor-centric coordinate, and represent the traversing path as a continuous open curve. We proceed to optimize a composite objective function consisting of (1) a strong attraction energy to ensure all prescribed beams are en-route, (2) a penalty for patient-motion inducing couch motion, and (3) a penalty for travel-time inducing overall path-length. Feasibility manifold is defined as complement to collision zone and the optimization is performed with a level set representation evolved with variational flows. The proposed method has been implemented and tested on clinically derived data. In the absence of any existing solutions for the same problem, we validate by: (1) visual inspecting the generated path rendered in the 3D tumor-centric coordinates, and (2) comparing with a traveling-salesman (TSP) solution obtained from relaxing the variant SADs and continuous collision-avoidance requirement. The proposed method has generated delivery paths that are smooth and intuitively appealing. Under relaxed settings, our results outperform the generic TSP solutions and agree with specially tuned versions. We have proposed a novel systematic approach that automatically determines the continuous path to cover non-coplanar, varying SAD IMRT beams. The proposed approach accommodates patient-specific collision zone definition and ensures its avoidance continuously. The differential penalty to couch and gantry motions allows customizable tradeoff between patient geometry stability and delivery efficiency. This development paves the path to achieve safe, accurate and efficient non-coplanar IMRT delivery with the advanced robotic controls in new-generation C-arm systems, enabling practical harvesting of the dose benefit offered by non-coplanar, variant SAD IMRT treatment. © 2012 American Association of Physicists in Medicine.

  7. Finite Ground Coplanar Waveguide Shunt MEMS Switches for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.

    2000-01-01

    Switches with low insertion loss and high isolation are required for switched line phase shifters and the transmit/receive switch at the front end of communication systems. A Finite Ground Coplanar (FGC) waveguide capacitive, shunt MEMS switch has been implemented on high resistivity Si. The switch has demonstrated an insertion loss of less than 0.3 dB and a return loss greater than 15 dB from 10 to 20, GHz. The switch design, fabrication, and characteristics are presented.

  8. New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.

    1992-01-01

    A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.

  9. Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes.

    PubMed

    Mendez, Iamnica J Linares; Wang, Hong-Bo; Yuan, Ying-Xue; Wisner, James A

    2018-03-01

    Non-coplanar triple-hydrogen-bond arrays are connected as telechelic groups to alkyl chains and their properties as AA/BB type supramolecular polymers are examined. Viscosity studies at three temperatures are used to study the ring-chain equilibrium and determine the critical concentrations where polymer chains are formed. It is observed that neither the temperature range studied nor the alkyl chain length of one component significantly affect the polymerization properties in this system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Temperature Dependent Performance of Coplanar Waveguide (CPW) on Substrates of Various Materials

    NASA Technical Reports Server (NTRS)

    Taub, Susan R.; Young, Paul

    1994-01-01

    The attenuation (a) and effective dielectric constant (E(sub eff)) of Coplanar Waveguide (CPW) transmission lines on high-resistivity silicon and diamond substrates as a function of both temperature and frequency are presented. The technique used to obtain the values for a and E(sub eff) involves the use of a unique cryogenic probe station designed and built by NASA. Attenuation of gold CPW lines on diamond substrates is compared with that of superconducting CPW lines.

  11. Optimal aeroassisted coplanar orbital transfer using an energy model

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1989-01-01

    The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented.

  12. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials

    PubMed Central

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.

    2013-01-01

    An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors. PMID:27175036

  13. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.

    PubMed

    Owerre, S A

    2017-01-25

    Topological magnon bands and magnon Hall effect in insulating collinear ferromagnets are induced by the Dzyaloshinskii-Moriya interaction (DMI) even at zero magnetic field. In the geometrically frustrated star lattice, a coplanar/noncollinear [Formula: see text] magnetic ordering may be present due to spin frustration. This magnetic structure, however, does not exhibit topological magnon effects even with DMI in contrast to collinear ferromagnets. We show that a magnetic field applied perpendicular to the star plane induces a non-coplanar spin configuration with nonzero spin scalar chirality, which provides topological effects without the need of DMI. The non-coplanar spin texture originates from the topology of the spin configurations and does not need the presence of DMI or magnetic ordering, which suggests that this phenomenon may be present in the chiral spin liquid phases of frustrated magnetic systems. We propose that these anomalous topological magnon effects can be accessible in polymeric iron (III) acetate-a star-lattice antiferromagnet with both spin frustration and long-range magnetic ordering.

  14. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry.

    PubMed

    De Ninno, Adele; Errico, Vito; Bertani, Francesca Romana; Businaro, Luca; Bisegna, Paolo; Caselli, Federica

    2017-03-14

    Microfluidic impedance cytometry offers a simple non-invasive method for single-cell analysis. Coplanar electrode chips are especially attractive due to ease of fabrication, yielding miniaturized, reproducible, and ultimately low-cost devices. However, their accuracy is challenged by the dependence of the measured signal on particle trajectory within the interrogation volume, that manifests itself as an error in the estimated particle size, unless any kind of focusing system is used. In this paper, we present an original five-electrode coplanar chip enabling accurate particle sizing without the need for focusing. The chip layout is designed to provide a peculiar signal shape from which a new metric correlating with particle trajectory can be extracted. This metric is exploited to correct the estimated size of polystyrene beads of 5.2, 6 and 7 μm nominal diameter, reaching coefficient of variations lower than the manufacturers' quoted values. The potential impact of the proposed device in the field of life sciences is demonstrated with an application to Saccharomyces cerevisiae yeast.

  15. Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.

    2002-01-01

    The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.

  16. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application formore » the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.« less

  17. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    PubMed Central

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-01

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ±40°). This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design. PMID:26805844

  18. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials.

    PubMed

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I; Seghi, Robert R

    2013-08-15

    An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors.

  19. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    PubMed

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Conception and characterization of a virtual coplanar grid for a 11×11 pixelated CZT detector

    NASA Astrophysics Data System (ADS)

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Després, Philippe

    2017-07-01

    Due to the low mobility of holes in CZT, commercially available detectors with a relatively large volume typically use a pixelated anode structure. They are mostly used in imaging applications and often require a dense electronic readout scheme. These large volume detectors are also interesting for high-sensitivity applications and a CZT-based blood gamma counter was developed from a 20×20×15 mm3 crystal available commercially and having a 11×11 pixelated readout scheme. A method is proposed here to reduce the number of channels required to use the crystal in a high-sensitivity counting application, dedicated to pharmacokinetic modelling in PET and SPECT. Inspired by a classic coplanar anode, an implementation of a virtual coplanar grid was done by connecting the 121 pixels of the detector to form intercalated bands. The layout, the front-end electronics and the characterization of the detector in this 2-channel anode geometry is presented. The coefficients required to compensate for electron trapping in CZT were determined experimentally to improve the performance. The resulting virtual coplanar detector has an intrinsic efficiency of 34% and an energy resolution of 8% at 662 keV. The detector's response was linear between 80 keV and 1372 keV. This suggests that large CZT crystals offer an excellent alternative to scintillation detectors for some applications, especially those where high-sensitivity and compactness are required.

  1. Method of growing films by flame synthesis using a stagnation-flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1998-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  2. Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields. II. Kinetic theory

    NASA Astrophysics Data System (ADS)

    Forest, M. Gregory; Sircar, Sarthok; Wang, Qi; Zhou, Ruhai

    2006-10-01

    We establish reciprocity relations of the Doi-Hess kinetic theory for rigid rod macromolecular suspensions governed by the strong coupling among an excluded volume potential, linear flow, and a magnetic field. The relation provides a reduction of the flow and field driven Smoluchowski equation: from five parameters for coplanar linear flows and magnetic field, to two field parameters. The reduced model distinguishes flows with a rotational component, which map to simple shear (with rate parameter) subject to a transverse magnetic field (with strength parameter), and irrotational flows, for which the reduced model consists of a triaxial extensional flow (with two extensional rate parameters). We solve the Smoluchowski equation of the reduced model to explore: (i) the effect of introducing a coplanar magnetic field on each sheared monodomain attractor of the Doi-Hess kinetic theory and (ii) the coupling of coplanar extensional flow and magnetic fields. For (i), we show each sheared attractor (steady and unsteady, with peak axis in and out of the shearing plane, periodic and chaotic orbits) undergoes its own transition sequence versus magnetic field strength. Nonetheless, robust predictions emerge: out-of-plane degrees of freedom are arrested with increasing field strength, and a unique flow-aligning or tumbling/wagging limit cycle emerges above a threshold magnetic field strength or modified geometry parameter value. For (ii), irrotational flows coupled with a coplanar magnetic field yield only steady states. We characterize all (generically biaxial) equilibria in terms of an explicit Boltzmann distribution, providing a natural generalization of analytical results on pure nematic equilibria [P. Constantin, I. Kevrekidis, and E. S. Titi, Arch. Rat. Mech. Anal. 174, 365 (2004); P. Constantin, I. Kevrekidis, and E. S. Titi, Discrete and Continuous Dynamical Systems 11, 101 (2004); P. Constantin and J. Vukadinovic, Nonlinearity 18, 441 (2005); H. Liu, H. Zhang, and P. Zhang, Comm. Math. Sci. 3, 201 (2005); C. Luo, H. Zhang, and P. Zhang, Nonlinearity 18, 379 (2005); I. Fatkullin and V. Slastikov, Nonlinearity 18, 2565 (2005); H. Zhou, H. Wang, Q. Wang, and M. G. Forest, Nonlinearity 18, 2815 (2005)] and extensional flow-induced equilibria [Q. Wang, S. Sircar, and H. Zhou, Comm. Math. Sci. 4, 605 (2005)]. We predict large parameter regions of bi-stable equilibria; the lowest energy state always has principal axis aligned in the flow plane, while another minimum energy state often exists, with primary alignment transverse to the coplanar field.

  3. Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Strickland, C. E.; Field, J. G.

    2009-12-01

    A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.

  4. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  5. Stability diagrams for the surface patterns of GaN(0001bar) as a function of Schwoebel barrier height

    NASA Astrophysics Data System (ADS)

    Krzyżewski, Filip; Załuska-Kotur, Magdalena A.

    2017-01-01

    Height and type of Schwoebel barriers (direct or inverse) decides about the character of the surface instability. Different surface morphologies are presented. Step bunches, double steps, meanders, mounds and irregular patterns emerge at the surface as a result of step (Schwoebel) barriers at some temperature or miscut values. The study was carried out on the two-component kinetic Monte Carlo (kMC) model of GaN(0001bar) surface grown in nitrogen rich conditions. Diffusion of gallium adatoms over N-polar surface is slow and nitrogen adatoms are almost immobile. We show that in such conditions surfaces remain smooth when gallium adatoms diffuse in the presence of low inverse Schwoebel barrier. It is illustrated by adequate stability diagrams for surface morphologies.

  6. Characteristics of Coplanar Waveguide on Sapphire for High Temperature Applications (25 to 400 degrees C)

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian; Stalker, Amy R.

    2007-01-01

    This paper presents the characteristics of coplanar waveguide transmission lines fabricated on R-plane sapphire substrates as a function of temperature across the temperature range of 25 to 400 C. Effective permittivity and attenuation are measured on a high temperature probe station. Two techniques are used to obtain the transmission line characteristics, a Thru-Reflect-Line calibration technique that yields the propagation coefficient and resonant stubs. To a first order fit of the data, the effective permittivity and the attenuation increase linearly with temperature.

  7. Lunar Flight Study Series: Volume 6. A Study of Geometrical and Terminal Characteristics of Earth-Moon Transits Embedded in the Earth-Moon Plane

    NASA Technical Reports Server (NTRS)

    Lisle, B. J.

    1963-01-01

    This report represents the results of a study of coplanar earth-moon transits. The study was initiated to provide information concerning coplanar geometrical characteristics of earth-moon trnasits. The geometrical aspects of transit behavior are related to variations injection conditions. The model of the earth-moon system used in this investigation is the Jacobian model of the restricted three body problem. All transits considered in this study are restricted to the moon-earth plane (MEP).

  8. CORRIGENDUM: Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Song, Qing; Xu, Feng; Sheng, Su; Wang, Peng; Ong, C. K.

    2010-03-01

    Figures 1, 2 and 5 of this paper are reprinted from the authors' previous paper, Zhang X-Y, Wang P, Sheng S, Xu F and Ong C K 2008 Ferroelectric BaxSr1 - xTiO3 thin-film varactors with parallel plate and interdigital electrodes for microwave applications J. Appl. Phys. 104 124110, copyright 2008, with permission from the American Institute of Physics.

  9. Micro-Coplanar Striplines: New Transmission Media for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.

    1998-01-01

    In this paper a new transmission line for microwave applications, referred to here as the Micro-Coplanar Stripline (MCPS), is introduced. The propagation characteristics, such as, characteristic impedance (Z(sub 0) and effective dielectric constant (epsilon eff) for a range of MCPS geometries have been modeled using the Finite Difference Time Domain (FDTD) Technique and presented here. Also, preliminary experimental results on the performance of an MCP-Microstrip transition and an MCPS-fed patch antenna are presented. The results indicate several potential applications of the MCPS line in microwave integrated circuit technology.

  10. Coplanar waveguide metamaterials: The role of bandwidth modifying slots

    NASA Astrophysics Data System (ADS)

    Ibraheem, Ibraheem A.; Koch, Martin

    2007-09-01

    The authors propose a coplanar waveguide stopband metasurface based on the Babinet principle. The resulting layout is a compact planar metal structure with complementary split ring resonators, which exhibits a high rejection stop band. The complementary rings provide a frequency band with an effective negative dielectric permittivity. Moreover, the rejected bandwidth can be expanded by introducing slots close to the rings. The authors provide a simple physical model which explains the impact of the slots. Simulations confirm the expected behavior and are in excellent agreement with the measurements.

  11. Packaging of microwave integrated circuits operating beyond 100 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, L.; Daniel, E.; Sokolov, V.; Sommerfeldt, S.; Bublitz, J.; Olson, K.; Gilbert, B.; Chow, D.

    2002-01-01

    Several methods of packaging high speed (75-330 GHz) InP HEMT MMIC devices are discussed. Coplanar wirebonding is presented with measured insertion loss of less than 0.5dB and return loss better than -17 dB from DC to 110 GHz. A motherboard/daughterboard packaging scheme is presented which supports minimum loss chains of MMICs using this coplanar wirebonding method. Split waveguide block packaging approaches are presented in G-band (140-220 GHz) with two types of MMIC-waveguide transitions: E-plane probe andantipodal finline.

  12. Coplanar asymmetrical reduced graphene oxide-titanium electrodes for polymer photodetectors.

    PubMed

    Pang, Shuping; Yang, Shubin; Feng, Xinliang; Müllen, Klaus

    2012-03-22

    Narrow gaps and a "built-in" potential originating from the different work functions of reduced graphene oxide (RGO) and titanium electrodes are used to explain the improved photosensitivity of the poly(3-hexylthiophene) photodetectors with asymmetrical RGO-Ti electrodes presented here compared to those based on symmetrical electrodes. Easy processing, high photosensitivity, high on/off ratio, and low energy consumption contribute to the promising potential of coplanar asymmetrical electrodes in the field of photoelectric devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Surface Area Dendrite Nanoelectrodes for Electrochemistry

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan; Glover, Jennifer; Goyal, Saurabh; Simidjiysky, Svetoslav; Naughton, Michael

    2014-03-01

    Solution-based electrodeposition of metal using a low ion concentration, surface passivation agents, and/or electrochemical crystal conditioning has allowed for the formation of high surface area metal electrodes, useful for Raman spectroscopy and electrochemical sensors. Additionally, high frequency electrical oscillations have been used to electrically connect co-planar electrodes, a process called directed electrochemical nanowire assembly (DENA). These approaches aim to control the crystal face that metal atoms in solution will nucleate onto, thus causing anisotropic growth of metal crystals. However, DENA has not been used to create high surface area electrodes, and no study has been conducted on the effect of micron-scale surface topography on the initial nucleation of metal crystals on the electrode surface. When DENA is used to create a high surface area electrode, such a texture has a strong impact on the subsequent topography of the three dimensional dendritic structures by limiting the areal density of crystals on the electrode surface. Such structures both demonstrate unique physics concerning the nucleation of metal dendrites, and offer a unique and highly facile fabrication method of high surface area electrodes, useful for chemical and biological sensing. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  14. A shock surface geometry - The February 15-16, 1967, event. [solar flare associated interplanetary shock

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Chao, J. K.

    1976-01-01

    An estimated shape is presented for the surface of the flare-associated interplanetary shock of February 15-16, 1967, as seen in the ecliptic-plane cross section. The estimate is based on observations by Explorer 33 and Pioneers 6 and 7. The estimated shock normal at the Explorer 33 position is obtained by a least-squares shock parameter-fitting procedure for that satellite's data; the shock normal at the Pioneer 7 position is found by using the magnetic coplanarity theorem and magnetic-field data. The average shock speed from the sun to each spacecraft is determined along with the local speed at Explorer 33 and the relations between these speeds and the position of the initiating solar flare. The Explorer 33 shock normal is found to be severely inclined and not typical of interplanetary shocks. It is shown that the curvature of the shock surface in the ecliptic plane near the earth-Pioneer 7 region is consistent with a radius of not more than 0.4 AU.

  15. Noise in CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, P. N.; Amman, M.; Lee J. S.

    2000-10-10

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may bemore » the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.« less

  16. Tissue distribution of co-planar and non-planar tetra- and hexa-chlorobiphenyl isomers in guinea pigs after oral ingestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, J.; Logar, B.; Jan, J.

    1996-03-01

    Food ingestion is the most important route for the uptake of lipophilic organochlorine contaminants. Uptake and transfer of the contaminants from the digestive tract to target organs can be used for risk evaluation. The bioconcentration and migration of polychlorobiphenyls (PCBs) is highly structure - dependent. Bioconcentration is correlated with lipophilicity on the basis of the n-octanol/water partition coefficient in its logarithmic form - logKow. However, some factors e.g. diffusion through cell membranes, accumulation in specific organs and tissues, uptake and deputation kinetics and metabolism can also influence the bioconcentration. Individual PCB compounds of commercial PCB preparation are taken up bymore » organisms to markedly different extents. Until now little is known about the distribution of non-planar and co-planar PCBs in different tissues. Co-planar PCBs have dioxin - like toxicity. This study examines differences in the bioconcentration of two pairs of tetra and hexa chlorobiphenyls from the digestive tract and their distribution in different tissues of guinea pigs.« less

  17. Current-Tunable NbTiN Coplanar Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Asfaw, A.; Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    Coplanar waveguide resonators have been used in several experimental settings, from superconducting qubits to electron spin resonance. In our particular application of electron spin resonance, these resonators provide increased sensitivity to electron spins due to the small mode volume. Experiments have shown that these resonators can be used to readout as few as 300 spins per shot. Recently, photonic bandgap resonators have been shown to extend the advantages of traditional CPW resonators by allowing spin manipulation both at microwave and radio frequencies, thereby enabling both electron and nuclear spin resonance within the same resonator. We present measurements made using photonic bandgap resonators fabricated with thin NbTiN films which demonstrate microwave tunability of the resonator by modulating the kinetic inductance of the superconductor. Driving a small direct current through the center pin of the resonator allows us to tune the resonant frequency by over 30 MHz around 6.4 GHz while maintaining a quality factor over 8000 at 4.8K. This provides fast and simple tunability of coplanar waveguide resonators and opens new possibilities for multiple frequency electron spin resonance experiments.

  18. Targetting and guidance program documentation. [a user's manual

    NASA Technical Reports Server (NTRS)

    Harrold, E. F.; Neyhard, J. F.

    1974-01-01

    A FORTRAN computer program was developed which automatically targets two and three burn rendezvous missions and performs feedback guidance using the GUIDE algorithm. The program was designed to accept a large class of orbit specifications and to automatically choose a two or three burn mission depending upon the time alignment of the vehicle and target. The orbits may be specified as any combination of circular and elliptical orbits and may be coplanar or inclined, but must be aligned coaxially with their perigees in the same direction. The program accomplishes the required targeting by repeatedly converging successively more complex missions. It solves the coplanar impulsive version of the mission, then the finite burn coplanar mission, and finally, the full plane change mission. The GUIDE algorithm is exercised in a feedback guidance mode by taking the targeted solution and moving the vehicle state step by step ahead in time, adding acceleration and navigational errors, and reconverging from the perturbed states at fixed guidance update intervals. A program overview is presented, along with a user's guide which details input, output, and the various subroutines.

  19. Collective phenomena in volume and surface barrier discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  20. Thin film construction and characterization and gas-sensing performances of a tailored phenylene-thienylene copolymer.

    PubMed

    Naso, Francesco; Babudri, Francesco; Colangiuli, Donato; Farinola, Gianluca M; Quaranta, Fabio; Rella, Roberto; Tafuro, Raffaele; Valli, Ludovico

    2003-07-30

    An alternating copolymer, poly(2,5-dioctyloxy-1,4-phenylene-alt-2,5-thienylene), has been synthesized and used in this research. The behavior of the floating film at the air-water interface has been investigated by measuring surface pressure versus area Langmuir isotherms and contemporaneously by reflection spectroscopy and Brewster angle microscopy. The floating films were transferred by the Langmuir-Schäfer (horizontal lifting) method onto various substrates. It is apparent from these analyses that the effective conjugation length is larger than those in other electroactive polymers and that a strong coplanarity and interchain association takes place above all in the floating film on the water surface and in the transferred multilayers. Such films were used as the active layers in resistive chemical gas sensor devices, thus revealing excellent sensitivity toward NO(2), reversibility, and time stability of the response.

  1. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  2. A new method of radio frequency links by coplanar coils for implantable medical devices.

    PubMed

    Xue, L; Hao, H W; Li, L; Ma, B Z

    2005-01-01

    A new method based on coplanar coils for the design of radio frequency links has been developed, to realize the communication between the programming wand and the implantable medical devices with shielding container simply and reliably. With the analysis of electronic and magnetic field theory, the communication model has been established and simulated, and the circuit has been designed and tested. The experimental results are consistent with the simulation fairly well. The voltage transfer ratio of the typical circuit with present parameters can reach as high as 0.02, which can fulfill the requirements of communication.

  3. Measured Propagation Characteristics of Finite Ground Coplanar Waveguide on Silicon with a Thick Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Tentzeris, Emmanouil M.; Williams, W. O. (Technical Monitor)

    2002-01-01

    Measured propagation characteristics of Finite Ground Coplanar (FGC) waveguide on silicon substrates with resistivities spanning 3 orders of magnitude (0.1 to 15.5 Ohm cm) and a 20 micron thick polyimide interface layer is presented as a function of the FGC geometry. Results show that there is an optimum FGC geometry for minimum loss, and silicon with a resistivity of 0.1 Ohm cm has greater loss than substrates with higher and lower resistivity. Lastly, substrates with a resistivity of 10 Ohm cm or greater have acceptable loss.

  4. N-[4-Cyano-3-(trifluoro­meth­yl)phen­yl]-2-eth­oxy­benzamide

    PubMed Central

    Naveen, S.; Basappa; Manjunath, H. R.; Sridhar, M. A.; Shashidhara Prasad, J.; Rangappa, K. S.

    2010-01-01

    In the title compound, C17H13F3N2O2, the two aromatic rings are essentially coplanar, forming a dihedral angle of 2.78 (12)°. The non-H atoms of the eth­oxy group are coplanar with the attached ring [maximum deviation = 0.271 (3) Å]. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯N and C—H⋯F hydrogen bonds. PMID:21587782

  5. 100 GHz pulse waveform measurement based on electro-optic sampling

    NASA Astrophysics Data System (ADS)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  6. High-Tc superconductor coplanar waveguide filter

    NASA Technical Reports Server (NTRS)

    Chew, Wilbert; Bajuk, Louis J.; Cooley, Thomas W.; Foote, Marc C.; Hunt, Brian D.; Rascoe, Daniel L.; Riley, A. L.

    1991-01-01

    Coplanar waveguide (CPW) low-pass filters made of YBa2Cu3O(7-delta) (YBCO) on LaAlO3 substrates, with dimensions suited for integrated circuits, were fabricated and packaged. A complete filter gives a true idea of the advantages and difficulties in replacing thin-film metal with a high-temperature superconductor in a practical circuit. Measured insertion losses in liquid nitrogen were superior to the loss of a similar thin-film copper filter throughout the 0- to 9.5-GHz passband. These results demonstrate the performance of fully patterned YBCO in a practical CPW structure after sealing in a hermetic package.

  7. Device of dispensing micro doses of aqueous solutions of substances onto a carrier and device for carrying out said method

    DOEpatents

    Ershow, Gennady Moiseevich; Kirillov, Evgenii Vladislavovich; Mirzabekov, Andrei Darievich

    1998-01-01

    A device for dispensing microdoses of aqueous solutions are provided, whereby the substance is transferred by the free surface end of a rodlike transferring element; the temperature of the transferring element is maintained at essentially the dew point of the ambient air during the transfer. The device may comprise a plate-like base to which are affixed a plurality of rods; the unfixed butt ends of the rods are coplanar. The device further comprises a means for maintaining the temperature of the unfixed butt ends of the rods essentially equal to the dew point of the ambient air during transfer of the aqueous substance.

  8. Method of growing films by flame synthesis using a stagnation-flow reactor

    DOEpatents

    Hahn, D.W.; Edwards, C.F.

    1998-11-24

    A method is described for stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability. 5 figs.

  9. Chemical solution deposition method of fabricating highly aligned MgO templates

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Sathyamurthy, Srivatsan [Knoxville, TN; Aytug, Tolga [Knoxville, TN; Arendt, Paul N [Los Alamos, NM; Stan, Liliana [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2012-01-03

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  10. Kinetic barriers for Cd and Te adatoms on Cd and Te terminated CdTe (111) surface using ab initio simulations

    NASA Astrophysics Data System (ADS)

    Naderi, Ebadollah; Nanavati, Sachin P.; Majumder, Chiranjib; Ghaisas, S. V.

    2014-03-01

    In the present work we have calculated using density functional theory (DFT), diffusion barrier potentials on both the CdTe (111) surfaces, Cd terminated (A-type) & Te terminated (B-type). We employ nudge elastic band method (NEB) for obtaining the barrier potentials. The barrier is computed for Cd and for Te adatoms on both A-type and B-type surfaces. We report two energetically favourable positions along the normal to the surface, one above and other below the surface. The one above the surface has binding energy slightly more the one below. According to the results of this work, binding energy (in all cases) for adatoms are reasonable and close to experimental data. The barrier potential for hopping adatoms (Cd and Te) on both the surfaces is less than 0.35 eV. Apart from these most probable sites, there are other at least two sites on both the types of surfaces which are meta stable. We have also computed barriers for hopping to and from these meta stable positions. The present results can shade light on the defect formation mechanism in CdTe thin films during growth. The authors would like to thank C-DAC for the computing time on its PARAM series of supercomputers and DST Govt. of India, for partial funding.

  11. Surface Conduction in III-V Semiconductor Infrared Detector Materials

    NASA Astrophysics Data System (ADS)

    Sidor, Daniel Evan

    III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.

