Science.gov

Sample records for copolymer cast sheet

  1. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  2. Horizontal electromagnetic casting of thin metal sheets

    DOEpatents

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  3. Continuous Casting for Aluminum Sheet: a Product Perspective

    NASA Astrophysics Data System (ADS)

    Sanders, Robert E.

    2012-02-01

    Continuous casting processes have been used successfully for more than 50 years to reduce the cost of manufacturing a variety of aluminum rolled products. Approximately 25% of North American flat-rolled sheet and foil is sourced from twin-roll cast or slab cast processes. Twin roll-casters provide a cost-effective solution for producing foil and light-gauge sheet from relatively low-alloyed aluminum (1xxx and 8xxx alloys). Slab casters, particularly Hazelett twin-belt machines, are well utilized in the production of 3xxx or 5xxx painted building products which require moderate strength and good corrosion resistance. Both foil and painted sheet are cost-sensitive commodity products with well-known metallurgical and quality requirements. There have been extensive trials and modest successes with continuous cast can stock and automotive sheet. However, they have not been widely adopted commercially due to generally lower levels of surface quality and formability compared with sheet produced from scalped direct chill (DC) cast ingot. The metallurgical requirements for can and auto sheet are considered in more detail with emphasis on the microstructural features which limit their application, e.g., particle distribution, grain size, and texture. Looking forward, slab casting offers the most viable opportunity for producing strong (i.e., higher alloy content), formable structural auto sheet with acceptable surface quality.

  4. Electromagnetic augmentation for casting of thin metal sheets

    SciTech Connect

    Hull, J.R.

    1989-07-11

    This patent describes an apparatus for the horizontal casting of thin metal sheets. The apparatus consists of: vessel means containing a molten metal and including an aperture for discharging the molten metal in the form of a thin horizontal sheet; mold means for receiving, confining and directing the molten metal sheet and for removing heat from the molten metal sheet in effecting the solidification thereof; electromagnetic conducting means including a DC conductor disposed about the metal sheet for directing a DC magnetic field along the direction of displacement of and about the metal sheet; and a DC voltage source coupled to the metal sheet for establishing a direct current therein, such that the direct current interacts with the DC magnetic field for generating and exerting a constant uniform levitation force on the metal sheet wherein the pressure exerted by the metal sheet upon the mold means is reduced to zero.

  5. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  6. Electromagnetic augmentation for casting of thin metal sheets

    DOEpatents

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  7. Thin sheet casting with electromagnetic pressurization

    DOEpatents

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  8. Method of casting silicon into thin sheets

    DOEpatents

    Sanjurjo, Angel; Rowcliffe, David J.; Bartlett, Robert W.

    1982-10-26

    Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

  9. Vacuum Die Casting of Silicon Sheet for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The development of a vacuum die-casting process for producing silicon sheet suitable for photovoltaic cells with a terrestrial efficiency greater than 12 percent and having the potential to be scaled for large quantity production is considered. The initial approach includes: (1) obtaining mechanical design parameters by using boron nitride, which has been shown to non-wetting to silicon; (2) optimizing silicon nitride material composition and coatings by sessile drop experiments; (3) testing effectiveness of fluoride salt interfacial media with a graphite mold; and (4) testing the effect of surface finish using both boron nitride and graphite. When the material and mechanical boundary conditions are established, a finalized version of the prototype assembly will be constructed and the casting variables determined.

  10. A silicon sheet casting experiment. [for solar cell water production

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Sanchez, L. E.; Sampson, W. J.

    1980-01-01

    The casting of silicon blanks for solar cells directly without slicing is an exciting concept. An experiment was performed to investigate the feasibility of developing a machine that casts wafers directly. A Czochralski furnace was modified to accept a graphite ingot-simulating fixture. Silicon was melted in the middle of the ingot simulator in a boron nitride mold. Sample castings showed reasonable crystal size. Solar cells were made from the cast blanks. The performance is reported.

  11. Differences in microstructure and texture of Al-Mg sheets produced by twin-roll continuous casting and by direct-chill casting

    SciTech Connect

    Slamova, M.; Karlik, M.; Robaut, F.; Slama, P.; Veron, M

    2002-10-15

    Over the last two decades, the use of aluminum sheets in automotive applications has increased. Aluminum sheets are currently produced from direct-chill (DC) cast plates. The need for low-cost aluminum sheets is a challenge for the development of new materials produced by twin-roll continuous (TRC) casting and cold rolling. It is expected that the sheets produced from these different casting procedures can differ in their microstructure. Therefore, they can exhibit different formability behavior. The paper presents the results of the microstructural characterization and texture evaluation of aluminum sheets produced by both technologies. Sheets produced from twin-roll cast materials have much finer and more numerous second-phase particles, the grain structures of both types of materials are similar. Electron backscatter diffraction (EBSD) and X-ray diffraction techniques were used for texture evaluation and both confirmed the presence of stronger cube texture in the strips produced from DC-cast plates.

  12. Rapid solution casting under vacuum of very thick sheets of a segmented polyurethane elastomer

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1981-01-01

    A technique has been developed for rapidly casting from solution under vacuum smooth, bubble-free, clear-white and uniformly thick (about 0.20 cm) sheets of a segmented polyurethane elastomer. The casting is carried out from dimethylformamide solutions inside temperature-controlled air-circulated ovens in order to minimize the establishment of thermal gradients throughout the casting solution. The technique produces quality sheets in 9 days, compared with 40-45 days for an inferior film produced in open pans.

  13. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    SciTech Connect

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied in carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.

  14. Process-directed self-assembly of multiblock copolymers: Solvent casting vs spray coating

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Tang, J.; Müller, M.

    2016-07-01

    Using computer simulation of a soft, coarse-grained model and self-consistent field theory we investigate how collapsed, globular chain conformations in the initial stages of structure formation, which are produced by spray-coating, affect the single-chain structure and morphology of microphase-separated multiblock copolymers. Comparing spray-coated films with films that start from a disordered state of Gaussian chains, we observe that the collapsed molecular conformations in the initial stage give rise to (1) a smaller fraction of blocks that straddle domains (bridges), (2) a significant reduction of the molecular extension normal to the internal interfaces, and (3) a slightly larger lamellar domain spacing in the final morphology. The relaxation of molecular conformations towards equilibrium is very protracted for both processes - solvent casting and spray coating. These findings illustrate that the process conditions of the copolymer materials may significantly affect materials properties (such as mechanical properties) because the system does not reach thermal equilibrium on the relevant time scales.

  15. Role of Polyalanine Domains in -Sheet Formation in Spider Silk Block Copolymers

    SciTech Connect

    Rabotyagova, O.; Cebe, P; Kaplan, D

    2010-01-01

    Genetically engineered spider silk-like block copolymers were studied to determine the influence of polyalanine domain size on secondary structure. The role of polyalanine block distribution on {beta}-sheet formation was explored using FT-IR and WAXS. The number of polyalanine blocks had a direct effect on the formation of crystalline {beta}-sheets, reflected in the change in crystallinity index as the blocks of polyalanines increased. WAXS analysis confirmed the crystalline nature of the sample with the largest number of polyalanine blocks. This approach provides a platform for further exploration of the role of specific amino acid chemistries in regulating the assembly of {beta}-sheet secondary structures, leading to options to regulate material properties through manipulation of this key component in spider silks.

  16. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  17. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  18. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  19. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  20. Evaluation and Characterization of In-Line Annealed Continuous Cast Aluminum Sheet

    SciTech Connect

    Dr Subodh K. Das

    2006-01-17

    This R&D program will develop optimized, energy-efficient thermo-mechanical processing procedures for in-line annealing of continuously cast hot bands of two 5000 series aluminum alloys (5754 and 5052). The implementation of the R&D will result in the production of sheet with improved formability at high levels of productivity consistency and quality. The proposed R&D involves the following efforts: (1) Design and build continuous in-line annealing equipment for plant-scale trials; (2) Carry out plant-scale trials at Commonwealth Aluminum Corp.'s (CAC) plant in Carson; (3) Optimize the processing variables utilizing a metallurgical model for the kinetics of microstructure and texture evolution during thermo-mechanical processing; (4) Determine the effects of processing variables on the microstructure, texture, mechanical properties, and formability of aluminum sheet; (5) Develop design parameters for commercial implementation; and (6) Conduct techno-economic studies of the recommended process equipment to identify impacts on production costs. The research and development is appropriate for the domestic industry as it will result in improved aluminum processing capabilities and thus lead to greater application of aluminum in various industries including the automotive market. A teaming approach is critical to the success of this effort as no single company alone possesses the breadth of technical and financial resources for successfully carrying out the effort. This program will enable more energy efficient aluminum sheet production technology, produce consistent high quality product, and have The proposal addresses the needs of the aluminum industry as stated in the aluminum industry roadmap by developing new and improved aluminum processes utilizing energy efficient techniques. The effort is primarily related to the subsection on Rolling and Extrusion with the R&D to address energy and environmental efficiencies in aluminum manufacturing and will provide

  1. Nanomechanical properties of solvent cast polystyrene and poly(methyl methacrylate) polymer blends and self-assembled block copolymers

    NASA Astrophysics Data System (ADS)

    Lorenzoni, Matteo; Evangelio, Laura; Nicolet, Célia; Navarro, Christophe; San Paulo, Alvaro; Rius, Gemma; Pérez-Murano, Francesc

    2015-07-01

    The nanomechanical properties of solvent-cast polymer thin films have been investigated using PeakForce™ Quantitative Nanomechanical Mapping. The samples consisted of films of polystyrene (PS) and poly(methyl methacrylate) (PMMA) obtained after the dewetting of toluene solution on a polymeric brush layer. Additionally, we have probed the mechanical properties of poly(styrene-b-methyl methacrylate) block copolymers (BCP) as randomly oriented thin films. The probed films have a critical thickness <50 nm and present features to be resolved <42 nm. The Young's modulus values obtained through several nanoindentation experiments present a good agreement with previous literature, suggesting that the PeakForce™ technique could be crucial for BCP investigations, e.g., as a predictor of the mechanical stability of the different phases.

  2. Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds

    PubMed Central

    Wu, Larisa C.; Yang, Jiyuan; Kopeček, Jindřich

    2011-01-01

    A biomimetic material that can assist bone tissue regeneration was proposed. A bone scaffold based on a hybrid hydrogel self-assembled from N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers grafted with complementary β-sheet peptides was designed. Investigation of self-assembly by circular dichroism spectroscopy suggested that hydrogel formation was triggered through association of the complementary β-sheet motifs. Congo Red and thioflavin T binding, as well as transmission electron microscopy confirmed the formation of a fibril network. Besides mimicking the natural bone extracellular matrix and maintaining preosteoblast cells viability, this hydrogel, as shown by scanning electron microscopy and Fourier transform infrared spectroscopy, provided surfaces characterized by epitaxy that favored hydroxyapatite-like crystal nucleation and growth potentially beneficial for biointegration. PMID:21549421

  3. Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds.

    PubMed

    Wu, Larisa C; Yang, Jiyuan; Kopeček, Jindřich

    2011-08-01

    A biomimetic material that can assist bone tissue regeneration was proposed. A bone scaffold based on a hybrid hydrogel self-assembled from N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers grafted with complementary β-sheet peptides was designed. Investigation of self-assembly by circular dichroism spectroscopy suggested that hydrogel formation was triggered through association of the complementary β-sheet motifs. Congo Red and thioflavin T binding, as well as transmission electron microscopy confirmed the formation of a fibril network. Besides mimicking the natural bone extracellular matrix and maintaining preosteoblast cells viability, this hydrogel, as shown by scanning electron microscopy and Fourier transform infrared spectroscopy, provided surfaces characterized by epitaxy that favored hydroxyapatite-like crystal nucleation and growth potentially beneficial for biointegration. PMID:21549421

  4. Morphological development in solvent-cast polystyrene(PS)-polybutadiene(PB)-polystyrene (SBS) triblock copolymer thin films

    NASA Astrophysics Data System (ADS)

    Kim, Ginam

    The morphological characteristics of block copolymers have been under intensive research, because of the rich polymer-physics questions they raise and because of the need for better understanding required by adhesive, compatibilizer, and template applications. In this research, the morphological transformations in solvent-cast polystyrene (PS)/polybutadiene (PB)/polystyrene (SBS)(30 wt% PS, Mw = 112,000) triblock copolymer thin films have been studied by transmission electron microscopy (TEM) as a function of solvent evaporation rate and post-evaporation annealing. Evaporation at: (i) ˜200 nl/sec produces a microphase-separated microstructure with no long-range order; (ii) ˜5 nl/sec generates hexagonally packed PS cylinders in a PB matrix with the cylinder axis perpendicular to the film plane; (iii) ˜1.5 nl/sec leads to a duplex microstructure of PS cylinders with domains of either vertical or in-plane cylinders; (iv) ˜0.2 nl/sec produces a fully in-plane cylinder microstructure. Post-evaporation annealing converts the duplex morphology into one with only in-plane PS cylinders. The equilibrium morphology of in-plane cylinders with PB-rich surface layers is generated when films are given relatively long exposure to high solvent concentration or elevated temperature. However, alternate and metastable morphologies are generated including ones with two-phase surface structure under kinetically constrained conditions. Cross-sectional TEM indicates that the surface microstructures vary with evaporation and annealing treatment. These results are interpreted in terms of the kinetics and thermodynamics of microphase separation.

  5. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  6. A mathematical model of the heat and fluid flows in direct-chill casting of aluminum sheet ingots and billets

    NASA Astrophysics Data System (ADS)

    Mortensen, Dag

    1999-02-01

    A finite-element method model for the time-dependent heat and fluid flows that develop during direct-chill (DC) semicontinuous casting of aluminium ingots is presented. Thermal convection and turbulence are included in the model formulation and, in the mushy zone, the momentum equations are modified with a Darcy-type source term dependent on the liquid fraction. The boundary conditions involve calculations of the air gap along the mold wall as well as the heat transfer to the falling water film with forced convection, nucleate boiling, and film boiling. The mold wall and the starting block are included in the computational domain. In the start-up period of the casting, the ingot domain expands over the starting-block level. The numerical method applies a fractional-step method for the dynamic Navier-Stokes equations and the “streamline upwind Petrov-Galerkin” (SUPG) method for mixed diffusion and convection in the momentum and energy equations. The modeling of the start-up period of the casting is demonstrated and compared to temperature measurements in an AA1050 200×600 mm sheet ingot.

  7. Effect of casting solvents on the properties of styrene-butadiene-styrene block copolymers studied by positron annihilation techniques. [Temperature effects

    SciTech Connect

    Djermouni, B.; Ache, H.J.

    1980-01-01

    The positron annihilation technique was used to study the properties of styrene-butadiene-styrene block copolymers obtained by casting them in four different solvents: toluene, carbon tetrachloride, ethyl acetate, and methyl ethyl ketone. The positron annihilation rates plotted as a function of temperature show in all films irregularities at -70 and +85/sup 0/C which were attributed to the onset of motions in the polybutadiene and polystyrene domaines, respectively. In addition to that, two irregularities were observed at -14 and +10/sup 0/C if a poor solvent, such as ethyl acetate or methyl ethyl ketone, was used, while films cast in a good solvent such as toluene or carbon tetrachloride show only one additional irregularity on the lambda/sup 2/-T curves at -14/sup 0/C. The latter results were explained in terms of the interfacial model by assuming that these irregularities correspond to the glass transition of interlayer phases between the pure polystyrene and the pure polybutadiene phases. The one which shows the irregularity at -14/sup 0/C could be the phase in which polybutadiene is the major component, while the transition at +10/sup 0/C can be attributed to a phase in which polystyrene is the dominating factor.

  8. Vacuum forming of thermoplastic sheet results in low-cost investment casting patterns

    NASA Technical Reports Server (NTRS)

    Clarke, A. E., Jr.

    1964-01-01

    Vacuum forming of a sheet of thermoplastic material around a mandrel conforming to the shape of the finished object provides a pattern for an investment mold. The thickness of the metal part is determined by the thickness of the plastic pattern.

  9. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  10. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.

    PubMed

    Moroishi, Hitomi; Yoshida, Chikara; Murakami, Yoshihiko

    2013-02-01

    Sheet-shaped materials with a large contact area relative to the drug targeting site lead to advantages over conventional particle-shaped drug carriers and have several advantages for their biomedical applications. The present study proposes a methodology for preparing a novel sheet-shaped "hydrophobic" and biocompatible biomaterial in which polymeric micelles are uniformly dispersed for the incorporation of "hydrophilic" compounds into the sheet. The methoxy-terminated poly(ethylene glycol)-block-poly(lactic acid) block copolymer (CH(3)O-PEG-b-PLA) was successfully synthesized by means of the anionic ring-opening polymerization of both ethylene oxide and dl-lactide. CH(3)O-PEG-b-PLA was self-assembled and formed stable micelle-like w/o emulsion with a hydrophilic inner core in organic solvents. A sheet-shaped material containing a hydrophilic inner space for incorporating hydrophilic compounds was obtained by spin-coating both the micelle solution and a sheet-forming polymer. Fluorescent images of the sheet proved that polymeric micelles providing hydrophilic spaces were uniformly dispersed in the hydrophobic sheet. The facile technique presented in this paper can be a tool for fabricating sheet-shaped biomaterials that have a hydrophilic inner core and, consequently, that are suitable for the sustained release of hydrophilic compounds.

  11. Self-assembly Morphology and Crystallinity Control of Di-block Copolymer Inspired by Spider Silk

    NASA Astrophysics Data System (ADS)

    Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy

    2012-02-01

    To obtain a fuller understanding of the origin of self-assembly behavior, and thus be able to control the morphology of biomaterials with well defined amino acid sequences for tissue regeneration and drug delivery, we created a family of synthetic silk-based block copolymers inspired by the genetic sequences found in spider dragline, HABn and HBAn (n=1,2,3,6), where B = hydrophilic block, A = hydrophobic block, and H is a histidine tag. We assessed the secondary structure of water cast films by Fourier transform infrared spectroscopy (FTIR). The crystallinity was determined by Fourier self-deconvolution of amide I spectra and confirmed by wide angle X-ray diffraction (WAXD). Results indicate that we can control the self-assembled morphology and the crystallinity by varying the block length, and a minimum of 3 A-blocks are required to form beta sheet crystalline regions in water-cast spider silk block copolymers. The morphology and crystallinity can also be tuned by annealing. Thermal properties of water cast films and films annealed at 120 C were determined by differential scanning calorimetry and thermogravimetry. The sample films were also treated with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) to obtain wholly amorphous samples, and crystallized by exposure to methanol. Using scanning and transmission electron microscopies, we observe that fibrillar networks and hollow micelles are formed in water cast and methanol cast samples, but not in samples cast from HFIP.

  12. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  13. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  14. Urinary casts

    MedlinePlus

    ... the urine; Fatty casts; Red blood cell casts; White blood cell casts ... with advanced kidney disease and chronic kidney failure . White blood cell (WBC) casts are more common with acute kidney ...

  15. Metallopolymer-peptide conjugates: synthesis and self-assembly of polyferrocenylsilane graft and block copolymers containing a beta-sheet forming Gly-Ala-Gly-Ala tetrapeptide segment.

    PubMed

    Vandermeulen, Guido W M; Kim, Kyoung Taek; Wang, Zhuo; Manners, Ian

    2006-04-01

    We describe the synthesis and self-assembly of two beta-sheet forming metallopolymer-peptide conjugates. The ability of the oligotetrapeptide sequence Gly-Ala-Gly-Ala (GAGA) to form antiparallel beta-sheets was retained in PFS-b-AGAG (PFS = polyferrocenylsilane) and PFS-g-AGAG conjugates with block and graft architectures, respectively. In the solid state, DSC experiments suggest a phase separation between the peptide and PFS domains. In toluene, PFS-b-AGAG interestingly forms a fibrous network which consists of a core containing the self-assembled antiparallel beta-sheet peptide and a corona of organometallic PFS. The self-assembly of the peptide into antiparallel beta-sheets is the driving force for the fiber formation, whereas PFS prevents uncontrolled lateral aggregation of the fibers. The use of an oligopeptide to self-assemble an otherwise random coiled organometallic polymer may be a useful strategy to enhance nanostructure formation. In the cases described here, the conjugates may be used to create nanopatterned ceramics, and the redox properties of the resulting supramolecular aggregates are of significant interest. PMID:16602714

  16. High density tape casting system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A system is provided for casting thin sheets (or tapes) of particles bound together, that are used for oxygen membranes and other applications, which enables the particles to be cast at a high packing density in a tape of uniform thickness. A slurry contains the particles, a binder, and a solvent, and is cast against the inside walls of a rotating chamber. Prior to spraying the slurry against the chamber walls, a solvent is applied to a container. The solvent evaporates to saturate the chamber with solvent vapor. Only then is the slurry cast. As a result, the slurry remains fluid long enough to spread evenly over the casting surface formed by the chamber, and for the slurry particles to become densely packed. Only then is the chamber vented to remove solvent, so the slurry can dry. The major novel feature is applying solvent vapor to a rotating chamber before casting slurry against the chamber walls.

  17. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  18. Solvent enhanced block copolymer ordering in thin films

    NASA Astrophysics Data System (ADS)

    Misner, Matthew J.

    Diblock copolymer self-assembly of materials is emerging as a key element in the fabrication of functional nanostructured materials. By solvent casting or solvent annealing block copolymer thin films, we have demonstrated methods to produce diblock copolymer films with highly oriented, close-packed arrays of nanoscopic cylindrical domains with a high degree of long-range lateral order with few defects. The solvent imparts a high degree of mobility in the microphase-separated copolymer that enables a rapid removal of defects and a high degree of lateral order. Though the use of a selective cosolvent during solvent casting, it was found that the microdomain size and spacing could be increased, leading to a size-tunable system. Additionally, the presence of water also led to the ability to control the microdomain orientation during solvent annealing. Ionic complexation within cylinder-forming PS- b-EO block copolymer thin films was also investigated, where added salts bind PEO block as the minor component. Small amounts of added salts, on the order a few ions per chain, show large effects on the ordering of the copolymer films during solvent annealing. By using gold or cobalt salts, well-organized patterns of nanoparticles can be generated in the copolymer microdomains. Topographically and chemically patterned surfaces were used as a route to sectorizing and controlling the lattice orientation of copolymer films. Topographically patterned surfaces allow well-defined boundaries to confine the copolymer microdomains on a surface and effectively direct the ordering and grain orientation of the copolymer microdomains. Chemically patterned surfaces provide a route to direct the block copolymer ordering on completely flat surface, which may have advantages in applications where adding additional topography may be undesirable. To generate nanoporous templates from PS-b-PEO bases materials several routs were followed. The first route was through the addition and selective

  19. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  20. Silicon Ingot Casting - Heat Exchanger Method Multi-wire Slicing - Fixed Abrasive Slicing Technique. Phase 3 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.

  1. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  2. The Effect of Fe Content on Recrystallization Texture Evolution, Microstructures, and Earing of Cold Rolled Continuous Cast AA5052 Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Wen, Xiyu; Wen, Wei; Zhang, Yuanbin; Xu, Bin; Zeng, Qiang; Liu, Yansheng; Tong, Lirong; Zhai, Tongguang; Li, Zhong

    2016-04-01

    Continuous cast AA5052 Al alloys, containing iron contents of 0.120 and 0.466 wt pct, respectively, were cold rolled and annealed at temperatures ranging from 505 K to 755 K (232 °C to 482 °C). The recrystallization textures in the two alloys were analyzed using X-ray diffraction and electron back scatter diffraction, respectively. It was found that higher Fe content promoted the formation of deformation textures and retarded the formation of cube texture in the two alloys. Most cube-oriented grains formed in both these alloys were associated with coarse particles, whereas the P—{011}<566>, R—{123}<634>, and Goss or randomly oriented grains were often related to particle stringers consisted of fine particles along the rolling direction. It was also found that the volume fraction of each texture component was a Johnson-Mehl-Avrami-Kolmogorov-type function of annealing temperature in the two alloys. The texture evolution rate with the annealing temperature was calculated from this function and used to determine the onset temperature of each recrystallization texture component.

  3. Tape casting as an approach to an all-ceramic turbine shroud seal

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.

    1985-01-01

    Gas path seals have a one-dimensional variation in material requirement. Tape casting is a method which allows the fabrication of thin ceramic sheets, which may be laminated to accommodate these requirements. Using tape casting, thin sheets of zirconia (0.25 mm) were fabricated. These castings were successfully laminated and fired without bloating or delamination, demonstrating the feasibility of this approach.

  4. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  5. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    DOEpatents

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  6. Thin section casting program. Volume 1: Executive summary and overview

    NASA Astrophysics Data System (ADS)

    1989-01-01

    The objective of this project which started in September 1984 was to develop a new casting technology which could be both applied to the total range of hot- and cold-rolled sheet steels, and be successfully developed within a five-year project time scale. These requirements resulted in the choice of a thin section casting (TSC) approach (casting around 1-inch-thick) over the alternative strip casting approach (casting around 0.1-inch-thick). The TSC approach was expected to result in significant capital cost, operating cost, and energy savings over current 10-inch-thick slab casting technology.

  7. Pigmented casts.

    PubMed

    Miteva, Mariya; Romanelli, Paolo; Tosti, Antonella

    2014-01-01

    Pigmented casts have been reported with variable frequency in scalp biopsies from alopecia areata, trichotillomania, chemotherapy-induced alopecia and postoperative (pressure induced) alopecia. Their presence and morphology in other scalp disorders has not been described. The authors assessed for the presence and morphology of pigmented casts in 308 transversely bisected scalp biopsies from nonscarring and scarring alopecia, referred to the Department of Dermatology, University of Miami within a year. The pigmented casts were present in 21 of 29 cases of alopecia areata (72%), 7 of 7 cases of trichotillomania (100%), 1 case of friction alopecia, 4 of 28 cases of central centrifugal cicatricial alopecia (14%), and 4 of 4 cases of dissecting cellulitis (100%). They did not show any distinguishing features except for the morphology in trichotillomania, which included twisted, linear (zip), and "button"-like pigment aggregation. The linear arrangement was found also in friction alopecia and dissecting cellulitis. Pigmented casts in the hair canals of miniaturized/vellus hairs was a clue to alopecia areata. Pigmented casts can be observed in biopsies of different hair disorders, but they are not specific for the diagnosis. Horizontal sections allow to better assess their morphology and the follicular level of presence of pigmented casts, which in the context of the other follicular findings may be a clue to the diagnosis. PMID:23823025

  8. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  9. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  10. Thickness of mouthguard sheets after vacuum-pressure formation: influence of mouthguard sheet material.

    PubMed

    Takahashi, Mutsumi; Koide, Kaoru; Iwasaki, Shin-Ichi

    2016-06-01

    The aim of this study was to investigate the thickness of mouthguard sheet after vacuum-pressure formation based on the mouthguard sheet material. Three mouthguard sheet materials (4.0 mm thick) were compared: ethylene-vinyl acetate co-polymer (EVA), olefin co-polymer (OL), and polyolefin-polystyrene co-polymer (OS). The working model was made by hard gypsum that was trimmed to the height of 20 mm at the cutting edge of the maxillary central incisor and 15 mm at the mesiobuccal cusp of the maxillary first molar. Where the center of the softened sheet sagged 15 mm lower than the clamp, the sheet was pressed against the working model, followed by vacuum forming for 10 s and compression molding for 2 min. The thickness of mouthguard sheets after fabrication was determined for the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface), and dimensional measurements were obtained using a measuring device. Differences in the change in thickness due to sheet materials were analyzed by one-way analysis of variance (anova) followed by Bonferroni's multiple comparison tests. The OL sheet was thickest at all measurement points. At the incisal edge and cusp, thickness after formation was highest for OL, then EVA and finally OS. At the labial surface and buccal surface, the thickness after formation was highest for OL, then OS and finally EVA. This study suggested that post-fabrication mouthguard thickness differed according to sheet material, with the olefin co-polymer sheet having the smallest thickness reduction.

  11. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  12. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  13. Casting methods

    DOEpatents

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  14. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  15. Optoelectronics using block copolymers.

    SciTech Connect

    Botiz, I.; Darling, S. B.; Center for Nanoscale Materials

    2010-05-01

    Block copolymers, either as semiconductors themselves or as structure directors, are emerging as a promising class of materials for understanding and controlling processes associated with both photovoltaic energy conversion and light emitting devices.

  16. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  17. Casting materials

    DOEpatents

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  18. Construction of a chondrocyte cell sheet using temperature-responsive poly(N-isopropylacrylamide)-co-acrylamide.

