Science.gov

Sample records for copolymer modified cement

  1. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.

    PubMed

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-06-01

    Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water. PMID:19269267

  2. Cavitation in block copolymer modified epoxy

    NASA Astrophysics Data System (ADS)

    Declet-Perez, Carmelo; Francis, Lorraine; Bates, Frank

    2013-03-01

    Today, brittleness in epoxy networks limits most commercial applications. Significant toughness can be imparted by adding small amounts of micelle forming block copolymers (BCP) without compromising critical properties such as high use temperature and modulus. Curing the network locks in the self-assembled BCP micellar structures formed in the monomer resin providing control of the resulting morphology. Despite significant research over the last decade, a complete description of the parameters influencing toughness in block copolymer modified epoxies is still lacking. In this presentation we compare the ultimate mechanical behavior of epoxies modified with spherical micelle forming BCP's containing rubbery and glassy cores using real-time in-situ small-angle X-ray scattering (SAXS) performed during tensile deformation. Striking differences in the 2D SAXS patterns were documented for epoxies modified with rubbery (PEP) versus glassy (PS) micelle cores. Rubbery cores dilate by 100% in volume upon specimen yielding, while the glassy micelle cores deform at approximately constant volume. These results provide direct evidence of a cavitation mediated mechanism for toughness in block copolymer modified epoxies. We further interpret characteristic butterfly features in the 2D SAXS patterns in terms of epoxy network deformation. Support was provided by the NSF sponsored MRSEC at the University of Minnesota

  3. Toughness in block copolymer modified epoxies

    NASA Astrophysics Data System (ADS)

    Declet-Perez, Carmelo

    One of the major shortcomings preventing the widespread use of epoxy resins in engineering applications is the inherent brittleness of these materials. The incorporation of small amounts of amphiphilic block copolymers into the formulation is one of the most promising strategies to toughen epoxies. These molecules are known to form nanostructures in the epoxy resin that can be preserved upon curing. This strategy is very attractive since significant enhancements in toughness can be obtained without detrimental effects on other properties of the matrix. Despite many examples of successful implementation, an in-depth understanding of the factors that lead to toughness in block copolymer modified epoxies is still elusive. The goal of this dissertation is to understand, first, the deformation mechanisms leading to toughness and, second, how different formulation parameters affect these processes. In this work we used two types of block copolymer modifiers, which produced nanostructures with different physical properties. These block copolymers self-assembled into well-dispersed spherical micelles with either rubbery or glassy cores in various epoxy formulations. Both of these modifiers toughened different epoxy formulations, although to different extents. The rubbery core micelles consistently outperformed the glassy core micelles by roughly a factor of two. While the toughening afforded by the rubbery core micelles was consistent with the current understanding of toughening, the results from the glassy core micelles could not be explained with the same reasoning. In order to understand the deformation mechanisms leading to different levels of toughness, we performed small-angle x-ray scattering experiments while simultaneously deforming our material. This combination of techniques, referred to as in-situ SAXS, allowed us to monitor changes in the structure of the block copolymer micelles as a result of the applied load. With this technique, we showed that the rubbery

  4. Morphological studies on block copolymer modified PA 6 blends

    NASA Astrophysics Data System (ADS)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  5. Morphological studies on block copolymer modified PA 6 blends

    SciTech Connect

    Poindl, M. E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C. E-mail: christian.bonten@ikt.uni-stuttgart.de

    2014-05-15

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  6. Cortical bone screw fixation in ionically modified apatite cements.

    PubMed

    Barralet, J E; Duncan, C O; Dover, M S; Bassett, D C; Nishikawa, H; Monaghan, A; Gbureck, U

    2005-05-01

    Hydroxyapatite cements are used in reconstruction of the face; usually in well-defined cavities where the cement can be stabilized without the need for internal fixation. A hydroxyapatite cement that could enable screw fixation and some loading therefore has considerable potential in maxillofacial reconstruction. It has been demonstrated recently that water demand of calcium phosphate cements can be reduced by ionically modifying the liquid component. This study investigated the capacity of an ionically modified precompacted apatite cement to retain self-tapping cortical bone screws. Screw pullout forces were determined in the direction of the screw long axis and perpendicular to it, using cortical bone and polymethylmethacrylate cement as a control. In bending pullout tests, measured forces to remove screws from ionically modified precompacted cement were insignificantly different from cortical bone. However, pullout forces of bone screws from hydroxyapatite cement decreased with aging time in vitro.

  7. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrile rubber modified acrylonitrile-methyl... Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile... rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by...

  8. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Nitrile rubber modified acrylonitrile-methyl... Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile... rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by...

  9. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nitrile rubber modified acrylonitrile-methyl... Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile... rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by...

  10. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Nitrile rubber modified acrylonitrile-methyl... Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile... rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by...

  11. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  12. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  13. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  14. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  15. 40 CFR 721.7200 - Perfluoroalkyl aromatic carbamate modified alkyl methacrylate copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... modified alkyl methacrylate copolymer. 721.7200 Section 721.7200 Protection of Environment ENVIRONMENTAL... alkyl methacrylate copolymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl aromatic carbamate modified...

  16. Radical-cured block copolymer-modified thermosets

    SciTech Connect

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S.

    2013-01-10

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  17. A new method to analyze copolymer based superplasticizer traces in cement leachates.

    PubMed

    Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François

    2011-03-15

    Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste

  18. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    PubMed

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics.

  19. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

  20. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Nitrile rubber modified acrylonitrile-methyl... Components of Single and Repeated Use Food Contact Surfaces § 177.1480 Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile-methyl acrylate copolymers...

  1. Injectable citrate-modified Portland cement for use in vertebroplasty

    PubMed Central

    Wynn-Jones, Gareth; Shelton, Richard M; Hofmann, Michael P

    2014-01-01

    The injectability of Portland cement (PC) with several citrate additives was investigated for use in clinical applications such as vertebroplasty (stabilization of a fractured vertebra with bone cement) using a syringe. A 2-wt % addition of sodium or potassium citrate with PC significantly improved cement injectability, decreased cement setting times from over 2 h to below 25 min, while increasing the compressive strength to a maximum of 125 MPa. Zeta-potential measurements indicated that the citrate anion was binding to one or more of the positively charged species causing charged repulsion between cement particles which dispersed aggregates and caused the liquefying effect of the anion. Analysis of the hydrating phases of PC indicated that the early strength producing PC phase (ettringite) developed within the first 2 h of setting following addition of the citrate anion, while this did not occur in the control cement (PC only). Within 24 h ettringite developed in PC as well as calcium–silicate–hydrate (C–S–H), the major setting phase of PC, whereas cements containing citrate did not develop this phase. The evidence suggested that in the presence of citrate the cements limited water supply appeared to be utilized for ettringite formation, producing the early strength of the citrate cements. The present study has demonstrated that it is possible to modify PC with citrate to both improve the injectability and crucially reduce the setting times of PC while improving the strength of the cement. © 2014 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1799–1808, 2014. PMID:24711245

  2. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  3. Formulation and make-up of simulated cement modified water

    SciTech Connect

    Gdowski, G.

    1997-09-12

    This procedure describes the formulation and make-up of Simulated Cement-Modified Waters (SCMW), which are aqueous solutions to be used for Activity E-20-50 Long-Term Corrosion Studies. These solutions simulate the changes to representative Yucca Mountain water chemistry because of prolonged contact with aged cement. The representative water was chosen as J-13 well water [Harrar, 1990]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock.

  4. Modified sulfur cement solidification of low-level wastes

    SciTech Connect

    Not Available

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  5. Additives for cement compositions based on modified peat

    NASA Astrophysics Data System (ADS)

    Kopanitsa, Natalya; Sarkisov, Yurij; Gorshkova, Aleksandra; Demyanenko, Olga

    2016-01-01

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  6. Influence of nano-dispersive modified additive on cement activity

    NASA Astrophysics Data System (ADS)

    Sazonova, Natalya; Badenikov, Artem; Skripnikova, Nelli; Ivanova, Elizaveta

    2016-01-01

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4-6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C3S and β-C2S.

  7. Durability of incinerator ash waste encapsulated in modified sulfur cement

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs.

  8. Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?

    PubMed Central

    Cabral, Maria Fernanda Costa; Martinho, Roberto Luiz de Menezes; Guedes-Neto, Manoel Valcácio; Rebelo, Maria Augusta Bessa; Pontes, Danielson Guedes

    2015-01-01

    Objectives The aim of this study was to evaluate the fluoride release of conventional glass ionomer cements (GICs) and resin-modified GICs. Materials and Methods The cements were grouped as follows: G1 (Vidrion R, SS White), G2 (Vitro Fil, DFL), G3 (Vitro Molar, DFL), G4 (Bioglass R, Biodinâmica), and G5 (Ketac Fil, 3M ESPE), as conventional GICs, and G6 (Vitremer, 3M ESPE), G7 (Vitro Fil LC, DFL), and G8 (Resiglass, Biodinâmica) as resin-modified GICs. Six specimens (8.60 mm in diameter; 1.65 mm in thickness) of each material were prepared using a stainless steel mold. The specimens were immersed in a demineralizing solution (pH 4.3) for 6 hr and a remineralizing solution (pH 7.0) for 18 hr a day. The fluoride ions were measured for 15 days. Analysis of variance (ANOVA) and Tukey's test with 5% significance were applied. Results The highest amounts of fluoride release were found during the first 24 hr for all cements, decreasing abruptly on day 2, and reaching gradually decreasing levels on day 7. Based on these results, the decreasing scale of fluoride release was as follows: G2 > G3 > G8 = G4 = G7 > G6 = G1 > G5 (p < 0.05). Conclusions There were wide variations among the materials in terms of the cumulative amount of fluoride ion released, and the amount of fluoride release could not be attributed to the category of cement, that is, conventional GICs or resin-modified GICs. PMID:26295024

  9. Using click chemistry to modify block copolymers and their morphologies

    NASA Astrophysics Data System (ADS)

    Wollbold, Johannes

    Microphase separated block copolymers (BCPs) are emerging as promising templates and scaffolds for the fabrication of nanostructured materials. To achieve the desired nanostructures, it is necessary to establish convenient approaches to control the morphology of BCPs. It remains challenging to induce morphological transitions of BCPs via external fields. Click chemistry, especially alkyne/azide click chemistry, has been widely used to synthesize novel functionalized materials. Here, we demonstrate that alkyne/azide click chemistry can be used as an efficient approach to chemically modify BCPs and therefore induce morphological transitions. Alkyne-functionalized diblock copolymers (di-BCPs) poly(ethylene oxide)- block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) have been successfully synthesized. When the di-BCP is blended with an azide additive Rhodamine B azide and annealed at elevated temperatures, click reaction occurs between the two components. With the Rhodamine B structure attached to the polymer backbone, the di-BCP shows dramatic change in the interactions between the two blocks and the volume fraction of each block. As a result, morphological transitions, such as disorder-to-order transitions (DOTs) and order-to-order transitions (OOTs), are observed. The reaction kinetics and morphology evolution during the click chemistry induced DOTs have been investigated by in-situ and ex-situ characterizations, and fast kinetics properties are observed. Microphase separated morphologies after the DOTs or OOTs are dictated by the composition of neat di-BCPs and the mole ratio between the alkyne and azide groups. The DOTs of PEO-b-P(nBMA-r-PgMA) di-BCPs induced by alkyne/azide click chemistry have also been achieved in thin film geometries, with comparable kinetics to bulk samples. The orientation of the microdomains is dependent on the grafting density of Rhodamine B structure as well as film thickness. At higher grafting densities

  10. Thermal and electrical behavior of nano-modified cement mortar

    NASA Astrophysics Data System (ADS)

    Exarchos, D. A.; Dalla, P. T.; Tragazikis, I. K.; Alafogianni, P.; Barkoula, N.-M.; Paipetis, A. S.; Dassios, K. G.; Matikas, T. E.

    2014-04-01

    This research aims in characterizing modified cement mortar with carbon nanotubes (CNTs) that act as nanoreinforcements leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The effective thermal properties of the modified nano-composites were evaluated using IR Thermography. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. To eliminate any polarization effects the specimens were dried in an oven before testing. In this work, the thermal and electrical properties of the nano-modified materials were studied by nondestructively monitoring their structural integrity in real time using the intrinsic multi-functional properties of the material as damage sensors.

  11. A Comparative Evaluation of Microleakage of Glass Ionomer Cement and Chitosan-modified Glass Ionomer Cement: An in vitro Study

    PubMed Central

    Thomas, Abi Mathew; Chopra, Saroj; Koshy, Stephen

    2014-01-01

    ABSTRACT Objective: To do a comparative study of microleakage of glass ionomer cement (GIC) and chitosan modified glass ionomer cement and evaluate which exhibited lesser microleakage. Materials and methods: Sixty freshly extracted sound primary molar teeth were obtained. Two groups of samples were created for the study which comprised of group I (glass ionomer cement—GIC) and group II (Chitosan modified glass ionomer cement). Class V cavities were prepared on the buccal surfaces. All the tooth surfaces except the restoration and a 1 mm zone adjacent to its margins were covered with two coats of varnish. The specimens were then immersed in 2% basic fuschin dye solution for 24 hours. The teeth were sectioned into two halves buccolingually in an occlusoapical direction. Sections were viewed under stereomicroscope and the degree of microleakage was evaluated using specific scoring criteria. For comparative evaluation of microleakage scores between glass ionomer cement and chitosan modified cement, a nonparametric Mann-Whitney statistical analysis was done. Results: Statistical analysis showed no significant differences between groups I and II with the p-value at >0.05. Conclusion: Chitosan modified GIC holds great promise for general dentistry as a future restorative material with microleakage properties similar to or better than GIC. How to cite this article: Abraham D, Thomas AM, Chopra S, Koshy S. A Comparative Evaluation of Microleakage of Glass Ionomer Cement and Chitosan-modified Glass Ionomer Cement: An in vitro Study. Int J Clin Pediatr Dent 2014;7(1):6-10. PMID:25206230

  12. Manipulating Ordering Transitions in Interfacially Modified Block Copolymers

    SciTech Connect

    Singh, N.; Tureau, M; Epps, T

    2009-01-01

    We report a synthetic strategy that allows us to manipulate the interfacial region between blocks and control ordering transitions in poly(isoprene-b-styrene) [P(I-S)] block copolymers. This interfacial modification is accomplished by combining a semi-batch feed with anionic polymerization techniques. Using this approach, we are able to control the segmental composition and molecular interactions in our phase-separated block copolymers, independent of molecular weight and block constituents. A library of copolymers is prepared with various interfacial modifications to examine the effect of interfacial composition on copolymer self-assembly. The morphological characteristics of the self-assembled structures are investigated using small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). Normal and inverse tapered block copolymers, containing approximately 15-35 vol% tapered material, show a measurable decrease in the order-disorder transition temperature (TODT) relative to the corresponding non-tapered diblock copolymers, with the inverse tapered materials showing the greatest deviation in TODT. Additionally, TODT was inversely related to the volume fraction of the tapered region in both normal and inverse tapered copolymer materials.

  13. Modified-sulfur cements for use in concretes, flexible pavings, coatings, and grouts

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1981-05-01

    A family of modified-sulfur cements was developed for the preparation of construction materials with improved properties. Various types of sulfur cements were prepared by reacting sulfur with mixtures of dicyclopentadiene and oligomers of cyclopentadiene. Durable cements were prepared with structural characteristics ranging from rigid to flexible. These cements were used to prepare corrosion-resistant materials for use in a wide variety of industrial applications where resistance to acidic and salt conditions is needed. These materials were prepared as rigid concretes, flexible pavings, spray coatings, and grouts. Production of modified-sulfur cements in a commercial-size plant was demonstrated.

  14. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    SciTech Connect

    Boncukcuoglu, Recep . E-mail: rboncuk@yahoo.com; Icelli, Orhan; Erzeneoglu, Salih; Muhtar Kocakerim, M.

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays of the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.

  15. Solubility of a resin-modified glass ionomer cement.

    PubMed

    Quackenbush, B M; Donly, K J; Croll, T P

    1998-01-01

    Thirty standardized discs were fabricated from a resin-modified glass ionomer cement (Vitremer -3M) using three different powder/liquid ratios. All specimens were immediately weighed. Specimens were stored in artificial saliva for thirty days. Twice each day the specimens received a 30-min. artificial caries challenge (pH 4.4) and were returned to artificial saliva. At the end of the thirty-day experimental period, the specimens were dried and weighed again. Duncan's Multiple Range Test indicated that the 145 mg powder/35 mg liquid ratio had significantly less weight loss than the 145 mg powder/105 mg liquid ratio (p < 0.05). The results appear to demonstrate that solubility decreases as the aluminosilicate glass powder increases. PMID:9795733

  16. A MODIFIED PMMA CEMENT (SUB-CEMENT) FOR ACCELERATED FATIGUE TESTING OF CEMENTED IMPLANT CONSTRUCTS USING CADAVERIC BONE

    PubMed Central

    Race, Amos; Miller, Mark A.; Mann, Kenneth A.

    2008-01-01

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress intensity factor, fatigue crack propagation rates for sub-cement were higher by a factor of 25 ± 19. When tested in a simplified 2 1/2D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  17. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  18. Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers.

    PubMed

    Tabasum, Shazia; Zuber, Mohammad; Jabbar, Abdul; Zia, Khalid Mahmood

    2013-05-15

    Polyurethane acrylate copolymers (PAC) were synthesized via emulsion polymerization following three step synthesis process using toluene-2,4-diisocyanate, hydroxy terminated poly(caprolactone) diol, 2-hydroxyethylacrylate (HEA) and butyl acrylate (BuA). Structural characteristics of the synthesized polyurethane acrylate copolymer (PAC) were studied using Fourier Transform Infrared (FT-IR) spectrophotometer and are with accordance with the proposed PAC structure. The physicochemical properties such as solid contents (%), tackiness, film appearance and emulsion stability were studied, discussed and co-related with other findings. The plain weave poly-cotton printed fabrics after application of PAC was evaluated applying colorfastness standard test method. The results revealed that emulsion stability is the main controlling factor of the synthesized material in order to get better applications and properties. The emulsion stability of the synthesized material increased with increase in molecular weight of the polycaprolactone diol. PMID:23544644

  19. Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers.

    PubMed

    Tabasum, Shazia; Zuber, Mohammad; Jabbar, Abdul; Zia, Khalid Mahmood

    2013-05-15

    Polyurethane acrylate copolymers (PAC) were synthesized via emulsion polymerization following three step synthesis process using toluene-2,4-diisocyanate, hydroxy terminated poly(caprolactone) diol, 2-hydroxyethylacrylate (HEA) and butyl acrylate (BuA). Structural characteristics of the synthesized polyurethane acrylate copolymer (PAC) were studied using Fourier Transform Infrared (FT-IR) spectrophotometer and are with accordance with the proposed PAC structure. The physicochemical properties such as solid contents (%), tackiness, film appearance and emulsion stability were studied, discussed and co-related with other findings. The plain weave poly-cotton printed fabrics after application of PAC was evaluated applying colorfastness standard test method. The results revealed that emulsion stability is the main controlling factor of the synthesized material in order to get better applications and properties. The emulsion stability of the synthesized material increased with increase in molecular weight of the polycaprolactone diol.

  20. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    PubMed

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  1. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    PubMed Central

    Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes. PMID:25254256

  2. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  3. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  4. Self-cleaning and mechanical properties of modified white cement with nanostructured TiO2.

    PubMed

    Khataee, R; Heydari, V; Moradkhannejhad, L; Safarpour, M; Joo, S W

    2013-07-01

    In the present study, self-cleaning and mechanical properties of white Portland cement by addition of commercial available TiO2 nanoparticles with the average particle size of 80 nm were investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET were used to characterize TiO2 nanoparticles. For determination of self-cleaning properties of TiO2-modified white cement, colorimetric tests in decolorization of C.I. Basic Red 46 (BR46) in comparison to unmodified cement samples was applied. The results indicated that with increasing the amount of TiO2 nanoparticles in modified cement, self-cleaning property of the samples increased. The mechanical properties of TiO2-modified and unmodified cement samples, such as time of setting of hydraulic cement, compressive strength of hydraulic cement mortar and flexural strength of hydraulic cement mortar were examined. The results indicated that addition of TiO2 nanoparticles up to maximum replacement level of 1.0% improved compressive and flexural strength and decreased its setting time.

  5. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP.

    PubMed

    Xiang, Tao; Zhang, Li-Sha; Wang, Rui; Xia, Yi; Su, Bai-Hai; Zhao, Chang-Sheng

    2014-10-15

    For blood-contacting materials, good blood compatibility, especially good anticoagulant property is of great importance. Zwitterionic polymers have been proved to be resistant to nonspecific protein adsorption and platelet adhesion; however, their anticoagulant property is always inadequate. In this study, two kinds of zwitterionic copolymers (sulfobetaine methacrylate and sodium p-styrene sulfonate random copolymer and block copolymer) with sulfonic groups were covalently grafted from polysulfone (PSf) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) to improve blood compatibility. Field emission scanning electron microscopy (FE-SEM), attenuated total reflectance-Fourier transform infrared spectra (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and static water contact angle (WCA) were applied to characterize the morphologies, chemical compositions and hydrophilicity of the modified membranes. All the zwitterionic copolymer modified membranes showed improved blood compatibility, especially the anticoagulant property was obviously enhanced compared to the pristine PSf and simple zwitterionic polymer modified membranes. We also found that the random copolymer modified membranes showed better resistance to platelet adhesion than the block copolymer modified membranes. The zwitterionic copolymer modified membranes with integrated antifouling property and blood compatibility provided wide choice for specific applications such as hemodialysis, hemofiltration, and plasma separation. PMID:25072519

  6. Photoresponsive retinal-modified silk-elastin copolymer.

    PubMed

    Sun, Zhongyuan; Qin, Guokui; Xia, Xiaoxia; Cronin-Golomb, Mark; Omenetto, Fiorenzo G; Kaplan, David L

    2013-03-01

    The chimeric proteins, silk-elastin-like protein polymers (SELPs), consist of repeating units of silk and elastin to retain the mechanical strength of silk, while incorporating the dynamic environmental sensitivity of elastin. A retinal-modified SELP was prepared, modified, and studied for photodynamic responses. The protein was designed, cloned, expressed, and purified with lysine present in the elastin repeats. The purified protein was then chemically modified with the biocompatible moiety retinal via the lysine side chains. Structural changes with the polymer were assessed before and after retinal modification using Fourier transform infrared spectroscopy and circular dichroism spectroscopy. Optical studies and spectral analysis were performed before and after retinal modification. The random-coil fraction of the protein increased after retinal modification while the β-sheet fraction significantly decreased. Birefringence of the modified protein was induced when irradiated with a linearly polarized 488 nm laser light. Retinal modification of this protein offers a useful strategy for potential use in biosensors, controlled drug delivery, and other areas of biomedical engineering. PMID:23383965

  7. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    PubMed

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  8. Characterization of modified calcium-silicate cements exposed to acidic environment

    SciTech Connect

    Camilleri, Josette

    2011-01-15

    Portland cement which is used as a binder in concrete in the construction industry has been developed into a biomaterial. It is marketed as mineral trioxide aggregate and is used in dentistry. This material has been reported to be very biocompatible and thus its use has diversified. The extended use of this material has led to developments of newer versions with improved physical properties. The aim of this study was to evaluate the effect of acidic environments found in the oral cavity on fast setting calcium silicate cements with improved physical properties using a combination of techniques. Two fast setting calcium silicate cements (CSA and CFA) and two cement composites (CSAG and CFAG) were assessed by subjecting the materials to lactic acid/sodium lactate buffer gel for a period of 28 days. At weekly intervals the materials were viewed under the tandem scanning confocal microscope (TSM), and scanning electron microscope (SEM). The two prototype cements exhibited changes in their internal chemistry with no changes in surface characteristics. Since the changes observed were mostly sub-surface evaluation of surface characteristics of cement may not be sufficient in the determination of chemical changes occurring. - Research Highlights: {yields} An acidic environment affects modified fast setting calcium silicate-based cements. {yields} No surface changes are observed in acidic environment. {yields} An acidic environment causes sub-surface changes in the material chemistry which are only visible in fractured specimens. {yields} A combination of techniques is necessary in order to evaluate the chemical changes occurring.

  9. SODIUM POLYPHOSPHATE-MODIFIED CLASS C/CLASS F FLY ASH BLEND CEMENTS FOR GEOTHERMAL WELLS.

    SciTech Connect

    SUGAMA, T.; BROTHERS, L.E.; KASPEREIT, D.

    2006-02-01

    The authors investigated the usefulness of the coal combustion by-products, Class C fly ash (C) and Class F fly ash (F), in developing cost-effective acid-resistant phosphate-based cements for geothermal wells. In the temperature range of 20-100 C, sodium polyphosphate (NaP) as the acidic cement-forming solution preferentially reacted with calcium sulfate and lime in the C as the base solid reactant through the exothermic acid-base reaction route, rather than with the tricalcium aluminate in C. This reaction led to the formation of hydroxyapatite (HOAp). In contrast, there was no acid-base reaction between the F as the acidic solid reactant and NaP. After autoclaving the cements at 250 C, a well-crystallized HOAp phase was formed in the NaP-modified C cement that was responsible for densifying the cement's structure, thereby conferring low water permeability and good compressive strength on the cement. however, the HOAp was susceptible to hot CO{sub 2}-laden H{sub 2}SO{sub 4} solution (pH 1.1), allowing some acid erosion of the cement. On the other hand, the mullite in F hydrothermally reacted with the Na from NaP to form the analcime phase. Although this phase played a pivotal role in abating acid erosion, its generation created an undesirable porous structure in the cement. They demonstrated that blending fly ash with a C/F ratio of 70/30 resulted in the most suitable properties for acid-resistant phosphate-based cement systems.

  10. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    NASA Astrophysics Data System (ADS)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  11. Low-modulus PMMA bone cement modified with castor oil.

    PubMed

    López, Alejandro; Hoess, Andreas; Thersleff, Thomas; Ott, Marjam; Engqvist, Håkan; Persson, Cecilia

    2011-01-01

    Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young's moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young's modulus, yield strength, maximum polymerization temperature, doughing time, setting time and the complex viscosity curves during curing, were determined. The cytotoxicity of the materials extracts was assessed on cells of an osteoblast-like cell line. The addition of up to 12 wt% castor oil decreased yield strength from 88 to 15 MPa, Young's modulus from 1500 to 446 MPa and maximum polymerization temperature from 41.3 to 25.6°C, without affecting the setting time. However, castor oil seemed to interfere with the polymerization reaction, giving a negative effect on cell viability in a worst-case scenario.

  12. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  13. An evaluation of commercial and experimental resin-modified glass-ionomer cements

    NASA Astrophysics Data System (ADS)

    Kanchanavasita, Widchaya

    Glass-ionomer cement (GIG) has become widely accepted as a restorative material due to its bonding ability and sustained release of fluoride. The cement is, however, sensitive to moisture imbalance and lacks toughness. Recently, resin-modified glass-ionomer cements (RMGIC) have been introduced. These materials contain monomeric species, such as 2-hydroxyethyl methacrylate (HEMA) in addition to the components of the conventional glass-ionomer cements. Disadvantages of RMGICs include a relatively high contraction and exotherm on polymerisation. HEMA is known to be cytotoxic, leading to problems of biocompatibility, and polyHEMA swells on exposure to water, leading to dimensional instability of the cements. Addressing these problems is important in the development of the RMGICs. Using alternative monomers to replace or reduce the amount of HEMA used in the current RMGIC formulations would be appropriate. This study was divided into two parts. Initially certain properties such as water sorption, micro-hardness, flexural strength and polymerisation exotherm of commercially available RMGICs were evaluated. Long-term storage of RMGICs in aqueous solutions resulted in their high water uptakes and solubilities and large volumetric expansions. However, the surface hardness and strengths of the restorative grade RMGICs were not affected on storage in distilled water. When the materials were immersed in artificial saliva, significantly higher water uptake were obtained; the equilibrium water uptake were not reached after 20 months. As a consequence, plastic behaviour and reduced surface hardness were observed. The RMGICs also produced high exotherm during polymerisation. The second part of the study investigated the use of an experimental resin as an alternative to HEMA. The experimental resin has the advantage of low toxicity to the pulp and relatively low polymerisation shrinkage. This study compared the polymerisations of the resin and HEMA, and of mixtures of these two

  14. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs.

  15. Covalent immobilization of glucose oxidase onto new modified acrylonitrile copolymer/silica gel hybrid supports.

    PubMed

    Godjevargova, Tzonka; Nenkova, Ruska; Dimova, Nedyalka

    2005-08-12

    New polymer/silica gel hybrid supports were prepared by coating high surface area of silica gel with modified acrylonitrile copolymer. The concentrations of the modifying agent (NaOH) and the modified polymer were varied. GOD was covalently immobilized on these hybrid supports and the relative activity and the amount of bound protein were determined. The highest relative activity and sufficient amount of bound protein of the immobilized GOD were achieved in 10% NaOH and 2% solution of modified acrylonitrile copolymer. The influence of glutaraldehyde concentration and the storage time on enzyme efficiency were examined. Glutaraldehyde concentration of 0.5% is optimal for the immobilized GOD. It was shown that the covalently bound enzyme (using 0.5% glutaraldehyde) had higher relative activity than the activity of the adsorbed enzyme. Covalently immobilized GOD with 0.5% glutaraldehyde was more stable for four months in comparison with the one immobilized on pure silica gel, hybrid support with 10% glutaraldehyde and the free enzyme. The effect of the pore size on the enzyme efficiency was studied on four types of silica gel with different pore size. Silica with large pores (CPC-Silica carrier, 375 A) presented higher relative activity than those with smaller pore size (Silica gel with 4, 40 and 100 A). The amount of bound protein was also reduced with decreasing the pore size. The effect of particle size was studied and it was found out that the smaller the particle size was, the greater the activity and the amount of immobilized enzyme were. The obtained results proved that these new polymer/silica gel hybrid supports were suitable for GOD immobilization. PMID:16080168

  16. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    NASA Astrophysics Data System (ADS)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  17. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting.

    PubMed

    Bronstein, Lyudmila M; Shtykova, Eleonora V; Malyutin, Andrey; Dyke, Jason C; Gunn, Emily; Gao, Xinfeng; Stein, Barry; Konarev, Peter V; Dragnea, Bogdan; Svergun, Dmitri I

    2010-12-23

    Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG (EG) tails allows the NP hydrophilicity. The success of the NP coating was found to be independent of the degree of grafting which was varied between 20 and 80% of the -MacOD-units, but depended on the length of the grafted tail. The NP coating and hydrophilization did not occur when the modified copolymer contained 750 Da PEG tails independently of the grafting degree. To explain this phenomenon the micellization of the modified PMAcOD copolymers in water was analyzed by small angle x-ray scattering (SAXS). The PMAcOD molecules with the grafted 750 Da PEG tails form compact non-interacting disk-like micelles, whose stability apparently allows for no interactions with the NP hydrophobic shells. The PMAcOD containing the 5,000 Da PEG and EG tails form much larger aggregates capable of an efficient coating of the NPs. The coated NPs were characterized using transmission electron microscopy, dynamic light scattering, ζ-potential measurements, and thermal gravimetry analysis. The latter method demonstrated that the presence of long PEG tails in modified PMAcOD allows the attachment of fewer macromolecules (by a factor of ~20) compared to the case of non-modified or EG modified PMAcOD, emphasizing the importance of PEG tails in NP hydrophilization. The NPs coated with PMAcOD modified with 60% (towards all -MAcOD- units) of the 5,000 PEG tails bear a significant negative charge and display good stability in buffers. Such NPs can be useful as magnetic cores for virus-like particle formation.

  18. Research on the chemical mechanism in the polyacrylate latex modified cement system

    SciTech Connect

    Wang, Min; Wang, Rumin; Zheng, Shuirong; Farhan, Shameel; Yao, Hao; Jiang, Hao

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  19. Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes.