  12. Collective Phenomena In Volume And Surface Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  13. Finite Ground Coplanar (FGC) Waveguide: Characteristics and Advantages Evaluated for Radiofrequency and Wireless Communication Circuits

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    Researchers in NASA Lewis Research Center s Electron Device Technology Branch are developing transmission lines for radiofrequency and wireless circuits that are more efficient, smaller, and make lower cost circuits possible. Traditionally, radiofrequency and wireless circuits have employed a microstrip or coplanar waveguide to interconnect the various electrical elements that comprise a circuit. Although a coplanar waveguide (CPW) is widely viewed as better than a microstrip for most applications, it too has problems. To solve these problems, NASA Lewis and the University of Michigan developed a new version of a coplanar waveguide with electrically narrow ground planes. Through extensive numerical modeling and experimental measurements, we have characterized the propagation constant of the FGC waveguide, the lumped and distributed circuit elements integrated in the FGC waveguide, and the coupling between parallel transmission lines. Although the attenuation per unit length is higher for the FGC waveguide because of higher conductor loss, the attenuation is comparable when the ground plane width is twice the center conductor width as shown in the following graph. An upper limit to the line width is derived from observations that when the total line width is greater than ld/2, spurious resonances due to the parallel plate waveguide mode are established. Thus, the ground plane width must be less than ld/4 where ld is the wavelength in the dielectric. Since the center conductor width S is typically less than l/10 to maintain good transverse electromagnetic mode characteristics, it follows that a ground plane width of B = 2S would also be electrically narrow. Thus, we can now treat the ground strips of the FGC waveguide the same way that the center conductor is treated.

  14. Water equivalent thickness of immobilization devices in proton therapy planning - Modelling at treatment planning and validation by measurements with a multi-layer ionization chamber.

    PubMed

    Fellin, Francesco; Righetto, Roberto; Fava, Giovanni; Trevisan, Diego; Amelio, Dante; Farace, Paolo

    2017-03-01

    To investigate the range errors made in treatment planning due to the presence of the immobilization devices along the proton beam path. The measured water equivalent thickness (WET) of selected devices was measured by a high-energy spot and a multi-layer ionization chamber and compared with that predicted by treatment planning system (TPS). Two treatment couches, two thermoplastic masks (both un-stretched and stretched) and one headrest were selected. At TPS, every immobilization device was modelled as being part of the patient. The following parameters were assessed: CT acquisition protocol, dose-calculation grid-sizes (1.5 and 3.0mm) and beam-entrance with respect to the devices (coplanar and non-coplanar). Finally, the potential errors produced by a wrong manual separation between treatment couch and the CT table (not present during treatment) were investigated. In the thermoplastic mask, there was a clear effect due to beam entrance, a moderate effect due to the CT protocols and almost no effect due to TPS grid-size, with 1mm errors observed only when thick un-stretched portions were crossed by non-coplanar beams. In the treatment couches the WET errors were negligible (<0.3mm) regardless of the grid-size and CT protocol. The potential range errors produced in the manual separation between treatment couch and CT table were small with 1.5mm grid-size, but could be >0.5mm with a 3.0mm grid-size. In the headrest, WET errors were negligible (0.2mm). With only one exception (un-stretched mask, non-coplanar beams), the WET of all the immobilization devices was properly modelled by the TPS. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Outer-planet scattering can gently tilt an inner planetary system

    NASA Astrophysics Data System (ADS)

    Gratia, Pierre; Fabrycky, Daniel

    2017-01-01

    Chaotic dynamics are expected during and after planet formation, and a leading mechanism to explain large eccentricities of gas giant exoplanets is planet-planet gravitational scattering. The same scattering has been invoked to explain misalignments of planetary orbital planes with respect to their host star's spin. However, an observational puzzle is presented by Kepler-56, which has two inner planets (b and c) that are nearly coplanar with each other, yet are more than 45° inclined to their star's equator. Thus, the spin-orbit misalignment might be primordial. Instead, we further develop the hypothesis in the discovery paper, that planets on wider orbits generated misalignment through scattering, and as a result gently torqued the inner planets away from the equator plane of the star. We integrated the equations of motion for Kepler-56 b and c along with an unstable outer system initialized with either two or three Jupiter-mass planets. We address here whether the violent scattering that generates large mutual inclinations can leave the inner system intact, tilting it gently. In almost all of the cases initially with two outer planets, either the inner planets remain nearly coplanar with each other in the star's equator plane, or they are scattered violently to high mutual inclination and high spin-orbit misalignment. On the contrary, of the systems with three unstable outer planets, a spin-orbit misalignment large enough to explain the observations is generated 28 per cent of the time for coplanar inner planets, which is consistent with the observed frequency of this phenomenon reported so far. We conclude that multiple-planet scattering in the outer parts of the system may account for this new population of coplanar planets hosted by oblique stars.

  16. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  17. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  18. HEMT Amplifiers and Equipment for their On-Wafer Testing

    NASA Technical Reports Server (NTRS)

    Fung, King man; Gaier, Todd; Samoska, Lorene; Deal, William; Radisic, Vesna; Mei, Xiaobing; Lai, Richard

    2008-01-01

    Power amplifiers comprising InP-based high-electron-mobility transistors (HEMTs) in coplanar-waveguide (CPW) circuits designed for operation at frequencies of hundreds of gigahertz, and a test set for onwafer measurement of their power levels have been developed. These amplifiers utilize an advanced 35-nm HEMT monolithic microwave integrated-circuit (MMIC) technology and have potential utility as local-oscillator drivers and power sources in future submillimeter-wavelength heterodyne receivers and imaging systems. The test set can reduce development time by enabling rapid output power characterization, not only of these and similar amplifiers, but also of other coplanar-waveguide power circuits, without the necessity of packaging the circuits.

  19. Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Itotia, Isaac K.; Drayton, Rhonda Franklin

    2003-01-01

    Measured and modeled propagation characteristics of Finite Ground Coplanar (FGC) waveguide fabricated on a 15 ohm-cm Si substrate with a 23 micron thick, 68% porous Si layer and a 20 micron thick polyimide interface layer are presented for the first time. Attenuation and effective permittivity as function of the FGC geometry and the bias between the center conductor and the ground planes are presented. It is shown that the porous Si reduces the attenuation by 1 dB/cm compared to FGC lines with only polyimide interface layers, and the polyimide on porous silicon demonstrates negligible bias dependence.

  20. Analysis and characterizations of planar transmission structures and components for superconducting and monolithic integrated circuits

    NASA Technical Reports Server (NTRS)

    Itoh, Tatsuo

    1991-01-01

    The analysis and modeling of superconducting planar transmission lines were performed. Theoretically, the highest possible Q values of superconducting microstrip line was calculated and, as a result, it provided the Q value that the experiment can aim for. As an effort to search for a proper superconducting transmission line structure, the superconducting microstrip line and coplanar waveguide were compared in terms of loss characteristics and their design aspects. Also, the research was expanded to a superconducting coplanar waveguide family in the microwave packaging environment. Theoretically, it was pointed out that the substrate loss is critical in the superconducting transmission line structures.

  1. Direct control and characterization of a Schottky barrier by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.

  2. The Resilience of Kepler Multi-systems to Stellar Obliquity

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.

  3. Carbon-ionogel supercapacitors for integrated microelectronics.

    PubMed

    Leung, Greg; Smith, Leland; Lau, Jonathan; Dunn, Bruce; Chui, Chi On

    2016-01-22

    To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF μm(-2) is achieved for coplanar carbon-ionogel EDLCs with 10 μm electrode gaps and 0.14 mm(2) electrode area. Our smallest devices, comprised of 5 μm electrode gaps and 80 μm(2) of active electrode area, reach areal capacitance values of ∼0.3 pF μm(-2) at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm(2) areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

  4. Carbon-ionogel supercapacitors for integrated microelectronics

    NASA Astrophysics Data System (ADS)

    Leung, Greg; Smith, Leland; Lau, Jonathan; Dunn, Bruce; Chui, Chi On

    2016-01-01

    To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF μm-2 is achieved for coplanar carbon-ionogel EDLCs with 10 μm electrode gaps and 0.14 mm2 electrode area. Our smallest devices, comprised of 5 μm electrode gaps and 80 μm2 of active electrode area, reach areal capacitance values of ˜0.3 pF μm-2 at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm2 areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

  5. On non-coplanar Hohmann transfer using angles as parameters

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Rojo, Patricio; Lacruz, Elvis; Abellán, Gabriel; Díaz, Sttiwuer

    2015-09-01

    We study a more complex case of Hohmann orbital transfer of a satellite by considering non-coplanar and elliptical orbits, instead of planar and circular orbits. We use as parameter the angle between the initial and transference planes that minimizes the energy, and therefore the fuel of a satellite, through the application of two non-tangential impulses for all possible cases. We found an analytical expression that minimizes the energy for each configuration. Some reasonable physical constraints are used: we apply impulses at perigee or apogee of the orbit, we consider the duration of the impulse to be short compared to the duration of the trip, we take the nodal line of three orbits to be coincident and the three semimajor axes to lie in the same plane. We study the only four possible cases but assuming non-coplanar elliptic orbits. In addition, we validate our method through a numerical solution obtained by using some of the actual orbital elements of Sputnik I and Vanguard I satellites. For these orbits, we found that the most fuel-efficient transfer is obtained by applying the initial impulse at apocenter and keeping the transfer orbit aligned with the initial orbit.

  6. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    NASA Astrophysics Data System (ADS)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid registration significantly improved the reconstructed image quality, with a reduction of mostly 2-3 folds (up to 100) in root mean square image error. The proposed algorithm provides a remedy for solving the problem of non-coplanar CBCT reconstruction from limited angle of projections by combining the PICCS technique and rigid image registration in an iterative framework. In this proof of concept study, non-coplanar beams with couch rotations of 45° can be effectively verified with the CBCT technique.

  7. Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin

    PubMed Central

    HWANG, In-Nam; HONG, Sung-Ok; LEE, Bin-Na; HWANG, Yun-Chan; OH, Won-Mann; CHANG, Hoon-Sang

    2012-01-01

    Objective The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. Material and Methods One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LED) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. Results The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. Conclusions The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency. PMID:23138746

  8. Noble magnetic barriers in the ASDEX UG tokamak

    NASA Astrophysics Data System (ADS)

    Ali, Halima; Punjabi, Alkesh; Vazquez, Justin

    2010-02-01

    The second-order perturbation method of creating invariant tori inside chaos in Hamiltonian systems (Ali, H.; Punjabi, A. Plasma Phys. Contr. F. 2007, 49, 1565-1582) is applied to the axially symmetric divertor experiment upgrade (ASDEX UG) tokamak to build noble irrational magnetic barriers inside chaos created by resonant magnetic perturbations (m, n)=(3, 2)+(4, 3), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation. The radial dependence of the Fourier modes is ignored. The modes are considered to be locked and have the same amplitude δ. A symplectic mathematical mapping in magnetic coordinates is used to integrate magnetic field line trajectories in the ASDEX UG. Tori with noble irrational rotational transform are the last ones to be destroyed by perturbation in Hamiltonian systems. For this reason, noble irrational magnetic barriers are built inside chaos, and the strongest noble irrational barrier is identified. Three candidate locations for the strongest noble barrier in ASDEX UG are selected. All three candidate locations are chosen to be roughly midway between the resonant rational surfaces ψ32 and ψ43. ψ is the magnetic coordinate of the flux surface. The three candidate surfaces are the noble irrational surfaces close to the surface with q value that is a mediant of q=3/2 and 4/3, q value of the physical midpoint of the two resonant surfaces, and the q value of the surface where the islands of the two perturbing modes just overlap. These q values of the candidate surfaces are denoted by q MED, q MID, and q OVERLAP. The strongest noble barrier close to q MED has the continued fraction representation (CFR) [1;2,2,1∞] and exists for δ≤2.6599×10-4; the strongest noble barrier close to q MID has CFR [1;2,2,2,1∞] and exists for δ≤4.6311×10-4; and the strongest noble barrier close to q OVERLAP has CFR [1;2,2,6,2,1∞] and exists for δ≤1.367770×10-4. From these results, the strongest noble barrier is found to be close to the surface that is located physically exactly in the middle of the two resonant surfaces.

  9. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  10. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  11. Method Of Dispensing Microdoses Of A Aqueous Solutions Of S Ubstances Onto A Carrier And A Device For Carrying Out Said Method

    DOEpatents

    Ershov, Gennady Moiseevich; Kirillov, Eugenii Vladislavovich; Mirzabekov, Andrei Darievich

    1999-10-05

    A method and a device for dispensing microdoses of aqueous solutions are provided, whereby the substance is transferred by the free surface end of a rodlike transferring element; the temperature of the transferring element is maintained at essentially the dew point of the ambient air during the transfer. The device may comprise a plate-like base to which are affixed a plurality of rods; the unfixed butt ends of the rods are coplanar. The device further comprises a means for maintaining the temperature of the unfixed butt ends of the rods essentially equal to the dew point of the ambient air during transfer of the aqueous substance

  12. Plasma Surface Modification of Polymer Backsheets: Origins of Future Interfacial Barrier/Backsheet Failure (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankow, J. W.; Glick, S. H.

    2006-05-01

    Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposedmore » to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.« less

  13. Stimulated emission of surface plasmons by electron tunneling in metal-barrier-metal structures

    NASA Technical Reports Server (NTRS)

    Siu, D. P.; Gustafson, T. K.

    1978-01-01

    It is shown that correlation currents arising from the superposition of pairs of states on distinct sides of a potential barrier in metal-barrier-metal structures can result in inelastic tunneling through the emission of surface plasmons. Net gain of an externally excited plasmon field is possible.

  14. Bi-functional anodic TiO2 oxide: Nanotubes for wettability control and barrier oxide for uniform coloring

    NASA Astrophysics Data System (ADS)

    Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub

    2017-06-01

    A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.

  15. Effects of ultrathin oxides in conducting MIS structures on GaAs

    NASA Technical Reports Server (NTRS)

    Childs, R. B.; Ruths, J. M.; Sullivan, T. E.; Fonash, S. J.

    1978-01-01

    Schottky barrier-type GaAs baseline devices (semiconductor surface etched and then immediately metalized) and GaAs conducting metal oxide-semiconductor devices are fabricated and characterized. The baseline surfaces (no purposeful oxide) are prepared by a basic or an acidic etch, while the surface for the MIS devices are prepared by oxidizing after the etch step. The metallizations used are thin-film Au, Ag, Pd, and Al. It is shown that the introduction of purposeful oxide into these Schottky barrier-type structures examined on n-type GaAs modifies the barrier formation, and that thin interfacial layers can modify barrier formation through trapping and perhaps chemical reactions. For Au- and Pd-devices, enhanced photovoltaic performance of the MIS configuration is due to increased barrier height.

  16. Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier.

    PubMed

    Zhang, Zhuanfang Fred; Strickland, Christopher E; Link, Steven O

    2017-02-01

    Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. After establishing a set of design and performance objectives, a package of design solutions was developed for 1000-year surface barriers over nuclear waste sites. The Prototype Hanford Barrier (PHB) was then constructed in 1994 in the field over an existing waste site as a demonstration. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barrier satisfied nearly all objectives in the past two decades. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford's semiarid climate, limited drainage to well below the 0.5 mm yr -1 performance criterion, limited runoff, and minimized erosion and bio-intrusion. Given the two-decade record of successful performance and consideration of the processes and mechanisms that could affect barrier stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the basis for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fabrication and characterization of a co-planar detector in diamond for low energy single ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, John Bishoy Sam; Pacheco, Jose L.; Aguirre, Brandon Adrian

    2016-08-09

    We demonstrate low energy single ion detection using a co-planar detector fabricated on a diamond substrate and characterized by ion beam induced charge collection. Histograms are taken with low fluence ion pulses illustrating quantized ion detection down to a single ion with a signal-to-noise ratio of approximately 10. We anticipate that this detection technique can serve as a basis to optimize the yield of single color centers in diamond. In conclusion, the ability to count ions into a diamond substrate is expected to reduce the uncertainty in the yield of color center formation by removing Poisson statistics from the implantationmore » process.« less

  18. Characterization of the Coupling Between Adjacent Finite Ground Coplanar (FGC) Waveguides

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.; Tentzeris, Emmanouil M.

    1997-01-01

    Coupling between adjacent Finite Ground Coplanar (FGC) waveguides as a function of the line geometry is presented for the first time. A two Dimension-Finite Difference Time Domain (2D-FDTD) analysis and measurements are used to show that the coupling decreases as the line to line separation and the grOUnd plane width increases. Furthermore, it is shown that for a given spacing between the center lines of two FGC lines, the coupling is lower if the ground plane width is smaller Lastly, electric field plots generated from the 2D-FDTD technique are presented which demonstrate a strong slotline mode is established in the coupled FGC line.

  19. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  20. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  1. Naphtyl- and pyrenyl-flavylium dyads: Synthesis, DFT and optical properties

    NASA Astrophysics Data System (ADS)

    Aguilar-Castillo, Bethsy Adriana; Sánchez-Bojorge, Nora Aydee; Chávez-Flores, David; Camacho-Dávila, Alejandro A.; Pasillas-Ornelas, Eddie; Rodríguez-Valdez, Luz-María; Zaragoza-Galán, Gerardo

    2018-03-01

    A one-step preparation of flavylium salts containing naphtyl and pyrenyl moieties is described hereafter. Flavylium salts were successfully characterized by 1H NMR spectroscopy and ESI-MS spectrometry. Theoretical calculations were carried out by means of Density Functional Theory in order to simulate flavylium cation electronic transitions. Molecular simulation of -naphtyl derivatives displayed a coplanar conformation between naphthalene and benzopyrylium moieties. In contrast, DFT analysis exhibited a non-coplanar arrangement of pyrene and benzopyrylium units. These former statements in coherence with the absorption experiments where the naphtyl-flavylium dyads shows a red-shifted maximum absorption band with respect to pyrene dyads, led us to conclude that these bathochromic effects are associated with a more planar conformation.

  2. 'Invisible' antenna takes up less space

    NASA Astrophysics Data System (ADS)

    Shelley, M.; Bond, K.

    1986-06-01

    A compensated microstrip patch design is described that also uses grounded coplanar waveguide to permit a second, independent antenna to be mounted on any type of existing primary radar antenna aboard an aircraft without affecting its radiation. Successful integration of the IFF (identification friend or foe) antenna, which works at D-band, and the primary radar antenna is possible because of the diversity in frequency between the two antennas. Construction of a microstrip radiating element, electromagnetically invisible to the primary antenna, requires orthogonal grating elements and use of the primary antenna as the ground plane. Coplanar mounting of a stripline array with the primary antenna reduces the manufacturing costs and increases the functional performance of the IFF antenna.

  3. A comparative study between shielded and open coplanar waveguide discontinuities

    NASA Technical Reports Server (NTRS)

    Dib, Nihad I.; Harokopus, W. P., Jr.; Ponchak, G. E.; Katehi, L. P. B.

    1993-01-01

    A comparative study between open and shielded coplanar waveguide (CPW) discontinuities is presented. The space domain integral equation method is used to characterize several discontinuities such as the open-end CPW and CPW series stubs. Two different geometries of CPW series stubs (straight and bent stubs) are compared with respect to resonant frequency and radiation loss. In addition, the encountered radiation loss due to different CPW shunt stubs is evaluated experimentally. The notion of forced radiation simulation is presented, and the results of such a simulation are compared to the actual radiation loss obtained rigorously. It is shown that such a simulation cannot give reliable results concerning radiation loss from printed circuits.

  4. Experiment Pamir-3. Coplanar emission of high energy gamma-quanta at interaction of hadrons with nuclei of air atoms at energies above 10 to the 7th power GeV

    NASA Technical Reports Server (NTRS)

    Asatiani, T. L.; Genina, L. E.; Zatsepin, G. T.

    1985-01-01

    A systematic analysis of large gamma families, detected in X-ray emulsion chambers, cases of multicore halos have been observed, and among them five events in which the halo is divided into three of four separate cores with their alignment observed in the target diagram (coplanarity of axes of corresponding electron photon cascades). The halo alignment (tendency to the straight line) leads to the aximuthal asymmetry (thrust). The analysis of lateral and momentum distributions of particles in these families shows that they also have thrust that correlates with the direction of the halo core alignment.

  5. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  6. Manipulating line waves in flat graphene for agile terahertz applications

    NASA Astrophysics Data System (ADS)

    Bisharat, Dia'aaldin J.; Sievenpiper, Daniel F.

    2018-05-01

    Reducing open waveguides enabled by surface waves, such as surface plasmon polaritons, to a one-dimensional line is attractive due to the potentially enhanced control over light confinement and transport. This was recently shown to be possible by simply interfacing two co-planar surfaces with complementary surface impedances, which support transverse-magnetic and transverse-electric modes, respectively. Attractively, the resultant "line wave" at the interface line features singular field enhancement and robust direction-dependent polarizations. Current implementations, however, are limited to microwave frequencies and have fixed functionality due to the lack of dynamic control. In this article, we examine the potential of using gate-tunable graphene sheets for supporting line waves in the terahertz regime and propose an adequate graphene-metasurface configuration for operation at room temperature and low voltage conditions. In addition, we show the occurrence of quasi-line wave under certain conditions of non-complementary boundaries and qualify the degradation in line wave confinement due to dissipation losses. Furthermore, we show the possibility to alter the orientation of the line wave's spin angular momentum on demand unlike conventional surface waves. Our results on active manipulation of electromagnetic line waves in graphene could be useful for various applications including reconfigurable integrated circuits, modulation, sensing and signal processes.

  7. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  8. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  9. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    NASA Astrophysics Data System (ADS)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  10. Analysis of the topochemical effects of dielectric-barrier discharge on cellulosic fibers

    Treesearch

    Lorraine C. Vander Wielen; Thomas Elder; Arthur J. Ragauskas

    2005-01-01

    This study investigates the fundamental topochemical effects of dielectric-barrier discharge treatment on bleached chemical pulp and unbleached mechanical pulp fiber surfaces. Fibers were treated with various levels of dielectric-barrier discharge treatment ranging from 0 to 9.27 kw/m2/min. Changes to the fiber surface topochemistry were investigated by atomic force...

  11. Surface States in the AlxGa1-xN Barrier in AlxGa1-xN/GaN Heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Shen, Bo; Wang, Mao-Jun; Zhou, Yu-Gang; Chen, Dun-Jun; Zhang, Rong; Shi, Yi; Zheng, You-Dou

    2004-01-01

    Frequency-dependent capacitance-voltage (C-V) measurements have been performed on modulation-doped Al0.22 Ga0.78N/GaN heterostructures to investigate the characteristics of the surface states in the AlxGa1-xN barrier. Numerical fittings based on the experimental data indicate that there are surface states with high density locating on the AlxGa1-xN barrier. The density of the surface states is about 1012 cm-2eV-1, and the time constant is about 1 mus. It is found that an insulating layer (Si3N4) between the metal contact and the surface of AlxGa1-xN can passivate the surface states effectively.

  12. Tracking the Effect of Adatom Electronegativity on Systematically Modified AlGaN/GaN Schottky Interfaces.

    PubMed

    Reiner, Maria; Pietschnig, Rudolf; Ostermaier, Clemens

    2015-10-21

    The influence of surface modifications on the Schottky barrier height for gallium nitride semiconductor devices is frequently underestimated or neglected in investigations thereof. We show that a strong dependency of Schottky barrier heights for nickel/aluminum-gallium nitride (0001) contacts on the surface terminations exists: a linear correlation of increasing barrier height with increasing electronegativity of superficial adatoms is observed. The negatively charged adatoms compete with the present nitrogen over the available gallium (or aluminum) orbital to form an electrically improved surface termination. The resulting modification of the surface dipoles and hence polarization of the surface termination causes observed band bending. Our findings suggest that the greatest Schottky barrier heights are achieved by increasing the concentration of the most polarized fluorine-gallium (-aluminum) bonds at the surface. An increase in barrier height from 0.7 to 1.1 eV after a 15% fluorine termination is obtained with ideality factors of 1.10 ± 0.05. The presence of surface dipoles that are changing the surface energy is proven by the sessile drop method as the electronegativity difference and polarization influences the contact angle. The extracted decrease in the Lifshitz-van-der-Waals component from 48.8 to 40.4 mJ/m(2) with increasing electronegativity and concentration of surface adatoms confirms the presence of increasing surface dipoles: as the polarizability of equally charged anions decreases with increasing electronegativity, the diiodomethane contact angles increase significantly from 14° up to 39° after the 15% fluorine termination. Therefore, a linear correlation between increasing anion electronegativity of the (Al)GaN termination and total surface energy within a 95% confidence interval is obtained. Furthermore, our results reveal a generally strong Lewis basicity of (Al)GaN surfaces explaining the high chemical inertness of the surfaces.

  13. Origin of the Energy Barrier to Chemical Reactions of O2 on Al(111): Evidence for Charge Transfer, Not Spin Selection

    DTIC Science & Technology

    2012-11-08

    change of O2 spin, at the barrier [Fig. 3]; i.e., the corresponding diabatic surfaces cross. Far from the Al surface, the triplet state is...previous theoretical models, in particular nonadiabatic [17] or diabatic [16] approaches, which also find an energy barrier consistent with experiment...crossings of different diabatic O2 spin configuration sur- faces are accommodated by small spin fluctuations within the metal surface. For parallel

  14. Oxygen-Barrier Coating for Titanium

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Unnam, Jalaiah

    1987-01-01

    Oxygen-barrier coating for titanium developed to provide effective and low-cost means for protecting titanium alloys from oxygen in environment when alloys used in high-temperature mechanical or structural applications. Provides protective surface layer, which reduces extent of surface oxidation of alloy and forms barrier to diffusion of oxygen, limiting contamination of substrate alloy by oxygen. Consists of submicron layer of aluminum deposited on surface of titanium by electron-beam evaporation, with submicron layer of dioxide sputtered onto aluminum to form coat.

  15. Durable, Low-Surface-Energy Treatments

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.

    1992-01-01

    Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.

  16. Effects of heavy-ion irradiation on the microwave surface impedance of (Ba1-x K x )Fe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Ghigo, G.; Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Tamegai, T.

    2018-07-01

    The electrodynamic response of Ba1-x K x Fe2As2 single crystals at the microwave frequencies has been investigated by means of a coplanar resonator technique, at different values of non-magnetic disorder introduced into the samples by heavy-ion irradiation. The surface impedance Z s = R s + iX s conforms to the classical skin effect above the critical temperature. Below T c, R s monotonically decreases while X s shows a peak, which evolves as a function of the irradiation fluence. The disorder-dependent Z s (T) curves are analyzed within a two-fluid model, suitably modified to account for a finite quasiparticle fraction at T = 0. The analysis gives, for the unirradiated crystal, quasiparticle relaxation times τ that are in good agreement with previous literature. Smaller τ values are deduced for the disordered crystals, both in the normal and in the superconducting states. The limits of application of the model are discussed.

  17. Reduced-thickness backlighter for autostereoscopic display and display using the backlighter

    NASA Technical Reports Server (NTRS)

    Eichenlaub, Jesse B (Inventor); Gruhlke, Russell W (Inventor)

    1999-01-01

    A reduced-thickness backlighter for an autostereoscopic display is disclosed having a lightguide and at least one light source parallel to an edge of the lightguide so as to be substantially coplanar with the lightguide. The lightguide is provided with a first surface which has a plurality of reflective linear regions, such as elongated grooves or glossy lines, parallel to the illuminated edge of the lightguide. Preferably the lightguide further has a second surface which has a plurality of lenticular lenses for reimaging the reflected light from the linear regions into a series of thin vertical lines outside the guide. Because of the reduced thickness of the backlighter system, autostereoscopic viewing is enabled in applications requiring thin backlighter systems. In addition to taking up less space, the reduced-thickness backlighter uses less lamps and less power. For accommodating 2-D applications, a 2-D diffuser plate or a 2-D lightguide parallel to the 3-D backlighter is disclosed for switching back and forth between 3-D viewing and 2-D viewing.