    PubMed

    Viravaidya-Pasuwat, Kwanchanok; Wong-in, Sopita; Sakulaue, Phongphot; Siriwatwechakul, Wanwipa

    2013-01-01

    In this study, a novel temperature-responsive poly(N-isopropylacrylamide)-co-acrylamide was used to prepare a chondrocyte cell sheet. Chondrocytes were isolated from human articular cartilage and plated on the copolymer film grafted tissue culture plates. The cell attachment on the copolymer film was shown to be similar to that of the ungrafted surface. To harvest a cell sheet, the incubation temperature was reduced to 10°C for 30 minutes to allow the polymer chain to fully extend, changing the copolymer's phase from hydrophobicity to hydrophilicity. Additional incubation at 20°C for 60 minutes was necessary to activate the cellular metabolism required for cytoskeletal organization and cell detachment. A complete cell sheet recovery was achieved when a PVDF membrane was used as a cell sheet carrier. Unfortunately, the shrinkage of the cell sheet was observed. Nonetheless, the harvested cell sheet was shown to be viable and healthy. PMID:24111348

  19. Tape casting of magnesium oxide.

    SciTech Connect

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  20. Thin section casting program: Volume 1, Executive summary and overview: Final report

    SciTech Connect

    Not Available

    1989-01-01

    The objective of this project which started in September 1984 was to develop a new casting technology which could be both applied to the total range of hot- and cold-rolled sheet steels, and be successfully developed within a five-year project time scale. These requirements resulted in the choice of a thin-section-casting approach (casting around 1-inch-thick) over the alternative strip casting approach (casting around 0.1-inch-thick). The TSC approach was expected to result in significant capital cost, operating cost, and energy savings over current 10-inch-thick slab casting technology.

  1. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  2. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    DOEpatents

    Fujimoto, Cy H.; Hibbs, Michael; Ambrosini, Andrea

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  3. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  4. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  5. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  6. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  7. Block copolymer as a nanostructuring agent for high-efficiency and annealing-free bulk heterojunction organic solar cells.

    PubMed

    Renaud, Cédric; Mougnier, Sébastien-Jun; Pavlopoulou, Eleni; Brochon, Cyril; Fleury, Guillaume; Deribew, Dargie; Portale, Giuseppe; Cloutet, Eric; Chambon, Sylvain; Vignau, Laurence; Hadziioannou, Georges

    2012-04-24

    The addition of a block copolymer to the polymer/fullerene blend is a novel approach to the fabrication of organic solar cells. The block copolymer (P3HT-b-P4VP) is used as nanostructuring agent in the active layer. A significant enhancement of the cell efficiency is observed, in correlation with morphology control, both before (as-cast) and after the annealing process.

  8. Synthesis and morphology characterization of polydimethylsiloxane-containing block copolymers

    NASA Astrophysics Data System (ADS)

    Wadley, Maurice

    rich surfaces after casting. Etching of this wetting layer by exposure to ultraviolet/ozone (UVO) cleaner allowed characterization of the interior film morphology. GISAXS was also able to characterize domain orientation in the as-cast and selectively etched thin films. PDMS cylinder orientation in PS-block-PDMS copolymer was found to be dependent on solvent choice and polymer molecular weight. The likely mechanism for perpendicularly oriented PDMS cylinders in selective solvents was an order-order transition to spheres where cylinders would nucleate at the air/film surface and template a perpendicularly oriented morphology during evaporation induced ordering. Perpendicularly oriented PDMS cylinders were observed in the lower molecular weight PS-rich PS- block-PDMS thin film samples indicating a preferential molecular weight range for the formation of perpendicular domains. Solvent annealing in PS selective chlorobenzene improved the long range order, but was not a strong driving force in altering domain orientation.

  9. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  10. Interactions in random copolymers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma; Luettmer-Strathmann, Jutta

    2002-04-01

    The description of thermodynamic properties of copolymers in terms of simple lattice models requires a value for the effective interaction strength between chain segments, in addition to parameters that can be derived from the properties of the corresponding homopolymers. If the monomers are chemically similar, Berthelot's geometric-mean combining rule provides a good first approximation for interactions between unlike segments. In earlier work on blends of polyolefins [1], we found that the small-scale architecture of the chains leads to corrections to the geometric-mean approximation that are important for the prediction of phase diagrams. In this work, we focus on the additional effects due to sequencing of the monomeric units. In order to estimate the effective interaction for random copolymers, the small-scale simulation approach developed in [1] is extended to allow for random sequencing of the monomeric units. The approach is applied here to random copolymers of ethylene and 1-butene. [1] J. Luettmer-Strathmann and J.E.G. Lipson. Phys. Rev. E 59, 2039 (1999) and Macromolecules 32, 1093 (1999).

  11. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  12. Cool Cast Facts

    MedlinePlus

    ... outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, which is a plastic that can be shaped. Fiberglass casts come in many different colors — if you' ...

  13. Electromagnetic Casting of Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tyler, D. E.; Lewis, B. G.; Renschen, P. D.

    1985-09-01

    Electromagnetic (EMC) casting technology has been successfully developed for copper base alloys. This casting technique eliminates the mold related defects normally encountered in direct chill (DC) mold casting, and provides castings with greatly improved hot workability.

  14. Block copolymer investigations

    NASA Astrophysics Data System (ADS)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  15. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  16. LLNL casting technology

    SciTech Connect

    Shapiro, A.B.; Comfort, W.J. III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US compentiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective, experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  17. LLNL casting technology

    NASA Astrophysics Data System (ADS)

    Shapiro, A. B.; Comfort, W. J., III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US competiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  18. Saccharides and temperature dual-responsive hydrogel layers for harvesting cell sheets.

    PubMed

    Guo, Bingbing; Pan, Guoqing; Guo, Qianping; Zhu, Caihong; Cui, Wenguo; Li, Bin; Yang, Huilin

    2015-01-14

    Saccharides and temperature dual-responsive hydrogels have been prepared based on PNIPAAm copolymers containing phenylboronic acid (PBA) groups and used for harvesting cell sheets. The cell sheet could be released from the hydrogel layer at 37 °C simply by increasing sugar concentration, and could be more efficiently released at a lower temperature and elevated sugar concentration.

  19. Freeze Tape Casting of Functionally Graded Porous Ceramics

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.

    2007-01-01

    Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.

  20. High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes

    NASA Astrophysics Data System (ADS)

    Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew

    Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.

  1. Expandable pattern casting research

    NASA Astrophysics Data System (ADS)

    1993-09-01

    The Expandable Pattern Casting (EPC) Process is a developing foundry technology that allows designers the opportunity to consolidate parts, reduce machining, and minimize assembly operations. An air gauging system was developed for measuring foam patterns; exact shrinkage depended on type and density of the foam. Compaction studies showed that maximum sand densities in cavities and under overhangs are achieved with vibrational amplitudes 0.001-0.004 in., and that sand moved most freely within a few inches of the top free surface. Key to complete mold filling while minimizing casting defects lies in removing the foam decomposition products. The most precise iron castings were made by EPC in four commercial EPC foundries, with attention paid to molding and compaction. EP cast 60-45-12 ductile iron had yield strengths, ultimate strengths, and elastic modulus similar to conventionally cast ductile iron cast from the same ladle.

  2. SLIP CASTING METHOD

    DOEpatents

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  3. Synthesis and characterization of polyimide copolymers containing ladder-like polysiloxane

    NASA Astrophysics Data System (ADS)

    Feng, Linqian

    This research is focused on the synthesis, development, analysis and evaluation of properties of polyurea-b-polyimide (PUI) copolymers containing ladder-like polysiloxane. PUI block copolymers were successfully synthesized by condensation polymerization methods. The structure and properties of the copolymers were controlled by controlling the (i) co-monomer concentration and (ii) curing temperature. Thermally controlled self-assembly of semi-crystalline copolymers occurred at higher annealing temperatures T ≥ 150°C, resulting in remarkable enhancement in their thermomechanical properties. The observed improvement in the structure and mechanical properties of the copolymers annealed at higher temperature is believed to be due to the development of inter and intra-hydrogen bonding interactions between adjacent copolymer chains. The dynamic mechanical property of the copolymers was determined by dynamic mechanical analysis (DMA) using solution cast thin films. Fourier transform infrared spectroscopy, FTIR and Wide angle X-ray diffraction (WAXD) method were used to study the composition and structure of the copolymers. The presence of hydrogen-bonded (H-bonded) polyimide units in the copolymer resulted in a significant enhancement in the corrosion protection of aluminum alloy 2024-T3. The corrosion performance of PUI coatings was studied by direct current polarization method (DCP) and electrochemical impedance spectroscopy (EIS) in a 3.5wt% NaCl solution. Corrosion performance was remarkably increased by increasing (i) polyurea concentration and (ii) annealing temperature. The coating lifetime was evaluated by using information from time-based Bode plot as well as gravimetric weight gain analysis. The surface energy and diffusivity of PUI copolymers were remarkably decreased as polyurea concentration increased. Semi-crystalline ladder-like polysiloxanes (LPS) containing both mercapto and fluoride side groups were synthesized by using both the sol-gel and monomer

  4. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  5. Hyperviscous diblock copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Dimova, R.; Seifert, U.; Pouligny, B.; Förster, S.; Döbereiner, H.-G.

    2002-03-01

    Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes them interesting candidates for a number of technological applications.

  6. Single Helix to Double Gyroid in Chiral Block Copolymers

    SciTech Connect

    C Chen; H Hsueh; Y Chiang; R Ho; S Akasaka; H Hasegawa

    2011-12-31

    An order-order phase transition of chiral block copolymers (BCPs*) from single helix to double gyroid (H* {yields} G) through a nucleation and growth process was demonstrated. The H* and G phases can be obtained by solution casting from fast and slow solvent evaporation, respectively, suggesting that the H* phase is a metastable phase. Consequently, the coexistence of H* and G phases can be found in the solution-cast samples from intermediate solvent evaporation. To truly examine the transition mechanism of the H* {yields} G, electron tomography was carried out to directly visualize the morphological evolution in real space, in particular, the transition zone at interface. Unlike the mechanisms for the transitions of block copolymers (BCPs) by considering the interdomain spacing matching, a significant mismatch in the lattices for the H* {yields} G was found. Consequently, the transition may require an adjustment on the geometric dimensions to justify corresponding lattice mismatch. As a result, the morphological observations from electron tomography offer new insights into BCP phase transitions.

  7. Nanostructured diblock copolymer films with embedded magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Xin; Metwalli, Ezzeldin; Ruderer, Matthias A.; Körstgens, Volker; Busch, Peter; Böni, Peter; Müller-Buschbaum, Peter

    2011-06-01

    Nanostructured diblock copolymer films with embedded magnetic nanoparticles are prepared by solution casting. The diblock copolymer polystyrene-block-polymethylmethacrylate with a fully deuterated polystyrene block of a weight ratio of 0.22 is used as a structure-directing matrix. Maghemite nanoparticles (γ-Fe2O3) are coated with polystyrene and thus have a selective affinity to the minority block of the diblock copolymer. The hybrid film morphology is investigated as a function of nanoparticle concentration. The surface structure is probed with atomic force microscopy and scanning electron microscopy. The inner film structure and the structure at the polymer-substrate interface are detected with grazing incidence small angle neutron scattering (GISANS). Irrespective of the nanoparticle concentration a well developed micro-phase separation structure is present. From the Bragg peaks observed in the GISANS data a linear nanoparticle concentration dependence of the inter-domain spacing of the micro-phase separation structure is determined. The superparamagnetic and blocking behavior can be explained with a generalized Stoner-Wohlfarth-Néel theory which includes either an elastic torque being exerted on the nanoparticles by the field or a broad distribution of anisotropy constants.

  8. Stereocomplex Formation in Incompatible Racemic Chiral Polylactide Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Zhu, Lei

    2006-03-01

    Stereocomplexes in incompatible racemic chiral polylactide (PLA) block copolymers have not been widely studied. In this work, we synthesized PLLA and PDLA containing block copolymers by ring opening polymerization of L- and D-lactides from hydroxyl-terminated hydrophilic [poly(ethylene oxide) (PEO)] and hydrophobic [poly(ethylene-co-1,2-butylene) (PEB)] oligomers, respectively. Two samples PEO-b-PLLA (2,000-5,400) and PEB-b-PDLA (4,200-5,400) were chosen. The stereocomplexes were cast from equal molar blends of above two block copolymers in chloroform solution, followed by two different thermal treatments before stereocomplex formation; The blend was either heated to 250 C and quickly quench to 160 C or heated to 250 C for 15 min and quench to 160 C for stereocomplex crystal growth. Before the formation of stereocomplexes, lamellar and cylindrical morphologies were observed in blends for the first and second thermal treatments, respectively, as evidenced by small-angle X-ray scattering (SAXS). After complete crystal growth, the 100% stereocomplexes was confirmed by differential scanning calorimetry and wide-angle X-ray diffraction (WAXD). The morphologies of stereocomplexes grown from these two pre-existing microphases (lamellar vs. cylindrical) were studied by time-resolved SAXS and transmission electron microscopy (TEM).

  9. Poly(aryl ethers) and related polysiloxane copolymer molecular coatings: Preparation and radiation degradation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.

    1982-01-01

    The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.

  10. Rheological and Mechanical Properties of Crosslinked Block Copolymer Nanofiber and Polystyrene Blends.

    NASA Astrophysics Data System (ADS)

    Ma, Sungwon; Thio, Yonathan

    2009-03-01

    The mechanical and rheological properties of blends of crosslinked and uncrosslinked poly(styrene)-b-poly(isoprene) copolymer with commercially available polystyrene were studied. Cylindrical morphology of PS-b-PI copolymer was employed for generating nanofiber morphology. Cold vulcanization process using sulfur monochloride (S2Cl2) was used to preserve the morphology. Blends of uncrosslinked PS-b-PI copolymer with neat polystyrene were also prepared. Both blend samples were prepared by solvent casting method with the filler contents varying between 0.5 and 10 wt%. The mechanical and rheological properties were characterized and the microstructures of the fiber and the systems were imaged. The dynamic moduli (G' and G'') of the crosslinked system increased with increasing the fiber content compared to the uncrosslinked system. The results were compared to the rheological model by fitting to Cross-Williamson. This blend study indicated critical volume concentration of nanofiber between 5 and 10 wt% of nanofiber content.

  11. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    DOEpatents

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  12. Interface Formation During Fusion™ Casting of AA3003/AA4045 Aluminum Alloy Ingots

    NASA Astrophysics Data System (ADS)

    Di Ciano, Massimo; Caron, E. J. F. R.; Weckman, D. C.; Wells, M. A.

    2015-12-01

    Fusion™ casting is a unique Direct Chill continuous casting process whereby two different alloys can be cast simultaneously, producing a laminated ingot for rolling into clad sheet metal such as AA3003/AA4045 brazing sheet. Better understanding of the wetting and interface formation process during Fusion™ casting is required to further improve process yields and also explore use of other alloy systems for new applications. In this research, AA3003-core/AA4045-clad ingots were cast using a well-instrumented lab-scale Fusion™ casting system. As-cast Fusion™ interfaces were examined metallurgically and by mechanical testing. Computational fluid dynamic analyses of the FusionTM casts were also performed. It was shown that the liquid AA4045-clad alloy was able to successfully wet and create an oxide-free, metallurgical, and mechanically sound interface with the lightly oxidized AA3003-core shell material. Based on the results of this study, it is proposed that the bond formation process at the alloys interface during casting is a result of discrete penetration of AA4045 liquid at defects in the preexisting AA3003 oxide, dissolution of underlying AA3003 by liquid AA4045, and subsequent bridging between penetration sites. Spot exudation on the AA3003 chill cast surface due to remelting and inverse segregation may also improve the wetting and bonding process.

  13. Crystallinity-based product design: Utilizing the polymorphism of isotactic PP homo- and copolymers

    NASA Astrophysics Data System (ADS)

    Gahleitner, Markus; Mileva, Daniela; Androsch, René; Gloger, Dietrich; Tranchida, Davide; Sandholzer, Martina; Doshev, Petar

    2015-12-01

    The polymorphism of isotactic polypropylene (iPP) in combination with the strong response of this polymer to nucleation can be utilized for expanding the application range of this versatile polymer. Based on three "case studies" related to β-iPP pressure pipes, ethylene-propylene (EP) random copolymers for thin-wall injection molding and sterilization resistance of cast films we demonstrate ways of combining polymer composition, nucleation and process settings to achieve the desired application performance.

  14. Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Wang; Bao-Hui, Li

    2016-01-01

    Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress. Project supported by the National Natural Science Foundation of China (Grant Nos. 20990234, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1257), the Programme of Introducing Talents of Discipline to Universities, China, and by the Tianhe No. 1, China.

  15. Expendable Pattern Casting Technology

    NASA Astrophysics Data System (ADS)

    1990-07-01

    The expendable pattern casting (EPC) process is a potential casting process breakthrough which could dramatically improve the competitiveness of the U.S. foundry industry. Cooperatively supported by U.S. Industry and the Department of Energy and managed by the American Foundrymen's Society, a project was started in May 1989 to develop and optimize expendable pattern casting technology. Four major tasks were conducted in the first phase of the project. Those tasks involved: (1) reviewing published literature to determine the major problems in the EPC process; (2) evaluating factors influencing sand flow and compaction; (3) evaluating and comparing casting precision obtained in the EPC process with that obtained in other processes; and (4) identifying critical parameters that control dimensional precision and defect formation in EP castings.

  16. Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer.

    PubMed

    Stewart-Sloan, Charlotte R; Olsen, Bradley D

    2014-05-20

    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid. PMID:24910809

  17. Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer

    PubMed Central

    2015-01-01

    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid. PMID:24910809

  18. 41. DRAW SPAN OVER PASSAIC RIVER 18M110; Sheet No. 34 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. DRAW SPAN OVER PASSAIC RIVER 18-M-110; Sheet No. 34 Details of Center Casting and Steel Ring Scale 1-1/2'=1'; February 1897 - Jackson Street Bridge, Spanning Passaic River, Newark, Essex County, NJ

  19. Thin section casting program. Volume 4: Static cast product bending, straightening, and rolling

    NASA Astrophysics Data System (ADS)

    1989-01-01

    Statically cast 1/2 in., 3/4 in., and 1 in. thick steel slabs were subjected to hot rolling in a laboratory reversing mill and to simulated coiling-uncoiling on a three-point bender-unbender. Tensile properties and microstructures of hot bands thinner than 0.15 in. produced from the statically cast slabs were found to be independent of initial slab thickness and similar to those from conventionally cast 8 to 10 in. thick slabs. Cold rolled and batch annealed product from the statically cast slabs had mechanical properties equivalent to those of conventionally processed deep-drawing quality steel. Overall, the results of this task indicated that 1/2 to 1 in. thick steel sections produced in a twin belt caster can be coiled and uncoiled in a hot coiler box downstream of the caster without generating any cracks in the product, and that the total range of hot and cold rolled sheet and strip products with qualities equivalent to those of conventionally produced can be obtained from the 1/2 in. to 1 in. thick sections. This report is the fifth of a six volume set on thin section casting.

  20. Thin section casting program: Volume 4, Static cast product bending, straightening, and rolling: Final report

    SciTech Connect

    Not Available

    1989-01-01

    Statically cast 1/2'', 3/4'', and 1'' thick steel slabs were subjected to hot rolling in a laboratory reversing mill and to simulated coiling-uncoiling on a three-point bender-unbender. Tensile properties and microstructures of hot bands thinner than 0.15'' produced from the statically cast slabs were found to be independent of initial slab thickness and similar to those from conventionally cast 8''-10'' thick slabs. Cold rolled and batch annealed product from the statically cast slabs had mechanical properties equivalent to those of conventionally processed deep-drawing quality steel. Overall, the results of this task indicated that 1/2''-1'' thick steel sections produced in a twin belt caster can be coiled and uncoiled in a hot coiler box downstream of the caster without generating any cracks in the product, and that the total range of hot and cold rolled sheet and strip products with qualities equivalent to those of conventionally produced can be obtained from the 1/2''-1'' thick sections. This report is the fifth of a six volume set on thin section casting.

  1. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  2. Copolymer Crystallization: Approaching Equilibrium

    NASA Astrophysics Data System (ADS)

    Crist, Buckley; Finerman, Terry

    2002-03-01

    Random ethylene-butene copolymers of uniform chemical composition and degree of polymerization are crystallized by evaporation of thin films (1 μ m - 5 μ m) from solution. Macroscopic films ( 100 μm) formed by sequential layer deposition are characterized by density, calorimetry and X-ray techniques. Most notable is the density, which in some cases implies a crystalline fraction nearly 90% of the equilibrium value calculated from Flory theory. Melting temperature of these solution deposited layers is increased by as much as 8 ^oC over Tm for the same polymer crystallized from the melt. Small-angle X-ray scattering indicates that the amorphous layer thickness is strongly reduced by this layered crystallization process. X-ray diffraction shows a pronounced orientation of chain axes and lamellar normals parallel to the normal of the macroscopic film. It is clear that solvent enhances chain mobility, permitting proper sequences to aggregate and crystallize in a manner that is never achieved in the melt.

  3. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  4. INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' PIPE OPERATOR SPRAYING A POWDER TO HELP SOLIDIFY THE PIPE BEING CENTRIFUGALLY CAST. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  5. Mechanical characterization of diblock copolymer ``armored'' emulsion droplets

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew

    2013-03-01

    There has been an increased interest in block copolymer vesicles due to a plethora of possible application ranging from targeted drug delivery to cosmetically active agents. In this regard, understanding the physics of the block copolymer vesicle and its morphology is critical to the rational development of these technologies. As a step towards more complex vesicle structures, we describe experiments in which we carefully examine the interface and morphology of polystyrene-b-polyethyleneoxide (PS-PEO) emulsion drops. In our study, PS-PEO acts as a surfactant and at the toluene-water interface creates a monolayer, inhibiting drop recombination and minimizing interfacial energies. Our experiments are conducted in a water cell where the buoyant force is exploited to push drops against a thin sheet of mica. The shape of the drops is measured using an upright confocal microscope and compared with a Bashforth-Adams model in order to examine the mechanical response to the buoyant force. We observe unique dynamics as the drops buckle at short timescales trapping a small pocket of fluid which slowly drains away. Furthermore, the influence of polymer concentration, changes in pH and block copolymer architecture on the morphology and dynamics of the droplets is examined.

  6. Design of block copolymer templated solid state batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Steven Edward

    The advent of portable electronics has placed a great demand on the power requirements of battery systems. High power batteries for small devices, such as cell phones, laptop computers, and personal data assistants (PDA's) have focused primarily on lithium ion batteries. With the introduction of large flexible panel displays, the need for a flexible battery system is apparent. Ring Opening Metathesis Polymerization (ROMP) is a facile method for synthesizing block copolymers with polar functional groups. These functional groups allow the formation of metal oxide clusters via a template of the microphase separated block copolymer domains. In this thesis, the synthesis of a flexible polymer battery system is described. Diblock copolymers of an ionically conductive unsaturated polyethylene oxide block with a carboxylic acid functionalized block were synthesized and characterized with NMR, IR and Gel Permeation Chromatography (GPC). Characterization of polymer templated LiMn2O 4 clusters and nanocomposites synthesized for the study have a distributed cluster morphology within the polymer matrix. The nanocomposites were analyzed with transmission electron microscopy to determine the morphology of the nanocomposites. Battery performance was characterized with cyclic voltammetry and galvanostatic charge/discharge cycling for power capacity. The ionic conductivity was measured with impedance spectroscopy. The novel room temperature templating strategy used for the synthesis of these ionically conductive nanocomposites requires no thermal cycling steps. This makes it attractive for processing of sheet structures to power flexible displays.

  7. Symptomatic stent cast.

    PubMed

    Keohane, John; Moore, Michael; O'Mahony, Seamus; Crosbie, Orla

    2008-02-01

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  8. CASTING METHOD AND APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  9. CENTRIFUGAL CASTING MACHINE

    DOEpatents

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  10. Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein-Polymer Diblock Copolymers

    PubMed Central

    Thomas, Carla S.; Xu, Liza; Olsen, Bradley D.

    2014-01-01

    Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. Using model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide), orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed depending upon the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form. PMID:22924842

  11. Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers.

    PubMed

    Thomas, Carla S; Xu, Liza; Olsen, Bradley D

    2012-09-10

    Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form. PMID:22924842

  12. Ionic Interactions for Aqueous Templating of Biofunctional Molecules in Block Copolymer Nanostructures

    NASA Astrophysics Data System (ADS)

    Olsen, Bradley; Kim, Bokyung; Lam, Christopher; Stewart-Sloan, Charlotte; Gkikas, Emmanouil

    2013-03-01

    The use of ionic interactions to direct both biomolecular templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both thermally responsive and pH responsive blocks. Reversible addition-fragmentation chain transfer (RAFT) polymerization is employed to synthesize diblock copolymers with one neutral thermoresponsive and one polycationic block and the pH-dependnent complexation between model proteins or biomimetic J-aggregating chromophores and the polycationic block is demonstrated. Spin casting is used to prepare nanostructured films from the protein-block copolymer and chromophore-block copolymer coacervates. After film formation, the lower critical solution temperature (LCST) of the thermoresponsive block allows the nanomaterial to be effectively immobilized in aqueous environments at physiological temperatures, enabling use of the materials for biomolecule immobilization and controlled release. In the case of protein nanotemplating, the ionic environment in which the protein is confined enables the majority of the protein (80%) to retain its activity, even after having been dehydrated in vacuum and confined in the thin film.

  13. Tissue anti-adhesion potential of ibuprofen-loaded PLLA-PEG diblock copolymer films.

    PubMed

    Lee, Jin Ho; Go, Ae Kyung; Oh, Se Heang; Lee, Ka Eul; Yuk, Soon Hong

    2005-02-01

    This study was designed to evaluate the effect of polyethylene glycol (PEG) and nonsteroidal anti-inflammatory drug (ibuprofen) on the prevention of postsurgical tissue adhesion. For this, poly(L-lactic acid) (PLLA)-PEG diblock copolymers were synthesized by ring opening polymerization of L-lactide and methoxy polyethylene glycol (Mw 5000) of different compositions. The synthesized copolymers were characterized by gel permeation chromatography and 1H-nuclear magnetic resonance spectroscopy. PLLA-PEG copolymer films were prepared by solvent casting. The prepared copolymer films were more flexible and hydrophilic than the control PLLA film, as investigated by the measurements of glass transition temperature, water absorption content, and water contact angle. The drug release behavior from the ibuprofen (10 wt%)-loaded copolymer films was examined by high performance liquid chromatography. It was observed that the drug was released gradually up to about 40% of total loading amount after 20 days, depending on PEG composition; more drug release from the films with higher PEG compositions. In vitro cell adhesions on the copolymer films with/without drug were compared by the culture of NIH/3T3 mouse embryo fibroblasts on the surfaces. For in vivo evaluation of tissue anti-adhesion potential, the copolymer films with/without drug were implanted between the cecum and peritoneal wall defects of rats and their tissue adhesion extents were compared. It was observed that the ibuprofen-containing PLLA-PEG films with high PEG composition (particularly PLLA113-PEG113 film with PEG composition, 50 mol%) were very effective in preventing cell or tissue adhesion on the film surfaces, probably owing to the synergistic effects of highly mobile, hydrophilic PEG and anti-inflammatory drug, ibuprofen.

  14. Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers

    SciTech Connect

    Hammer, Brenton A. G.; Bokel, Felicia A.; Hayward, Ryan C.; Emrick, Todd

    2011-09-27

    A series of poly(3-hexyl thiophene) (P3HT)-based diblock copolymers were prepared and examined in solution for their assembly into fibrils, and post-assembly cross-linking into robust nanowire structures. P3HT-b-poly(3-methanol thiophene) (P3MT), and P3HT-b-poly(3-aminopropyloxymethyl thiophene) (P3AmT) diblock copolymers were synthesized using Grignard metathesis (GRIM) polymerization. Fibrils formed from solution assembly of these copolymers are thus decorated with hydroxyl and amine functionality, and cross-linking is achieved by reaction of diisocyanates with the hydroxyl and amine groups. A variety of cross-linked structures, characterized by transmission electron microscopy (TEM), were produced by this method, including dense fibrillar sheets, fibril bundles, or predominately individual fibrils, depending on the chosen reaction conditions. In solution, the cross-linked fibrils maintained their characteristic vibronic structure in solvents that would normally disrupt (dissolve) the structures.

  15. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.