    PubMed

    Suliman, Salwa; Mustafa, Kamal; Krueger, Anke; Steinmüller-Nethl, Doris; Finne-Wistrand, Anna; Osdal, Tereza; Hamza, Amani O; Sun, Yang; Parajuli, Himalaya; Waag, Thilo; Nickel, Joachim; Johannessen, Anne Christine; McCormack, Emmet; Costea, Daniela Elena

    2016-07-01

    This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK(Luc)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK(Luc) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK(Luc) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK(Luc) both in vitro in 3D-OT and in vivo in xenografts formed by DOK(Luc) alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK(Luc) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK(Luc), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities. PMID:27108402

  20. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers

    PubMed Central

    Akbarzadeh, Abolfazl; Mikaeili, Haleh; Zarghami, Nosratollah; Mohammad, Rahmati; Barkhordari, Amin; Davaran, Soodabeh

    2012-01-01

    Background Superparamagnetic iron oxide nanoparticles are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging, and therapeutic applications. In our study, superparamagnetic iron oxide nanoparticles and the anticancer drug, doxorubicin hydrochloride, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. The magnetic properties conferred by superparamagnetic iron oxide nanoparticles could help to maintain the nanoparticles in the joint with an external magnet. Methods A series of PLGA:PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide with different molecular weights of polyethylene glycol (PEG2000, PEG3000, and PEG4000) as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In addition, the resulting particles were characterized by x-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometry. Results The doxorubicin encapsulation amount was reduced for PLGA:PEG2000 and PLGA:PEG3000 triblock copolymers, but increased to a great extent for PLGA:PEG4000 triblock copolymer. This is due to the increased water uptake capacity of the blended triblock copolymer, which encapsulated more doxorubicin molecules into a swollen copolymer matrix. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PLGA:PEG2000, PLGA:PEG3000, and PLGA:PEG4000 copolymers was 69.5%, 73%, and 78%, respectively, and the release kinetics were controlled. The in vitro cytotoxicity test showed that the Fe3O4-PLGA:PEG4000 magnetic nanoparticles had no cytotoxicity and were biocompatible. Conclusion There is potential for use of these nanoparticles for biomedical application. Future work

  1. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  2. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  3. Leaching Behavior of Heavy Metals from Cement Pastes Using a Modified Toxicity Characteristic Leaching Procedure (TCLP).

    PubMed

    Huang, Minrui; Feng, Huajun; Shen, Dongsheng; Li, Na; Chen, Yingqiang; Shentu, Jiali

    2016-03-01

    As the standard toxicity characteristic leaching procedure (TCLP) can not exhaust the acid neutralizing capacity of the cement rotary kiln co-processing solid wastes products which is particularly important for the assessment of the leaching concentrations of heavy metals. A modified TCLP was proposed. The extent of leaching of heavy metals is low using the TCLP and the leaching performance of the different metals can not be differentiated. Using the modified TCLP, however, Zn leaching was negligible during the first 180 h and then sharply increased (2.86 ± 0.18 to 3.54 ± 0.26 mg/L) as the acidity increased (pH < 6.0). Thus, Zn leaching is enhanced using the modified TCLP. While Pb leached readily during the first 126 h and then leachate concentrations decreased to below the analytical detection limit. To conclude, this modified TCLP is a more suitable method for these cement rotary kiln co-processing products. PMID:26781629

  4. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  5. A comparison of the in vitro cytotoxicity of conventional and resin modified glass ionomer cements

    PubMed Central

    Selimović-Dragaš, Mediha; Huseinbegović, Amina; Kobašlija, Sedin; Hatibović-Kofman, Šahza

    2012-01-01

    To evaluate cytotoxicity of experimental conventional and resin modified glass-ionomer cements on UMR-106 osteoblast cell cultures and cell cultures of NIH3T3 mouse fibroblasts specimens were prepared for every experimental material and divided into: group 1. Conventional glass-ionomer cements: GC Fuji IX GP Fast, GC Fuji Triage and Ketac Silver; group 2. Resin modified glass-ionomer cements: GC Fuji II LC, GC Fuji Plus and Vitrebond; group 3. Positive control was presented by specimens of composite Vit-l-ecence® and negative control-group 4. was presented by α-minimum essential medium for UMR-106 – osteoblast-like cells and Dulbecco’s Modified Eagle’s Medium for NIH3T3 mouse fibroblast cells. Both cell cultures were exposed to 10% of eluate of each single specimen of each experimental material. Experimental dishes were incubated for 24 h. Cell metabolism was evaluated using methyltetrazolium assay. Kruskal-Wallis test and Tukey-Kramer post hoc test for the materials evaluated on NIH3T3 mouse fibroblast cells, as well as UMR-106 osteoblast-like cells showed significantly more cytotoxicity of RMGICs, predominantly Vitrebond to both GICs and composite-Vit-l-ecence®. The lowest influence on cell’s metabolism on UMR-106 osteoblas-like cells was shown by Ketac Silver and the lowest influence on cell’s metabolism on NIH3T3 mouse fibroblast cells was shown by Fuji IX GP Fast. Statistical evaluation of sensitivity of cell lines UMR-106 osteoblast-like cells and NIH3T3 mouse fibroblast cells, using Mann-Whitney test, showed that NIH3T3 mouse fibroblast cells were more sensitive for the evaluation of cytotoxicity of dental materials. PMID:23198945

  6. Properties of fly ash-modified cement mortar-aggregate interfaces

    SciTech Connect

    Wong, Y.L.; Lam, L.; Poon, C.S.; Zhou, F.P.

    1999-12-01

    This paper investigates the effect of fly ash on strength and fracture properties of the interfaces between the cement mortar and aggregates. The mortars were prepared at a water-to-binder ratio of 0.2, with fly ash replacements from 15 to 55%. Notched mortar beams were tested to determine the flexural strength, fracture toughness, and fracture energy of the plain cement and fly-ash modified cement mortars. Another set of notched beams with mortar-aggregate interface above the notch was tested to determine the flexural strength, fracture toughness, and fracture energy of the interface. Mortar-aggregate interface cubes were tested to determine the splitting strength of the interface. It was found that a 15% fly ash replacement increased the interfacial bond strength and fracture toughness. Fly ash replacement at the levels of 45 and 55% reduced the interfacial bond strength and fracture toughness at 28 days, but recovered almost all the reduction at 90 days. Fly ash replacement at all levels studied increased the interfacial fracture energy. Fly ash contributed to the interfacial properties mainly through the pozzolanic effect. for higher percentages of replacement, the development of interfacial bond strength initially fell behind the development of compressive strength. But at later ages, the former surpassed the latter. Strengthening of the interfaces leads to higher long-term strength increases and excellent durability for high-volume fly ash concrete.

  7. Smart cement modified with iron oxide nanoparticles to enhance the piezoresistive behavior and compressive strength for oil well applications

    NASA Astrophysics Data System (ADS)

    Vipulanandan, C.; Mohammed, A.

    2015-12-01

    In this study, smart cement with a 0.38 water-to-cement ratio was modified with iron oxide nanoparticles (NanoFe2O3) to have better sensing properties, so that the behavior can be monitored at various stages of construction and during the service life of wells. A series of experiments evaluated the piezoresistive smart cement behavior with and without NanoFe2O3 in order to identify the most reliable sensing properties that can also be relatively easily monitored. Tests were performed on the smart cement from the time of mixing to a hardened state behavior. When oil well cement (Class H) was modified with 0.1% of conductive filler, the piezoresistive behavior of the hardened smart cement was substantially improved without affecting the setting properties of the cement. During the initial setting the electrical resistivity changed with time based on the amount of NanoFe2O3 used to modify the smart oil well cement. A new quantification concept has been developed to characterize the smart cement curing based on electrical resistivity changes in the first 24 h of curing. Addition of 1% NanoFe2O3 increased the compressive strength of the smart cement by 26% and 40% after 1 day and 28 days of curing respectively. The modulus of elasticity of the smart cement increased with the addition of 1% NanoFe2O3 by 29% and 28% after 1 day and 28 days of curing respectively. A nonlinear curing model was used to predict the changes in electrical resistivity with curing time. The piezoresistivity of smart cement with NanoFe2O3 was over 750 times higher than the unmodified cement depending on the curing time and nanoparticle content. Also the nonlinear stress-strain and stress-change in resistivity relationships predicated the experimental results very well. Effects of curing time and NanoFe2O3 content on the model parameters have been quantified using a nonlinear model.

  8. Protein Adsorption on Chemically Modified Block Copolymer Nanodomains: Influence of Charge and Flow.

    PubMed

    Silverstein, Joshua S; Casey, Brendan J; Kofinas, Peter; Dair, Benita J

    2016-02-01

    Understanding the interactions of biomacromolecules with nanoengineered surfaces is vital for assessing material biocompatibility. This study focuses on the dynamics of protein adsorption on nanopatterned block copolymers (BCPs). Poly(styrene)-block-poly(1,2-butadiene) BCPs functionalized with an acid, amine, amide, or captopril moieties were processed to produce nanopatterned films. These films were characterized using water contact angle measurements and atomic force microscopy in air and liquid to determine how the modification process affected. wettability and swelling. Protein adsorption experiments were conducted under static and dynamic conditions via a quartz crystal microbalance with dissipation. Proteins of various size, charge, and stability were investigated to determine whether their physical characteristics affected adsorption. Significantly decreased contact angles were caused by selective swelling of modified BCP domains. The results indicate that nanopatterned chemistry and experimental conditions strongly impact adsorption dynamics. Depending on the structural stability of the protein, polyelectrolyte surfaces significantly increased adsorption over controls. Further analysis suggested that protein stability may correlate with dissipation versus frequency plots. PMID:27433605

  9. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins. PMID:26974006

  10. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    PubMed Central

    PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

    2014-01-01

    Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

  11. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.

    PubMed

    Liu, Ran; Wang, Yonglu; Li, Xueming; Bao, Wen; Xia, Guohua; Chen, Wei; Cheng, Jian; Xu, Yuanlong; Guo, Liting; Chen, Baoan

    2015-01-01

    To increase the encapsulation of hydrophilic antitumor agent daunorubicin (DNR) and multidrug resistance reversal agent tetrandrine (Tet) in the drug delivery system of nano-particles (NPs), a functional copolymer NP composed of poly(lactic-co-glycolic acid) (PLGA), poly-L-lysine (PLL), and polyethylene glycol (PEG) was synthesized and then loaded with DNR and Tet simultaneously to construct DNR/Tet-PLGA-PLL-PEG-NPs using a modified double-emulsion solvent evaporation/diffusion method. And to increase the targeted antitumor effect, DNR/Tet-PLGA-PLL-PEG-NPs were further modified with transferrin (Tf) due to its specific binding to Tf receptors (TfR), which is highly expressed on the surface of tumor cells. In this study, the influence of the diversity of formulation parameters was investigated systematically, such as drug loading, mean particle size, molecular weight, the concentration of PLGA-PLL-PEG-Tf, volume ratio of acetone to dichloromethane, the concentration of polyvinyl alcohol (PVA) in the external aqueous phase, the volume ratio of the internal aqueous phase to the external aqueous phase, and the type of surfactants in the internal aqueous phase. Meanwhile, its possible effect on cell viability was evaluated. Our results showed that the regular spherical DNR/Tet-PLGA-PLL-PEG-Tf-NPs with a smooth surface, a relatively low polydispersity index, and a diameter of 213.0±12.0 nm could be produced. The encapsulation efficiency was 70.23%±1.91% for DNR and 86.5%±0.70% for Tet, the moderate drug loading was 3.63%±0.15% for DNR and 4.27%±0.13% for Tet. Notably, the accumulated release of DNR and Tet could be sustained over 1 week, and the Tf content was 2.18%±0.04%. In cell viability tests, DNR/Tet-PLGA-PLL-PEG-Tf-NPs could inhibit the proliferation of K562/ADR cells in a dose-dependent manner, and the half maximal inhibitory concentration value (total drug) of DNR/Tet-PLGA-PLL-PEG-Tf-NPs was lower than that of DNR, a mixture of DNR and Tet, and DNR

  12. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.

    PubMed

    Liu, Ran; Wang, Yonglu; Li, Xueming; Bao, Wen; Xia, Guohua; Chen, Wei; Cheng, Jian; Xu, Yuanlong; Guo, Liting; Chen, Baoan

    2015-01-01

    To increase the encapsulation of hydrophilic antitumor agent daunorubicin (DNR) and multidrug resistance reversal agent tetrandrine (Tet) in the drug delivery system of nano-particles (NPs), a functional copolymer NP composed of poly(lactic-co-glycolic acid) (PLGA), poly-L-lysine (PLL), and polyethylene glycol (PEG) was synthesized and then loaded with DNR and Tet simultaneously to construct DNR/Tet-PLGA-PLL-PEG-NPs using a modified double-emulsion solvent evaporation/diffusion method. And to increase the targeted antitumor effect, DNR/Tet-PLGA-PLL-PEG-NPs were further modified with transferrin (Tf) due to its specific binding to Tf receptors (TfR), which is highly expressed on the surface of tumor cells. In this study, the influence of the diversity of formulation parameters was investigated systematically, such as drug loading, mean particle size, molecular weight, the concentration of PLGA-PLL-PEG-Tf, volume ratio of acetone to dichloromethane, the concentration of polyvinyl alcohol (PVA) in the external aqueous phase, the volume ratio of the internal aqueous phase to the external aqueous phase, and the type of surfactants in the internal aqueous phase. Meanwhile, its possible effect on cell viability was evaluated. Our results showed that the regular spherical DNR/Tet-PLGA-PLL-PEG-Tf-NPs with a smooth surface, a relatively low polydispersity index, and a diameter of 213.0±12.0 nm could be produced. The encapsulation efficiency was 70.23%±1.91% for DNR and 86.5%±0.70% for Tet, the moderate drug loading was 3.63%±0.15% for DNR and 4.27%±0.13% for Tet. Notably, the accumulated release of DNR and Tet could be sustained over 1 week, and the Tf content was 2.18%±0.04%. In cell viability tests, DNR/Tet-PLGA-PLL-PEG-Tf-NPs could inhibit the proliferation of K562/ADR cells in a dose-dependent manner, and the half maximal inhibitory concentration value (total drug) of DNR/Tet-PLGA-PLL-PEG-Tf-NPs was lower than that of DNR, a mixture of DNR and Tet, and DNR

  13. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin

    PubMed Central

    Liu, Ran; Wang, Yonglu; Li, Xueming; Bao, Wen; Xia, Guohua; Chen, Wei; Cheng, Jian; Xu, Yuanlong; Guo, Liting; Chen, Baoan

    2015-01-01

    To increase the encapsulation of hydrophilic antitumor agent daunorubicin (DNR) and multidrug resistance reversal agent tetrandrine (Tet) in the drug delivery system of nano-particles (NPs), a functional copolymer NP composed of poly(lactic-co-glycolic acid) (PLGA), poly-L-lysine (PLL), and polyethylene glycol (PEG) was synthesized and then loaded with DNR and Tet simultaneously to construct DNR/Tet–PLGA–PLL–PEG-NPs using a modified double-emulsion solvent evaporation/diffusion method. And to increase the targeted antitumor effect, DNR/Tet–PLGA–PLL–PEG-NPs were further modified with transferrin (Tf) due to its specific binding to Tf receptors (TfR), which is highly expressed on the surface of tumor cells. In this study, the influence of the diversity of formulation parameters was investigated systematically, such as drug loading, mean particle size, molecular weight, the concentration of PLGA–PLL–PEG–Tf, volume ratio of acetone to dichloromethane, the concentration of polyvinyl alcohol (PVA) in the external aqueous phase, the volume ratio of the internal aqueous phase to the external aqueous phase, and the type of surfactants in the internal aqueous phase. Meanwhile, its possible effect on cell viability was evaluated. Our results showed that the regular spherical DNR/Tet–PLGA–PLL–PEG–Tf-NPs with a smooth surface, a relatively low polydispersity index, and a diameter of 213.0±12.0 nm could be produced. The encapsulation efficiency was 70.23%±1.91% for DNR and 86.5%±0.70% for Tet, the moderate drug loading was 3.63%±0.15% for DNR and 4.27%±0.13% for Tet. Notably, the accumulated release of DNR and Tet could be sustained over 1 week, and the Tf content was 2.18%±0.04%. In cell viability tests, DNR/Tet–PLGA–PLL–PEG–Tf-NPs could inhibit the proliferation of K562/ADR cells in a dose-dependent manner, and the half maximal inhibitory concentration value (total drug) of DNR/Tet–PLGA–PLL–PEG–Tf-NPs was lower than that of DNR

  14. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    PubMed

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.

  15. Effects of a new modifier on the water-resistance of magnesite cement tiles

    NASA Astrophysics Data System (ADS)

    Xu, Kejing; Xi, Jintao; Guo, Yanqing; Dong, Shuhua

    2012-01-01

    The magnesium oxychloride composite is an inorganic cementitious material with high bending and compression strength in air characteristics. However its strength decreases significantly after immersion in water. The preparing process of a new magnesite cement tile using nano rice husk ashes and a complex water-resistance agent as modifiers was described in the paper. The effects of low-temperature rice husk ashes (RHAs) and the complex water-resistance agent constituted with phosphoric acid, calcium superphosphate, wooden calcium and styrene-acrylic emulsion on the water-resistance of magnesite materials were mainly studied. The samples properties were characterized by XRD, SEM, BET, a laser particle size analyzer and bending test. The experiments show that the proportional addition of nano RHAs markedly increases the water-resistance of magnesite materials without reducing the bending strength and promotes the softening coefficient from 0.29 to 0.78, while the softening coefficient reaches up to 0.97 combined with the use of complex water-resistance agent. The new magnesite cement tiles prepared were not scumming, not warping, and not contracting at room temperature for 360 d.

  16. Biocompatibility of Portland Cement Modified with Titanium Oxide and Calcium Chloride in a Rat Model

    PubMed Central

    Hoshyari, Narjes; Labbaf, Hossein; Jalayer Naderi, Nooshin; Kazemi, Ali; Bastami, Farshid; Koopaei, Maryam

    2016-01-01

    Introduction: The aim of the present study was to evaluate the biocompatibility of two modified formulations of Portland cement (PC) mixed with either titanium oxide or both titanium oxide and calcium chloride. Methods and Materials: Polyethylene tubes were filled with modified PCs or Angelus MTA as the control; the tubes were then implanted in 28 Wistar rats subcutaneously. One tube was left empty as a negative control in each rat. Histologic samples were taken after 7, 15, 30 and 60 days. Sections were assessed histologically for inflammatory responses and presence of fibrous capsule and granulation tissue formation. Data were analyzed using the Fisher’s exact and Kruskal-Wallis tests. Result: PC mixed with titanium oxide showed the highest mean scores of inflammation compared with others. There was no statistically significant difference in the mean inflammatory grades between all groups in each of the understudy time intervals. Conclusion: The results showed favorable biocompatibility of these modified PC mixed with calcium chloride and titanium oxide. PMID:27141221

  17. Preparation and in vitro evaluation of Methotrexate-loaded magnetic nanoparticles modified with biocompatible copolymers.

    PubMed

    Jahangiri, Sahar; Akbarzadeh, Abolfazl

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPION) are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging and therapeutic applications. In our study, SPION and the anticancer drug, Methotrexate, were encapsulated into polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles for local treatment. The magnetic properties conferred by SPION could help to maintain the nanoparticles in the joint with an external magnet. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PCL-PEG copolymer was 92.36%. There is potential for use of these nanoparticles for biomedical application. PMID:26479846

  18. Microleakage evaluation of class V restorations with conventional and resin-modified glass ionomer cements.

    PubMed

    Pontes, Danielson Guedes; Guedes-Neto, Manoel Valcacio; Cabral, Maria Fernanda Costa; Cohen-Carneiro, Flávia

    2014-09-01

    The aim of this study was to evaluate in vitro the marginal microleakage of conventional Glass Ionomer Cements (GIC) and Resin Modified Glass Ionomer Cements (RMGIC). The tested materials were grouped as follows: GIC category - G1 (Vidrion R - SSWhite); G2 (Vitro Fill - DFL); G3 (Vitro Molar - DFL); G4 (Bioglass R - Biodinâmica); and G5 (Ketac Fill - 3M/ESPE); and RMGIC category - G6 (Vitremer - 3M/ESPE); G7 (Vitro Fill LC - DFL); and G8 (Resiglass - Biodinâmica). Therefore, 80 class V cavities (2.0X2.0 mm) were prepared in bovine incisors, either in the buccal face. The samples were randomly divided into 8 groups and restored using each material tested according to the manufacturer. The root apices were then sealed with acrylic resin. The teeth were stored for 24 h in 100% humidity at 37°C. After storage, the specimens were polished with extra-slim burs and silicon disc (Soft-lex - 3M/ESPE), then were isolated with cosmetic nail polish up to 1 mm around the restoration. Then, the samples were immersed in 50% AgNO3 solution for 12 h and in a developing solution for 30 min. They were rinsed and buccal-lingual sectioned. The evaluation of the microleakage followed scores from 0 to 3. The Kruskal-Wallis test and Dunn method test were applied (a=0.05). The results showed that there was no difference between the enamel and dentin margins. However, GIC materials presented more microleakage than RMGIC. PMID:25284528

  19. A long term study of fluoride release from metal-containing conventional and resin-modified glass-ionomer cements.

    PubMed

    Williams, J A; Billington, R W; Pearson, G J

    2001-01-01

    The objective of this study was to determine long term release of fluoride from a resin-modified glass-ionomer cement (RMGIC) (Fuji II LC (FLC)) compared with that from two conventional acid-base setting cements (HiDense (HD) and KetacSilver (KS)) marketed for similar restorative purposes. Fluoride release from discs of cement immersed in water or artificial saliva was measured for 2.7 years using an ion selective electrode technique. The RMGIC was affected by water if immersed immediately after setting. This is similar to conventional acid-base cements and the experimental method was designed to allow for this. Over the 2.7-year period, the RMGIC and HD released similar amounts of fluoride into both water and artificial saliva. In water, the RMGIC released the most fluoride, while in artificial saliva the highest release was from HD. KS released the least amount of fluoride in both immersing liquids. In artificial saliva, release was reduced to 17-25% of that found in water, with the RMGIC showing the greatest reduction. Both acid-base cured cements showed changes in colour over the 2.7-year span, while the colour of the RMGIC was stable. It was concluded that the RMGIC released equivalent or greater amounts of fluoride than the two acid-base cure glass-ionomers over a period of 2.7 years.

  20. A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers.

    PubMed

    Ran, Fen; Li, Jie; Lu, Yi; Wang, Lingren; Nie, Shengqiang; Song, Haiming; Zhao, Lei; Sun, Shudong; Zhao, Changsheng

    2014-04-01

    A simple method to prepare modified polyethersulfone (PES) membrane by one-pot is provided, and the method includes three steps: polymerization of vinyl pyrrolidone (VP), copolymerization of methyl methacrylate (MMA) and blending with PES. The effect of the PMMA segment length and molecular weight of the copolymer (PVP-b-PMMA-b-PVP, as an additive) on the structures and properties of the modified membranes was investigated. Activated partial thromboplastin time (APTT) tests indicated that with the increase of the poly(methyl methacrylate) (PMMA) segment length in the chains of the copolymers and with the increase of the molecular weight of the copolymers, the APTTs of the modified membranes increased to some extent, since less of the additives were lost during liquid-liquid phase separation process. Therefore, the copolymer was designed and prepared with appropriate ratio of poly(vinyl pyrrolidone) (PVP) to MMA and with appropriate molecular weight for better membrane performance. When the copolymer was blended in the membrane, the water permeance, protein anti-fouling property and sieving coefficients for PEG-12000 increased obviously. The simple, credible and feasible method had the potential to be used for the modification of membranes with improved blood compatibility, ultrafiltration and antifouling properties of biomaterials and for practical production.

  1. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement

    PubMed Central

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2016-01-01

    Objective: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin-modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. Materials and Methods: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight) were used. One hundred and twenty specimens were fabricated for measuring microleakage, compressive strength, tensile strength, water sorption, and solubility. Statistical Analysis: One-way analysis of variance and Tukey's tests were used for measuring significance between means where P ≤ 0.05. Results: RMGIC specimens without any additives showed significantly highest microleakage and lowest compressive and tensile strengths. Conclusion: Silica particles added to RMGIC have the potential as a reliable restorative material with increased compressive strength, tensile strength, and water sorption but decreased microleakage and water solubility. PMID:27095901

  2. Amphiphilic block copolymer modified magnetic nanoparticles for microwave-assisted extraction of polycyclic aromatic hydrocarbons in environmental water.

    PubMed

    Li, Nan; Qi, Li; Shen, Ying; Li, Yaping; Chen, Yi

    2013-11-01

    In this work, amphiphilic block copolymer poly(tert-butyl methacrylate)-block-poly(glycidyl methacrylate) (PtBMA-b-PGMA) modified Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) were synthesized, and served as an adsorbent for microwave-assisted extraction of polycyclic aromatic hydrocarbons (PAHs). The PtBMA-b-PGMA block copolymers with different block ratios were prepared by two-step atom transfer radical polymerization (ATRP) and the extraction abilities of their corresponding Fe3O4@PtBMA-b-PGMA were investigated. The key factors affecting the extraction efficiency of the adsorbent, including microwave conditions, amount of adsorbent, type and volume of desorption solvent, were studied in detail. In comparison with vortex, which is a conventional method used for assisting extraction, the proposed microwave-assisted method allowed better extraction efficiency and required a shorter extraction time. The calibration curves of PAHs were obtained in the range of 0.05-120 μg/L (r>0.9985) and the limits of detection (S/N=3) were in the range of 2.4-6.3 ng/L. The recoveries of PAHs spiked in environmental water samples were between 62.5% and 104% with relative standard deviations (RSDs) ranging from 0.84% to 9.02%. The proposed technique combining microwave-assisted extraction and magnetic separation was demonstrated to be a fast, convenient and sensitive pretreating method for PAHs.

  3. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... viscosity of the matrix copolymer in butyrolactone is not less than 0.5 deciliter/gram at 35 °C, as determined by the method titled “Molecular Weight of Matrix Copolymer by Solution Viscosity,” which is... copolymer articles is not more than 11 ppm as determined by a gas chromatographic method...

  4. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... viscosity of the matrix copolymer in butyrolactone is not less than 0.5 deciliter/gram at 35 °C, as determined by the method titled “Molecular Weight of Matrix Copolymer by Solution Viscosity,” which is... copolymer articles is not more than 11 ppm as determined by a gas chromatographic method...

  5. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... viscosity of the matrix copolymer in butyrolactone is not less than 0.5 deciliter/gram at 35 °C, as determined by the method titled “Molecular Weight of Matrix Copolymer by Solution Viscosity,” which is... copolymer articles is not more than 11 ppm as determined by a gas chromatographic method...

  6. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... viscosity of the matrix copolymer in butyrolactone is not less than 0.5 deciliter/gram at 35 °C, as determined by the method titled “Molecular Weight of Matrix Copolymer by Solution Viscosity,” which is... copolymer articles is not more than 11 ppm as determined by a gas chromatographic method...

  7. Biocompatibility of a restorative resin-modified glass ionomer cement applied in very deep cavities prepared in human teeth.

    PubMed

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Scheffel, Débora Lopes Sales; Giro, Elisa Maria Aparecida; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-01-01

    This study evaluated whether a restorative resin-modified glass ionomer cement, Vitremer (VM), would be biocompatible with pulp tissue when used as a liner in very deep cavities prepared in young human permanent teeth. Two dental cements in current use as liner materials, Vitrebond (VB) and Dycal (DY), were compared to VM. Class V cavities were prepared in 36 sound premolars that were scheduled for extraction, and the cavity floor was lined with the restorative cement (VM) or a liner/base control cement (VB or DY). For VM specimens, the cavity floor was pretreated with a primer (polyacrylic acid plus 2-hydroxyethyl methacrylate). Teeth were extracted after 7 or 30 days and processed for microscopic evaluation. In the VM group, inward diffusion of dental material components through dentinal tubules, associated with disruption of the odontoblastic layer, moderate to intense inflammatory response, and resorption of inner dentin, was observed in 2 teeth at 7 days. These histologic features were observed in 1 tooth at 30 days. In the VB group, mild inflammatory reactions and tissue disorganization observed at 7 days were resolved at 30 days. No pulpal damage occurred in the DY specimens. Of the materials tested, only Vitremer was not considered biocompatible, because it caused persistent pulpal damage when applied in very deep cavities (remaining dentin thickness less than 0.3 mm). PMID:27367631

  8. Permeability Changes on Wellbore Cement Fractures Modified by Geochemical and Geomechanical Processes

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Um, W.

    2015-12-01

    Experimental studies were conducted using batch reactors, X-ray microtomography (XMT), and computational fluid dynamics (CFD) modeling to determine changes in cement fracture surfaces, fluid flow pathways and permeability, and cement fracture propagation with geochemical and geomechanical processes. Portland cement-basalt interface sample with artificial fractures was prepared to study the geochemical and geomechanical effects on the integrity of wellbores containing defects caused by subsurface activities. Cement-basalt interface sample was subjected to mechanical stress at 2.7 MPa before the chemical reaction. CFD modeling was performed to simulate flow of supercritical CO2 within the fractures before and after the application of mechanical stress. The model results highlighted the complex flow characteristics within the fracture and also changes in flow patterns due to application of geomechanical stress. The CFD model predicted ~45% increase in permeability after the application of geomechanical force, which increases the fracture aperture. The same sample was reacted with CO2-saturated groundwater with impurity H2S (1 wt.%) at 50°C and 10 MPa for 3 to 3.5 months under static conditions. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Even after a 3.5-month reaction with CO2-H2S-saturated groundwater at 50°C and 10 MPa, CaCO3 (s) precipitation occurred more extensively within the cement fracture rather than along the cement-basalt interfaces. Micro X-ray diffraction analysis also showed that major cement carbonation products of CO2-saturated groundwater reacting with impurity H2S were calcite, aragonite, and vaterite, consistent with cement carbonation by pure CO2-saturated groundwater, while pyrite was not identified due to low H2S content. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated

  9. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    PubMed

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. PMID:25752579

  10. Influence of formulation technique on acrylate methacrylate copolymer modified paracetamol matrix tablets.

    PubMed

    Cash-Torunarigha, Omonyemen Edoise; Eichie, Florence Egbomonjiade; Arhewoh, Matthew Ikhuoria

    2015-03-01

    This work was designed to evaluate the influence of various methods such as dry granulation (DG), wet granulation (using the polymer in an ethanolic solution (WGO) or aqueous dispersion (WGA) and solid dispersion (SD) techniques, on properties of paracetamol matrix tablets prepared using varying concentrations of acrylate methacrylate copolymer. Tablet properties were investigated using official and unofficial standards. Drug dissolution profile assessed at pH 1.2 was studied spectrophotometrically at λ(max) of 245 nm. With the use of various kinetic models, the release mechanism of the drug was analyzed. The parameters, maximum amount of drug release (m(∞)) at time t(∞) were obtained, m(∞) was ≥ 91.36 %, while t(∞) was ≥ 4.5 h. The release rate constant (k) for DG tablets was 15.61 h(sup>-1(/sup>, while, WGO, WGA and SD tablets were 12.90, 11.03 and 10.75 h(-1) respectively. The matrix tablets, which exhibited marked retardation in drug release displayed a Higuchi square root of time model (R(2) > 0.98). The mechanism through which the drug was released was governed by Fickian diffusion release (n values < 0.5). The performance of the drug was affected by the formulation technique in the order of SD > WGO > WGA > DG. PMID:25730787

  11. Ultrasmooth, Polydopamine Modified Surfaces for Block Copolymer Nanopatterning on Inert and Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Katsumata, Reika; Cho, Joon Hee; Zhou, Sunshine; Kim, Chae Bin; Dulaney, Austin; Janes, Dustin; Ellison, Christopher

    Nature has engineered universal, catechol-containing adhesives that can be synthetically mimicked in the form of polydopamine (PDA). We exploited PDA to enable block copolymer (BCP) nanopatterning on a variety of soft material surfaces in a way that can potentially be applied to flexible electrical devices. Applying BCP nanopatterning to soft substrates is challenging because soft substrates are often chemically inert and possess incompatible low surface energies. In this study, we exploited PDA to enable the formation of BCP nanopatterns on a variety of surfaces such as Teflon, poly(ethylene terephthalate) (PET), and Kapton. While previous studies produced a PDA coating layer too rough for BCP nanopatterning, we succeeded in fabricating conformal and ultra-smooth surfaces of PDA by engineering the PDA coating process and post-sonication procedure. This chemically functionalized, biomimetic thin film (3 nm thick) served as a reactive platform for subsequently grafting a surface treatment to perpendicularly orient a lamellae-forming BCP layer. Furthermore, we demonstrated that a perfectly nanopatterned PDA-PET substrate can be bent without distorting or damaging the nanopattern in conditions that far exceeds typical bending curvatures in roll-to-roll manufacturing.