  18. Global Patch Matching

    NASA Astrophysics Data System (ADS)

    Huang, X.; Hu, K.; Ling, X.; Zhang, Y.; Lu, Z.; Zhou, G.

    2017-09-01

    This paper introduces a novel global patch matching method that focuses on how to remove fronto-parallel bias and obtain continuous smooth surfaces with assuming that the scenes covered by stereos are piecewise continuous. Firstly, simple linear iterative cluster method (SLIC) is used to segment the base image into a series of patches. Then, a global energy function, which consists of a data term and a smoothness term, is built on the patches. The data term is the second-order Taylor expansion of correlation coefficients, and the smoothness term is built by combing connectivity constraints and the coplanarity constraints are combined to construct the smoothness term. Finally, the global energy function can be built by combining the data term and the smoothness term. We rewrite the global energy function in a quadratic matrix function, and use least square methods to obtain the optimal solution. Experiments on Adirondack stereo and Motorcycle stereo of Middlebury benchmark show that the proposed method can remove fronto-parallel bias effectively, and produce continuous smooth surfaces.

  19. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method.

    PubMed

    Zhang, Yanan; Ren, Weiqing

    2014-12-28

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results are obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.

  20. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Ren, Weiqing

    2014-12-01

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results are obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.

  1. Multiscale Investigations of the Early Stage Oxidation on Cu Surfaces

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Xiao, Penghao; Lian, Xin; Yang, Shen-Che; Henkelman, Grame; Saidi, Wissam; Yang, Judith; University of Pittsburgh Team; University of Texas at Austin Team

    Previous in situ TEM experiments have shown that the oxidation of the three low index Cu surfaces (100), (110) and (111) exhibit different oxide nucleation rates, and the resulting oxides have 3-dimensional (3D) island shapes or 2D rafts under different conditions. In order to better understand these results, we have investigated the early stages of Cu oxidation using a multiscale computational approach that employs density functional theory (DFT), reactive force field (ReaxFF), and kinetic Mote Carlo (KMC). With DFT calculation, we have compared O2 dissociation barriers on Cu (100), (110) and (111) surfaces at high oxygen coverage to evaluate the kinetic barrier of sublayer oxidization. We found that O2 dissociation barriers on Cu(111) surface are all lower than those on (110) and (100) surfaces. This trend agrees with experimental observations that (111) surface is easier to oxidize. These DFT calculated energy barriers are then incorporated into KMC simulations. The large scale ReaxFF molecular dynamics and KMC simulations detail the oxidation dynamics of the different Cu surfaces, and show the formation of various oxide morphologies that are consistent with experimental observations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; McConnaughhay, Johnie Franklin

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.

  3. Insight into association reactions on metal surfaces: Density-functional theory studies of hydrogenation reactions on Rh(111)

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Pan; Hu, P.; Lee, Ming-Hsien

    2003-09-01

    Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N2+3H2→2NH3). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H→NH, NH+H→NH2 and NH2+H→NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H→CH and O+H→OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors.

  4. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Ho-young; LG Display R and D Center, 245 Lg-ro, Wollong-myeon, Paju-si, Gyeonggi-do 413-811; Lee, Bok-young

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n{sup +} a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10{sup −3} Ω cm after treatment, and then it increases to 7.92 × 10{sup −2} Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n{sup +}a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n{sup +} a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTsmore » with He plasma treatment changes from 10.7 to 9.2 cm{sup 2}/V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H{sub 2} plasma treatment degrades significantly after 300 °C annealing.« less

  5. Intensity-Modulated Radiation Therapy with Noncoplanar Beams for Treatment of Prostate Cancer in Patients with Bilateral Hip Prosthesis-A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Chris; Cheung, Rex Min; Kudchadker, Rajat J.

    2010-07-01

    Megavoltage photon intensity-modulated radiation therapy (IMRT) is typically used in the treatment of prostate cancer at our institution. Approximately 1% to 2% of patients with prostate cancer have hip prostheses. The presence of the prosthesis usually complicates the planning process because of dose perturbation around the prosthesis, radiation attenuation through the prosthesis, and the introduction of computed tomography artifacts in the planning volume. In addition, hip prostheses are typically made of materials of high atomic number, which add uncertainty to the dosimetry of the prostate and critical organs in the planning volume. When the prosthesis is bilateral, treatment planning ismore » further complicated because only a limited number of beam angles can be used to avoid the prostheses. In this case study, we will report the observed advantages of using noncoplanar beams in the delivery of IMRT to a prostate cancer patient with bilateral hip prostheses. The treatment was planned for 75.6 Gy using a 7-field coplanar approach and a noncoplanar arrangement, with all fields avoiding entrance though the prostheses. Our results indicate that, compared with the coplanar plan, the noncoplanar plan delivers the prescribed dose to the target with a slightly better conformality and sparing of rectal tissue versus the coplanar plan.« less

  6. A cross-sectional analysis of dioxins and health effects in municipal and private waste incinerator workers in Japan

    PubMed Central

    YAMAMOTO, Kenya; KUDO, Mitsuhiro; ARITO, Heihachiro; OGAWA, Yasutaka; TAKATA, Tsutomu

    2015-01-01

    This cross-sectional study was intended to examine health effects of 678 male workers employed during an 8-yr period from 2000 to 2007 at 36 municipal and private waste incineration plants in Japan. Blood samples were obtained for analysis of concentrations of dioxins including coplanar polychlorinated biphenyls (coplanar PCBs) and evaluation of health effects. Health effects including diabetes were surveyed via a physician’s interview or clinical data from blood samples. There was a certain difference in serum concentrations of polychlorinated dibenzofurans (PCDFs) between the incinerator workers and Japanese general population, although no differences in the concentrations of total dioxins or polychlorinated dibenzo-p-dioxins (PCDDs) were found between the two groups. A few positive correlations between serum levels of PCDDs and PCDFs and the results of laboratory and physiological tests were found, but coplanar PCBs showed significant relations with 14 parameters of the tests. The background serum levels of PCDDs, PCDFs and total dioxins were significantly associated with the prevalence of diabetes. No essential differences in serum concentrations of total dioxins and in prevalence of diabetes between our subjects and the general population suggested that the incinerator workers were marginally exposed to dioxins in the workplace without any recognizable adverse health effects. PMID:26212412

  7. Redundancy Analysis of Capacitance Data of a Coplanar Electrode Array for Fast and Stable Imaging Processing

    PubMed Central

    Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao

    2017-01-01

    A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537

  8. Association of Cell Surface Mucins with Galectin-3 Contributes to the Ocular Surface Epithelial Barrier*

    PubMed Central

    Argüeso, Pablo; Guzman-Aranguez, Ana; Mantelli, Flavio; Cao, Zhiyi; Ricciuto, Jessica; Panjwani, Noorjahan

    2009-01-01

    Maintenance of an intact mucosal barrier is critical to preventing damage to and infection of wet-surfaced epithelia. The mechanism of defense has been the subject of much investigation, and there is evidence now implicating O-glycosylated mucins on the epithelial cell surface. Here we investigate a new role for the carbohydrate-binding protein galectin-3 in stabilizing mucosal barriers through its interaction with mucins on the apical glycocalyx. Using the surface of the eye as a model system, we found that galectin-3 colocalized with two distinct membrane-associated mucins, MUC1 and MUC16, on the apical surface of epithelial cells and that both mucins bound to galectin-3 affinity columns in a galactose-dependent manner. Abrogation of the mucin-galectin interaction in four different mucosal epithelial cell types using competitive carbohydrate inhibitors of galectin binding, β-lactose and modified citrus pectin, resulted in decreased levels of galectin-3 on the cell surface with concomitant loss of barrier function, as indicated by increased permeability to rose bengal diagnostic dye. Similarly, down-regulation of mucin O-glycosylation using a stable tetracycline-inducible RNA interfering system to knockdown c1galt1 (T-synthase), a critical galactosyltransferase required for the synthesis of core 1 O-glycans, resulted in decreased cell surface O-glycosylation, reduced cell surface galectin-3, and increased epithelial permeability. Taken together, these results suggest that galectin-3 plays a key role in maintaining mucosal barrier function through carbohydrate-dependent interactions with cell surface mucins. PMID:19556244

  9. Vertebral coplanar alignment: a standardized technique for three dimensional correction in scoliosis surgery: technical description and preliminary results in Lenke type 1 curves.

    PubMed

    Vallespir, Gabriel Pizà; Flores, Jesús Burgos; Trigueros, Ignacio Sanpera; Sierra, Eduardo Hevia; Fernández, Pedro Doménech; Olaverri, Juan Carlos Rodríguez; Alonso, Manuel García; Galea, Rafael Ramos; Francisco, Antonio Pérez; Rodríguez de Paz, Beatriz; Carbonell, Pedro Gutiérrez; Thomas, Javier Vicente; López, José Luís González; Paulino, José Ignacio Maruenda; Pitarque, Carlos Barrios; García, Oscar Riquelme

    2008-06-15

    Prospective multicentric study. To present the preliminary results of an innovative method for standardized correction of scoliosis, vertebral coplanar alignment (VCA), based on a novel concept: the relocation of vertebral axis in a single plane. Normal standing spine has no rotation in coronal or transverse planes, therefore X and Z axis of vertebrae are in the same plane: they are coplanar. VCA intends to relocate these axis in one plane, correcting rotation and translation, while X axis are returned to its normal posterior divergence in sagittal plane in thoracic spine. Twenty-five consecutive adolescent idiopathic scoliosis patients (Lenke type 1) underwent posterior surgery with segmental pedicle screw fixation. Slotted tubes were attached to convex side screws. Two longitudinal rods were inserted through the end of tubes. Then, they were separated along the slots, driving the tubes into one plane, making the axis of the vertebrae coplanar and thus correcting transverse rotation and coronal translation. To obtain kyphosis, distal ends of the tubes were spread in thoracic spine. Correction was maintained by locking a definitive rod in the concave side, then tubes were retrieved and the convex side rod, inserted and tightened. Correction was assessed on preoperative and postoperative full-spine standing radiograph. Vertebral rotation was measured on computed tomography-scan and magnetic resonance imaging. Preoperative average thoracic curves of 61 degrees were corrected to 16 degrees (73%). Preoperative average thoracolumbar curves of 39 degrees were corrected to 12 degrees (70%). Preoperative average thoracic apical rotation of 24 degrees was corrected to 11 degrees (56%). Preoperative average thoracic kyphosis of 18 degrees remained unchanged after surgery; however, no patients had kyphosis <10 degrees after surgery. Rib hump improved from 30 to 11 mm (65%). There were no perioperative complications. VCA provided excellent correction of coronal and transverse planes with normalization of thoracic kyphosis in Lenke type 1 adolescent idiopathic scoliosis surgery.

  10. SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smyth, G; Bamber, JC; Bedford, JL

    2015-06-15

    Purpose: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. Methods: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstemmore » (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. Results: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. Conclusion: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases.« less

  11. Monte Carlo tree search -based non-coplanar trajectory design for station parameter optimized radiation therapy (SPORT).

    PubMed

    Dong, Peng; Liu, Hongcheng; Xing, Lei

    2018-06-04

    An important yet challenging problem in LINAC-based rotational arc radiation therapy is the design of beam trajectory, which requires simultaneous consideration of delivery efficiency and final dose distribution. In this work, we propose a novel trajectory selection strategy by developing a Monte Carlo tree search (MCTS) algorithm during the beam trajectory selection process. Methods: To search through the vast number of possible trajectories, MCTS algorithm was implemented. In this approach, a candidate trajectory is explored by starting from a leaf node and sequentially examining the next level of linked nodes with consideration of geometric and physical constraints. The maximum Upper Confidence Bounds for Trees, which is a function of average objective function value and the number of times the node under testing has been visited, was employed to intelligently select the trajectory. For each candidate trajectory, we run an inverse fluence map optimization with an infinity norm regularization. The ranking of the plan as measured by the corresponding objective function value was then fed back to update the statistics of the nodes on the trajectory. The method was evaluated with a chest wall and a brain case, and the results were compared with the coplanar and noncoplanar 4pi beam configurations. Results: For both clinical cases, the MCTS method found effective and easy-to-deliver trajectories within an hour. As compared with the coplanar plans, it offers much better sparing of the OARs while maintaining the PTV coverage. The quality of the MCTS-generated plan is found to be comparable to the 4pi plans. Conclusion: AI based on MCTS is valuable to facilitate the design of beam trajectory and paves the way for future clinical use of non-coplanar treatment delivery. . © 2018 Institute of Physics and Engineering in Medicine.

  12. SU-F-T-352: Development of a Knowledge Based Automatic Lung IMRT Planning Algorithm with Non-Coplanar Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, W; Wu, Q; Yuan, L

    Purpose: To improve the robustness of a knowledge based automatic lung IMRT planning method and to further validate the reliability of this algorithm by utilizing for the planning of clinical cases with non-coplanar beams. Methods: A lung IMRT planning method which automatically determines both plan optimization objectives and beam configurations with non-coplanar beams has been reported previously. A beam efficiency index map is constructed to guide beam angle selection in this algorithm. This index takes into account both the dose contributions from individual beams and the combined effect of multiple beams which is represented by a beam separation score. Wemore » studied the effect of this beam separation score on plan quality and determined the optimal weight for this score.14 clinical plans were re-planned with the knowledge-based algorithm. Significant dosimetric metrics for the PTV and OARs in the automatic plans are compared with those in the clinical plans by the two-sample t-test. In addition, a composite dosimetric quality index was defined to obtain the relationship between the plan quality and the beam separation score. Results: On average, we observed more than 15% reduction on conformity index and homogeneity index for PTV and V{sub 40}, V{sub 60} for heart while an 8% and 3% increase on V{sub 5}, V{sub 20} for lungs, respectively. The variation curve of the composite index as a function of angle spread score shows that 0.6 is the best value for the weight of the beam separation score. Conclusion: Optimal value for beam angle spread score in automatic lung IMRT planning is obtained. With this value, model can result in statistically the “best” achievable plans. This method can potentially improve the quality and planning efficiency for IMRT plans with no-coplanar angles.« less

  13. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.

    2010-01-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint andmore » serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i.e., CP, NP and HDU) showed relatively large variation during the seasonal wetting-drying cycle. For the soil below 2-m depth, the seasonal variation of soil water content was relatively small. The construction of the surface barrier was completed in April 2008. In the soil below the surface barrier (Nests C and D), the CP measurements showed that water content at the soil between 0.6-m and 2.3-m depths was very stable, indicating no climatic impacts on soil water condition beneath the barrier. The NP-measured water content showed that soil water drainage seemed occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) in FY09. The HDU-measured water pressure decreased consistently in the soil above 5-m depth, indicating soil water drainage at these depths of the soil. In the soil below the edge of the surface barrier (Nest B), the CP-measured water content was relatively stable through the year except at the 0.9-m depth; the NP-measured water content showed that soil water drainage was occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) but at a slightly smaller magnitude than those in Nests C and D; the HDU-measurements show that the pressure head changes in FY09 in Nest B were less than those for C and D but more than those for A. The soil-water-pressure head was more sensitive to soil water regime changes under dry conditions. In the soil beneath the barrier, the theoretical steady-state values of pressure head is equal to the negative of the distance to groundwater table. Hence, it is expected that, in the future, while the water content become stable, the pressure head will keep decreasing for a long time (e.g., many years). These results indicate that the T Tank Farm surface barrier was performing as expected by intercepting the meteoric water from infiltrating into the soil and the soil was becoming drier gradually. The barrier also has some effects on the soil below the barrier edge but at a reduced magnitude.« less

  14. Simulation study of free-energy barriers in the wetting transition of an oily fluid on a rough surface with reentrant geometry.

    PubMed

    Savoy, Elizabeth S; Escobedo, Fernando A

    2012-11-20

    When in contact with a rough solid surface, fluids with low surface tension, such as oils and alkanes, have their lowest free energy in the fully wetted state. For applications where nonwetting by these phillic fluids is desired, some barrier must be introduced to maintain the nonwetted composite state. One way to create this free-energy barrier is to fabricate roughness with reentrant geometry, but the question remains as to whether the free-energy barrier is sufficiently high to prevent wetting. Our goal is to quantify the free-energy landscape for the wetting transition of an oily fluid on a surface of nails and identify significant surface features and conditions that maximize the wetting free-energy barrier (ΔGfwd*). This is a departure from most work on wetting, which focuses on the equilibrium composite and wetted states. We use boxed molecular dynamics (BXD) (Glowacki, D. R.; Paci, E.; Shalashilin, D. V. J. Phys. Chem. B2009, 113, 16603-16611) with a modified control scheme to evaluate both the thermodynamics and kinetics of the transition over a range of surface affinities (chemistry). We find that the reentrant geometry of the nails does create a free-energy barrier to transition for phillic chemistry whereas a corresponding system on straight posts wets spontaneously and, that doubling the nail height more than doubles ΔGfwd*. For neutral to phillic chemistry, the dewetting free-energy barrier is at least an order of magnitude higher than that for wetting, indicating an essentially irreversible wetting transition. Transition rates from BXD simulations and the associated trends agree well with those in our previous study that used forward flux sampling to compute transition rates for similar systems.

  15. Method of Suppressing Sublimation in Advanced Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)

    2009-01-01

    A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.

  16. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  17. Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Nemeth, Noel N.

    1987-01-01

    The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  18. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  19. Theory of C2Hx species on Pt{110} (1×2): Reaction pathways for dehydrogenation

    NASA Astrophysics Data System (ADS)

    Anghel, A. T.; Wales, D. J.; Jenkins, S. J.; King, D. A.

    2007-01-01

    A complete reaction sequence for molecular dissociation at a surface has been characterized using density functional theory. The barriers for sequential ethane dehydrogenation on Pt{110} are found to fall into distinct energy sets: very low barriers, with values in the range of 0.29-0.42eV, for the initial ethane dissociation to ethene and ethylidene at the surface; medium barriers, in the range of 0.72-1.10eV, for dehydrogenation of C2H4 fragments to vinylidene and ethyne; and high barriers, requiring more than 1.45eV, for further dehydrogenation. For dissociation processes where more than one pathway has been found, the lowest energetic route links the most stable reactant adsorbed state at the surface to a product state involving the hydrocarbon moiety adsorbed in its most stable configuration at the surface. Hence there is a clear link between surface stability and kinetics for these species.

  20. Design of interdigital spiral and concentric capacitive sensors for materials evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Tianming; Bowler, Nicola

    2013-01-01

    This paper describes the design of two circular coplanar interdigital sensors with i) a spiral interdigital configuration and ii) a concentric interdigital configuration for the nondestructive evaluation of multilayered dielectric structures. A numerical model accounting for sensor geometry, test-piece geometry and real permittivity, and metal electrode thickness has been developed to calculate the capacitance of the sensors when in contact with a planar test-piece comprising up to four layers. Compared with a disk-and-ring coplanar capacitive sensor developed previously, the interdigital configurations are predicted to have higher signal-to-noise ratio and better accuracy in materials characterization. The disk-and-ring configuration, on the other hand, possesses advantages such as deeper penetration depth and better immunity to lift-off variations.

  1. The geometry of three-dimensional measurement from paired coplanar x-ray images.

    PubMed

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    This article outlines the geometric principles which underlie the process of making craniofacial measurements in three dimensions by combining information from pairs of coplanar x-ray images. The main focus is upon the rationale of the method rather than upon the computational details. We stress particularly the importance of having available accurate measurements as to the relative positions of the x-ray tubes and the film plane. The use of control arrays of radiopaque "points" whose projected images upon the film plane allow the retrospective calculation of the spatial relationship between the x-ray tubes and the film plane is explained. Finally, the question of correcting for movement of the subject between two films of an image pair is considered briefly.

  2. Polymorphism in the nitrate salt of the [Mn(acetylacetonate)2(H2O)2]+ ion.

    PubMed

    Biju, A R; Rajasekharan, M V

    2010-06-01

    The crystallization of [Mn(acac)(2)(H(2)O)(2)](+) from solutions containing excess nitrate leads to the formation of four polymorphs. All polymorphs contain two different types of complex ions, one containing essentially coplanar acac ligands and the other in which the two acac ligands together assume a chair conformation. Molecular modelling using DFT (density-functional theory) calculations shows that the coplanar conformation is the electronically stable one. The hydrogen bonding between the trans-water molecules and the nitrate ion produces a one-dimensional chain of 12-membered rings, which are further organized into a two-dimensional network via a lattice water molecule. Lattice-energy calculations have been carried out to compare the stabilities of the four polymorphs.

  3. (E)-1,3-Bis(2,3,4,5,6-penta­fluoro­phen­yl)prop-2-en-1-one

    PubMed Central

    Schwarzer, Anke; Weber, Edwin

    2010-01-01

    In the title compound, C15H2F10O, the two perfluorinated arene rings are tilted at an angle of 66.08 (5)° with respect to each other. The olefinic double bond adopts an E configuration and the single bond between the olefinic and carbonyl double bonds has an s-trans conformation. The carbonyl group is not in a coplanar alignment with respect to the neighbouring arene ring (0.963 Å from aryl plane) while being coplanar with regard to the olefinic double bond (0.0805 Å from olefinic bond). The crystal packing does not feature significant hydrogen-bond-type or stacking inter­actions. PMID:21588260

  4. Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, G.; Miller, R.; Ogden, L.

    2016-09-05

    Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrummore » with increasing frequency.« less

  5. Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure

    NASA Astrophysics Data System (ADS)

    Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling

    2017-11-01

    A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.

  6. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  7. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xu, Lanxi; Lan, Wanli

    2017-12-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M, where M is the maximum of the absolute value of the velocity field of the laminar flow.

  8. Switchable diode effect in oxygen vacancy-modulated SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Zeng, Huizhong; Bai, Xiaoyuan; Gong, Chaoguan; Jian, Ke; Zhang, Lu; Guo, Hongliang; Tian, Benlang; Zhang, Wanli

    2017-09-01

    SrTiO3 (STO) single crystal wafer was annealed in vacuum, and co-planar metal-insulator-metal structure of Pt/Ti/STO/Ti/Pt were formed by sputtering Pt/Ti electrodes onto the surface of STO after annealing. The forming-free resistive switching behavior with self-compliance property was observed in the sample. The sample showed switchable diode effect, which is explained by a simple model that redistribution of oxygen vacancies (OVs) under the external electric field results in the formation of n-n+ junction or n+-n junction (n donated n-type semiconductor; n+ donated heavily doped n-type semiconductor). The self-compliance property is also interpreted by the formation of n-n+/n+-n junction caused by the migration of the OVs under the electric field.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M. A., E-mail: mabeck2@wisc.edu; Isaacs, J. A.; Booth, D.

    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor–atom experiments at 4.2 K, we show that resonator quality factors above 10{sup 4} can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μm above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor andmore » strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.« less

  10. Splitting Terraced Houses Into Single Units Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Dahlke, D.

    2017-05-01

    This paper introduces a method to subdivide complex building structures like terraced houses into single house units comparable to units available in a cadastral map. 3D line segments are detected with sub-pixel accuracy in traditional vertical true orthomosaics as well as in innovative oblique true orthomosaics and their respective surface models. Hereby high gradient strengths on roofs as well as façades are taken into account. By investigating the coplanarity and frequencies within a set of 3D line segments, individual cut lines for a building complex are found. The resulting regions ideally describe single houses and thus the object complexity is reduced for subsequent topological, semantical or geometrical considerations. For the chosen study area with 70 buidling outlines a hit rate of 80% for cut lines is achieved.

  11. Microwave-to-optical frequency conversion with a Rydberg atom coupled to a coplanar waveguide

    NASA Astrophysics Data System (ADS)

    Gard, Bryan; Jacobs, Kurt; McDermott, Robert; Saffman, Mark

    2017-04-01

    A primary candidate for converting quantum information from microwave to optical frequencies is the use of Rydberg states of a single atom trapped near a surface. The fact that the Rydberg states possess both large electric dipole moments and microwave transition frequencies allows them to interact with superconducting mesoscopic circuits. By considering a concrete example, that of a Cesium atom, and using numerical search methods to optimize the control protocols, we determine the fidelities and transmission rates that could be achievable with such a device. We show that while protocols that exploit the adiabatic STIRAP mechanism provide the best raw transfer fidelities, the fastest communication speeds can be obtained by using heralding, which allows one to remove the adiabatic constraint. Support from Oak Ridge Associated Universities.

  12. High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986

    NASA Astrophysics Data System (ADS)

    Ramer, O. Glenn; Sierak, Paul

    Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.

  13. Electron mobility enhancement in metalorganic-vapor-phase-epitaxy-grown InAlN high-electron-mobility transistors by control of surface morphology of spacer layer

    NASA Astrophysics Data System (ADS)

    Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Nakamura, Norikazu

    2018-01-01

    We demonstrated low-sheet-resistance metalorganic-vapor-phase-epitaxy-grown InAlN high-electron-mobility transistors using AlGaN spacers with excellent surface morphology. We systematically investigated the effects of AlGaN spacer growth conditions on surface morphology and electron mobility. We found that the surface morphology of InAlN barriers depends on that of AlGaN spacers. Ga desorption from AlGaN spacers was suppressed by increasing the trimethylaluminum (TMA) supply rate, resulting in the small surface roughnesses of InAlN barriers and AlGaN spacers. Moreover, we found that an increase in the NH3 supply rate also improved the surface morphologies of InAlN barriers and AlGaN spacers as long as the TMA supply rate was high enough to suppress the degradation of GaN channels. Finally, we realized a low sheet resistance of 185.5 Ω/sq with a high electron mobility of 1210 cm2 V-1 s-1 by improving the surface morphologies of AlGaN spacers and InAlN barriers.

  14. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanan, E-mail: ynzhang@suda.edu.cn; Ren, Weiqing, E-mail: matrw@nus.edu.sg; Institute of High Performance Computing, Singapore 138632

    2014-12-28

    Droplets on a solid surface patterned with microstructures can exhibit the composite Cassie-Baxter (CB) state or the wetted Wenzel state. The stability of the CB state is determined by the energy barrier separating it from the wetted state. In this work, we study the CB to Wenzel transition using the string method [E et al., J. Chem. Phys. 126, 164103 (2007); W. Ren and E. Vanden-Eijnden, J. Chem. Phys. 138, 134105 (2013)]. We compute the transition states and energy barriers for a three-dimensional droplet on patterned surfaces. The liquid-vapor coexistence is modeled using the mean field theory. Numerical results aremore » obtained for surfaces patterned with straight pillars and nails, respectively. It is found that on both type of surfaces, wetting occurs via infiltration of the liquid in a single groove. The reentrant geometry of nails creates large energy barrier for the wetting of the solid surface compared to straight pillars. We also study the effect of surface chemistry, pillar height, and inter-pillar spacing on the energy barrier and compare it with nails.« less

  15. Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces

    NASA Astrophysics Data System (ADS)

    Starostin, Anton; Valtsifer, Viktor; Barkay, Zahava; Legchenkova, Irina; Danchuk, Viktor; Bormashenko, Edward

    2018-06-01

    Water condensation was studied on silanized (superhydrophobic) and fluorinated (superoleophobic) micro-rough aluminum surfaces of the same topography. Condensation on superhydrophobic surfaces occurred via film-wise mechanism, whereas on superoleophobic surfaces it was drop-wise. The difference in the pathways of condensation was attributed to the various energy barriers separating the Cassie and Wenzel wetting states on the investigated surfaces. The higher barriers inherent for superoleophobic surfaces promoted the drop-wise condensation. Triple-stage kinetics of growth of droplets condensed on superoleophobic surfaces is reported and discussed.