    PubMed

    Zhong, Tianyi; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2015-10-15

    In the present study, a composite system for the controlled and sustained release of hydrophobic/hydrophilic drugs is described. Composite hydrogels were prepared by blending silk fibroin (SF) with PLA-PEG-PLA copolymer under mild aqueous condition. Aspirin and indomethacin were incorporated into SF/Copolymer hydrogels as two model drugs with different water-solubility. The degradation of composite hydrogels during the drug release was mainly caused by the hydrolysis of copolymers. SF with stable β-sheet-rich structure was not easily degraded which maintained the mechanical integrity of composite hydrogel. The hydrophobic/hydrophilic interactions of copolymers with model drugs would significantly alter the morphological features of composite hydrogels. Various parameters such as drug load, concentration ratio, and composition of copolymer were considered in vitro drug release. Aspirin as a hydrophilic drug could be controlled release from composite hydrogel at a constant rate for 5 days. Its release was mainly driven by diffusion-based mechanism. Hydrophobic indomethacin could be encapsulated in copolymer nanoparticles distributing in the composite hydrogel. Its sustained release was mainly degradation controlled which could last up to two weeks. SF/Copolymer hydrogel has potential as a useful composite system widely applying for controlled and sustained release of various drugs.

  16. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  17. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  18. Method of casting aerogels

    SciTech Connect

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  19. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  20. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  1. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  2. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  3. Salvaged castings and methods of salvaging castings with defective cast cooling bumps

    DOEpatents

    Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles

    2002-01-01

    Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.

  4. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  5. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  6. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  7. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  8. A Numerical Study of the Direct-Chill Co-Casting of Aluminum Ingots via Fusion™ Technology

    NASA Astrophysics Data System (ADS)

    Baserinia, Amir R.; Caron, Etienne J. F. R.; Wells, Mary A.; Weckman, David C.; Barker, Simon; Gallerneault, Mark

    2013-08-01

    For the last 70 years, direct-chill (DC) casting has been the mainstay of the aluminum industry for the production of monolithic sheet and extruded products. Traditionally, clad aluminum sheet products have been made from separate core and clad DC cast ingots by an expensive roll-bonding process; however, in 2005, Novelis unveiled an innovative variant of the DC casting process called the Fusion™ Technology process that allows the production of multialloy ingots that can be rolled directly into laminated or clad sheet products. Of paramount importance for the successful commercialization of this new technology is a scientific and quantitative understanding of the Fusion™ casting process that will facilitate process optimization and aid in the future development of casting methodology for different alloy combinations and ingot and clad dimensions. In the current study, a numerical steady-state thermofluids model of the Fusion™ Technology casting process was developed and used to simulate the casting of rectangular bimetallic ingots made from the typical brazing sheet combination of AA3003 core clad with an AA4045 aluminum alloy. The analysis is followed by a parametric study of the process. The influence of casting speed and chill-bar height on the steady-state thermal field within the ingot is investigated. According to the criteria developed with the thermofluids model, the AA3003/AA4045 combination of aluminum alloys can be cast successfully with casting speeds up to 2.4 mm s-1. The quality of the metallurgical bond between the core and the clad is decreased for low casting speeds and chill-bar heights >35 mm. These results can be used as a guideline for improving the productivity of the Fusion™ Technology process.

  9. Functionalized block copolymers as adhesion promoters

    SciTech Connect

    Kent, M.S.; Saunders, R.

    1995-03-01

    The goal of this work is to develop novel functionalized block copolymers to promote adhesion at inorganic substrate/polymer interfaces. We envision several potential advantages of functionalized block copolymers over small molecule coupling agents. Greater control over the structure of the interphase region should result through careful design of the backbone of the copolymer. The number of chains per area, the degree of entanglement between the copolymer and the polymer matrix, the number of sites per chain able to attach to the substrate, and the hydrophobicity of the interphase region can all be strongly affected by the choice of block lengths and the monomer sequence. In addition, entanglement between the copolymer and the polymer matrix, if achieved, should contribute significantly to adhesive strength. Our program involves four key elements: the synthesis of suitable functionalized block copolymers, characterization of the conformation of the copolymers at the interface by neutron reflectivity and atomic force microscopy, characterization of the degree of bonding by spectroscopy, and measurement of the mechanical properties of the interface. In this paper we discuss block copolymers designed as adhesion promoters for the copper/epoxy interface. We have synthesized a diblock with one block containing imidazole groups to bond to copper and a second block containing secondary amines to react with the epoxy matrix. We have also prepared a triblock copolymer containing a hydrophobic middle block. Below we describe the synthesis of the block copolymers by living, ring-opening metathesis polymerization (ROMP) and the first characterization data obtained by neutron reflectivity.

  10. Cross-sectional TEM analysis of solvent-cast SBS thin films

    SciTech Connect

    Kim, G.; Libera, M.

    1996-12-31

    Block copolymers can assume a range of microphase-separated morphologies, and the dependence of morphology on temperature and composition is an area of active research. Our work has been studying the morphology of solvent-cast thin films of polystyrene-polybutadiene-polystyrene (SBS) as a function of solvent evaporation rate and post-specimen annealing. This paper describes the analysis of thin film cross-sections to distinguish between possible morphologies.

  11. Osmotic Pressure Measurements of the Order Disorder Transition in Acrylic Triblock Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Bras, Rafael E.; Shull, Kenneth R.

    2006-03-01

    Semi-dilute solutions of PMMA-PnBA-PMMA triblock co-polymers in alcohols are excellent binder materials for a novel ceramics processing method, thermo-reversible gel casting. Processing methods based on this technology offer a low cost alternative to traditional slip and gel casting techniques. The rapid transition of these gels from freely flowing liquids to elastic solids has been attributed to the aggregation of the PMMA endblocks to form small spherical domains. We have recently begun to examine the order disorder transition of the PMMA endblocks with vapor pressure osmometry. This technique measures osmotic pressure by monitoring the equilibrium temperature of a solution droplet relative to the temperature of a pure solvent droplet. Measurements of solutions consisting of 15 vol % acrylic triblock copolymer in butanol show a significant drop in osmotic pressure between 80 and 85 C. This result indicates that the relaxation times of the ordered gels can be quite low, so that the order-disorder transition of the triblock copolymer occurs at temperatures higher than the rheologically determined gelation temperature of about 65 C.

  12. CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) AND KEEPERS OF THE CAST HOUSE FLOOR, S.L. KIMBROUGH AND DAVID HOLMES. - U.S. Steel, Fairfield Works, Blast Furnace No. 8, North of Valley Road, West of Ensley-Pleasant Grove Road, Fairfield, Jefferson County, AL

  13. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  14. Discovering Complex Ordered Phases of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Shi, An-Chang

    2012-02-01

    Block copolymers with their rich phase behavior and ordering transitions have become a paradigm for the study of structured soft materials. Understanding the structures and phase transitions in block copolymers has been one of the most active research areas in polymer science in the past two decades. One of the achievements is the self-consistent field theory (SCFT), which provides a powerful framework for the study of ordered phase of block copolymers. I will present a generic strategy to discover complex ordered phases of block copolymers within the SCFT framework. Specifically, a combination of real-space and reciprocal-space techniques is used to explore possible ordered phases in multiblock copolymer melts. These candidate phases can then be used to construct phase diagrams. Application of this strategy to linear and star ABC triblock copolymers has led to the discovery of a rich array of ordered phases.

  15. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  16. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  17. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  18. ShakeCast Manual

    USGS Publications Warehouse

    Lin, Kuo-Wan; Wald, David J.

    2008-01-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  19. Mix/Cast Contamination Control

    NASA Technical Reports Server (NTRS)

    Wallentine, M.

    2005-01-01

    Presented is a training handbook for Mix/Cast Contamination Control; a part of a series of training courses to qualify access to Mix/Cast facilities. Contents: List Contamination Control Requirements; Identify foreign objects debris (FOD), Control Areas and their guidelines; Describe environmental monitoring; List Contamination Control Initiatives; Describe concern for Controlled Materials; Identify FOD Controlled Areas in Mix/Cast.

  20. High Surface Area Poly(3-hexylthiophenes) Thin Films from Cleavable Graft Copolymers

    SciTech Connect

    Sivanandan, Kulandaivelu; Chatterjee, Tirtha; Treat, Neil; Kramer, Edward J.; Hawker, Craig J.

    2010-03-30

    A strategy for the fabrication of high surface area poly(3-hexylthiophene) thin films by removal of nanoscale domains formed from graft copolymers is presented. This approach relies on the synthesis and characterization of cleavable graft copolymers based on regioregular poly(3-hexylthiophene) (rr-P3HT) main chain and sacrificial poly(styrene) side chains. An alkoxyamine initiator based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) was incorporated at the 3-position of the functionalized thienyl repeat unit, 2, via a cleavable trityl ether linker. Grignard metathesis (GRIM) copolymerization of 2 and 2,5-dibromo-3-hexylthiophene afforded regioregular P3HT with randomly incorporated alkoxyamine groups. Polymerization of styrene from the P3HT backbone for different time periods afforded graft copolymers with controllable sacrificial chain lengths. These materials were characterized using an array of techniques such as {sup 1}H and {sup 13}C NMR spectroscopy and size exclusion chromatography (SEC). An approach to obtain nanoporous P3HT thin films by cleavage of the trityl ether linker followed by complete removal of poly(styrene) is reported with the as-cast graft copolymer thin films displaying an irregular microphase-separated structure with an average domain size {approx}30 nm as determined by grazing incidence small-angle X-ray scattering (GISAXS) measurements. Significantly, this length scale was conserved after removal of the sacrificial component which allows this strategy to have potential application in diverse fields such as organic photovoltaics.

  1. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.

    PubMed

    Hsu, Shan-Hui; Tang, Cheng-Ming; Lin, Chu-Chieh

    2004-11-01

    In this study, we prepared diblock copolymers of poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) by aluminum alkoxide catalysts. The biological responses to the spin cast surface of different PCL/PEG diblock copolymers were investigated in vitro. Our results showed that surface hydrophilicity improved with the increased PEG segments in diblock copolymers and that bacteria adhesion was inhibited by increased PEG contents. PCL-PEG 23:77 showed nanotopography on the surface. The number of adhered endothelial cells, platelets and monocytes on diblock copolymer surfaces was inhibited in PCL-PEG 77:23 and enhanced in PCL-PEG 23:77. Nevertheless, the platelet and monocyte activation on PCL-PEG 23:77 was reduced. PCL-PEG 23:77 had better cellular response as well as lower degree of platelet and monocyte activation. The current study was the first one to demonstrate that surface nanotopography could influence not only cell adhesion and growth but also platelet and monocyte activation.

  2. Mixed interactions in random copolymers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma; Luettmer-Strathmann, Jutta

    2002-03-01

    The description of thermodynamic properties of copolymers in terms of simple lattice models requires a value for the mixed interaction strength (ɛ_12) between unlike chain segments, in addition to parameters that can be derived from the properties of the corresponding homopolymers. If the monomers are chemically similar, Berthelot's geometric-mean combining rule provides a good first approximation for ɛ_12. In earlier work on blends of polyolefins [1], we found that the small-scale architecture of the chains leads to corrections to the geometric-mean approximation that are important for the prediction of phase diagrams. In this work, we focus on the additional effects due to sequencing of the monomeric units. In order to estimate the mixed interaction ɛ_12 for random copolymers, the small-scale simulation approach developed in [1] is extended to allow for random sequencing of the monomeric units. The approach is applied here to random copolymers of ethylene and 1-butene. [1] J. Luettmer-Strathmann and J.E.G. Lipson. Phys. Rev. E 59, 2039 (1999) and Macromolecules 32, 1093 (1999).

  3. Phase Behavior of Symmetric Sulfonated Block Copolymers

    SciTech Connect

    Park, Moon Jeong; Balsara, Nitash P.

    2008-08-21

    Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.

  4. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  5. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  6. Enhancement of deoxyribozyme activity by cationic copolymers.

    PubMed

    Gao, Jueyuan; Shimada, Naohiko; Maruyama, Atsushi

    2015-02-01

    Deoxyribozymes, or DNAzymes, are DNA molecules with enzymatic activity. DNAzymes with ribonuclease activity have various potential applications in biomedical and bioanalytical fields; however, most constructs have limited turnover despite optimization of reaction conditions and DNAzyme structures. A cationic comb-type copolymer accelerates DNA hybridization and strand exchange rates, and we hypothesized that the copolymer would enhance deoxyribozyme activity by promoting turnover. The copolymer did not change DNAzyme activity under single-turnover conditions, suggesting that the copolymer affects neither the folding structure of DNAzyme nor the association of a divalent cation, a catalytic cofactor, to DNAzyme. The copolymer enhanced activity of the evaluated DNAzyme over a wide temperature range under multiple-turnover conditions. The copolymer increased the DNAzyme kcat/KM by fifty-fold at 50 °C, the optimal temperature for the DNAzyme in the absence of the copolymer. The acceleration effect was most significant when the reaction temperature was slightly higher than the melting temperature of the enzyme/substrate complex; acceleration of two orders of magnitude was observed. We concluded that the copolymer accelerated the turnover step without influencing the chemical cleavage step. In contrast to the copolymer, a cationic surfactant, CTAB, strongly inhibited the DNAzyme activity under either single- or multiple-turnover conditions. PMID:26218121

  7. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field.

  8. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity.

    PubMed

    Lastra, M Laura; Molinuevo, M Silvina; Giussi, Juan M; Allegretti, Patricia E; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Cortizo, M Susana

    2015-06-01

    β-Ketonitrile tautomeric copolymers have demonstrated tunable hydrophilicity/hydrophobicity properties according to surrounding environment, and mechanical properties similar to those of human bone tissue. Both characteristic properties make them promising candidates as biomaterials for bone tissue engineering. Based on this knowledge we have designed two scaffolds based on β-ketonitrile tautomeric copolymers which differ in chemical composition and surface morphology. Two of them were nanostructured, using an anodized aluminum oxide (AAO) template, and the other two obtained by solvent casting methodology. They were used to evaluate the effect of the composition and their structural modifications on the biocompatibility, cytotoxicity and degradation properties. Our results showed that the nanostructured scaffolds exhibited higher degradation rate by macrophages than casted scaffolds (6 and 2.5% of degradation for nanostructured and casted scaffolds, respectively), a degradation rate compatible with bone regeneration times. We also demonstrated that the β-ketonitrile tautomeric based scaffolds supported osteoblastic cell proliferation and differentiation without cytotoxic effects, suggesting that these biomaterials could be useful in the bone tissue engineering field. PMID:25842133

  9. Mechanism for hierarchical self-assembly of nanoparticles on scaffolds derived from block copolymers.

    SciTech Connect

    Darling, S. B.

    2007-07-01

    Lithographically patterned substrates can direct the self-assembly of block copolymer films into aligned structures that, in turn, template the self-organization of colloidal nanoparticles. Deposition on pristine diblock copolymer films does not lead to reproducible selective decoration, but films modified to have nanoscale corrugation act as scaffolds for highly selective nanoparticle adsorption. The mechanism for this selectivity relies on the lateral forces inherent to spin casting to remove all of the nanoparticle suspension not confined within the nanoscopic trenches. This technique does not rely on interactions between the surfactant capping molecules and the polymer and is therefore general to a wide class of nanoparticle materials. Prospects to obtain long-range ordering and associated potential applications are discussed.

  10. Morphological study of biodegradable PEO/PLA block copolymers.

    PubMed

    Younes, H; Cohn, D

    1987-11-01

    A series of PEO/PLA copolymers, covering a wide range of compositions and segmental lengths, was synthesized, and their morphology was investigated by means of DSC and IR studies. For matrices comprising PEO chains with molecular weights below 3400, no soft-segment crystallinity was detected. When long hard segments were present, essentially monophasic, semicrystalline polymers were obtained, with PLA blocks melting around 130 degrees C. Polymers containing longer soft segments (PEO 6000) exhibited a two-phase matrix, with both components being able to crystallize. The relative degree of crystallinity of PEO and PLA blocks was also determined. The thermal history of the sample strongly affected the morphology of the matrix, especially when both blocks were long enough to crystallize. To further explore these polymers, solvent cast films were prepared and their morphology assessed. Casting from acetone, which is an excellent solvent for PLA, resulted in hard blocks exhibiting lower degrees of crystallinity, while methanol had a similar effect on PEO soft segments. PMID:3680315

  11. Approaching two-dimensional copolymers: photoirradiation of anthracene- and diaza-anthracene-bearing monomers in Langmuir monolayers.

    PubMed

    Payamyar, Payam; Servalli, Marco; Hungerland, Tim; Schütz, Andri P; Zheng, Zhikun; Borgschulte, Andreas; Schlüter, A Dieter

    2015-01-01

    By using structurally similar amphiphilic monomers, it is shown that compressed monolayers of varying amounts of such monomers at the air/water interface can be converted by photo-irradiation into the corresponding covalently connected monolayer sheets. Since one of the monomers carries three anthracene units and the other three 1,8-diaza-anthracene units, the growth reaction is proposed to take place through photochemically achieved [4+4]-cycloaddition between pairs of these units that are co-facially (face-to-face) arranged, to furnish the corresponding covalent dimers. While evidence for both homodimers is amply available, the existence of the heterodimer needs to be established with the help of a model reaction to support the conceptual aspect of this work, copolymerization in two dimensions. The sheet copolymers exhibit substantial robustness in that they can be spanned over 20 × 20 μm(2)-sized holes without rupturing under their own weight. X-ray photoelectron spectroscopy (XPS) studies reveal that the monomers are incorporated into the sheet copolymers according to feed. These results establish existence of the first covalent sheet copolymer, which is considered a step ahead towards novel 2D materials. PMID:25475710

  12. Poly(ɛ-caprolactone) (PCL)-polymeric micelle hybrid sheets for the incorporation and release of hydrophilic proteins.

    PubMed

    Anzai, Ryosuke; Murakami, Yoshihiko

    2015-03-01

    Sheets have several advantages over conventional gel- or particle-type drug carriers. Sheets have several notable attributes: sheets' size and shape are easily adjustable, sheets are highly accessible in surgery, and sheets have a large contact area relative to drug-targeting sites. However, it is difficult to incorporate hydrophilic proteins into hydrophobic sheets and to release the proteins over the long term in a sustained manner. In the present study, we show that "poly(ɛ-caprolactone) (PCL)-polymeric micelle hybrid sheets" can be used for the incorporation and release of hydrophilic proteins. Polymeric micelles (i.e., spaces that can incorporate hydrophilic compounds) are, in this study, uniformly dispersed in hydrophobic and biocompatible biomaterial sheet. We have clarified that the composition of block copolymer, methoxy-terminated poly(ethylene glycol)-block-poly(ɛ-caprolactone) (CH3O-PEG-b-PCL), can affect two variables: the stability of w/o emulsion and the release properties of the resulting sheets, by means of visual qualitative observations, newly developed quantitative analyses (advanced fractal analysis, advanced FD) based on deviation of the fractal dimension (FD), and release experiments. We clarified that the release behavior of BSA was affected by the composition of the block copolymers and the resulting emulsion. The results obtained in this paper show that the hydrophobic sheets in which polymeric micelles providing hydrophilic spaces were dispersed could be an effective platform for incorporating and releasing hydrophilic proteins. PMID:25723105

  13. AMCC casting development, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.

  14. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  15. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    PubMed

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules.

  16. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly

    PubMed Central

    Li, Zihui; Sai, Hiroaki; Warren, Scott C.; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M.; Wiesner, Ulrich

    2010-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules. PMID:21103025

  17. Volume MLS ray casting.

    PubMed

    Ledergerber, Christian; Guennebaud, Gaël; Meyer, Miriah; Bächer, Moritz; Pfister, Hanspeter

    2008-01-01

    The method of Moving Least Squares (MLS) is a popular framework for reconstructing continuous functions from scattered data due to its rich mathematical properties and well-understood theoretical foundations. This paper applies MLS to volume rendering, providing a unified mathematical framework for ray casting of scalar data stored over regular as well as irregular grids. We use the MLS reconstruction to render smooth isosurfaces and to compute accurate derivatives for high-quality shading effects. We also present a novel, adaptive preintegration scheme to improve the efficiency of the ray casting algorithm by reducing the overall number of function evaluations, and an efficient implementation of our framework exploiting modern graphics hardware. The resulting system enables high-quality volume integration and shaded isosurface rendering for regular and irregular volume data.

  18. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  19. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  20. USGS ShakeCast

    USGS Publications Warehouse

    Wald, David; Lin, Kuo-Wan

    2007-01-01

    Automating, Simplifying, and Improving the Use of ShakeMap for Post-Earthquake Decisionmaking and Response. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  1. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  2. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  3. Thermochemical characteristics of chitosan-polylactide copolymers

    NASA Astrophysics Data System (ADS)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  4. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  5. Zika Virus Fact Sheet

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... and last for 2-7 days. Complications of Zika virus disease After a comprehensive review of evidence, there ...

  6. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  7. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  8. Pattern transfer using block copolymers.

    PubMed

    Gu, Xiaodan; Gunkel, Ilja; Russell, Thomas P

    2013-10-13

    To meet the increasing demand for patterning smaller feature sizes, a lithography technique is required with the ability to pattern sub-20 nm features. While top-down photolithography is approaching its limit in the continued drive to meet Moore's law, the use of directed self-assembly (DSA) of block copolymers (BCPs) offers a promising route to meet this challenge in achieving nanometre feature sizes. Recent developments in BCP lithography and in the DSA of BCPs are reviewed. While tremendous advances have been made in this field, there are still hurdles that need to be overcome to realize the full potential of BCPs and their actual use.

  9. Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers

    PubMed Central

    Kim, Bokyung; Lam, Christopher N.; Olsen, Bradley D.

    2014-01-01

    The use of ionic interactions to direct both protein templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both thermally responsive and pH responsive blocks. Controlled reversible addition-fragmentation chain-transfer (RAFT) polymerization is employed to synthesize poly(N-isopropylacrylamide-b-2-(dimethylamino)ethyl acrylate) (PNIPAM-b-PDMAEA) diblock copolymers. The pH-dependent ionic complexation between the fluorescent protein, mCherry, and the ionic PDMAEA block is established using dynamic light scattering (DLS) and UV-Vis spectroscopy. DLS shows that the size of the resulting coacervate micelles depends strongly on pH, while UV-Vis spectroscopy shows a correlation between the protein’s absorption maximum and the ionic microenvironment. Zeta potential measurements clearly indicate the ionic nature of the complex-forming interactions. Spin casting was used to prepare nanostructured films from the protein-block copolymer coacervates. After film formation, the lower critical solution temperature (LCST) of the PNIPAM blocks allows the nanomaterial to be effectively immobilized in aqueous environments at physiological temperatures, enabling potential use as a controlled protein release material or polymer matrix for protein immobilization. At pH 9.2 and 7.8, the release rates are at least 10 times faster than that at pH 6.4 due to weaker interaction between protein and PNIPAM-b-PDMAEA (PND) diblock copolymer. Due to the ionic environment in which protein is confined, the majority of the protein (80%) remains active, independent of pH, even after having been dehydrated in vacuum and confined in the films. PMID:24904186

  10. Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers.

    PubMed

    Kim, Bokyung; Lam, Christopher N; Olsen, Bradley D

    2012-06-12

    The use of ionic interactions to direct both protein templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both thermally responsive and pH responsive blocks. Controlled reversible addition-fragmentation chain-transfer (RAFT) polymerization is employed to synthesize poly(N-isopropylacrylamide-b-2-(dimethylamino)ethyl acrylate) (PNIPAM-b-PDMAEA) diblock copolymers. The pH-dependent ionic complexation between the fluorescent protein, mCherry, and the ionic PDMAEA block is established using dynamic light scattering (DLS) and UV-Vis spectroscopy. DLS shows that the size of the resulting coacervate micelles depends strongly on pH, while UV-Vis spectroscopy shows a correlation between the protein's absorption maximum and the ionic microenvironment. Zeta potential measurements clearly indicate the ionic nature of the complex-forming interactions. Spin casting was used to prepare nanostructured films from the protein-block copolymer coacervates. After film formation, the lower critical solution temperature (LCST) of the PNIPAM blocks allows the nanomaterial to be effectively immobilized in aqueous environments at physiological temperatures, enabling potential use as a controlled protein release material or polymer matrix for protein immobilization. At pH 9.2 and 7.8, the release rates are at least 10 times faster than that at pH 6.4 due to weaker interaction between protein and PNIPAM-b-PDMAEA (PND) diblock copolymer. Due to the ionic environment in which protein is confined, the majority of the protein (80%) remains active, independent of pH, even after having been dehydrated in vacuum and confined in the films. PMID:24904186

  11. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  12. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  13. Textures of strip cast Fe16%Cr

    SciTech Connect

    Raabe, D.; Reher, F.; Luecke, K. ); Hoelscher, M. )

    1993-07-01

    Ferritic stainless steels with a Cr content of 16% are mainly manufactured by continuous casting, hot rolling, cold rolling and final recrystallization. The recent development of the strip casting method, which provides sheets with an equivalent geometry, i.e. thickness and width as the hot rolled band, yields significant improvements in comparison to the conventional processing. The weak initial strip texture and the homogeneous microstructure through the sample thickness have shown evidence of avoiding the well known ridging phenomenon of the finally rolled and annealed product. The occurrence of ridging in conventionally processed FeCr steel has been attributed to the collective shear of grains with (hkl)<110>, i.e. [alpha]-fibre orientations, which become oriented and topologically arranged during hot rolling. In the present paper the textures of a stainless ferritic steel with 16% Cr and 0.02% C, strip casted (SC) as well as hot rolled (HR), were thus investigated. The textures were examined by measuring the four incomplete pole figures (110), (200), (112) and (103) in the back reflection mode. The orientation distribution function (ODF) was calculated by the series expansion method (1[sup max]=22). In the case of cubic crystal symmetry and orthorhombic sample symmetry an orientation can then be presented by the three Euler angles [var phi][sub 1], [var phi], [var phi][sub 2] in the reducted Euler space. Since bcc steels tend to develop characteristic fibre textures, it is favorable to present the ODFs as isointensity diagrams in [var phi][sub 1]-sections through the Eulerspace. In this work the [alpha]-fibre and the [gamma]-fibre are of major interest.

  14. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    SciTech Connect

    Han, Qingyou; Dinwiddie, Ralph Barton; Sklad, Philip S; Currie, Kenneth; Abdelrahman, Mohamed; Vondra, Fred; Walford, Graham; Nolan, Dennis J

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  15. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  16. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  17. Replacing London's cast iron mains

    SciTech Connect

    Thorne, A. ); Mathews, P. )

    1992-07-01

    This paper discusses the cast iron gas distribution systems that exist in many cities and contains considerable amounts of pipe that vary in age from 20 to 150 years. In many ways, cast iron is an excellent material. It is inherently corrosion resistant, easy to install and cheap. However, it is also brittle and smaller diameter cast iron pipe has a relatively low beam strength. This can lead, under some circumstances, to failure without external warning, with typically a full-circumferential failure. In congested areas this can lead to serious consequences. As a result, cast iron replacement programs are a common feature in such urban gas distribution systems.

  18. Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins.

    PubMed

    Zhou, Chuncai; Leng, Boxun; Yao, Jinrong; Qian, Jie; Chen, Xin; Zhou, Ping; Knight, David P; Shao, Zhengzhong

    2006-08-01

    Spider dragline silk with its superlative tensile properties provides an ideal system to study the relationship between morphology and mechanical properties of a structural protein. Accordingly, we synthesized two hybrid multiblock copolymers by condensing poly(alanine) [(Ala)(5)] blocks of the structural proteins (spidroin MaSp1 and MaSp2) of spider dragline silk with different oligomers of isoprene (2200 and 5000 Da) having reactive end groups. The synthetic multiblock polymer displayed similar secondary structure to that of natural spidroin, the peptide segment forming a beta-sheet structure. These multiblock polymers showed a significant solubility in the component solvents. Moreover, the copolymer which contains the short polyisoprene segment would aggregate into a micellar-like structure, as observed by TEM. PMID:16903690

  19. Joining of Thin Metal Sheets by Shot Peening

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    2011-01-01

    In shot peening the substrate undergoes large plastic deformation near the surface due to the hit with shots. The plastic flow areas formed by cold working may form the surface layer. Authors have recently proposed new joining methods using shot peening, shot lining and shot caulking. Our approach has been applied to the butt joining of the dissimilar metal sheets. In the present study, joining of thin metal sheets using a shot peening process was investigated to improve the joinability. In the joined section, the edge of sheets is the equally-spaced slits. In this method, the convex edges of the sheet are laid on top of the other sheet. Namely, the two sheets are superimposed in the joining area. When the connection is shot-peened, the material of the convex area undergoes large plastic deformation near the surface due to the collision of shots. In this process, particularly noteworthy is the plastic flow near surface layer. The convex edges of the sheet can be joined to the other sheet, thus two sheets are joined each other. In the experiment, the shot peening treatment was performed by using an air-type peening machine. The shots used were made of high carbon cast steel. Air pressure was 0.6 MPa and peening time was in the range of 30-150s. The peening conditions were controlled in the experiment. The thin sheets were commercial low-carbon steel, stainless steel, pure aluminum, and aluminium alloy. The effects of processing conditions on the joinability were mainly examined. The joint strength increased with the kinetic energy of shots. It was found that the present method was effective for joining of thin metal sheets.