  12. Bone cement with a modified polyphosphate network structure stimulates hard tissue regeneration.

    PubMed

    Lee, Byung-Hyun; Hong, Min-Ho; Kim, Min-Chul; Kwon, Jae-Sung; Ko, Yeong-Mu; Choi, Heon-Jin; Lee, Yong-Keun

    2016-09-01

    In this study, a calcium polyphosphate cement (CpPC) consisting of basic components was investigated to assess its potential for hard tissue regeneration. The added basic components for improving the structural stability, which controlled the setting time, where the setting reaction resulted in the formation of amorphous structure with a re-constructed polyphosphate. Moreover, the characteristics were controlled by the composition, which determined the polyphosphate structure. CpPC exhibited outstanding dissolution rate compared with the common biodegradable cement, brushite cement (2.5 times). Despite high amounts of dissolution products, no significant cytotoxicity ensued. Induction of calcification in MG-63 cells treated with CpPC, the level of calcification increased with increasing CpPC dissolution rate. Induced calcification was observed also in CpPC-treated ST2 cells, in contrast with MG-63 and ST2 treated with brushite cement, for which no calcification was observed. In vivo tests using a rat calvarial defect model showed that resorbed CpPC resulted in favorable host responses and promoted bone formation. Additionally, there was a significant increase in defect closure, and new bone formation progressed from CpPC mid-sites as well as defect margins. From these results, CpPC exhibits significant potential as biodegradable bone substitute for bone regeneration. PMID:27511981

  13. Nano-modified cement composites and its applicability as concrete repair material

    NASA Astrophysics Data System (ADS)

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  14. The effect of pH on solubility of nano-modified endodontic cements

    PubMed Central

    Saghiri, Mohammad Ali; Godoy, Franklin Garcia; Gutmann, James L; Lotfi, Mehrdad; Asatourian, Armen; Sheibani, Nader; Elyasi, Maryam

    2014-01-01

    Aims: To evaluate the effect of storage pH on solubility of white mineral trioxide aggregate (WMTA), bioaggregate (BA), and nano WMTA cements. Materials and Methods: Forty-eight moulds randomly allocated into three groups of pH 4.4 (group A), 7.4 (group B), and 10.4 (group C); and one empty as control in each group. Each group was further divided into three subgroups according to the material studied; WMTA, BA, and nano WMTA. The specimens in subgroup A were soaked in butyric acid buffered with synthetic tissue fluid (STF) (pH 4.4), while the samples in subgroups B (pH 7.4) and C (pH 10.4) buffered in potassium hydroxide for 24 h and then the loss of cement was determined. A two-way analysis of variance (ANOVA) and Tukey post-hoc statistical tests were used to detect any statistically significant differences among the groups/subgroups. Results: Statistical analysis has showed the highest solubility in acidic pH for all tested materials. Nano WMTA samples in pH = 10.4 had the lowest and BA samples in pH = 4.4 showed the highest cement loss. Conclusion: The solubility of all tested cements can be jeopardized in acidic environment which might affect on their sealing characteristic in clinical scenario. However, nano WMTA cement due to its small size particles and different additives was capable of producing lower porosity in set material, which resulted in showing more resistance in acidic environment. PMID:24554853

  15. The erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions.

    PubMed

    Hazar-Yoruc, Binnaz; Bavbek, Andac Barkin; Özcan, Mutlu

    2012-01-01

    This study investigated the erosion kinetics of conventional and resin-modified glass-ionomer luting cements in acidic buffer solutions as a function of time. Disc shaped specimens were prepared from conventional (Ketac-Cem: KTC) and resin-modified glass ionomer cements (Fuji Plus: FP) and immersed in three acidic buffer solutions (0.01 M) namely, acetic acid/sodium acetate (AA(B)), lactic acid/sodium lactate (LA(B)) and citric acid/sodium citrate (CA(B)) with a constant pH of 4.1 and stored for 1, 8, 24, 48, 80, 120 and 168 h. F concentration was determined using ion-specific electrode. Si, Ca and Al concentrations were determined by atomic absorption spectroscopy. Ca, Al, Si and F solubility rates in both FP and KTC were the highest in CA(B) solution. The erosion rates of both FP and KTC in all buffer solutions increased as a function of immersion time. The amount of F eluted from FP was more than that of KTC. The total amount of elements released from FP was less than KTC in all solutions. PMID:23207217

  16. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method.

    PubMed

    Rasoulifard, Mohammad Hossein; Khanmohammadi, Soghra; Heidari, Azam

    2016-01-01

    In the present study, we have used a simple and cost-effective removal technique by a commercially available Fe-Al-SiO2 containing complex material (hardened paste of Portland cement (HPPC)). The adsorbing performance of HPPC and modified HPPC with perlite for removal of cefixime from aqueous solutions was investigated comparatively by using batch adsorption studies. HPPC has been selected because of the main advantages such as high efficiency, simple separation of sludge, low-cost and abundant availability. A Taguchi orthogonal array experimental design with an OA16 (4(5)) matrix was employed to optimize the affecting factors of adsorbate concentration, adsorbent dosage, type of adsorbent, contact time and pH. On the basis of equilibrium adsorption data, Langmuir, Freundlich and Temkin adsorption isotherm models were also confirmed. The results showed that HPPC and modified HPPC were both efficient adsorbents for cefixime removal. PMID:27642826

  17. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method.

    PubMed

    Rasoulifard, Mohammad Hossein; Khanmohammadi, Soghra; Heidari, Azam

    2016-01-01

    In the present study, we have used a simple and cost-effective removal technique by a commercially available Fe-Al-SiO2 containing complex material (hardened paste of Portland cement (HPPC)). The adsorbing performance of HPPC and modified HPPC with perlite for removal of cefixime from aqueous solutions was investigated comparatively by using batch adsorption studies. HPPC has been selected because of the main advantages such as high efficiency, simple separation of sludge, low-cost and abundant availability. A Taguchi orthogonal array experimental design with an OA16 (4(5)) matrix was employed to optimize the affecting factors of adsorbate concentration, adsorbent dosage, type of adsorbent, contact time and pH. On the basis of equilibrium adsorption data, Langmuir, Freundlich and Temkin adsorption isotherm models were also confirmed. The results showed that HPPC and modified HPPC were both efficient adsorbents for cefixime removal.

  18. Comparative Evaluation of the Antibacterial Efficacy of Type II Glass lonomer Cement, Type IX Glass lonomer Cement, and AMALGOMER™ Ceramic Reinforcement by Modified “Direct Contact Test”: An in vitro Study

    PubMed Central

    Assudani, Harsha G; Patil, Vidyavathi; Kukreja, Pratibha; Uppin, Chaitanya; Thakkar, Prachi

    2016-01-01

    ABSTRACT Background: Streptococcus mutans (ATCC25175) has a profound effect on the incidence of dental decay in the human population. Many studies have been performed to assess the antimicrobial activity of different cements. However, little or no information is available about the antibacterial properties of Type II glass ionomer cement (GIC), Type IX GIC, and AMALGOMER™ ceramic reinforcement (CR). Aim: To comparatively evaluate the antibacterial activity of Type II GIC, Type IX GIC, and AMALGOMER™ CR by modified direct contact test. Materials and methods: The total sample size was 72 which was divided into four study groups. Six wells were coated by each: Type II GIC, Type IX GIC, AMALGOMER™ CR, and control group (only S. mutans). Statistical analysis was done using analysis of variance and the intergroup comparison was done using post hoc Tukey test. Results: AMALGOMER™ CR was found to have a better antibacterial effect as compared with Type II and IX GIC. Conclusion: AMALGOMER™ CR can serve as a valuable cement in pediatric dentistry due to its anticariogenic property. How to cite this article: Hugar SM, Assudani HG, Patil V, Kukreja P, Uppin C, Thakkar P. Comparative Evaluation of the Antibacterial Efficacy of Type II Glass lonomer Cement, Type IX Glass Ionomer Cement, and AMALGOMER™ Ceramic Reinforcement by Modified “Direct Contact Test”: An in vitro Study. Int J Clin Pediatr Dent 2016;9(2):114-117. PMID:27365930

  19. Properties and osteoblast cytocompatibility of self-curing acrylic cements modified by glass fillers.

    PubMed

    Lopes, P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-11-01

    Materials filled with a silicate glass (MSi) and a borate glass (MB) were developed and compared in terms of their in vitro behavior. The effect of filler composition and concentration (0, 30, 40 and 50 wt%) on the curing parameters, residual monomer, water uptake, weight loss, bioactivity, mechanical properties (bending and compression) and osteoblast cytocompatibility was evaluated. The addition of bioactive glass filler significantly improved the cements curing parameters and the mechanical properties. The most relevant results were obtained for the lower filler concentration (30 t%) a maximum flexural strength of 40.4 Pa for MB3 and a maximum compressive strength of 95.7 MPa for MSi3. In vitro bioactivity in acellular media was enhanced by the higher glass contents in the cements. Regarding the biological assessment, the incorporation of the silicate glass significantly improved osteoblast cytocompatibility, whereas the presence of the borate glass resulted in a poor cell response. Nevertheless it was shown that the surviving cells on the MB surface were in a more differentiated stage compared to those growing over non-filled poly(methyl methacrylate). Results suggest that the developed formulations offer a high range of properties that might be interesting for their use as self-curing cements.

  20. A modified ASTM C1012 procedure for qualifying blended cements containing limestone and SCMs for use in sulfate-rich environments

    SciTech Connect

    Barcelo, Laurent; Gartner, Ellis; Barbarulo, Rémi; Hossack, Ashlee; Ahani, Reza; Thomas, Michael; Hooton, Doug; Brouard, Eric; Delagrave, Anik; Blair, Bruce

    2014-09-15

    Blended Portland cements containing up to 15% limestone have recently been introduced into Canada and the USA. These cements were initially not allowed for use in sulfate environments but this restriction has been lifted in the Canadian cement specification, provided that the “limestone cement” includes sufficient SCM and that it passes a modified version of the CSA A3004-C8 (equivalent to ASTM C1012) test procedure run at a low temperature (5 °C). This new procedure is proposed as a means of predicting the risk of the thaumasite form of sulfate attack in concretes containing limestone cements. The goal of the present study was to better understand how this approach works both in practice and in theory. Results from three different laboratories utilizing the CSA A3004-C8 test procedure are compared and analyzed, while also taking into account the results of thermodynamic modeling and of thaumasite formation experiments conducted in dilute suspensions.

  1. Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin-diamino diphenyl methane nanostructured blend systems.

    PubMed

    George, Sajeev Martin; Puglia, Debora; Kenny, Josè M; Parameswaranpillai, Jyotishkumar; Vijayan P, Poornima; Pionteck, Jűrgen; Thomas, Sabu

    2015-05-21

    Styrene-block-butadiene-block-styrene (SBS) copolymers epoxidised at different epoxidation degrees were used as modifiers for diglycidyl ether of the bisphenol A-diamino diphenyl methane (DGEBA-DDM) system. Epoxy systems containing modified epoxidised styrene-block-butadiene-block-styrene (eSBS) triblock copolymer with compositions ranging from 0 to 30 wt% were prepared and the curing reaction was monitored in situ using rheometry and pressure-volume-temperature (PVT) analysis. By controlling the mole percent of epoxidation, we could generate vesicles, worm-like micelles and core-shell nanodomains. At the highest mole percent of epoxidation, the fraction of the epoxy miscible component in the triblock copolymer (epoxidised polybutadiene (PB)) was maximum. This gave rise to core-shell nanodomains having a size of 10-15 nm, in which the incompatible polystyrene (PS) becomes the core, the unepoxidised PB becomes the shell and the epoxidised PB interpenetrates with the epoxy phase. On the other hand, the low level of epoxidation gave rise to bigger domains having a size of ∼1 μm and the intermediate epoxidation level resulted in a worm-like structure. This investigation specifically focused on the importance of cure rheology on nanostructure formation, using rheometry. The reaction induced phase separation of the PS phase in the epoxy matrix was carefully explored through rheological measurements. PVT measurements during curing were carried out to understand the volume shrinkage of the blend, confirming that shrinkage behaviour is related to the block copolymer phase separation process during curing. The volume shrinkage was found to be maximum in the case of blends with unmodified SBS, where a heterogeneous morphology was observed, while a decrease in the shrinkage was evidenced in the case of SBS epoxidation. It could be explained by two effects: (1) solubility of the epoxidised block copolymer in the DGEBA leads to the formation of nanoscopic domains upon

  2. Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin-diamino diphenyl methane nanostructured blend systems.

    PubMed

    George, Sajeev Martin; Puglia, Debora; Kenny, Josè M; Parameswaranpillai, Jyotishkumar; Vijayan P, Poornima; Pionteck, Jűrgen; Thomas, Sabu

    2015-05-21

    Styrene-block-butadiene-block-styrene (SBS) copolymers epoxidised at different epoxidation degrees were used as modifiers for diglycidyl ether of the bisphenol A-diamino diphenyl methane (DGEBA-DDM) system. Epoxy systems containing modified epoxidised styrene-block-butadiene-block-styrene (eSBS) triblock copolymer with compositions ranging from 0 to 30 wt% were prepared and the curing reaction was monitored in situ using rheometry and pressure-volume-temperature (PVT) analysis. By controlling the mole percent of epoxidation, we could generate vesicles, worm-like micelles and core-shell nanodomains. At the highest mole percent of epoxidation, the fraction of the epoxy miscible component in the triblock copolymer (epoxidised polybutadiene (PB)) was maximum. This gave rise to core-shell nanodomains having a size of 10-15 nm, in which the incompatible polystyrene (PS) becomes the core, the unepoxidised PB becomes the shell and the epoxidised PB interpenetrates with the epoxy phase. On the other hand, the low level of epoxidation gave rise to bigger domains having a size of ∼1 μm and the intermediate epoxidation level resulted in a worm-like structure. This investigation specifically focused on the importance of cure rheology on nanostructure formation, using rheometry. The reaction induced phase separation of the PS phase in the epoxy matrix was carefully explored through rheological measurements. PVT measurements during curing were carried out to understand the volume shrinkage of the blend, confirming that shrinkage behaviour is related to the block copolymer phase separation process during curing. The volume shrinkage was found to be maximum in the case of blends with unmodified SBS, where a heterogeneous morphology was observed, while a decrease in the shrinkage was evidenced in the case of SBS epoxidation. It could be explained by two effects: (1) solubility of the epoxidised block copolymer in the DGEBA leads to the formation of nanoscopic domains upon

  3. More fluorous surface modifier makes it less oleophobic: fluorinated siloxane copolymer/PDMS coatings.

    PubMed

    Zhang, Wei; Zheng, Ying; Orsini, Lorenzo; Morelli, Andrea; Galli, Giancarlo; Chiellini, Emo; Carpenter, Everett E; Wynne, Kenneth J

    2010-04-20

    A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation-cured PDMS coating. The decyl fluorous group is represented by "D"; "5" is a 5 kDa silicone, and "3" is the mole ratio of fluorous to silicone side chains. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt %). Higher concentrations result in decreased oleophobicity, as reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation to be a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt %, that is, the cmc. This model suggests increasing aggregate/micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 > 0.4 wt %. PMID:20000339

  4. More fluorous surface modifier makes it less oleophobic: fluorinated siloxane copolymer/PDMS coatings.

    PubMed

    Zhang, Wei; Zheng, Ying; Orsini, Lorenzo; Morelli, Andrea; Galli, Giancarlo; Chiellini, Emo; Carpenter, Everett E; Wynne, Kenneth J

    2010-04-20

    A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation-cured PDMS coating. The decyl fluorous group is represented by "D"; "5" is a 5 kDa silicone, and "3" is the mole ratio of fluorous to silicone side chains. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt %). Higher concentrations result in decreased oleophobicity, as reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation to be a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt %, that is, the cmc. This model suggests increasing aggregate/micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 > 0.4 wt %.

  5. More Fluorous Surface Modifier Makes it Less Oleophobic: Fluorinated-Siloxane Copolymer/PDMS Coatings

    PubMed Central

    Zhang, Wei; Zheng, Ying; Orsini, Lorenzo; Morelli, Andrea; Galli, Giancarlo; Chiellini, Emo; Carpenter, Everett E.; Wynne, Kenneth J.

    2010-01-01

    A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation cured PDMS coating. The decyl fluorous group is represented by “D”; “5” is a 5 kDa silicone, and “3” the mole ratio of fluorous to silicone side chain. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt%). Higher concentrations result in decreased oleophobicity reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation as a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt%, that is, the CMC. This model suggests increasing aggregate / micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 >0.4 wt%. PMID:20000339

  6. Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers.

    PubMed

    Lasheras-Zubiate, M; Navarro-Blasco, I; Fernández, J M; Alvarez, J I

    2012-09-30

    Cement mortars loaded with Cr, Pb and Zn were modified by polymeric admixtures [chitosans with low (LMWCH), medium (MMWCH) and high (HMWCH) molecular weight and hydroxypropylchitosan (HPCH)]. The influence of the simultaneous presence of the heavy metal and the polymeric additive on the fresh properties (consistency, water retention and setting time) and on the compressive strength of the mortars was assessed. Leaching patterns as well as properties of the cement mortars were related to the heavy metals-bearing solid phases. Chitosan admixtures lessened the effect of the addition of Cr and Pb on the setting time. In all instances, chitosans improved the compressive strength of the Zn-bearing mortars yielding values as high as 15 N mm(-2). A newly reported Zn phase, dietrichite (ZnAl(2)(SO(4))(4)·22H(2)O) was identified under the presence of LMWCH: it was responsible for an improvement by 24% in Zn retention. Lead-bearing silicates, such as plumalsite (Pb(4)Al(2)(SiO(3))(7)), were also identified by XRD confirming that Pb was mainly retained as a part of the silicate network after Ca ion exchange. Also, the presence of polymer induced the appearance and stabilization of some Pb(IV) species. Finally, diverse chromate species were identified and related to the larger leaching values of Cr(VI).

  7. Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement

    PubMed Central

    Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang

    2016-01-01

    The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations. PMID:27526784

  8. Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement.

    PubMed

    Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang

    2016-01-01

    The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations. PMID:27526784

  9. Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement

    NASA Astrophysics Data System (ADS)

    Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang

    2016-08-01

    The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations.

  10. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro.

    PubMed

    Schumacher, M; Lode, A; Helth, A; Gelinsky, M

    2013-12-01

    In the present study, the in vitro effects of novel strontium-modified calcium phosphate bone cements (SrCPCs), prepared using two different approaches on human-bone-marrow-derived mesenchymal stem cells (hMSCs), were evaluated. Strontium ions, known to stimulate bone formation and therefore already used in systemic osteoporosis therapy, were incorporated into a hydroxyapatite-forming calcium phosphate bone cement via two simple approaches: incorporation of strontium carbonate crystals and substitution of Ca(2+) by Sr(2+) ions during cement setting. All modified cements released 0.03-0.07 mM Sr(2+) under in vitro conditions, concentrations that were shown not to impair the proliferation or osteogenic differentiation of hMSCs. Furthermore, strontium modification led to a reduced medium acidification and Ca(2+) depletion in comparison to the standard calcium phosphate cement. In indirect and direct cell culture experiments with the novel SrCPCs significantly enhanced cell proliferation and differentiation were observed. In conclusion, the SrCPCs described here could be beneficial for the local treatment of defects, especially in the osteoporotic bone.

  11. A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro.

    PubMed

    Schumacher, M; Lode, A; Helth, A; Gelinsky, M

    2013-12-01

    In the present study, the in vitro effects of novel strontium-modified calcium phosphate bone cements (SrCPCs), prepared using two different approaches on human-bone-marrow-derived mesenchymal stem cells (hMSCs), were evaluated. Strontium ions, known to stimulate bone formation and therefore already used in systemic osteoporosis therapy, were incorporated into a hydroxyapatite-forming calcium phosphate bone cement via two simple approaches: incorporation of strontium carbonate crystals and substitution of Ca(2+) by Sr(2+) ions during cement setting. All modified cements released 0.03-0.07 mM Sr(2+) under in vitro conditions, concentrations that were shown not to impair the proliferation or osteogenic differentiation of hMSCs. Furthermore, strontium modification led to a reduced medium acidification and Ca(2+) depletion in comparison to the standard calcium phosphate cement. In indirect and direct cell culture experiments with the novel SrCPCs significantly enhanced cell proliferation and differentiation were observed. In conclusion, the SrCPCs described here could be beneficial for the local treatment of defects, especially in the osteoporotic bone. PMID:23917042

  12. Characterization of asphalt cements modified with crumbed rubber from discarded tires. Final report

    SciTech Connect

    Daly, W.H.; Negulescu, I.I.

    1994-11-01

    The potential legislative requirement for incorporation of scrap rubber into asphalt blends mandated a thorough evaluation of the influence of scrap rubber additives on the physical properties and aging characteristics of rubber/asphalt blends. Blends with up to 20 percent ground vulcanized rubber (both crumb and 200 mesh powder particles) from recycled tires were prepared with asphalt cements of various grades (AC5 - AC30) and evaluated using DMA. Blends produced from powdered rubber particles exhibited Newtonian behavior at high temperatures; similar behavior was not observed with crumb rubber blends. The mechanical properties of asphalt-rubber blends depend upon the concentration of rubber additives, the particle dimensions, and the chemical composition of the asphalt.

  13. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production. PMID:24355619

  14. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production.

  15. The preparation of PLL-GRGDS modified PTSG copolymer scaffolds and their effects on manufacturing artificial salivary gland.

    PubMed

    Zhu, Jie; Zhang, Yueming; Xu, Nanwei; Wang, Liqun; Xiang, Xu; Zhu, Xiaolin

    2013-01-01

    We prepared two-dimentional (2D) and three-dimentional (3D) scaffolds with biodegradable poly(butylene terephthalate)-co-poly(butylene succinate)-b-poly(ethylene glycol) (i.e. PTSG), mainly for the purpose of investigating its cytocompatibility and mechanical property as artificial salivary gland material. The surface of 2D scaffold (i.e. PTSG film) was modified by O(2) plasma treatment and the following coating of Gly-Arg-Gly-Asp-Ser (GRGDS) decorated poly(L-lysine) (i.e. PLL-GRGDS). The obtained film was named PLL-GRGDS/PTSG (O). Its surface properties were characterized using contact angles, surface energies, X-ray photoelectron spectroscopy and Fourier transform infrared; and cytocompatibility tests in vitro including morphology, attachment and proliferation of human salivary gland (HSG) epithelial cells were further performed on PTSG films. Meanwhile, 3D scaffold with the shape of porous tube was constructed using hydrogel-rapid prototyping and the performance of 3D scaffold including mechanical property, pore structure, degradation and water uptake was also evaluated. Results revealed that PLL-GRGDS/PTSG (O) possessed the high surface free energy (63.89 mJ/m(2)) and could immobilize a great amount of PLL-GRGDS, which attributed to the formation of some polar oxygen-containing groups such as carboxyl and carbonyl ones in the process of O(2) plasma treatment. Cell tests in vitro suggested the efficiency of surface modification in enhancing the cytocompatibility of PTSG. Furthermore, the manufacturing scaffold was proved to possess excellent pore structures (porosity 88.9%, connectivity 97.5% and average pore size 35.4 μm) and good mechanical properties (E-modulus 88.4 ± 4.1 kPa, yield stress 45.7 ± 2.3 kPa, yield strain 56 ± 2%, fracture stress 52.2 ± 3.5 kPa and fracture strain 63 ± 3%). After four weeks hydrolysis reaction, the degradation of the scaffold reached 8% and equilibrium water uptake declined from 51 to 45%. The

  16. The effect of polishing systems on microleakage of tooth coloured restoratives: Part 1. Conventional and resin-modified glass-ionomer cements.

    PubMed

    Yap, A U; Tan, S; Teh, T Y

    2000-02-01

    The purpose of this in vitro study was to investigate the effect of polishing systems on the microleakage of conventional and resin-modified glass-ionomer cements. Class V cavities were prepared at the cemento-enamel junction of 80 freshly extracted posterior teeth. The prepared teeth were randomly divided into two groups and restored with conventional or resin-modified glass-ionomer cements. The restored teeth were stored in distilled water at 37 degrees C for 1 week after removal of excess restorative with diamond finishing burs. The restored teeth were then divided into four groups of 10 and finished and polished using the following systems: Two Striper MFS; Sof-Lex XT; Enhance Composite Finishing and Polishing System; Shofu Composite Finishing Kit. The finished restorations were subjected to dye penetration testing. Results showed that the microleakage at dentin margins of conventional glass-ionomer cements and enamel margins of resin-modified glass-ionomer cements are significantly affected by the different polishing systems.

  17. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats.

    PubMed

    Thormann, Ulrich; Ray, Seemun; Sommer, Ursula; Elkhassawna, Thaqif; Rehling, Tanja; Hundgeburth, Marvin; Henß, Anja; Rohnke, Marcus; Janek, Jürgen; Lips, Katrin S; Heiss, Christian; Schlewitz, Gudrun; Szalay, Gabor; Schumacher, Matthias; Gelinsky, Michael; Schnettler, Reinhard; Alt, Volker

    2013-11-01

    The first objective was to investigate new bone formation in a critical-size metaphyseal defect in the femur of ovariectomized rats filled with a strontium modified calcium phosphate cement (SrCPC) compared to calcium phosphate cement (CPC) and empty defects. Second, detection of strontium release from the materials as well as calcium and collagen mass distribution in the fracture defect should be targeted by time of flight secondary ion mass spectrometry (TOF-SIMS). 45 female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) SrCPC (n = 15), (2) CPC (n = 15), and (3) empty defect (n = 15). Bilateral ovariectomy was performed and three months after multi-deficient diet, the left femur of all animals underwent a 4 mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with SrCPC or CPC or was left empty. After 6 weeks, histomorphometric analysis showed a statistically significant increase in bone formation of SrCPC compared to CPC (p = 0.005) and the empty defect (p = 0.002) in the former fracture defect zone. Furthermore, there was a statistically significant higher bone formation at the tissue-implant interface in the SrCPC group compared to the CPC group (p < 0.0001). These data were confirmed by immunohistochemistry revealing an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin expression and a statistically significant higher gene expression of alkaline phosphatase, collagen10a1 and osteocalcin in the SrCPC group compared to CPC. TOF-SIMS analysis showed a high release of Sr from the SrCPC into the interface region in this area compared to CPC suggesting that improved bone formation is attributable to the released Sr from the SrCPC.

  18. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats.

    PubMed

    Thormann, Ulrich; Ray, Seemun; Sommer, Ursula; Elkhassawna, Thaqif; Rehling, Tanja; Hundgeburth, Marvin; Henß, Anja; Rohnke, Marcus; Janek, Jürgen; Lips, Katrin S; Heiss, Christian; Schlewitz, Gudrun; Szalay, Gabor; Schumacher, Matthias; Gelinsky, Michael; Schnettler, Reinhard; Alt, Volker

    2013-11-01

    The first objective was to investigate new bone formation in a critical-size metaphyseal defect in the femur of ovariectomized rats filled with a strontium modified calcium phosphate cement (SrCPC) compared to calcium phosphate cement (CPC) and empty defects. Second, detection of strontium release from the materials as well as calcium and collagen mass distribution in the fracture defect should be targeted by time of flight secondary ion mass spectrometry (TOF-SIMS). 45 female Sprague-Dawley rats were randomly assigned to three different treatment groups: (1) SrCPC (n = 15), (2) CPC (n = 15), and (3) empty defect (n = 15). Bilateral ovariectomy was performed and three months after multi-deficient diet, the left femur of all animals underwent a 4 mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with SrCPC or CPC or was left empty. After 6 weeks, histomorphometric analysis showed a statistically significant increase in bone formation of SrCPC compared to CPC (p = 0.005) and the empty defect (p = 0.002) in the former fracture defect zone. Furthermore, there was a statistically significant higher bone formation at the tissue-implant interface in the SrCPC group compared to the CPC group (p < 0.0001). These data were confirmed by immunohistochemistry revealing an increase in bone-morphogenic protein 2, osteocalcin and osteoprotegerin expression and a statistically significant higher gene expression of alkaline phosphatase, collagen10a1 and osteocalcin in the SrCPC group compared to CPC. TOF-SIMS analysis showed a high release of Sr from the SrCPC into the interface region in this area compared to CPC suggesting that improved bone formation is attributable to the released Sr from the SrCPC. PMID:23906515

  19. Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: properties and biocompatibility assessment.

    PubMed

    Lopes, P P; Garcia, M P; Fernandes, M H; Fernandes, M H V

    2013-04-01

    The solid phase of bioactive self-curing acrylic cements was modified by different biodegradable fillers such as poly(3-hydroxybutyrate) (PHB) and its copolymer with hydroxyvalerate (PHBV). The addition of the biodegradable fillers made the cement partially degradable, which is important to allow new bone replacement and ingrowth. The thermal analysis, crystallinity, curing parameters, mechanical properties, degradation and cellular tests were studied in order to characterize the cement performance. Within this context it was verified that the incorporation of the PHBV polymer made the cement more resistant, reaching values within the range reported for typical PMMA bone cements. The results also showed that the cement filled with PHBV took up more water than the cement with PHB after 60 days, for all studied formulations. Regarding the osteoblastic cytocompatibility assessment, the inclusion of the PHBV greatly improved the biological response in both cements filled with the silicate or the borate glass, compared to the inclusion of the PHB. The importance of this novel approach resides on the combination of the properties of the cements components and the possibility of allowing bone regeneration, improving the interfaces with both the prosthesis and the bone, and leading to a new material with suitable performance for application as bone cement.

  20. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer.

    PubMed

    Nejati-Koshki, Kazem; Mesgari, Mehran; Ebrahimi, Eommolbanin; Abbasalizadeh, Farhad; Fekri Aval, Sedigeh; Khandaghi, Amir Ahmad; Abasi, Mozhgan; Akbarzadeh, Abolfazl

    2014-01-01

    In the field of cancer therapy, magnetic nanoparticles modified with biocompatible copolymers are promising vehicles for the delivery of hydrophobic drugs such as Cisplatin. The major aim of this effort was to evaluate whether Cisplatin-Encapsulated magnetic nanoparticles improved the anti-tumour effect of free Cisplatin in lung cancer cells. The PLGA-PEG triblock copolymer was synthesised by ring-opening polymerisation of d,l-lactide and glycolide with polyethylene glycol (PEG6000) as an initiator. The bulk properties of these copolymers were characterised using Fourier transform infrared spectroscopy. Cisplatin-loaded nanoparticles (NPs) were prepared by double emulsion solvent evaporation technique and were characterised for size, drug entrapment efficiency (%), drug content (% w/w), and surface morphology. In vitro release profile of cisplatin-loaded NP formulations was determined. Cytotoxic assays were evaluated in lung carcinoma (A549)-treated cells by the MTT assay technique. In addition, the particles were characterised by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The anti-proliferative effect of Cisplatin appeared much earlier when the drug was encapsulated in magnetic nanoparticles than when it was free. Cisplatin-Encapsulated magnetic nanoparticles significantly enhanced the decrease in IC50 rate. The in vitro cytotoxicity test showed that the Fe3O4-PLGA-PEG6000 magnetic nanoparticles had no cytotoxicity and were biocompatible. The chemotherapeutic effect of free Cisplatin on lung cancer cells is improved by its encapsulation in modified magnetic nanoparticles. This approach has the prospective to overcome some major limitations of conventional chemotherapy and may be a promising strategy for future applications in lung cancer therapy. PMID:25090589

  1. The relationship between water absorption characteristics and the mechanical strength of resin-modified glass-ionomer cements in long-term water storage.

    PubMed

    Akashi, A; Matsuya, Y; Unemori, M; Akamine, A

    1999-09-01

    The purpose of this study is to elucidate the water absorption characteristics of resin-modified glass-ionomer cements and to also investigate the relationship between the characteristics and mechanical strength after long-term water storage. The mechanism of water diffusion in these cements is also discussed. Water absorption was measured using a gravimetric analysis for 12 m, while the diffusion coefficient was calculated using Fick's law of diffusion. Water solubility was determined based on the weight of the residue in the immersed water. The compressive and diametral tensile strength were measured at 1, 2, 6, and 12 m. A correlation was observed between the diffusion coefficient and equilibrium water uptake, which thus suggests the water in the cements to diffuse through micro-voids in accordance with the 'Free volumetric theory'. A correlation was seen between the solubility and diffusion coefficient of the cements. The deterioration ratio, defined as the ratio of the strength at 12 m versus that at 1 m, was also calculated. Finally, a negative correlation was observed between the deterioration ratio of the compressive strength and the diffusion coefficients of the cements.

  2. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells.