  16. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less

  17. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  18. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  19. Covering solid, film cooled surfaces with a duplex thermal barrier coating

    NASA Technical Reports Server (NTRS)

    Liebert, C. H. (Inventor)

    1983-01-01

    Thermal barrier coating systems were applied to hardware having passageways in the walls connecting apertures in the surface to a gas supply for film cooling. An inert gas, such as argon, is discharged through the apertures during the application of the thermal barrier coating system by plasma spraying. This flow of inert gas reduces both blocking of the holes and base metal oxidation during the coating operation.

  20. Joint Services Electronics Program

    NASA Astrophysics Data System (ADS)

    Tinkham, Michael

    1989-07-01

    Topics addressed include: Electronic Theory of Semiconductor Alloys and Superlattices; Pressure Dependence of Photo Luminescence Excitation in GaAs/Al(x)Ga(1-x)As Multi-Quantum Wells; X Ray Surface Characterization; High Temperature Superconductivity; Quantum and Charging Phenomena in Mesoscopic Josephson Junctions; Nonlinear Dynamics of Electronic Neural Networks; Structural and Electronic Studies of Semiconductor Interfaces and Surfaces; Interaction of Ultrashort Laser Pulses with Semiconductor Surfaces; Multiphoton Vibrational Excitation of Molecules; Analytical and Numerical Determination of the Fields of Antennas near an Interface Between Two Half-Spaces with Significantly Different Wave Numbers; Theoretical Study of Lateral-Wave Propagation in Horizontally-Layered Media; Lateral Electromagnetic Waves from a Horizontal Antenna for Remote Sensing in the Ocean; Lateral Electromagnetic Pulses Generated by Horizontal and Vertical Dipoles on the Boundary Between Two Dielectrics; Theoretical Study of Isolated and Coupled Strip Antennas; Theoretical Study of Electromagnetic Pulses with a Slow Rate of Decay; Experimental Study of Electromagnetic Pulses with a Slow Rate of Decay; Properties of Closed Loops of Pseudodipoles; Asymptotic Solution for the Charge and Current Near the Open End of a Linear Tubular Antenna; Closed Loops of Parallel Coplanar Dipoles - Electrically Short Elements; Harmonic Generation in High-Temperature Superconductors and Resonant Closed Loops of Dipoles.

  1. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  2. Circularly polarized antennas for active holographic imaging through barriers

    DOEpatents

    McMakin, Douglas L [Richland, WA; Severtsen, Ronald H [Richland, WA; Lechelt, Wayne M [West Richland, WA; Prince, James M [Kennewick, WA

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  3. Be discs in coplanar circular binaries: Phase-locked variations of emission lines

    NASA Astrophysics Data System (ADS)

    Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo

    2018-01-01

    In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.

  4. Treatment planning for SBRT using automated field delivery: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritter, Timothy A., E-mail: timritte@med.umich.edu; Department of Radiation Oncology, Veterans Affairs Ann Arbor Health Care System, Ann Arbor, MI; Owen, Dawn

    Stereotactic body radiation therapy (SBRT) treatment planning and delivery can be accomplished using a variety of techniques that achieve highly conformal dose distributions. Herein, we describe a template-based automated treatment field approach that enables rapid delivery of more than 20 coplanar fields. A case study is presented to demonstrate how modest adaptations to traditional SBRT planning can be implemented to take clinical advantage of this technology. Treatment was planned for a left-sided lung lesion adjacent to the chest wall using 25 coplanar treatment fields spaced at 11° intervals. The plan spares the contralateral lung and is in compliance with themore » conformality standards set forth in Radiation Therapy and Oncology Group protocol 0915, and the dose tolerances found in the report of the American Association of Physicists in Medicine Task Group 101. Using a standard template, treatment planning was accomplished in less than 20 minutes, and each 10 Gy fraction was delivered in approximately 5.4 minutes. For those centers equipped with linear accelerators capable of automated treatment field delivery, the use of more than 20 coplanar fields is a viable SBRT planning approach and yields excellent conformality and quality combined with rapid planning and treatment delivery. Although the case study discusses a laterally located lung lesion, this technique can be applied to centrally located tumors with similar results.« less

  5. Tracking Solar Energy Conersion Unit Adapted For Field Assembly

    DOEpatents

    Kaminar, Neil R.; Ross, III, James G.; Carrie, Peter J.

    2000-02-01

    A modular solar energy collector having elongated V-shaped side walls formed by a pair of coplanar panels for each side wall. The upper panels, occupying most of the wall area are diffusely reflective, but the lower panels are specularly reflective. A Fresnel lens, having a snap fit relation to the side walls focuses some light on the lower specularly reflective panels which direct light to the solar cells at the base of the V-shaped walls. A heat sink provides support for the two panels with two opposed, upwardly extending wings terminating in opposed linear clips located near the lengthwise seam of the coplanar panels, each clip holding two coplanar panels in parallel alignment. The clips not only provide support for the panels, but also transfer heat to the remainder of the heat sink. The clips are shaped so that edges of the panels engage each clip by a snap fit, outside of the clip in one embodiment and inside of the clip in another embodiment. End caps are also formed with structures which snap to the wall panels. Since all junctions of components snap together, the collector of the present invention is easily assembled without specialized tools. Using side walls which are only partly specularly reflective permits a large angle of acceptance, yet provides an economical wall design because the entire wall need not be specularly reflective.

  6. Functional Implications of Ubiquitous Semicircular Canal Non-Orthogonality in Mammals

    PubMed Central

    Berlin, Jeri C.; Kirk, E. Christopher; Rowe, Timothy B.

    2013-01-01

    The ‘canonical model’ of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species. PMID:24260256

  7. Lithium diffusion at Si-C interfaces in silicon-graphene composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odbadrakh, Khorgolkhuu; McNutt, N. W.; Nicholson, D. M.

    2014-08-04

    Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.

  8. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Hibey, Joseph L.

    1989-01-01

    The optimal control problem arising in coplanar orbital transfer employing aeroassist technology and the fuel-optimal control problem arising in orbital transfer vehicles employing aeroassist technology are addressed.

  9. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  10. Active cooling-based surface confinement system for thermal soil treatment

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  11. First principles study of the atomic layer deposition of alumina by TMA-H2O-process.

    PubMed

    Weckman, Timo; Laasonen, Kari

    2015-07-14

    Atomic layer deposition (ALD) is a coating technology used to produce highly uniform thin films. Aluminiumoxide, Al2O3, is mainly deposited using trimethylaluminium (TMA) and water as precursors and is the most studied ALD-process to date. However, only few theoretical studies have been reported in the literature. The surface reaction mechanisms and energetics previously reported focus on a gibbsite-like surface model but a more realistic description of the surface can be achieved when the hydroxylation of the surface is taken into account using dissociatively adsorbed water molecules. The adsorbed water changes the structure of the surface and reaction energetics change considerably when compared to previously studied surface model. Here we have studied the TMA-H2O process using density functional theory on a hydroxylated alumina surface and reproduced the previous results for comparison. Mechanisms and energetics during both the TMA and the subsequent water pulse are presented. TMA is found to adsorb exothermically onto the surface. The reaction barriers for the ligand-exchange reactions between the TMA and the surface hydroxyl groups were found to be much lower compared to previously presented results. TMA dissociation on the surface is predicted to saturate at monomethylaluminium. Barriers for proton diffusion between surface sites are observed to be low. TMA adsorption was also found to be cooperative with the formation of methyl bridges between the adsorbants. The water pulse was studied using single water molecules reacting with the DMA and MMA surface species. Barriers for these reactions were found to reasonable in the process conditions. However, stabilizing interactions amongst water molecules were found to lower the reaction barriers and the dynamical nature of water is predicted to be of importance. It is expected that these calculations can only set an upper limit for the barriers during the water pulse.

  12. Orbital Architectures of Dynamically Complex Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.

    2015-01-01

    The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. We develop a differential evolution Markov chain Monte Carlo (RUN DMC) to tackle these difficult aspects of data analysis. We apply RUN DMC to two classic multi-planet systems from radial velocity surveys, 55 Cancri and GJ 876. For 55 Cancri, we find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet's orbit to cross the stellar surface. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50±610 degrees), but they are not orbiting in a mean-motion resonance. For GJ 876, we can meaningfully constrain the three-dimensional orbital architecture of all the planets based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations (Φ) so they must be roughly coplanar (Φcb = 1.41±0.620.57 degrees and Φbe = 3.87±1.991.86 degrees). The three-dimensional Laplace argument librates with an amplitude of 50.5±7.910.0 degrees, indicating significant past disk migration and ensuring long-term stability. These empirically derived models will provide new challenges for planet formation models and motivate the need for more sophisticated algorithms to analyze exoplanet data.

  13. Orthogonal vector algorithm to obtain the solar vector using the single-scattering Rayleigh model.

    PubMed

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Shi, Chao

    2018-02-01

    Information obtained from a polarization pattern in the sky provides many animals like insects and birds with vital long-distance navigation cues. The solar vector can be derived from the polarization pattern using the single-scattering Rayleigh model. In this paper, an orthogonal vector algorithm, which utilizes the redundancy of the single-scattering Rayleigh model, is proposed. We use the intersection angles between the polarization vectors as the main criteria in our algorithm. The assumption that all polarization vectors can be considered coplanar is used to simplify the three-dimensional (3D) problem with respect to the polarization vectors in our simulation. The surface-normal vector of the plane, which is determined by the polarization vectors after translation, represents the solar vector. Unfortunately, the two-directionality of the polarization vectors makes the resulting solar vector ambiguous. One important result of this study is, however, that this apparent disadvantage has no effect on the complexity of the algorithm. Furthermore, two other universal least-squares algorithms were investigated and compared. A device was then constructed, which consists of five polarized-light sensors as well as a 3D attitude sensor. Both the simulation and experimental data indicate that the orthogonal vector algorithms, if used with a suitable threshold, perform equally well or better than the other two algorithms. Our experimental data reveal that if the intersection angles between the polarization vectors are close to 90°, the solar-vector angle deviations are small. The data also support the assumption of coplanarity. During the 51 min experiment, the mean of the measured solar-vector angle deviations was about 0.242°, as predicted by our theoretical model.

  14. Effect of external electric and magnetic field on propagation of atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Meng, Zhaozhong; Hu, Haixin; Ouyang, Jiting

    2017-10-01

    The behaviors of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge (CDBD) in helium in external electrostatic and magnetic field are investigated experimentally. Time-resolved ICCD images of jet in electric field, magnetic field, and floating metal ring are recorded, respectively. The results show that the jet dynamics is affected significantly by a metal ring, an electric, and/or a magnetic field. In a transverse electric field, the jet shows behavior of deflection, broadening, and shortening according to the structure of electric field. In a transverse magnetic field, the jet deflects to up or down depending on the magnetic direction. The jet can be slowed down or obstructed by a floating metal ring on the jet path, but will still pass through the tube at higher applied voltages of DBD, without significant change in jet length or shape out of the tube compared with that without metal ring. A positive DC voltage on the metal ring helps to improve the jet length, but a negative voltage will reduce the length or completely stop the jet. The electric field to sustain the jet in helium is estimated to be about 24 ± 15 kV/cm from this experiment.

  15. Shallow Geologic Framework and Geomorphic Evolution of a Paleo-barrier Shoreline, Terrebonne and Timbalier Bay, Louisiana, USA.

    NASA Astrophysics Data System (ADS)

    Culling, D. P.; Allison, M. A.; Kulp, M. A.; Georgiou, I. Y.; Weathers, H. D., III

    2016-12-01

    The Louisiana coast is an invaluable asset to the nation's human, economic, and ecological welfare. However, due to the combined effects of coastal erosion, subsidence, and sea level rise, Louisiana is losing on average 25 km2 of its valuable coastal wetlands per year. Terrebonne- Timbalier Bay and the associated Lafourche deltaic lobe headland is a critical section of this coast for wetlands and infrastructure protection and restoration in the State's Master Plan. Historical imagery and bathymetry clearly show the rapid transgression and erosional degradation of both sets of headland-flanking barrier island shorelines due to wave attack and relative sea level rise in the past 150 y. The focus of the present study is a barrier island system: an ocean-fronting modern-barrier shoreline and a paleo-deltaic headland barrier arc inland of the active barrier. The evolution of the modern barrier arc is closely tied to the shallow geologic framework over which it is transgressing, and specifically the sand re-activation capacity of the antecedent geology once erosional forces are introduced. To understand the evolution of these barrier systems and how to address their protection and re-nourishment, it is important to quantify (1) the depositional facies geometry and (2) the volume of sand in these back-barrier sandy lithosomes. Here we present new observations from CHIRP sub-bottom seismic multibeam bathymetry and LIDAR topography, and surface grab and vibracore sampling in an effort to quantify the sediment availability within the underlying geologic framework and reconstruct the geomorphic evolution of these barrier shorelines. Preliminary results show the morphologic expression of antecedent geology, which is evident in seismic and bathymetric patterns, and the presence of near-surface and surface sandy stratigraphy within the back barrier bay. Observations of sandy units agree with results from Kulp et al. (2005), who showed the presence and extent of sandy lithofacies within 3 m of the surface proximal to the Raccoon Pass tidal-inlet. We suggest this sand is an important potential resource for the longevity of proximal sandy barriers as transgression continues; one identified lithesome alone is estimated to contain 5.25 km3 of fine-grained sand.

  16. Oblique wave trapping by vertical permeable membrane barriers located near a wall

    NASA Astrophysics Data System (ADS)

    Koley, Santanu; Sahoo, Trilochan

    2017-12-01

    The effectiveness of a vertical partial flexible porous membrane wave barrier located near a rigid vertical impermeable seawall for trapping obliquely incident surface gravity waves are analyzed in water of uniform depth under the assumption of linear water wave theory and small amplitude membrane barrier response. From the general formulation of the submerged membrane barrier, results for bottom-standing and surface-piercing barriers are computed and analyzed in special cases. Using the eigenfunction expansion method, the boundary-value problems are converted into series relations and then the required unknowns are obtained using the least squares approximation method. Various physical quantities of interests like reflection coefficient, wave energy dissipation, wave forces acting on the membrane barrier and the seawall are computed and analyzed for different values of the wave and structural parameters. The study will be useful in the design of the membrane wave barrier for the creation of tranquility zone in the lee side of the barrier to protect the seawall.

  17. Barriers and dispersal surfaces in minimum-time interception

    NASA Technical Reports Server (NTRS)

    Rajan, N.; Ardema, M. D.

    1982-01-01

    Minimum time interception of a target moving in a horizontal plane is analyzed as a one-player differential game. Dispersal points and points on the barrier are located for a class of pursuit evasion and interception problems. These points are determined by constructing cross sections of the isochrones and hence obtaining the barrier, dispersal, and control level surfaces. The game solution maps the controls as a function of the state within the capture region.

  18. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout

    NASA Astrophysics Data System (ADS)

    Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-11-01

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.

  19. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    PubMed

    Bläckberg, L; El Fakhri, G; Sabet, H

    2017-10-19

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.

  20. Free energy barriers to evaporation of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  1. Structure-property relationships: asymmetric alkylphenyl-substituted anthracene molecules for use in small-molecule solar cells.

    PubMed

    Kim, Yu Jin; Ahn, Eun Soo; Jang, Sang Hun; An, Tae Kyu; Kwon, Soon-Ki; Chung, Dae Sung; Kim, Yun-Hi; Park, Chan Eon

    2015-05-11

    Two asymmetric anthracene-based organic molecules, NDHPEA and TNDHPEA, were prepared without or with a thiophene spacer between the anthracene and naphthalene units. These asymmetric oligomers displayed different degrees of coplanarity, as evidenced by differences in the dihedral angles calculated by using DFT. Differential scanning calorimetry and XRD studies were used to probe the crystallization characteristics and molecular packing structures in the active layers. The coplanarity of the molecules in the asymmetric structure significantly affected the crystallization behavior and the formation of crystalline domains in the solid state. The small-molecule crystalline properties were correlated with the device physics by determining the J-V characteristics and hole mobilities of the devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simulation and performance analysis of a novel high-accuracy sheathless microfluidic impedance cytometer with coplanar electrode layout.

    PubMed

    Caselli, Federica; Bisegna, Paolo

    2017-10-01

    The performance of a novel microfluidic impedance cytometer (MIC) with coplanar configuration is investigated in silico. The main feature of the device is the ability to provide accurate particle-sizing despite the well-known measurement sensitivity to particle trajectory. The working principle of the device is presented and validated by means of an original virtual laboratory providing close-to-experimental synthetic data streams. It is shown that a metric correlating with particle trajectory can be extracted from the signal traces and used to compensate the trajectory-induced error in the estimated particle size, thus reaching high-accuracy. An analysis of relevant parameters of the experimental setup is also presented. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  4. Effect of bird maneuver on frequency-domain helicopter EM response

    USGS Publications Warehouse

    Fitterman, D.V.; Yin, C.

    2004-01-01

    Bird maneuver, the rotation of the coil-carrying instrument pod used for frequency-domain helicopter electromagnetic surveys, changes the nominal geometric relationship between the bird-coil system and the ground. These changes affect electromagnetic coupling and can introduce errors in helicopter electromagnetic, (HEM) data. We analyze these effects for a layered half-space for three coil configurations: vertical coaxial, vertical coplanar, and horizontal coplanar. Maneuver effect is shown to have two components: one that is purely geometric and another that is inductive in nature. The geometric component is significantly larger. A correction procedure is developed using an iterative approach that uses standard HEM inversion routines. The maneuver effect correction reduces inversion misfit error and produces laterally smoother cross sections than obtained from uncorrected data. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  5. Landfill disposal systems.

    PubMed

    Slimak, K M

    1978-12-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.

  6. Barrier-free subsurface incorporation of 3 d metal atoms into Bi(111) films

    DOE PAGES

    Klein, C.; Vollmers, N. J.; Gerstmann, U.; ...

    2015-05-27

    By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3 d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observedmore » for topological insulators formed by substrate-stabilized Bi bilayers.« less

  7. Saltwater-barrier line in Florida : concepts, considerations, and site examples

    USGS Publications Warehouse

    Hughes, Jerry L.

    1979-01-01

    Construction of canals and enlargement of streams in Florida has been mostly to alleviate impact of floods and to drain wetlands for development. Land drainage and heavy pumpage from coastal water-table aquifers has degraded potable ground and surface water with saltwater. Control of saltwater intrusion is possible through implementation of certain hydrologic principles. State of Florida statute 373.033 provides for a saltwater-barrier line in areas of saltwater intrusion along canals. A saltwater-barrier line is defined as the allowable landward limit that a canal shall be constructed or enlarged or a stream deepened or enlarged without a salinity-control structure seaward of the saltwater-barrier line. The salinity control structure controls saltwater intrusion along a surface-water channel and assists in controlling saltwater intrusion into shallow aquifers. This report briefly reviews the fundamentals of saltwater intrusion in surface-water channels and associated coastal aquifers, describes the effects of established saltwater-barrier lines in Florida, and gives a history of the use and benefits of salinity-control structures. (Woodard-USGS).

  8. Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuanfang Fred; Strickland, Christopher E.; Link, Steven O.

    Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. The Prototype Hanford Barrier (PHB) was designed as a 1000-year barrier with pre-determined design and performance objectives and demonstrated in field from 1994 to present. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barriermore » satisfied nearly all key objectives. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford’s semiarid climate, limited drainage to well below the 0.5 mm yr-1 performance criterion, limited runoff, and minimized erosion. Given the two-decade record of successful performance and consideration of all the processes and mechanisms that could degrade the stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the base for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste.« less

  9. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Fred

    2016-06-01

    A surface barrier is a commonly used technology for isolation of subsurface contaminants. Surface barriers for isolating radioactive waste are expected to perform for centuries to millennia, yet there are very few data for field-scale surface barriers for periods approaching a decade or longer. The Prototype Hanford Barrier (PHB) with a design life of 1000 years was constructed over an existing radioactive waste site in 1994 to demonstrate its long-term performance. The primary element of the PHB is an evapotranspiration-capillary (ETC) barrier in which precipitation water is stored in a fine-textured soil layer and later released to the atmosphere via evapotranspiration. To address the barrier performance under extreme conditions, this study included an enhanced precipitation stress test from 1995 to 1997 to determine barrier response to extreme precipitation events. During this period a 1000 year 24 h return rainstorm was simulated in March every year. The loss of vegetation on barrier hydrology was tested with a controlled fire test in 2008. The 19 year monitoring record shows that the store-and-release mechanism worked as well as or better than the design criterion. Average drainage from the ETC barrier amounted to an average of 0.005 mm yr-1, which is well below the design criterion of 0.5 mm yr-1. After a simulated wildfire, the naturally reestablished vegetation and increased evaporation combined to release the stored water and summer precipitation to the atmosphere such that drainage did not occur in the 5 years subsequent to the fire.

  10. Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2011-05-24

    Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

  11. Epidermal Permeability Barrier Recovery Is Delayed in Vitiligo-Involved Sites

    PubMed Central

    Liu, J.; Man, W.Y.; Lv, C.Z.; Song, S.P.; Shi, Y.J.; Elias, P.M.; Man, M.Q.

    2010-01-01

    Background/Objectives Prior studies have demonstrated that both the skin surface pH and epidermal permeability barrier function vary with skin pigmentation types. Although melanin deficiency is the main feature of vitiligo, alterations in cutaneous biophysical properties in vitiligo have not yet been well defined. In the present study, stratum corneum (SC) hydration, the skin surface pH and epidermal permeability barrier function in vitiligo were evaluated. Methods A total of 30 volunteers with vitiligo comprising 19 males and 11 females aged 13–51 years (mean age: 27.91 ± 2.06 years) were enrolled in this study. The skin surface pH, SC hydration, melanin/erythema index and transepidermal water loss (TEWL) were measured by respective probes connected to a Courage-Khazaka MPA5. SC integrity was determined by measuring the TEWL following each D-Squame application. The barrier recovery rate was assessed at 5 h following barrier disruption by repeated tape stripping. Results In addition to SC hydration, both melanin and erythema index were significantly lower in vitiligo lesions than in contralateral, nonlesional sites, while no difference in skin surface pH between vitiligo-involved and uninvolved areas was observed. In addition, neither the basal TEWL nor SC integrity in the involved areas differed significantly from that in the uninvolved areas. However, barrier recovery in vitiligo-involved sites was significantly delayed in comparison with uninvolved sites (40.83 ± 5.39% vs. 58.30 ± 4.71%; t = 2.441; p < 0.02). Conclusion Barrier recovery following tape stripping of the SC is delayed in vitiligo. Therefore, improvement in epidermal permeability barrier function may be an important unrecognized factor to be considered in treating patients with vitiligo. PMID:20185976

  12. The role of the microbiota in shaping infectious immunity

    PubMed Central

    Hand, Timothy W.

    2016-01-01

    Humans are meta-organisms that maintain a diverse population of microorganisms on their barrier surfaces, collectively named the microbiota. Since most pathogens either cross or inhabit barrier surfaces, the microbiota plays a critical and often protective role during infections, both by modulating immune system responses and by mediating colonization resistance. However, the microbiota can also act as a reservoir for opportunistic micro-organisms that can ‘bloom’, significantly complicating diseases of barrier surfaces by contributing to inflammatory immune responses. Here, we review our current understanding of the complex interactions between the host, its microbiota and pathogenic organisms, focusing in particular on the intestinal mucosa. PMID:27616558

  13. SU-F-T-207: Does the Greater Flexibility of Pencil Beam Scanning Reduce the Need for a Proton Gantry?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Depauw, N; Flanz, J

    2016-06-15

    Purpose: Gantry-less proton treatment facility could lower the capital cost of proton therapy. This study investigates the dosimetric feasibility of using only coplanar pencil beam scanning (PBS) beams for those patients who had beam angles that would not have been deliverable without the gantry. Those coplanar beams are implemented on gantry-less horizontal beam-line with patients in sitting or standing positions. Methods: We have selected ten patients (seven head-and-neck, one thoracic, one abdominal and one pelvic case) with clinically delivered double scattering (DS) or PBS treatment plans with beam angles that were challenging to achieve without a gantry. After removing thesemore » beams angles, PBS plans were optimized for gantry-less intensity modulated proton therapy (IMPT) or single field optimization (SFO) with multi-criteria optimization (MCO). For head-and-neck patients who were treated by DS, we generated PBS plans with non-coplanar beams for comparison. Dose-volume-histograms (DVHs), target homogeneity index (HI), mean dose, D-2 and D-98 were reported. Robustness analysis was performed with ±2.5 mm setup errors and ±3.5% range uncertainties for three head-and-neck patients. Results: PBS-gantry-less plans provided more homogenous target coverage and significant improvements on organs-at-risk (OARs) sparing, compared to passive scattering treatments with a gantry. The PBS gantry-less treatments reduced the HI for target coverage by 1.3% to 47.2%, except for a suprasellar patient and a liver patient. The PBS-gantry-less plans reduced the D-mean of OARs by 3.6% to 67.4%. The PBS-gantry plans had similar target coverage and only marginal improvements on OAR sparing as compared to the PBS-gantry-less plans. These two PBS plans also had similar robustness relative to range uncertainties and setup errors. Conclusion: The gantry-less plans have with less mean dose to OARs and more homogeneous target coverage. Although the PBS-gantry plans have slightly improved target coverage and OARs sparing, the overall benefit of having a gantry to provide non-coplanar beams is debatable.« less

  14. TH-EF-BRB-05: 4pi Non-Coplanar IMRT Beam Angle Selection by Convex Optimization with Group Sparsity Penalty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, D; Nguyen, D; Voronenko, Y

    Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less

  15. SU-F-BRB-12: A Novel Haar Wavelet Based Approach to Deliver Non-Coplanar Intensity Modulated Radiotherapy Using Sparse Orthogonal Collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D; Ruan, D; Low, D

    2015-06-15

    Purpose: Existing efforts to replace complex multileaf collimator (MLC) by simple jaws for intensity modulated radiation therapy (IMRT) resulted in unacceptable compromise in plan quality and delivery efficiency. We introduce a novel fluence map segmentation method based on compressed sensing for plan delivery using a simplified sparse orthogonal collimator (SOC) on the 4π non-coplanar radiotherapy platform. Methods: 4π plans with varying prescription doses were first created by automatically selecting and optimizing 20 non-coplanar beams for 2 GBM, 2 head & neck, and 2 lung patients. To create deliverable 4π plans using SOC, which are two pairs of orthogonal collimators withmore » 1 to 4 leaves in each collimator bank, a Haar Fluence Optimization (HFO) method was used to regulate the number of Haar wavelet coefficients while maximizing the dose fidelity to the ideal prescription. The plans were directly stratified utilizing the optimized Haar wavelet rectangular basis. A matching number of deliverable segments were stratified for the MLC-based plans. Results: Compared to the MLC-based 4π plans, the SOC-based 4π plans increased the average PTV dose homogeneity from 0.811 to 0.913. PTV D98 and D99 were improved by 3.53% and 5.60% of the corresponding prescription doses. The average mean and maximal OAR doses slightly increased by 0.57% and 2.57% of the prescription doses. The average number of segments ranged between 5 and 30 per beam. The collimator travel time to create the segments decreased with increasing leaf numbers in the SOC. The two and four leaf designs were 1.71 and 1.93 times more efficient, on average, than the single leaf design. Conclusion: The innovative dose domain optimization based on compressed sensing enables uncompromised 4π non-coplanar IMRT dose delivery using simple rectangular segments that are deliverable using a sparse orthogonal collimator, which only requires 8 to 16 leaves yet is unlimited in modulation resolution. This work is supported in part by Varian Medical Systems, Inc. and NIH R43 CA18339.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dandan; Perkins, Jordan T.; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536

    Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 inducedmore » the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications. - Highlights: • Coplanar PCBs significantly induced histone demethylase JMJD2B expression. • Coplanar PCBs activated NF-κB through p65 up-regulation and nuclear translocation. • Histone H3K4 and K9 modifications were mediated by ER-α/JMJD2B/MLL2 complex. • ER-α may be involved in the regulation of PCB-induced JMJD2B expression.« less

  17. Solid State Technology Branch of NASA Lewis Research Center Second Annual Digest, June 1989 - June 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A collection of papers and presentations authored by the branch between June 1989 and June 1990 is presented. The papers are organized into four sections. Section 1 deals with research in microwave circuits and includes full integrated circuits, the demonstration of optical/RF interfaces, and the evaluation of some hybrid circuitry. Section 2 indicates developments in coplanar waveguides and their use in breadboard circuits. Section 3 addresses high temperature superconductivity and includes: thin film deposition, transport measurement of film characteristics, RF surface resistant measurements, substrate permittivity measurements, measurements of microstrip line characteristics at cryogenic temperatures, patterning of superconducting films, and evaluation of simple passive microstrip circuitry based on YBaCuO films. Section 4 deals with carbon films, silicon carbide, GaAs/AlGaAs, HgCdTe, and other materials.