  20. Superfund fact sheet: Benzene. Fact sheet

    SciTech Connect

    Not Available

    1992-09-01

    The fact sheet describes benzene, a chemical that can be found in a variety of products, including petroleum products (e.g. gasoline), some household cleaners, and some glues and adhesives. Explanations of how people are exposed to benzene and how benzene can enter the body and may affect human health are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training.

  1. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  2. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  3. Polycrystalline Silicon Sheets for Solar Cells by the Improved Spinning Method

    NASA Technical Reports Server (NTRS)

    Maeda, Y.; Yokoyama, T.; Hide, I.

    1984-01-01

    Cost reduction of silicon materials in the photovoltaic program of materials was examined. The current process of producing silicon sheets is based entirely on the conventional Czochralski ingot growth and wafering used in the semiconductor industry. The current technology cannot meet the cost reduction demands for producing low cost silicon sheets. Alternative sheet production processes such as unconventional crystallization are needed. The production of polycrystalline silicon sheets by unconventional ingot technology is the casting technique. Though large grain sheets were obtained by this technique, silicon ribbon growth overcomes deficiencies of the casting process by obtaining the sheet directly from the melt. The need to solve difficulties of growth stability and impurity effects are examined. The direct formation process of polycrystalline silicon sheets with large grain size, smooth surface, and sharp edges from the melt with a high growth rate which will yield low cost silicon sheets for solar cells and the photovoltaic characteristics associated with this type of sheet to include an EBIC study of the grain boundaries are described.

  4. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron

    1987-03-24

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  5. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1984-05-23

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  6. When Your Child Needs a Cast

    MedlinePlus

    ... hard bandage that's usually made of material like fiberglass or plaster. Casts keep bones in place while ... water. Plaster of Paris casts are heavier than fiberglass casts and don't hold up as well ...

  7. Prototype casting fabrication by stereolithography

    SciTech Connect

    Cromwell, W.E.

    1992-03-01

    The evolution of the new technology of producing CAD models by ultraviolet solidification of resin materials (``STEREOLITHOGRAPHY``) continues to progress. The potential application area of rigid fabrication of prototype investment castings is becoming more feasible as we continue to successfully yield experimental castings by the ``SHELL`` processing method. This supplemental (to 11/90 publication) report briefly reviews the original project objectives, activities related to these objectives since November 1990, and progress made through December 1991. We discuss several new case studies involving new resin materials (and other materials) tested along with investment casting processing results. The most recent success, the processing of the highly complex ``C`` HOUSING design by the ``shell`` mold process in both aluminum and steel, will be discussed. This is considered a major breakthrough toward establishing this new technology as a viable approach to the rapid development of prototype investment castings, employing the most common aerospace (precision) cast process. Our future planning calls for expanding the study to help the investment casting industry in refining related processing techniques and to continue our evaluation of new resins suitable for the casting process. Present project planning calls for the completion of this study by the third quarter FY93 or sooner. We believe that with the continued excellent cooperation of our casting supplier study team and an accelerated effort by resin materials producers to further refine related materials, we can achieve all objectives during the planned time frame.

  8. Prototype casting fabrication by stereolithography

    SciTech Connect

    Cromwell, W.E.

    1992-03-01

    The evolution of the new technology of producing CAD models by ultraviolet solidification of resin materials ( STEREOLITHOGRAPHY'') continues to progress. The potential application area of rigid fabrication of prototype investment castings is becoming more feasible as we continue to successfully yield experimental castings by the SHELL'' processing method. This supplemental (to 11/90 publication) report briefly reviews the original project objectives, activities related to these objectives since November 1990, and progress made through December 1991. We discuss several new case studies involving new resin materials (and other materials) tested along with investment casting processing results. The most recent success, the processing of the highly complex C'' HOUSING design by the shell'' mold process in both aluminum and steel, will be discussed. This is considered a major breakthrough toward establishing this new technology as a viable approach to the rapid development of prototype investment castings, employing the most common aerospace (precision) cast process. Our future planning calls for expanding the study to help the investment casting industry in refining related processing techniques and to continue our evaluation of new resins suitable for the casting process. Present project planning calls for the completion of this study by the third quarter FY93 or sooner. We believe that with the continued excellent cooperation of our casting supplier study team and an accelerated effort by resin materials producers to further refine related materials, we can achieve all objectives during the planned time frame.

  9. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  10. Education and Caste in India

    ERIC Educational Resources Information Center

    Chauhan, Chandra Pal Singh

    2008-01-01

    This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…

  11. Curable polyphosphazene copolymers and terpolymers

    NASA Technical Reports Server (NTRS)

    Reynard, Kennard A. (Inventor); Rose, Selwyn H. (Inventor)

    1976-01-01

    Copolymers and terpolymers comprising randomly repeating units represented by the general formulae ##EQU1## wherein the R' radicals contain OH functionality and R being at least one member of the group of monovalent radicals selected from alkyl, substituted alkyl, aryl, substituted aryl and arylalkyl, and R' is represented by ##EQU2## wherein Q represents either --(CH.sub.2).sub. n or --C.sub.6 H.sub.4 X(CH.sub.2).sub. m, the --X(CH.sub.2).sub. m group being either meta or para and n is an integer from 1 to 6, m is an integer from 1 to 3, X is O or CH.sub.2, and R is H or a lower alkyl radical with up to four carbon atoms (methyl, ethyl, etc.). The ratio of R to R' is between 99.5 to 0.5 and 65 to 35.

  12. Electrostatic control of block copolymer morphology

    NASA Astrophysics Data System (ADS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    2014-07-01

    Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes. Block copolymers can self-assemble into nanostructures that simultaneously facilitate ion transport and provide mechanical stability. The ions themselves have a profound, yet previously unpredictable, effect on how these nanostructures assemble and thus the efficiency of ion transport. Here we demonstrate that varying the charge of a block copolymer is a powerful mechanism to predictably tune nanostructures. In particular, we demonstrate that highly asymmetric charge cohesion effects can induce the formation of nanostructures that are inaccessible to conventional uncharged block copolymers, including percolated phases desired for ion transport. This vastly expands the design space for block copolymer materials and is informative for the versatile design of battery electrolyte materials.

  13. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  14. Morphologies in Sulfonated Styrenic Pentablock Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Bramson, Matt; Winey, Karen I.

    2010-03-01

    Membranes of pentablock and triblock copolymers consisting of poly(tert-butyl styrene) (TBS), hydrogenated polyisoprene (HI), and partially sulfonated poly(styrene-ran-styrene sulfonate) (SS) were studied using small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The TBS-HI-SS-HI-TBS pentablock and TBS-HI-SS triblock copolymer membranes exhibit anisotropic microphase separated morphologies. Because the pentablock and triblock copolymers can be expected to have complex morphologies, thermal annealing was conducted to promote well-defined morphologies. The annealed membranes exhibit stronger peaks and more high order reflections in SAXS patterns, as well as better defined microstructures in the TEM. Electron microcopy studies with various staining protocols are underway to establish the morphology of the pentablock copolymer membranes including the size and shape of the three microdomains (TBS, HI and SS). We gratefully acknowledge Kraton Polymers, Inc. for materials.

  15. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  16. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and...

  17. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and...

  18. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and...

  19. Phase behaviors of cyclic diblock copolymers.

    PubMed

    Zhang, Guojie; Fan, Zhongyong; Yang, Yuliang; Qiu, Feng

    2011-11-01

    A spectral method of self-consistent field theory has been applied to AB cyclic block copolymers. Phase behaviors of cyclic diblock copolymers, such as order-disorder transition, order-order transition, and domain spacing size, have been studied, showing good consistency with previous experimental and theoretical results. Compared to linear diblocks, cyclic diblocks are harder to phase separate due to the topological constraint of the ring structure. A direct disorder-to-cylinder transition window is observed in the phase diagram, which is significantly different from the mean field phase diagram of linear diblock copolymers. The domain spacing size ratio between cyclic and linear diblock copolymers is typically close to 0.707, indicating in segregation that the cyclic polymer can be considered to be made up of linear diblocks with half of the original chain length. PMID:22070321

  20. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    NASA Astrophysics Data System (ADS)

    Li, Jian-Hua; Li, Mi-Zi; Miao, Jing; Wang, Jia-Bin; Shao, Xi-Sheng; Zhang, Qi-Qing

    2012-06-01

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  1. Organization of Gold Nanorods in Cylinder-Forming Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Jian, Guoquian; Riggleman, Robert; Composto, Russell

    2012-02-01

    The addition of gold nanorods (AuNRs) to copolymer films can impart unique optical and electrical properties. To take full advantage of this system, the AuNRs must be dispersed in a self-organizing copolymer that directs the orientation of the anisotropic particle. In the present work, AuNRs with aspect ratio 3.6 (8 nm x 29 nm) are grafted with poly(2-vinyl pyridine) (P2VP) brushes and dispersed in a cylindrical forming diblock copolymer of polystyrene-b-P2VP (180K-b-77K, 29.6 wt% P2VP). Films are spun cast and solvent annealed in chloroform to produce a perpendicular cylindrical morphology at the surface. Using TEM and UV-ozone etching combined with AFM, the AuNRs are well dispersed and co-locate (top down view) with the P2VP cylinders, ˜50nm diameter. However, the AuNRs mainly lie parallel to the surface indicating that they likely locate at the junction created at the intersection between P2VP cylinders and P2VP brush layer adjacent to the silicon oxide surface. Self-consistent field calculations of the Au:PS-b-P2VP morphology as well as the effect of adding P2VP homopolymer to the nanocomposite will be discussed.

  2. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  3. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  4. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  5. Sporadic Nucleation and Growth in the Microphase Separation Process of an I2S Miktoarm Star Block Copolymer and its Blends with Homopolymer

    NASA Astrophysics Data System (ADS)

    Yang, Lizhang; Pochan, Darrin J.; Gido, Samuel P.; Pispas, Stergios; Hong, Kunlun; Mays, Jimmy W.

    2000-03-01

    A selective solvent and annealing study was done to investigate the morphology behavior of an I2S miktoarm star block copolymer and its blends with homopolyisoprene. Casting from cyclohexane, a selective solvent for polyisoprene, the neat star shaped I2S block copolymer only partially microphase separated, and formed a unique layered morphology inside a homogeneous media. During annealing, the layered phase and the homogeneous phase both transformed into a randomly oriented worm morphology. The path of this transformation is different depending on whether the starting state is layered or homogenous. The I2S/homopolyisoprene blend formed a mostly homogeneous phase after casting from cyclohexane. Annealing produced slow microphase separation which was observed at various stages by TEM. Based on these observations, a sporadic nucleation process of microphase separation is proposed.

  6. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  7. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications.

    PubMed

    Hanefeld, Phillip; Westedt, Ullrich; Wombacher, Ralf; Kissel, Thomas; Schaper, Andreas; Wendorff, Joachim H; Greiner, Andreas

    2006-07-01

    Poly(p-xylylene) (PPX) was deposited by chemical vapor deposition (CVD) on stainless steel substrates. These PPX films were coated by solution casting of poly(lactide)-poly(ethylene oxide)-poly(lactide) triblock copolymers (PLA-PEO-PLA) loaded with 14C-labeled paclitaxel. Adhesion of PLA-PEO-PLA on PPX substrate coatings was measured using the blister test method. Excellent adhesion of the block copolymers on PPX substrates was found. Stress behavior and film integrity of PLA-PEO-PLA was compared to pure PLA on unexpanded and expanded stent bodies and was found to be superior for the block copolymers. The release of paclitaxel from the biodegradable coatings was studied under physiological conditions using the scintillation counter method. Burst release of paclitaxel was observed from PLA-PEO-PLA layers regardless of composition, but an increase in paclitaxel loading was observed with increasing content of PEO. PMID:16827574

  8. Casting process modeling using ProCAST and CAST2D

    SciTech Connect

    Shapiro, A.; Stein, W.; Raboin, P.

    1990-12-01

    Correctly modeling the fluid flow and heat transfer during the filling of a mold with a molten metal, and the thermal-mechanical physics of solidification and cooldown is important in predicting the quality of a cast part. Determining the dynamics of the flow and the free surface shape during filling are essential in establishing the temperature gradients in the melt and in the mold. Correctly modeling the physics of volume change on solidification, shrinkage on cooling, and contact resistance across the part-mold interface directly affects the cooling rate and ultimately the final cast shape and stress state of the cast part. In this paper we describe our current research efforts on modeling fluid fill using the commercial code ProCAST by UES, and thermal-mechanical solidification modeling using the code CAST2D by LLNL.

  9. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel

    SciTech Connect

    Li, Hao-Ze; Liu, Hai-Tao Liu, Zhen-Yu Lu, Hui-Hu; Song, Hong-Yu; Wang, Guo-Dong

    2014-02-15

    An Fe-6.5 wt.% Si-0.3 wt.% Al as-cast sheet was produced by twin-roll strip casting process, then treated with hot rolling, warm rolling and annealing. A detailed study of the microstructure and texture evolution at different processing stages was carried out by optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. The initial as-cast strip showed strong columnar grains and pronounced < 001 >//ND texture. The hot rolled and warm rolled sheets were characterized by large amounts of shear bands distributed through the thickness together with strong < 110 >//RD texture and weak < 111 >//ND texture. After annealing, detrimental < 111 >//ND texture almost disappeared while beneficial (001)<210 >, (001)<010 >, (115)<5 − 10 1 > and (410) < 001 > recrystallization textures were formed, thus the magnetic induction of the annealed sheet was significantly improved. The recrystallization texture in the present study could be explained by preferred nucleation and grain growth mechanism. - Highlights: • A high silicon as-cast strip with columnar structure was produced. • A thin warm rolled sheet without large edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Beneficial (001)<210 >, (001)<010 >, (410)<001 > recrystallization textures were formed. • The magnetic induction of annealed sheet was significantly improved.

  10. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    NASA Astrophysics Data System (ADS)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence

  11. Anion conductive aromatic block copolymers containing diphenyl ether or sulfide groups for application to alkaline fuel cells.

    PubMed

    Yokota, Naoki; Ono, Hideaki; Miyake, Junpei; Nishino, Eriko; Asazawa, Koichiro; Watanabe, Masahiro; Miyatake, Kenji

    2014-10-01

    A novel series of aromatic block copolymers composed of fluorinated phenylene and biphenylene groups and diphenyl ether (QPE-bl-5) or diphenyl sulfide (QPE-bl-6) groups as a scaffold for quaternized ammonium groups is reported. The block copolymers were synthesized via aromatic nucleophilic substitution polycondensation, chloromethylation, quaternization, and ion exchange reactions. The block copolymers were soluble in organic solvents and provided thin and bendable membranes by solution casting. The membranes exhibited well-developed phase-separated morphology based on the hydrophilic/hydrophobic block copolymer structure. The membranes exhibited mechanical stability as confirmed by DMA (dynamic mechanical analyses) and low gas and hydrazine permeability. The QPE-bl-5 membrane with the highest ion exchange capacity (IEC = 2.1 mequiv g(-1)) exhibited high hydroxide ion conductivity (62 mS cm(-1)) in water at 80 °C. A noble metal-free fuel cell was fabricated with the QPE-bl-5 as the membrane and electrode binder. The fuel cell operated with hydrazine as a fuel exhibited a maximum power density of 176 mW cm(-2) at a current density of 451 mA cm(-2).

  12. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  13. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  14. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  15. Strip casting apparatus and method

    DOEpatents

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  16. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  17. Pressure Rig for Repetitive Casting

    NASA Technical Reports Server (NTRS)

    Vasquez, P.; Hutto, W. R.

    1986-01-01

    Equipment life increased by improved insulation. New design cuts time of preparation for casting from several days to about 1 hour. Savings due to elimination of lengthy heating and drying operations associated with preparation of ceramic mold. Quality of casting improved because moisture in cavity eliminated by use of insulating material, and more uniform pressure applied to process. Commercial blanket insulator protects components from heat, increasing life of pressure rig and enabling repeated use. Improved heat protection allows casting of brass and other alloys with higher melting temperatures in pressure rig.

  18. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  19. Developing Fact Sheets.

    ERIC Educational Resources Information Center

    Weiler, Robert M.

    1998-01-01

    Presents an assignment that allows preservice health educators to learn how to develop fact sheets for communicating health information. The process of developing fact sheets involves selecting a topic, selecting a target audience, researching the topic, writing the message, constructing the draft, and pretesting the product. Strategies for…

  20. Thin steel section casting on a near-horizontal twin-belt caster

    SciTech Connect

    Daniel, S.S.; Hamill, P.E.; Vassilicos, A. . USS Technical Center); Baker, J.H. . Research Dept.); Lewis, T.W. ); Dykes, C.D. )

    1990-01-01

    As part of a program to develop a high productivity casting process for thin steel sections for direct hot rolling into high quality sheet, a process was devised where a closed-pool injection feeding system was coupled with a Hazelett twin-belt casting machine. Pilot facilities were built to determine the feasibility of closed-pool feeding. The facility was designed to cast up to 13.5 tonnes of steel into 25-mm thick and 430-mm wide steel sections at rates ranging from 4 to 15 m/min. Closed-pool feeding was attained in parts of seven casts. Under certain casting conditions, closed-pool feeding resulted in improvement in strand surface quality over open-pool feeding. However in nearly all cases of closed-pool feeding, the casts had to be terminated prematurely due to feeding nozzle breakage. This failure appears to be caused by frequent steel skull formation on, and subsequent detachment from the nozzle tip. In general, horizontal thin sections casting of steel with closed-pool feeding is a very complicated technology which is extremely labor and and material intensive, and not deemed economically viable. 4 refs., 15 figs.

  1. Polyhydroxyalkanoate copolymers from forest biomass.

    PubMed

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  2. Mechanics of Sheeting Joints

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2015-12-01

    Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between

  3. 21 CFR 888.5940 - Cast component.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cast component. 888.5940 Section 888.5940 Food and... ORTHOPEDIC DEVICES Surgical Devices § 888.5940 Cast component. (a) Identification. A cast component is a device intended for medical purposes to protect or support a cast. This generic type of device...

  4. 21 CFR 880.6185 - Cast cover.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cast cover. 880.6185 Section 880.6185 Food and....6185 Cast cover. (a) Identification. A cast cover is a device intended for medical purposes that is made of waterproof material and placed over a cast to protect it from getting wet during a shower or...

  5. 21 CFR 880.6185 - Cast cover.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cast cover. 880.6185 Section 880.6185 Food and....6185 Cast cover. (a) Identification. A cast cover is a device intended for medical purposes that is made of waterproof material and placed over a cast to protect it from getting wet during a shower or...

  6. 21 CFR 880.6185 - Cast cover.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cast cover. 880.6185 Section 880.6185 Food and....6185 Cast cover. (a) Identification. A cast cover is a device intended for medical purposes that is made of waterproof material and placed over a cast to protect it from getting wet during a shower or...

  7. 21 CFR 888.5940 - Cast component.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cast component. 888.5940 Section 888.5940 Food and... ORTHOPEDIC DEVICES Surgical Devices § 888.5940 Cast component. (a) Identification. A cast component is a device intended for medical purposes to protect or support a cast. This generic type of device...

  8. 21 CFR 888.5940 - Cast component.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cast component. 888.5940 Section 888.5940 Food and... ORTHOPEDIC DEVICES Surgical Devices § 888.5940 Cast component. (a) Identification. A cast component is a device intended for medical purposes to protect or support a cast. This generic type of device...

  9. Morphology and mechanical behavior of blends and diblock copolymers of 1,2 and 1,4 polybutadiene

    SciTech Connect

    Cohen, R.E.; Wilfong, D.E.

    1981-02-25

    The structure and mechanical properties of a series of polymer blends and block copolymers comprised of medium cis 1,4-polybutadiene and 99% 1,2-polybutadiene have been investigated. Thermal properties (DSC) were determined at two levels of radiation crosslinking and for various sample preparation procedures (solvent and thermal history). Dynamic mechanical spectra (3.5 Hz) were measured over temperature range from 180 to 310K. Transmission electron microscopy was also used for establishing the number phases and the domain size and geometry in the heterogeneous materials. Stress-strain curves were determined for the various samples as a function of crosslink density and casting solvent. Equilibrium swelling ratios were measured for each specimen at the same radiation dose in a good solvent. Swelling values were also obtained in a series of solvents for the parent homopolymers and for a diblock copolymer containing 45% 1,2 polybutadiene.

  10. Investment casting design of experiment. Final report

    SciTech Connect

    Owens, R.

    1997-10-01

    Specific steps in the investment casting process were analyzed in a designed experiment. The casting`s sensitivity to changes in these process steps was experimentally determined Dimensional and radiographic inspection were used to judge the sensitivity of the casting. Thirty-six castings of different pedigrees were poured and measured. Some of the dimensional inspection was conducted during the processing. It was confirmed that wax fixturing, number of gates, gate location, pour and mold temperature, pour speed, and cooling profile all affected the radiographic quality of the casting. Gate and runner assembly techniques, number of gates, and mold temperature affect the dimensional quality of the casting.

  11. Strong and light plaster casts?

    PubMed

    Stewart, Todd; Cheong, Wen; Barr, Victoria; Tang, Daniel

    2009-08-01

    Three geometries of volar slab plaster cast for the stabilisation of wrist fractures were investigated. It was found that by moulding reinforcement ridges on the inferior surface of the slab the strength and stiffness could be doubled with only a 20% increase in weight. It was discovered that to provide the same increase in strength with a traditional cast the entire thickness of the cast would have to be doubled, with a 100% increase in weight that would be cumbersome to most users. Bending theory is presented in a simple manner to allow clinicians to understand how reinforcement mouldings can improve the strength and stiffness of plaster casts without adversely influencing weight, or cost.

  12. Casting Using A Polystyrene Pattern

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Guenther, Bengamin; Vranas, Thomas; Veneris, Peter; Joyner, Michael

    1993-01-01

    New technique for making metal aircraft models saves significant amount of time and effort in comparison with conventional lost-wax method. Produces inexpensive, effective wind-tunnel models. Metal wind-tunnel model cast by use of polystyrene pattern.

  13. Thermal investigation of compound cast steel tools

    NASA Astrophysics Data System (ADS)

    Schaper, Mirko; Haferkamp, Heinz; Niemeyer, Matthias; Pelz, Christoph; Viets, Roman

    1999-03-01

    Tools for hot forging are exposed to complex stresses during their life-cycle. Therefore, forging dies should have a high wear resistance and toughness on the surface, combined with excellent thermal conductivity in the die body. Hot-work tool steel is appropriate for this application except from its thermal conductance. Hence, a tool consisting of hot-work tool steel in the area of contact and heat-treatable steel as die body is favorable. A smoothly graded microstructure in the joint zone between the two steel alloys is needed to match with the requirements. Fabrication of such functionally graded dies by sand casting exhibits high sensitivity to temperature and geometry dependent parameters. To melt on the inlay's surface must be ensured without destroying this region according to overheat coarsening and mixing of alloying elements. Instead of empirical methods to optimize the process parameters, a thermographic CCD-device is used for visualization of the heat flow while pouring the melt on the inlay. In fact the molten metal flow can be directed homogeneously across the bonding surface at adequate temperatures after evaluation of thermography data. The use of a silica-aerogel sheet as opaque window beneath the inlay in the mold enables systematic development of gating and risering, whereas undesirable scaling of the inlay due to the change of emissivity is retarded. Infrared image sequences clearly demonstrate the influence of different ring gating systems concerning the filling properties. Non-joined cavities may even be classified from image data. Compound cast steel tools have been manufactured and examined in forging trials validating life-cycle prolongation.

  14. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  15. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  16. Structure and properties of polypropylene cast films: Polymer type and processing effects

    NASA Astrophysics Data System (ADS)

    Mileva, Daniela; Gahleitner, Markus; Gloger, Dietrich

    2016-05-01

    The influence of processing parameters in a cast film extrusion process of thin films of isotactic polypropylene homopolymer and random propylene-ethylene copolymer was analyzed. Variation of the chill roll temperature allowed changing the supercooling of the melt and thus the generation of different crystal polymorphs of iPP. Additional focus was placed on the effect of flow induced crystallization via changing the output rate of the line. The crystal structure and morphology of the materials were evaluated and correlated to selected optical and mechanical properties.

  17. Twin Roll Casting of Al-Mg Alloy with High Added Impurity Content

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Hari Babu, N.; Scamans, G. M.; Fan, Z.; O'Reilly, K. A. Q.

    2014-06-01

    The microstructural evolution during twin roll casting (TRC) and downstream processing of AA5754 Al alloy with high added impurity content have been investigated. Strip casts with a high impurity content resulted in coarse α-Al grains and complex secondary phases. The grain size and centerline segregation reduced significantly on the addition of Al-Ti-B grain refiner (GR). Coarse-dendrite arm spacing (DAS) "floating" grains are observed in the impure alloy (IA) with higher volume in the GR strips. Two-dimensional (2D) metallographic analysis of the as-cast strip suggests that secondary phases (Fe-bearing intermetallics and Mg2Si) are discrete and located at the α-Al cell/grain boundaries, while three-dimensional (3D) analysis of extracted particles revealed that they were intact, well interconnected, and located in interdendritic regions. Homogenizing heat treatment of the cast strip breaks the interconnective networks and modifies the secondary phases to a more equiaxed morphology. During rolling, the equiaxed secondary phases align along the rolling direction. X-ray diffraction (XRD) analysis suggests that α-Al(FeMn)Si and Mg2Si are the predominant secondary phases that are formed during casting and remain throughout the downstream processing of the GR-IA. The high-impurity sheet processed from TRC resulted in superior strength and ductility over the sheet processed from small book mold ingot casting. The current study has shown that the TRC process can tolerate higher impurity levels and produce formable sheets from the recycled aluminum for structural applications.

  18. Surface self-segregation, wettability, and adsorption behavior of core-shell and pentablock fluorosilicone acrylate copolymers.

    PubMed

    Liang, Junyan; He, Ling; Dong, Xia; Zhou, Tie

    2012-03-01

    The surfaces of films cast from core-shell fluorosilicone acrylate copolymer (BA/MMA/DFHM and BA/MMA/DFHM/MPTMS/D(4)) latexes and linear pentablock fluorosilicone acrylate copolymer (PDMS-b-(PMMA-b-PDFHM)(2)) solutions are intensively investigated and compared by XPS, DCA, AFM, and QCM-D measurements. It is found that the molecular structures and in-solution aggregate structures of these well-defined copolymers have a dramatic influence on the surface structure formation, surface wetting, and adsorption behavior. The PDMS-b-(PMMA-b-PDFHM)(2) film cast from chloroform solution with high concentration of low-density unimers is able to perform as strong surface self-segregation of fluorine-containing groups as core-shell copolymer latex films. The BA/MMA/DFHM/MPTMS/D(4) in the core-shell latex particles exhibits the less pronounced surface self-segregation of silicon-containing groups than PDMS-b-(PMMA-b-PDFHM)(2) due to the occurrence of cross-linking reactions between polysiloxane chains. Indeed, such reactions induce the formation of silica network within the film material, which immobilizes tightly the fluorinated groups on the film surface and thus endows the film with higher surface structural stability for water compared to PDMS-b-(PMMA-b-PDFHM)(2) film with similar surface fluorine concentration and even higher silicon concentration. Still, the PDMS-b-(PMMA-b-PDFHM)(2) film definitely demonstrates higher advancing and receding contact angles for water than BA/MMA/DFHM/MPTMS/D(4) latex film in the case of synergism between surface enrichment of fluorine and silicon.

  19. Oscillator for continuous casting mold

    SciTech Connect

    Behrends, G.