    PubMed

    Wanachottrakul, Nattaporn; Chotigeat, Wilaiwan; Kedjarune-Leggat, Ureporn

    2014-04-01

    Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P < 0.05) at both 24 and 74 h. Flow cytometry revealed that, after 24 h, Exp-RMGIC+TCTP gave the lowest percentages of apoptotic cells compared to other groups. There was no difference in alkaline phosphatase (ALP) activity among different formula of the specimens, while cells cultured in media with TCTP had higher ALP activity. Von Kossa staining revealed that RMGIC+TCTP, and Exp-RMGIC+TCTP had higher percentages of calcium deposit area compared to those without TCTP. It was concluded that Exp-RMGIC supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP.

  3. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  4. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  5. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application

    PubMed Central

    Cui, Hongzhi; Yang, Shuqing; Memon, Shazim Ali

    2015-01-01

    Microencapsulated phase-change materials (MPCM) can be used to develop a structural–functional integrated cement paste having high heat storage efficiency and suitable mechanical strength. However, the incorporation of MPCM has been found to degrade the mechanical properties of cement based composites. Therefore, in this research, the effect of carbon nanotubes (CNTs) on the properties of MPCM cement paste was evaluated. Test results showed that the incorporation of CNTs in MPCM cement paste accelerated the cement hydration reaction. SEM micrograph showed that CNTs were tightly attached to the cement hydration products. At the age of 28 days, the percentage increase in flexural and compressive strength with different dosage of CNTs was found to be up to 41% and 5% respectively. The optimum dosage of CNTs incorporated in MPCM cement paste was found to be 0.5 wt %. From the thermal performance test, it was found that the cement paste panels incorporated with different percentages of MPCM reduced the temperature measured at the center of the room by up to 4.6 °C. Inverse relationship was found between maximum temperature measured at the center of the room and the dosage of MPCM. PMID:25867476

  6. Shear bond strength of resin-modified glass ionomer cement with saliva present and different enamel pretreatments.

    PubMed

    Godoy-Bezerra, Juliana; Vieira, Sérgio; Oliveira, José Henrique Gonzaga; Lara, Flávio

    2006-05-01

    The purpose of this study was to evaluate the shear bond strength of resin-modified glass ionomer cement in a saliva-contaminated environment, using different enamel pretreatments. A total of 125 freshly extracted, bovine permanent inferior incisors were divided into five groups. Group I received 10% polyacrylic acid, moistened with saliva/Fuji Ortho LC (FOLC); group II received 37% phosphoric acid, moistened with saliva/FOLC; group III was moistened with saliva/ FOLC, without acid etching; group IV received 10% polyacrylic acid, not moistened with saliva/ FOLC; and group V was used as a control with 37% phosphoric acid/dry/Transbond XT. After the bonding procedures, all samples were thermocycled, tested in a shear mode on a testing machine, and the Adhesive Remnant Index was evaluated. One-way analysis of variance and Tukey's honestly significant difference (HSD) tests indicated that group V yielded the highest shear bond strength (4.09 MPa) but with no statistically significant difference from group II (3.88 MPa). There were no statistically significant differences between groups I, III, and IV (2.84, 2.90, and 3.22 MPa, respectively) (P > or = .05). In groups I, II, IV, and V, where enamel was etched, more than 50% of the samples showed that all material adhered to the teeth surfaces. This was opposed to group III, where the bond failure was mostly between the enamel interface and the bonding material. The results indicated that in a saliva-moistened environment, FOLC achieved higher shear bond strength when 37% phosphoric acid is used, with no statistically significant difference from Transbond XT.

  7. BOND STRENGTH OF RESIN MODIFIED GLASS IONOMER CEMENT TO PRIMARY DENTIN AFTER CUTTING WITH DIFFERENT BUR TYPES AND DENTIN CONDITIONING

    PubMed Central

    Nicoló, Rebeca Di; Shintome, Luciana Keiko; Myaki, Silvio Issáo; Nagayassu, Marcos Paulo

    2007-01-01

    The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer – 3M/ESPE) prepared according to the manufacturer’s instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37°C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence. PMID:19089179

  8. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements

    PubMed Central

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-01-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only. PMID:23988173

  9. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements.

    PubMed

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-08-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only.

  10. Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement.

    PubMed

    Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias

    2013-04-12

    An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling

  11. Process for cementing geothermal wells

    DOEpatents

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  12. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    PubMed Central

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  13. Transmission of composite polymerization contraction force through a flowable composite and a resin-modified glass ionomer cement.

    PubMed

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-12-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm(2) for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N + 0.2N; G2: 9.8 + 0.2N; G3: 1.8 + 0.2N; G4: 6.8N + 0.2N; G5: 6.9N + 0.3N; G6: 4.0N + 0.4N and G7: 2.8N + 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses.

  14. Heat shrinkability of electron-beam-modified thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer and polyethylene

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Chaki, T. K.; Bhowmick, Anil K.

    2000-11-01

    The heat shrinkability of electron-beam-irradiated thermoplastic elastomeric films from blends of ethylene-vinylacetate copolymer (EVA) and low-density polyethylene (LDPE) has been investigated in this paper. The effects of temperature, time and extent of stretching and shrinkage temperature and time have been reported. Based on the above data, the optimized conditions in terms of high heat shrinkage and low amnesia rating have been evaluated. Influence of radiation doses (0-500 kGy), multifunctional sensitizer levels (ditrimethylol propane tetraacrylate, DTMPTA), and blend proportions on heat shrinkability has been explained with the help of gel fraction and X-ray data. With the increase in radiation dose, gel fraction increases, which in turn gives rise to low values of heat shrinkage and amnesia rating. At a constant radiation dose and blend ratio, percent heat shrinkage is found to decrease with increase in DTMPTA level. Gel content increases with the increase in EVA content of the blend at a constant radiation dose and monomer level, giving rise to decrease in heat shrinkability. Heat shrinkage increases with the increase in percent crystallinity, although the amnesia rating follows the reverse trend.

  15. Detection of chloroform in water using an azo dye-modified β-cyclodextrin - Epichlorohydrin copolymer as a fluorescent probe

    NASA Astrophysics Data System (ADS)

    Ncube, Phendukani; Krause, Rui W. M.; Mamba, Bhekie B.

    Chlorination disinfection by-products (DBPs) in water pose a health threat to humans and the aquatic environment. Their detection in water sources is therefore vital. Herein we present the detection of chloroform, a DBP, using a molecular fluorescent probe. The detection was based on the quenching of fluorescence of the probe by chloroform due to host-guest complex formation between β-cyclodextrin in the probe and the chloroform molecule. The stability constant for the host-guest complex was high at 3.825 × 104 M-1. Chloroform quenched the fluorescence of the copolymer the most compared to the other small chlorinated compounds studied, suggesting that the probe was more sensitive to chloroform, with a sensing factor of 0.35 compared to as low as 0.0073 for dichloromethane. There was no interference from other chloroalkanes on the quenching efficiency of chloroform. The probe was used to detect chloroform in dam water as well as in bottled water. Detection of chloroform in both water samples using the probe was possible without chemically treating the water samples which may introduce other pollutants.

  16. A novel injectable porous surface modified bioactive bone cement for vertebroplasty: an in vivo biomechanical and osteogenic study in a rabbit osteoporosis model

    PubMed Central

    Chen, Jun; Yu, Jin; He, Qiang; Zhao, Xiong; Sang, Hongxun; Lei, Wei; Wu, Zixiang; Chen, Jingyuan

    2015-01-01

    Purpose: The aim of this study is to determine the feasibility and effectiveness of a novel injectable Porous Surface Modified Bioactive Bone Cement (PSMBBC) for vertebroplasty of aiding osteoporotic vertebrae in an osteoporosis model. Methods: 72 osteoporosis rabbits were randomly divided into three groups: the Polymethyl Methacrylate (PMMA) group, the PSMBBC group and the control group. PMMA and PSMBBC were administrated to osteoporotic vertebrae in vertebroplasty, respectively. The animals were sacrificed at 1w, 4w, 12w after the procedure. Micro-CT analysis, biomechanical tests and histological analysis were performed at each time point. Results: From 4 to 12 weeks after the implantation of bone cements, the bone volume fraction (BV/TV) of the PSMBBC group increased from 28.27 ± 1.69% to 38.43 ± 1.34%. However, the BV/TV of the PMMA group showed no significant difference after the implantation. At 4 weeks, direct contact between the bone and the bone cement was observed in the PSMBBC group. At 12 weeks, it was discovered that new intact bone trabecular was formed in PSMBBC group. Furthermore, the maximum compressive strength values of the PSMBBC group were significantly higher than those of the control group at each time point after implantation. Conclusions: In summary, this study was the first investigation to evaluate the potential application of PSMBBC for vertebroplasty. Results demonstrated its beneficial effects on the trabecular ingrowth of new bone and bone mineral density increase. With further validation, PSMBBC can become a valuable biomaterial for aiding osteoporotic vertebrae and usable bone cement applied in vertebroplasty. PMID:26045894

  17. Aggregate structure and effect of phthalic anhydride modified soy protein on the mechanical properties of styrene-butadiene copolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...

  18. Characterization of thermal destruction behavior of hybrid composites based on polyoxymethylene, ethylene-octene copolymer impact modifier and ZnO nanofiller

    NASA Astrophysics Data System (ADS)

    Meri, Remo Merijs; Zicans, Janis; Abele, Agnese; Ivanova, Tatjana; Kalnins, Martins

    2016-05-01

    Hybrid polymer nanocomposites, composed of polyoxymethylene (POM), ethylene octene copolymer (EOC) and plasma synthesized tetrapod shaped zinc oxide (ZnO), were prepared by using melt compounding. The content of EOC in the POM based composites was varied between 10 and 50 mass %, while the content of ZnO was constant (2 mass %). Thermal behaviour of POM based systems was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The influence of the elastomer content and/or ZnO addition on the thermal stability of POM based systems was evaluated. The influence of the α-octene content in the elastomer on the thermal decomposition behaviour of POM and its nanocomposites with ZnO was also evaluated. Results of thermogravimetric analysis showed that, by rising either the elastomer or ZnO content, thermal stability of the investigated POM composites was increased. The modifying effect of EOC17 in respect of thermal resistance was somewhat larger than that of EOC38 because of the smaller amount of tertiary carbon atoms in the macromolecular structure of the former elastomer. Improved thermal resistance of ZnO containing POM based composites was because of impermeable structure the inorganic nanofiller allowing decrease gas exchange rate and facilitating non-combustible gases, such as CO2, stay in the zone of burning. Addition of ZnO have a potential to influence structure of the polymer blend matrix itself by improving its barrier characteristics.

  19. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface.

  20. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface. PMID:26686158

  1. Development of nanocomposite membranes containing modified Si nanoparticles in PEBAX-2533 as a block copolymer and 6FDA-durene diamine as a glassy polymer.

    PubMed

    Nafisi, Vajiheh; Hägg, May-Britt

    2014-09-24

    Nanocomposite membranes of modified Si nanoparticles as inorganic filler in two different polymers from two different categories were developed. Synthesized 6FDA-durene diamine as a glassy polymer and PEBAX-2533 as a block copolymer were used as the polymer matrix to develop the nanocomposite membranes of modified Si nanoparticles in polymer matrix. The scanning transmission electron microscopy (STEM) results showed nice nano size dispersion of inorganic nanofillers in the polymer matrix in both cases. Pure gas permeation for the gases CO2, CH4, N2, and O2 and mixed gas of CO2-N2 was carried out at 2 and 6 bar for single gas and 2.6 bar for mixed gas using the developed nanocomposite membranes. The loading of inorganic fillers in the PEBAX-2533 polymer matrix resulted in a dramatic increase in gas permeability for all tested gases, while a decrease was observed for CO2/N2 and CO2/CH4 selectivities with small amounts of loading of filler. With higher loading of inorganic filler, the selectivity did not change, which is probably due to the formation of nanogap around the nanoparticles in the polymer matrix. The dispersion of the nanoparticle inorganic fillers in 6FDA-durene polymer matrix caused an increase on the fractional free volume of the polymer matrix due to the disruption of the polymer chain in the presence of the inorganic fillers. Hence, this disruption resulted in an increase of gas permeability for both single and mixed gases, also with an increase in CO2/N2 and CO2/CH4 selectivities.

  2. Enhanced Antifungal Activity by Ab-Modified Amphotericin B-Loaded Nanoparticles Using a pH-Responsive Block Copolymer

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Dai, Jingjing; Xie, Jun; Zhu, Yongqiang; Zhu, Ming; Wang, Zhi; Xie, Chunmei; Yao, Aixia; Liu, Tingting; Wang, Xiaoyu; Chen, Li; Jiang, Qinglin; Wang, Shulei; Liang, Yong; Xu, Congjing

    2015-06-01

    Fungal infections are an important cause of morbidity and mortality in immunocompromised patients. Amphotericin B (AMB), with broad-spectrum antifungal activity, has long been recognized as a powerful fungicidal drug, but its clinical toxicities mainly nephrotoxicity and poor solubility limit its wide application in clinical practice. The fungal metabolism along with the host immune response usually generates acidity at sites of infection, resulting in loss of AMB activity in a pH-dependent manner. Herein, we developed pH-responsive AMB-loaded and surface charge-switching poly( d, l-lactic- co-glycolic acid)- b-poly( l-histidine)- b-poly(ethylene glycol) (PLGA-PLH-PEG) nanoparticles for resolving the localized acidity problem and enhance the antifungal efficacy of AMB. Moreover, we modified AMB-encapsulated PLGA-PLH-PEG nanoparticles with anti- Candida albicans antibody (CDA) (CDA-AMB-NPs) to increase the targetability. Then, CDA-AMB-NPs were characterized in terms of physical characteristics, in vitro drug release, stability, drug encapsulation efficiency, and toxicity. Finally, the targetability and antifungal activity of CDA-AMB-NPs were investigated in vitro /in vivo. The result demonstrated that CDA-AMB-NPs significantly improve the targetability and bioavailability of AMB and thus improve its antifungal activity and reduce its toxicity. These NPs may become a good drug carrier for antifungal treatment.

  3. Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy.

    PubMed

    Yan, Tingsheng; Li, Dalong; Li, Jiwei; Cheng, Feng; Cheng, Jinju; Huang, Yudong; He, Jinmei

    2016-09-01

    A glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer (PCL-SS-CTS-GA) micelle was developed for the co-delivery of doxorubicin (DOX) and curcumin (CCM) to hepatoma cells. Glycyrrhetinic acid (GA) was used as a targeting unit to ensure specific delivery. Co-encapsulation of DOX and CCM was facilitated by the incorporation of poly(ε-caprolactone) (PCL) groups. The highest drug loading content was 19.8% and 8.9% (w/w) for DOX and CCM, respectively. The PCL-SS-CTS-GA micelle presented a spherical or ellipsoidal geometry with a mean diameter of approximately 110nm. The surface charge of the micelle changed from negative to positive, when the pH value of the solution decreased from 7.4 to 6.8. Meanwhile, it also exhibited a character of redox-responsive drug release and GA/pH-mediated endocytosis in vitro. In simulated body fluid with 10mM glutathione, the release rate in 12h was 80.6% and 67.2% for DOX and CCM, respectively. The cell uptake of micelles was significantly higher at pH 6.8 than pH 7.4. The combined administration of DOX and CCM was facilitated by PCL-SS-CTS-GA micelle. Results showed that there was strong synergic effect between the two drugs. The PCL-SS-CTS-GA micelle might turn into a promising and effective carrier for improved combination chemotherapy. PMID:27281238

  4. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  5. Combination of modified mixing technique and low frequency ultrasound to control the elution profile of vancomycin-loaded acrylic bone cement

    PubMed Central

    Wendling, A.; Mar, D.; Wischmeier, N.; Anderson, D.

    2016-01-01

    provides a reasonable means for increasing both short- and long-term antibiotic elution without affecting mechanical strength. Cite this article: Dr. T. McIff. Combination of modified mixing technique and low frequency ultrasound to control the elution profile of vancomycin-loaded acrylic bone cement. Bone Joint Res 2016;5:26–32. DOI: 10.1302/2046-3758.52.2000412 PMID:26843512

  6. Barite formation in the presence of a commercial copolymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Cristina; Putnis, Christine; Ruiz-Agudo, Encarnacion; Putnis, Andrew

    2015-04-01

    Fluid composition can significantly modify the mechanisms of mineral formation. Particularly, the presence of organic additives in the aqueous media has been shown to alter the precipitation of minerals substantially (e.g. calcium carbonate, barium carbonate and barium sulfate). Despite the numerous studies dealing with barite precipitation and the influence of organic additives (e.g. Benton et al. 1993, Qi et al., 2000, Wang and Cölfen, 2006, Mavredaki et al., 2011), the details of the mechanism of barite formation in the presence of organic additives, particularly at the early stages of this process, are yet to be fully resolved. Here, we present observations on the initial stages of barite formation from aqueous solutions, as well as the alterations induced by a commercial copolymer (maleic acid/allyl sulfonic acid copolymer with phosphonate groups), commonly used as a scale inhibitor in oil recovery. Most synthetic commercial additives contain the same functional groups (e.g. carboxylate, phosphonate and/or sulfonate groups). Thus our work may help to understand the mechanism by which copolymers modify crystallization processes and aid in the selection of the most appropriate inhibitors for hindering or controlling barite scale formation. Barite scaling is one of the main problems in many industrial processes (such as, paper-making, chemical manufacturing, cement operations, off-shore oil extraction, geothermal energy production). Using Atomic Force Microscopy (AFM), we show that barite growth is significantly influenced by the presence of the copolymer. In its absence, barium sulfate growth occurs by 2D island nucleation and spreading. The addition of small amounts (0.1 ppm and 0.5 ppm) of the copolymer enhances 2D nucleation but blocks growth. Just 1 ppm of inhibitor is enough to block barite nucleation and growth by adsorption of a copolymer layer onto the barite surface. Transmission electron microscopy (TEM) was also used to gain better insights into the

  7. Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a beta-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline.

    PubMed

    Wu, Shouguo; Wang, Taoling; Gao, Zongyong; Xu, Haihong; Zhou, Baineng; Wang, Chuanqin

    2008-07-15

    A beta-cyclodextrin (CD) modified copolymer membrane of sulfanilic acid (p-ASA) and N-acetylaniline (SPNAANI) on glassy carbon electrode (GCE) was prepared and used to determine uric acid (UA) in the presence of a large excess of ascorbic acid (AA) by differential pulse voltammetry (DPV). The properties of the copolymer were characterized by X-ray photoelectron spectra (XPS) and Raman spectroscopy. The oxidation peaks of AA and UA were well separated at the composite membrane modified electrode in phosphate buffer solution (PBS, pH 7.4). A linear relationship between the peak current and the concentration of UA was obtained in the range from 1.0 x 10(-5) to 3.5 x 10(-4)mol L(-1), and the detection limit was 2.7 x 10(-6)mol L(-1) at a signal-to-noise ratio of 3. Two hundred and fifty-fold excess of AA did not interfere with the determination of UA. The application of the prepared electrode was demonstrated by measuring UA in human serum samples without any pretreatment, and the results were comparatively in agreement with the spectrometric clinical assay method.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  9. Well cementing method using an am/amps fluid loss additive blend

    SciTech Connect

    Boncan, V.G.; Gandy, R.

    1986-12-30

    A method is described of cementing a wellbore, comprising the steps of: mixing together a hydraulic cement, water in an amount to produce a pumpable slurry, and a non-retarding fluid loss additive blend. The blend comprises a copolymer of acrylamide and 2-acrylamide-2-methylpropane sulfonate, the sodium salt of naphthalene formaldehyde sulfonate, and polyvinylpyrrolidone polymer; pumping the cement slurry to the desired location in the wellbore; and allowing the cement slurry to harden to a solid mass.

  10. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    PubMed Central

    AZEVEDO, Larissa Marinho; CASAS-APAYCO, Leslie Carol; VILLAVICENCIO ESPINOZA, Carlos Andres; WANG, Linda; NAVARRO, Maria Fidela de Lima; ATTA, Maria Teresa

    2015-01-01

    Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC) lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control) – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond) + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond) + four oblique layers. Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE) dyed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM) analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa). Data were analyzed by two-way ANOVA and Fisher’s test. Results There was no statistical difference on bond strength among groups (p>0.05). CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations. PMID:26221927

  11. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    PubMed Central

    Sharma, Padmaja; Valiathan, Ashima; Arora, Ankit; Agarwal, Sachin

    2013-01-01

    Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs), due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, their fluoride releasing property makes them an ideal bonding agent for patients with poor oral hygiene. However, their immediate bond strength is said to be too low to immediately ligate the initial wire, which could increase the total number of appointments. The effect of sandblasting and the use of sodium hypochlorite (NaOCL) on the immediate bond failure of RMGIC clinically have not been reported in the literature until the date. This investigation intended to assess the effect of sandblasting (of the bracket base and enamel) and NaOCL on the rate of bond failure (with immediate ligation at 30 min) of Fuji Ortho LC and its comparison with that of conventional light cured composite resin over a period of 1 year. Materials and Methods: 400 sample teeth were further divided into 4 groups of 100 each and bonded as follows: (1) Group 1: Normal metallic brackets bonded with Fuji Ortho LC. (2) Group 2: Sandblasted bracket base and enamel surface, brackets bonded with Fuji Ortho LC. (3) Group 3: Deproteinized enamel surface using sodium hypochlorite and brackets bonded with Fuji Ortho LC. (4) Group 4: Normal metallic bracket bonded with Transbond XT after etching enamel with 37% phosphoric acid. This group served as control group. Results and Conclusion: Results showed that sandblasting the bracket base and enamel, can significantly reduce the bond failure rate of RMGIC. PMID:24014999

  12. Comparative Evaluation of Microleakage Between Nano-Ionomer, Giomer and Resin Modified Glass Ionomer Cement in Class V Cavities- CLSM Study

    PubMed Central

    Hari, Archana; Thumu, Jayaprakash; Velagula, Lakshmi Deepa; Bolla, Nagesh; Varri, Sujana; Kasaraneni, Srikanth; Nalli, Siva Venkata Malathi

    2016-01-01

    Introduction Marginal integrity of adhesive restorative materials provides better sealing ability for enamel and dentin and plays an important role in success of restoration in Class V cavities. Restorative material with good marginal adaptation improves the longevity of restorations. Aim Aim of this study was to evaluate microleakage in Class V cavities which were restored with Resin Modified Glass Ionomer Cement (RMGIC), Giomer and Nano-Ionomer. Materials and Methods This in-vitro study was performed on 60 human maxillary and mandibular premolars which were extracted for orthodontic reasons. A standard wedge shaped defect was prepared on the buccal surfaces of teeth with the gingival margin placed near Cemento Enamel Junction (CEJ). Teeth were divided into three groups of 20 each and restored with RMGIC, Giomer and Nano-Ionomer and were subjected to thermocycling. Teeth were then immersed in 0.5% Rhodamine B dye for 48 hours. They were sectioned longitudinally from the middle of cavity into mesial and distal parts. The sections were observed under Confocal Laser Scanning Microscope (CLSM) to evaluate microleakage. Depth of dye penetration was measured in millimeters. Statistical Analysis The data was analysed using the Kruskal Wallis test. Pair wise comparison was done with Mann Whitney U Test. A p-value<0.05 is taken as statistically significant. Results Nano-Ionomer showed less microleakage which was statistically significant when compared to Giomer (p=0.0050). Statistically no significant difference was found between Nano Ionomer and RMGIC (p=0.3550). There was statistically significant difference between RMGIC and Giomer (p=0.0450). Conclusion Nano-Ionomer and RMGIC showed significantly less leakage and better adaptation than Giomer and there was no statistically significant difference between Nano-Ionomer and RMGIC. PMID:27437363

  13. Pentablock copolymers of pluronic F127 and modified poly(2-dimethyl amino)ethyl methacrylate for internalization mechanism and gene transfection studies

    PubMed Central

    Huang, Shih-Jer; Wang, Tzu-Pin; Lue, Sheng-I; Wang, Li-Fang

    2013-01-01

    Cationic polymers are one of the major nonviral gene delivery vectors investigated in the past decade. In this study, we synthesized several cationic copolymers using atom transfer radical polymerization (ATRP) for gene delivery vectors: pluronic F127-poly(dimethylaminoethyl methacrylate) (PF127-pDMAEMA), pluronic F127-poly (dimethylaminoethyl methacrylate-tert-butyl acrylate) (PF127-p(DMAEMA-tBA)), and pluronic F127-poly(dimethylaminoethyl methacrylate-acrylic acid) (PF127-p(DMAEMA-AA)). The copolymers showed high buffering capacity and efficiently complexed with plasmid deoxyribonucleic acid (pDNA) to form nanoparticles 80–180 nm in diameter and with positive zeta potentials. In the absence of 10% fetal bovine serum, PF127-p(DMAEMA-AA) showed the highest gene expression and the lowest cytotoxicity in 293T cells. After acrylic acid groups had been linked with a fluorescent dye, the confocal laser scanning microscopic image showed that PF127-p(DMAEMA-AA)/pDNA could efficiently enter the cells. Both clathrin-mediated and caveolae-mediated endocytosis mechanisms were involved. Our results showed that PF127-p(DMAEMA-AA) has great potential to be a gene delivery vector. PMID:23745045

  14. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  15. Radiopacity evaluation of contemporary luting cements by digitization of images.

    PubMed

    Reis, José Maurício Dos Santos Nunes; Jorge, Erica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (α = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

  16. Water dynamics in glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  17. Comparative Evaluation of Fluoride Recharge Ability of Conventional and Hydroxyapatite Modified Glass Ionomer Cement with Daily Low Fluoride Exposure- An Invitro Study

    PubMed Central

    Sudeep, S.; Sharma, Shalini; Mohanty, Susant

    2016-01-01

    Introduction Glass ionomer cement (GIC) has best suited paediatric dentists and is well recognised in the preventive era of dentistry. However its use is affected by its inferior mechanical properties. Hydroxyapatite whiskers have been lately introduced as strengthening additive without affecting its fluoride releasing property, but literature lacks data related to its effect on recharging ability of glass ionomer cement. Aim To evaluate and compare fluoride release from hydroxyapatite incorporated glass ionomer cement following recharging with low fluoride dentifrices. Materials and Methods An 8% Hydroxyapatite whiskers were added to Conventional Glass ionomer powder and 40 specimens each of conventional and Hydroxyapatite Glass ionomer cement were prepared using customised Teflon mould (5mm x 2mm) and were suspended in deionised water. Recharging of aged specimens was done using low fluoridated dentifrices containing 500ppm fluoride, twice daily and water was replenished every 24 hours. Fluoride release was analysed daily for 7 days and then weekly till 21 days using Sension 4 pH/ion selective electrode. Data thus obtained was statistically analysed by descriptive analysis followed by repeated measures ANOVA. Results Significant (p<0.01) increase in fluoride release was observed in both the materials following recharging regimen. Recharge pattern of hydroxyapatite glass ionomer was found to be similar to conventional glass ionomer cement. Conclusion Within the limitations of this study it can be evinced that fluoride rechargability and re-release remains unaffected by the addition of hydroxyapatite whiskers and hence proves to be more acceptable additive to glass ionomer cement to improve its mechanical properties widening its arena of usage by clinicians. PMID:27042586

  18. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  19. Synthesis of amphiphilic diblock copolymer for surface modification of Ethylene-Norbornene Copolymers

    NASA Astrophysics Data System (ADS)

    Levinsen, Simon; Svendsen, Winnie Edith; Horsewell, Andy; Almdal, Kristoffer

    2014-03-01

    The aim of this work is to produce polymer modifiers in order to develop hydrophilic polymeric surfaces for use in microfluidics. The use of hydrophilic polymers in microfluidics will have many advantages e.g. preventing protein absorbance. Here we present an amphiphilic diblock copolymer consisting of a bulk material compatible block and a hydrophilic block. To utilize the possibility of incorporating diblock copolymers into ethylene-norbornene copolymers, we have in this work developed a model poly(ethylene-1-butene) polymer compatible with the commercial available ethylene-norbornene copolymer TOPAS. Through matching of the radius of gyration for the model polymer and TOPAS the miscibility was achieved. The poly(ethylene-1-butene) polymer was synthesized from a hydrogenated anionic polymerized polybutadiene polymer. As hydrophilic block poly(ethylene oxide) was subsequently added also with anionic polymerization. Recent miscibility results between the model polymer and TOPAS will be presented, as well ongoing efforts to study the hydrophilic surface.

  20. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  1. Photocatalytic NO{sub x} abatement by calcium aluminate cements modified with TiO{sub 2}: Improved NO{sub 2} conversion

    SciTech Connect

    Pérez-Nicolás, M.; Navarro-Blasco, I.; Fernández, J.M.

    2015-04-15

    Photocatalytic activity of TiO{sub 2} was studied in two types of calcium aluminate cement (CAC) under two different curing regimes. The effect of the TiO{sub 2} addition on the setting time, consistency and mechanical properties of the CACs was evaluated. The abatement of gaseous pollutants (NO{sub x}) under UV irradiation was also assessed. These cementitious matrices were found to successfully retain NO{sub 2}: more abundant presence of aluminates in white cement (w-CAC, iron-lean) helped to better adsorb NO{sub 2}, thus improving the conversion performance of the catalyst resulting in a larger NO{sub x} removal under UV irradiation. As evidenced by XRD, SEM, EDAX and zeta potential analyses, the presence of ferrite in dark cement (d-CAC, iron-reach) induced a certain chemical interaction with TiO{sub 2}. The experimental findings suggest the formation of new iron titanate phases, namely pseudobrookite. The reduced band-gap energy of these compounds compared with that of TiO{sub 2} accounts for the photocatalytic activity of these samples.

  2. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  3. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  4. Possibility of one-stage surgery to reconstruct bone defects using the modified Masquelet technique with degradable calcium sulfate as a cement spacer: A case report and hypothesis

    PubMed Central

    JIANG, NAN; QIN, CHENG-HE; MA, YUN-FEI; WANG, LEI; YU, BIN

    2016-01-01

    In addition to autologous bone graft, vascularized fibular autograft and Ilizarov bone transfer, the Masquelet technique is another effective method to reconstruct bone defects. This technique was initially proposed in 1986 and consists of two stages. At the first stage, radical debridement is required and subsequently, a polymethylmethacrylate (PMMA) cement spacer is implanted at the site of the bone defects. At the second stage, when the PMMA-induced membrane is formed 6–8 weeks later, the cement spacer is carefully removed in order to not disturb the induced membrane and the bone graft is performed to fill the bone defects. Although this technique has resulted in satisfactory outcomes in the reconstruction of bone defects, the PMMA spacer used to induce membrane is not degradable and requires surgical removal. In recent years, calcium sulfate has been used as a localized antibiotic delivery vehicle and bone substitute due to its superiorities over PMMA, particularly its completely degradable nature. The present study identified that calcium sulfate can also induce the formation of a membrane. In addition, we hypothesized that the degradability of calcium sulfate may allow one-stage reconstruction of bone defects. The current study presents a clinical case report and review of the literature. PMID:26998279

  5. In vitro bond strength and fatigue stress test evaluation of different adhesive cements used for fixed space maintainer cementation

    PubMed Central

    Cantekin, Kenan; Delikan, Ebru; Cetin, Secil

    2014-01-01

    Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209

  6. Optoelectronics using block copolymers.

    SciTech Connect

    Botiz, I.; Darling, S. B.; Center for Nanoscale Materials

    2010-05-01

    Block copolymers, either as semiconductors themselves or as structure directors, are emerging as a promising class of materials for understanding and controlling processes associated with both photovoltaic energy conversion and light emitting devices.