  18. Heteroaromatic π-Stacking Energy Landscapes

    PubMed Central

    2014-01-01

    In this study we investigate π-stacking interactions of a variety of aromatic heterocycles with benzene using dispersion corrected density functional theory. We calculate extensive potential energy surfaces for parallel-displaced interaction geometries. We find that dispersion contributes significantly to the interaction energy and is complemented by a varying degree of electrostatic interactions. We identify geometric preferences and minimum interaction energies for a set of 13 5- and 6-membered aromatic heterocycles frequently encountered in small drug-like molecules. We demonstrate that the electrostatic properties of these systems are a key determinant for their orientational preferences. The results of this study can be applied in lead optimization for the improvement of stacking interactions, as it provides detailed energy landscapes for a wide range of coplanar heteroaromatic geometries. These energy landscapes can serve as a guide for ring replacement in structure-based drug design. PMID:24773380

  19. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-08-07

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  20. Accelerated barrier recovery and enhancement of the barrier integrity and properties by topical application of a pH 4 compared to a pH 5.8 w/o emulsion in aged skin.

    PubMed

    Angelova-Fischer, I; Fischer, T W; Abels, C; Zillikens, D

    2018-03-25

    Increased skin surface pH is an important host-related factor for deteriorated barrier function in the aged. We investigated whether restoration of the skin pH through topical application of a water-in-oil (w/o) emulsion with pH 4 improved the barrier homeostasis in aged skin and compared the effects to an identical galenic formulation with pH 5.8. The effects of the test formulations on the barrier recovery were investigated by repeated measurements of transepidermal water loss (TEWL) and skin pH 3 h, 6 h and 24 h after acetone-induced impairment of the barrier function in aged skin. The long-term effects of the pH 4 and pH 5.8 emulsions were analyzed by investigation of the barrier integrity/cohesion, the skin surface pH and the skin roughness and scaliness before and after a 4-week, controlled application of the formulations. The application of the pH 4 emulsion accelerated the barrier recovery in aged skin: 3 h and 6 h after acetone-induced barrier disruption the differences in the TEWL recovery between the pH4-treated and acetone control field were significant. Furthermore, the long-term application of the pH 4 formulation resulted in significantly decreased skin pH, enhanced barrier integrity and reduced skin surface roughness and scaliness. At the same time points, the pH 5.8 formulation exerted only minor effects on the barrier function parameters. Exogenous acidification through topical application of a w/o emulsion with pH 4 leads to improvement of the barrier function and maintenance of the barrier homeostasis in aged skin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Automated recognition of quasi-planar ignimbrite sheets and paleo-surfaces via robust segmentation of DTM - examples from the Western Cordillera of the Central Andes

    NASA Astrophysics Data System (ADS)

    Székely, B.; Karátson, D.; Koma, Zs.; Dorninger, P.; Wörner, G.; Brandmeier, M.; Nothegger, C.

    2012-04-01

    The Western slope of the Central Andes between 22° and 17°S is characterized by large, quasi-planar landforms with tilted ignimbrite surfaces and overlying younger sedimentary deposits (e.g. Nazca, Oxaya, Huaylillas ignimbrites). These surfaces were only modified by tectonic uplift and tilting of the Western Cordillera preserving minor now fossilized drainage systems. Several deep, canyons started to form from about 5 Ma ago. Due to tectonic oversteepening in a arid region of very low erosion rates, gravitational collapses and landslides additionally modified the Andean slope and valley flanks. Large areas of fossil surfaces, however, remain. The age of these surfaces has been dated between 11 Ma and 25 Ma at elevations of 3500 m in the Precordillera and at c. 1000 m near the coast. Due to their excellent preservation, our aim is to identify, delineate, and reconstruct these original ignimbrite and sediment surfaces via a sophisticated evaluation of SRTM DEMs. The technique we use here is a robust morphological segmentation method that is insensitive to a certain amount of outliers, even if they are spatially correlated. This paves the way to identify common local planar features and combine these into larger areas of a particular surface segment. Erosional dissection and faulting, tilting and folding define subdomains, and thus the original quasi-planar surfaces are modified. Additional processes may create younger surfaces, such as sedimentary floodplains and salt pans. The procedure is tuned to provide a distinction of these features. The technique is based on the evaluation of local normal vectors (perpendicular to the actual surface) that are obtained by determination of locally fitting planes. Then, this initial set of normal vectors are gradually classified into groups with similar properties providing candidate point clouds that are quasi co-planar. The quasi co-planar sets of points are analysed further against other criteria, such as number of minimum points, maximized standard deviation of spatial scatter, maximum point-to-plane surface, etc. SRTM DEMs of selected areas of the Western slope of the Central Andes have been processed with various parameter sets. The resulting domain structure shows strong correlation with tectonic features (e.g. faulting) and younger depositional surfaces whereas other segmentation features appear or disappear depending on parameters of the analysis. For example, a fine segmentation results - for a given study area - in ca. 2500 planar features (of course not all are geologically meaningful), whereas a more meaningful result has an order of magnitude less planes, ca. 270. The latter segmentation still covers the key areas, and the dissecting features (e.g., large incised canyons) are typically identified. For the fine segmentation version an area of 3863 km2 is covered by fitted planes for the ignimbrite surfaces, whereas for the more robust segmentation this area is 2555 km2. The same values for the sedimentary surfaces are 3162 km2 and 2080 km2, respectively. The total processed area was 14498 km2. As the previous numbers and the 18,1% and 18,6% decrease in the coverage suggest, the robust segmentation remains meaningful for large parts of the area while the number of planar features decreased by an order of magnitude. This result also emphasizes the importance of the initial parameters. To verify the results in more detail, residuals (difference between measured and modelled elevation) are also evaluated, and the results are fed back to the segmentation procedure. Steeper landscapes (young volcanic edifices) are clearly separated from higher-order (long-wavelength) structures. This method allows to quantitatively identify uniform surface segments and to relate these to geologically and morphologically meaningful parameters (type of depositional surface, rock type, surface age).

  2. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane; Mousseau, Normand

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structuralmore » defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from finite-size effects.« less

  3. Insights on finite size effects in ab initio study of CO adsorption and dissociation on Fe 110 surface

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Aurab; Bouhali, Othmane; Mousseau, Normand; Becquart, Charlotte S.; El-Mellouhi, Fedwa

    2016-08-01

    Adsorption and dissociation of hydrocarbons on metallic surfaces represent crucial steps on the path to carburization, eventually leading to dusting corrosion. While adsorption of CO molecules on Fe surface is a barrier-less exothermic process, this is not the case for the dissociation of CO into C and O adatoms and the diffusion of C beneath the surface that are found to be associated with large energy barriers. In practice, these barriers can be affected by numerous factors that combine to favour the CO-Fe reaction such as the abundance of CO and other hydrocarbons as well as the presence of structural defects. From a numerical point of view, studying these factors is challenging and a step-by-step approach is necessary to assess, in particular, the influence of the finite box size on the reaction parameters for adsorption and dissociation of CO on metal surfaces. Here, we use density functional theory (DFT) total energy calculations with the climbing-image nudged elastic band method to estimate the adsorption energies and dissociation barriers for different CO coverages with surface supercells of different sizes. We further compute the effect of periodic boundary condition for DFT calculations and find that the contribution from van der Waals interaction in the computation of adsorption parameters is important as they contribute to correcting the finite-size error in small systems. The dissociation process involves carbon insertion into the Fe surface causing a lattice deformation that requires a larger surface system for unrestricted relaxation. We show that, in the larger surface systems associated with dilute CO-coverages, C-insertion is energetically more favourable, leading to a significant decrease in the dissociation barrier. This observation suggests that a large surface system with dilute coverage is necessary for all similar metal-hydrocarbon reactions in order to study their fundamental electronic mechanisms, as an isolated phenomenon, free from finite-size effects.

  4. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Fragner, A.; Koolstra, G.

    2016-03-01

    The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts thatmore » are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be approximate to 1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.« less

  5. A hypothetical complex between crystalline flavocytochrome b2 and cytochrome c.

    PubMed

    Tegoni, M; White, S A; Roussel, A; Mathews, F S; Cambillau, C

    1993-08-01

    Flavocytochrome b2 and cytochrome c are physiological electron transfer partners in yeast mitochondria. The formation of a stable complex between them has been demonstrated both in solution and in the crystalline state. On the basis of the three-dimensional structures, using molecular modeling and energy minimization, we have generated a hypothetical model for the interaction of these redox partners in the crystal lattice. General criteria such as good charge and surface complementarity, plausible orientation, and separation distance of the prosthetic groups, as well as more specific criteria such as the stoichiometry determined in the crystal, and the involvement of both domains and of more than one subunit of flavocytochrome b2 led us to discriminate between several possible interaction sites. In the hypothetical model we present, four cytochrome c molecules interact with a tetramer of flavocytochrome b2. The b2 and c hemes are coplanar, with an edge-to-edge distance of 14 A. The contact surface area is ca. 800 A2. Several electrostatic interactions involving the flavin and the heme domains of flavocytochrome b2 stabilize the binding of cytochrome c.

  6. Two-layer thermal barrier coating for turbine airfoils - furnace and burner rig test results

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1976-01-01

    A simple, two-layer plasma-sprayed thermal barrier coating system was developed which has the potential for protecting high temperature air-cooled gas turbine components. Of those coatings initially examined, the most promising system consisted of a Ni-16Cr-6Al-0.6Y (in wt%) thermal barrier coating (about 0.005 to 0.010 cm thick) and a ZrO2-12Y2O3 (in wt%) thermal barrier coating (about 0.025 to 0.064 cm thick). This thermal barrier substantially lowered the metal temperature of an air-cooled airfoil. The coating withstood 3,200 cycles (80 sec at 1,280 C surface temperature) and 275 cycles (1 hr at 1,490 C surface temperature) without cracking or spalling. No separation of the thermal barrier from the bond coating or the bond coating from the substrate was observed.

  7. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  8. Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers

    NASA Technical Reports Server (NTRS)

    Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.

    1984-01-01

    A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.

  9. Transient thermography testing of unpainted thermal barrier coating surfaces

    NASA Astrophysics Data System (ADS)

    Ptaszek, Grzegorz; Cawley, Peter; Almond, Darryl; Pickering, Simon

    2013-01-01

    This paper has investigated the effects of uneven surface discolouration of a thermal barrier coating (TBC) and of its IR translucency on the thermal responses observed by using mid and long wavelength IR cameras. It has been shown that unpainted blades can be tested satisfactorily by using a more powerful flash heating system and a long wavelength IR camera. The problem of uneven surface emissivity can be overcome by applying 2nd derivative processing of the log-log surface cooling curves.

  10. Noncompound nucleus decay contribution in the 12C+93Nb reaction using various formulations of nuclear proximity potential

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-01-01

    The earlier study of excitation functions of *105Ag, formed in the 12C+93Nb reaction, based on the dynamical cluster-decay model (DCM), using the pocket formula for nuclear proximity potential is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach and to the use of the extended-Wong model of Gupta and collaborators. The Skyrme forces used are the old SIII and SIV and the new SSk, GSkI, and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in the frozen-density approximation. Taking advantage of the fact that different Skyrme forces provide different barrier characteristics, we look for the "barrier modification" effects in terms of choosing an appropriate force and hence for the existence or nonexistence of noncompound nucleus (nCN) effects in this reaction. Interestingly, independent of the choice of Skyrme or proximity force, the extended-Wong model fits the experimental data nicely, without any barrier modification and hence no nCN component in the measured fusion cross section, which consists of light-particle evaporation residue (ER) and intermediate-mass fragments (IMFs) up to mass 13, i.e., σfusionExpt .=σER+σIMFs . However, the predicted fusion cross section due to the extended-Wong model is much larger, possibly because of the so-far missing fusion-fission (ff) component in the data. On the other hand, in agreement with the earlier work using the pocket proximity potential, the DCM fits only some data (mainly IMFs) for only some Skyrme forces, and hence it presents the chosen reaction as a case of a large nCN component, whose empirically estimated content is fitted for use of the DCM with a fragment preformation factor taken equal to one, i.e., using DCM (P0=1 ), by introducing "barrier modification" through changing the neck-length parameter Δ R for a best fit to the empirical nCN data in each (ER and IMF) decay channel. Also, the ff component of the DCM is predicted to lie around the symmetric mass A /2 ±16 . All calculations are made for deformed and oriented coplanar nuclei.

  11. Material Barriers to Diffusive Mixing

    NASA Astrophysics Data System (ADS)

    Haller, George; Karrasch, Daniel

    2017-11-01

    Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.

  12. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  13. Miniaturized Wilkinson Power Dividers Utilizing Capacitive Loading

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Weller, Thomas M.

    2001-01-01

    This letter reports the miniaturization of a planar Wilkinson power divider by capacitive loading of the quarter wave transmission lines employed in conventional Wilkinson power dividers. Reduction of the transmission line segments from lambda/4 to between lambda/5 and lambda/12 are reported here. The input and output lines at the three ports and the lines comprising the divider itself are coplanar waveguide (CPW) and asymmetric coplanar stripline (ACPS), respectively. The 10 GHZ power dividers are fabricated on high resistivity silicon (HRS) and alumina wafers. These miniaturized dividers are 74% smaller than conventional Wilkinson power dividers, and have a return loss better than +30 dB and an insertion loss less than 0.55 dB. Design equations and a discussion about the effect of parasitic reactance on the isolation are presented for the first time.

  14. Microwave Spectroscopy of a Single Permalloy Chiral Metamolecule on a Coplanar Waveguide

    NASA Astrophysics Data System (ADS)

    Kodama, Toshiyuki; Kusanagi, Yusaku; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Tomita, Satoshi; Hosoito, Nobuyoshi; Yanagi, Hisao

    2018-05-01

    We investigate the microwave spectroscopies of a micrometer-sized single permalloy (Py) chiral structure on coplanar waveguides (CPWs). Under an external dc magnetic field applied in a direction perpendicular to the microwave propagation, the Py chiral structure loaded on the center of the CPW signal line shows Kittel-mode ferromagnetic resonance. Contrastingly, the structure on the signal-line edge highlights two additional resonances: spin-wave resonance at a higher frequency, and unique resonance at a lower frequency of approximately 7.8 GHz. The resonance signal at 7.8 GHz originates from magnetically induced, geometry-driven resonance, although the resonance frequency does not depend on the external magnetic field. Moreover, the displacement of the Py structures on the signal line results in nonreciprocal microwave transmission, which is traced back to the edge-guide mode.

  15. Standardization of Schwarz-Christoffel transformation for engineering design of semiconductor and hybrid integrated-circuit elements

    NASA Astrophysics Data System (ADS)

    Yashin, A. A.

    1985-04-01

    A semiconductor or hybrid structure into a calculable two-dimensional region mapped by the Schwarz-Christoffel transformation and a universal algorithm can be constructed on the basis of Maxwell's electro-magnetic-thermal similarity principle for engineering design of integrated-circuit elements. The design procedure involves conformal mapping of the original region into a polygon and then the latter into a rectangle with uniform field distribution, where conductances and capacitances are calculated, using tabulated standard mapping functions. Subsequent synthesis of a device requires inverse conformal mapping. Devices adaptable as integrated-circuit elements are high-resistance film resistors with periodic serration, distributed-resistance film attenuators with high transformation ratio, coplanar microstrip lines, bipolar transistors, directional couplers with distributed coupling to microstrip lines for microwave bulk devices, and quasirregular smooth matching transitions from asymmetric to coplanar microstrip lines.

  16. Surveying colloid sedimentation by coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Duţu, C. A.; Vlad, A.; Roda-Neve, C.; Avram, I.; Sandu, G.; Raskin, J.-P.; Melinte, S.

    2016-06-01

    By using coplanar waveguides, direct access to the dielectric properties of aqueous solutions of polystyrene beads with different diameters from 330 nm to 10 μm is provided. The relative variation of the transmission parameter with respect to water is monitored, ranging from ˜ {3}% obtained for a 9.5% solution with 330 nm diameter beads to ˜22% for 10 μm diameter particles at the same concentration. To highlight its applicability in biosensing, the technique was further employed to survey the clustering between biotin and streptavidin-coated beads. The transmission parameter displays a ˜50% increase for mixtures containing nine volumes of biotin and one volume of streptavidin-modified beads (4.5 ng μl-1 of streptavidin) and reaches ˜400% higher values when equal volumes of biotin and streptavidin-coated beads (22.5 ng μl-1 of streptavidin) were mixed.

  17. On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.

    2018-01-01

    The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.

  18. Frequency Reconfigurable Quasi-Yagi Antenna with a Novel Balun Loading Four PIN Diodes

    NASA Astrophysics Data System (ADS)

    Xie, Peng; Wang, Guang-Ming; Li, Hai-Peng; Wen, Tong; Kong, Xiangxin

    2018-04-01

    A novel frequency reconfigurable Quasi-Yagi antenna is proposed. The antenna has two dipoles on different layers of the substrate and they are fed by two coplanar striplines. Four PIN diodes, loading inside the coplanar striplines, are used as the switches. By switching the states of the four diodes, the antenna can work in three modes with different working bands around 3.5 GHz (cover the band of WiMAX), 5.2 GHz (cover the band of WLAN) and 7 GHz respectively. In addition, the working bands can be independently tuned by adjusting several parameters of the antenna. A prototype antenna was fabricated and tested. Good agreement between the simulation and the measurement is achieved. The results prove that the antenna can realize frequency reconfiguration effectively while maintaining the pattern characteristic of Yagi antenna at all frequency.

  19. Interactive optimization approach for optimal impulsive rendezvous using primer vector and evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Luo, Ya-Zhong; Zhang, Jin; Li, Hai-yang; Tang, Guo-Jin

    2010-08-01

    In this paper, a new optimization approach combining primer vector theory and evolutionary algorithms for fuel-optimal non-linear impulsive rendezvous is proposed. The optimization approach is designed to seek the optimal number of impulses as well as the optimal impulse vectors. In this optimization approach, adding a midcourse impulse is determined by an interactive method, i.e. observing the primer-magnitude time history. An improved version of simulated annealing is employed to optimize the rendezvous trajectory with the fixed-number of impulses. This interactive approach is evaluated by three test cases: coplanar circle-to-circle rendezvous, same-circle rendezvous and non-coplanar rendezvous. The results show that the interactive approach is effective and efficient in fuel-optimal non-linear rendezvous design. It can guarantee solutions, which satisfy the Lawden's necessary optimality conditions.

  20. Corrigendum to "Dynamics of a flexible tethered satellite system utilising various materials for coplanar and non-coplanar models" [Adv. Space Res. 56 (2015) 648-663

    NASA Astrophysics Data System (ADS)

    Hong, Aaron Aw Teik; Varatharajoo, Renuganth

    2015-12-01

    The authors would like to thank Dr. N.A. Ismail for some of the discussions found in her thesis as these discussions have facilitated to achieve some of the results published in this article. Therefore, Ismail, N.A., "The Dynamics of a Flexible Motorised Momentum Exchange Tether (MMET)", PhD. thesis, University of Glasgow, UK, pp. 26-41, 2012 is cited accordingly herein. The thesis was missed out from the reference list in the original version of this article due to an oversight with no other intention. Similarly the thesis by Stevens, R.E., "Optimal Control of Electrodynamic Tether Satellites", PhD. thesis, Air Force Institute of Technology, USA, pp. 87-96, 2008 is referred for a further readership completeness.

  1. Influence of residual ion polarization on the coplanar symmetric (e, 2e) cross sections for calcium and argon

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Qing; Chen, Zhan-Bin; Wang, Yang; Wang, Kai

    2017-03-01

    Detailed calculations using a modified distorted wave Born approximation (DWBA) are carried out for the triple differential cross section (TDCS) in the coplanar symmetric single ionization of calcium and argon atoms. The effects of residual ion polarization on the TDCS are investigated systematically. Our results show that the residual ion polarization, arising from the interaction between the target ion and the two outgoing electrons in the final state, may lead to a considerable change in the TDCS with a more pronounced effect in the large scattering angle region at intermediate energies. The present attempt significantly improves the agreement between theoretical and experimental results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  2. Electron- and photon-impact ionization of furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Milton, E-mail: Milton.levin@uconn.edu

    To better elucidate the potential immune-related health effects of exposure to environmentally persistent organic pollutants (POP), such as polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), in ringed seals (Pusa hispida), a sentinel Arctic species, we assessed 1) associations between mitogen-induced lymphocyte proliferation and in vivo tissue contaminant burdens, and 2) the concentration-response effects of in vitro exposure to PFASs and PCB congeners on mitogen-induced lymphocyte proliferation. Upon in vitro contaminant exposure, the non-coplanar PCB congeners CB 138, 153, and 180, but not the coplanar CB 169, significantly reduced lymphocyte proliferation between 10 and 20 µg g{sup −1} ww. The respectivemore » in vitro EC{sub 50} values for these congeners were 13.3, 20.7, 20.8, and 54.6 µg g{sup −1} ww. No modulation of lymphocyte proliferation was observed upon in vitro exposure to two individual PFASs, perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid (PFOA), at concentrations up to 1000 ng g-1. In addition, no significant correlations were found between lymphocyte proliferation and any blood or blubber contaminant measured. Taken together, these data suggest this population of ringed seals is not currently at high risk of altered lymphocyte proliferation from exposure to the POPs or PFASs in this study. - Highlights: • Assess relationships between tissue contaminants and changes in immune function. • Risk for contaminant-induced immunotoxicity in East Greenland ringed seal is low. • Weight of evidence suggest non-coplanar PCBs are immunotoxic at high concentrations.« less

  4. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy

    PubMed Central

    Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi

    2016-01-01

    The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc (Full VMAT). All plans were designed to deliver 70 Gy in 10 fractions. Target coverage and sparing of organs at risk (OARs) were compared across techniques. PTV coverage was almost identical for all approaches. The whole lung V10Gy was significantly lower with CP VMAT plans than with NCP VMAT plans, whereas no significant differences in the mean lung dose, V5Gy, V20Gy or V40Gy were observed. Full VMAT increased mean contralateral lung V5Gy by 12.57% and 9.15% when compared with NCP VMAT and CP VMAT, respectively. Although NCP VMAT plans best achieved the dose–volume constraints for mediastinal OARs, the absolute differences in dose were small when compared with CP VMAT. These results suggest that partial-arc VMAT may be preferable to minimize unnecessary exposure to the contralateral lung, and use of NCP VMAT should be considered when the dose–volume constraints are not achieved by CP VMAT. PMID:26951076

  5. Investigation of heavy-ion fusion with deformed surface diffuseness: Actinide and lanthanide targets

    NASA Astrophysics Data System (ADS)

    Alavi, S. A.; Dehghani, V.

    2017-05-01

    By using a deformed Broglia-Winther nuclear interaction potential in the framework of the WKB method, the near- and above-barrier heavy-ion-fusion cross sections of 16O with some lanthanides and actinides have been calculated. The effect of deformed surface diffuseness on the nuclear interaction potential, the effective interaction potential at distinct angle, barrier position, barrier height, cross section at each angles, and fusion cross sections of 16O+147Sm,150Nd,154Sm , and 166Er and 16O+232Th,238U,237Np , and 248Cm have been studied. The differences between the results obtained by using deformed surface diffuseness and those obtained by using constant surface diffuseness were noticeable. Good agreement between experimental data and theoretical calculation with deformed surface diffuseness were observed for 16O+147Sm,154Sm,166Er,238U,237Np , and 248Cm reactions. It has been observed that deformed surface diffuseness plays a significant role in heavy-ion-fusion studies.

  6. Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas

    2017-01-01

    Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1-5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces.

  7. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  8. Electronic structure studies of adsorbate-induced surface reconstructions: oxygen on Rh(1 0 0)

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Harris, Suzanne

    2004-03-01

    Solid-state Fenske-Hall band structure calculations have been used to study the electronic structure and bonding that occur on an "asymmetric" clock reconstructed Rh(1 0 0) surface with a half-monolayer of O atom adsorbates. The displacement of the top-layer Rh atoms on reconstructed O/Rh(1 0 0) is similar to that observed when a half-monolayer of C or N atoms adsorb onto clean Ni(1 0 0). Unlike the five-coordinate C or N adsorbates that adsorb into effectively coplanar sites on the Ni(1 0 0) surface, however, O atoms sit well above the Rh surface plane and occupy three-coordinate adsorption sites. The results of these calculations show that the asymmetric clock reconstruction of O/Rh(1 0 0) increases the negative charge localized on the highly electronegative O atoms and strengthens the O-Rh bonding relative to an unreconstructed surface. This suggests that, in contrast to the C(N)/Ni(1 0 0) clock, which appears to be driven primarily by the restoration of metal-metal bonding, the asymmetric O/Rh(1 0 0) clock reconstruction is driven by the optimization of the O atom bonding environment. Comparisons of the O/Rh(1 0 0) and C(N, O)/Ni(1 0 0) surfaces further indicate that the electronegativity and electron count of the adsorbed species, as well as the electron count and physical size of the metal, all play a role in determining the preferred atomic geometries of these adsorbate-covered transition metal surfaces.

  9. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    NASA Astrophysics Data System (ADS)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  10. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  11. Molecular assemblies as protective barriers and adhesion promotion interlayer

    DOEpatents

    King, David E.; Czanderna, Alvin W.; Kennedy, Cheryl E.

    1996-01-01

    A protective diffusion barrier having adhesive qualifies for metalized surfaces is provided by a passivating agent having the formula HS--(CH.sub.2).sub.11 --COOH Which forms a very dense, transparent organized molecular assembly or layer that is impervious to water, alkali, and other impurities and corrosive substances that typically attack metal surfaces.

  12. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.

    PubMed

    Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S

    1995-03-01

    We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.

  13. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.