    1993-06-15

    In a continuous casting machine comprising a chilled mold disposed to receive molten metal which is discharged from the mold as a curved casting having a predetermined casting radius, and an oscillating drive for oscillating the mold relative to the casting, wherein the improvement described comprises mold guidance means having a first tensile element having an inner end and an outer end, the outer end being anchored to a fixed external frame and the inner end being secured to move with the mold, the first tensile element lying on a first radius extending from the center of curvature of said pre-determined casting radius; and a second tensile element having an inner and an outer end both anchored to a fixed external frame and secured to move with the mold intermediate the inner and outer ends, at least one end having variable tensioning means adapted to apply a tensile force to the second tensile element, the second tensile element lying on a second radius extending from the center of curvature of said predetermined casting radius.

  20. Hierarchical self-assembly of spider silk-like block copolymers

    NASA Astrophysics Data System (ADS)

    Krishnaji, Sreevidhya; Huang, Wenwen; Cebe, Peggy; Kaplan, David

    2011-03-01

    Block copolymers provide an attractive venue to study well-defined nano-structures that self-assemble to generate functionalized nano- and mesoporous materials. In the present study, a novel family of spider silk-like block copolymers was designed, bioengineered and characterized to study the impact of sequence chemistry, secondary structure and block length on assembled morphology. Genetic variants of native spider dragline silk (major ampullate spidroin I, Nephila clavipes) were used as polymer building blocks. Characterization by FTIR revealed increased ?-sheet content with increasing hydrophobic A blocks; SEM revealed spheres, rod-like structures, bowl-shaped and giant compound micelles. Langmuir Blodgett monolayers were prepared at the air-water interface at different surface pressures and monolayer films analyzed by AFM revealed oblate to prolate structures. Circular micelles, rod-like, densely packed circular structures were observed for HBA6 at increasing surface pressure. Exploiting hierarchical assembly provide a promising approach to rationale designs of protein block copolymer systems, allowing comparison to traditional synthetic systems.

  1. Chain exchange in block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Bates, Frank; Lodge, Timothy

    2014-03-01

    Block copolymer micelles are aggregates formed by self-assembly of amphiphilic copolymers dispersed in a selective solvent, driven by unfavorable interactions between the solvent and the core-forming block. Due to the relatively long chains being subject to additional thermodynamic and dynamic constraints (e.g., entanglements, crystallinity, vitrification), block copolymer micelles exhibit significantly slower equilibration kinetics than small molecule surfactants. As a result, details of the mechanism(s) of equilibration in block copolymer micelles remain unclear. This present works focuses on the chain exchange kinetics of poly(styrene-b-ethylenepropylene) block copolymers in squalane (C30H62) using time-resolved small angle neutron scattering (TR-SANS). A mixture of h-squalane and d-squalane is chosen so that it contrast matches a mixed 50/50 h/d polystyrene micelle core. When the temperature is appropriate and isotopically labeled chains undergo mixing, the mean core contrast with respect to the solvent decreases, and the scattering intensity is therefore reduced. This strategy allows direct probing of chain exchange rate from the time dependent scattering intensity I(q, t).

  2. Thermoreversible copolymer gels for extracellular matrix.

    PubMed

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  3. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation.

    PubMed

    Spasova, Mariya; Mespouille, Laetitia; Coulembier, Olivier; Paneva, Dilyana; Manolova, Nevena; Rashkov, Iliya; Dubois, Philippe

    2009-05-11

    Novel well-defined amphiphilic poly(D-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PDLA-b-PDMAEMA) and poly(L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PLLA-b-PDMAEMA) copolymers were obtained. The synthesis strategy consisted of a three-step procedure: (i) controlled ring-opening polymerization (ROP) of (D- or L-)lactide initiated by Al(O(i)Pr)(3), followed by (ii) quantitative conversion of the polylactide (PLA) hydroxyl end-groups with bromoisobutyryl bromide and (iii) atom transfer radical polymerization (ATRP) of DMAEMA. The PLA block molecular weight was kept below 5000 g/mol. The macromolecular parameters of the (co)polymers were determined by (1)H NMR spectroscopy and size exclusion chromatography (SEC). The stereocomplexes of PDLA-b-PDMAEMA/PLLA-b-PDMAEMA diblock copolymers were prepared via solvent casting. The stereocomplex formation was evidenced by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses. The obtained stereocomplexes had melting temperature of about 65 degrees C above that of the individual copolymers and exhibited diffraction patterns assigned to the stereocomplex crystallites. In addition, for the first time it was shown that the replacement of one of the PLA partners with high molecular weight PLLA or PDLA did not hamper the stereocomplex formation. The presence of PDMAEMA blocks proved to impart hydrophilicity of the synthesized copolymers and related stereocomplexes, as determined by static water contact angle measurements. PMID:19331403

  4. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    SciTech Connect

    Hu, X.; Lu, Q; Kaplan, D; Cebe, P

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  5. Microstructure and texture studies on magnesium sheet alloys

    NASA Astrophysics Data System (ADS)

    Masoumi, Mohsen

    The AZ3, the most common Mg sheet alloy, is currently produced by hot rolling of the DC cast ingot. Mg wrought alloys, in general have limited formability due to hexagonal close-packed structure and preferred orientation (texture). In order to improve magnesium sheet formability, a good understanding of microstructure and texture evolution in twin-roll casting is necessary. The objectives of this research are to study the microstructural and texture evolution in twin-roll cast AZ31 Mg sheet alloy and to develop/modify alloy compositions with improved mechanical properties (weakened texture). In the first part of study, the influence of cooling rate (CR) on the casting structure of AZ31 magnesium alloy has been investigated, as a background to understand microstructural development in TRC AZ31, using different moulds to obtain slow to moderate cooling rates. It was found that grain size and secondary dendrite arm spacing (SDAS) reduces as the cooling rate increases. Moreover, it was observed that with an increase in cooling rate the fraction of second phase particles increases and the second phase particles become finer. The second part focused on the microstructure and texture study of the twin-roll cast (TRC) AZ31 (Mg-3wt.%Al-1wt.%Zn) sheet. The results indicate that TRC AZ31 exhibits a dendritic microstructure with columnar and equiaxed grains. It was noted that the amount of these second phases in the TRC alloy is greater than the conventionally cast AZ31. Recrystallization at 420 °C leads to a bimodal grain-size distribution, while a fine-grain structure is obtained after rolling and annealing. The TRC AZ31 sheet exhibits basal textures in the (i) as-received, (ii) rolled and (iii) rolled-annealed conditions. However, post-annealing of the TRC AZ31 at 420 °C produces a relatively random texture that has not been previously observed in the conventional AZ31 sheet. The texture randomization is attributed to the particle-stimulated nucleation (PSN) of new grains

  6. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  7. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  8. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile copolymers and resins. 181.32...-Sanctioned Food Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and resins listed in this section, containing less than 30 percent acrylonitrile and complying with...

  9. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  10. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  11. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers and resins. 181.32 Section... Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and resins listed in... of the vinyl chloride resin) resin—for use only in contact with oleomargarine. (iv)...

  12. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  13. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  14. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  15. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  16. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  17. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  18. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  19. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile copolymers and resins....

  20. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile copolymers and resins....

  1. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  2. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  3. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  4. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  5. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  6. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  7. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  9. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  10. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  11. The secondary structures of poly ( L-alanine) blocks in some diblock copolymers of poly( L-alanine)- b-poly(ethylene glycol) monomethyl ether in the solid state characterized by nuclear magnetic resonance and infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Guo L.; Sun, Ping C.; Lin, Hai; Ma, Jian B.

    2004-02-01

    The 13C cross-polarization/magic-angle spinning (CP/MAS) spectra of the solid-state nuclear magnetic resonance (NMR) and the infrared spectra of three diblock copolymers, poly ( L-alanine)- block-poly(ethylene glycol) monomethyl ether (PLA- b-MPEG), with various proportions of two blocks were studied in comparison with those of the homopolymer poly( L-alanine), PLA, and the blends of two blocks (PLA and MPEG). The secondary structures such as α-helix and β-sheet of poly ( L-alanine) (PLA) blocks in the block copolymers could be elucidated from the signals in the solid-state 13C CP/MAS NMR spectra and transmittance peaks in the Fourier-transformation infrared (FTIR) spectra. Dramatic differences in the secondary structures were observed for the diblock copolymers, homopolymer PLA and blend samples. It was found that with the increase of the fraction of PLA block in the block copolymers, the ratio of β-sheet to α-helical conformation of PLA block went up although the α-helical conformation was much more than β-sheet conformation in total. It contradicted the general prediction of the secondary structure of homopolypeptides or PLA/PEG blends, in which the β-sheet conformation content decreased with the decrease of the polymerization degree of PLA. The investigation in FTIR spectrometry resulted in the same conclusion.

  12. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  13. Optical properties of coumarins containing copolymers

    NASA Astrophysics Data System (ADS)

    Skowronski, L.; Krupka, O.; Smokal, V.; Grabowski, A.; Naparty, M.; Derkowska-Zielinska, B.

    2015-09-01

    We investigate the optical properties such as absorption coefficient, refractive index, real and imaginary parts of dielectric function and energy band gap of coumarin-containing copolymers thin films by means of spectroscopic ellipsometry (SE) combined with transmittance measurements (T) and atomic force microscopy (AFM). We found that the optical properties of coumarin-containing copolymers strongly depend from length of alkyl spacer as well as the type of substitution in coumarin moiety. In our case the refractive index as well as the energy band gap of coumarin-containing copolymer decrease with increase the length of alkyl spacer. Additionally, the lengthening of the alkyl spacer brings the bathochromic shifts of the absorption spectra towards longer wavelengths.

  14. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  15. Advances in membrane materials: desalination membranes based on directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers.

    PubMed

    Xie, Wei; Park, Ho-Bum; Cook, Joseph; Lee, Chang Hyun; Byun, Gwangsu; Freeman, Benny D; McGrath, James E

    2010-01-01

    The water and salt transport properties of chlorine tolerant disulfonated poly(arylene ether sulfone) (BPS) copolymers have been characterized. Cast BPS membranes of both salt form and acid form with sulfonation levels from 20% to 40% were investigated. Water permeability of BPS films increases more than one order of magnitude as sulfonation level increases from 20% to 40%, while the salt permeability of the corresponding membranes increases two orders of magnitude. Moderate salt rejection (98.2%) was achieved by a BPS salt form membrane with a sulfonation level of 20%.

  16. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  17. Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein-Polymer Diblock Copolymer

    PubMed Central

    Thomas, Carla S.; Glassman, Matthew J.; Olsen, Bradley D.

    2014-01-01

    Self-assembly of three-dimensional solid-state nanostructures containing approximately 33% by weight globular protein is demonstrated using a globular protein-polymer diblock copolymer, providing a route to direct nanopatterning of proteins for use in bioelectronic and biocatalytic materials. A mutant red fluorescent protein, mCherryS131C, was prepared by incorporation of a unique cysteine residue and site-specifically conjugated to end-functionalized poly(N-isopropylacrylamide) through thiol-maleimide coupling to form a well-defined model protein-polymer block copolymer. The block copolymer was self-assembled into bulk nanostructures by solvent evaporation from concentrated solutions. Small-angle X-ray scattering and transmission electron microscopy illustrated the formation of highly disordered lamellae or hexagonally perforated lamellae depending upon the selectivity of the solvent during evaporation. Solvent annealing of bulk samples resulted in a transition towards lamellar nanostructures with mCherry packed in a bilayer configuration and a large improvement in long range ordering. Wide-angle X-ray scattering indicated that mCherry did not crystallize within the block copolymer nanodomains and that the β-sheet spacing was not affected by self-assembly. Circular dichroism showed no change in protein secondary structure after self-assembly, while UV-vis spectroscopy indicated approximately 35% of the chromophore remained optically active. PMID:21696135

  18. Morphologies of poly(cyclohexadiene) diblock copolymers

    SciTech Connect

    Kumar, Rajeev; Mays, Jimmy; Sides, Scott; Goswami, Monojoy; Sumpter, Bobby G; Hong, Kunlun; Avgeropoulos, Apostolos; Russell, Thomas P; Gido, Samuel; Tsoukatos, Thodoris; Beyer, Fredrick

    2012-01-01

    Concerted experimental and theoretical investigations have been carried out to understand the micro-phase separation in diblock copolymer melts containing poly (1,3-cyclohexadiene), PCHD, as one of the constituents. In particular, we have studied diblock copolymer melts containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the second block. We have systematically varied the ratio of 1,2- /1,4-microstructures of poly (1,3-cyclohexadiene) to tune the conformational asymmetry between the two blocks and characterized the effects of these changes on the morphologies using transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Our experimental investigations reveal that the melts of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing nearly equal fractions of each component and high percentage of 1,4-microstructures in the PCHD block form cylindrical rather than lamellar morphologies as expected in symmetric diblock copolymers. In contrast, the morphologies of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing PCHD block with higher 1,2-microstructure are found to be disordered at 110 C. The change in the morphological behavior is in good agreement with our numerical calculations using the random phase approximation and self-consistent field theory for conformationally asymmetric diblock copolymer melts. Also, the effects of composition fluctuations are studied by extending the Brazovskii-Leibler-Fredrickson-Helfand (J. Chem. Phys. 87, 697 (1987)) theory to conformationally asymmetric diblock copolymer melts. These results allow the understanding of the underlying self-assembly process that highlights the importance of the conformational asymmetry in tuning the morphologies in block copolymers.

  19. Dynamics of Block Copolymer Nanocomposites

    SciTech Connect

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  20. Polarised light sheet tomography.

    PubMed

    Reidt, Sascha L; O'Brien, Daniel J; Wood, Kenneth; MacDonald, Michael P

    2016-05-16

    The various benefits of light sheet microscopy have made it a widely used modality for capturing three-dimensional images. It is mostly used for fluorescence imaging, but recently another technique called light sheet tomography solely relying on scattering was presented. The method was successfully applied to imaging of plant roots in transparent soil, but is limited when it comes to more turbid samples. This study presents a polarised light sheet tomography system and its advantages when imaging in highly scattering turbid media. The experimental configuration is guided by Monte Carlo radiation transfer methods, which model the propagation of a polarised light sheet in the sample. Images of both reflecting and absorbing phantoms in a complex collagenous matrix were acquired, and the results for different polarisation configurations are compared. Focus scanning methods were then used to reduce noise and produce three-dimensional reconstructions of absorbing targets.

  1. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS Cerebral Aneurysms Fact Sheet See a list of all NINDS ... I get more information? What is a cerebral aneurysm? A cerebral aneurysm (also known as an intracranial ...

  2. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  3. Avian Fact Sheet

    SciTech Connect

    NWCC Wildlife Work Group

    2004-12-01

    OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.

  4. Polarised light sheet tomography.

    PubMed

    Reidt, Sascha L; O'Brien, Daniel J; Wood, Kenneth; MacDonald, Michael P

    2016-05-16

    The various benefits of light sheet microscopy have made it a widely used modality for capturing three-dimensional images. It is mostly used for fluorescence imaging, but recently another technique called light sheet tomography solely relying on scattering was presented. The method was successfully applied to imaging of plant roots in transparent soil, but is limited when it comes to more turbid samples. This study presents a polarised light sheet tomography system and its advantages when imaging in highly scattering turbid media. The experimental configuration is guided by Monte Carlo radiation transfer methods, which model the propagation of a polarised light sheet in the sample. Images of both reflecting and absorbing phantoms in a complex collagenous matrix were acquired, and the results for different polarisation configurations are compared. Focus scanning methods were then used to reduce noise and produce three-dimensional reconstructions of absorbing targets. PMID:27409945

  5. Biodiesel Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  6. Energy information sheets

    SciTech Connect

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  7. Co-polymer films for sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2010-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  8. Co-polymer Films for Sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  9. Transporter for Treated Sheet Materials

    NASA Technical Reports Server (NTRS)

    Pollack, M., H.

    1983-01-01

    Plastic spacers keep parts separated during transport or storage. Cart with rods and spacers holds sheets with delicate finishes for storage or transport. Sheets supported vertically by rods, or horizontally. Spacers keep sheets separated. Designed to eliminate time and expense of tapping, wrapping, and sometimes refinishing aluminum sheets with delicate anodized finished.

  10. Fillability of Thin-Wall Steel Castings

    SciTech Connect

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  11. Cast adrift: Gortex cast liners allow greater patient activity.

    PubMed

    Dubowitz, Gerald; Miller, Deborah M

    2003-01-01

    Extremity fractures are a common injury, with nearly 1.5 million cases reported in the United States in 1998. Treatment often involves lengthy periods of immobilization. This report outlines the use of a Gortex cast liner by a subject who was able to engage in swimming and scuba diving during the healing process. We report that a Gortex cast liner may be considered for an active patient who is keen to return to limited activities during fracture healing. Apparently because of a lack of knowledge of their existence, physicians currently are underutilizing this method of casting in active patients. The use of Gortex liners elsewhere has been reported to have higher patient and physician satisfaction in both use and performance, with no reported detrimental effects on outcome.

  12. Synthesis of amphiphilic diblock copolymer for surface modification of Ethylene-Norbornene Copolymers

    NASA Astrophysics Data System (ADS)

    Levinsen, Simon; Svendsen, Winnie Edith; Horsewell, Andy; Almdal, Kristoffer

    2014-03-01

    The aim of this work is to produce polymer modifiers in order to develop hydrophilic polymeric surfaces for use in microfluidics. The use of hydrophilic polymers in microfluidics will have many advantages e.g. preventing protein absorbance. Here we present an amphiphilic diblock copolymer consisting of a bulk material compatible block and a hydrophilic block. To utilize the possibility of incorporating diblock copolymers into ethylene-norbornene copolymers, we have in this work developed a model poly(ethylene-1-butene) polymer compatible with the commercial available ethylene-norbornene copolymer TOPAS. Through matching of the radius of gyration for the model polymer and TOPAS the miscibility was achieved. The poly(ethylene-1-butene) polymer was synthesized from a hydrogenated anionic polymerized polybutadiene polymer. As hydrophilic block poly(ethylene oxide) was subsequently added also with anionic polymerization. Recent miscibility results between the model polymer and TOPAS will be presented, as well ongoing efforts to study the hydrophilic surface.

  13. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  14. Mixing thermodynamics of block-random copolymers

    NASA Astrophysics Data System (ADS)

    Beckingham, Bryan Scott

    Random copolymerization of A and B monomers represents a versatile method to tune interaction strengths between polymers, as ArB random copolymers will exhibit a smaller effective Flory interaction parameter chi; (or interaction energy density X) upon mixing with A or B homopolymers than upon mixing A and B homopolymers with each other, and the ArB composition can be tuned continuously. Thus, the incorporation of a random copolymer block into the classical block copolymer architecture to yield "block-random" copolymers introduces an additional tuning mechanism for the control of structure-property relationships, as the interblock interactions and physical properties can be tuned continuously through the random block's composition. However, typical living or controlled polymerizations produce compositional gradients along the "random" block, which can in turn influence the phase behavior. This dissertation demonstrates a method by which narrow-distribution copolymers of styrene and isoprene of any desired composition, with no measurable down-chain gradient, are synthesized. This synthetic method is then utilized to incorporate random copolymers of styrene and isoprene as blocks into block-random copolymers in order to examine the resulting interblock mixing thermodynamics. A series of well-defined near-symmetric block and block-random copolymers (S-I, Bd-S, I-SrI, S-SrI and Bd-S rI diblocks, where S is polystyrene, I is polyisoprene and Bd is polybutadiene), with varying molecular weight and random-block composition are synthesized and the mixing thermodynamics---via comparison of their interaction energy densities, X---of their hydrogenated derivatives is examined through measurement of the order-disorder transition (ODT) temperature. Hydrogenated derivatives of I-SrI and S-SrI block-random copolymers, both wherein the styrene aromaticity is retained and derivatives wherein the styrene units are saturated to vinylcyclohexane (VCH), are found to hew closely to the

  15. Reproducing Natural Spider Silks’ Copolymer Behavior in Synthetic Silk Mimics

    PubMed Central

    An, Bo; Jenkins, Janelle E.; Sampath, Sujatha; Holland, Gregory P.; Hinman, Mike; Yarger, Jeffery L.; Lewis, Randolph

    2012-01-01

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure. PMID:23110450

  16. Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.

    PubMed

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph

    2012-12-10

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia , indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure. PMID:23110450

  17. Reproducing Natural Spider Silks' Copolymer Behavior in Synthetic Silk Mimics

    SciTech Connect

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph

    2012-10-30

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.

  18. Directed Nanorod Assembly Using Block Copolymer-Based Supramolecules

    NASA Astrophysics Data System (ADS)

    Thorkelsson, Kari; Mastroianni, Alexander; Ercius, Peter; Xu, Ting

    2013-03-01

    Nanorods display many unique electrical, mechanical, and optical properties unavailable in traditional bulk materials, and are attractive building blocks toward functional materials. The collective properties of anisotropic building blocks often depend strongly on their spatial arrangements, interparticle ordering, and macroscopic alignment. We have systematically investigated the phase behavior of nanocomposites composed of nanorods and block copolymer (BCP)-based supramolecules forming spherical, cylindrical and lamellar morphologies. Initial exploration showed that the nanorods can be readily dispersed in polymeric matrix and the overall morphology of nanorod-containing supramolecular nanocomposite depends on the nanorod-polymer interactions, inter-rod interactions and entropy associated with polymer chain deformation. The energetic contributions from the components of the system can be tailored to disperse nanorods with control over inter-rod ordering and the alignment of nanorods within BCP microdomains. By varying the supramolecular morphology and composition, arrays, sheets, and interconnected networks of nanorods are demonstrated that may prove useful for fabrication of optically and electrically active nanodevices.

  19. Fluctuation Effects on Phase Behavior of Gradient Copolymer Systems

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Ganesan, Venkat

    2013-03-01

    We consider the effect of sequence polydispersity on fluctuation induced shift in order-disorder transition (ODT) temperature for symmetric systems of gradient copolymers. Using single chain in mean field simulations, a systematic change in scaling prediction for shift in ODT with Ginzburg parameter is reported. We demonstrate that gradient strength and overall blockiness of sequences has a significant impact on shift in ODT temperature. The weak gradient copolymers having high compositional polydispersity mimic random copolymers whereas, strong gradient copolymers possess inherent blockiness and are close to diblock copolymers. The blockiness parameter has a minimal impact on shift in ODT in strong gradient copolymers. Also, ternary blends of homopolymer/gradient copolymer are investigated to capture effect of compositional polydispersity on phase diagram and formation of microemulsion structures.

  20. Morphological castes in a vertebrate.

    PubMed

    O'Riain, M J; Jarvis, J U; Alexander, R; Buffenstein, R; Peeters, C

    2000-11-21

    Morphological specialization for a specific role has, until now, been assumed to be restricted to social invertebrates. Herein we show that complete physical dimorphism has evolved between reproductives and helpers in the eusocial naked mole-rat. Dimorphism is a consequence of the lumbar vertebrae lengthening after the onset of reproduction in females. This is the only known example of morphological castes in a vertebrate and is distinct from continuous size variation between breeders and helpers in other species of cooperatively breeding vertebrates. The evolution of castes in a mammal and insects represents a striking example of convergent evolution for enhanced fecundity in societies characterized by high reproductive skew. Similarities in the selective environment between naked mole-rats and eusocial insect species highlight the selective conditions under which queen/worker castes are predicted to evolve in animal societies.

  1. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  2. Block copolymer compatibilization of cocontinuous polymer blends.

    SciTech Connect

    Galloway, Jeffrey A.; Macosko, Christopher W.; Bell, Joel R.; Jeon, Hyun K.

    2004-12-01

    The effect of block copolymers on the cocontinuous morphology of 50/50 (w/w) polystyrene (PS)/high density polyethylene (HDPE) blends was investigated using symmetric polystyrene-polyethylene block copolymers (PS-PE) with molecular weights varying from 6 to 200 kg/mol. The coarsening rate during annealing was compared to the Doi-Ohta theory. An intermediate molecular weight PS-PE, 40 kg/mol, showed remarkable results in reducing the phase size and stabilizing the blend morphology during annealing. Mixing small amounts of 6, 100 or 200 kg/mol PS-PE in the blend did not reduce the phase size significantly, but did decrease the coarsening rate during annealing. In stabilizing the morphology, 6 kg/mol PS-PE was inferior to 100 and 200 kg/mol. The existence of an optimal molecular weight block copolymer is due to a balance between the ability of the block copolymer to reach the interface and its relative stabilization effect at the interface.

  3. Microphase separation of block copolymer thin films.

    PubMed

    Zhang, Jilin; Yu, Xinhong; Yang, Ping; Peng, Juan; Luo, Chunxia; Huang, Weihuan; Han, Yanchun

    2010-04-01

    Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.

  4. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with food only of Types I, II, and VI-B (excluding carbonated beverages) described in table 1 of... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Divinylbenzene copolymer. 173.65 Section 173.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  5. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2004-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  6. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2003-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  7. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2002-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  8. Phase Transitions in Thin Block Copolymer Films

    SciTech Connect

    Kramer, Edward J.

    2010-10-08

    David Turnbull's experiments and theoretical insights paved the way for much of our modern understanding of phase transitions in materials. In recognition of his contributions, this lecture will concentrate on phase transitions in a material system not considered by Turnbull, thin diblock copolymer films. Well-ordered block copolymer films are attracting increasing interest as we attempt to extend photolithography to smaller dimensions. In the case of diblock copolymer spheres, an ordered monolayer is hexagonal, but the ordered bulk is body-centered cubic (bcc). There is no hexagonal plane in the bcc structure, so a phase transition must occur as n, the number of layers of spheres in the film, increases. How this phase transition occurs with n and how it can be manipulated is the subject of the first part of my presentation. In the second part of the talk, I show that monolayers of diblock copolymer spheres and cylinders undergo order-to-disorder transitions that differ greatly from those of the bulk. These ordered 2D monolayers are susceptible to phonon-generated disorder as well as to thermal generation of defects, such as dislocations, which, while they are line defects in 3D, are point defects in 2D. The results are compared to the theories of melting of 2D crystals (spheres) and of 2D smectic liquid crystals (cylinders), a comparison that will allow us to understand most, but not all, of the features of these order-disorder transitions that occur as the temperature is increased.

  9. Casting propellant in rocket engine

    NASA Technical Reports Server (NTRS)

    Roach, J. E.; Froehling, S. C. (Inventor)

    1976-01-01

    A method is described for casting a solid propellant in the casing of a rocket engine having a continuous wall with a single opening which is formed by leaves of a material which melt at a temperature of the propellant and with curved edges concentric to the curvature of the spherical casing. The leaves are inserted into the spherical casing through the opening forming a core having a greater width than the width of the single opening and with curved peripheral edges. The cast propellant forms a solid mass and then heated to melt the leaves and provide a central opening with radial projecting flutes.

  10. Gel casting of resorbable polymers. 2. In-vitro degradation of bone graft substitutes.

    PubMed

    Coombes, A G; Heckman, J D

    1992-01-01

    Gel cast microporous materials produced from: slow resorbing, poly(L-lactide); fast resorbing, 50:50 poly(DL lactide coglycolide); and blends of these polymers have been characterized by weight loss, compression testing and thermal analysis after immersion in phosphate buffered saline (37 degrees C, pH 7.4) for times up to 6 months. Increasing weight loss and reduction in compressive properties with immersion time were measured. Blending reduces the rate of weight loss and material shrinkage relative to the copolymer. Thermal analysis of degraded samples revealed evidence of reorganization of the crystalline phase in poly(L-lactide) and a crystalline component in the 50:50 copolymer, estimated at 5-7% of the original material content, which is probably responsible for gel formation. Thermograms of the blend are effectively a superposition of thermograms of the individual components. Gel casting shows potential for varying the resorption rate, form stability and compressive properties of micro/macroporous bone graft substitutes. PMID:1600032

  11. INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON PIPE BEING CENTRIFUGALLY CAST, AS OPERATOR WATCHES TO ENSURE QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  12. INTERIOR VIEW OF CASTING MACHINE WITH 4' DUCTILE IRON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF CASTING MACHINE WITH 4' DUCTILE IRON PIPE BEING WEIGHED ON SCALES AT CASTING MACHINE. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  13. INTERIOR VIEW WITH CASTING MACHINE AND A 4" DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4" DUCTILE IRON PIPE BEING EXTRACTED FROM CASTING MACHINE - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  14. INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE PRIOR TO EXTRACTION FROM CASTING MACHINE. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  15. Comparison of bending stiffness of six different colours of copolymer polypropylene.