  7. Antimicrobial Graft Copolymer Gels.

    PubMed

    Harvey, Amanda C; Madsen, Jeppe; Douglas, C W Ian; MacNeil, Sheila; Armes, Steven P

    2016-08-01

    In view of the growing worldwide rise in microbial resistance, there is considerable interest in designing new antimicrobial copolymers. The aim of the current study was to investigate the relationship between antimicrobial activity and copolymer composition/architecture to gain a better understanding of their mechanism of action. Specifically, the antibacterial activity of several copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and 2-hydroxypropyl methacrylate (HPMA) toward Staphylococcus aureus was examined. Both block and graft copolymers were synthesized using either atom transfer radical polymerization or reversible addition-fragmentation chain transfer polymerization and characterized via (1)H NMR, gel permeation chromatography, rheology, and surface tensiometry. Antimicrobial activity was assessed using a range of well-known assays, including direct contact, live/dead staining, and the release of lactate dehydrogenase (LDH), while transmission electron microscopy was used to study the morphology of the bacteria before and after the addition of various copolymers. As expected, PMPC homopolymer was biocompatible but possessed no discernible antimicrobial activity. PMPC-based graft copolymers comprising PHPMA side chains (i.e. PMPC-g-PHPMA) significantly reduced both bacterial growth and viability. In contrast, a PMPC-PHPMA diblock copolymer comprising a PMPC stabilizer block and a hydrophobic core-forming PHPMA block did not exhibit any antimicrobial activity, although it did form a biocompatible worm gel. Surface tensiometry studies and LDH release assays suggest that the PMPC-g-PHPMA graft copolymer exhibits surfactant-like activity. Thus, the observed antimicrobial activity is likely to be the result of the weakly hydrophobic PHPMA chains penetrating (and hence rupturing) the bacterial membrane. PMID:27409712

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  9. Self-cleaning and depollution of fiber reinforced cement materials modified by neutral TiO2/SiO2 hydrosol photoactive coatings

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lu, ChunHua; Xiong, JiRu

    2014-04-01

    Environmental pollution has an evidently adverse impact on the buildings that are constructed by the glass fiber reinforced cement (GRC) materials. In the present work, the stable, neutral TiO2/SiO2 hydrosols were prepared by using the Ti(SO4)2 as titanium source, HNO3 as peptizing agent, and SiO2 as stabilizer through a simple and low cost process. The morphologies and structures of TiO2/SiO2 hydrosol were further characterized by the TEM, SEM, XRD, and FTIR measurement. In the synthetic hydrosol, lots of nanoparticles with the diameters in the range of 10-20 nm can be observed. Tisbnd Osbnd Si band were formed, as observed from the FTIR spectrum. The Na2O·SiO2 was detected from the SEM. After drying the TiO2/SiO2 hydrosol, the XRD shown that the TiO2 has an anatase structure and the SiO2 is amorphous. The TiO2/SiO2 hydrosol can be compactly coated on the GRC surface due to the existence of Na2O·SiO2 binder and exhibited high photocatalytic activity and stability in the degradation of Rhodamine B.

  10. Practical clinical considerations of luting cements: A review

    PubMed Central

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-01-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician’s understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  11. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-10-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  12. Retention of Implant Supported Metal Crowns Cemented with Different Luting Agents: A Comparative Invitro Study

    PubMed Central

    Singh, Kavipal; Kaur, Simrat; Arora, Aman

    2016-01-01

    Introduction To overcome limitations of screw-retained prostheses, cement-retained prostheses have become the restoration of choice now a days. Selection of the cement hence becomes very critical to maintain retrievability of the prostheses. Aim The purpose of this study was to assess and compare the retention of base metal crowns cemented to implant abutments with five different luting cements. Materials and Methods Ten implant analogs were secured in five epoxy resin casts perpendicular to the plane of cast in right first molar and left first molar region and implant abutments were screwed. Total of 100 metal copings were fabricated and cemented. The cements used were zinc phosphate, resin modified glass ionomer cement, resin cement, non-eugenol acrylic based temporary implant cement & non-eugenol temporary resin cement implant cement. Samples were subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 0.5mm/min. The load required to de-cement each coping was recorded and mean values for each group calculated and put to statistical analysis. Results The results showed that resin cement has the highest retention value 581.075N followed by zinc phosphate luting cement 529.48N, resin modified glass ionomer cement 338.095 N, non-eugenol acrylic based temporary implant cement 249.045 N and non-eugenol temporary resin implant cement 140.49N. Conclusion Within the limitations of study, it was concluded that non-eugenol acrylic based temporary implant cement and non-eugenol temporary resin implant cement allow for easy retrievability of the prosthesis in case of any failure in future. These are suitable for cement retained implant restorations. The results provide a possible preliminary ranking of luting agents based on their ability to retain an implant-supported prosthesis and facilitate easy retrieval. PMID:27190954

  13. Development of an Improved Cement for Geothermal Wells

    SciTech Connect

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  15. Amino acid containing glass-ionomer cement for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  16. Assessment of the tensile strength of hexagonal abutments using different cementing agents.

    PubMed

    Wahl, Carlos; França, Fabiana Mantovani Gomes; Brito, Rui Barbosa; Basting, Roberta Tarkany; Smanio, Henrique

    2008-01-01

    The aim of this study was to assess the uniaxial tensile strength after thermal cycling in replicas of CeraOne abutments (abutment and coping sets), using four types of cements (n = 10). A zinc phosphate cement (Fosfato de Zinco/ SSW), a resin-modified glass ionomer cement (RelyX luting / 3M-ESPE), a zinc oxide-eugenol cement (ZOE/ SSW) and a zinc oxide cement without eugenol (TempBond NE/ KERR) were used. After cementation, the samples were submitted to thermal cycles (1,000 cycles, 5 degrees C +/- 2 degrees to 55 degrees C +/- 2 degrees) for thirty seconds in each bath. Next, the samples were submitted to the tensile test in a universal test machine (0.5 mm/min). The data were submitted to ANOVA and the Tukey-Kramer test (p < 0.05), and statistically significant difference was found among the cements. The highest tensile strength mean value found was for zinc phosphate cement (33.6 kgf) followed by the resin-modified glass ionomer cement (20.5 kgf), zinc oxide-eugenol cement (8.4 kgf) and the temporary cement (3.1 kgf). Therefore, it was found that the permanent cements presented higher tensile strength, and the temporary cement could be used in situations requiring reversibility and the removal of cemented dental implant-supported prostheses. PMID:19148383

  17. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  18. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  19. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  20. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  1. In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells

    NASA Astrophysics Data System (ADS)

    Kupresan, D.; Radonjic, M.; Heathman, J.

    2013-12-01

    Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of

  2. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  3. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  4. Design and Comparative Evaluation of In-vitro Drug Release, Pharmacokinetics and Gamma Scintigraphic Analysis of Controlled Release Tablets Using Novel pH Sensitive Starch and Modified Starch- acrylate Graft Copolymer Matrices

    PubMed Central

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-01-01

    The present investigation deals with the development of controlled release tablets of salbutamol sulphate using graft copolymers (St-g-PMMA and Ast-g-PMMA) of starch and acetylated starch. Drug excipient compatibility was spectroscopically analyzed via FT-IR, which confirmed no interaction between drug and other excipients. Formulations were evaluated for physical characteristics like hardness, friability, weight variations, drug release and drug content analysis which satisfies all the pharmacopoeial requirement of tablet dosage form. Release rate of a model drug from formulated matrix tablets were studied at two different pH namely 1.2 and 6.8, spectrophotometrically. Drug release from the tablets of graft copolymer matrices is profoundly pH-dependent and showed a reduced release rate under acidic conditions as compared to the alkaline conditions. Study of release mechanism by Korsmeyer’s model with n values between 0.61-0.67, proved that release was governed by both diffusion and erosion. In comparison to starch and acetylated starch matrix formulations, pharmacokinetic parameters of graft copolymers matrix formulations showed a significant decrease in Cmax with an increase in tmax, indicating the effect of dosage form would last for longer duration. The gastro intestinal transit behavior of the formulation was determined by gamma scintigraphy, using 99mTc as a marker in healthy rabbits. The amount of radioactive tracer released from the labelled tablets was minimal when the tablets were in the stomach, whereas it increased as tablets reached to intestine. Thus, in-vitro and in-vivo drug release studies of starch-acrylate graft copolymers proved their controlled release behavior with preferential delivery into alkaline pH environment. PMID:26330856

  5. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol.

    PubMed

    Huang, Ming-Hsien; Shen, Yu-Fang; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You

    2016-08-01

    Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0-10mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic.

  6. Development of monetite-nanosilica bone cement: a preliminary study.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2014-11-01

    In this paper, we reported the results of our efforts in developing DCPA/nanosilica composite orthopedic cement. It is motivated by the significances of DCPA and silicon in bone physiological activities. More specifically, this paper examined the effects of various experimental parameters on the properties of such composite cements. In this work, DCPA cement powders were synthesized using a microwave synthesis technique. Mixing colloidal nanosilica directly with synthesized DCPA cement powders can significantly reduce the washout resistance of DCPA cement. In contrast, a DCPA-nanosilica cement powder prepared by reacting Ca(OH)2 , H3 PO4 and nanosilica together showed good washout resistance. The incorporation of nanosilica in DCPA can improve compressive strength, accelerate cement solidification, and intensify surface bioactivity. In addition, it was observed that by controlling the content of NaHCO3 during cement preparation, the resulting composite cement properties could be modified. Allowing for the development of different setting times, mechanical performance and crystal features. It is suggested that DCPA-nanosilica composite cement can be a potential candidate for bone healing applications. PMID:24652701

  7. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  8. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  9. Interactions in random copolymers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma; Luettmer-Strathmann, Jutta

    2002-04-01

    The description of thermodynamic properties of copolymers in terms of simple lattice models requires a value for the effective interaction strength between chain segments, in addition to parameters that can be derived from the properties of the corresponding homopolymers. If the monomers are chemically similar, Berthelot's geometric-mean combining rule provides a good first approximation for interactions between unlike segments. In earlier work on blends of polyolefins [1], we found that the small-scale architecture of the chains leads to corrections to the geometric-mean approximation that are important for the prediction of phase diagrams. In this work, we focus on the additional effects due to sequencing of the monomeric units. In order to estimate the effective interaction for random copolymers, the small-scale simulation approach developed in [1] is extended to allow for random sequencing of the monomeric units. The approach is applied here to random copolymers of ethylene and 1-butene. [1] J. Luettmer-Strathmann and J.E.G. Lipson. Phys. Rev. E 59, 2039 (1999) and Macromolecules 32, 1093 (1999).

  10. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  11. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  12. Block copolymer investigations

    NASA Astrophysics Data System (ADS)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  13. Cementation of indirect restorations: an overview of resin cements.

    PubMed

    Stamatacos, Catherine; Simon, James F

    2013-01-01

    The process of ensuring proper retention, marginal seal, and durability of indirect restorations depends heavily on effective cementation. Careful consideration must be made when selecting an adhesive cement for a given application. This article provides information on resin cements that can guide clinicians in determining which type of cement is best suited to their clinical needs regarding cementation of indirect restorations. Emphasis is placed on successful cementation of all-ceramic restorations.

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  15. Multi-block copolymers in thin films.

    NASA Astrophysics Data System (ADS)

    Maniadis, Panagiotis; Kober, Edward; Lookman, Turab

    2008-03-01

    We study the behavior of an ABn multi-block copolymer confined to a thin film, using self consistent field theory (SCFT) methods. Due to the breaking of symmetry in the direction of confinement, the propagators do not obey the usual diffusion equation. We derive the diffusion equation which correctly describes the confined polymer system and find that it differs from the original in an area which is approximately 3 times the Kuhn length of the polymer, close to the surface of the film. We use the modified diffusion equation to study the structure of the confined polymer.

  16. Fabrication and photoactivity of a tunable-void SiO₂-TiO₂ core-shell structure on modified SiO₂ nanospheres by grafting an amphiphilic diblock copolymer using ARGET ATRP.

    PubMed

    Zhao, Minnan; Zhou, Guowei; Zhang, Lei; Li, Xiuyan; Li, Tianduo; Liu, Fangfang

    2014-02-28

    SiO₂-based composites have important applications in various technological fields. In this work, a tunablevoid SiO₂-TiO₂ core-shell structure was successfully prepared for the first time using SiO₂-polymethyl methacrylate (PMMA)-polyoligo(ethylene glycol)methyl ether methacrylate (PO(EO)nMA) (n = 2, 5, and 8). An amphiphilic copolymer was used as the template, and calcination was performed using tetrabutyl titanate (TBT) as the titanium source. SiO₂-PMMA-b-PO(EO)nMA microspheres were first synthesized through activators regenerated by electron transfer-atom transfer radical polymerization. Methyl methacrylate and O(EO)nMA were grafted with different EO unit numbers onto the surface of the halogen functional group of SiO₂. TBT was hydrolyzed along with the PO(EO)nMA chain through hydrogen bonding, and then the SiO₂-TiO₂ core-shell structure was acquired through calcination to remove the polymer. Simultaneously, amorphous TiO₂ crystallized during calcination. A series of characterizations indicated that the amphiphilic block copolymer was grafted onto SiO₂ mesoparticle surfaces, the titania samples existed only in the anatase phase, and the prepared SiO₂-TiO₂ had hierarchically nanoporous structures. The gradient hydrophilicity of the PMMA-b-PO(EO)nMA copolymer template facilitated the hydrolysis of TBT molecules along the PO(EO)nMA to PMMA segments, thereby tuning the space between the core and the shell. In addition, the space was about 6 nm when the EO number was 2, and the space was about 10 nm when the EO numbers were 5 and 8. The photocatalytic activities of the SiO₂-TiO₂ materials were tested on the photodegradation of methyl orange. PMID:24795964

  17. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  18. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  19. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO₂ Separation from CH₄ and N₂.

    PubMed

    Otvagina, Ksenia V; Mochalova, Alla E; Sazanova, Tatyana S; Petukhov, Anton N; Moskvichev, Alexandr A; Vorotyntsev, Andrey V; Afonso, Carlos A M; Vorotyntsev, Ilya V

    2016-06-09

    CO₂ separation was found to be facilitated by transport membranes based on novel chitosan (CS)-poly(styrene) (PS) and chitosan (CS)-poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF₄], [bmim][PF₆], and [bmim][Tf₂N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75-104 MPa for CS-PAN and 69-75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO₂ permeability 400 Barrers belongs to CS-b-PS/[bmim][BF₄]. The highest selectivity α (CO₂/N₂) = 15.5 was achieved for CS-b-PAN/[bmim][BF₄]. The operational temperature of the membranes is under 220 °C.

  20. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    PubMed Central

    Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.

    2016-01-01

    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964

  1. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    PubMed Central

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-01-01

    Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062

  2. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.

    PubMed

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-07-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.

  3. Smectic block copolymer thin films on corrugated substrates.

    PubMed

    Pezzutti, Aldo D; Gómez, Leopoldo R; Vega, Daniel A

    2015-04-14

    In this work we study equilibrium and non-equilibrium structures of smectic block copolymer thin films deposited on a topographically patterned substrate. A Brazovskii free energy model is employed to analyze the coupling between the smectic texture and the local mean curvature of the substrate. The substrate's curvature produces out-of-plane deformations of the block copolymer such that equilibrium textures are modified and dictated by the underlying geometry. For weak curvatures it is shown that the free energy of the block copolymer film follows a Helfrich form, scaling with the square of the mean curvature, with a bending constant dependent on the local pattern orientation. On substrates of varying mean curvature simulations show that topological defects are rapidly expelled from regions with large curvature. These results compare well with available experimental data of poly(styrene)-co-poly(ethylene-alt-propylene) smectic thin films.

  4. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  5. Microleakage of cements for stainless steel crowns.

    PubMed

    Shiflett, K; White, S N

    1997-01-01

    Microleakage is related to recurrent decay, inflammation of vital pulps, and reinfection of previously treated root canals. The purpose of this investigation was to compare the abilities of new adhesive cements and conventional nonadhesive controls to prevent microleakage under stainless steel crowns on primary anterior teeth. Standardized preparations were made, and stainless steel crowns were adapted. Specimens were assigned randomly to cement groups: zinc phosphate (ZP), polycarboxylate (PC), glass-ionomer (GI), resin-modified glass-ionomer (RMGI), RMGI with a dentin bonding agent (RMGI + DBA), adhesive composite resin (ACR) and zinc oxide eugenol (ZOE). Specimens were stored in water, aged artificially, stained, embedded, and sectioned, and the microleakage was measured. Group means and standard errors were calculated. ANOVA discerned differences among groups (P < 0.0001), and Turkey's multiple comparisons testing (P < 0.05) ranked the groups from least to most microleakage as follows: [RMGI + DBA, RMGI, ACR, GI], [ZP], and [PC, ZOE]. The adhesive cements significantly reduced microleakage.

  6. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  7. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  8. Arrangement of C60 via the self-assembly of post-functionalizable polyisocyanate block copolymer.

    PubMed

    Min, Joonkeun; Shah, Priyank N; Chae, Chang-Geun; Lee, Jae-Suk

    2012-12-13

    Poly(furfuryl isocyanate) (PFIC), which includes the reactive furan group, was synthesized by anionic polymerization using a sodium benzhydroxide (Na-BH), self-assembly initiator. We determined the optimum polymerization conditions by varying both the reaction time and the molar ratio of the monomer to the initiator. Block copolymer, poly(furfuryl isocyanate)-b-poly(n-hexyl isocyanate), was synthesized under optimized polymerization conditions. The PFIC was modified by Diels-Alder reactions with C60 for functionalization. Transmission electron microscopy (TEM) was used to study the self-assembly of block copolymers and modified block copolymer with C60. C60 formed highly ordered aggregates on the PFIC domains via self-assembly of the block copolymer.

  9. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  10. Stage cementing apparatus

    SciTech Connect

    Blamford, D.M.; Easter, J.H.

    1988-06-21

    A stage cementing apparatus for selectively passing cement from the interior passage of a casing to the annulus between the exterior of the casing and borehole, the casing having an upper portion and a lower portion, is described comprising: a barrel secured to the upper portion of the casing; a mandrel secured to the lower portion of the casing, and a stage cementing tool having a generally cylindrical configuration adapted for attachment to the lower end of the barrel about a portion of the mandrel.

  11. Bone cement implantation syndrome.

    PubMed

    Razuin, R; Effat, O; Shahidan, M N; Shama, D V; Miswan, M F M

    2013-06-01

    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material. PMID:23817399

  12. Microleakage and marginal gap of adhesive cements for noble alloy full cast crowns.

    PubMed

    Hooshmand, T; Mohajerfar, M; Keshvad, A; Motahhary, P

    2011-01-01

    Very limited comparative information about the microleakage in noble alloy full cast crowns luted with different types of adhesive resin cements is available. The purpose of this study was to evaluate the microleakage and marginal gap of two self-adhesive resin cements with that of other types of adhesive luting cements for noble alloy full cast crowns. Fifty noncarious human premolars and molars were prepared in a standardized manner for full cast crown restorations. Crowns were made from a noble alloy using a standardized technique and randomly cemented with five cementing agents as follows: 1) GC Fuji Plus resin-modified glass ionomer cement, 2) Panavia F 2.0 resin cement, 3) Multilink Sprint self-adhesive resin cement, 4), Rely X Unicem self-adhesive resin cement with pretreatment, and 5) Rely X Unicem with no pretreatment. The specimens were stored in distilled water at 37°C for two weeks and then subjected to thermocycling. They were then placed in a silver nitrate solution, vertically cut in a mesiodistal direction and evaluated for microleakage and marginal gap using a stereomicroscope. Data were analyzed using a nonparametric Kruskal-Wallis test followed by Dunn multiple range test at a p<0.05 level of significance. The Rely X Unicem (with or with no pretreatment) exhibited the smallest degree of microleakage at both tooth-cement and cement-crown interfaces. The greatest amount of microleakage was found for Panavia F 2.0 resin cement followed by GC Fuji Plus at both interfaces. No statistically significant difference in the marginal gap values was found between the cementing agents evaluated (p>0.05). The self-adhesive resin cements provided a much better marginal seal for the noble alloy full cast crowns compared with the resin-modified glass ionomer or dual-cured resin-based cements.

  13. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  14. Hyperviscous diblock copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Dimova, R.; Seifert, U.; Pouligny, B.; Förster, S.; Döbereiner, H.-G.

    2002-03-01

    Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes them interesting candidates for a number of technological applications.

  15. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  16. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  17. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 21, 1994--March 22, 1995

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-05-01

    The purpose of this study is to extend the concept of micellar polymerization to more complex systems, and to explore the responsive nature of hydrophobically modified polyelectrolytes by tailoring the microstructure. The synthesis of hydrophobically modified acrylamide/acrylic acid copolymer is described. These types of polymers are of interest as thickening agents utilized in enhanced oil recovery.

  18. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  19. Retentive strength of luting cements for stainless steel crowns: an in vitro study.

    PubMed

    Subramaniam, Priya; Kondae, Sapna; Gupta, Kamal Kishore

    2010-01-01

    The present study evaluated and compared the retentive strength of three luting cements. A total of forty five freshly extracted human primary molars were used in this study. The teeth were prepared to receive stainless steel crowns. They were then randomly divided into three groups, of fifteen teeth each, so as to receive the three different luting cements: conventional glass ionomer resin modified glass ionomer and adhesive resin. The teeth were then stored in artificial saliva for twenty four hours. The retentive strength of the crowns was determined by using a specially designed Instron Universal Testing Machine (Model 1011). The data was statistically analyzed using ANOVA to evaluate retentive strength for each cement and Tukey test for pair wise comparison. It was concluded that retentive strength of adhesive resin cement and resin modified glass ionomer cement was significantly higher than that of the conventional glass ionomer cement.

  20. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  1. The Investigation of Properties of Insulating Refractory Concrete with Portland Cement Binder

    NASA Astrophysics Data System (ADS)

    Kudžma, A.; Antonovič, V.; Stonys, R.; Škamat, J.

    2015-11-01

    The present work contains the results of experimental study on properties of insulating refractory concrete created on the basis of Portland cement (PC) binder and modified with microsilica (MS). The experimental compositions were made using Portland cement, lightweight aggregates (expanded clay and vermiculite) and microsilica additives. It was established that MS additives enable significant improvement of mechanical properties and thermal shock resistance of PC-based insulating concrete with values comparable to insulating refractory concrete based on calcium aluminate cement.

  2. Copolymer Crystallization: Approaching Equilibrium

    NASA Astrophysics Data System (ADS)

    Crist, Buckley; Finerman, Terry

    2002-03-01

    Random ethylene-butene copolymers of uniform chemical composition and degree of polymerization are crystallized by evaporation of thin films (1 μ m - 5 μ m) from solution. Macroscopic films ( 100 μm) formed by sequential layer deposition are characterized by density, calorimetry and X-ray techniques. Most notable is the density, which in some cases implies a crystalline fraction nearly 90% of the equilibrium value calculated from Flory theory. Melting temperature of these solution deposited layers is increased by as much as 8 ^oC over Tm for the same polymer crystallized from the melt. Small-angle X-ray scattering indicates that the amorphous layer thickness is strongly reduced by this layered crystallization process. X-ray diffraction shows a pronounced orientation of chain axes and lamellar normals parallel to the normal of the macroscopic film. It is clear that solvent enhances chain mobility, permitting proper sequences to aggregate and crystallize in a manner that is never achieved in the melt.

  3. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  4. Retention of crowns cemented on implant abutments with temporary cements.

    PubMed

    Nagasawa, Yuko; Hibino, Yasushi; Nakajima, Hiroshi

    2014-01-01

    This study was to examine the retentive force of crowns to implant abutments with commercial temporary cements. Six different temporary cements were investigated. Cast crowns were cemented to the abutments using each cement and their retentive forces to abutments were determined 7 or 28 days after cementing (n=10). The retentive force of the cements to abutments varied widely among the products [27-109 N (7-day), 18-80 N (28-days)]. The retentive force of all the cements was not reduced as the time elapsed, except for two products tested. The polycarboxylate cements and paste-mixing type eugenol-free cements revealed comparable retentive force after 28 days of storage. The powder-liquid type cements showed a positive correlation (p<0.05) between the retentive force and the shear strength, while a negative correlation (p<0.05) was obtained for paste-mixing type cement between the retentive force and compressive strength. Mechanical strength of temporary cements could not be a prominent predicting factor for retention of the crowns on the abutments.

  5. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium.

    PubMed

    Waßmann, Marco; Winkel, Andreas; Haak, Katharina; Dempwolf, Wibke; Stiesch, Meike; Menzel, Henning

    2016-10-01

    Antimicrobial coatings are able to improve the osseointegration of dental implants. Copolymers are promising materials for such applications due to their combined properties of two different monomers. To investigate the influence of different monomer mixtures, we have been synthesized copolymers of dimethyl (methacryloxyethyl) phosphonate (DMMEP) and dipicolyl aminoethyl methacrylate in different compositions and have them characterized to obtain the r-parameters. Some of the copolymers with different compositions have also been alkylated with 1-bromohexane, resulting in quaternized ammonium groups. The copolymers have been deposited onto titanium surfaces resulting in ultrathin, covalently bound layers. These layers have been characterized by water contact angle measurements and ellipsometry. The influence of quaternary ammonium groups on antibacterial properties and cytocompatibility was studied: Activity against bacteria was tested with a gram positive Staphylococcus aureus strain. Cytocompatibility was tested with a modified LDH assay after 24 and 72 h to investigate adhesion and proliferation of human fibroblast cells on modified surfaces. The copolymer with the highest content of DMMEP showed a good reduction of S. aureus and in the alkylated version a very good reduction of about 95%. On the other hand, poor cytocompatibility is observed. However, our results show that this trend cannot be generalized for this copolymer system.

  6. Recycled rubber in cement composites

    SciTech Connect

    Raghavan, D.; Tratt, K.; Wool, R.P.

    1994-12-31

    Disposal of 200 million waste tires in the US each year has become a major problem. An environmentally sound innovative technology of recycling rubber in cement matrix was examined. Using silane coupling agent the rubber was bonded to the hydrating cement making a lighter composite, which absorbed more energy than ordinary Portland cement. The bonding information was obtained by peel strength analysis. SEM was used to understand the mode of fracture in pure cement paste, cement bonded rubber composite and rubber filled cement paste. It was found that cracks propagate through the rubber particle in rubber bonded cement composite while in unbonded rubber cement mix, the cracks propagate around the interface. The density and shrinkage measurements are also discussed.

  7. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  8. The hydration of dental cements.

    PubMed

    Wilson, A D; Paddon, J M; Crisp, S

    1979-03-01

    A study was made of the hydration of dental cements, water being classified as "non-evaporable" and "evaporable". The ratio of these two types of water was found to vary greatly among different cement types, being lesser in zinc oxide and ionic polymer cements and greater in ion-leachable glass and phosphoric acid cements. The cement with the least "non-evaporable" water, i.e., showing least hydration (the zinc polycarboxylate cement), had the lowest strength and modulus and the greatest deformation at failure. A linear relationship was found to exist between strength and the degree of hydration of dental cements. All the cements were found to become more highly hydrated and stronger as they aged. PMID:284040

  9. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  10. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  11. N-vinylpyrrolidone modified glass-ionomer resins for improved dental restoratives

    NASA Astrophysics Data System (ADS)

    Xie, Dong

    The studies described in this dissertation focus on improvement of mechanical properties of current glass-ionomer cements. Thermal properties and microstructures of the cements were correlated with their mechanical strengths. The first study evaluated mechanical properties of selected commercial glass-ionomer cements and examined their microstructures. The results showed that resin-modified glass-ionomer cements (RM GICs) exhibited much higher flexural (FS) and diametral tensile strengths (DTS), compared to conventional GICs (C GICs). In addition, they exhibited comparable compressive strength (CS), relatively low microhardness and less wear resistance than C GICs. The C GICs exhibited brittle behavior, whereas the RM GICs underwent substantial plastic deformation in compression. The mechanical properties of the GICs were closely related to their microstructures. Factors such as the density of the microstructure, the integrity of the interface between the glass particles and polymer matrix, particle size and the number and size of voids have important roles in determining the mechanical properties. The second study evaluated thermal properties of these GICs. The results showed that the RM GICs exhibited higher thermal transition temperatures than those of the C GICs, thermal expansion coefficients of these cements were close to those of human teeth, and the indentation creep of the RM GICs were higher than the C GICs. The third study explored and evaluated the effect of a water-soluble monomer, N-vinylpyrrolidone (NVP), on the performance of current C GICs, indicating a significant improvement in both mechanical and working properties. The fourth study demonstrated the process of determining the optimal molar ratio of the NVP-containing copolymers, using design of experiment. The results showed that the optimal molar ratio for these copolymers was 7:1:3 for poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone), based on the FS test. The molar ratio of 8:2:1 (AA

  12. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  13. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  14. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  15. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  16. Scattering of very cold neutrons from the supramolecular structure of ethylene copolymers with substituted norbornene, 5-ethylidene-2-norbornene

    SciTech Connect

    Kuznetsov, S. P. Lapushkin, Yu. A.; Mitrofanov, A. V.; Shestov, S. V.; Udovenko, A. I.; Shelagin, A. V.; Meshkova, I. N.; Grinev, V. G.; Kiseleva, E. V.; Raspopov, L. N.; Shchegolikhin, A. N.; Novokshonova, L. A.

    2007-05-15

    The transformation of the nanostructure of ethylene copolymers with 5-ethylidene-2-nonbornene due to variations in the concentration of 5-ethylidene-2-nonbornene is studied using scattering of very cold neutrons. The cyclic monomer is introduced into the polyethylene chain in order to modify the supramolecular structure of polyethylene and to change its macroscopic properties. It is shown that, as the content of 5-ethylidene-2-nonbornene in the copolymer increases, the amorphous-crystalline structure of polyethylene is destroyed (the crystallinity and average crystallite size decrease). Neither scattering of very cold neutrons nor X-ray diffraction are observed in samples of ethylene copolymers in which the content of 5-ethylidene-2-nonbornene exceeds 35 mol %. The transmission of light in copolymers of ethylene with 5-ethylidene-2-nonbornene is measured at different wavelengths. It is found that an increase in the content of 5-ethylidene-2-nonbornene in the copolymer leads to an increase in the transparency of the material.

  17. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  18. Robust superamphiphobic coatings based on silica particles bearing bifunctional random copolymers.

    PubMed

    Zhang, Ganwei; Lin, Shudong; Wyman, Ian; Zou, Hailiang; Hu, Jiwen; Liu, Guojun; Wang, Jiandong; Li, Fei; Liu, Feng; Hu, Meilong

    2013-12-26

    Reported herein is the growth of bifunctional random copolymer chains from silica particles through a "grafting from" approach and the use of these copolymer-bearing particles to fabricate superamphiphobic coatings. The silica particles had a diameter of 90 ± 7 nm and were prepared through a modified Stöber process before atom transfer radical polymerization (ATRP) initiators were introduced onto their surfaces. Bifunctional copolymer chains bearing low-surface-free-energy fluorinated units and sol-gel-forming units were then grafted from these silica particles by surface-initiated ATRP. Perfluorooctyl ethyl acrylate (FOEA) and 3-(triisopropyloxy)silylpropyl methacrylate (IPSMA) were respectively used as fluorinated and sol-gel-forming monomers in this reaction. Hydrolyzing the IPSMA units in the presence of an acid catalyst yielded silica particles that were adorned with silanol-bearing copolymer chains. Coatings were prepared by spraying these hydrolyzed silica particles onto glass and cotton substrates. A series of four different copolymer-functionalized silica particles samples bearing copolymers with similar FOEA molar fractions (fF) of ~80% but with different copolymer grafting mass ratios (gm) that ranged between 12.3 wt% and 58.8 wt%, relative to silica, were prepared by varying the polymerization protocols. These copolymer-bearing silica particles with a gm exceeding 34.1 wt% were used to coat glass and cotton substrates, yielding superamphiphobic surfaces. More importantly, these particulate-based coatings were robust and resistant to solvent extraction and NaOH etching thanks to the self-cross-linking of the copolymer chains and their covalent attachment to the substrates.

  19. Retention of posts cemented with various dentinal bonding cements.

    PubMed

    Mendoza, D B; Eakle, W S

    1994-12-01

    This investigation evaluated the retention of preformed posts with four different cements: C & B Metabond, Panavia, All-Bond 2, and Ketac-Cem. Sixty intact maxillary canines were selected for the study. The clinical crowns were removed and endodontic therapy done on each root, which was then prepared to receive prefabricated posts. The 60 samples were divided into four groups of 15, and the posts in each group were cemented with one of the four cements. The roots were mounted in acrylic resin blocks and the posts were separated from the canals with an Instron testing machine. Analysis of the forces needed to dislodge the posts with analysis of variance and Student-Newman-Keuls test disclosed that C & B Metabond cement was the most retentive (p < 0.05). No difference in retention was recorded between Ketac-Cem and Panavia cements. All-Bond 2 cement was the least retentive of cements. PMID:7853255

  20. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate.