    PubMed Central

    Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S

    1995-01-01

    We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:7756540

  14. Ray tracing method for the evaluation of grazing incidence x-ray telescopes described by spatially sampled surfaces.

    PubMed

    Yu, Jun; Shen, Zhengxiang; Sheng, Pengfeng; Wang, Xiaoqiang; Hailey, Charles J; Wang, Zhanshan

    2018-03-01

    The nested grazing incidence telescope can achieve a large collecting area in x-ray astronomy, with a large number of closely packed, thin conical mirrors. Exploiting the surface metrological data, the ray tracing method used to reconstruct the shell surface topography and evaluate the imaging performance is a powerful tool to assist iterative improvement in the fabrication process. However, current two-dimensional (2D) ray tracing codes, especially when utilized with densely sampled surface shape data, may not provide sufficient accuracy of reconstruction and are computationally cumbersome. In particular, 2D ray tracing currently employed considers coplanar rays and thus simulates only these rays along the meridional plane. This captures axial figure errors but leaves other important errors, such as roundness errors, unaccounted for. We introduce a semianalytic, three-dimensional (3D) ray tracing approach for x-ray optics that overcomes these shortcomings. And the present method is both computationally fast and accurate. We first introduce the principles and the computational details of this 3D ray tracing method. Then the computer simulations of this approach compared to 2D ray tracing are demonstrated, using an ideal conic Wolter-I telescope for benchmarking. Finally, the present 3D ray tracing is used to evaluate the performance of a prototype x-ray telescope fabricated for the enhanced x-ray timing and polarization mission.

  15. A Tandem Coupler for Terahertz Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Reck, Theodore J.; Deal, William; Chattopadhyay, Goutam

    2013-01-01

    A coplanar waveguide 3 dB quadrature coupler operating from 500 to 700 GHz is designed, fabricated and measured. On-wafer measurements demonstrate an amplitude balance of +/-2 dB and phase balance of +/-20 deg.

  16. Article Including Environmental Barrier Coating System

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  17. Contactless electroreflectance studies of surface potential barrier for N- and Ga-face epilayers grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudrawiec, R.; Janicki, L.; Gladysiewicz, M.

    2013-07-29

    Two series of N- and Ga-face GaN Van Hoof structures were grown by plasma-assisted molecular beam epitaxy to study the surface potential barrier by contactless electroreflectance (CER). A clear CER resonance followed by strong Franz-Keldysh oscillation of period varying with the thickness of undoped GaN layer was observed for these structures. This period was much shorter for N-polar structures that means smaller surface potential barrier in these structures than in Ga-polar structures. From the analysis of built-in electric field it was determined that the Fermi-level is located 0.27 ± 0.05 and 0.60 ± 0.05 eV below the conduction band formore » N- and Ga-face GaN surface, respectively.« less

  18. Reaction paths of alane dissociation on the Si(0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Bowler, David R.

    2018-03-01

    Building on our earlier study, we examine the kinetic barriers to decomposition of alane, AlH3, on the Si(0 0 1) surface, using the nudged elastic band approach within density functional theory. We find that the initial decomposition to AlH with two H atoms on the surface proceeds without a significant barrier. There are several pathways available to lose the final hydrogen, though these present barriers of up to 1 eV. Incorporation is more challenging, with the initial structures less stable in several cases than the starting structures, just as was found for phosphorus. We identify a stable route for Al incorporation following selective surface hydrogen desorption (e.g. by scanning tunneling microscope tip). The overall process parallels PH3, and indicates that atomically precise acceptor doping should be possible.

  19. Pathways to dewetting in hydrophobic confinement.

    PubMed

    Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J

    2015-07-07

    Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.

  20. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

    NASA Astrophysics Data System (ADS)

    Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.

    2018-01-01

    Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

  1. Coplanar back contacts for thin silicon solar cells

    NASA Technical Reports Server (NTRS)

    Thornhill, J. W.; Sipperly, W. E.

    1980-01-01

    A process for fabricating 2 to 3 mil wraparound solar cells was formulated. Sample thin wraparound cells were fabricated using this process. The process used a reinforced perimeter construction to reduce the breakage that occurs during handling of the wafers. A retracting piston post was designed and fabricated to help minimize the breakage that occurs during the screen printing process. Two alternative methods of applying the aluminum back surface field were investigated. In addition to the standard screen printed back surface field, both spin-on and evaporated aluminum techniques were researched. Neither spin-on nor evaporated aluminum made any noticeable improvement over the screen printing technique. A fine screen mesh was chosen for the application of the aluminum paste back surface field. The optimum time and temperature for firing the aluminum turned out to be thirty seconds at 850 C. The development work on the dielectric included looking at three dielectrics for the wraparound application. Transene 1000, Thick Film Systems 1126RCB and an in house formulation 61-2-2A were all tested. Cells with pre-dielectric thickness of 3.0-0-3.5 mils using Transene 1000 as the wraparound dielectric and the procedure outlined above showed an average efficiency of 10.7 percent. Thinner cells were fabricated, but had an unacceptable yield and efficiency.

  2. Silicide Schottky Barrier For Back-Surface-Illuminated CCD

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Quantum efficiency of back-surface-illuminated charge-coupled device (CCD) increased by coating back surface with thin layer of PtSi or IrSi on thin layer of SiO2. In its interaction with positively-doped bulk Si of CCD, silicide/oxide layer forms Schottky barrier that repels electrons, promoting accumulation of photogenerated charge carriers in front-side CCD potential wells. Physical principle responsible for improvement explained in "Metal Film Increases CCD Output" (NPO-16815).

  3. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  4. Impact of humidity on functionality of on-paper printed electronics.

    PubMed

    Bollström, Roger; Pettersson, Fredrik; Dolietis, Peter; Preston, Janet; Osterbacka, Ronald; Toivakka, Martti

    2014-03-07

    A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.

  5. Evaluating the Effects of Dimensionality in Advanced Avionic Display Concepts for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2007-01-01

    Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.

  6. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  7. DC-pass filter design with notch filters superposition for CPW rectenna at low power level

    NASA Astrophysics Data System (ADS)

    Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun

    2016-03-01

    In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.

  8. Levels and congener pattern of polychlorinated biphenyls in the blubber of the Mediterranean bottlenose dolphins Tursiops truncatus.

    PubMed

    Storelli, M M; Marcotrigiano, G O

    2003-01-01

    Isomer specific concentrations of individual polychlorinated biphenyls (PCBs) including toxic non-ortho (IUPAC 77, 126, 169) and mono-ortho (105, 118, 156) coplanar congeners were determined in the blubber of nine bottlenose dolphins (Tursiops truncatus) stranded along the Eastern Italian coast. The total PCB concentrations ranged from 3534 to 24375 ng/g wet wt. The PCB profile was dominated by congeners 138 and 153 collectively accounting for 55% of the total PCB concentrations. Among the most toxic congeners the order of abundance was 126>169>77. The mean total 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent of six coplanar PCBs in the blubber of bottlenose dolphins was 45596 pg/g. Non-ortho congeners contributed greater to the 2,3,7,8-TCDD toxic equivalents than mono-ortho members. Particularly, PCB 126 was the major contributor to the estimated toxic potency of PCBs in dolphins.

  9. Design and VNA-measurement of coplanar waveguide (CPW) on benzocyclobutene (BCB) at THz frequencies

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Grimault-Jacquin, Anne-Sophie; Zerounian, Nicolas; Aniel, Frédéric

    2014-03-01

    The low permittivity and the low loss tangent of the benzocyclobutene polymer (BCB) offers to coplanar waveguides (CPW) a low dispersive propagation properties at THz frequency. These transmission lines have been designed, modeled with a three dimensional (3D) solver of Maxwell equations based on finite element method (FEM) from 20 to 1000 GHz at various characteristic impedances (Zc). Their dispersion and losses (radiation, conduction and dielectric) have been investigated separately versus the waveguide size, the nature of the substrate (dielectric or semiconductor) to optimize the THz signal propagation. Monomode CPW on BCB numerically designed for various Zc were realized and measured with vector network analyzer (VNA). S-parameters of CPW are de-embedded by optimization of the accesses' model. A good agreement is found between experimental and numerical results with low attenuation constants of 2.7 dB/mm and 3.5 dB/mm at 400 GHz and 500 GHz, respectively.

  10. Noncoplanar minimum delta V two-impulse and three-impulse orbital transfer from a regressing oblate earth assembly parking ellipse onto a flyby trans-Mars asymptotic velocity vector.

    NASA Technical Reports Server (NTRS)

    Bean, W. C.

    1971-01-01

    Comparison of two-impulse and three-impulse orbital transfer, using data from a 63-case numerical study. For each case investigated for which coplanarity of the regressing assembly parking ellipse was attained with the target asymptotic velocity vector, a two-impulse maneuver (or a one-impulse equivalent) was found for which the velocity expenditure was within 1% of a reference absolute minimum lower bound. Therefore, for the coplanar cases, use of a minimum delta-V three-impulse maneuver afforded scant improvement in velocity penalty. However, as the noncoplanarity of the parking ellipse and the target asymptotic velocity vector increased, there was a significant increase in the superiority of minimum delta-V three-impulse maneuvers for slowing the growth of velocity expenditure. It is concluded that a multiple-impulse maneuver should be contemplated if nonnominal launch conditions could occur.

  11. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  12. CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife

    NASA Astrophysics Data System (ADS)

    Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.

    2017-07-01

    The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.

  13. CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife.

    PubMed

    Kearney, Vasant; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D

    2017-06-26

    The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.

  14. Improving Spectroscopic Performance of a Coplanar-Anode High-Pressure Xenon Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Kiff, Scott Douglas; He, Zhong; Tepper, Gary C.

    2007-08-01

    High-pressure xenon (HPXe) gas is a desirable radiation detection medium for homeland security applications because of its good inherent room-temperature energy resolution, potential for large, efficient devices, and stability over a broad temperature range. Past work in HPXe has produced large-diameter gridded ionization chambers with energy resolution at 662 keV between 3.5 and 4% FWHM. However, one major limitation of these detectors is resolution degradation due to Frisch grid microphonics. A coplanar-anode HPXe detector has been developed as an alternative to gridded chambers. An investigation of this detector's energy resolution is reported in this submission. A simulation package is used to investigate the contributions of important physical processes to the measured photopeak broadening. Experimental data is presented for pure Xe and Xe + 0.2%H2 mixtures, including an analysis of interaction location effects on the energy spectrum.

  15. Coplanar tail-chase aerial combat as a differential game

    NASA Technical Reports Server (NTRS)

    Merz, A. W.; Hague, D. S.

    1977-01-01

    A reduced-order version of the one-on-one aerial combat problem is studied as a pursuit-evasion differential game. The coplanar motion takes place at given speeds and given maximum available turn rates, and is described by three state equations which are equivalent to the range, bearing, and heading of one aircraft relative to the other. The purpose of the study is to determine those relative geometries from which either aircraft can be guaranteed a win, regardless of the maneuver strategies of the other. Termination is specified by the tail-chase geometry, at which time the roles of pursuer and evader are known. The roles are found in general, together with the associated optimal turn maneuvers, by solution of the differential game of kind. For the numerical parameters chosen, neither aircraft can win from the majority of possible initial conditions if the other turns optimally in certain critical geometries.

  16. A tunable microwave slot antenna based on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragoman, Mircea; Aldrigo, Martino; Vasilache, D.

    The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO{sub 2} layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO{sub 2}. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower thanmore » a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.« less

  17. Fractal serpentine-shaped design for stretchable wireless strain sensors

    NASA Astrophysics Data System (ADS)

    Dong, Wentao; Cheng, Xiao; Wang, Xiaoming; Zhang, Hailiang

    2018-07-01

    Stretchable sensors have been widely applied to biological fields due to their unique capacity to integrate with soft materials and curvilinear surfaces. The article presents the fractal serpentine-shaped design for stretchable wireless strain sensor which is operating around 1.6 GHz. The wireless passive LC sensor is formed by a fractal serpentine-shaped inductor coil and a concentric coplanar capacitor. The inductance of the fractal serpentine-shaped coil varies with the deformation of the wireless sensor, and the resonance frequency also varies with the applied strain of the wireless sensor embedded in soft substrate. The 40% stretchability of wireless sensor is verified by finite element analysis (FEA). Strain response of the stretchable wireless sensor has been characterized by experiments and demonstrates high strain responsivity about 6.74 MHz/1%. The stretchable wireless sensor has the potential to be used in biological and wearable applications.

  18. The effect of thermal annealing on pentacene thin film transistor with micro contact printing.

    PubMed

    Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.

  19. Molecular assemblies as protective barriers and adhesion promotion interlayer

    DOEpatents

    King, D.E.; Czanderna, A.W.; Kennedy, C.E.

    1996-01-30

    A protective diffusion barrier having adhesive qualities for metalized surfaces is provided by a passivating agent having the formula HS--(CH{sub 2}){sub 11}--COOH which forms a very dense, transparent organized molecular assembly or layer that is impervious to water, alkali, and other impurities and corrosive substances that typically attack metal surfaces. 8 figs.

  20. Dielectric Surface Effects on Transient Arcs in Lightning Arrester Devices

    DTIC Science & Technology

    2011-06-01

    pp. 816– 823, 1971. [13] V. I. Gibalov and G. J. Pietsch , “The development of dielectric barrier discharges in gas gaps and on surfaces,” J. Phys. D...Appl. Phys., vol. 33, p. 2618, 2000. [14] D. Braun, V. Gibalov, and G. Pietsch , “Two-dimensional modelling of the dielectric barrier discharge in air

  1. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, J.C.

    1996-08-27

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.

  2. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, John C.

    1996-01-01

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.

  3. Electronic tunneling through a potential barrier on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Zhou, Benliang; Zhou, Benhu; Zhou, Guanghui

    2016-12-01

    We investigate the tunneling transport for electrons on the surface of a topological insulator (TI) through an electrostatic potential barrier. By using the Dirac equation with the continuity conditions for all segments of wave functions at the interfaces between regions inside and outside the barrier, we calculate analytically the transmission probability and conductance for the system. It is demonstrated that, the Klein paradox can also been observed in the system same as in graphene system. Interestingly, the conductance reaches the minimum value when the incident electron energy is equal to the barrier strength. Moreover, with increasing barrier width, the conductance turns up some tunneling oscillation peaks, and larger barrier strength can cause lower conductance, shorter period but larger oscillation amplitude. The oscillation amplitude decreases as the barrier width increases, which is similar as that of the system consisting of the compressive uniaxial strain applied on a TI, but somewhat different from that of graphene system where the oscillation amplitude is a constant. The findings here imply that an electrostatic barrier can greatly influence the electron tunneling transport of the system, and may provide a new way to realize directional filtering of electrons.

  4. Suppression of Lateral Diffusion and Surface Leakage Currents in nBn Photodetectors Using an Inverted Design

    NASA Astrophysics Data System (ADS)

    Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.

    2018-02-01

    Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.

  5. Impact of electrode geometry on an atmospheric pressure surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Hasan, M. I.; Morabit, Y.; Dickenson, A.; Walsh, J. L.

    2017-06-01

    Several of the key characteristics of an atmospheric pressure surface barrier discharge (SBD) are heavily dependent on the geometrical configuration of the plasma generating electrodes. This paper reveals that increasing the surface area of an SBD device by reducing the gaps within the electrodes can have major and unforeseen consequence on the discharge properties. It is experimentally demonstrated that a critical limit exists when reducing the diameter of a circular electrode gap below 5 mm, beyond which the required breakdown voltage increases exponentially and the power deposited in the discharge is impeded. Using a numerical model, it is shown that a reduced electrode gap diameter yields a decrease in the voltage difference between the electrode and dielectric surface, thus lowering the maximum electric field. This study indicates a link between the electrode geometry and the nature of the reactive chemistry produced in the plasma, findings which have wide-reaching implications for many applications where multiple closely packed surface barrier discharges are employed to achieve uniform and large area plasma processing.

  6. Electrical measurement of the hydration state of the skin surface in vivo.

    PubMed

    Tagami, H

    2014-09-01

    Healthy skin surface is smooth and soft, because it is covered by the properly hydrated stratum corneum (SC), an extremely thin and soft barrier membrane produced by the underlying normal epidermis. By contrast, the skin surfaces covering pathological lesions exhibit dry and scaly changes and the SC shows poor barrier function. The SC barrier function has been assessed in vivo by instrumentally measuring transepidermal water loss (TEWL). However, there was a lack of any appropriate method for evaluating the hydration state of the skin surface in vivo until 1980 when we reported the feasibility of employing high-frequency conductance or capacitance to evaluate it quickly and accurately. With such measurements, we can assess easily the moisturizing efficacy of various topical agents in vivo as well as the distribution pattern of water in the SC by combining it with a serial tape-stripping procedure of the skin surface. © 2014 The Author BJD © 2014 British Association of Dermatologists.

  7. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Fission barriers from multidimensionally-constrained covariant density functional theories

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2017-11-01

    In recent years, we have developed the multidimensionally-constrained covariant density functional theories (MDC-CDFTs) in which both axial and spatial reflection symmetries are broken and all shape degrees of freedom described by βλμ with even μ, such as β20, β22, β30, β32, β40, etc., are included self-consistently. The MDC-CDFTs have been applied to the investigation of potential energy surfaces and fission barriers of actinide nuclei, third minima in potential energy surfaces of light actinides, shapes and potential energy surfaces of superheavy nuclei, octupole correlations between multiple chiral doublet bands in 78Br, octupole correlations in Ba isotopes, the Y32 correlations in N = 150 isotones and Zr isotopes, the spontaneous fission of Fm isotopes, and shapes of hypernuclei. In this contribution we present the formalism of MDC-CDFTs and the application of these theories to the study of fission barriers and potential energy surfaces of actinide nuclei.

  9. Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles

    PubMed Central

    Das, Paramita; Thomas, Helga; Moeller, Martin; Walther, Andreas

    2017-01-01

    Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1–5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces. PMID:28054589

  10. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    NASA Astrophysics Data System (ADS)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  11. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces,more » and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.« less

  12. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  13. Growth of quaternary InAlGaN barrier with ultrathin thickness for HEMT application

    NASA Astrophysics Data System (ADS)

    Li, Zhonghui; Li, Chuanhao; Peng, Daqing; Zhang, Dongguo; Dong, Xun; Pan, Lei; Luo, Weike; Li, Liang; Yang, Qiankun

    2018-06-01

    Quaternary InAlGaN barriers with thickness of 7 nm for HEMT application were grown on 3-inch semi-insulating 4H-SiC substrates by metal organic chemical vapor deposition (MOCVD). Focused on growth mechanism of the InAlGaN barrier, the surface morphology and characteristics of InAlGaN/AlN/GaN heterostructures were studied with different growth parameters, including the temperature, Al/Ga ratio and chamber pressure. Among the as-grown samples, high electron mobility is consistent with smooth surface morphology, while high crystalline quality of the quaternary barrier is confirmed by measurements of Photoluminescence (PL) and Mercury-probe Capacity-Voltage (C-V). The recommended heterostructures without SiN passivation is characterized by mobility of 1720 cm2/(V·s), 2DEG density of 1.71*1013 cm-2, sheet resistance of about 210 Ω/□ with a smooth surface morphology and moderate tensile state, specially applied for microwave devices.

  14. Shingle System And Method

    DOEpatents

    Dinwoodie, Thomas L.

    2005-04-26

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The bottom edges of the barriers of one row may overlap the top edges of the barriers of another row. The shingle assemblies may be mounted by first mounting the bases to an inclined surface; the barriers may be then secured to the bases using the supports to create rows of shingle assemblies defining venting regions between the barriers and the bases for temperature regulation.

  15. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state.

    PubMed

    Irudayam, Sheeba J; Pobandt, Tobias; Berkowitz, Max L

    2013-10-31

    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. Experiments measure the fraction of peptides in the surface state and the transmembrane state, but no computational study exists that quantifies the free energy curve for the reorientation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight in understanding the peptide-lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increases. In addition, we study the cooperative effect; specifically we investigate if the reorientation barrier is smaller for a second melittin, given that another neighboring melittin was already in the transmembrane orientation. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect.

  16. Induction logging device

    DOEpatents

    Koelle, A.R.; Landt, J.A.

    An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.

  17. Mechanism of atomic layer deposition of SiO2 on the silicon (100)-2×1 surface using SiCl4 and H2O as precursors

    NASA Astrophysics Data System (ADS)

    Kang, Jeung Ku; Musgrave, Charles B.

    2002-03-01

    We use density functional theory to investigate atomic layer deposition (ALD) mechanism of silicon dioxide on the Si(100)-2×1 surface from the precursors SiCl4 and H2O. First, we explore the reaction mechanism of water with the bare Si(100)-2×1 surface to produce surface hydroxyl groups. We find that this reaction proceeds through a two-step pathway with an overall barrier of 33.3 kcal/mol. Next, we investigate the ALD mechanism for the binary reaction sequence: the SiCl4 half reaction and the H2O half reaction. For the SiCl4 half reaction, SiCl4 first forms a σ-bond with the oxygen of the surface OH group and then releases an HCl molecule. The predicted barrier for this process is 15.8 kcal/mol. Next, adsorbed SiCl3 reacts with a neighboring OH group to form bridged SiCl2 with a barrier of 22.6 kcal/mol. The H2O half reaction also proceeds through two sequential steps with an overall barrier of 19.1 kcal/mol for the reaction of H2O with bridged SiCl2 to form bridged Si(OH)2. The predicted barrier of 22.6 kcal/mol for the rate-limiting step of the ALD binary reaction mechanism is consistent with the experimental value of 22.0 kcal/mol. In addition, we find that the calculated frequencies are in good agreement with the experimentally measured IR spectra.

  18. MO-F-CAMPUS-T-02: Optimizing Orientations of Hundreds of Intensity-Modulated Beams to Treat Multiple Brain Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Dong, P; Larson, D

    Purpose: To investigate a new modulated beam orientation optimization (MBOO) approach maximizing treatment planning quality for the state-of-the-art flattening filter free (FFF) beam that has enabled rapid treatments of multiple brain targets. Methods: MBOO selects and optimizes a large number of intensity-modulated beams (400 or more) from all accessible beam angles surrounding a patient’s skull. The optimization algorithm was implemented on a standalone system that interfaced with the 3D Dicom images and structure sets. A standard published data set that consisted of 1 to 12 metastatic brain tumor combinations was selected for MBOO planning. The planning results from various coplanarmore » and non-coplanar configurations via MBOO were then compared with the results obtained from a clinical volume modulated arc therapy (VMAT) delivery system (Truebeam RapidArc, Varian Oncology). Results: When planning a few number of targets (n<4), MBOO produced results equivalent to non-coplanar multi-arc VMAT planning in terms of target volume coverage and normal tissue sparing. For example, the 12-Gy and 4-Gy normal brain volumes for the 3-target plans differed by less than 1 mL ( 3.0 mLvs 3.8 mL; and 35.2 mL vs 36.3 mL, respectively) for MBOO versus VMAT. However, when planning a larger number of targets (n≥4), MBOO significantly reduced the dose to the normal brain as compared to VMAT, though the target volume coverage was equivalent. For example, the 12-Gy and 4-Gy normal brain volumes for the 12-target plans were 10.8 mL vs. 18.0 mL and 217.9 mL vs. 390.0 mL, respectively for the non-coplanar MBOO versus the non-coplanar VMAT treatment plans, yielding a reduction in volume of more than 60% for the case. Conclusion: MBOO is a unique approach for maximizing normal tissue sparing when treating a large number (n≥4) of brain tumors with FFF linear accelerators. Dr Ma and Dr Sahgal are currently on the board of international society of stereotactic radiosurgery. Dr Sahgal has received support for educational presentations from Elekta company.« less

  19. Anti-collimation of ballistic electrons by a potential barrier

    NASA Astrophysics Data System (ADS)

    Coleridge, P. T.; Taylor, R. P.; Sachrajda, A. S.; Adams, J. A.

    1994-03-01

    A pair of Quantum Point Contacts separated by a continuous barrier have been fabricated using the surface gate technique. Transport measurements for each component of this system and for various combinations have shown both additive and non-additive behaviour. The results are explained by a combination of reflection by the barrier of electrons collimated by the Quantum Point Contacts and transport by diffusion across the barrier.

  20. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  1. Barrier island arcs along abandoned Mississippi River deltas

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.; Boyd, Ron

    1985-01-01

    Generation of transgressive barrier island arcs along the Mississippi River delta plain and preservation of barrier shoreline facies in their retreat paths on the inner shelf is controlled by: (1) shoreface translation; (2) age of the transgression; and (3) the thickness of the barrier island arc sediment package. Barrier island arcs experience an average relative sea level rise of 0.50-1.00 cm yr-1 and shoreface retreat rates range from 5-15 m yr-1. Young barrier island arc sediment packages (Isles Dernieres) are thin and have experienced limited landward retreat of the shoreface. Older barrier island arcs (Chandeleur Islands) are thicker and have experienced significant landward movement of the shoreface because of the greater time available for retreat. If the transgressed barrier shoreline sediment package lies above the advancing ravinement surface, the entire sequence is truncated. A thin reworked sand sheet marks the shoreface retreat path. The base of the transgressive sediment package can lie below the ravinement surface in older barrier shorelines. In this setting, the superstructure of the barrier shoreline is truncated, leaving the basal portion of the transgressive sequence preserved on the inner shelf. A variety of transgressive stratigraphic sequences from sand sheets to truncated barrier islands to sand-filled tidal inlet scars have been identified by high resolution seismic profiling across the shoreface retreat paths of Mississippi delta barrier island arcs. One of these examples, the Isles Dernieres, represents a recently detached barrier island arc in the early stages of transgression. An older example, the Chandeleur Islands, represents a barrier island arc experiencing long-term shoreface retreat. This paper describes the stratigraphic character and preserved transgressive facies for the Isles Dernieres and Chandeleur Islands. ?? 1985.

  2. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  3. Calculation of multidimensional potential energy surfaces for even-even transuranium nuclei: systematic investigation of the triaxiality effect on the fission barrier

    NASA Astrophysics Data System (ADS)

    Chai, Qing-Zhen; Zhao, Wei-Juan; Liu, Min-Liang; Wang, Hua-Lei

    2018-05-01

    Static fission barriers for 95 even-even transuranium nuclei with charge number Z = 94–118 have been systematically investigated by means of pairing self-consistent Woods-Saxon-Strutinsky calculations using the potential energy surface approach in multidimensional (β 2, γ, β 4) deformation space. Taking the heavier 252Cf nucleus (with the available fission barrier from experiment) as an example, the formation of the fission barrier and the influence of macroscopic, shell and pairing correction energies on it are analyzed. The results of the present calculated β 2 values and barrier heights are compared with previous calculations and available experiments. The role of triaxiality in the region of the first saddle is discussed. It is found that the second fission barrier is also considerably affected by the triaxial deformation degree of freedom in some nuclei (e.g., the Z=112–118 isotopes). Based on the potential energy curves, general trends of the evolution of the fission barrier heights and widths as a function of the nucleon numbers are investigated. In addition, the effects of Woods-Saxon potential parameter modifications (e.g., the strength of the spin-orbit coupling and the nuclear surface diffuseness) on the fission barrier are briefly discussed. Supported by National Natural Science Foundation of China (11675148, 11505157), the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2017GGJS008), the Foundation and Advanced Technology Research Program of Henan Province (162300410222), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317002) and the Physics Research and Development Program of Zhengzhou University (32410017)

  4. Long-Term Drainage from the Riprap Side Slope of a Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuanfang

    Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Sitemore » in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.« less

  5. Multi-Axis Identifiability Using Single-Surface Parameter Estimation Maneuvers on the X-48B Blended Wing Body

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.; Koshimoto, Ed T.; Taylor, Brian R.