    PubMed

    Ross, R S; Greig, R J; Convery, P

    1999-04-01

    This paper compares the bending stiffness of 5 different colours of copolymer polypropylene (CCP) with that of natural copolymer polypropylene (NCP). Flesh coloured and natural sheets are supplied thicker than other pigmented sheet. The bending stiffness of a specimen may be defined as EI, i.e. the product of E, Young's modulus of elasticity and I, the 2nd moment of area. Strips of "as supplied" (AS) and "post-draped" (PD) specimen were clamped and subjected to bending to assess the effect of pigmentation on bending characteristics. The gradient of the graph of bending deflection delta versus bending moment enables EI to be estimated. The process of thermoforming polypropylene reduces EI, the bending stiffness. However, the manual draping and vacuum procedure introduces so many variables that it is difficult to quantify the effect of pigmentation. The E of a bent specimen may be estimated from the gradient of the graph of deltaI versus bending moment. In the case of AS sheet, the effect of pigmentation on E is inconclusive. PD specimens indicate a significant reduction in E due to thermoforming. This was verified by an electron-microscope study of AS and PD specimens. Draping an ankle-foot orthosis (AFO) results in a non-uniform wall thickness. The results of this study with respect to the effects of pigmentation on the bending stiffness of AFOs are inconclusive. More detailed studies require to be completed in order to confirm which factors are responsible for this non-uniformity in wall thickness and consequent variation in bending stiffness. PMID:10355646

  16. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  17. Phase Transitions and Honeycomb Morphology in an Incompatible Blend of Enantiomeric Polylactide Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Ginorio, Jorge; Zhu, Lei; Rong, Lixia; Sics, Igor; Hsiao, Benjamin

    2007-03-01

    Enantiomeric PLAs, poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), are known to form stereocomplexes. In this work, by using controlled ring-opening polymerization of L- and D-lactides from monohydroxyl-terminated hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(ethylene-co-1-butene) (PEB) oligomers, respectively, well-defined PEO-b-PLLA (2k-5.4k) and PEB-b-PDLA (4.2-5.4k) block copolymers were synthesized. Quantitative stereocomplex formation was achieved by casting an equimolar mixture of incompatible PEO-b-PLLA and PEB-b-PDLA from chloroform at room temperature. Depending on different thermal histories, either lamellar or inverted cylindrical morphology was observed in the molten state. Intriguingly, novel honeycomb morphology with the minor PEB component forming the matrix was observed in the inverted cylindrical phase.

  18. Desalination membranes from functional block copolymer via non-solvent induced phase inversion

    NASA Astrophysics Data System (ADS)

    Sung, Hyemin; Poelma, Justin; Leibfarth, Frank; Hawker, Craig; Bang, Joona

    2012-02-01

    Commercially available reverse osmosis (RO) and forward osmosis (FO) membranes are most commonly derived from materials such as polysulfone, polyimide, and cellulose acetate. While these membranes have improved the efficiency of the desalination process, they suffer from mechanical and chemical stability, fouling issues, and low fluxes. In this study, we combine a well-established membrane formation method, non-solvent-induced phase separation, with the self-assembly of a functional amphiphilic block copolymersAn amine and acid functional polystyrene-block-poly(ethylene oxide-co-allyl glycidyl ether) were chosen for the membranes. Membranes were formed by casting a concentrated polymer solution (12 to 25 wt% polymer) on PET fabric followed by immersion in a non-solvent bath. Scanning electron microscopy revealed an asymmetric porous structure consisting of a dense skin layer on top of a highly porous layer. Membrane performance was investigating using an FO test cell under the seawater condition.

  19. Thermal Analysis, Structural Studies and Morphology of Spider Silk-like Block Copolymers

    NASA Astrophysics Data System (ADS)

    Huang, Wenwen

    both the bound water removal induced conformational change and the hydrophobicity of the protein sequences, while the high temperature glass transition, Tg( 2), above 130 °C is the now dry protein glass transition. Real-time Fourier transform infrared spectroscopy (FTIR) confirmed that conformational change occurred during the two glass transition, with a random coils to beta turns transition during Tg(1) and alpha helices to beta turns transition during Tg( 2). Due to the hydrophobic and hydrophilic nature of the blocks, the spider silk block copolymers tend to self-assemble into various microstructures. To study the morphological features, the spider silk-like block copolymers were treated with hexafluoroisopropanol or methanol, or subjected to thermal treatment. Using scanning electron microscopies, micelles were observed in thermally treated films. Fibrillar networks and hollow vesicles were observed in methanol-cast samples, while no micro-structures were formed in HFIP-cast films, indicating that morphology and crystallinity can be tuned by thermal treatments. Results indicate when we increase the number of repeating unit of A-block in the protein, sample films crystallize more easily and are more thermally stable. Moreover, when samples crystallize, the secondary structure of A-block and B-block become different, thus it will be easier to form bilayer structures which could fold into vesicles or tube structures during drying.

  20. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids

    NASA Astrophysics Data System (ADS)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-01-01

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a

  1. Advanced Lost Foam Casting Technology

    SciTech Connect

    Charles E. Bates; Harry E. Littleton; Don Askeland; Taras Molibog; Jason Hopper; Ben Vatankhah

    2000-11-30

    This report describes the research done under the six tasks to improve the process and make it more functional in an industrial environment. Task 1: Pattern Pyrolysis Products and Pattern Properties Task 2: Coating Quality Control Task 3: Fill and Solidification Code Task 4: Alternate Pattern Materials Task 5: Casting Distortion Task 6: Technology Transfer

  2. Casting Freedom, 1860-1862

    ERIC Educational Resources Information Center

    Social Education, 2005

    2005-01-01

    Thomas Crawford, an American Sculptor, created the full-size figure of Freedom in clay. Molds were made, from which a full-size positive plaster model was cast in five main sections. This model is on view today in the basement rotunda of the Russell Senate Office Building. Clark Mills was a self-taught American sculptor with experience in casting…

  3. Molding A Cast Metals Program

    ERIC Educational Resources Information Center

    Trumble, Dale E.

    1975-01-01

    The cast metals program, a two-year associate degree program, at Muskegon Community College, Musegon, Michigan operates in close cooperation with the local foundry industry to provide a background for entry-level technical jobs and for continued studies toward a four-year degree. (EA)

  4. Graphite Formation in Cast Iron

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  5. Math: Objectives Guide. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The guide lists math objectives needed for independent living by secondary special education students. One of a series of Project CAST (Community and School Together) life skills manuals, the guide outlines basic competencies in terms of goal statements, behavioral objectives, and specialized vocabulary for the following areas: money, making…

  6. Prediction of Microporosity in Shrouded Impeller Castings

    SciTech Connect

    Viswanathan, S. Nelson, C.D.

    1998-09-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Morris Bean and Company was to link computer models of heat and fluid flow with previously developed quality criteria for the prediction of microporosity in a Al-4.5% Cu alloy shrouded impeller casting. The results may be used to analyze the casting process design for the commercial production of 206 o alloy shrouded impeller castings. Test impeller castings were poured in the laboratory for the purpose of obtaining thermal data and porosity distributions. Also, a simulation of the test impeller casting was conducted and the results validated with porosity measurements on the test castings. A comparison of the predicted and measured microporosity distributions indicated an excellent correlation between experiments and prediction. The results of the experimental and modeling studies undertaken in this project indicate that the quality criteria developed for the prediction of microporosity in Al-4.5% Cu alloy castings can accurately predict regions of elevated microporosity even in complex castings such as the shrouded impeller casting. Accordingly, it should be possible to use quality criteria for porosity prediction in conjunction with computer models of heat and fluid flow to optimize the casting process for the production of shrouded impeller castings. Since high levels of microporosity may be expected to result in poor fatigue properties, casting designs that are optimized for low levels of microporosity should exhibit superior fatigue life.

  7. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Casting factors. 27.621 Section 27.621... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.621 Casting factors. (a) General... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings...

  8. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Casting factors. 27.621 Section 27.621... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.621 Casting factors. (a) General... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings...

  9. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Casting factors. 29.621 Section 29.621... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.621 Casting factors. (a... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings...

  10. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Casting factors. 27.621 Section 27.621... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.621 Casting factors. (a) General... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings...

  11. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Casting factors. 29.621 Section 29.621... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.621 Casting factors. (a... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings...

  12. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Casting factors. 29.621 Section 29.621... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.621 Casting factors. (a... approved specifications. Paragraphs (c) and (d) of this section apply to structural castings...

  13. Chimerical categories: caste, race, and genetics.

    PubMed

    Sabir, Sharjeel

    2003-12-01

    Is discrimination based on caste equivalent to racism? This paper explores the complex relationship between genetic, race and caste. It also discusses the debate over the exclusion of a discussion of caste-based discrimination at the 2001 World Conference against Racism, Racial Discrimination, Xenophobia and Related Intolerance held in Durban, South Africa.

  14. Energy information sheets

    SciTech Connect

    Not Available

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  15. Light sheet microscopy.

    PubMed

    Weber, Michael; Mickoleit, Michaela; Huisken, Jan

    2014-01-01

    This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.

  16. 5. Historic American Buildings Survey Taken from drawing sheet, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Taken from drawing sheet, SHEET #21, Showing the house as restored since Survey. (Dormer windows omitted as not authentic) - Samuel des Marest House, River Road, New Milford, Bergen County, NJ

  17. 71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLEARCHED DAM: STRESS SHEET, SHEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. PALMDALE WATER COMPANY, EASTWOOD MULTIPLE-ARCHED DAM: STRESS SHEET, SHEET 3; DECEMBER 20, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  18. Diabetic Neuropathy: What is a Total Contact Cast?

    MedlinePlus

    ... Web version Diabetic Neuropathy | What is a Total Contact Cast? What is a total contact cast? A total contact cast is a cast used to treat ulcers ( ... foot--that's why it is called a total contact cast. The cast helps to protect the skin ...

  19. Prototype casting fabrication by stereolithography

    SciTech Connect

    Cromwell, W.E.

    1990-11-01

    A new product development technology is emerging which could have a major impact on the investment casting industry. It's identified by several names, the most common of which is STEREOLITHOGRAPHY.'' This technology involves a three-dimensional printing process which will yield plastic parts (polymer models) from solid, surface, or wireframe CAD files. The concept links a CAD database to a process which guides a laser beam to solidify liquid photo-curable polymer into a programmed shaped. The process can produce models in far less time and at far less cost than can be done by other known (conventional) model producing methods. Parts that would normally require weeks or months to prototype with conventional processes can be produced in a matter of hours by Stereolithography. The Allied-Signal Inc., Kansas City Division, is engaged in a development project (funded by the Department of Energy) which is aimed at establishing this process as a practical, expedient, and cost-effective method fabricating prototype investment castings. The early phases of the project include procurement of a special designed test unit for several companies (Service Centers) involved in fabrication of models. These models are produced in various materials and used in experimental casting programs being conducted with four casting suppliers (two ferrous and two non-ferrous). This presentation will cover the objectives of the project and the results obtained up to this time. We will also briefly review future plans for the continuation of the project, until this new technology has been proven as a viable process for rapid development of investment castings.

  20. Real-Time observation of PS-PDMS block copolymer self-assembly under solvent vapor annealing

    NASA Astrophysics Data System (ADS)

    Bai, Wubin; Yager, Kevin; Ross, Caroline

    2015-03-01

    Solvent annealing provides a convenient way to produce microphase separation in films of block copolymers, but the morphology transition of the film during the solvent absorption, equilibrium solvent-BCP concentration and solvent desorption process are not well known. An in situ study of solvent annealing of polystyrene-block-polydimethylsiloxane (PS-PDMS, 16 kg/mol, fPDMS = 30%, period 17 nm) diblock copolymer was carried by synchrotron grazing-incidence small-angle X-ray scattering (GISAXS). The swollen film morphology was found to be strongly dependent on swelling ratio. A transition from the disordered state to a highly ordered state which contained multiple layers of in-plane cylinders was observed at a swelling ratio around 1.45 from samples with 100nm to 1000nm as-cast thickness. The rate of solvent absorption was found to be less important to the dried morphology, while the time of equilibrium solvent-BCP concentration stage was found to influence the orientation of self-assembled microdomains and the drying rate was found to affect the degree of structure deformation. The implications of the results to pattern generation for block copolymer directed self-assembly will be discussed. Semiconductor Research Corporation, National Science Foundation.

  1. Lithium battery with solid polymer electrolyte based on comb-like copolymers

    NASA Astrophysics Data System (ADS)

    Daigle, Jean-Christophe; Vijh, Ashok; Hovington, Pierre; Gagnon, Catherine; Hamel-Pâquet, Julie; Verreault, Serge; Turcotte, Nancy; Clément, Daniel; Guerfi, Abdelbast; Zaghib, Karim

    2015-04-01

    In this paper we report on the synthesis of comb-like copolymers as solid polymer electrolytes (SPE). The synthesis involved anionic polymerization of styrene (St) and 4-vinylanisole (VA) as the followed by grafting of poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization (ATRP). The comb-like copolymer's structure was analyzed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The membranes were made by solvent casting and the morphologies were analyzed by atomic forces microscopy (AFM) and scanning electron microscopy (SEM). We observed that a nano and micro phase separation occurs which improves ionic conductivity. The ionic conductivities were determined by AC Impedance, which showed that the SPEs have good conductivities (10-5 Scm-1) at room temperature owing to the negligible values (<10 kJ mol-1) of the activation energies for conductivity. The batteries with these polymers exhibit a capacity of 146 mAh g-1 at C/24, and no evidence of degradation after intense cycling was observed. However, poor cycle life was observed at C/6 and C/3, which is a consequence of several factors. We partially explain that behavior by arguing that whereas PEO lightly "solvates" Li+ thus slowing Li-ion mobility, and PEGMA chains "solvate" Li ions too strongly, trapping and inhibiting their mobility.

  2. Block copolymer assembly on nanoscale patterns of polymer brushes formed by electrohydrodynamic jet printing.

    PubMed

    Onses, M Serdar; Ramírez-Hernández, Abelardo; Hur, Su-Mi; Sutanto, Erick; Williamson, Lance; Alleyne, Andrew G; Nealey, Paul F; de Pablo, Juan J; Rogers, John A

    2014-07-22

    Fundamental understanding of the self-assembly of domains in block copolymers (BCPs) and capabilities in control of these processes are important for their use as nanoscale templates in various applications. This paper focuses on the self-assembly of spin-cast and printed poly(styrene-block-methyl methacrylate) BCPs on patterned surface wetting layers formed by electrohydrodynamic jet printing of random copolymer brushes. Here, end-grafted brushes that present groups of styrene and methyl methacrylate in geometries with nanoscale resolution deterministically define the morphologies of BCP nanostructures. The materials and methods can also be integrated with lithographically defined templates for directed self-assembly of BCPs at multiple length scales. The results provide not only engineering routes to controlled formation of complex patterns but also vehicles for experimental and simulation studies of the effects of chemical transitions on the processes of self-assembly. In particular, we show that the methodology developed here provides the means to explore exotic phenomena displayed by the wetting behavior of BCPs, where 3-D soft confinement, chain elasticity, interfacial energies, and substrate's surface energy cooperate to yield nonclassical wetting behavior. PMID:24882265

  3. Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films.

    PubMed

    Lunkenbein, Thomas; Kamperman, Marleen; Li, Zihui; Bojer, Carina; Drechsler, Markus; Förster, Stephan; Wiesner, Ulrich; Müller, Axel H E; Breu, Josef

    2012-08-01

    Nanostructured inverse hexagonal polyoxometalate composite films were cast directly from solution using poly(butadiene-block-2-(dimethylamino)ethyl methacrylate) (PB-b-PDMAEMA) diblock copolymers as structure directing agents for phosphomolybdic acid (H(3)[PMo(12)O(40)], H(3)PMo). H(3)PMo units are selectively incorporated into the PDMAEMA domains due to electrostatic interactions between protonated PDMAEMA and PMo(3-) anions. Long solvophilic PB chains stabilized the PDMAEMA/H(3)PMo aggregates in solution and reliably prevented macrophase separation. The choice of solvent is crucial. It appears that all three components, both blocks of the diblock copolymer as well as H(3)PMo, have to be soluble in the same solvent which turned out to be tetrahydrofuran, THF. Evaporation induced self-assembly resulted in highly ordered inverse hexagonal nanocomposite films as observed from transmission electron microscopy and small-angle X-ray scattering. This one-pot synthesis may represent a generally applicable strategy for integrating polyoxometalates into functional architectures and devices. PMID:22757978

  4. Process Controlled Multiscale Morphologies in Metal-containing Block Copolymer Thin Films

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Kilbey, II, S Michael; Darling, Seth B.

    2014-01-01

    Poly(styrene-block-ferrocenyldimethylsilane) (PS-b-PFS) is a metal-containing block copolymer that exhibits certain advantages as a mask for lithographic applications. These advantages include compatibility with a wide range of substrates, ease of control over domain morphologies and robust stability to etch plasma, which aid in the development of high-aspect-ratio patterns. An asymmetric cylinder-forming PS-b-PFS copolymer is subjected to different processing to manipulate the morphology of the phase-separated domains. Control of film structure and domain morphology is achieved by adjusting the film thickness, mode of annealing, and/or annealing time. Changing the process from thermal or solvent annealing to hybrid annealing (thermal and then solvent annealing in sequence) leads to the formation of mesoscale spherulitic and dendritic morphologies. In this communication, we show that reversing the order of the hybrid annealing (solvent annealing first and then thermal annealing) of relatively thick films (>100 nm) on homogeneously thick substrates develops disordered lamellar structure. Furthermore, the same processing applied on a substrate with a thin, mechanically flexible window in the center leads to the formation of sub-micron scale concentric ring patterns. Enhanced material mobility in the thick film during hybrid annealing along with dynamic rippling effects that may arise from the vibration of the thin window during spin casting are likely causes for these morphologies.

  5. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.

    PubMed

    Zhang, Peibiao; Wu, Haitao; Wu, Han; Lù, Zhongwen; Deng, Chao; Hong, Zhongkui; Jing, Xiabin; Chen, Xuesi

    2011-07-11

    Various surface modification methods of RGD (Arg-Gly-Asp) peptides on biomaterials have been developed to improve cell adhesion. This study aimed to examine a RGD-conjugated copolymer RGD/MPEG-PLA-PBLG (RGD-copolymer) for its ability to promote bone regeneration by mixing it with the composite of poly(lactide-co-glycotide) (PLGA) and hydroxyapatite nanoparticles surface-grafted with poly(L-lactide) (g-HAP). The porous scaffolds were prepared using solvent casting/particulate leaching method and grafted to repair the rabbit radius defects after seeding with autologous bone marrow mesenchymal cells (MSCs) of rabbits. After incorporation of RGD-copolymer, there were no significant influences on scaffold's porosity and pore size. Nitrogen of RGD peptide, and calcium and phosphor of g-HAP could be exposed on the surface of the scaffold simultaneously. Although the cell viability of its leaching liquid was 92% that was lower than g-HAP/PLGA, its cell adhesion and growth of 3T3 and osteoblasts were promoted significantly. The greatest increment in cell adhesion ratios (131.2-157.1% higher than g-HAP/PLGA) was observed when its contents were 0.1-1 wt % but only at 0.5 h after cell seeding. All the defects repaired with the implants were bridged after 24 weeks postsurgery, but the RGD-copolymer contained composite had larger new bone formation and better fusion interface. The composites containing RGD-copolymer enhanced bone ingrowth but presented more woven bones than others. The combined application of RGD-copolymer and bone morphological protein 2 (BMP-2) exhibited the best bone healing quality and was recommended as an optimal strategy for the use of RGD peptides. PMID:21604718

  6. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.

    PubMed

    Zhang, Peibiao; Wu, Haitao; Wu, Han; Lù, Zhongwen; Deng, Chao; Hong, Zhongkui; Jing, Xiabin; Chen, Xuesi

    2011-07-11

    Various surface modification methods of RGD (Arg-Gly-Asp) peptides on biomaterials have been developed to improve cell adhesion. This study aimed to examine a RGD-conjugated copolymer RGD/MPEG-PLA-PBLG (RGD-copolymer) for its ability to promote bone regeneration by mixing it with the composite of poly(lactide-co-glycotide) (PLGA) and hydroxyapatite nanoparticles surface-grafted with poly(L-lactide) (g-HAP). The porous scaffolds were prepared using solvent casting/particulate leaching method and grafted to repair the rabbit radius defects after seeding with autologous bone marrow mesenchymal cells (MSCs) of rabbits. After incorporation of RGD-copolymer, there were no significant influences on scaffold's porosity and pore size. Nitrogen of RGD peptide, and calcium and phosphor of g-HAP could be exposed on the surface of the scaffold simultaneously. Although the cell viability of its leaching liquid was 92% that was lower than g-HAP/PLGA, its cell adhesion and growth of 3T3 and osteoblasts were promoted significantly. The greatest increment in cell adhesion ratios (131.2-157.1% higher than g-HAP/PLGA) was observed when its contents were 0.1-1 wt % but only at 0.5 h after cell seeding. All the defects repaired with the implants were bridged after 24 weeks postsurgery, but the RGD-copolymer contained composite had larger new bone formation and better fusion interface. The composites containing RGD-copolymer enhanced bone ingrowth but presented more woven bones than others. The combined application of RGD-copolymer and bone morphological protein 2 (BMP-2) exhibited the best bone healing quality and was recommended as an optimal strategy for the use of RGD peptides.

  7. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  8. Quick Information Sheets. 1988.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    The Trace Center gathers and organizes information on communication, control, and computer access for handicapped individuals. The information is disseminated in the form of brief sheets describing print, nonprint, and organizational resources and listing addresses and telephone numbers for ordering or for additional information. This compilation…

  9. Quick Information Sheets.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Trace Center.

    This compilation of "Trace Quick Sheets" provides descriptions, prices, and ordering information for products and services that assist with communication, control, and computer access for disabled individuals. Product descriptions or product sources are included for: adaptive toys and toy modifications; head pointers, light pointers, and…

  10. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  11. Insulation Fact Sheet.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Heating and cooling account for 50-70% of the energy consumed in the average American home. Heating water accounts for another 20%. A poorly insulated home loses much of this energy, causing drafty rooms and high energy bills. This fact sheet discusses how to determine if your home needs more insulation, the additional thermal resistance (called…

  12. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  13. Reading Recovery. [Fact Sheets].

    ERIC Educational Resources Information Center

    Reading Recovery Council of North America, Columbus, OH.

    This set of 10 fact sheets (each 2 to 4 pages long) addresses aspects of Reading Recovery, a program that helps children to be proficient readers and writers by the end of the first grade. It discusses the basic facts of Reading Recovery; Reading Recovery for Spanish literacy; Reading Recovery lessons; Reading Recovery professional development;…

  14. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  15. Land-based turbine casting initiative

    SciTech Connect

    Mueller, B.A.; Spicer, R.A.

    1995-12-31

    To meet goals for the ATS program, technical advances developed for aircraft gas turbine engines need to be applied to land-based gas turbines. These advances include directionally solidified and single crystal castings, alloys tailored to exploit these microstructures, complex internal cooling schemes, and coatings. The proposed program to scale aircraft gas turbine casting technology up to land based gas turbine size components is based on low sulfur alloys, casting process development, post-cast process development, and establishing casting defect tolerance levels. The inspection side is also discussed.

  16. Rubella - Fact Sheet for Parents

    MedlinePlus

    ... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...

  17. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification... adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer,...

  18. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  19. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  20. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  1. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  2. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  3. Prediction of Part Distortion in Die Casting

    SciTech Connect

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  4. Mechanism of Molecular Exchange in Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  5. Multigraft Copolymer Superelastomers: Synthesis Morphology, and Properties

    SciTech Connect

    Uhrig, David; Schlegel, Ralf; Weidisch, Roland; Mays, Jimmy

    2011-01-01

    The synthesis of well-defined multigraft copolymers having a polydiene backbone with polystyrene side chains is briefly reviewed, with particular focus on controlling branch point spacing and branch point functionality. Use of living anionic polymerization and chlorosilane linking chemistry has led to the synthesis of series of materials having regularly spaced trifunctional (comb), tetrafunctional (centipede), and hexafunctional (barbwire) branch points. The morphologies of these materials were characterized by transmission electron microscopy and small-angle X-ray scattering, and it was found that the morphologies were controlled by the local architectural asymmetry associated with each branch point. Mechanical properties studies revealed that such multigraft copolymers represent a new class of thermoplastic elastomers (TPEs) with superior elongation at break and low residual strains as compared to conventional TPEs.

  6. Block copolymers for opto-electronics

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James H.; Maaref, Shahin; Ledbetter, Abram J.; Bonner, Carl E.

    2004-05-01

    A D(donor)-B(bridge)-A(acceptor)-B(bridge)-type block copolymer system has been developed and preliminarily examined for potential opto-electronic photovoltaic functions. The unique feature of the device includes a primary DBAB-type block copolymer backbone, where D and A are conjugated donor and acceptor polymer blocks, and B is a non-conjugated and flexible chain, a π orbital stacked and conjugated chain self-assembled and ordered "secondary structure", and a donor/acceptor asymmetric layers sandwiched D/A columnar "tertiary structure". This structure is expected to improve photovoltaic power conversion efficiency significantly in comparison to most existing organic or polymeric donor/acceptor binary photovoltaic systems due to the reduction of "exciton loss", the "carrier loss", as well as the "photon loss" via three-dimensional space and energy level optimizations. Preliminary experimental results revealed better morphology and opto-electronic properties of DBAB vs. D/A blends.

  7. Toughness in block copolymer modified epoxies

    NASA Astrophysics Data System (ADS)

    Declet-Perez, Carmelo

    One of the major shortcomings preventing the widespread use of epoxy resins in engineering applications is the inherent brittleness of these materials. The incorporation of small amounts of amphiphilic block copolymers into the formulation is one of the most promising strategies to toughen epoxies. These molecules are known to form nanostructures in the epoxy resin that can be preserved upon curing. This strategy is very attractive since significant enhancements in toughness can be obtained without detrimental effects on other properties of the matrix. Despite many examples of successful implementation, an in-depth understanding of the factors that lead to toughness in block copolymer modified epoxies is still elusive. The goal of this dissertation is to understand, first, the deformation mechanisms leading to toughness and, second, how different formulation parameters affect these processes. In this work we used two types of block copolymer modifiers, which produced nanostructures with different physical properties. These block copolymers self-assembled into well-dispersed spherical micelles with either rubbery or glassy cores in various epoxy formulations. Both of these modifiers toughened different epoxy formulations, although to different extents. The rubbery core micelles consistently outperformed the glassy core micelles by roughly a factor of two. While the toughening afforded by the rubbery core micelles was consistent with the current understanding of toughening, the results from the glassy core micelles could not be explained with the same reasoning. In order to understand the deformation mechanisms leading to different levels of toughness, we performed small-angle x-ray scattering experiments while simultaneously deforming our material. This combination of techniques, referred to as in-situ SAXS, allowed us to monitor changes in the structure of the block copolymer micelles as a result of the applied load. With this technique, we showed that the rubbery

  8. Rapid ordering of block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  9. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  10. Phase Behavior of Gradient Copolymer Solution

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Gallow, Keith; Loo, Yueh-Lin; Ganesan, Venkat

    2012-02-01

    We study the behavior of amphiphilic linear gradient copolymer chains under poor solvent conditions. Using Bond Fluctuation model and parallel tempering algorithm, we explore qualitative behavior of this class of polymers with varying gradient strength; which is the largest difference in the instantaneous composition along the polymer chain. Under poor solvent conditions, the chains collapse to form micelles. We find a linear dependence of hydrophilic to hydrophobic transition temperature on gradient strength. Systematic analysis of these clusters reveals a strong dependence of micelle properties on gradient strength. Also, we discuss our results with reference to recent experiments on synthesis and cloud point depression in gradient copolymers confirming gradient strength as key parameter in tuning micelle properties.

  11. On the birefringence of multilayered symmetric diblock copolymer films

    SciTech Connect

    Kim, J.; Chin, I.; Smith, B.A.; Russell, T.P. ); Mays, J.W. . Dept. of Chemistry)

    1993-09-27

    The chain extension at lamellar interfaces was studied in thin films of symmetric diblock copolymers on gold substrates. The first copolymer consisted of blocks of polystyrene (PS) and poly(2-vinylpyridine) (P2VP), denoted P(S-b-2VP). The second was a diblock copolymer of PS and poly(methyl methacrylate) (PMMA), denoted P(S-b-MMA), on a gold substrate. Using attenuated total reflectance spectroscopy, the refractive indices parallel, n[sub [parallel

  12. Reversible geling co-polymer and method of making

    DOEpatents

    Gutowska, Anna

    2005-12-27

    The present invention is a thereapeutic agent carrier having a thermally reversible gel or geling copolymer that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum geling molecular weight cutoff and a therapeutic agent.