    PubMed

    Mori, A; Ohtsuki, C; Miyazaki, T; Sugino, A; Tanihara, M; Kuramoto, K; Osaka, A

    2005-08-01

    Bone cement consisting of polymethylmethacrylate (PMMA) powder and methylmethacrylate (MMA) liquid is clinically used for fixation of implants such as artificial hip joints. However, it does not show bone-bonding ability, i.e., bioactivity. The lack of bioactivity would be one of factors which cause loosening between the cement and the implant. The present authors recently showed the potential of bioactive PMMA-based bone cement through modification with gamma-methacryloxypropyltrimethoxysilane (MPS) and calcium acetate. In this study, the effects of the kinds of PMMA powder on setting time, apatite formation and compressive strength were investigated in a simulated body fluid (Kokubo solution). The cement modified with calcium acetate calcined at 220 degrees C could set within 15 min when the PMMA powder had an average molecular weight of 100,000 or less. The addition of calcium acetate calcined at 120 degrees C in the PMMA powder required a much longer period for setting. The modified cements formed an apatite layer after soaking in the Kokubo solution within 1 day for cement starting from PMMA powder with a molecular weight of 100,000 or less. Compressive strengths of the modified cements were more than 70 MPa for cements starting from 100,000 and 56,000 in molecular weight. After soaking in Kokubo solution for 7 days, the modified cement consisting of PMMA powder of 100,000 in molecular weight showed a smaller decrease in compressive strength than that consisting of 56,000 in molecular weight. These results indicate that bioactive PMMA cement can be produced with appropriate setting time and mechanical strength when PMMA powders with a suitable molecular weight are used. Such a type of design of bioactive PMMA bone cement leads to a novel development of bioactive material for bone substitutes.

  1. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    PubMed

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  2. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates

    PubMed Central

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Abstract Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations’ setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  3. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  4. Reaction kinetics of dual setting α-tricalcium phosphate cements.

    PubMed

    Hurle, Katrin; Christel, Theresa; Gbureck, Uwe; Moseke, Claus; Neubauer, Juergen; Goetz-Neunhoeffer, Friedlinde

    2016-01-01

    Addition of ductile polymers to calcium-deficient hydroxyapatite (CDHA)-forming bone cements based on α-tricalcium phosphate (α-TCP) is a promising approach to improve the mechanical performance of α-TCP cements and extend their application to load-bearing defects, which is else impeded by the brittleness of the hardened cement. One suitable polymer is poly-(2-hydroxyethylmethacrylate) (p-HEMA), which forms during cement setting by radical polymerisation of the monomer. In this study the hydration kinetics and the mechanical performance of α-TCP cements modified with addition of different HEMA concentrations (0-50 wt% in the cement liquid) was investigated by quantitative in situ XRD and four-point bending tests. Morphology of CDHA crystals was monitored by scanning electron microscopy. The hydration of α-TCP to CDHA was increasingly impeded and the visible crystal size of CDHA increasingly reduced with increasing HEMA concentration. Modification of the cements by adding 50 wt% HEMA to the cement liquid changed the brittle performance of the hardened cement to a pseudoplastic behaviour, reduced the flexural modulus and increased the work of fracture, while lower HEMA concentrations had no significant effect on these parameters. In such a composite, the extent of CDHA formation was considerably reduced (34.0 ± 1.8 wt% CDHA with 50 % HEMA compared to 54.1 ± 2.4 wt% CDHA in the reference formed after 48 h), while the general reaction kinetics were not changed. In conclusion, while the extent of CDHA formation was decreased, the mechanical properties were noticeably improved by addition of HEMA. Hence, α-TCP/HEMA composites might be suitable for application in some load-bearing defects and have adequate properties for mechanical treatment after implantation, like insertion of screws. PMID:26610924

  5. Nondestructive evaluation of the mechanical behavior of cement-based nanocomposites under bending

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Dalla, P. T.; Exarchos, D. A.; Dassios, K.; Matikas, T. E.

    2015-03-01

    The present paper describes the acoustic emission (AE) behavior and the mechanical properties of Portlant cement-based mortars due to the addition of multi wall carbon nanotubes (MWCNTs). This research aims in investigating the crack growth behavior of modified cement mortar with MWCNTs that act as nanoreinforcement during an unaxial compression test using acoustic emission technique. MWCNTs were used in various concentrations inside the matrix. Density, sound's speed, modulus, bending strength, compression strength were studied for five different concentrations. The adding and the increase of MWCNTs concentrations upper to 0.2 % by weight of cement not improving the mechanical properties of cement-based mortar but increase the acoustic emission activity.

  6. Osteotransductive bone cements.

    PubMed

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  7. Gentamicin in bone cement

    PubMed Central

    Chang, Y.; Tai, C-L.; Hsieh, P-H.; Ueng, S. W. N.

    2013-01-01

    Objectives The objective of this study is to determine an optimal antibiotic-loaded bone cement (ALBC) for infection prophylaxis in total joint arthroplasty (TJA). Methods We evaluated the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime, imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staph. aureus (MRSA), coagulase-negative staphylococci (CoNS), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Standardised cement specimens made from 40 g PMMA loaded with 1 g antibiotics were tested for elution characteristics, antibacterial activities, and compressive strength in vitro. Results The ALBC containing gentamicin provided a much longer duration of antibiotic release than those containing other antibiotic. Imipenem-loading on the cement had a significant adverse effect on the compressive strength of the ALBC, which made it insufficient for use in prosthesis fixation. All of the tested antibiotics maintained their antibacterial properties after being mixed with PMMA. The gentamicin-loaded ALBC provided a broad antibacterial spectrum against all the test organisms and had the greatest duration of antibacterial activity against MSSA, CoNS, P. aeruginosa and E. coli. Conclusion When considering the use of ALBC as infection prophylaxis in TJA, gentamicin-loaded ALBC may be a very effective choice. Cite this article: Bone Joint Res 2013;2:220–6. PMID:24128666

  8. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  9. Hydration study of limestone blended cement in the presence of hazardous wastes containing Cr(VI)

    SciTech Connect

    Trezza, M.A.; Ferraiuelo, M.F

    2003-07-01

    Considering the increasing use of limestone cement manufacture, the present paper tends to characterize limestone behavior in the presence of Cr(VI). The research reported herein provides information regarding the effect of Cr(VI) from industrial wastes in the limestone cement hydration. The cementitious materials were ordinary Portland cement, as reference, and limestone blended cement. The hydration and physicomechanical properties of cementitious materials and the influence of chromium at an early age were studied with X-ray diffraction (XRD), infrared spectroscopy (FTIR), conductimetric and mechanical tests. Portland cement pastes with the addition of Cr(VI) were examined and leaching behavior with respect to water and acid solution were investigated. This study indicates that Cr(VI) modifies the rate and the components obtained during the cement hydration.

  10. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation.

    PubMed

    Aparicio, Julia Lucas; Rueda, Carmen; Manchón, Ángel; Ewald, Andrea; Gbureck, Uwe; Alkhraisat, Mohammad Hamdan; Jerez, Luis Blanco; Cabarcos, Enrique López

    2016-01-01

    A silicon calcium phosphate cement (Si-CPC) was developed to produce a composite of calcium phosphate and calcium silicate. The silicon cements prepared with low silicon (Si) content were composed of crystalline phases of brushite and silicocarnotite. However, the cements prepared with high Si content were mainly composed of amorphous phases of silicocarnotite, hydroxyapatite and calcium silicate. The cement porosity was about 40% with a shift of the average pore diameter to the nanometric range with increasing Si content. Interestingly, this new cement system provides a matrix with a high specific surface area of up to 29 m(2) g(-1). The cytocompatibility of the new Si-doped cements was tested with a human osteoblast-like cell line (MG-63) showing an enhancement of cell proliferation (up to threefold) when compared with unsubstituted material. Cements with a high silica content also improved the cell attachment. The in vivo results indicated that Si-CPCs induce the formation of new bone tissue, and modify cement resorption. We conclude that this cement provides an optimal environment to enhance osteoblast growth and proliferation that could be of interest in bone engineering. PMID:27481549

  11. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    PubMed

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  12. The effect of block copolymer on the phase behavior of a polymer blend

    SciTech Connect

    Sung, L.; Jackson, C.L.; Hess, D.

    1995-12-31

    The effect of an interfacial modifier on the phase behavior of a blend has been investigated using time-resolved fight scattering and small angle neutron scattering techniques. A low molecular weight binary blend of deuterated polystyrene/polybutadiene (PSD/PB) with PSD-PB diblock copolymer as the added interfacial modifier was studied. We observed that the critical temperature of the blend decreases with increasing copolymer content and the kinetics of the phase separation (via spinodal decomposition) slows down in the presence of the copolymer. The transition from early to late stage spinodal decomposition in a near critical mixture of the binary blend was analyzed and compared to available theories. In addition, transmission electron microscopy and optical microscopy studies were used to examine the morphology of the system under various temperature quench conditions.

  13. Chemically modified polypyrrole

    SciTech Connect

    Inagaki, T.; Skotheim, T.A.; Lee, H.S.; Okamoto, Y.; Samuelson, L.; Tripathy, S.

    1988-01-01

    Polypyrrole (PPy) films have been systematically modified with electroactive groups in the ..beta..-position to design electrode materials with specific electrochemical and surface active properties. Electrochemical copolymerization of pyrrole and 3-(6-ferrocenyl,6-hydroxyhexyl)pyrrole (P-6-Fc) yields a ferrocene functionalized polypyrrole with a controlled amount to ferrocene functionalization. And also, copolymers of pyrrole and 3-(4-(2,5- dimethoxyphenyl)butyl)pyrrole (P-MP) can be made by electrochemical polymerization and converted to the copolymers containing pH dependent electroactive hydroquinone moieties. Derivatized pyrroles have also been incorporated into Langmuir-Blodgett film structures. The surface pressure-area isotherms of 3-(13-ferrocenyl,13-hydroxytridecy)pyrrole (P-13-Fc) and the mixed monolayer of P-13-Fc and 3-n-hexadecylpyrrole (HDP) are shown. 17 refs., 4 figs.

  14. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  15. Functionalized block copolymers as adhesion promoters

    SciTech Connect

    Kent, M.S.; Saunders, R.

    1995-03-01

    The goal of this work is to develop novel functionalized block copolymers to promote adhesion at inorganic substrate/polymer interfaces. We envision several potential advantages of functionalized block copolymers over small molecule coupling agents. Greater control over the structure of the interphase region should result through careful design of the backbone of the copolymer. The number of chains per area, the degree of entanglement between the copolymer and the polymer matrix, the number of sites per chain able to attach to the substrate, and the hydrophobicity of the interphase region can all be strongly affected by the choice of block lengths and the monomer sequence. In addition, entanglement between the copolymer and the polymer matrix, if achieved, should contribute significantly to adhesive strength. Our program involves four key elements: the synthesis of suitable functionalized block copolymers, characterization of the conformation of the copolymers at the interface by neutron reflectivity and atomic force microscopy, characterization of the degree of bonding by spectroscopy, and measurement of the mechanical properties of the interface. In this paper we discuss block copolymers designed as adhesion promoters for the copper/epoxy interface. We have synthesized a diblock with one block containing imidazole groups to bond to copper and a second block containing secondary amines to react with the epoxy matrix. We have also prepared a triblock copolymer containing a hydrophobic middle block. Below we describe the synthesis of the block copolymers by living, ring-opening metathesis polymerization (ROMP) and the first characterization data obtained by neutron reflectivity.

  16. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  17. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  18. Surface Properties of Fluorosilicone Copolymers and Their Surface Modification Effects on PVC Film.

    PubMed

    Kim; Lee; Doh

    1998-09-15

    The fluorosilicone copolymers were synthesized using a fluorine-containing monomer and silicone-containing monomers by free-radical random copolymerization, and their surface properties and surface modification ability were investigated. The fluorine-containing monomer used was perfluoroalkyl ethyl acrylate (FA), and the silicone-containing monomers used were 3-[tris(trimethylsilyloxy)silyl]propyl methacrylate (SiMA), vinyltrimethoxy silane (VTMS), and vinyltriethoxy silane (VTES). The surface free energies of the fluorosilicone copolymers prepared were estimated from the contact angle data measured by sessile-drop method. And, the surface free energies of poly(vinyl chloride) (PVC) films modified by the fluorosilicone copolymers were also analyzed using the contact angle data. The fluorosilicone copolymers exhibit the surface free energies of about 8-23 dyn/cm dependent on the molecular weight of the fluorosilicone copolymers. The surface free energies of the fluorosilicone copolymers decrease with increasing molecular weight in the range of 2,000-10,000 (Mw). Among the fluorosilicone copolymers prepared in this study, PFA-r-PSiMA was found to be the most effective as a surface modification agent for PVC film. The inherent surface free energy of PFA-r-PSiMA was estimated to be about 9.0 dyn/cm. The desirable molecular weight of PFA-r-PSiMA seems to be more than 4,000 (Mw). However, it is expected that the fluorosilicone copolymers having the molecular weight of much higher than 10,000 (Mw) may not be suitable as surface modification additives because their compatibility with other polymers will decrease with the molecular weight. The optimum concentration of PFA-r-PSiMA added to PVC film is about 1.0 wt.%. PFA-r-PSiMA is expectedto be an effective additive for surface modification of PVC films. Copyright 1998 Academic Press.

  19. Tympanoplasty with ionomeric cement.

    PubMed

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  20. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  1. Discovering Complex Ordered Phases of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Shi, An-Chang

    2012-02-01

    Block copolymers with their rich phase behavior and ordering transitions have become a paradigm for the study of structured soft materials. Understanding the structures and phase transitions in block copolymers has been one of the most active research areas in polymer science in the past two decades. One of the achievements is the self-consistent field theory (SCFT), which provides a powerful framework for the study of ordered phase of block copolymers. I will present a generic strategy to discover complex ordered phases of block copolymers within the SCFT framework. Specifically, a combination of real-space and reciprocal-space techniques is used to explore possible ordered phases in multiblock copolymer melts. These candidate phases can then be used to construct phase diagrams. Application of this strategy to linear and star ABC triblock copolymers has led to the discovery of a rich array of ordered phases.

  2. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  3. Thermoresponsive anionic copolymer brushes containing strong acid moieties for effective separation of basic biomolecules and proteins.

    PubMed

    Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo

    2014-10-13

    A thermoresponsive copolymer brush possessing the sulfonic acid group, poly(N-isopropylacrylamide (IPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-tert-butylacrylamide (tBAAm)), was grafted onto the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer and copolymer brushes on silica beads were characterized by observing the phase transition profile, CHNS elemental analysis, X-ray photoelectron spectroscopy, and gel permeation chromatography. The phase transition profile indicated that an appropriate AMPS composition for enabling thermally modulated property changes is 5 mol %, while excessive amounts of sulfonic acid groups prevented copolymer phase transition. Chromatographic elutions of catecholamine derivatives and basic proteins were observed, using the prepared copolymer brush-modified beads as chromatographic matrices, and the results suggest that the beads interact with these analytes through relatively strong electrostatic interactions. Thus, poly(IPAAm-co-AMPS-co-tBAAm) brush-modified beads will be useful for effective thermoresponsive chromatography matrices that separate basic biomolecules through strong electrostatic interactions. PMID:25220634

  4. Surface Modification for Controlling the Orientation of Block Copolymers in thin film and in Cylindrical Nanopores

    NASA Astrophysics Data System (ADS)

    Lin, Xin-Guan; Lin, Feng-Cheng; Tung, Shih-Huang

    2012-02-01

    A series of benzocyclobutene-functionalized random copolymers of styrene and 4-vinylpyridine were synthesized by nitroxide-mediated controlled radical polymerization with BPO and TEMPO. Our research was to use these random copolymers of P(S-r-BCB-r-4VP) to control the orientation of microdomains in block copolymers(BCPs) of poly(styrene-b-4-vinylpyridine)(PS-b-P4VP) thin films and in cylindrical nanopores of anodized aluminum oxide (AAO) membranes. On P(S-r-BCB-r-4VP)-modified substrate,we found that in some particular compositions of random copolymer ,the parallel orientation of the microdomains is switched to be perpendicular in PS-b-P4VP thin film. We also introduced P(S-r-BCB-r-4VP) solution into the nanopores of the AAO and nanotubes formed after solvent evaporation and pyrolysis. And then BCPs of PS-b-P4VP were drawn into the P(S-r-BCB-r-4VP)-modified nanopores in the melt via capillary action to form P(S-r-BCB-r-4VP) coated nanorods of PS-b-P4VP.Similarly,in some particular compositions of random copolymer, we observed that the interactions of the blocks with the walls are not strong or if the interactions are balanced, then the orientation of the microdomains will change from being parallel to being perpendicular to the confining walls.

  5. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  6. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  7. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  8. Reinforcement of cement-based matrices with graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad Maqbool

    micro-scale fibers were used for comparison purposes at different volume fractions. Replicated mixes and tests were considered to provide the basis for statistically reliable inferences. Theoretical studies were conducted in order to develop insight into the reinforcement mechanisms of properly functionalized graphite nanomaterials. The results suggested that modified graphite nanomaterials improve the mechanical performance of cement-based matrices primarily through control of microcrack size and propagation, relying on their close spacing within matrix and dissipation of substantial energy by debonding and frictional pullout over their enormous surface areas. The gains in barrier qualities of cement-based materials with introduction of modified graphite nanomaterials could be attributed to the increased tortuosity of diffusion paths in the presence of closely spaced nanomaterials. Experimental investigations were designed and implemented towards identification of the optimum (nano- and micro-scale) reinforcement systems for high-performance concrete through RSA (Response Surface Analysis). A comprehensive experimental data base was developed on the mechanical, physical and durability characteristics as well as the structure and composition of high-performance cementitious nanocomposites reinforced with modified graphite nanomaterials and/ or different micro-fibers.

  9. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  10. Mixed interactions in random copolymers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma; Luettmer-Strathmann, Jutta

    2002-03-01

    The description of thermodynamic properties of copolymers in terms of simple lattice models requires a value for the mixed interaction strength (ɛ_12) between unlike chain segments, in addition to parameters that can be derived from the properties of the corresponding homopolymers. If the monomers are chemically similar, Berthelot's geometric-mean combining rule provides a good first approximation for ɛ_12. In earlier work on blends of polyolefins [1], we found that the small-scale architecture of the chains leads to corrections to the geometric-mean approximation that are important for the prediction of phase diagrams. In this work, we focus on the additional effects due to sequencing of the monomeric units. In order to estimate the mixed interaction ɛ_12 for random copolymers, the small-scale simulation approach developed in [1] is extended to allow for random sequencing of the monomeric units. The approach is applied here to random copolymers of ethylene and 1-butene. [1] J. Luettmer-Strathmann and J.E.G. Lipson. Phys. Rev. E 59, 2039 (1999) and Macromolecules 32, 1093 (1999).

  11. Phase Behavior of Symmetric Sulfonated Block Copolymers

    SciTech Connect

    Park, Moon Jeong; Balsara, Nitash P.

    2008-08-21

    Phase behavior of poly(styrenesulfonate-methylbutylene) (PSS-PMB) block copolymers was studied by varying molecular weight, sulfonation level, and temperature. Molecular weights of the copolymers range from 2.9 to 117 kg/mol. Ordered lamellar, gyroid, hexagonally perforated lamellae, and hexagonally packed cylinder phases were observed in spite of the fact that the copolymers are nearly symmetric with PSS volume fractions between 0.45 and 0.50. The wide variety of morphologies seen in our copolymers is inconsistent with current theories on block copolymer phase behavior such as self-consistent field theory. Low molecular weight PSS-PMB copolymers (<6.2 kg/mol) show order-order and order-disorder phase transitions as a function of temperature. In contrast, the phase behavior of high molecular weight PSS-PMB copolymers (>7.7 kg/mol) is independent of temperature. Due to the large value of Flory-Huggins interaction parameter, x, between the sulfonated and non-sulfonated blocks, PSS-PMB copolymers with PSS and PMB molecular weights of 1.8 and 1.4 kg/mol, respectively, show the presence of an ordered gyroid phase with a 2.5 nm diameter PSS network. A variety of methods are used to estimate x between PSS and PMB chains as a function of sulfonation level. Some aspects of the observed phase behavior of PSS-PMB copolymers can be rationalized using x.

  12. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  13. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  14. Enhancement of deoxyribozyme activity by cationic copolymers.

    PubMed

    Gao, Jueyuan; Shimada, Naohiko; Maruyama, Atsushi

    2015-02-01

    Deoxyribozymes, or DNAzymes, are DNA molecules with enzymatic activity. DNAzymes with ribonuclease activity have various potential applications in biomedical and bioanalytical fields; however, most constructs have limited turnover despite optimization of reaction conditions and DNAzyme structures. A cationic comb-type copolymer accelerates DNA hybridization and strand exchange rates, and we hypothesized that the copolymer would enhance deoxyribozyme activity by promoting turnover. The copolymer did not change DNAzyme activity under single-turnover conditions, suggesting that the copolymer affects neither the folding structure of DNAzyme nor the association of a divalent cation, a catalytic cofactor, to DNAzyme. The copolymer enhanced activity of the evaluated DNAzyme over a wide temperature range under multiple-turnover conditions. The copolymer increased the DNAzyme kcat/KM by fifty-fold at 50 °C, the optimal temperature for the DNAzyme in the absence of the copolymer. The acceleration effect was most significant when the reaction temperature was slightly higher than the melting temperature of the enzyme/substrate complex; acceleration of two orders of magnitude was observed. We concluded that the copolymer accelerated the turnover step without influencing the chemical cleavage step. In contrast to the copolymer, a cationic surfactant, CTAB, strongly inhibited the DNAzyme activity under either single- or multiple-turnover conditions. PMID:26218121

  15. Yield Stress Enhancement in Glassy-Polyethylene Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Polyethylene (PE) has the highest annual production volume of all synthetic polymers worldwide, and is valuable across many applications due to its low cost, toughness, processability, and chemical resistance. However, PE is not well suited to certain applications due to its modest yield stress and Young's modulus (approximately 30 MPa and 1 GPa, respectively for linear, high-density PE). Irreversible deformation of PE results from dislocation of crystal stems and eventual crystal fragmentation under applied stress. The liquid-like amorphous fraction provides no useful mechanical support to the crystal fold surface in a PE homopolymer, so the only method to enhance the force required for crystal slip, and hence the yield stress, is crystal thickening via thermal treatment. An alternative route towards modifying the mechanical properties of PE involves copolymerization of a minority high-glass transition temperature block into a majority-PE block copolymer. In this work, we investigate a system of glassy/linear-PE block copolymers prepared via ring-opening metathesis polymerization of cyclopentene and substituted norbornene monomers followed by hydrogenation. We demonstrate that a large change in mechanical properties can be achieved with the addition of a short glassy block (e.g. a doubling of the yield stress and Young's modulus versus PE homopolymer with the addition of 25 percent glassy block). Furthermore, owing to the low interaction energy between PE and the substituted polynorbornene blocks employed, these high-yield PE block copolymers can exhibit single-phase melts for ease of processability.

  16. Surface Modification Using Photo-Crosslinkable Random Copolymers

    NASA Astrophysics Data System (ADS)

    Bae, Joonwon; Bang, Joona; Lowenhielm, Peter; Spiessberger, Christian; Russell, Thomas P.; Hawker, Craig J.

    2006-03-01

    We recently reported that poly(styrene-r-methyl methacrylate) (PS-r-PMMA) random copolymers containing benzocyclobutene (BCB) group can be used to modify the surface effectively by thermal crosslinking. It was demonstrated that this method is simple, rapid, and robust, and can be applied to various surfaces. However, it requires the large amount of heat for processing, and the BCB monomer itself involves a hard chemistry. An alternative way that can replace BCB with easier chemistry and lower cost, if possible, is highly desirable. We introduce the new functional group, azide group, which can be crosslinked simply by UV irradiation, for this purpose. PS-r-PMMA random copolymers, containing various amounts of azide groups, were synthesized via controlled living-radical polymerization. It was demonstrated that even after 1 minute of the UV irradiation can crosslink the materials effectively, so that they can be used as crosslinked random copolymer mat to control the surface energy. However, it was observed that the longer irradiation time causes the damages on the surface due to the other side reactions. Depending on the UV intensity, the UV irradiation time, and the amount of azide group, the effective processing window that leads to the crosslinking without any surface damages was optimized.

  17. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  18. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  19. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization.

    PubMed

    Zhang, Junli; Liu, Jianguo; Li, Cheng; Jin, Yiying; Nie, Yongfeng; Li, Jinhui

    2009-06-15

    Cement rotary kiln co-processing of hazardous wastes and cement based solidification/stabilization could both immobilize heavy metals. The different retention mechanisms of the two technologies lead to different fixation effects of heavy metals. The same amount of heavy metal compounds were treated by the two types of fixation technologies. Long-term leaching test (160 days), the maximum availability leaching test (NEN 7341) and a modified three-step sequential extraction procedure, proposed by the Commission of the European Communities Bureau of Reference (BCR) were employed to compare the fixation effects of the two fixation technologies. The leaching concentrations in NEN 7341 and long-term leaching tests were compared with identification standard for hazardous wastes (GB5085.3-1996) and drinking water standard (GB5749-2005). The results indicate that the leaching concentrations of the long-term leaching test and NEN 7341 test were lower than the regulatory limits and the leached ratios were small. Both cement based solidification/stabilization and cement rotary kiln co-processing could effectively fix heavy metals. Calcination in a cement rotary kiln and the following hydration that follows during cement application could fix As, Cd, Pb and Zn more effectively and decrease the release to the environment. Cement solidification/stabilization technology has better effect in immobilizing Cr and Ni. Cr wastes are more fitful to be treated by cement solidification/stabilization.

  20. Azidated Ether-Butadiene-Ether Block Copolymers as Binders for Solid Propellants

    NASA Astrophysics Data System (ADS)

    Cappello, Miriam; Lamia, Pietro; Mura, Claudio; Polacco, Giovanni; Filippi, Sara

    2016-07-01

    Polymeric binders for solid propellants are usually based on hydroxyl-terminated polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic polyethers represent an interesting alternative but may have poorer mechanical properties. Polybutadiene-polyether copolymers may combine the advantages of both. Four different ether-butadiene-ether triblock copolymers were prepared and azidated starting from halogenated and/or tosylated monomers using HTPB as initiator. The presence of the butadiene block complicates the azidation step and reduces the storage stability of the azidic polymer. Nevertheless, the procedure allows modifying the binder properties by varying the type and lengths of the energetic blocks.

  1. Surface Engineering of Styrene/PEGylated-Fluoroalkyl Styrene Block Copolymer Thin Films

    SciTech Connect

    Martinelle, E.; Menghetti, S; Galli, G; Glisenti, A; Krishnan, S; Paik, M; Ober, C; Smilgies, D; Fischer, D

    2009-01-01

    A series of diblock copolymers prepared from styrenic monomers was synthesized using atom transfer radical polymerization. One block was derived from styrene, whereas the second block was prepared from a styrene modified with an amphiphilic PEGylated-fluoroalkyl side chain. The surface properties of the resulting polymer films were carefully characterized using dynamic contact angle, XPS, and NEXAFS measurements. The polymer morphology was investigated using atomic force microscope and GISAXS studies. The block copolymers possess surfaces dominated by the fluorinated unit in the dry state and a distinct phase separated microstructure in the thin film. The microstructure of these polymers is strongly influenced by the thin film structure in which it is investigated.

  2. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study

    PubMed Central

    Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-01-01

    Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10

  3. High χ block copolymers based on chemical modification of poly(t-butyl acrylate) containing block copolymers

    NASA Astrophysics Data System (ADS)

    Park, Sungmin; Jo, Seongjun; Lee, Yonghoon; Ryu, Chang Y.; Ryu, Du Yeol; Chun, Jun Sung

    2016-03-01

    We report the synthesis and characterization of novel block copolymer (BCP) materials for the directed self-assembly (DSA) nanolithography applications. Specifically, the poly(t-butyl acrylate) (PtBA) block in the styrenic block copolymers have been chemically modified to a fluorinated block for the enhancement of the BCP χ-parameters. dPSb- PtBA had been first synthesized by anionic polymerization to prepare a well-defined BCP precursor with narrow polydispersity for the fluorination of PtBA block. Then, the precursor BCP was chemically modified by transalcoholysis of the PtBA-block with 2,2,2-trifluoroethanol. This strategy offers the advantage of flexibility and controllability to tailor the χ-parameter, while maintaining the narrow molecular weight distribution of the BCP materials for the advanced lithography applications. The transmission electron microscopy/small angle x-ray scattering (TEM/SAXS) characterization results of the modified BCP consisting of poly(fluoroalkylate) and PS supported the development of highly ordered lamellar domains in bulk.

  4. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  5. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  6. Thermochemical characteristics of chitosan-polylactide copolymers

    NASA Astrophysics Data System (ADS)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  7. Hydraulic Conductivity of Residual Soil-Cement Mix

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  8. Brushing abrasion of luting cements under neutral and acidic conditions.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    2000-01-01

    Four resin based materials (Compolute Aplicap, ESPE; Variolink Ultra, Vivadent; C&B Metabond, Parkell and Panavia 21, Kuraray), two carboxylate cements (Poly-F Plus, Dentsply DeTrey and Durelon Maxicap, ESPE), two glass-ionomer cements (Fuji I, GC and Ketac-Cem Aplicap, ESPE), one resin-modified glass ionomer cement (Vitremer, 3M) one polyacid-modified resin composite (Dyract Cem, Dentsply DeTrey) and one zinc phosphate cement (Harvard, Richter & Hoffmann) were investigated according to their brushing resistance after storage in neutral and acidic buffer solutions. For this purpose 24 cylindrical acrylic molds were each filled with the materials. After hardening, the samples were stored for seven days in 100% relative humidity and at 37 degrees C. Subsequently, they were ground flat and polished. Then each specimen was covered with an adhesive tape leaving a 4 mm wide window on the cement surface. Twelve samples of each material were stored for 24 hours in a buffer solution with a pH of 6.8. The remaining 12 samples were placed in a buffer with a pH of 3.0. All specimens were then subjected to a three media brushing abrasion (2,000 strokes) in an automatic brushing machine. Storage and brushing were performed three times. After 6,000 brushing strokes per specimen, the tape was removed. Brushing abrasion was measured with a computerized laser profilometer and statistically analyzed with ANOVA and Tukey's Standardized Range Test (p < or = 0.05). The highest brushing abrasion was found for the two carboxylate cements. The lowest brushing abrasion was found for one resin based material, Compolute Aplicap. With the exception of three resin-based materials, a lower pH led to a higher brushing abrasion.

  9. Metal/cement interface strength in cemented stem fixation.

    PubMed

    Ahmed, A M; Raab, S; Miller, J E

    1984-01-01

    To characterize the strength of the interface between stem-type metal implants and bone cements, a fracture mechanics parameter was used. This parameter, the critical strain energy release rate (Gc), was determined from "push-out" tests of cylindrical specimens. The specimens, formed using molds of bone, were maintained and tested at body temperature. The strength of interfaces formed with cancellous bone surrounding the cement mantle was significantly less than the strength of those formed in apposition to cortical bone. A marked degradation of strength was found with saline immersion for SS316LVM/cement interfaces formed with Zimmer regular, Simplex-P, and Zimmer LVC cements. After 60 days of immersion the interface Gc was only 10-20% of the value for bulk cement. Interfaces formed with thin-film polymethylmethacrylate-precoated metals (SS316LVM, Co-Cr-Mo, and Ti-6A1-4V) yielded "dry" Gc values one order of magnitude greater than those measured with interfaces formed with uncoated metals. Moreover, the strength of precoated SS316LVM/cement interfaces formed with all three brands of cement did not change after saline immersion for 60 days. PMID:6491806

  10. Properties of lightweight cement-based composites containing waste polypropylene

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.

  11. Chemically enhancing block copolymers for block-selective synthesis of self-assembled metal oxide nanostructures.

    PubMed

    Kamcev, Jovan; Germack, David S; Nykypanchuk, Dmytro; Grubbs, Robert B; Nam, Chang-Yong; Black, Charles T

    2013-01-22

    We report chemical modification of self-assembled block copolymer thin films by ultraviolet light that enhances the block-selective affinity of organometallic precursors otherwise lacking preference for either copolymer block. Sequential precursor loading and reaction facilitate formation of zinc oxide, titanium dioxide, and aluminum oxide nanostructures within the polystyrene domains of both lamellar- and cylindrical-phase modified polystyrene-block-poly(methyl methacrylate) thin film templates. Near-edge X-ray absorption fine structure measurements and Fourier transform infrared spectroscopy show that photo-oxidation by ultraviolet light creates Lewis basic groups within polystyrene, resulting in an increased Lewis base-acid interaction with the organometallic precursors. The approach provides a method for generating both aluminum oxide patterns and their corresponding inverses using the same block copolymer template.