    2011-01-01

    The problem of parameter estimation on hybrid-wing-body type aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aero- dynamic control effectors that act in coplanar motion. This fact adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of system inputs must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, asymmetric, single-surface maneuvers are used to excite multiple axes of aircraft motion simultaneously. Time history reconstructions of the moment coefficients computed by the solved regression models are then compared to each other in order to assess relative model accuracy. The reduced flight-test time required for inner surface parameter estimation using multi-axis methods was found to come at the cost of slightly reduced accuracy and statistical confidence for linear regression methods. Since the multi-axis maneuvers captured parameter estimates similar to both longitudinal and lateral-directional maneuvers combined, the number of test points required for the inner, aileron-like surfaces could in theory have been reduced by 50%. While trends were similar, however, individual parameters as estimated by a multi-axis model were typically different by an average absolute difference of roughly 15-20%, with decreased statistical significance, than those estimated by a single-axis model. The multi-axis model exhibited an increase in overall fit error of roughly 1-5% for the linear regression estimates with respect to the single-axis model, when applied to flight data designed for each, respectively.

  6. Kinetics-Driven Crystal Facets Evolution at the Tip of Nanowires: A New Implementation of the Ostwald-Lussac Law.

    PubMed

    Yin, Xin; Wang, Xudong

    2016-11-09

    Nanocrystal facets evolution is critical for designing nanomaterial morphology and controlling their properties. In this work, we report a unique high-energy crystal facets evolution phenomenon at the tips of wurtzite zinc oxide nanowires (NWs). As the zinc vapor supersaturation decreased at the NW deposition region, the NW tip facets evolved from the (0001) surface to the {101̅3} surface and subsequently to the {112̅2} surface and eventually back to the flat (0001) surface. A series of NW tip morphology was observed in accordance to the different combinations of exposed facets. Exposure of the high-energy facets was attributed to the fluctuation of the energy barriers for the formation of different crystal facets during the layer-by-layer growth of the NW tip. The energy barrier differences between these crystal facets were quantified from the surface area ratios as a function of supersaturation. On the basis of the experimental observation and kinetics analysis, we argue that at appropriate deposition conditions exposure of the crystal facets at NW growth front is not merely determined by the surface energy. Instead, the NW may choose to expose the facets with minimal formation energy barrier, which can be determined by the Ehrlich-Schwoebel barrier variation. This empirical law for the NW tip facet formation was in analogy to the Ostwald-Lussac law of phase transformation, which brings a new insight toward nanostructure design and controlled synthesis.

  7. Studies of Cu adatom island ripening on Cu(100) by LEEM

    NASA Astrophysics Data System (ADS)

    Bussmann, Ezra; Kellogg, Gary L.

    2007-03-01

    Simple metal surfaces are model systems for characterizing kinetic processes governing the growth and stability of nanoscale structures. It is generally presumed that diffusive transport of adatoms across terraces determines the rate of these processes. However, STM studies in the temperature range T˜330-420 K reveal that transport between step edges on the Cu(100) surface is limited by detachment barriers at the step edges, rather than by the adatom diffusion barrier.^1 This is because on the Cu(100) surface, mass transport is mediated primarily by vacancies, instead of adatoms. We have used low energy electron microscopy (LEEM) movies to characterize coarsening of Cu islands on the Cu(100) surface in the range T˜460-560 K. By measuring the temperature dependence of the island decay rate we find an activation barrier of 0.9±0.1 eV. This value is comparable to the 0.80±0.03 eV barrier found in STM studies.^1 However, we are not able to conclude that transport is entirely detachment limited at these elevated temperatures. This work serves as background to establish whether or not Pd alloying in the Cu(100) surface will slow Cu surface transport. ^2 1. C. Kl"unker, et al., PRB 58, R7556 (1998). 2. M. L. Grant, et al., PRL 86, 4588 (2001). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE NNSA, Contract No. DE-AC04-94AL85000.

  8. Profound re-organization of cell surface proteome in equine retinal pigment epithelial cells in response to in vitro culturing.

    PubMed

    Szober, Christoph M; Hauck, Stefanie M; Euler, Kerstin N; Fröhlich, Kristina J H; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A

    2012-10-31

    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

  9. Hydrogen generation due to water splitting on Si - terminated 4H-Sic(0001) surfaces

    NASA Astrophysics Data System (ADS)

    Li, Qingfang; Li, Qiqi; Yang, Cuihong; Rao, Weifeng

    2018-02-01

    The chemical reactions of hydrogen gas generation via water splitting on Si-terminated 4H-SiC surfaces with or without C/Si vacancies were studied by using first-principles. We studied the reaction mechanisms of hydrogen generation on the 4H-SiC(0001) surface. Our calculations demonstrate that there are major rearrangements in surface when H2O approaches the SiC(0001) surface. The first H splitting from water can occur with ground-state electronic structures. The second H splitting involves an energy barrier of 0.65 eV. However, the energy barrier for two H atoms desorbing from the Si-face and forming H2 gas is 3.04 eV. In addition, it is found that C and Si vacancies can form easier in SiC(0001)surfaces than in SiC bulk and nanoribbons. The C/Si vacancies introduced can enhance photocatalytic activities. It is easier to split OH on SiC(0001) surface with vacancies compared to the case of clean SiC surface. H2 can form on the 4H-SiC(0001) surface with C and Si vacancies if the energy barriers of 1.02 and 2.28 eV are surmounted, respectively. Therefore, SiC(0001) surface with C vacancy has potential applications in photocatalytic water-splitting.

  10. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1992-01-01

    The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.

  11. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies.

    PubMed

    Xu, Zhixia; Li, Shunli; Yin, Xiaoxing; Zhao, Hongxin; Liu, Leilei

    2017-07-21

    Radiation loss of a typical spoof surface plasmon polaritons (SSPPs) transmission line (TL) is investigated in this paper. A 325 mm-long SSPPs TL is designed and fabricated. Simulated results show that radiation loss contributes more to transmission loss than dielectric loss and conductor loss from 2 GHz to 10 GHz. Radiation loss of the SSPPs TL could be divided into two parts, one is caused by the input mode converter, and the other is caused by the corrugated metallic strip. This paper explains mechanisms of radiation loss from different parts, designs a loaded SSPPs TL with a series of resistors to absorb electromagnetic energy on corrugated metallic strip, and then discriminates radiation loss from the input mode converter, proposes the concept of average radiation length (ARL) to evaluate radiation loss from SSPPs of finite length, and concludes that radiation loss is mainly caused by corrugated structure of finite length at low frequency band and by the input mode converter at high frequency band. To suppress radiation loss, a mixed slow wave TL based on the combination of coplanar waveguides (CPWs) and SSPPs is presented. The designed structure, sample fabrication and experimental verification are discussed.

  12. Electrically-pumped 850-nm micromirror VECSELs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission ismore » employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.« less

  13. Electrically pumped 850-nm micromirror VECSELs

    NASA Astrophysics Data System (ADS)

    Keeler, Gordon A.; Serkland, Darwin K.; Geib, Kent M.; Peake, Gregory M.; Mar, Alan

    2005-03-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  14. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides

    NASA Astrophysics Data System (ADS)

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-01

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  15. Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides.

    PubMed

    Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo

    2016-12-05

    We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW's propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.

  16. Electric characteristics of a surface barrier discharge with a plasma induction electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemskii, I. N.; Lelevkin, V. M.; Tokarev, A. V.

    2006-07-15

    Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.

  17. Method for applying a diffusion barrier interlayer for high temperature components

    DOEpatents

    Wei, Ronghua; Cheruvu, Narayana S.

    2016-03-08

    A coated substrate and a method of forming a diffusion barrier coating system between a substrate and a MCrAl coating, including a diffusion barrier coating deposited onto at least a portion of a substrate surface, wherein the diffusion barrier coating comprises a nitride, oxide or carbide of one or more transition metals and/or metalloids and a MCrAl coating, wherein M includes a transition metal or a metalloid, deposited on at least a portion of the diffusion barrier coating, wherein the diffusion barrier coating restricts the inward diffusion of aluminum of the MCrAl coating into the substrate.

  18. Mechanisms and energetics of hydride dissociation reactions on surfaces of plasma-deposited silicon thin films

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder; Valipa, Mayur S.; Mountziaris, T. J.; Maroudas, Dimitrios

    2007-11-01

    We report results from a detailed analysis of the fundamental silicon hydride dissociation processes on silicon surfaces and discuss their implications for the surface chemical composition of plasma-deposited hydrogenated amorphous silicon (a-Si:H) thin films. The analysis is based on a synergistic combination of first-principles density functional theory (DFT) calculations of hydride dissociation on the hydrogen-terminated Si(001)-(2×1) surface and molecular-dynamics (MD) simulations of adsorbed SiH3 radical precursor dissociation on surfaces of MD-grown a-Si :H films. Our DFT calculations reveal that, in the presence of fivefold coordinated surface Si atoms, surface trihydride species dissociate sequentially to form surface dihydrides and surface monohydrides via thermally activated pathways with reaction barriers of 0.40-0.55eV. The presence of dangling bonds (DBs) results in lowering the activation barrier for hydride dissociation to 0.15-0.20eV, but such DB-mediated reactions are infrequent. Our MD simulations on a-Si :H film growth surfaces indicate that surface hydride dissociation reactions are predominantly mediated by fivefold coordinated surface Si atoms, with resulting activation barriers of 0.35-0.50eV. The results are consistent with experimental measurements of a-Si :H film surface composition using in situ attenuated total reflection Fourier transform infrared spectroscopy, which indicate that the a-Si :H surface is predominantly covered with the higher hydrides at low temperatures, while the surface monohydride, SiH(s ), becomes increasingly more dominant as the temperature is increased.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V; Nguyen, D; Tran, A

    Purpose: To develop and clinically implement 4π radiotherapy, an inverse optimization platform that maximally utilizes non-coplanar intensity modulated radiotherapy (IMRT) beams to significantly improve critical organ sparing. Methods: A 3D scanner was used to digitize the human and phantom subject surfaces, which were positioned in the computer assisted design (CAD) model of a TrueBeam machine to create a virtual geometrical model, based on which, the feasible beam space was calculated for different tumor locations. Beamlets were computed for all feasible beams using convolution/superposition. A column generation algorithm was employed to optimize patient specific beam orientations and fluence maps. Optimal routingmore » through all selected beams were calculated by a level set method. The resultant plans were converted to XML files and delivered to phantoms in the TrueBeam developer mode. Finally, 4π plans were recomputed in Eclipse and manually delivered to recurrent GBM patients. Results: Compared to IMRT utilizing manually selected beams and volumetric modulated arc therapy plans, markedly improved dosimetry was observed using 4π for the brain, head and neck, liver, lung, and prostate patients. The improvements were due to significantly improved conformality and reduced high dose spillage to organs mediolateral to the PTV. The virtual geometrical model was experimentally validated. Safety margins with 99.9% confidence in collision avoidance were included to the model based model accuracy estimates determined via 300 physical machine to phantom distance measurements. Automated delivery in the developer mode was completed in 10 minutes and collision free. Manual 4 π treatment on the GBM cases resulted in significant brainstem sparing and took 35–45 minutes including multiple images, which showed submillimeter cranial intrafractional motion. Conclusion: The mathematical modeling utilized in 4π is accurate to create and guide highly complex non-coplanar IMRT treatments that consistently and significantly outperform human-operator-created plans. Deliverability of such plans is clinically demonstrated. This work is funded by Varian Medical Systems and the NSF Graduate Research Fellowship DGE-1144087.« less

  20. Lateral-Directional Parameter Estimation on the X-48B Aircraft Using an Abstracted, Multi-Objective Effector Model

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.; Waggoner, Erin R.; Taylor, Brian R.

    2011-01-01

    The problem of parameter estimation on hybrid-wing-body aircraft is complicated by the fact that many design candidates for such aircraft involve a large number of aerodynamic control effectors that act in coplanar motion. This adds to the complexity already present in the parameter estimation problem for any aircraft with a closed-loop control system. Decorrelation of flight and simulation data must be performed in order to ascertain individual surface derivatives with any sort of mathematical confidence. Non-standard control surface configurations, such as clamshell surfaces and drag-rudder modes, further complicate the modeling task. In this paper, time-decorrelation techniques are applied to a model structure selected through stepwise regression for simulated and flight-generated lateral-directional parameter estimation data. A virtual effector model that uses mathematical abstractions to describe the multi-axis effects of clamshell surfaces is developed and applied. Comparisons are made between time history reconstructions and observed data in order to assess the accuracy of the regression model. The Cram r-Rao lower bounds of the estimated parameters are used to assess the uncertainty of the regression model relative to alternative models. Stepwise regression was found to be a useful technique for lateral-directional model design for hybrid-wing-body aircraft, as suggested by available flight data. Based on the results of this study, linear regression parameter estimation methods using abstracted effectors are expected to perform well for hybrid-wing-body aircraft properly equipped for the task.

  1. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    PubMed Central

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  2. (S)-2-(Iodo-meth-yl)-1-tosyl-pyrrolidine.

    PubMed

    Wang, Ya-Wen; Peng, Yu

    2007-12-06

    In the title mol-ecule, C(12)H(16)INO(2)S, the pyrrolidine ring is in an envelope conformation. The dihedral angle between the four essentially coplanar atoms of the pyrrolidine ring and the benzene ring is 75.5 (4)°.

  3. What is Scanner and NonScanner?

    Atmospheric Science Data Center

    2014-12-08

    ... instruments specifically designed by a team of electronic, thermal, and mechanical experts, built and integrated with the ERBS and NOAA ... of three co-planar detectors (longwave, shortwave and total energy), all of which scan from one limb of the Earth to the other, across the ...

  4. Development and Application of Immunoaffinity Chromatography for Coplanar PCBs in Soil and Sediment

    EPA Science Inventory

    An immunoaffinity chromatography (IAC) column was developed as a simple cleanup procedure for preparing environmental samples for analysis of polychlorinated biphenyls (PCBs). Soil and sediment samples were prepared using pressurized liquid extraction (PLE), followed by the IAC c...

  5. Slotline fed microstrip antenna array modules

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.; Oberhart, M. L.; Brenneman, J. S.; Aoyagi, P.; Moore, J.; Lee, R. Q. H.

    1988-01-01

    A feed network comprised of a combination of coplanar waveguide and slot transmission line is described for use in an array module of four microstrip elements. Examples of the module incorporating such networks are presented as well as experimentally obtained impedance and radiation characteristics.

  6. U.S. EPA's National Dioxin Air Monitoring Network: Analytical Issues

    EPA Science Inventory

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locatio...

  7. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, III, William A.

    2016-11-22

    Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. Here we demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. Based on first principles calculations, we find that the surface chemistry strongly affects the Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, while F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weakmore » Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control the surface terminations based on the calculated formation energies. Finally, this study enhances the understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives practical predictions for improving 2D electronics.« less

  8. Numerical Study for a Large-Volume Droplet on the Dual-Rough Surface: Apparent Contact Angle, Contact Angle Hysteresis, and Transition Barrier.

    PubMed

    Dong, Jian; Jin, Yanli; Dong, He; Liu, Jiawei; Ye, Senbin

    2018-06-26

    The profile, apparent contact angle (ACA), contact angle hysteresis (CAH), and wetting state transmission energy barrier (WSTEB) are important static and dynamic properties of a large-volume droplet on the hierarchical surface. Understanding them can provide us with important insights into functional surfaces and promote the application in corresponding areas. In this paper, we establish three theoretical models (models 1-3) and the corresponding numerical methods, which were obtained by the free energy minimization and the nonlinear optimization algorithm, to predict the profile, ACA, CAH, and WSTEB of a large-volume droplet on the horizontal regular dual-rough surface. In consideration of the gravity, the energy barrier on the contact circle, the dual heterogeneous structures and their roughness on the surface, the models are more universal and accurate than the previous models. It showed that the predictions of the models were in good agreement with the results from the experiment or literature. The models are promising to become novel design approaches of functional surfaces, which are frequently applied in microfluidic chips, water self-catchment system, and dropwise condensation heat transfer system.

  9. Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.

    2008-09-29

    Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondarymore » objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and post-burn to determine changes in the gravel content of the surface layer so as to quantify inflationary or deflationary responses to fire and to reveal the ability of the surface to resist post-fire erosive stresses. Measures of bulk density, water repellency, water retention, and hydraulic conductivity will be used to characterize changes in infiltration rates and water storage capacity following the fire. Samples will also be analyzed to quantify geochemical changes including changes in soil pH, cation exchange capacity, specific surface area, and the concentration of macro nutrients (e.g. N, P, K) and other elements such as Na, Mg, Ca, that are critical to the post-fire recovery revegetation. Soil CO2 emissions will be measured monthly for one year following the burn to document post-fire stimulation of carbon turnover and soil biogenic emissions. Surface and subsurface temperature measurements at and near monitoring installations will be used to document fire effects on electronic equipment. The results of this study will be used to bridge the gaps in knowledge on the effects of fire on engineered ecosystems (e.g. surface barriers), particularly the hydrologic and biotic characteristics that govern the water and energy balance. These results will also support the development of practical fire management techniques for barriers that are compatible with wildfire suppression strategies. Furthermore, lessons learned will be use to develop installation strategies needed to protect electronic monitoring equipment from the intense heat of fire and the potential damaging effects of smoke and fire extinguishing agents. Such information is needed to better understand long-term barrier performance under extreme conditions, especially if site maintenance and operational funding is lost for activities such as barrier revegetation.« less

  10. Method of manufacturing lightweight thermo-barrier material

    NASA Technical Reports Server (NTRS)

    Blair, Winford (Inventor)

    1987-01-01

    A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.

  11. Probing equilibrium of molecular and deprotonated water on TiO 2 (110)

    DOE PAGES

    Wang, Zhi-Tao; Wang, Yang-Gang; Mu, Rentao; ...

    2017-02-06

    Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociation barrier.more » Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. The techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less

  12. A DFT study of ethanol adsorption and decomposition on α-Al2O3(0 0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Chiang, Hsin-Ni; Nachimuthu, Santhanamoorthi; Cheng, Ya-Chin; Damayanti, Nur Pradani; Jiang, Jyh-Chiang

    2016-02-01

    Ethanol adsorption and decomposition on the clean α-Al2O3(0 0 0 1) surface have been systematically investigated by density functional theory calculations. The nature of the surface-ethanol bonding has studied through the density of states (DOS) and the electron density difference (EDD) contour plots. The DOS patterns confirm that the lone pair electrons of EtOH are involved in the formation of a surface Alsbnd O dative bond and the EDD plots provide evidences for the bond weakening/forming, which are consistent with the DOS analysis. Our ethanol decomposition results indicate that ethanol dehydration to ethylene (CH3CH2OH(a) → C2H4(g) + OH(a) + H(a)), is the main reaction pathway with the energy barrier of 1.46 eV. Although the cleavage of the hydroxyl group of ethanol has lower energy barrier, the further decomposition of ethoxy owns much higher energy barrier.

  13. Development and photoelectric properties of In/p-Ag{sub 3}AsS{sub 3} surface-barrier structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rud', V. Yu., E-mail: rudvas@spbstu.ru; Rud', Yu. V.; Terukov, E. I.

    2010-08-15

    Homogeneous p-Ag{sub 3}AsS{sub 3} bulk single crystals with rhombic structure have been grown by planar crystallization from melts with atomic composition corresponding to this ternary compound. Photosensitive surface-barrier structures based on the interface between the surface of these crystals and thin films of pure indium are fabricated for the first time. The photosensitivity of fabricated structures is studied in natural and linearly polarized light. Photosensitivity spectra of In/p-Ag{sub 3}AsS{sub 3} structures are measured for the first time and used to determine the nature and energy of interband transitions in p-Ag{sub 3}AsS{sub 3} crystals. The phenomenon of natural photopleochroism is studiedmore » for surface-barrier structures grown on oriented p-Ag{sub 3}AsS{sub 3} single crystals. It is concluded that Ag{sub 3}AsS{sub 3} single crystals can be used in photoconverters of natural and linearly polarized light.« less

  14. Wetting transition on patterned surfaces: transition states and energy barriers.

    PubMed

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  15. Strongly reduced Ehrlich-Schwoebel barriers at the Cu (111) stepped surface with In and Pb surfactants

    NASA Astrophysics Data System (ADS)

    Hao, Jialei; Zhang, Lixin

    2018-01-01

    A surfactant can modify the properties of the surface and induce different mode of epitaxy growth. The atomistic mechanism is not fully understood yet. In this first-principles study, taking Cu homoepitaxy along (111) direction as an example, we show that the distribution of the surfactant atoms on the surface is the key. For In and Pb, they prefer to locate at the step edges and remain isolated. Once the growth is started, the distribution can be further modified by Cu adatoms. The uniquely decorated step edges have much lowered Ehrlich-Schwoebel (ES) barriers than that of the clean edges, thus the two dimensional growth on Cu (111) surface is promoted significantly. On the other hand, for Rh, Ir, and Au, these atoms are not favored at the step edges. The ES barriers can't be affected and these metals are not surfactants. The result is very helpful for searching of the optimal surfactants in metal homoepitaxy.

  16. Probing equilibrium of molecular and deprotonated water on TiO 2(110)

    DOE PAGES

    Wang, Zhi -Tao; Wang, Yang -Gang; Mu, Rentao; ...

    2017-02-06

    Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO 2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociationmore » barrier. Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. In conclusion, the techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less

  17. Full field vertical scanning in short coherence digital holographic microscope.

    PubMed

    Monemahghdoust, Zahra; Montfort, Frederic; Cuche, Etienne; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2013-05-20

    In Digital holography Microscopes (DHM) implemented in the so-called "off axis" configuration, the object and reference wave fronts are not co-planar but form an angle of a few degrees. This results into two main drawbacks. First, the contrast of the interference is not uniform spatially when the light source has low coherence. The interference contrast is optimal along a line, but decreases when moving away from it, resulting in a lower image quality. Second, the non-coplanarity between the coherence plane of both wavefronts impacts the coherence vertical scanning measurement mode: when the optical path difference between the signal and the reference beam is changed, the region of maximum interference contrast shifts laterally in the plane of the objective. This results in more complex calculations to extract the topography of the sample and requires scanning over a much larger vertical range, leading to a longer measurement time. We have previously shown that by placing a volume diffractive optical element (VDOE) in the reference arm, the wavefront can be made coplanar with the object wavefront and the image plane of the microscope objective, resulting in a uniform and optimal interferogram. In this paper, we demonstrate a vertical scanning speed improvement by an order of magnitude. Noise in the phase and intensity images caused by scattering and non-uniform diffraction in the VDOE is analyzed quantitatively. Five VDOEs were fabricated with an identical procedure. We observe that VDOEs introduce a small intensity non-uniformity in the reference beam which results in a 20% noise increase in the extracted phase image as compared to the noise in extracted phase image when the VDOE is removed. However, the VDOE has no impact on the temporal noise measured from extracted phase images.

  18. Cell death mechanisms in GT1-7 GnRH cells exposed to polychlorinated biphenyls PCB74, PCB118, and PCB153

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, Sarah M.; Guevara, Esperanza; Woller, Michael J.

    2009-06-01

    Exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4',5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2',3,4,4',5' pentachlorobiphenyl: PCB118), non-coplanar (2,2',4,4',5,5'-hexachlorobiphenyl: PCB153), or their combination. GnRH peptide concentrations, cell viability, apoptotic and necrotic cell death, and caspase activation weremore » quantified. In general, GnRH peptide levels were suppressed by high doses and longer durations of PCBs, and elevated at low doses and shorter timepoints. The suppression of GnRH peptide levels was partially reversed in cultures co-treated with the estrogen receptor antagonist ICI 182,780. All PCBs reduced viability and increased both apoptotic and necrotic cell death. Although the effects for the three classes of PCBs were often similar, subtle differences in responses, together with evidence that the combination of PCBs acted slightly different from individual PCBs, suggest that the three tested PCB compounds may act via slightly different or more than one mechanism. These results provide evidence that PCB congeners have endocrine disrupting and/or neurotoxic effects on the hypothalamic GnRH cell line, a finding that has implications for environmental endocrine disruption in animals.« less

  19. Electromagnetic Modeling of Distributed-Source-Excitation of Coplanar Waveguides: Applications to Traveling-Wave Photomixers

    NASA Technical Reports Server (NTRS)

    Pasqualini, Davide; Neto, Andrea; Wyss, Rolf A.

    2001-01-01

    In this work an electromagnetic model and subsequent design is presented for a traveling-wave, coplanar waveguide (CPW) based source that will operate in the THz frequency regime. The radio frequency (RF) driving current is a result of photoexcitation of a thin GaAs membrane using two frequency-offset lasers. The GaAs film is grown by molecular-beam-epitaxy (MBE) and displays sub-ps carrier lifetimes which enable the material conductivity to be modulated at a very high rate. The RF current flows between electrodes deposited on the GaAs membrane which are biased with a DC voltage source. The electrodes form a CPW and are terminated with a double slot antenna that couples the power to a quasi-optical system. The membrane is suspended above a metallic reflector to launch all radiation in one direction. The theoretical investigation and consequent design is performed in two steps. The first step consists of a direct evaluation of the magnetic current distribution on an infinitely extended coplanar waveguide excited by an impressed electric current distributed over a finite area. The result of the analysis is the difference between the incident angle of the laser beams and the length of the excited area that maximizes the RF power coupled to the CPW. The optimal values for both parameters are found as functions of the CPW and membrane dimensions as well as the dielectric constants of the layers. In the second step, a design is presented of a double slot antenna that matches the CPW characteristic impedance and gives good overall performance. The design is presently being implemented and measurements will soon be available.

  20. PCDDs/PCDFs, PCBs, and organochlorine pesticides in eggs of Eurasian sparrowhawks (Accipiter nisus), hobbies (Falco subbuteo), and northern goshawks (Accipiter gentilis) collected in the area of Berlin-Brandenburg, Germany.

    PubMed

    Wiesmüller, T; Sömmer, P; Volland, M; Schlatterer, B

    2002-05-01

    Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and organochlorine (OC) pesticides were measured in unsuccessfully hatched eggs of three different kinds of predatory birds: 3 eggs of sparrowhawks, 7 eggs of hobbies, and 16 eggs of goshawks collected in the German region of Berlin-Brandenburg. Using toxic equivalency factors for birds, eggs of hobbies contained mean concentrations of 478 pg TEQ/g fat and 551 pg TEQ/g fat contributed by PCDD/Fs and coplanar PCBs, respectively. For sparrowhawks the respective TCDD equivalents were 424 and 1278 pg/g fat; those for goshawks were 211 and 935 pg/g fat. The mean value of the summed concentrations of the PCB congeners 28, 52, 101, 138, 153, and 180 amounted to 11 microg/g fat in eggs of hobbies, 9.5 microg/g fat for sparrowhawks, and 16.1 microg/g fat for goshawks. Of the analyzed organochlorine pesticides the concentration of p,p'-DDE was highest (up to 273 microg/g); the concentration of the other OCs, with the exception of methoxychlor in eggs of goshawks (highest level of 10.6 microg/g fat), were negligible. In all cases the calculated toxicity of the coplanar PCBs surpassed the toxicity of the PCDD/Fs, at least by a factor of two. Due to the higher concentration of the coplanar PCB 77 compared to PCB 126 in eggs of hobbies, it is concluded that its metabolic excretion in this species is much lower than in sparrowhawks and goshawks.

  1. OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1994-01-01

    OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.