  13. Skill Sheets for Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    This set of 33 skill sheets for agricultural mechanics was developed for use in high school and vocational school agricultural mechanics programs. Some sheets teach operational procedures while others are for simple projects. Each skill sheet covers a single topic and includes: (1) a diagram, (2) a step-by-step construction or operational…

  14. The Physics of Ice Sheets

    ERIC Educational Resources Information Center

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  15. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  16. Crystallization in Ordered Polydisperse Polyolefin Diblock Copolymers

    SciTech Connect

    Li, Sheng; Register, Richard A.; Landes, Brian G.; Hustad, Phillip D.; Weinhold, Jeffrey D.

    2010-12-07

    The morphologies of polydisperse ethylene-octene diblock copolymers, synthesized via a novel coordinative chain transfer polymerization process, are examined using two-dimensional synchrotron small-angle and wide-angle X-ray scattering on flow-aligned specimens. The diblock copolymers comprise one amorphous block with high 1-octene content and one semicrystalline block with relatively low 1-octene content, and each block ideally exhibits the most-probable distribution. Near-symmetric diblocks with a sufficiently large octene differential between the amorphous and semicrystalline blocks show well-ordered lamellar domain structures with long periods exceeding 100 nm. Orientation of these domain structures persists through multiple melting/recrystallization cycles, reflecting a robust structure which self-assembles in the melt. The domain spacings are nearly 3-fold larger than those in near-monodisperse polyethylene block copolymers of similar molecular weights. Although the well-ordered lamellar domain structure established in the melt is preserved in the solid state, the crystallites are isotropic in orientation. These materials display crystallization kinetics consistent with a spreading growth habit, indicating that the lamellae do not confine or template the growing crystals. The exceptionally large domain spacings and isotropic crystal growth are attributed to interblock mixing resulting from the large polydispersity; short hard blocks dissolved in the soft-block-rich domains swell the domain spacing in the melt and allow hard block crystallization to proceed across the lamellar domain interfaces.

  17. Regulating block copolymer phases via selective homopolymers

    SciTech Connect

    Yang, Shuang E-mail: eqchen@pku.edu.cn; Lei, Zhen; Hu, Nan; Chen, Er-Qiang E-mail: eqchen@pku.edu.cn; Shi, An-Chang

    2015-03-28

    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composition of A-blocks is too small and the content of added C-homopolymers is large enough, where the SCFT predicts a narrow co-existence region between different ordered phases. Furthermore, it is found that the phase behavior of the system is insensitive to the molecular weight of C-homopolymer.

  18. Cavitation in block copolymer modified epoxy

    NASA Astrophysics Data System (ADS)

    Declet-Perez, Carmelo; Francis, Lorraine; Bates, Frank

    2013-03-01

    Today, brittleness in epoxy networks limits most commercial applications. Significant toughness can be imparted by adding small amounts of micelle forming block copolymers (BCP) without compromising critical properties such as high use temperature and modulus. Curing the network locks in the self-assembled BCP micellar structures formed in the monomer resin providing control of the resulting morphology. Despite significant research over the last decade, a complete description of the parameters influencing toughness in block copolymer modified epoxies is still lacking. In this presentation we compare the ultimate mechanical behavior of epoxies modified with spherical micelle forming BCP's containing rubbery and glassy cores using real-time in-situ small-angle X-ray scattering (SAXS) performed during tensile deformation. Striking differences in the 2D SAXS patterns were documented for epoxies modified with rubbery (PEP) versus glassy (PS) micelle cores. Rubbery cores dilate by 100% in volume upon specimen yielding, while the glassy micelle cores deform at approximately constant volume. These results provide direct evidence of a cavitation mediated mechanism for toughness in block copolymer modified epoxies. We further interpret characteristic butterfly features in the 2D SAXS patterns in terms of epoxy network deformation. Support was provided by the NSF sponsored MRSEC at the University of Minnesota

  19. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  20. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  1. Regulating block copolymer phases via selective homopolymers.

    PubMed

    Yang, Shuang; Lei, Zhen; Hu, Nan; Chen, Er-Qiang; Shi, An-Chang

    2015-03-28

    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composition of A-blocks is too small and the content of added C-homopolymers is large enough, where the SCFT predicts a narrow co-existence region between different ordered phases. Furthermore, it is found that the phase behavior of the system is insensitive to the molecular weight of C-homopolymer. PMID:25833605

  2. Sulfur copolymers for infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Namnabat, S.; Gabriel, J. J.; Pyun, J.; Norwood, R. A.; Dereniak, E. L.; van der Laan, J.

    2014-06-01

    The development of organic polymers with low infrared absorption has been investigated as a possible alternative to inorganic metal oxide, semiconductor, or chalcogenide-based materials for a variety of optical devices and components, such as lenses, goggles, thermal imaging cameras and optical fibers. In principle, organic-based polymers are attractive for these applications because of their low weight, ease of processing, mechanical toughness, and facile chemical variation using commercially available precursors. Herein we report on the optical characterization of a new class of sulfur copolymers that are readily moldable, transparent above 500 nm, possess high refractive index (n > 1.8) and take advantage of the low infrared absorption of S-S bonds for potential use in the mid-infrared at 3-5 microns. These materials are largely made from elemental sulfur by an inverse vulcanization process; in the current study we focus on the properties of a chemically stable, branched copolymer of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r- DIB). Copolymers with elemental sulfur content ranging from 50% to 80% by weight were studied by UV-VIS spectroscopy, FTIR, and prism coupling for refractive index measurement. Clear correlation between material composition and the optical properties was established, confirming that the high polarizability of the sulfur atom leads to high refractive index while also maintaining low optical loss in the infrared.

  3. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  4. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials. PMID:25208609

  5. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  6. Structure and Properties of Block Copolymers of Polystyrene and Polybutadiene

    NASA Astrophysics Data System (ADS)

    Askadskii, Andrei A.; Andryushchenko, T. A.; Zubov, P. I.

    1984-08-01

    Recent studies of the structure and properties of block copolymers of polystyrene and polybutadiene are reviewed, with special emphasis on the effect of the structure and of the formation conditions for the samples on the interrelated physico-mechanical properties. Problems associated with the macro- and micro-layering of block copolymer solutions are examined in detail. Work on the analysis of block copolymer structures from measurements of sorption characteristics is reviewed in the light of an assumed relaxation mechanism for the sorption and swelling processes. The prospects of controlling the structure and properties of block copolymers are shown to be good. The bibliography contains 190 references.

  7. Synthetic Cell Elements from Block Copolymers. Dynamic Aspects

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2003-03-01

    Amphiphilic block copolymers can self-assemble in water into various stable morphologies which resemble key cell structures, notably filaments and membranes. Filamentous worms of copolymer, microns-long, will be introduced, and related dynamics of copolymer vesicle polymersomes will be detailed. Fluorescence visualization of single worms stretched under flow demonstrates their stability as well as a means to control flexibility. Polymersome membranes have been more thoroughly studied, especially copolymer molecular weight effects. We summarize results suggestive of a transition from Rouse-like behavior to entangled chains. Viewed together, the results ask the question: what physics are needed next to mimic cell activities such as crawling?

  8. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  9. Pressure rig for repetitive casting

    SciTech Connect

    Vasquez, P.; Hutto, W.R.; Philips, A.R.

    1989-09-12

    This patent describes a pressure rig for repetitive casting. It comprises: a hollow ceramic inner shell: an outer steel housing disposed around the outside of the ceramic inner shell. The housing having a pressure end at the lower end thereof and a mold end at the upper end thereof; a rubber diaphragm attached to the pressure end of the outer steel housing; a slideable transit plate located above the rubber diaphragm; a layer of blanket insulating material lining the remaining portion of the hollow ceramic inner shell, thereby defining an inner cavity wherein a casing material is located; a pressure means located at the lower end of the pressure rig for applying pressure to the lower end of the rubber diaphragm; whereby the casting material in the inner cavity is forced out of the pressure rig into a mold when pressure is applied to the lower end of the rubber diaphragm.

  10. Search for chameleons with CAST

    NASA Astrophysics Data System (ADS)

    Anastassopoulos, V.; Arik, M.; Aune, S.; Barth, K.; Belov, A.; Bräuninger, H.; Cantatore, G.; Carmona, J. M.; Cetin, S. A.; Christensen, F.; Collar, J. I.; Dafni, T.; Davenport, M.; Desch, K.; Dermenev, A.; Eleftheriadis, C.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J. A.; Gardikiotis, A.; Garza, J. G.; Gazis, E. N.; Geralis, T.; Giomataris, I.; Hailey, C.; Haug, F.; Hasinoff, M. D.; Hoffmann, D. H. H.; Iguaz, F. J.; Irastorza, I. G.; Jacoby, J.; Jakobsen, A.; Jakovčić, K.; Kaminski, J.; Karuza, M.; Kavuk, M.; Krčmar, M.; Krieger, C.; Krüger, A.; Lakić, B.; Laurent, J. M.; Liolios, A.; Ljubičić, A.; Luzón, G.; Neff, S.; Ortega, I.; Papaevangelou, T.; Pivovaroff, M. J.; Raffelt, G.; Riege, H.; Rosu, M.; Ruz, J.; Savvidis, I.; Solanki, S. K.; Vafeiadis, T.; Villar, J. A.; Vogel, J. K.; Yildiz, S. C.; Zioutas, K.; Brax, P.; Lavrentyev, I.; Upadhye, A.

    2015-10-01

    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (βm) and to photons (βγ) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1 keV to 400 eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of βγ ≲1011 for 1 <βm <106.

  11. Pressure rig for repetitive casting

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  12. Focused rigidity casts: an overview.

    PubMed

    Dagg, A R; Chockalingam, N; Branthwaite, H

    2013-02-01

    Focused rigidity casts (FRCs) are a novel treatment made from polymer semi-flexible cast material, used in the management of plantar foot ulceration to offload the site of ulceration. Current anecdotal evidence suggests that use of FRCs helps achieve quicker healing time. While FRCs were first used in the treatment of fractures, previous reports suggest that the FRC may be effective in the treatment of plantar foot ulceration. Although there is a paucity of evidence to support the use of FRCs in the treatment of foot ulceration, current evidence demonstrates a decrease in both wound healing time and plantar pressure. The aim of the paper is to examine the importance of offloading plantar ulcerations and introduce FRCs.

  13. Cast shadows in wide perspective.

    PubMed

    Pont, Sylvia C; Wijntjes, Maarten W A; Oomes, Augustinus H J; van Doom, Andrea; van Nierop, Onno; de Ridder, Huib; Koenderink, Jan J

    2011-01-01

    We investigated the apparent spatial layout of cast shadows up to very wide fields of view. We presented up to 130 degrees wide images in which two 'flat poles' were standing on a green lawn under a cloudless blue sky on a sunny day. The poles threw sharp cast shadows on the green, of which one was fixed. The observer's task was to adjust the azimuth of the shadow of the other pole such that it fitted the scene. The source elevation was kept constant. The two cast shadows are, of course, parallel in physical space, but generically not in the picture plane because of the wide perspective. We found that observers made huge systematic errors, indicating that, generically, they fail to account for these perspective effects. The systematic deviations could be well described by a weighted linear combination of the directions in the picture plane and in the physical space, with weights that depended on the positions of, and distance between, the poles.

  14. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  15. Plasma Sheet Energy Distributions

    NASA Astrophysics Data System (ADS)

    Sotirelis, T.; Lee, A. R.; Newell, P. T.

    2009-12-01

    Energy spectra of electrons and ions, as observed by DMSP, are fit to various distributions. The goal is to characterize the inner edge of the plasma sheet, so the focus is on large scale plasma sheet properties. Lower energy electron populations are ignored as they appear to be small-scale transients. Maxwellian, kappa and power-law distributed spectra are considered. Non-thermal ion distributions appear with greater frequency than anticipated. In order to be thermally distributed the differential energy flux must rise with a slope of ~2 toward a peak, after which the flux should fall sharply. The figure shows an apparently non-thermal ion distribution, together with a Maxwellian fit. The results from fits for one full year are presented.

  16. Thermal casting process for the preparation of membranes

    DOEpatents

    Caneba, G.T.M.; Soong, D.S.

    1985-07-10

    Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.

  17. Clean Cities Fact Sheet

    SciTech Connect

    Not Available

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  18. Topographical atlas sheets

    USGS Publications Warehouse

    Wheeler, George Montague

    1876-01-01

    The following topographical atlas sheets, accompanying Appendix J.J. of the Annual Report of the Chief of Engineers, U.S. Army-being Annual Report upon U. S. Geographical Surveys-have been published during the fiscal year ending June 30, 1876, and are a portion of the series projected to embrace the territory of the United States lying west of the 100th meridian.

  19. Biomolecular Science (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  20. Experimental Study of Deformation and of Effective Width in Axially Loaded Sheet-stringer Panels

    NASA Technical Reports Server (NTRS)

    Ramberg, Walter; MCPHERSON ALBERT E; Levy, Sam

    1939-01-01

    The deformation of two sheet-stringer panels subjected to end compression under carefully controlled end conditions was measured at a number of points and at a number of loads, most of which were above the load at which the sheet had begun to buckle. The two panels were identical except for the sheet, which was 0.70-inch 24st alclad for specimen 1 and 0.025-inch 24st aluminum alloy for specimen 6. A technique was developed for attaching Tuckerman optical strain gauges to the sheet without disturbing the strain distribution in the sheet by the method of attachment. This technique was used to explore the strain distribution in the sheet at various loads. The twisting and the bending of the stringers was measured by means of pointers attached to the stringers. The shape of the buckles in the sheet of specimen 6 was recorded at two loads by means of plaster casts. The sheet and the stringer loads at failure are compared with the corresponding loads for five similar panels tested at the Navy Model Basin. A detailed comparison is made between the measured deformation of the buckled sheet and the deformation calculated from approximate theories for the deformation in a rectangular sheet with freely supported edges buckling under end compression advanced by Timoshenko, Frankland, and Marguerre. The measured effective width for the specimens is compared with the effective width given by nine different relations for effective width as a function of the edge stress divided by the buckling stress of the sheet. The analysis of the measured stringer deformation is confined to an application of Southwell's method of plotting deformation against deformation over load. It was concluded that the stringer failure in both specimens were due to an instability in which the stringer was simultaneously twisted and bent as a column.

  1. Gating of Permanent Molds for ALuminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  2. Clean Cast Steel Technology, Phase IV

    SciTech Connect

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  3. Casting system effectiveness--measurement and theory.

    PubMed

    Luk, H W; Darvell, B W

    1992-03-01

    Evaluating castability as a property of dental casting alloys is an unworkable concept, since any measure is demonstrably affected by several external factors. Casting System Effectiveness (CSE) is shown experimentally and theoretically to depend primarily upon the time taken for the advancing front to freeze. A spiral tube mold was used to measure casting length obtained under variations in casting temperature; this pattern is proposed as a standard measure of CSE. A Bernoulli 'free-fall' numerical model is shown to reproduce the principal features of such casting, with some evidence of viscosity limitation of the turbulent flow at long casting lengths. Direct measurement of melt velocities confirmed turbulent flow in the mold. A method is also suggested for assessing the influence of investment porosity on CSE.

  4. 40 CFR 721.4700 - Metalated alkylphenol copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metalated alkylphenol copolymer (generic name). 721.4700 Section 721.4700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4700 Metalated alkylphenol copolymer (generic name). (a)...

  5. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-carbon monoxide copolymers. 177.1312... Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon...

  6. Imide/arylene ether copolymers with pendent trifluoromethyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Havens, Stephen J.

    1992-01-01

    A series of imide/arylene ether block copolymers were prepared using an arylene ether block containing a hexafluoroisopropylidene group and an imide block containing a hexafluoroisopropylidene and a trifluoromethyl group in the polymer backbone. The copolymers were characterized and mechanical properties were determined and compared to the homopolymers.

  7. Piezoelectric Properties of Non-Polar Block Copolymers

    SciTech Connect

    Pester, Christian; Ruppel, Markus A; Schoberth, Heiko; Schmidt, K.; Liedel, Clemens; Van Rijn, Patrick; Littrell, Ken; Schindler, Kerstin; Hiltl, Stephanie; Czubak, Thomas; Mays, Jimmy; Urban, Volker S; Boker, Alexander

    2011-01-01

    Piezoelectric properties in non-polar block copolymers are a novelty in the field of electroactive polymers. The piezoelectric susceptibility of poly(styrene-b-isoprene) block copolymer lamellae is found to be up to an order of magnitude higher when compared to classic piezoelectric materials. The electroactive response increases with temperature and is found to be strongest in the disordered phase.

  8. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... percent by weight unless it is blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in such... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification....

  9. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent by weight unless it is blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in such... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification....

  10. Morphological studies on block copolymer modified PA 6 blends

    NASA Astrophysics Data System (ADS)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  11. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  12. Phase Behavior of All-Hydrocarbon ``Diblock-Random'' Copolymers

    NASA Astrophysics Data System (ADS)

    Beckingham, Bryan; Register, Richard

    2013-03-01

    ``Block-random'' copolymers (AxB1-x) -(AyB1-y) , where each of the two blocks is a random copolymer of monomers A and B, present a convenient and useful variation on the typical block copolymer architecture, as the interblock interactions and physical properties can be tuned continuously through the random block's composition. The ability to tune the effective interaction parameter between the blocks continuously, allows for the order-disorder transition temperature (TODT) to be tuned independently of molecular weight using only two monomers. This flexibility makes block-random copolymers a versatile platform for the exploration of polymer phase behavior and structure-property relationships. Here, we present the phase behavior of hydrogenated derivatives of various lamellae-forming diblock-random copolymers where one block is a styrene/isoprene (S rI) random copolymer. Using small-angle x-ray scattering, we investigate a series of isoprene hydrogenated hI-S rhI with varying styrene content, determine order-disorder transition temperatures and compare the observed phase behavior to that of more typical S-hI block copolymers via mean-field theory. Additionally, diblock-random copolymers, 50 wt. % styrene in the S rI block, are synthesized with polyisoprene, polybutadiene or polystyrene blocks and we examine the phase behavior of both their hydrogenated derivatives, prepared with catalysts which either leave the S units intact or saturate them to vinylcyclohexane.

  13. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  14. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  15. A Benchmark Study on Casting Residual Stress

    SciTech Connect

    Johnson, Eric M.; Watkins, Thomas R; Schmidlin, Joshua E; Dutler, S. A.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  16. Cast Process Simulation for the Rapid Tooling.

    NASA Astrophysics Data System (ADS)

    Zhang, Renji; Jiang, Rui; Liu, Yuan; Yan, Yongnian

    1997-03-01

    A major use for RP (Rapid Prototyping) now is in the foundry industry. It is so called RT (Rapid Tooling). Models are used as patterns for sand and plaster casting or used as sacrificial models in investment casting in the RT. In order to improve casting quality, a cast process simulation program for the RT has been made. This simulation depends on analysis of size accuracy parameters. The result could be came back into the CAD forming program. After that a new CAD data have been adopted in RT process. Then the RT technology could have sufficient accuracy in fabrication. Work supported by the Natural Science Foundation of China (NSFC).

  17. High-Density-Tape Casting System

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1987-01-01

    Centrifuge packs solids from slurry into uniform, dense layer. New system produces tapes of nearly theoretical packing density. Centrifugal system used to cast thin tapes for capacitors, fuel cells, and filters. Cylindrical rotary casting chamber mounted on high-speed bearings and connected to motor. Liquid for vapor-pressure control and casting slurry introduced from syringes through rotary seal. During drying step, liquid and vapor vented through feed tubes or other openings. Laminated tapes produced by adding more syringes to cast additional layers of different materials.

  18. The Sheet Trapped in a Plumber's Nightmare

    NASA Astrophysics Data System (ADS)

    O'Bryan, Christopher; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas

    Block co-polymer systems offer exquisite control in the molecular-level design of self-assembled structures. The application of block copolymer phases has been generally limited to their use as bulk stabilizing agents in mass produced commodity chemicals and plastics. Recently, we have found the complex phase structures of self-assembled styrene ethylene/propylene diblock and styrene ethylene/butylene triblock co-polymers useful in 3D printing of other soft materials; the co-polymer structure yields around a writing nozzle as it moves through space while leaving material (polymers or colloids) trapped in the form of programmed structures. However, the relationship between the structural phase of the co-polymer self-assembly and its ability to support printed soft matter materials is not understood. In this study, we explore how different block co-polymer assemblies interact with and support soft matter materials once localized yielding has occurred.

  19. Light-emitting block copolymers composition, process and use

    DOEpatents

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  20. Preparation and Morphology of ABn Mictoarm Block Copolymers

    NASA Astrophysics Data System (ADS)

    Takano, Atsushi; Watanabe, Momoka; Asai, Yusuke; Suzuki, Jiro; Matsushita, Yushu

    A series of ABn mictoarm block copolymers (bottle brush copolymers) consisting of polystyrene (S) as a backbone and polyisoprenes (I) as grafts were precisely synthesized by an anionic polymerization, and their microphase-separated structures were investigated by transmission electron microscopy (TEM) and small-angle X-ray scattering(SAXS). A copolymer with composition of φS =0.57 and number of grafts(n) of 10 shows characteristic cylindrical structure, where microdomains of S reveals hexagonal cross section with non-constant mean curvature interface. While a sample with composition of φS =0.37 and number of grafts(n) of 40 shows spherical structure with rather large S isolated domains and characteristic domain packing manner was found. Furthermore composition dependence of microphase-separated structures for SIn mictoarm block copolymers were investigated and compared to SI diblock copolymer system.

  1. Block Copolymer Templates for Optical Materials and Devices

    NASA Astrophysics Data System (ADS)

    Urbas, Augustine; Martin, Maldovan; Carter, W. C.; Thomas, E. L.; Fasolka, Michael; Fraser, Cassandra

    2002-03-01

    Block copolymers can act as super-lattices for creating novel optical structures. We have fabricated block copolymer photonic crystals from one, two and three dimensionally periodic systems and have enhanced their dielectric properties towards creating complete 3D band gaps. By using carefully selected blends of linear and star block copolymers, we are able to create hierarchical blends which exhibit precise molecular positioning of fluorescent molecules. We are exploring these unique patterning capabilities of block copolymer systems for the formation of ordered arrays of optically active components within a photonic crystal. Precise location of both fluorescent and nonlinear components within block copolymer photonic crystals affords new opportunities for creating low threshold, upconverting and array lasers as well as optical modulators and other photonic devices.

  2. Electric field induced selective disordering in lamellar block copolymers.

    PubMed

    Ruppel, Markus; Pester, Christian W; Langner, Karol M; Sevink, Geert J A; Schoberth, Heiko G; Schmidt, Kristin; Urban, Volker S; Mays, Jimmy W; Böker, Alexander

    2013-05-28

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the order-disorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the order-disorder transition and well below it. PMID:23573901

  3. First-principles investigation of PVDF and its copolymers

    NASA Astrophysics Data System (ADS)

    Ranjan, V.; Yu, Liping; Buongiorno Nardelli, Marco; Bernholc, J.

    2009-03-01

    Recently, PVDF and its copolymers have generated significant interest due to their electroactive properties [1] and potential for ultra-high energy-storage applications [2]. In this talk, we present the results of first-principles calculations of stable phases and dielectric properties of different copolymers and terpolymers of PVDF at varying concentrations. Our results show that at very high concentrations of Chloro-trifluoroethylene (CTFE), PVDF/CTFE displays sharp transitions between non-polar (α) and polar (β) phases. On the contrary, the same transitions in copolymers with trifluoroethylene (TrFE) and tetrafluoroethylene (TeFE) are not sharp and happen at lower concentrations. We discuss the interplay of copolymer admixture on the dielectric properties of PVDF and discuss the suitability of copolymers for energy storage and electroactive applications. [1] S. G. Lu et al., App. Phys. Lett. 93, 042905 (2008). [2] V. Ranjan et al., Phys. Rev. Lett. 99, 047801 (2007).

  4. Well-defined organic nanotubes from multicomponent bottlebrush copolymers.

    PubMed

    Huang, Kun; Rzayev, Javid

    2009-05-20

    Bottlebrush copolymers are comblike macromolecules with densely grafted polymeric branches that adopt a cylindrical shape in solutions. We demonstrate a new method for the preparation of organic nanotubes by single molecule templating of core-shell bottlebrush copolymers. Multicomponent bottlebrush copolymers with well-defined structural parameters are synthesized by a combination of different living polymerization methods. Tubular structures can be prepared by cross-linking the shell layer and selectively etching out the core. The shape and size of original bottlebrush macromolecules are preserved during these transformations, which leads to the formation of well-defined organic nanotubes. The length and diameter of nanotubes are dictated by the length of the backbones and branches of the polymeric precursors, respectively. Water-soluble nanotubes with a hydrophobic interior can be prepared from bottlebrush copolymers with triblock copolymer branches. Herein, we outline molecular design strategies to fabricate nanotubes with controlled lengths, open pores, and different solubility characteristics.

  5. Spray casting project final report

    SciTech Connect

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step.

  6. Microdefects in cast multicrystalline silicon

    SciTech Connect

    Wolf, E.; Klinger, D.; Bergmann, S.

    1995-08-01

    The microdefect etching behavior of cast multicrystalline BAYSIX and SILSO samples is mainly the same as that of EFG silicon, in spite of the very different growth parameters applied to these two techniques and the different carbon contents of the investigated materials. Intentional decorating of mc silicon with copper, iron and gold did not influence the results of etching and with help of infrared transmission microscopy no metal precipitates at the assumed microdefects could be established. There are many open questions concerning the origin of the assumed, not yet doubtless proved microdefects.

  7. Release of ToxCastDB and ExpoCastDB databases

    EPA Science Inventory

    EPA has released two databases - the Toxicity Forecaster database (ToxCastDB) and a database of chemical exposure studies (ExpoCastDB) - that scientists and the public can use to access chemical toxicity and exposure data. ToxCastDB users can search and download data from over 50...

  8. Fluctuation Dynamics of Block Copolymer Vesicles

    SciTech Connect

    Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.

    2010-07-13

    X-ray photon correlation spectroscopy was used to characterize the wave-vector- and temperature-dependent dynamics of spontaneous thermal fluctuations in a vesicle (L4) phase that occurs in a blend of a symmetric poly(styrene-ethylene/butylene-styrene) triblock copolymer with a polystyrene homopolymer. Measurements of the intermediate scattering function reveal stretched-exponential behavior versus time, with a stretching exponent slightly larger than 2/3. The corresponding relaxation rates show an approximate q{sup 3} dependence versus wave vector. Overall, the experimental measurements are well described by theories that treat the dynamics of independent membrane plaquettes.

  9. Small domain-size multiblock copolymer electrolytes

    DOEpatents

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  10. Multi-block copolymers in thin films.

    NASA Astrophysics Data System (ADS)

    Maniadis, Panagiotis; Kober, Edward; Lookman, Turab

    2008-03-01

    We study the behavior of an ABn multi-block copolymer confined to a thin film, using self consistent field theory (SCFT) methods. Due to the breaking of symmetry in the direction of confinement, the propagators do not obey the usual diffusion equation. We derive the diffusion equation which correctly describes the confined polymer system and find that it differs from the original in an area which is approximately 3 times the Kuhn length of the polymer, close to the surface of the film. We use the modified diffusion equation to study the structure of the confined polymer.

  11. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177...-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as... prescribed conditions: (a) For the purpose of this section, the ethylene-methyl acrylate copolymer...

  12. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2... accordance with the following prescribed conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers...

  13. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2... accordance with the following prescribed conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers...

  14. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2... accordance with the following prescribed conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers...

  15. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2... accordance with the following prescribed conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers...

  16. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...) For the purpose of this section, the ethylene-methyl acrylate copolymer resins consist of...

  17. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177... Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl... section, the ethylene-methyl acrylate copolymer resins consist of basic copolymers produced by...

  18. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  19. Clean cast steel technology. Final report

    SciTech Connect

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  20. Energy use in selected metal casting facilities - 2003

    SciTech Connect

    Eppich, Robert E.

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  1. Ice sheets and nitrogen.

    PubMed

    Wolff, Eric W

    2013-07-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.

  2. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  3. Twisting of sheet metals

    NASA Astrophysics Data System (ADS)

    Pham, C. H.; Thuillier, S.; Manach, P. Y.