  12. Hemocompatibility of styrenic block copolymers for use in prosthetic heart valves.

    PubMed

    Brubert, Jacob; Krajewski, Stefanie; Wendel, Hans Peter; Nair, Sukumaran; Stasiak, Joanna; Moggridge, Geoff D

    2016-02-01

    Certain styrenic thermoplastic block copolymer elastomers can be processed to exhibit anisotropic mechanical properties which may be desirable for imitating biological tissues. The ex-vivo hemocompatibility of four triblock (hard-soft-hard) copolymers with polystyrene hard blocks and polyethylene, polypropylene, polyisoprene, polybutadiene or polyisobutylene soft blocks are tested using the modified Chandler loop method using fresh human blood and direct contact cell proliferation of fibroblasts upon the materials. The hemocompatibility and durability performance of a heparin coating is also evaluated. Measures of platelet and coagulation cascade activation indicate that the test materials are superior to polyester but inferior to expanded polytetrafluoroethylene and bovine pericardium reference materials. Against inflammatory measures the test materials are superior to polyester and bovine pericardium. The addition of a heparin coating results in reduced protein adsorption and ex-vivo hemocompatibility performance superior to all reference materials, in all measures. The tested styrenic thermoplastic block copolymers demonstrate adequate performance for blood contacting applications. PMID:26704549

  13. Synthesis and Properties of Poly(l-lactide)-b-poly (l-phenylalanine) Hybrid Copolymers

    PubMed Central

    Planellas, Marc; Puiggalí, Jordi

    2014-01-01

    Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine) copolymers with various block lengths were synthesized by sequential ring-opening polymerization of l-lactide and the N-carboxyanhydride of l-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing the successful incorporation of the polyphenylalanine (PPhe) peptide into the previously formed poly(l-lactide) (PLLA) polymer chain. X-ray diffraction and DSC data also suggested that the copolymers were phase-separated in domains containing either crystalline PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric analysis when polyphenylalanine blocks were incorporated into polylactide. PMID:25075980

  14. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  15. Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications.

    PubMed

    Boroujeni, Nariman Mansoori; Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2013-10-01

    In this study, we present results of our research on biodegradable monetite (DCPA, CaHPO4) cement with surface-modified multi-walled carbon nanotubes (mMWCNTs) as potential bone defect repair material. The cement pastes showed desirable handling properties and possessed a suitable setting time for use in surgical setting. The incorporation of mMWCNTs shortened the setting time of DCPA and increased the compressive strength of DCPA cement from 11.09±1.85 MPa to 21.56±2.47 MPa. The cytocompatibility of the materials was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase of cell numbers was observed on both DCPA and DCPA-mMWCNTs. Scanning electron microscopy (SEM) results also revealed an obvious cell growth on the surface of the cements. Based on these results, DCPA-mMWCNTs composite cements can be considered as potential bone defect repair materials.

  16. Chemistry of glass-ionomer cements: a review.

    PubMed

    Nicholson, J W

    1998-03-01

    Studies of the setting of glass-ionomer cements have been carried out for over twenty years, and there is now a considerable body of information concerning the steps that lead to the conversion of a freshly mixed cement paste into a solid, durable dental restorative. This paper reviews these studies, paying particular attention to more recent work. The conclusion is that glass-ionomers consist of interpenetrating networks of inorganic and organic components forming a matrix in which particles of unreacted glass are embedded. However, there remain uncertainties over aspects of the setting chemistry, for example over the role of (+)-tartaric acid in the setting reaction, and over the nature of the fluoride species which form during the reaction. The chemistry of resin-modified glass-ionomers is also discussed and shown to be more complex than that of the simple cements. The presence of the resin component slows down the ionic cure reaction of the conventional cement, and leads to both a significant exotherm and a set material capable of absorbing water reversibly. The paper concludes that the microstructure of the set cement depends completely on chemical composition and the kinetics of the setting process, and that an understanding of the setting chemistry of these materials is thus important for optimal clinical use.

  17. Early hydration and setting of oil well cement

    SciTech Connect

    Zhang Jie; Weissinger, Emily A.; Peethamparan, Sulapha; Scherer, George W.

    2010-07-15

    A broad experimental study has been performed to characterize the early hydration and setting of cement pastes prepared with Class H oil well cement at water-to-cement ratios (w/c) from 0.25 to 0.40, cured at temperatures from 10 to 60 {sup o}C, and mixed with chemical additives. Chemical shrinkage during hydration was measured by a newly developed system, degree of hydration was determined by thermogravimetric analysis, and setting time was tested by Vicat and ultrasonic velocity measurements. A Boundary Nucleation and Growth model provides a good fit to the chemical shrinkage data. Temperature increase and accelerator additions expedite the rate of cement hydration by causing more rapid nucleation of hydration products, leading to earlier setting; conversely, retarder and viscosity modifying agents delay cement nucleation, causing later setting times. Lower w/c paste needs less hydration product to form a percolating solid network (i.e., to reach the initial setting point). However, for the systems evaluated, at a given w/c, the degree of hydration at setting is a constant, regardless of the effects of ambient temperature or the presence of additives.

  18. Orthodontic Cements and Demineralization: An In Vitro Comparative Scanning Electron Microscope Study

    PubMed Central

    Prabhavathi, V; Jacob, Josy; Kiran, M Shashi; Ramakrishnan, Murugesan; Sethi, Esha; Krishnan, C S

    2015-01-01

    Background: Comparison of the demineralization potential of four luting cements, i.e. zinc phosphate, conventional glass ionomer cement (GIC), resin-modified GIC and acid modified composite resin. Materials and Methods: This study was conducted on 75 extracted premolar teeth, which were grouped into five, each group containing 15 teeth. Groups were non-banded control, teeth cemented with the above-mentioned cements. These were incubated at 37°C for 30 days in sealable plastic containers, after which the teeth were debanded, cleaned and placed in acid gelatin solution at 37°C for 4 weeks to simulate the cariogenic solution. Then, the teeth were sectioned and examined under scanning electron microscope. The depth of the carious lesions was measured using image analysis with Digimizer software. Results: The depth of the carious lesions was maximum with non-banded group, followed by zinc phosphate, acid modified composite resin, resin-modified GIC and conventional GIC. Conclusions: Among the four orthodontic banding cements compared, the enamel demineralization potential is least with conventional GIC, followed by resin-modified GIC, acid modified composite resin and zinc phosphate. PMID:25859103

  19. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  20. Pattern transfer using block copolymers.

    PubMed

    Gu, Xiaodan; Gunkel, Ilja; Russell, Thomas P

    2013-10-13

    To meet the increasing demand for patterning smaller feature sizes, a lithography technique is required with the ability to pattern sub-20 nm features. While top-down photolithography is approaching its limit in the continued drive to meet Moore's law, the use of directed self-assembly (DSA) of block copolymers (BCPs) offers a promising route to meet this challenge in achieving nanometre feature sizes. Recent developments in BCP lithography and in the DSA of BCPs are reviewed. While tremendous advances have been made in this field, there are still hurdles that need to be overcome to realize the full potential of BCPs and their actual use.

  1. Solidification and stabilization of asbestos waste from an automobile brake manufacturing facility using cement.

    PubMed

    Chan, Y M; Agamuthu, P; Mahalingam, R

    2000-10-01

    Currently, the generated brake lining waste dust, which contains asbestos as its major component, is disposed of into a secure landfill without any additional treatment. As an alternative to this, solidification/stabilization (S/S) disposal of the dust was investigated using Portland cement alone and Portland cement mixed with activated carbon (AC), as the binders. Toxicity Characteristics Leaching Procedure (TCLP) results on the solidified matrix showed that cement was able to immobilize the heavy metals, Ba, Zn, Cr, Pb, Cu and Fe, to within the limits set by the US EPA for TCLP. Addition of AC to the cement reduced the leaching of heavy metals by an additional 4-24% compared to cement alone. The pH of the TCLP leachate extracted from virgin cement, and from dust treated with cement with or without AC was found to increase to 10.9-12.5 as opposed to an initial value of 4.93 for the TCLP extract for the untreated dust. Results of ANS 16.1 (modified) leach protocol revealed that Ba in cement-treated samples showed the highest leach rate, followed by Zn, Pb, Cr, Cu and Fe. The leach rate of heavy metals decreased with progress in time. Cement mixed with AC exhibited similar leach characteristics, however, the leach rate was lower. The linear relationship between the cumulative fraction leached (CFL) and the square root of leaching time in all cement-based samples indicate that a diffusional process is the controlling transport mechanism for the leaching of the heavy metals. The obtained Leachability Indices (L(i)) of 7.6-9.1 and 8.3-9.5 for cement and cement with AC, respectively, were low but exceeded the guidance value of 6, which clearly indicates that all the heavy metals studied are retained well within solid matrices. Cement-based S/S hardening times increased from 30 to 96 h as the dust content increased from 40 to 70 wt.%. The resulting solid matrices exhibited a compressive strength ranging from 1 to 12 MPa, which was well above the specified limit of 414 k

  2. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  3. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  4. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  5. New inorganic/organic copolymers (ORMOCER{reg_sign}s) for dental applications

    SciTech Connect

    Wolter, H.; Storch, W.; Ott, H.

    1994-12-31

    Urethane and thioether (meth)acrylate alkoxysilanes have been used, as sol-gel precursors, for the preparation of a special family of inorganic/organic copolymers (ORMOCER{reg_sign}s). The basic silane type offers the following structural and synthetic possibilities for modifying the properties of the resulting copolymers: variation of the number of alkoxy groups, combination with other, different, sol-gel precursors, variation of the number of attached (meth)acrylate groups (1--5), and variation within the molecular segment (kind, structure and length) connecting the inorganic with the organic polymer structure. To achieve the additional organic polymer structure in the cured copolymer the use of different radically induced polymerization approaches (UV-, visible light-, thermal- and redox induced) is possible. Taking the incorporation of fillers into account, the Young`s modulus of these copolymers is adjustable in a range of 1--17,000 MPa, and the thermal expansion coefficient in a range of 17--250{center_dot}10{sup {minus}6}{center_dot}K{sup {minus}1} (5--50 C). Other advantages are the low shrinkage (1--2,8 vol.-%), the high flexural strength (up to 160 MPa), and the high abrasion resistance. This new copolymer type seems to have significant potential for medical applications, especially as dental filling material to replace the currently used controversial amalgam fillings.

  6. Interactions between plasma and block copolymers used in directed self-assembly patterning

    NASA Astrophysics Data System (ADS)

    Sirard, Stephen; Azarnouche, Laurent; Gurer, Emir; Durand, William; Maher, Michael; Mori, Kazunori; Blachut, Gregory; Janes, Dustin; Asano, Yusuke; Someya, Yasunobu; Hymes, Diane; Graves, David; Ellison, Christopher J.; Willson, C. Grant

    2016-03-01

    The directed self-assembly (DSA) of block copolymers offers a promising route for scaling feature sizes below 20 nm. At these small dimensions, plasmas are often used to define the initial patterns. It is imperative to understand how plasmas interact with each block in order to design processes with sufficient etch contrast and pattern fidelity. Symmetric lamella forming block copolymers including, polystyrene-b-poly(methyl methacrylate) and several high-χ silicon-containing and tin-containing block copolymers were synthesized, along with homopolymers of each block, and exposed to various oxidizing, reducing, and fluorine-based plasma processes. Etch rate kinetics were measured, and plasma modifications of the materials were characterized using XPS, AES, and FTIR. Mechanisms for achieving etch contrast were elucidated and were highly dependent on the block copolymer architecture. For several of the polymers, plasma photoemissions were observed to play an important role in modifying the materials and forming etch-resistant protective layers. Furthermore, it was observed for the silicon- and tin-containing polymers that an initial transient state exists, where the polymers exhibit an enhanced etch rate, prior to the formation of the etch-resistant protective layer. Plasma developed patterns were demonstrated for the differing block copolymer materials with feature sizes ranging from 20 nm down to approximately 5 nm.

  7. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  8. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  9. DNA block copolymers: functional materials for nanoscience and biomedicine.

    PubMed

    Schnitzler, Tobias; Herrmann, Andreas

    2012-09-18

    We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their tailorable properties, these materials have fueled the invention of new techniques and goods, from the yogurt cup to the car seat belts. To fulfill the requirements of modern life, polymers and their composites have become increasingly complex. One strategy for altering polymer properties is to combine different polymer segments within one polymer, known as block copolymers. The microphase separation of the individual polymer components and the resulting formation of well defined nanosized domains provide a broad range of new materials with various properties. Block copolymers facilitated the development of innovative concepts in the fields of drug delivery, nanomedicine, organic electronics, and nanoscience. Block copolymers consist exclusively of organic polymers, but researchers are increasingly interested in materials that combine synthetic materials and biomacromolecules. Although many researchers have explored the combination of proteins with organic polymers, far fewer investigations have explored nucleic acid/polymer hybrids, known as DNA block copolymers (DBCs). DNA as a polymer block provides several advantages over other biopolymers. The availability of automated synthesis offers DNA segments with nucleotide precision, which facilitates the fabrication of hybrid materials with monodisperse biopolymer blocks. The directed functionalization of modified single-stranded DNA by Watson-Crick base-pairing is another key feature of DNA block copolymers. Furthermore, the appropriate selection of DNA sequence and organic polymer gives control over the material properties and their self-assembly into supramolecular structures. The introduction of a hydrophobic polymer into DBCs

  10. Resins and non-portland cements for construction in the cold

    NASA Astrophysics Data System (ADS)

    Johnson, R.

    1980-09-01

    A laboratory investigation was conducted to assess the potential of some resins and non-portland cements for structural concrete at low temperatures. The resins investigated were urethane (non-hydrophilic), epoxy and polyester, as well as a polysulfide polymer. Two non-portland (modified) cements were also tested. The curability of the resins, when mixed with fine aggregate, showed that they had potential for low temperature use in the following decreasing order: urethane, polyester, and epoxy. Of the non-portland cement materials, mixed as individual neat slurries, one showed potential for low temperature use at -10 C (using 3.9 C water).

  11. Physical evaluation of a new pulp capping material developed from portland cement

    PubMed Central

    Negm, Ahmed; Hassanien, Ehab; Abu-Seida, Ashraf

    2016-01-01

    Background This study examined the effects of addition of 10% and 25% by weight calcium hydroxide on the physicochemical properties of Portland cement associated with 20% bismuth oxide in order to develop a new pulp capping material. Material and Methods The solubility, pH value, setting time, compressive strength, and push out bond strength of modified Portland were evaluated and compared to those of mineral trioxide aggregate (MTA) and Portland cement containing 20% bismuth oxide. Results The statistical analysis was performed with ANOVA and Duncan’s post-hoc test. The results show that the strength properties and push out bond strength of Portland cement were adversely affected by addition of calcium hydroxide especially with a ratio of 25 wt%, however, the setting time and pH were not affected. MTA showed a statistically significant lower setting time than other cements (P≤0.001). Portland cement with bismuth oxide and Port Cal I showed a statistically significant higher Push out Bond strength than MTA and Port Cal II (P=0.001). Conclusions Taking the setting time, push out bond strength and pH value into account, addition of 10 wt% calcium hydroxide to Portland cement associated with 20% bismuth oxide produces a new pulp capping material with acceptable physical and adhesive properties. Further studies are recommended to test this cement biologically as a new pulp capping material. Key words:Calcium hydroxide, MTA, Portland cement, setting time, solubility, strength. PMID:27398178

  12. In Vitro and In Vivo Response to Low-Modulus PMMA-Based Bone Cement

    PubMed Central

    Carlsson, Elin; Mestres, Gemma; Treerattrakoon, Kiatnida; López, Alejandro; Karlsson Ott, Marjam; Larsson, Sune; Persson, Cecilia

    2015-01-01

    The high stiffness of acrylic bone cements has been hypothesized to contribute to the increased number of fractures encountered after vertebroplasty, which has led to the development of low-modulus cements. However, there is no data available on the in vivo biocompatibility of any low-modulus cement. In this study, the in vitro cytotoxicity and in vivo biocompatibility of two types of low-modulus acrylic cements, one modified with castor oil and one with linoleic acid, were evaluated using human osteoblast-like cells and a rodent model, respectively. While the in vitro cytotoxicity appeared somewhat affected by the castor oil and linoleic acid additions, no difference could be found in the in vivo response to these cements in comparison to the base, commercially available cement, in terms of histology and flow cytometry analysis of the presence of immune cells. Furthermore, the in vivo radiopacity of the cements appeared unaltered. While these results are promising, the mechanical behavior of these cements in vivo remains to be investigated. PMID:26366415

  13. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  14. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  15. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  16. Cement pulmonary embolism after vertebroplasty.

    PubMed

    Sifuentes Giraldo, Walter Alberto; Lamúa Riazuelo, José Ramón; Gallego Rivera, José Ignacio; Vázquez Díaz, Mónica

    2013-01-01

    In recent years, the use of vertebral cementing techniques for vertebroplasty and kyphoplasty has spread for the treatment of pain associated with osteoporotic vertebral compression fractures. This is also associated with the increased incidence of complications related with these procedures, the most frequent being originated by leakage of cementation material. Cement can escape into the vertebral venous system and reach the pulmonary circulation through the azygous system and cava vein, producing a cement embolism. This is a frequent complication, occurring in up to 26% of patients undergoing vertebroplasty but, since most patients have no clinical or hemodynamical repercussion, this event usually goes unnoticed. However, some serious, and even fatal cases, have been reported. We report the case of a 74-year-old male patient who underwent vertebroplasty for persistent pain associated with osteoporotic L3 vertebral fracture and who developed a cement leak into the cava vein and right pulmonary artery during the procedure. Although he developed a pulmonary cement embolism, the patient remained asymptomatic and did not present complications during follow-up.

  17. Radioactive wastes dispersed in stabilized ash cements

    SciTech Connect

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  18. Curable polyphosphazene copolymers and terpolymers

    NASA Technical Reports Server (NTRS)

    Reynard, Kennard A. (Inventor); Rose, Selwyn H. (Inventor)

    1976-01-01

    Copolymers and terpolymers comprising randomly repeating units represented by the general formulae ##EQU1## wherein the R' radicals contain OH functionality and R being at least one member of the group of monovalent radicals selected from alkyl, substituted alkyl, aryl, substituted aryl and arylalkyl, and R' is represented by ##EQU2## wherein Q represents either --(CH.sub.2).sub. n or --C.sub.6 H.sub.4 X(CH.sub.2).sub. m, the --X(CH.sub.2).sub. m group being either meta or para and n is an integer from 1 to 6, m is an integer from 1 to 3, X is O or CH.sub.2, and R is H or a lower alkyl radical with up to four carbon atoms (methyl, ethyl, etc.). The ratio of R to R' is between 99.5 to 0.5 and 65 to 35.

  19. Electrostatic control of block copolymer morphology

    NASA Astrophysics Data System (ADS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    2014-07-01

    Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes. Block copolymers can self-assemble into nanostructures that simultaneously facilitate ion transport and provide mechanical stability. The ions themselves have a profound, yet previously unpredictable, effect on how these nanostructures assemble and thus the efficiency of ion transport. Here we demonstrate that varying the charge of a block copolymer is a powerful mechanism to predictably tune nanostructures. In particular, we demonstrate that highly asymmetric charge cohesion effects can induce the formation of nanostructures that are inaccessible to conventional uncharged block copolymers, including percolated phases desired for ion transport. This vastly expands the design space for block copolymer materials and is informative for the versatile design of battery electrolyte materials.

  20. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  1. Morphologies in Sulfonated Styrenic Pentablock Copolymer Membranes

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Bramson, Matt; Winey, Karen I.

    2010-03-01

    Membranes of pentablock and triblock copolymers consisting of poly(tert-butyl styrene) (TBS), hydrogenated polyisoprene (HI), and partially sulfonated poly(styrene-ran-styrene sulfonate) (SS) were studied using small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The TBS-HI-SS-HI-TBS pentablock and TBS-HI-SS triblock copolymer membranes exhibit anisotropic microphase separated morphologies. Because the pentablock and triblock copolymers can be expected to have complex morphologies, thermal annealing was conducted to promote well-defined morphologies. The annealed membranes exhibit stronger peaks and more high order reflections in SAXS patterns, as well as better defined microstructures in the TEM. Electron microcopy studies with various staining protocols are underway to establish the morphology of the pentablock copolymer membranes including the size and shape of the three microdomains (TBS, HI and SS). We gratefully acknowledge Kraton Polymers, Inc. for materials.

  2. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  3. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and...

  4. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and...

  5. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and...

  6. Phase behaviors of cyclic diblock copolymers.

    PubMed

    Zhang, Guojie; Fan, Zhongyong; Yang, Yuliang; Qiu, Feng

    2011-11-01

    A spectral method of self-consistent field theory has been applied to AB cyclic block copolymers. Phase behaviors of cyclic diblock copolymers, such as order-disorder transition, order-order transition, and domain spacing size, have been studied, showing good consistency with previous experimental and theoretical results. Compared to linear diblocks, cyclic diblocks are harder to phase separate due to the topological constraint of the ring structure. A direct disorder-to-cylinder transition window is observed in the phase diagram, which is significantly different from the mean field phase diagram of linear diblock copolymers. The domain spacing size ratio between cyclic and linear diblock copolymers is typically close to 0.707, indicating in segregation that the cyclic polymer can be considered to be made up of linear diblocks with half of the original chain length. PMID:22070321

  7. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  8. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  9. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  10. Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements

    PubMed Central

    Shin, Hyeongsoon; Ko, Hyunjung

    2016-01-01

    Objectives Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP) blocks in combination with several dental cements. Materials and Methods Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE), FujiCEM 2 (GC), and Panavia F 2.0 (Kuraray) were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6) mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR), and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA). The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant. Results The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells. Conclusions Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement. PMID:27508157

  11. Vibrational study on the bioactivity of Portland cement-based materials for endodontic use

    NASA Astrophysics Data System (ADS)

    Taddei, P.; Tinti, A.; Gandolfi, M. G.; Rossi, P. L.; Prati, C.

    2009-04-01

    The bioactivity of a modified Portland cement (wTC) and a phosphate-doped wTC cement (wTC-P) was studied at 37 °C in Dulbecco's Phosphate Buffered Saline (DPBS). The cements, prepared as disks, were analysed at different ageing times (from 1 day to 2 months) by micro-Raman and ATR/FT-IR spectroscopies. The presence of deposits on the surface of the cements and the composition changes as a function of the storage time were investigated. The presence of an apatite deposit on the surface of both cements was already revealed after one day of ageing in DPBS. The trend of the I 965/I 991 Raman intensity ratio indicated the formation of a meanly thicker apatite deposit on the wTC-P cement at all the investigated times. This result was confirmed by the trend of the I 1030/I 945 IR intensity ratio calculated until 14 days of ageing. At 2 months, the thickness of the apatite deposit on wTC and wTC-P was about 200 and 500 μm, respectively, as estimated by micro-Raman spectroscopy, confirming the higher bioactivity of the phosphate-doped cement. Vibrational techniques allowed to gain more insights into the cement transformation and the different hydration rates of the various cement component. The setting of the cement and the formation of the hydrated silicate gel (C-S-H phase) was spectroscopically monitored through the I 830/I 945 IR intensity ratio.

  12. Synthesis and photovoltaic properties of two-dimensional low-bandgap copolymers based on new benzothiadiazole derivatives with different conjugated arylvinylene side chains.

    PubMed

    Peng, Qiang; Lim, Siew-Lay; Wong, Ivy Hoi-Ka; Xu, Jun; Chen, Zhi-Kuan

    2012-09-17

    A new series of 2,1,3-benzothiadiazole (BT) acceptors with different conjugated aryl-vinylene side chains have been designed and used to build efficient low-bandgap (LBG) photovoltaic copolymers. Based on benzo[1,2-b:3,4-b']dithiophene and the resulting new BT derivatives, three two-dimensional (2D)-like donor (D)-acceptor (A) conjugated copolymers have been synthesised by Stille coupling polymerisation. These copolymers were characterised by NMR spectroscopy, gel-permeation chromatography, thermogravimetric analysis and differential scanning calorimetry. UV/Vis absorption and cyclic voltammetry measurements indicated that their optical and electrochemical properties can be facilely modified by changing the structures of the conjugated aryl-vinylene side chains. The copolymer with phenyl-vinylene side chains exhibited the best light harvesting and smallest bandgap of the three copolymers. The basic electronic structures of D-A model compounds of these copolymers were also studied by DFT calculations at the B3LYP/6-31G* level of theory. Polymer solar cells (PSCs) with a typical structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/copolymer:[6,6]-phenyl-C(61) (C(71))-butyric acid-methyl ester (PCBM)/calcium (Ca)/aluminum (Al) were fabricated and measured under the illumination of AM1.5G at 100 mW cm(-2). The results showed that the device based on the copolymer with phenyl-vinylene side chains had the highest efficiency of 2.17 % with PC(71)BM as acceptor. The results presented herein indicate that all the prepared copolymers are promising candidates for roll-to-roll manufacturing of efficient PSCs. Suitable electronic, optical and photovoltaic properties of BT-based copolymers can also be achieved by fine-tuning the structures of the aryl-vinylene side chains for photovoltaic application.

  13. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility.

    PubMed

    Ko, Chia-Ling; Chen, Jian-Chih; Hung, Chun-Cheng; Wang, Jen-Chyan; Tien, Yin-Chun; Chen, Wen-Cheng

    2014-06-01

    In this study, a calcium phosphate cement was developed using tetracalcium phosphate and surface-modified dicalcium phosphate anhydrous (DCPA). This developed injectable bone graft substitute can be molded to the shape of the bone cavity and set in situ through the piping system that has an adequate mechanical strength, non-dispersibility, and biocompatibility. The materials were based on the modified DCPA compositions of calcium phosphate cement (CPC), where the phase ratio of the surface-modified DCPA is higher than that of the conventional CPC for forming dicalcium phosphate (DCP)-rich cement. The composition and morphology of several calcium phosphate cement specimens during setting were analyzed via X-ray diffractometry and transmission electron microscopy coupled with an energy dispersive spectroscopy system. The compressive strength of DCP-rich CPCs was greater than 30MPa after 24h of immersion in vitro. The reaction of the CPCs produced steady final biphasic products of DCPs with apatite. The composites of calcium phosphate cements derived from tetracalcium phosphate mixed with surface-modified DCPA exhibited excellent mechanical properties, injectability, and interlocking forces between particles, and they also featured nondispersive behavior when immersed in a physiological solution.

  14. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer.

    PubMed

    Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C

    2016-10-01

    This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that

  15. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer.

    PubMed

    Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C

    2016-10-01

    This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that

  16. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    PubMed

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  17. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate.

    PubMed

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-03-25

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns.

  18. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate

    PubMed Central

    Pilo, Raphael; Harel, Noga; Nissan, Joseph; Levartovsky, Shifra

    2016-01-01

    The effect of dentin pretreatment with Desensitizing Paste containing 8% arginine and calcium carbonate on the retention of zirconium oxide (Y-TZP) crowns was tested. Forty molar teeth were mounted and prepared using a standardized protocol. Y-TZP crowns were produced using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. The 40 prepared teeth were either pretreated with Desensitizing Paste or not pretreated. After two weeks, each group was subdivided into two groups, cemented with either Resin Modified Glass Ionomer Cement (RMGIC) or Self Adhesive Resin Cement (SARC)). Prior to cementation, the surface areas of the prepared teeth were measured. After aging, the cemented crown-tooth assemblies were tested for retentive strength using a universal testing machine. The debonded surfaces of the teeth and crowns were examined microscopically at 10× magnification. Pretreating the dentin surfaces with Desensitizing Paste prior to cementation did not affect the retention of the Y-TZP crowns. The retentive values for RMGIC (3.04 ± 0.77 MPa) were significantly higher than those for SARC (2.28 ± 0.58 MPa). The predominant failure modes for the RMGIC and SARC were adhesive cement-dentin and adhesive cement-crown, respectively. An 8.0% arginine and calcium carbonate in-office desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Y-TZP crowns. PMID:27023532

  19. Solvent annealing of Micropatterned PS-b-PEO copolymer films

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; Acharya, Himadri; Joeng, Hee June; Park, Cheolmin

    2009-03-01

    Solvent annealing of block copolymer thin films have been known as an effective way to control both orientation of microdomains with respect to the surface and their registration into a well ordered periodic lattice structure. We have recently demonstrated hierarchically ordered microdomains in a thin poly(styrene-b-ethylene oxide)(PS-b-PEO) film combined with microcontact printing. The solvent annealing gave rise to well ordered spherical PEO microdomains in large area by the confined dewetting of thin PS-b-PEO films which had been micropatterned on chemically modified surface during solvent annealing. In this presentation, we intentionally prepare a micropatterned dewet film of PS-b-PEO by spincoating a block copolymer solution on a topographic PDMS pre-pattern. Convex lens shaped spherical caps of PS-b-PEO individually located on each PDMS mesa were successfully transferred to a Si substrate by a conventional transfer printing technique. We investigate the effect of solvent on not only film wettability but also formation of hierarchical nanostructures.

  20. Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking

    DOEpatents

    Rave, Terence W.

    1979-01-01

    Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.

  1. Polyhydroxyalkanoate copolymers from forest biomass.

    PubMed

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  2. O-phospho-L-serine: a modulator of bone healing in calcium-phosphate cements.

    PubMed

    Mai, Ronald; Lux, Romy; Proff, Peter; Lauer, Günter; Pradel, Winnie; Leonhardt, Henry; Reinstorf, Antje; Gelinsky, Michael; Jung, Roland; Eckelt, Uwe; Gedrange, Tomasz; Stadlinger, Bernd

    2008-10-01

    Bone substitution materials are seen as an alternative to autogenous bone transplants in the reconstruction of human bone structures. The aim of the present animal study was to evaluate the clinical handling and the conditions of bone healing after the application of a phosphoserine and collagen-I-modified calcium-phosphate cement (Biozement D). The application of phosphoserine is supposed to influence the texture of the extracellular matrix. Standardised bone defects were created in the lower jaw of 10 adult minipigs. These defects were reconstructed with a pasty calcium-phosphate cement mixture. After a healing time of 4 months, the animals were sacrificed. The mandibles of all animals were resected and non-decalcified histological sections of the areas of interest were prepared. The experiment was evaluated by means of qualitative histology and histomorphometry. The hydroxyapatite cement entirely hardened intraoperatively. Modelling and handling of the cement was facile and the margin fit to the host bone was excellent. Histology showed that resorption started in the periphery and proceeded exceptionally fast. The bony substitution, especially in phosphoserine-endowed cements, was very promising. After a healing period of 4 months, phosphoserine cements showed a bone regeneration of nearly two-thirds of the defect sizes. In the applied animal experiment, the newly developed hydroxyapatite collagen-I cement is well suited for bone substitution due to its easy handling, its excellent integration and good resorption characteristics. The addition of phosphoserine is very promising in terms of influencing resorption features and bone regeneration. PMID:18803525

  3. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste.

    PubMed

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-16

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite.

  4. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    NASA Astrophysics Data System (ADS)

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite.

  5. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment.

    PubMed

    Clancy, Tara M; Snyder, Kathryn V; Reddy, Raghav; Lanzirotti, Antonio; Amrose, Susan E; Raskin, Lutgarde; Hayes, Kim F

    2015-12-30

    Cement stabilization of arsenic-bearing wastes is recommended to limit arsenic release from wastes following disposal. Such stabilization has been demonstrated to reduce the arsenic concentration in the Toxicity Characteristic Leaching Procedure (TCLP), which regulates landfill disposal of arsenic waste. However, few studies have evaluated leaching from actual wastes under conditions similar to ultimate disposal environments. In this study, land disposal in areas where flooding is likely was simulated to test arsenic release from cement stabilized arsenic-bearing iron oxide wastes. After 406 days submersed in chemically simulated rainwater, <0.4% of total arsenic was leached, which was comparable to the amount leached during the TCLP (<0.3%). Short-term (18 h) modified TCLP tests (pH 3-12) found that cement stabilization lowered arsenic leaching at high pH, but increased leaching at pH<4.2 compared to non-stabilized wastes. Presenting the first characterization of cement stabilized waste using μXRF, these results revealed the majority of arsenic in cement stabilized waste remained associated with iron. This distribution of arsenic differed from previous observations of calcium-arsenic solid phases when arsenic salts were stabilized with cement, illustrating that the initial waste form influences the stabilized form. Overall, cement stabilization is effective for arsenic-bearing wastes when acidic conditions can be avoided.

  6. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste.

    PubMed

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  7. O-phospho-L-serine: a modulator of bone healing in calcium-phosphate cements.