  2. Cell death mechanisms in GT1-7 GnRH cells exposed to polychlorinated biphenyls PCB74, PCB118, and PCB153

    PubMed Central

    Dickerson, Sarah M.; Guevara, Esperanza; Woller, Michael J.; Gore, Andrea C.

    2009-01-01

    Exposure to endocrine-disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4′,5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2′,3,4,4′,5′ pentachlorobiphenyl: PCB118), non-coplanar (2,2′,4,4′,5,5′-hexachlorobiphenyl: PCB153), or their combination. GnRH peptide concentrations, cell viability, apoptotic and necrotic cell death, and caspase activation were quantified. In general, GnRH peptide levels were suppressed by high doses and longer durations of PCBs, and elevated at low doses and shorter time points. The suppression of GnRH peptide levels was partially reversed in cultures co-treated with the estrogen receptor antagonist ICI 182,780. All PCBs reduced viability and increased both apoptotic and necrotic cell death. Although the effects for the three classes of PCBs were often similar, subtle differences in responses, together with evidence that the combination of PCBs acted slightly differently from individual PCBs, suggest that the three tested PCB compounds may act via slightly different or more than one mechanism. These results provide evidence that PCB congeners have endocrine disrupting and/or neurotoxic effects on the hypothalamic GnRH cell line, a finding that has implications for environmental endocrine disruption in animals. PMID:19362103

  3. Containment of a silicone fluid free surface in reduced gravity using barrier coatings

    NASA Technical Reports Server (NTRS)

    Pline, Alexander D.; Jacobson, Thomas P.

    1988-01-01

    In support of the Surface Tension Driven Convection Experiment planned for flight aboard the Space Shuttle, tests were conducted under reduced gravity in the 2.2-sec Drop Tower and the 5.0-sec Zero-G facility at the NASA Lewis Research Center. The dynamics of controlling the test fluid, a 10-cSt viscosity silicone fluid in a low gravity environment were investigated using different container designs and barrier coatings. Three container edge designs were tested without a barrier coating; a square edge, a sharp edge with a 45-deg slope, and a sawtooth edge. All three edge designs were successful in containing the fluid below the edge. G-jitter experiments were made in scaled down containers subjected to horizontal accelerations. The data showed that a barrier coating is effective in containing silicone fluid under g-levels up to 10 sup -1 sub g sub 0. In addition, a second barrier coating was found which has similar anti-wetting characteristics and is also more durable.

  4. Composition and structure of surfaces by time-of-flight scattering and recoiling spectrometry (TOF-SARS)

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongheon

    1997-10-01

    Time-of-flight scattering and recoiling spectrometry (TOF-SARS) was applied to characterize surface structures in order to understand the chemical and physical phenomena on various surfaces. The combination of TOF-SARS, LEED, and classical ion trajectory simulations has allowed characterization of the elemental composition in the outermost atomic layers, surface symmetry, and possible reconstruction or relaxation. The composition and structure of the CdS\\{0001\\}-(1 x 1) and CdS\\{000bar1\\}-(1 x 1) surfaces were investigated. The termination layer of each surface was determined by grazing incidence TOF-SARS. Both (1 x 1) surfaces are bulk-terminated without any reconstruction or relaxation detected by TOF-SARS. Each surface has two domains which are rotated by 60sp° from each other and there exist steps on both surfaces. The CdS\\{0001\\}-(1 x 1) surface is stabilized by O and H covering half a monolayer which are structurally ordered on the surface, while the O and H on the CdS\\{000bar1\\}-(1 x 1) stabilize the surface without ordering. The study of GaN\\{000bar1\\}-(1 x 1) shows the bulk-termination of the surface with no detectable reconstruction or relaxation. The surface is terminated in a N layer with Ga in the 2sp{nd}-layer. H atoms are bound to the outermost N atoms with a coverage of ˜3/4 monolayer and protrude outward from the surface. The surface termination, composition and structure of the Alsb2Osb3 (sapphire) were examined. The surface relaxation was studied quantitatively using classical ion trajectory simulations along with TOF-SARS. The surface undergoes 1sp{st}{-}2sp{nd}-layer relaxation as large as 0.5 A from the bulk value resulting in near coplanarity of Al and O atoms. The reconstruction of the Ni\\{100\\}-(2 x 2)-C surface was studied by TOF-SARS. The surface contained 80% of the (2 x 2)p4g phase and 20% of the unreconstructed (2 x 2) phase. The displacement of Ni atoms was determined by comparing the experimental and simulated results.

  5. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  6. Effects of surface dielectric barrier discharge on aerodynamic characteristic of train

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Gao, Guoqiang; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-07-01

    High-speed railway today has become an indispensable means of transportation due to its remarkable advantages, including comfortability, convenience and less pollution. The increase in velocity makes the air drag become the main source of energy consumption, leading to receiving more and more concerns. The surface dielectric barrier discharge has shown some unique characteristics in terms of active airflow control. In this paper, the influences of surface dielectric barrier discharge on the aerodynamic characteristics of a scaled train model have been studied. Aspects of the discharge power consumption, the temperature distribution, the velocity of induced flow and the airflow field around the train model were considered. The applied AC voltage was set in the range of 20 kV to 28 kV, with a fixed frequency of 9 kHz. Results indicated that the discharge power consumption, the maximum temperature and the induced flow velocity increased with increasing applied voltage. Mechanisms of applied voltage influencing these key parameters were discussed from the point of the equivalent circuit. The airflow field around the train model with different applied voltages was observed by the smoke visualization experiment. Finally, the effects of surface dielectric barrier discharge on the train drag reduction with different applied voltages were analyzed.

  7. Mechanism of H adatoms improving the O2 reduction reaction on the Zn-modified anatase TiO2 (101) surface studied by first principles calculation.

    PubMed

    Liu, Liangliang; Li, Chongyang; Jiang, Man; Li, Xiaodong; Huang, Xiaowei; Wang, Zhu; Jia, Yu

    2018-06-05

    First principles calculations were performed to cast insight into the mechanism of the improvement of O2 reduction reaction (ORR) activity by Zn and H interstitials on the anatase TiO2 (101) surface. For the Zn-modified anatase TiO2 (101) surface, both surface and subsurface Zn interstitials could contribute to O2 adsorption and dissociation, but the dissociation barriers of O2 molecules are still too high, which limits the ORR activity. After a H adatom is introduced onto the Zn-modified anatase TiO2 (101) surface, the highest energy barriers are greatly reduced compared with those of the Zn-modified surface. Meanwhile, it is observed that the dissociation barriers decrease almost linearly with the increase of the charge difference of adsorption O2 between initial and transition state configurations. Specifically, subsurface Zn and surface H interstitials facilitate O2 dissociation and subsequent oxidation reactions, and further frequency analysis shows that these dissociation processes are frequent even at the room temperature of 300 K. In a word, this work provides a theoretical support to design a high ORR activity catalyst of the TiO2 nanocrystal comparable to precious Pt catalysts.

  8. The triaxiality and Coriolis effects on the fission barrier in isovolumic nuclei with mass number A = 256 based on multidimensional total Routhian surface calculations

    NASA Astrophysics Data System (ADS)

    Chai, Qing-Zhen; Zhao, Wei-Juan; Wang, Hua-Lei; Liu, Min-Liang; Xu, Fu-Rong

    2018-05-01

    The triaxiality and Coriolis effects on the first fission barrier in even-even nuclei with A=256 have been studied in terms of the approach of multidimensional total Routhian surface calculations. The present results are compared with available data and other theories, showing a good agreement. Based on the deformation energy or Routhian curves, the first fission barriers are analyzed, focusing on their shapes, heights, and evolution with rotation. It is found that, relative to the effect on the ground-state minimum, the saddle point, at least the first one, can be strongly affected by the triaxial deformation degree of freedom and Coriolis force. The evolution trends of the macroscopic and microscopic (shell and pairing) contributions as well as the triaxial fission barriers are briefly discussed.

  9. Engineering the Mechanical Properties of Ultrabarrier Films Grown by Atomic Layer Deposition for the Encapsulation of Printed Electronics

    DOE PAGES

    Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; ...

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition.more » We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.« less

  10. Experimental visualization of the cathode layer in AC surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Kim, Sang-You; Lho, Taihyeop; Chung, Kyu-Sun

    2018-06-01

    A narrow etched polyimide line at the bottom edge of a biased electrode (BE) and a non-etched dielectric surface near the biased electrode were observed in an atmospheric AC flexible surface dielectric barrier discharge of polyimide dielectric. These findings are attributed to the bombardment of positive oxygen ions on the bottom edge of the BE and the electron breakdown trajectory not contacting the polyimide surface following the electric field lines formed between the BE edge and the surface charge layer on the dielectric. The length of the non-etched dielectric surface during the first micro-discharge was observed as 22 μm. This occurred, regardless of three different operating durations, which is in good agreement with the length of the cathode layer according to Paschen's law.

  11. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    NASA Astrophysics Data System (ADS)

    Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek

    2015-12-01

    In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  12. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    PubMed

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well as influence of microorganisms nature onto the interaction of between barrier layers and microorganisms.

  13. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  14. Dehydrogenation of benzene on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  15. Dehydrogenation of benzene on Pt(111) surface.

    PubMed

    Gao, W; Zheng, W T; Jiang, Q

    2008-10-28

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  16. The Effects of Fire on the Function of the 200-BP-1 Engineered Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Anderson L.; Link, Steven O.; Hasan, Nazmul

    2009-09-01

    A critical unknown in use of barrier technology for long-term waste isolation is performance after a major disturbance especially when institutional controls are intact, but there are no resources to implement corrective actions. The objective of this study was to quantify the effects of wild fire on alterations the function of an engineered barrier. A controlled burn September 26, 2008 was used to remove all the vegetation from the north side of the barrier. Flame heights exceeded 9 m and temperatures ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above themore » surface. Post-fire analysis of soil properties show significant decreases in wettability, hydraulic conductivity, air entry pressure, organic matter, and porosity relative to pre-fire conditions whereas dry bulk density increased. Decreases in hydraulic conductivity and wettabilty immediately after the fire are implicated in a surface runoff event that occurred in January 2009, the first in 13 years. There was a significant increase in macro-nutrients, pH, and electrical conductivity. After one year, hydrophobicity has returned to pre-burn levels with only 16% of samples still showing signs of decreased wettability. Over the same period, hydraulic conductivity and air entry pressure returned to pre-burn levels at one third of the locations but remained identical to values recorded immediately after the fire at the other two thirds. Soil nutrients, pH, and electrical conductivity remain elevated after 1 year. Species composition on the burned surface changed markedly from prior years and relative to the unburned surface and two analog sites. An increase in the proportion of annuals and biennials is characteristic of burned surfaces that have become dominated by ruderal species. Greenhouse seedling emergence tests conducted to assess the seed bank of pre- and post-burn soils and of two analog sites at the McGee Ranch show no difference in the number of species emerging from soils collected before and after the fire. However, there were fewer species emerging from the seed bank on the side slopes and more species emerging from two analog sites. Leaf area index measures confirmed the substantial differences in plant communities after fire. Xylem pressure potential were considerably higher on the burned half of the barrier in September 2009 suggesting that not all the water in the soil profile will be removed before the fall rains begin. The results of this study are expected to contribute to a better understanding of barrier performance after major disturbances in a post-institutional control environment. Such an understanding is needed to enhance stakeholder acceptance regarding the long-term efficacy of engineered barriers. This study will also support improvements in the design of evapotranspiration (ET) and hybrid (ET + capacitive) barriers and the performance monitoring systems.« less

  17. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  18. Solid State Technology Branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A collection of papers written by the members of the Solid State Technology Branch of NASA LeRC from Jun. 1991 - Jun. 1992 is presented. A range of topics relating to superconductivity, Monolithic Microwave Circuits (MMIC's), coplanar waveguides, and material characterization is covered.

  19. Identification of an enhancer element of class Pi glutathione S-transferase gene required for expression by a co-planar polychlorinated biphenyl.

    PubMed Central

    Matsumoto, M; Imagawa, M; Aoki, Y

    1999-01-01

    3,3',4,4',5-Pentachlorobiphenyl (PenCB), one of the most toxic co-planar polychlorinated biphenyl congeners, specifically induces class Pi glutathione S-transferase (GSTP1) as well as cytochrome P-450 1A1 in primary cultured rat liver parenchymal cells [Aoki, Matsumoto and Suzuki (1993) FEBS Lett. 333, 114-118]. However, the 5'-flanking sequence of the GSTP1 gene does not contain a xenobiotic responsive element, to which arylhydrocarbon receptor binds. Using a chloramphenicol acetyltransferase assay we demonstrate here that the enhancer termed GSTP1 enhancer I (GPEI) is necessary for the stimulation by PenCB of GSTP1 gene expression in primary cultured rat liver parenchymal cells. GPEI is already known to contain a dyad of PMA responsive element-like elements oriented palindromically. It is suggested that a novel signal transduction pathway activated by PenCB contributes to the stimulation of GSTP1 expression. PMID:10051428

  20. Rational design of a pH-insensitive cyan fluorescent protein CyPet2 based on the CyPet crystal structure.

    PubMed

    Liu, Rui; Hu, Xiao-Jian; Ding, Yu

    2017-06-01

    The emission spectrum of widely used CyPet is pH-sensitive. In order to synthesize a pH-insensitive cyan fluorescent protein by rational design, we solved the crystal structures of CyPet under different pH conditions. The indole group of the CyPet chromophore adopts a cis-coplanar conformation in acidic and neutral conditions, while it converts to trans-coplanar under basic conditions. His148 and Glu222 play a vital role in this isomerization. The pH-sensitive chromophore isomerization and change in the emission spectrum can be explained by the coexistence of several different fluorescent states. We trap the chromophore in the trans conformation by A167I mutation (CyPet2), which also prevents the multiconformation of the seventh β-strand. CyPet2 exhibits an unchanged emission spectral shape as a function of pH. © 2017 Federation of European Biochemical Societies.

  1. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  2. Minding the Calcium Store: Ryanodine Receptor Activation as a Convergent Mechanism of PCB Toxicity

    PubMed Central

    Pessah, Isaac N.; Cherednichenko, Gennady; Lein, Pamela J.

    2009-01-01

    Chronic low level polychlorinated biphenyls (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed. PMID:19931307

  3. Multi-frequency spin manipulation using rapidly tunable superconducting coplanar waveguide microresonators

    DOE PAGES

    Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; ...

    2017-07-17

    In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (~7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. Wemore » take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaib, Nathan A.; Duncan, Martin J.; Raymond, Sean N., E-mail: nkaib@astro.queensu.ca

    Although the 55 Cnc system contains multiple, closely packed planets that are presumably in a coplanar configuration, we use numerical simulations to demonstrate that they are likely to be highly inclined to their parent star's spin axis. Due to perturbations from its distant binary companion, this planetary system precesses like a rigid body about its parent star. Consequently, the parent star's spin axis and the planetary orbit normal likely diverged long ago. Because only the projected separation of the binary is known, we study this effect statistically, assuming an isotropic distribution for wide binary orbits. We find that the mostmore » likely projected spin-orbit angle is {approx}50 Degree-Sign , with a {approx}30% chance of a retrograde configuration. Transit observations of the innermost planet-55 Cnc e-may be used to verify these findings via the Rossiter-McLaughlin effect. 55 Cancri may thus represent a new class of planetary systems with well-ordered, coplanar orbits that are inclined with respect to the stellar equator.« less

  5. Crystal structure of 1-(8-meth-oxy-2H-chromen-3-yl)ethanone.

    PubMed

    Koh, Dongsoo

    2014-09-01

    In the structure of the title compound, C12H12O3, the di-hydro-pyran ring is fused with the benzene ring. The di-hydro-pyran ring is in a half-chair conformation, with the ring O and methyl-ene C atoms positioned 1.367 (3) and 1.504 (4) Å, respectively, on either side of the mean plane formed by the other four atoms. The meth-oxy group is coplanar with the benzene ring to which it is connected [Cb-Cb-Om-Cm torsion angle = -0.2 (4)°; b = benzene and m = meth-oxy], and similarly the aldehyde is coplanar with respect to the double bond of the di-hydro-pyran ring [Cdh-Cdh-Ca-Oa = -178.1 (3)°; dh = di-hydro-pyran and a = aldehyde]. In the crystal, mol-ecules are linked by weak meth-yl-meth-oxy C-H⋯O hydrogen bonds into supra-molecular chains along the a-axis direction.

  6. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petti, Luisa; Faber, Hendrik; Anthopoulos, Thomas D., E-mail: t.anthopoulos@imperial.ac.uk

    2015-03-02

    Indium oxide (In{sub 2}O{sub 3}) films were deposited by ultrasonic spray pyrolysis in ambient air and incorporated into bottom-gate coplanar and staggered thin-film transistors. As-fabricated devices exhibited electron-transporting characteristics with mobility values of 1 cm{sup 2}V{sup −1}s{sup −1} and 16 cm{sup 2}V{sup −1}s{sup −1} for coplanar and staggered architectures, respectively. Integration of In{sub 2}O{sub 3} transistors enabled realization of unipolar inverters with high gain (5.3 V/V) and low-voltage operation. The low temperature deposition (≤250 °C) of In{sub 2}O{sub 3} also allowed transistor fabrication on free-standing 50 μm-thick polyimide foils. The resulting flexible In{sub 2}O{sub 3} transistors exhibit good characteristics and remain fully functional even whenmore » bent to tensile radii of 4 mm.« less

  7. Multi-frequency spin manipulation using rapidly tunable superconducting coplanar waveguide microresonators

    NASA Astrophysics Data System (ADS)

    Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.

    2017-07-01

    In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (˜7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. We take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.

  8. Origin of the orbital architecture of the giant planets of the Solar System.

    PubMed

    Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F

    2005-05-26

    Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

  9. Capacitive Sensors for Feedback Control of Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.

    2003-11-01

    Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).

  10. Interface module for transverse energy input to dye laser modules

    DOEpatents

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  11. Ambient air concentrations of PCDDs, PCDFs, coplanar PCBs, and PAHs at the Mississippi Sandhill Crane National Wildlife Refuge, Jackson County, Mississippi

    USGS Publications Warehouse

    White, D.H.; Hardy, J.W.

    1994-01-01

    Our objective was to determine the levels of selected airborne contaminants in ambient air at the Mississippi Sandhill Crane National Wildlife Refuge, Mississippi, that might be affecting the health of endangered cranes living there. Two high-volume air samplers were operated at separate locations on the Refuge during May?September 1991. The sampling media were micro-quartz filters in combination with polyurethane foam plugs. Composite bimonthly samples from each station were analyzed for polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), coplanar polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Overall, residue concentrations were low. The toxic PCDD isomer 2,3,7,8-tetra-CDD was not detected, nor was penta-CDD. There was no difference (P>0.05) in residue concentrations between stations or over time and meteorological parameters were not correlated with residue concentrations. Because contaminant levels and patterns may differ seasonally, we recommend that air samples collected during winter months also be analyzed for these same chemical groups.

  12. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  13. Comparison between DCA - SSO - VDR and VMAT dose delivery techniques for 15 SRS/SRT patients

    NASA Astrophysics Data System (ADS)

    Tas, B.; Durmus, I. F.

    2018-02-01

    To evaluate dose delivery between Dynamic Conformal Arc (DCA) - Segment Shape Optimization (SSO) - Variation Dose Rate (VDR) and Volumetric Modulated Arc Therapy (VMAT) techniques for fifteen SRS patients using Versa HD® lineer accelerator. Fifteen SRS / SRT patient's optimum treatment planning were performed using Monaco5.11® treatment planning system (TPS) with 1 coplanar and 3 non-coplanar fields for VMAT technique, then the plans were reoptimized with the same optimization parameters for DCA - SSO - VDR technique. The advantage of DCA - SSO - VDR technique were determined less MUs and beam on time, also larger segments decrease dosimetric uncertainities of small fields quality assurance. The advantage of VMAT technique were determined a little better GI, CI, PCI, brain V12Gy and brain mean dose. The results show that the clinical objectives and plans for both techniques satisfied all organs at risks (OARs) dose constraints. Depends on the shape and localization of target, we could choose one of these techniques for linear accelerator based SRS / SRT treatment.

  14. Dynamical Constraints on Nontransiting Planets Orbiting TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Truong, Vinh H.; Ford, Eric B.; Robertson, Paul; Terrien, Ryan C.

    2018-06-01

    We derive lower bounds on the orbital distance and inclination of a putative planet beyond the transiting seven planets of TRAPPIST-1, for a range of masses ranging from 0.08 M Jup to 3.5 M Jup. While the outer architecture of this system will ultimately be constrained by radial velocity measurements over time, we present dynamical constraints from the remarkably coplanar configuration of the seven transiting planets, which is sensitive to modestly inclined perturbers. We find that the observed configuration is unlikely if a Jovian-mass planet inclined by ≥3° to the transiting planet exists within 0.53 au, exceeding any constraints from transit timing variations (TTV) induced in the known planets from an undetected perturber. Our results will inform RV programs targeting TRAPPIST-1, and for near coplanar outer planets, tighter constraints are anticipated for radial velocity (RV) precisions of ≲140 m s‑1. At higher inclinations, putative planets are ruled out to greater orbital distances with orbital periods up to a few years.

  15. Coplanar three-beam interference and phase edge dislocations

    NASA Astrophysics Data System (ADS)

    Patorski, Krzysztof; SłuŻewski, Łukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2016-12-01

    We present a comprehensive analysis of grating three-beam interference to discover a broad range of the ratio of amplitudes A of +/-1 diffraction orders and the zero order amplitude C providing phase edge dislocations. We derive a condition A/C > 0.5 for the occurrence of phase edge dislocations in three-beam interference self-image planes. In the boundary case A/C = 0.5 singularity conditions are met in those planes (once per interference field period), but the zero amplitude condition is not accompanied by an abrupt phase change. For A/C > 0.5 two adjacent singularities in a single field period show opposite sign topological charges. The occurrence of edge dislocations for selected values of A/C was verified by processing fork fringes obtained by introducing the fourth beam in the plane perpendicular to the one containing three coplanar diffraction orders. Two fork pattern processing methods are described, 2D CWT (two-dimensional continuous wavelet transform) and 2D spatial differentiation.

  16. Fine-tuning the release of molecular guests from mesoporous silicas by controlling the orientation and mobility of surface phenyl substituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzano, J. Sebastian; Singappuli-Arachchige, Dilini; Parikh, Bosky L.

    Phenyl-functionalized mesoporous silica materials were used to explore the effect of non-covalent interactions on the release of Ibuprofen into simulated body fluid. Variations in orientation and conformational mobility of the surface phenyl groups were introduced by selecting different structural precursors: a rigid upright orientation was obtained using phenyl groups directly bound to surface Si atoms (Ph-MSN), mobile groups were produced by using ethylene linkers to connect phenyl groups to the surface (PhEt-MSN), and groups co-planar to the surface were obtained by synthesizing a phenylene-bridged periodic mesoporous organosilica (Ph-PMO). The Ibuprofen release profiles from these materials and non-functionalized mesoporous silica nanoparticlesmore » (MSN) were analyzed using an adsorption-diffusion model. The model provided kinetic and thermodynamic parameters that evidenced fundamental differences in drug-surface interactions between the materials. All phenyl-bearing materials show lower Ibuprofen initial release rates than bare MSN. The conformationally locked Ph-MSN and Ph-PMO have stronger interactions with the drug (negative ΔG of adsorption) than the flexible PhEt-MSN and bare MSN (positive ΔG of adsorption). These differences in strength of adsorption are consistent with differences between interaction geometries obtained from DFT calculations. B3LYP-D3-optimized models show that π-π interactions contribute more to drug adsorption than H-bonding with silanol groups. Here, the results suggest that the type and geometry of interactions control the kinetics and extent of drug release, and should therefore serve as a guide to design new drug delivery systems with precise release behaviors customized to any desired target.« less

  17. Fine-tuning the release of molecular guests from mesoporous silicas by controlling the orientation and mobility of surface phenyl substituents

    DOE PAGES

    Manzano, J. Sebastian; Singappuli-Arachchige, Dilini; Parikh, Bosky L.; ...

    2017-12-05

    Phenyl-functionalized mesoporous silica materials were used to explore the effect of non-covalent interactions on the release of Ibuprofen into simulated body fluid. Variations in orientation and conformational mobility of the surface phenyl groups were introduced by selecting different structural precursors: a rigid upright orientation was obtained using phenyl groups directly bound to surface Si atoms (Ph-MSN), mobile groups were produced by using ethylene linkers to connect phenyl groups to the surface (PhEt-MSN), and groups co-planar to the surface were obtained by synthesizing a phenylene-bridged periodic mesoporous organosilica (Ph-PMO). The Ibuprofen release profiles from these materials and non-functionalized mesoporous silica nanoparticlesmore » (MSN) were analyzed using an adsorption-diffusion model. The model provided kinetic and thermodynamic parameters that evidenced fundamental differences in drug-surface interactions between the materials. All phenyl-bearing materials show lower Ibuprofen initial release rates than bare MSN. The conformationally locked Ph-MSN and Ph-PMO have stronger interactions with the drug (negative ΔG of adsorption) than the flexible PhEt-MSN and bare MSN (positive ΔG of adsorption). These differences in strength of adsorption are consistent with differences between interaction geometries obtained from DFT calculations. B3LYP-D3-optimized models show that π-π interactions contribute more to drug adsorption than H-bonding with silanol groups. Here, the results suggest that the type and geometry of interactions control the kinetics and extent of drug release, and should therefore serve as a guide to design new drug delivery systems with precise release behaviors customized to any desired target.« less

  18. Multidimensionally constrained relativistic mean-field study of triple-humped barriers in actinides

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Vretenar, Dario; Zhao, En-Guang; Zhou, Shan-Gui

    2015-01-01

    Background: Potential energy surfaces (PES's) of actinide nuclei are characterized by a two-humped barrier structure. At large deformations beyond the second barrier, the occurrence of a third barrier was predicted by macroscopic-microscopic model calculations in the 1970s, but contradictory results were later reported by a number of studies that used different methods. Purpose: Triple-humped barriers in actinide nuclei are investigated in the framework of covariant density functional theory (CDFT). Methods: Calculations are performed using the multidimensionally constrained relativistic mean field (MDC-RMF) model, with the nonlinear point-coupling functional PC-PK1 and the density-dependent meson exchange functional DD-ME2 in the particle-hole channel. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. Results: Two-dimensional PES's of 226,228,230,232Th and 232,235,236,238U are mapped and the third minima on these surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail and the energies of the second barrier, the third minimum, and the third barrier are determined. The functional DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238U . The third minima in 230 ,232Th are very shallow, whereas those in 226 ,228Th and 238U are quite prominent. With the functional PC-PK1 a third barrier is found only in 226 ,228 ,230Th . Single-nucleon levels around the Fermi surface are analyzed in 226Th, and it is found that the formation of the third minimum is mainly due to the Z =90 proton energy gap at β20≈1.5 and β30≈0.7 . Conclusions: The possible occurrence of a third barrier on the PES's of actinide nuclei depends on the effective interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2 functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases with increasing neutron number. The origin of the third minimum is due to the proton Z =90 shell gap at relevant deformations.

  19. Corrosion resistant thermal barrier coating. [protecting gas turbines and other engine parts

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Miller, R. A.; Hodge, P. E. (Inventor)

    1981-01-01

    A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates.

  20. Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier

    PubMed Central

    Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.

    2016-01-01

    Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (<20 cigarettes/day) or heavy smokers (≥20 cigarettes/day). An MPA5 was used to measure SC hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403

Top