    2013-12-01

    Twisting of metallic sheets is one particular mode of springback that occurs after drawing of elongated parts, i.e. with one dimension much larger than the two others. In this study, a dedicated device for drawing of elongated part with a U-shaped section has been designed on purpose, in order to obtain reproducible data. Very thin metallic sheet, of thickness 0.15 mm, has been used, so that the maximum length of the part is 100 mm. Two different orientations of the part with respect to the tools have been chosen: either aligned with the tools, or purposefully misaligned by 2°. Several samples were drawn for each configuration, leading to the conclusion that almost no twisting occurs in the first case whereas a significant one can be measured for the second one. In a second step, 2D and 3D numerical simulations within the implicit framework for drawing and springback were carried out. A mixed hardening law associated to von Mises yield criterion represents accurately the mechanical behavior of the material. This paper highlights a comparison of numerical predictions with experiments, e.g. the final shape of the part and the twisting parameter.

  4. Correlated disorder in random block copolymers

    NASA Astrophysics Data System (ADS)

    Westfahl, Harry, Jr.; Schmalian, Jörg

    2005-07-01

    We study the effect of a random Flory-Huggins parameter in a symmetric diblock copolymer melt which is expected to occur in a copolymer where one block is near its structural glass transition. In the clean limit the microphase segregation between the two blocks causes a weak, fluctuation induced first order transition to a lamellar state. Using a renormalization group approach combined with the replica trick to treat the quenched disorder, we show that beyond a critical disorder strength, which depends on the length of the polymer chain, the character of the transition is changed. The system becomes dominated by strong randomness and a glassy rather than an ordered lamellar state occurs. A renormalization of the effective disorder distribution leads to nonlocal disorder correlations that reflect strong compositional fluctuation on the scale of the radius of gyration of the polymer chains. The reason for this behavior is shown to be the chain length dependent role of critical fluctuations, which are less important for shorter chains and become increasingly more relevant as the polymer length increases and the clean first order transition becomes weaker.

  5. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  6. Chain exchange in triblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  7. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  8. 13. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of sheet 1 (index and title sheet) of the Indiana State Highway Commission repair plans of 1969 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  9. 9. Photograph of sheet 1 (index and title sheet) of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of sheet 1 (index and title sheet) of the State Highway Department of Indiana repair plans of 1957 for the Cicott Street Bridge. Photograph of a 24' by 36' print made from microfilm in the archives of the Indiana Department of Transportation in Indianapolis. - Cicott Street Bridge, Spanning Wabash River at State Road 25, Logansport, Cass County, IN

  10. 17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTAKE PIER, BRIDGE STRESS SHEET, SHEET 8 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  11. 10. KIDNER BRIDGE STRUCTURAL STEEL DETAIL SHEET (original plan sheet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. KIDNER BRIDGE STRUCTURAL STEEL DETAIL SHEET (original plan sheet is in possession of Ball State University, Drawings and Documents Archive, COllege of Architecture and Planing, Ball State University, Muncie, Indiana, 47306 - Kidner Bridge, Spanning Mississinewa River at County Road 700 South, Upland, Grant County, IN

  12. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995

    SciTech Connect

    Wohlgemuth, J.

    1996-02-01

    The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

  13. Method for heating a glass sheet

    DOEpatents

    Boaz, Premakaran Tucker

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  14. Method for heating a glass sheet

    DOEpatents

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  15. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    NASA Astrophysics Data System (ADS)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  16. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  17. Modeling of nickel and iron aluminide castings

    SciTech Connect

    Viswanathan, S.; Duncan, A.J.; Porter, W.D.; Webb, D.S.

    1996-12-31

    This paper addresses some issues in producing Ni and Fe aluminide castings and illustrates use of computer simulation of the casting process to solve these problems. Available casting software and issues in their use are reviewed. Importance of availability of accurate thermophysical properties is illustrated by comparing sensitivity of computed cooling curves to changes in these properties. If constant thermophysical properties must be used in solidification simulation, the values at the solidus temperature are likely to provide greatest accuracy; significant errors may be incurred by use of constant room temperature properties. Examples are given of the mold filling analysis of sand cast heat treating trays and centrifugally cast transfer rolls of Ni aluminide alloy. In the case of sand cast heat treating trays, the simulation of mold filling is used to illustrate benefits of pouring the mold at a tilt to reduce turbulence in the runner. In the case of centrifugally cast rolls, the simulation is used to illustrate effect of inlet velocity during the pour on casting quality.

  18. Dimensional variability of production steel castings

    SciTech Connect

    Peters, F.E.; Risteu, J.W.; Vaupel, W.G.; DeMeter, E.C.; Voigt, R.C.

    1994-12-31

    Work is ongoing to characterize the dimensional variability of steel casting features. Data are being collected from castings produced at representative Steel Founders` Society of America foundries. Initial results based on more than 12,500 production casting feature measurements are presented for carbon and low alloy steel castings produced in green sand, no-bake, and shell molds. A comprehensive database of casting, pattern, and feature variables has been developed so that the influence of the variables on dimensional variability can be determined. Measurement system analysis is conducted to insure that large measurement error is not reported as dimensional variability. Results indicate that the dimensional variability of production casting features is less than indicated in current US (SFSA) and international (ISO) standards. Feature length, casting weight, parting line and molding process all strongly influence dimensional variability. Corresponding pattern measurements indicate that the actual shrinkage amount for casting features varies considerably. This variation in shrinkage will strongly influence the ability of the foundry to satisfy customer dimensional requirements.

  19. Slip casting and nitridation of silicon powder

    NASA Technical Reports Server (NTRS)

    Seiko, Y.

    1985-01-01

    Powdered Silicon was slip-cast with a CaSO4 x 0.5H2O mold and nitrided in a N atm. containing 0 or 5 vol. % H at 1000 to 1420 deg. To remove the castings, the modeling faces were coated successively with an aq. salt soap and powdered cellulose containing Na alginate, and thus prevented the sticking problem.

  20. 14 CFR 29.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Casting factors. 29.621 Section 29.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.621 Casting factors. (a) General. The factors, tests, and...

  1. 14 CFR 27.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Casting factors. 27.621 Section 27.621 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.621 Casting factors. (a) General. The factors, tests, and...

  2. Iron/Phosphorus Alloys for Continuous Casting

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.

    1986-01-01

    Continuous casting becomes practicable because of reduced eutectic temperature. Experimental ferrous alloy has melting point about 350 degrees C lower than conventional steels, making possible to cast structural members and eliminating need for hot rolling. Product has normal metal structure and good physical properties. Process used to make rails, beams, slabs, channels, and pipes.

  3. PRODUCTION OF SLIP CAST CALCIA HOLLOWWARE

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1963-12-31

    A method for producing slip cast calcia hollow ware in which a dense calcia grain is suspended in isobutyl acetate or a mixture of tertiary amyl alcohol and o-xylene is presented. A minor amount of triethanolamine and oleic acid is added to the suspension vehicle as viscosity adjusting agents and the suspension is cast in a plaster mold, dried, and fired. (AEC)

  4. The CAST (Childhood Asperger Syndrome Test)

    ERIC Educational Resources Information Center

    Williams, Jo; Scott, Fiona; Stott, Carol; Allison, Carrie; Bolton, Patrick; Baron-Cohen, Simon; Brayne, Carol

    2005-01-01

    The Childhood Asperger Syndrome Test (CAST) is a parental questionnaire to screen for autism spectrum conditions. In this validation study, the CAST was distributed to 1925 children aged 5-11 in mainstream Cambridgeshire schools. A sample of participants received a full diagnostic assessment, conducted blind to screen status. The sensitivity of…

  5. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Examples of these castings are structural attachment fittings, parts of flight control systems, control... be applied in addition to those necessary to establish foundry quality control. The inspections must... except castings that are pressure tested as parts of hydraulic or other fluid systems and do not...

  6. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Examples of these castings are structural attachment fittings, parts of flight control systems, control... be applied in addition to those necessary to establish foundry quality control. The inspections must... except castings that are pressure tested as parts of hydraulic or other fluid systems and do not...

  7. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Examples of these castings are structural attachment fittings, parts of flight control systems, control... be applied in addition to those necessary to establish foundry quality control. The inspections must... except castings that are pressure tested as parts of hydraulic or other fluid systems and do not...

  8. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... attachment fittings, parts of flight control systems, control surface hinges and balance weight attachments...) of this section must be applied in addition to those necessary to establish foundry quality control... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems...

  9. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... attachment fittings, parts of flight control systems, control surface hinges and balance weight attachments...) of this section must be applied in addition to those necessary to establish foundry quality control... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems...

  10. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... attachment fittings, parts of flight control systems, control surface hinges and balance weight attachments...) of this section must be applied in addition to those necessary to establish foundry quality control... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems...

  11. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... attachment fittings, parts of flight control systems, control surface hinges and balance weight attachments...) of this section must be applied in addition to those necessary to establish foundry quality control... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems...

  12. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Examples of these castings are structural attachment fittings, parts of flight control systems, control... be applied in addition to those necessary to establish foundry quality control. The inspections must... except castings that are pressure tested as parts of hydraulic or other fluid systems and do not...

  13. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... attachment fittings, parts of flight control systems, control surface hinges and balance weight attachments...) of this section must be applied in addition to those necessary to establish foundry quality control... structural castings except castings that are pressure tested as parts of hydraulic or other fluid systems...

  14. 14 CFR 25.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Examples of these castings are structural attachment fittings, parts of flight control systems, control... be applied in addition to those necessary to establish foundry quality control. The inspections must... except castings that are pressure tested as parts of hydraulic or other fluid systems and do not...

  15. Casting Shadows in the Science Classroom.

    ERIC Educational Resources Information Center

    Nolan, Kathleen

    2003-01-01

    Uses the metaphor of shadows in a critical exploration of what it means to know and how the cultures of classrooms have shaped these images of knowing. Directs attention to objects that cast shadows on the learning and knowing of mathematics and science through the voices of preservice teachers. Discusses shadow casting toward textbooks, teachers,…

  16. Casting fine grained, fully dense, strong inorganic materials

    DOEpatents

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  17. Effects of Blockiness on the phase behavior of random copolymers

    NASA Astrophysics Data System (ADS)

    Vanderwoude, Gordon; Shi, An-Chang

    Theoretical study of random block copolymers remains a challenging topic due in part to the sheer enormity of their phase space. In this study we use the self-consistent field theory to investigate the phase behaviour of linear (AB)n-type and (AB)n-C-type multiblock copolymers with randomly distributed A and B blocks. In particular, we examine the effect of ``blockiness'' of the random copolymers on the formation of ordered phases. The blockiness can be quantified by the average length of individual A or B blocks, which can be taken as a measure of the heterogeneity of the random copolymers. We observed that the critical value of the χ parameter, at which the order-disorder transition occurs, decreases with increasing blockiness in the (AB)n copolymers. We also observed that the phase behaviour of the (AB)n-C copolymers depends strongly on the blockiness of the random chain. In particular, the blockiness governs whether or not the A/B blocks can phase separate within the A/B domains, thus dictating whether the (AB)n-C behaves as A/B-C diblock copolymers or as ABC terpolymers. The theoretical phase diagrams will be compared with available experiments.

  18. Manipulating Ordering Transitions in Interfacially Modified Block Copolymers

    SciTech Connect

    Singh, N.; Tureau, M; Epps, T

    2009-01-01

    We report a synthetic strategy that allows us to manipulate the interfacial region between blocks and control ordering transitions in poly(isoprene-b-styrene) [P(I-S)] block copolymers. This interfacial modification is accomplished by combining a semi-batch feed with anionic polymerization techniques. Using this approach, we are able to control the segmental composition and molecular interactions in our phase-separated block copolymers, independent of molecular weight and block constituents. A library of copolymers is prepared with various interfacial modifications to examine the effect of interfacial composition on copolymer self-assembly. The morphological characteristics of the self-assembled structures are investigated using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). Normal and inverse tapered block copolymers, containing approximately 15-35 vol% tapered material, show a measurable decrease in the order-disorder transition temperature (TODT) relative to the corresponding non-tapered diblock copolymers, with the inverse tapered materials showing the greatest deviation in TODT. Additionally, TODT was inversely related to the volume fraction of the tapered region in both normal and inverse tapered copolymer materials.

  19. Tribological Behavior of Aqueous Copolymer Lubricant in Mixed Lubrication Regime.

    PubMed

    Ta, Thi D; Tieu, A Kiet; Zhu, Hongtao; Zhu, Qiang; Kosasih, Prabouno B; Zhang, Jie; Deng, Guanyu

    2016-03-01

    Although a number of experiments have been attempted to investigate the lubrication of aqueous copolymer lubricant, which is applied widely in metalworking operations, a comprehensive theoretical investigation at atomistic level is still lacking. This study addresses the influence of loading pressure and copolymer concentration on the structural properties and tribological performance of aqueous copolymer solution of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) at mixed lubrication using a molecular dynamic (MD) simulation. An effective interfacial potential, which has been derived from density functional theory (DFT) calculations, was employed for the interactions between the fluid's molecules and iron surface. The simulation results have indicated that the triblock copolymer is physisorption on iron surface. Under confinement by iron surfaces, the copolymer molecules form lamellar structure in aqueous solution and behave differently from its bulk state. The lubrication performance of aqueous copolymer lubricant increases with concentration, but the friction reduction is insignificant at high loading pressure. Additionally, the plastic deformation of asperity is dependent on both copolymer concentration and loading pressure, and the wear behavior shows a linear dependence of friction force on the number of transferred atoms between contacting asperities. PMID:26828119

  20. Microemulsions of ABA Amphiphilic Block Copolymers and Surfactants

    NASA Astrophysics Data System (ADS)

    Braun-Shmueli, Liora; Netanel, Ortal; Regev, Oren; Gottlieb, Moshe

    2001-03-01

    The system composed of oil (decane), water and an ABA amphiphilic block copolymer is capable of exhibiting an extremely rich phase and rheological behavior. In this paper we describe the rheological properties of a synthetic amphiphilic block copolymer dissolved in a water-in-oil microemulsion with and without the stabilizing effect of small molecular weight surfactant molecules. The block copolymer is an ABA type copolymer composed of poly(oxyethylene) (PEO) as the hydrophilic A block and poly(dimethyl siloxane) (PDMS) as the hydrophobic center B block. The resulting copolymer is insoluble in water and hardly soluble in decane (good solvent for the PDMS). In the presence of water in oil microemulsion stabilized by the small molecular weight surfactant AOT a one-phase region is maintained when the copolymer is added. Yet, peculiar rheological behavior is observed. For constant water-microemulsion concentration (φ) addition of polymer increases the system viscosity as expected. Yet, the lower φ the higher the viscosity and at high φ the effect of polymer addition is quite low. Furthermore, the insoluble block copolymer in oil turns into a gel-like one phase system upon addition of small amounts of either water or water and surfactant solution. Experiments show that a maximum in elasticity or viscosity is attained at a droplet concentration equivalent to about 80 polymer chains per drop. Small angle x-ray and neutron scattering experiments were carried out to elucidate the system morphology.

  1. Using Tapered Block Copolymers to Create Conducting Nanomaterials

    NASA Astrophysics Data System (ADS)

    Epps, Thomas, III

    2014-03-01

    Soft materials, such as polymers, colloids, surfactants, and liquid crystals, are a technologically important class of matter employed in a variety of applications. One sub-class of soft material, block copolymers, provides the opportunity to design materials with attractive chemical and mechanical properties based on the ability to assemble into periodic structures with nanoscale domain spacings. Several applications for block copolymers currently under investigation in my group include battery and fuel cell membranes, analytical separations membranes, nano-tool templates, precursors to electronic arrays, and drug delivery vehicles. One area of recent progress in the group focuses on the behavior of conventional block copolymer and tapered block copolymer systems for lithium battery membrane applications. We find that we can tune poly(styrene- b-ethylene oxide) diblock copolymer nanostructures by adjusting the lithium counterion and lithium salt concentration, as well as the taper volume fraction and composition. Additionally, we can estimate the effective interaction parameters (χeff) for the salt-doped copolymers to determine the overall influence of tapering on the energetics of copolymer assembly. These tapered materials allow us to design nanostructured membrane systems with increased conductivity and improved mechanical properties in ion transport devices. We gratefully acknowledge AFOSR-PECASE (FA9550-09-1-0706) and NSF-CAREER (DMR-0645586) for financial support.

  2. Final report on Expendable Pattern Casting Technology

    SciTech Connect

    Not Available

    1990-07-01

    The Expendable Pattern Casting (EPC) process is a potential casting process breakthrough which could dramatically improve the competitiveness of the US foundry industry. Cooperatively supported by US Industry and the Department of Energy and managed by the American Foundrymen's Society, a project was started in May 1989 to develop and optimize expendable pattern casting technology. Four major tasks were conducted in the first phase of the project. Those tasks involved: (1) reviewing published literature to determine the major problems in the EPC process, (2) evaluating factors influencing sand flow and compaction, (3) evaluating and comparing factors influencing sand flow and compaction, (3) evaluating and comparing casting precision obtained in the EPC process with that obtained in other processes, and (4) identifying critical parameters that control dimensional precision and defect formation in EP castings. 26 refs., 27 figs., 11 tabs.

  3. The present status of dental titanium casting

    NASA Astrophysics Data System (ADS)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  4. The role of water in slip casting

    NASA Technical Reports Server (NTRS)

    Mccauley, R. A.; Phelps, G. W.

    1984-01-01

    Slips and casting are considered in terms of physical and colloidal chemistry. Casting slips are polydisperse suspensions of lyophobic particles in water, whose degree of coagulation is controlled by interaction of flocculating and deflocculating agents. Slip casting rate and viscosity are functions of temperature. Slip rheology and response to deflocculating agents varies significantly as the kinds and amounts of colloid modifiers change. Water is considered as a raw material. Various concepts of water/clay interactions and structures are discussed. Casting is a de-watering operation in which water moves from slip to cast to mold in response to a potential energy termed moisture stress. Drying is an evaporative process from a free water surface.

  5. INDIAN CASTE SYSTEM: HISTORICAL AND PSYCHOANALYTIC VIEWS.

    PubMed

    Vallabhaneni, Madhusudana Rao

    2015-12-01

    This paper elucidates the historical origins and transformations of India's caste system. Surveying the complex developments over many centuries, it points out that three positions have been taken in this regard. One suggests that the caste one is born into can be transcended within one's lifetime by performing good deeds. The other declares caste to be immutable forever. And, the third says that one can be reborn into a higher caste if one lives a virtuous life. Moving on to the sociopolitical realm, the paper notes how these positions have been used and exploited. The paper then attempts to anchor the existence and purpose of the Hindu caste system in Freud's ideas about group psychology and Klein's proposals of splitting and projective identification. The paper also deploys the large group psychology concepts of Volkan and the culturally nuanced psychoanalytic anthropology of Roland and Kakar. It concludes with delineating some ameliorative strategies for this tragic problem in the otherwise robust democratic society of India.

  6. Predictive Capabilities of Multiphysics and Multiscale Models in Modeling Solidification of Steel Ingots and DC Casting of Aluminum

    NASA Astrophysics Data System (ADS)

    Combeau, Hervé; Založnik, Miha; Bedel, Marie

    2016-08-01

    Prediction of solidification defects, such as macrosegregation and inhomogeneous microstructures, constitutes a key issue for industry. The development of models of casting processes needs to account for several imbricated length scales and different physical phenomena. For example, the kinetics of the growth of microstructures needs to be coupled with the multiphase flow at the process scale. We introduce such a state-of-the-art model and outline its principles. We present the most recent applications of the model to casting of a heavy steel ingot and to direct chill casting of a large Al alloy sheet ingot. Their ability to help in the understanding of complex phenomena, such as the competition between nucleation and growth of grains in the presence of convection of the liquid and of grain motion is shown, and its predictive capabilities are discussed. Key issues for future developments and research are addressed.

  7. Predictive Capabilities of Multiphysics and Multiscale Models in Modeling Solidification of Steel Ingots and DC Casting of Aluminum

    NASA Astrophysics Data System (ADS)

    Combeau, Hervé; Založnik, Miha; Bedel, Marie

    2016-06-01

    Prediction of solidification defects, such as macrosegregation and inhomogeneous microstructures, constitutes a key issue for industry. The development of models of casting processes needs to account for several imbricated length scales and different physical phenomena. For example, the kinetics of the growth of microstructures needs to be coupled with the multiphase flow at the process scale. We introduce such a state-of-the-art model and outline its principles. We present the most recent applications of the model to casting of a heavy steel ingot and to direct chill casting of a large Al alloy sheet ingot. Their ability to help in the understanding of complex phenomena, such as the competition between nucleation and growth of grains in the presence of convection of the liquid and of grain motion is shown, and its predictive capabilities are discussed. Key issues for future developments and research are addressed.

  8. BMM SHAKEOUT AND VIBRATING CONVEYOR TRANSPORT SAND AND CASTINGS TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMM SHAKEOUT AND VIBRATING CONVEYOR TRANSPORT SAND AND CASTINGS TO SEPARATIONS SCREENS. - Southern Ductile Casting Company, Shaking, Degating & Sand Systems, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  9. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  10. Non-Heat Treatable Alloy Sheet Products

    SciTech Connect

    Hayden, H.W.; Barthold, G.W.; Das, S.K.

    1999-08-01

    ALCAR is an innovative approach for conducting multi-company, pre-competitive research and development programs. ALCAR has been formed to crate a partnership of aluminum producers, the American Society of Mechanical Engineers Center for Research and Technology Development (ASME/CRTD), the United States Department of Energy (USDOE), three USDOE National Laboratories, and a Technical Advisory Committee for conducting cooperative, pre-competitive research on the development of flower-cost, non-heat treated (NHT) aluminum alloys for automotive sheet applications with strength, formability and surface appearance similar to current heat treated (HT) aluminum alloys under consideration. The effort has been supported by the USDOE, Office of Transportation Technology (OTT) through a three-year program with 50/50 cost share at a total program cost of $3 million. The program has led to the development of new and modified 5000 series aluminum ally compositions. Pilot production-size ingots have bee n melted, cast, hot rolled and cold rolled. Stamping trials on samples of rolled product for demonstrating production of typical automotive components have been successful.

  11. Effect of water uptake on morphology of polymerized ionic liquid block copolymers and random copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Tsen-Shan; Ye, Yuesheng; Elabd, Yossef; Winey, Karen

    2012-02-01

    Dynamic studies of polymer morphology probe how the physical properties of polymerized ionic liquids are affected by the environment, such as temperature or moisture. For a series of poly(methyl methacrylate-b-1-[2-(methacryloyloxy)ethyl]-3-Butylimidazolium X^-) block and random copolymers with hydrophilic counterions (X^- = Br^-, HCO3^-, OH^-), the introduction of water vapor to the system can swell the ionic liquid block, causing enlarged hydrophilic domains and swollen channels for ion conduction. This expected expansion of ionic liquid domains in humid environments can be used to intelligently design these copolymers for use in technological applications. The effect of water vapor exposure in these imidazolium-based acrylate polymers is studied by small-angle X-ray scattering. These morphology results will be discussed alongside complementary studies of water uptake and ion conductivity.

  12. Electrically conductive doped block copolymer of polyacetylene and polyisoprene

    DOEpatents

    Aldissi, Mahmoud

    1985-01-01

    An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.

  13. Polysaccharide based Copolymers as Supramolecular Systems in Biomedical Applications.

    PubMed

    Célia Monteiro de Paula, Regina; Andrade Feitosa, Judith Pessoa; Beserra Paula, Haroldo César

    2015-01-01

    Polysaccharides are natural polymers, obtained from a large variety of sources ranging from fungi to more complex organisms such as birds and whales. Their use for pharmaceutical and biomedical applications has been the subject of numerous researches by the world´s academia. Polysaccharide chemical/physical modifications leading to graft copolymers are discussed in this review, focusing on those nanosystems that are potential candidates for drug delivery applications. Therefore, this review focuses on the biomedical application of polysaccharide based copolymers, particularly as nanocarriers. Copolymer of polysaccharides such as alginate, cellulose, chitosan, dextran, guar, hyaluronic acid, pullulan and starch as drug delivery nanocarriers will be discussed. PMID:26424388

  14. Neutron reflectivity studies of composite nanoparticle - copolymer thin films

    NASA Astrophysics Data System (ADS)

    Lauter-Pasyuk, V.; Lauter, H. J.; Ausserre, D.; Gallot, Y.; Cabuil, V.; Hamdoun, B.; Kornilov, E. I.

    1998-06-01

    Neutron reflection was used for the investigation of a new class of copolymers - composite materials, consisting of symmetric polystyrene-polybuthylmethacrylate (PS-PBMA) diblock copolymer with incorporated nanoparticles γ-Fe 2O 3 of a few nanometers in diameter. The presence of the nanoparticles induces an elastic distortion of the copolymer matrix. From the experiments we obtained information about the lamellar order of the polymer matrix, the distribution of the nanoparticles in the film and the distortion of the interfaces caused by the nanoparticles.

  15. Photocrosslinkable copolymers for non-linear optical applications

    SciTech Connect

    Kawatsuki, N.; Pakbaz, K.; Schmidt, H.W.

    1993-12-31

    New photocrosslinkable copolymers have been synthesized and applied as non-linear optical materials. The copolymers are based on methyl methacrylate, a photo-excitable benzophenone monomer, a non-linear optical active 4`-[(2-hydroxyethyl)ethylamino]-4-nitro-azobenzene (disperse red 1) side chain monomer and a crosslinkable 2-butenyl monomer. These copolymers can be crosslinked by UV light at 366 nm in the poled state and show a stable alignment of NLO chromophore by monitoring the adsorption spectra. The crosslinked and poled film did not change its alignment after storing 4 weeks at room temperature.

  16. Rapid biofabrication of tubular tissue constructs by centrifugal casting in a decellularized natural scaffold with laser-machined micropores.

    PubMed

    Kasyanov, Vladimir A; Hodde, Jason; Hiles, Michael C; Eisenberg, Carol; Eisenberg, Leonard; De Castro, Luis E F; Ozolanta, Iveta; Murovska, Modra; Draughn, Robert A; Prestwich, Glenn D; Markwald, Roger R; Mironov, Vladimir

    2009-01-01

    Centrifugal casting allows rapid biofabrication of tubular tissue constructs by suspending living cells in an in situ cross-linkable hydrogel. We hypothesize that introduction of laser-machined micropores into a decellularized natural scaffold will facilitate cell seeding by centrifugal casting and increase hydrogel retention, without compromising the biomechanical properties of the scaffold. Micropores with diameters of 50, 100, and 200 mum were machined at different linear densities in decellularized small intestine submucosa (SIS) planar sheets and tubular SIS scaffolds using an argon laser. The ultimate stress and ultimate strain values for SIS sheets with laser-machined micropores with diameter 50 mum and distance between holes as low as 714 mum were not significantly different from unmachined control SIS specimens. Centrifugal casting of GFP-labeled cells suspended in an in situ cross-linkable hyaluronan-based hydrogel resulted in scaffold recellularization with a high density of viable cells inside the laser-machined micropores. Perfusion tests demonstrated the retention of the cells encapsulated within the HA hydrogel in the microholes. Thus, an SIS scaffold with appropriately sized microholes can be loaded with hydrogel encapsulated cells by centrifugal casting to give a mechanically robust construct that retains the cell-seeded hydrogel, permitting rapid biofabrication of tubular tissue construct in a "bioreactor-free" fashion.

  17. Vertically scanned laser sheet microscopy.

    PubMed

    Dong, Di; Arranz, Alicia; Zhu, Shouping; Yang, Yujie; Shi, Liangliang; Wang, Jun; Shen, Chen; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Laser sheet microscopy is a widely used imaging technique for imaging the three-dimensional distribution of a fluorescence signal in fixed tissue or small organisms. In laser sheet microscopy, the stripe artifacts caused by high absorption or high scattering structures are very common, greatly affecting image quality. To solve this problem, we report here a two-step procedure which consists of continuously acquiring laser sheet images while vertically displacing the sample, and then using the variational stationary noise remover (VSNR) method to further reduce the remaining stripes. Images from a cleared murine colon acquired with a vertical scan are compared with common stitching procedures demonstrating that vertically scanned light sheet microscopy greatly improves the performance of current light sheet microscopy approaches without the need for complex changes to the imaging setup and allows imaging of elongated samples, extending the field of view in the vertical direction.

  18. Hyperspectral light sheet microscopy.

    PubMed

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O; Huisken, Jan

    2015-01-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos. PMID:26329685

  19. Hyperspectral light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  20. Hyperspectral light sheet microscopy

    PubMed Central

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-01-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos. PMID:26329685