    PubMed

    Mai, Ronald; Lux, Romy; Proff, Peter; Lauer, Günter; Pradel, Winnie; Leonhardt, Henry; Reinstorf, Antje; Gelinsky, Michael; Jung, Roland; Eckelt, Uwe; Gedrange, Tomasz; Stadlinger, Bernd

    2008-10-01

    Bone substitution materials are seen as an alternative to autogenous bone transplants in the reconstruction of human bone structures. The aim of the present animal study was to evaluate the clinical handling and the conditions of bone healing after the application of a phosphoserine and collagen-I-modified calcium-phosphate cement (Biozement D). The application of phosphoserine is supposed to influence the texture of the extracellular matrix. Standardised bone defects were created in the lower jaw of 10 adult minipigs. These defects were reconstructed with a pasty calcium-phosphate cement mixture. After a healing time of 4 months, the animals were sacrificed. The mandibles of all animals were resected and non-decalcified histological sections of the areas of interest were prepared. The experiment was evaluated by means of qualitative histology and histomorphometry. The hydroxyapatite cement entirely hardened intraoperatively. Modelling and handling of the cement was facile and the margin fit to the host bone was excellent. Histology showed that resorption started in the periphery and proceeded exceptionally fast. The bony substitution, especially in phosphoserine-endowed cements, was very promising. After a healing period of 4 months, phosphoserine cements showed a bone regeneration of nearly two-thirds of the defect sizes. In the applied animal experiment, the newly developed hydroxyapatite collagen-I cement is well suited for bone substitution due to its easy handling, its excellent integration and good resorption characteristics. The addition of phosphoserine is very promising in terms of influencing resorption features and bone regeneration.

  8. Photocatalytic cementitious materials: influence of the microstructure of cement paste on photocatalytic pollution degradation.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-12-01

    Incorporation of nanophotocatalysts into cementitious materials is an important development in the field of photocatalytic pollution mitigation. In this study, the photocatalytic nitrogen oxides (NO(x)) conversion by titanium dioxide (TiO(2)) blended cement pastes was used as a standard process to evaluate the internal factors that may influence the depollution performance. The chemical composition and microstructure of the TiO(2) modified cement pastes were characterized and analyzed. The active photocatalytic sites related to the surface area of TiO(2) are the key factor in determining the photocatalytic activity. Ordinary Portland cement pastes showed lower photocatalytic activity than white cement pastes probably due to the influence of minor metallic components. X-ray diffraction and thermal gravity analysis demonstrated that TiO(2) was chemically stable in the hydrated cement matrix. The NO(x) removal ability decreased with the increase of curing age. This could be attributed to the cement hydration products which filled up capillary pores forming diffusion barriers to both reactants and photons. It was also proved that surface carbonation could reduce the photocatalytic pollution removal efficiency after the hydration of cement.

  9. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    PubMed Central

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  10. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  11. Influence of copolymer architectures on adhesion and compatibilization of polymers at interfaces

    NASA Astrophysics Data System (ADS)

    Guo, Lantao

    Adhesion and compatibilization of immiscible homopolymers by a variety of copolymer architectures were studied. The work is arranged into 5 chapters: In Chapter 1, an introduction to recent studies on improvement of adhesion and compatibilization of polymer blends using copolymers was made including the advantages and shortcomings of interfacial reinforcement by a diblock copolymer architecture. Emphasis is on the novel ways to improve adhesion at polymer interfaces by a variety of copolymer architectures, including physical entanglement and chemical modification and chemical bonding. In Chapter 2, a series of Polystyrene-Poly(methyl methacrylate) (PS-PMMA) graft copolymers were introduced to modify the PS and PMMA homopolymer interface and was found to increase the interfacial fracture toughness to a large extent, depending on the detailed architectural variables such as the graft number per chain, the lengths of the backbone and the grafts, and the total molecular weights of the graft copolymers. It was also found that there was an optimal number of grafts per chain which can be interpreted based on the graft length and inter-branch length of the backbone of the copolymer. Effect of in-situ grafting via a chemical reaction between Polystyrene-Poly(vinyl phenol) (PS-PSOH) and oxazoline containing Styrene-Acrylonitril (SAN) was also discussed compared with the physical grafting of a graft copolymer of different structural parameters. In Chapter 3, hydrogen bonding was utilized to toughen the interface between PS and PAA poly(acrylic acid)) or PMMA using a random copolymer architecture of Polystyrene-Poly(vinyl pyridine) (PS-PVP). It was shown that random copolymer architecture is not only economically feasible due to its low cost of producing but also very effective on adhesion because it not only overcomes the issue of micelle formation which is an unavoidable situation in the diblock and graft cases but the enhancement of adhesion is much higher utilizing a H

  12. Neutron Scattering Studies of Cement

    NASA Astrophysics Data System (ADS)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  13. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress

    SciTech Connect

    Papadakis, V.G.

    2000-02-01

    In this work the durability of Portland cement systems incorporating supplementary cementing materials (SCM; silica fume, low- and high-calcium fly ash) is investigated. Experimental tests simulating the main deterioration mechanisms is reinforced concrete (carbonation and chloride penetration) were carried out. It was found that for all SCM tested, the carbonation depth decreases as aggregate replacement by SCM increases, and increases as cement replacement by SCM increases. The specimens incorporating an SCM, whether it substitutes aggregate or cement, when exposed to chlorides exhibit significantly lower total chloride content for all depths from the surface, apart from a thin layer near the external surface. New parameter values were estimated and existing mathematical models were modified to describe the carbonation propagation and the chloride penetration in concrete incorporating SCM.

  14. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  15. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  16. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  17. Mechanistic approaches on the antibacterial activity of poly(acrylic acid) copolymers.

    PubMed

    Gratzl, Günther; Walkner, Sarah; Hild, Sabine; Hassel, Achim Walter; Weber, Hedda Katrin; Paulik, Christian

    2015-02-01

    The availability of polymeric antimicrobially active surfaces, which are mainly based on cationic surface effects, is limited. We have previously reported the discovery that, in addition to cationic surfaces, anionic surfaces based on poly(acrylic acid) (PAA) copolymers have a bactericidal effect. In this study, poly(styrene)-poly(acrylic acid)-diblock copolymers (PS-b-PAA) are used to describe the major variables causing the material to have a bactericidal effect on Escherichia coli ATCC 25922 in aqueous suspensions. Upon contact with water, the surface structure of the copolymer changes, the pH value decreases, and the PAA-block migrates toward the surface. Systematically modified antimicrobial tests show that the presence of acid-form PAA provides maximum antimicrobial activity of the material in slightly acidic conditions, and that an ion-exchange effect is the most probable mechanism. Antimicrobially inactive counter-ions inhibit the bactericidal activity of the copolymers, but the material can be regenerated by treatment with acids. PMID:25543987

  18. Preparation and biocompatibility of grafted functional β-cyclodextrin copolymers from the surface of PET films.

    PubMed

    Jiang, Yan; Liang, Yuan; Zhang, Hongwen; Zhang, Weiwei; Tu, Shanshan

    2014-08-01

    The hydrophobic inert surface of poly(ethylene terephthalate) (PET) film has limited its practical bioapplications, in which case, better biocompatibility should be achieved by surface modification. In this work, the copolymer of functional β-cyclodextrin derivatives and styrene grafted surfaces was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized PET. The structures, composition, properties, and surface morphology of the modified PET films were characterized by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by a thick targeted copolymer layer, and the hydrophobic surface of PET was changed into an amphiphilic surface. The copolymer-grafted surfaces were also shown good biocompatibility on which SGC-7901 A549 and A549/DDP cells readily attached and proliferated, demonstrating that the functional copolymer-grafted PET films could be a promising alternative to biomaterials especially for tissue engineering. PMID:24907730

  19. Mechanistic approaches on the antibacterial activity of poly(acrylic acid) copolymers.

    PubMed

    Gratzl, Günther; Walkner, Sarah; Hild, Sabine; Hassel, Achim Walter; Weber, Hedda Katrin; Paulik, Christian

    2015-02-01

    The availability of polymeric antimicrobially active surfaces, which are mainly based on cationic surface effects, is limited. We have previously reported the discovery that, in addition to cationic surfaces, anionic surfaces based on poly(acrylic acid) (PAA) copolymers have a bactericidal effect. In this study, poly(styrene)-poly(acrylic acid)-diblock copolymers (PS-b-PAA) are used to describe the major variables causing the material to have a bactericidal effect on Escherichia coli ATCC 25922 in aqueous suspensions. Upon contact with water, the surface structure of the copolymer changes, the pH value decreases, and the PAA-block migrates toward the surface. Systematically modified antimicrobial tests show that the presence of acid-form PAA provides maximum antimicrobial activity of the material in slightly acidic conditions, and that an ion-exchange effect is the most probable mechanism. Antimicrobially inactive counter-ions inhibit the bactericidal activity of the copolymers, but the material can be regenerated by treatment with acids.

  20. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.

    PubMed

    Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar

    2014-01-01

    Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.

  1. Chain exchange in block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Bates, Frank; Lodge, Timothy

    2014-03-01

    Block copolymer micelles are aggregates formed by self-assembly of amphiphilic copolymers dispersed in a selective solvent, driven by unfavorable interactions between the solvent and the core-forming block. Due to the relatively long chains being subject to additional thermodynamic and dynamic constraints (e.g., entanglements, crystallinity, vitrification), block copolymer micelles exhibit significantly slower equilibration kinetics than small molecule surfactants. As a result, details of the mechanism(s) of equilibration in block copolymer micelles remain unclear. This present works focuses on the chain exchange kinetics of poly(styrene-b-ethylenepropylene) block copolymers in squalane (C30H62) using time-resolved small angle neutron scattering (TR-SANS). A mixture of h-squalane and d-squalane is chosen so that it contrast matches a mixed 50/50 h/d polystyrene micelle core. When the temperature is appropriate and isotopically labeled chains undergo mixing, the mean core contrast with respect to the solvent decreases, and the scattering intensity is therefore reduced. This strategy allows direct probing of chain exchange rate from the time dependent scattering intensity I(q, t).

  2. Thermoreversible copolymer gels for extracellular matrix.

    PubMed

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  3. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylonitrile copolymers and resins. 181.32...-Sanctioned Food Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and resins listed in this section, containing less than 30 percent acrylonitrile and complying with...

  4. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  5. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  6. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers and resins. 181.32 Section... Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and resins listed in... of the vinyl chloride resin) resin—for use only in contact with oleomargarine. (iv)...

  7. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  8. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  9. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  10. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  12. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  13. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  14. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylonitrile copolymers and resins....

  15. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylonitrile copolymers and resins....

  16. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  17. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  18. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  19. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  20. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  1. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  2. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  4. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  5. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  6. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  7. Considerations for proper selection of dental cements.

    PubMed

    Simon, James F; Darnell, Laura A

    2012-01-01

    Selecting the proper cement for sufficient bond strength has become progressively complicated as the number of different materials for indirect restorations has increased. The success of any restoration is highly dependent on the proper cement being chosen and used. The function of the cement is not only to seal the restoration on the tooth but also, in some cases, to support the retention of the restoration. This ability to strengthen retention varies by the cement chosen by the clinician; therefore, careful consideration must precede cement selection.

  8. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  9. Optical properties of coumarins containing copolymers

    NASA Astrophysics Data System (ADS)

    Skowronski, L.; Krupka, O.; Smokal, V.; Grabowski, A.; Naparty, M.; Derkowska-Zielinska, B.

    2015-09-01

    We investigate the optical properties such as absorption coefficient, refractive index, real and imaginary parts of dielectric function and energy band gap of coumarin-containing copolymers thin films by means of spectroscopic ellipsometry (SE) combined with transmittance measurements (T) and atomic force microscopy (AFM). We found that the optical properties of coumarin-containing copolymers strongly depend from length of alkyl spacer as well as the type of substitution in coumarin moiety. In our case the refractive index as well as the energy band gap of coumarin-containing copolymer decrease with increase the length of alkyl spacer. Additionally, the lengthening of the alkyl spacer brings the bathochromic shifts of the absorption spectra towards longer wavelengths.

  10. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  11. Acetabular liner fixation by cement.

    PubMed

    Jiranek, William A

    2003-12-01

    Many situations in revision THA require the exchange of a PE liner in the setting of a well-fixed cementless acetabular shell. Unfortunately, a replacement liner is not always available, the locking mechanism of the metal shell may be damaged or incompatible with the desired liner, or the shell is malpositioned. Revision of a well-fixed cementless acetabular shell has been associated with considerable morbidity. This raises several questions: can a new PE liner be fixed in the existing shell using bone cement, and if so, which techniques can improve the end result, and in which patients should they be used? Biomechanical testing of cemented PE liners has shown initial fixation strengths that exceed conventional locking mechanisms. It is not known during what period this initial fixation will fail, but clinical reports with followup of as many as 6 years have shown survival in approximately 90% of cases. These studies have shown the importance of proper patient selection, accurate sizing of the PE liner, careful preparation of the substrate of the liner and the shell, and good cement technique. The potential advantages of this technique are less surgical morbidity, more rapid surgery and patient recovery, the ability to incorporate antibiotics in the cement, and more liner options.

  12. Fracture behavior of cemented sand

    NASA Astrophysics Data System (ADS)

    Alqasabi, Ahmad Othman

    While fracture mechanics for cementitious materials and composites in the past three decades have developed mainly in concrete applications, it has not yet gained its rightful place in the geotechnical field. There are many examples in the geotechnical literature, especially those related to brittle and stiff soils, where traditional approaches of analysis have proven to be inadequate. While geotechnical problems are inherently complex in nature, using the finite element method (FEM) with fracture mechanics (FM) have been shown to provide powerful analytical tool that could be used to investigate and solve many problems in geomechanics and geotechnical engineering. This thesis addresses the application of FM concepts and theories in analysis of cemented soils. In addition to theoretical aspects, experiments were conducted to evaluate the application of FM to cemented soils. Three point bending beam tests with crack mouth opening displacements (CMOD) conducted on cemented sand samples showed that fracture parameters, such as CMOD, indeed could play an important role in investigation of such soils. Using this unambiguous material parameter, field engineers might have a reliable measure that could prove to be useful in stability assessment of earth structures and soil structure system. By studying size effect on cemented sand, strong relationship was established between critical CMOD and failure, which might be a very useful index and analysis tool in geotechnical engineering practice.

  13. The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study

    PubMed Central

    Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

    2015-01-01

    Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100

  14. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE PAGESBeta

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  15. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    SciTech Connect

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; Lindsey, Melanie B.; Chen, Jihua; Elgammal, Ramez A.; Zawodzinski, Thomas A.; Fujiwara, Tomoko

    2016-01-01

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  16. Morphologies of poly(cyclohexadiene) diblock copolymers

    SciTech Connect

    Kumar, Rajeev; Mays, Jimmy; Sides, Scott; Goswami, Monojoy; Sumpter, Bobby G; Hong, Kunlun; Avgeropoulos, Apostolos; Russell, Thomas P; Gido, Samuel; Tsoukatos, Thodoris; Beyer, Fredrick

    2012-01-01

    Concerted experimental and theoretical investigations have been carried out to understand the micro-phase separation in diblock copolymer melts containing poly (1,3-cyclohexadiene), PCHD, as one of the constituents. In particular, we have studied diblock copolymer melts containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the second block. We have systematically varied the ratio of 1,2- /1,4-microstructures of poly (1,3-cyclohexadiene) to tune the conformational asymmetry between the two blocks and characterized the effects of these changes on the morphologies using transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Our experimental investigations reveal that the melts of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing nearly equal fractions of each component and high percentage of 1,4-microstructures in the PCHD block form cylindrical rather than lamellar morphologies as expected in symmetric diblock copolymers. In contrast, the morphologies of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing PCHD block with higher 1,2-microstructure are found to be disordered at 110 C. The change in the morphological behavior is in good agreement with our numerical calculations using the random phase approximation and self-consistent field theory for conformationally asymmetric diblock copolymer melts. Also, the effects of composition fluctuations are studied by extending the Brazovskii-Leibler-Fredrickson-Helfand (J. Chem. Phys. 87, 697 (1987)) theory to conformationally asymmetric diblock copolymer melts. These results allow the understanding of the underlying self-assembly process that highlights the importance of the conformational asymmetry in tuning the morphologies in block copolymers.

  17. Dynamics of Block Copolymer Nanocomposites

    SciTech Connect

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  18. Lightweight Cement Slurries based on vermiculite

    NASA Astrophysics Data System (ADS)

    Minaev, K.; Gorbenko, V.; Ulyanova, O.

    2014-08-01

    The main purpose of the research is to study the lightweight cement slurry based on vermiculite and its parameters in accordance with GOST 1581-96 requirements as well as improvement of its formulation by polymer additives. Analysis of vermiculite-containing mixture providing the lowest density while maintaining other required parameters was conducted. As a cement base, cement PTscT-I-G-CC-1, cement PTscT - 100 and vermiculite M200 and M150 were used. Vermiculite content varied from 10 to 15 %; and water-to-cement-ratio ranged from 0.65 to 0.8. To sum up, despite the fact that lightweight cement slurry based on vermiculite satisfies GOST 1581-96 requirements under laboratory conditions, field studies are necessary in order to make a conclusion about applicability of this slurry for well cementing.

  19. Mesoscale texture of cement hydrates.

    PubMed

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  20. Mesoscale texture of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Krakowiak, Konrad J.; Bauchy, Mathieu; Hoover, Christian G.; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J.-M.; Del Gado, Emanuela

    2016-01-01

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium–silicate–hydrates (C–S–H) during cement hydration. Controlling structure and properties of the C–S–H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C–S–H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C–S–H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C–S–H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C–S–H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  1. Comparison of effect of desensitizing agents on the retention of crowns cemented with luting agents: an in vitro study

    PubMed Central

    Pandharinath, Dange Shankar; Arun, Khalikar; Smita, Vaidya

    2012-01-01

    PURPOSE Many dentists use desensitizing agents to prevent hypersensitivity. This study compared and evaluated the effect of two desensitizing agents on the retention of cast crowns when cemented with various luting agents. MATERIALS AND METHODS Ninety freshly extracted human molars were prepared with flat occlusal surface, 6 degree taper and approximately 4 mm axial length. The prepared specimens were divided into 3 groups and each group is further divided into 3 subgroups. Desensitizing agents used were GC Tooth Mousse and GLUMA® desensitizer. Cementing agents used were zinc phosphate, glass ionomer and resin modified glass ionomer cement. Individual crowns with loop were made from base metal alloy. Desensitizing agents were applied before cementation of crowns except for control group. Under tensional force the crowns were removed using an automated universal testing machine. Statistical analysis included one-way ANOVA followed by Turkey-Kramer post hoc test at a preset alpha of 0.05. RESULTS Resin modified glass ionomer cement exhibited the highest retentive strength and all dentin treatments resulted in significantly different retentive values (In Kg.): GLUMA (49.02 ± 3.32) > Control (48.61 ± 3.54) > Tooth mousse (48.34 ± 2.94). Retentive strength for glass ionomer cement were GLUMA (41.14 ± 2.42) > Tooth mousse (40.32 ± 3.89) > Control (39.09 ± 2.80). For zinc phosphate cement the retentive strength were lowest GLUMA (27.92 ± 3.20) > Control (27.69 ± 3.39) > Tooth mousse (25.27 ± 4.60). CONCLUSION The use of GLUMA® desensitizer has no effect on crown retention. GC Tooth Mousse does not affect the retentive ability of glass ionomer and resin modified glass ionomer cement, but it decreases the retentive ability of zinc phosphate cement. PMID:22977719

  2. Co-polymer films for sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2010-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  3. Co-polymer Films for Sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  4. CBL evaluation of foam-cemented and synthetic-cemented casings

    SciTech Connect

    Burckdorfer, R.; Jacobs, W.R.; Masson, J.P.

    1983-10-01

    Cement Bond Log (CBL) studies on foam-cemented and synthetic-cemented wells were initiated to determine the feasibility of, as well as to develop technologies for, evaluating these novel cementing services. Early CBL's on these cementing systems showed little effect on the log amplitude curve. Hence, CBL evaluations were difficult to obtain and interpret. A special sonde with a 1.3-ft (0.4-m) transmitter-to-receiver spacing was developed for this study. Sonic signal amplitudes were determined using cemented short-casing test sections. Sonic attenuation rates were correlated to compressive strengths for a range of cement densities. Experimental details of the cementing operation and logging studies are discussed. Data relating attenuation rates to compressive strengths and cement densities are also presented. Field results are discussed.

  5. An Investigation of Siloxane Cross-linked Hydroxyapatite-Gelatin/Copolymer Composites for Potential Orthopedic Applications†

    PubMed Central

    Dyke, Jason Christopher; Knight, Kelly Jane; Zhou, Huaxing; Chiu, Chi-Kai; Ko, Ching-Chang; You, Wei

    2012-01-01

    Causes of bone deficiency are numerous, but biomimetic alloplastic grafts provide an alternative to repair tissue naturally. Previously, a hydroxyapatite-gelatin modified siloxane (HAp-Gemosil) composite was prepared by cross-linking (N, N′-bis[(3-trimethoxysilyl)propyl]ethylene diamine (enTMOS) around the HAp-Gel nanocomposite particles, to mimic the natural composition and properties of bone. However, the tensile strength remained too low for many orthopedic applications. It was hypothesized that incorporating a polymer chain into the composite could help improve long range interaction. Furthermore, designing this polymer to interact with the enTMOS siloxane cross-linked matrix would provide improved adhesion between the polymer and the ceramic composite, and improve mechanical properties. To this end, copolymers of L-Lactide (LLA), and a novel alkyne derivatized trimethylene carbonate, propargyl carbonate (PC), were synthesized. Incorporation of PC during copolymerization affects properties of copolymers such as molecular weight, Tg, and % PC incorporation. More importantly, PC monomers bear a synthetic handle, allowing copolymers to undergo post-polymerization functionalization with graft monomers to specifically tailor the properties of the final composite. For our investigation, P(LLA-co-PC) copolymers were functionalized by an azido-silane (AS) via copper catalyzed azide-alkyne cycloaddition (CuAAC) through terminal alkyne on PC monomers. The new functionalized polymer, P(LLA-co-PC)(AS) was blended with HAp-Gemosil, with the azido-silane linking the copolymer to the silsesquioxane matrix within the final composite. These HAp-Gemosil/P(LLA-co-PC)(AS) composites were subjected to mechanical and biological testing, and the results were compared with those from the HAp-Gemosil composites. This study revealed that incorporating a cross-linkable polymer served to increase the flexural strength of the composite by 50%, while maintaining the biocompatibility of

  6. Processing and characterization of benzocyclobutene (BCB)-functionalized thermally crosslinkable copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Tao

    The objective of this research has been to examine the processing, microstructure and physical properties of benzocyclobutene (BCB) functionalized copolymers. The approach was based on incorporating XTA, a BCB modified derivative of terephthalic acid, into the polymer backbone and then inducing crosslinking by heat treatment after the polymer has been formed into various shapes. The primary focus of the work was to investigate aromatic polyamides (aramids) such as poly(p-phenylene terephthalamide) (PPTA or Kevlarsp°ler) and poly(m-phenylene isophthalamide) (MPDI or Nomexsp°ler). It was anticipated that crosslinking would increase the inter-chain interactions between PPTA molecules and thus improve its compressive strength as well as other properties including creep, solvent resistance and flame resistance. PPTA-co-XTA copolymers exhibited lyotropic nematic liquid crystalline behavior. Highly oriented fibers were obtained using dry-jet wet spinning techniques, and they could be crosslinked via heat treatment between 320 and 420sp°C. Crosslinked fibers possessed higher tensile modulus than their as-spun counterparts. However, for high XTA-content materials, the tensile strength and toughness tended to decrease with increasing extent of heat treatment, which was attributed to degradative chain scission. MPDI-co-XTA copolymers were processed from isotropic solutions. The thermally crosslinkable copolymers demonstrated improved solvent resistance and dimensional stability at elevated temperatures. Crosslinking led to increased tensile modulus and decreased toughness and elongation at break. Molecular modeling established that with low XTA content the overall structure of MPDI-co-XTA copolymers was mostly unchanged from that of the neat MPDI and that the incorporated XTA unit introduced only local perturbations. Spectroscopic studies suggested that BCB crosslinked predominantly via stilbene junctions. Free radicals were found to form after crosslinking and might cause

  7. A long term histological analysis of effect of interposed hydroxyapatite between bone and bone cement in THA and TKA.

    PubMed

    Oonishi, Hironobu

    2012-01-01

    The standard cementing technique for total hip and knee arthroplasty (THA, TKA) was modified by interposing osteoconductive porous polycrystalline hydroxyapatite (HA) granules at the cement-bone interface to augment cement-bone bonding. Twenty-one specimens from the acetabulum and two specimens from the femur containing well-fixed bone-cement interface were retrieved five months to twenty-two years after THA and TKA with an interface bioactive bone cement technique. Histological findings were evaluated in terms of the retrieved sites, the interval between index operation and revision, patient age at retrieval and bone pathology. Dense bone ingrowth was observed in all specimens retrieved from the superior wall of the acetabulum. Cancellous bone ingrowth was observed in specimens retrieved from the infero-medial wall of the acetabulum. Connective tissue interposition and osteolysis were observed at the sites where hydroxyapatite granules were absent. Findings of bone ingrowth for the HA interposed retrievals were similar regardless of the interval between index operation and revision, patient age at retrieval, and bone pathology. Longer survivability of the bone-cement bonding was attributed more to the interposed HA granules. In spite of various degrees of aging, postmenopausal osteoporosis, and pathological bone condition the histological findings were not affected by the bone pathology. There was long-term direct contact between the bone and hydroxyapatite granules. Thus, the interface bioactive bone cement technique can ensure longevity of bone-cement bonding even after the onset of osteoporosis and for pathological bone conditions.

  8. The influence of silanized nano-SiO{sub 2} on the hydration of cement paste: NMR investigations

    SciTech Connect

    Bede, A. Pop, A.; Ardelean, I.; Moldovan, M.

    2015-12-23

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticles was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.

  9. The influence of silanized nano-SiO2 on the hydration of cement paste: NMR investigations

    NASA Astrophysics Data System (ADS)

    Bede, A.; Pop, A.; Moldovan, M.; Ardelean, I.

    2015-12-01

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticles was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.

  10. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  11. Mixing thermodynamics of block-random copolymers

    NASA Astrophysics Data System (ADS)

    Beckingham, Bryan Scott

    Random copolymerization of A and B monomers represents a versatile method to tune interaction strengths between polymers, as ArB random copolymers will exhibit a smaller effective Flory interaction parameter chi; (or interaction energy density X) upon mixing with A or B homopolymers than upon mixing A and B homopolymers with each other, and the ArB composition can be tuned continuously. Thus, the incorporation of a random copolymer block into the classical block copolymer architecture to yield "block-random" copolymers introduces an additional tuning mechanism for the control of structure-property relationships, as the interblock interactions and physical properties can be tuned continuously through the random block's composition. However, typical living or controlled polymerizations produce compositional gradients along the "random" block, which can in turn influence the phase behavior. This dissertation demonstrates a method by which narrow-distribution copolymers of styrene and isoprene of any desired composition, with no measurable down-chain gradient, are synthesized. This synthetic method is then utilized to incorporate random copolymers of styrene and isoprene as blocks into block-random copolymers in order to examine the resulting interblock mixing thermodynamics. A series of well-defined near-symmetric block and block-random copolymers (S-I, Bd-S, I-SrI, S-SrI and Bd-S rI diblocks, where S is polystyrene, I is polyisoprene and Bd is polybutadiene), with varying molecular weight and random-block composition are synthesized and the mixing thermodynamics---via comparison of their interaction energy densities, X---of their hydrogenated derivatives is examined through measurement of the order-disorder transition (ODT) temperature. Hydrogenated derivatives of I-SrI and S-SrI block-random copolymers, both wherein the styrene aromaticity is retained and derivatives wherein the styrene units are saturated to vinylcyclohexane (VCH), are found to hew closely to the

  12. Fluctuation Effects on Phase Behavior of Gradient Copolymer Systems

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Ganesan, Venkat

    2013-03-01

    We consider the effect of sequence polydispersity on fluctuation induced shift in order-disorder transition (ODT) temperature for symmetric systems of gradient copolymers. Using single chain in mean field simulations, a systematic change in scaling prediction for shift in ODT with Ginzburg parameter is reported. We demonstrate that gradient strength and overall blockiness of sequences has a significant impact on shift in ODT temperature. The weak gradient copolymers having high compositional polydispersity mimic random copolymers whereas, strong gradient copolymers possess inherent blockiness and are close to diblock copolymers. The blockiness parameter has a minimal impact on shift in ODT in strong gradient copolymers. Also, ternary blends of homopolymer/gradient copolymer are investigated to capture effect of compositional polydispersity on phase diagram and formation of microemulsion structures.

  13. Effect of pyrolyzed carbon black on asphalt cement. Part 2. Asphalt binder. Final report, September 1993-May 1995

    SciTech Connect

    Zeng, Y.; Lovell, C.W.

    1996-02-20

    Scrap tires derived from automobiles have become a large environmental problem in the United States. In the study, research is carried out to investigate the potential use of tire-derived pyrolyzed carbon black from scrap tires as an asphalt cement modifier. The asphlat cements used in the research were AC10 and AC20. Penetration and softening point tests were performed to obtain the consistency of the asphalt cements. The pyrolyzed carbon black, as provided by Wolf Industries, was combined with the asphalt cement in the following percentages: 5%, 10%, 15% and 20%. Penetration, softening point and ductility tests were performed to determine the temperature susceptibility of the modified binder as altered by the pyrolyzed carbon black. In order that the results are comparable to previous testing, commercial carbon black purchased from CABOT Industry was also used as a modifier in the tests. The same test procedures were applied to the asphalt cements modified by commercial carbon black. The test results contained in the report illustrate the viability of the pyrolyzed carbon black as an asphalt modifier. Recommendations are provided to facilitate further research on this particular project. A preliminary assessment of a test road using the pyrolyzed carbon is appended.

  14. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  15. Block copolymer compatibilization of cocontinuous polymer blends.

    SciTech Connect

    Galloway, Jeffrey A.; Macosko, Christopher W.; Bell, Joel R.; Jeon, Hyun K.

    2004-12-01

    The effect of block copolymers on the cocontinuous morphology of 50/50 (w/w) polystyrene (PS)/high density polyethylene (HDPE) blends was investigated using symmetric polystyrene-polyethylene block copolymers (PS-PE) with molecular weights varying from 6 to 200 kg/mol. The coarsening rate during annealing was compared to the Doi-Ohta theory. An intermediate molecular weight PS-PE, 40 kg/mol, showed remarkable results in reducing the phase size and stabilizing the blend morphology during annealing. Mixing small amounts of 6, 100 or 200 kg/mol PS-PE in the blend did not reduce the phase size significantly, but did decrease the coarsening rate during annealing. In stabilizing the morphology, 6 kg/mol PS-PE was inferior to 100 and 200 kg/mol. The existence of an optimal molecular weight block copolymer is due to a balance between the ability of the block copolymer to reach the interface and its relative stabilization effect at the interface.

  16. Microphase separation of block copolymer thin films.

    PubMed

    Zhang, Jilin; Yu, Xinhong; Yang, Ping; Peng, Juan; Luo, Chunxia; Huang, Weihuan; Han, Yanchun

    2010-04-01

    Today, high-ordered micro- and nano-patterned surfaces are widely used in many areas, such as in the preparation of super-thin dielectric films, photonic crystals, antireflective films, super-non-wetting surfaces, bio-compatible surfaces and microelectric devices. Considering the critical fabrication conditions and the irreducible high cost of the photolithography technique in patterning nano-scale structures (<100 nm), the development of other micro- and nano-patterning techniques that can be used to fabricate long-range ordered features - especially nanoscale arrays - is a promising subject in surface science. In contrast to the traditional photolithography patterning technique, block copolymers can spontaneously phase separate into arrays of periodic patterns with length-scales of 10-50 nm, which provides an efficient pathway to pattern nanoscale features. Today, preparing long-range ordered arrays by block copolymer microphase separation is one of the most promising techniques for the fabrication of nanoscale arrays, not only being a simple process but also having a lower cost than traditional methods. In this feature article, we first summarize the many techniques developed to induce ordering in the microphase separation of the block copolymer thin films. Then, evolution, order-order transitions and reversible switching microdomains are considered, since they are very important in the ordered engineering of microphase separation of the block copolymer thin films. Finally, the outlook of this research area will be given.

  17. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with food only of Types I, II, and VI-B (excluding carbonated beverages) described in table 1 of... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Divinylbenzene copolymer. 173.65 Section 173.65 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  18. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2004-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  19. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2003-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  20. Copolymer sealant compositions and method for making

    NASA Technical Reports Server (NTRS)

    Singh, Navjot (Inventor); Leman, John Thomas (Inventor); Whitney, John M. (Inventor); Krabbenhoft, Herman Otto (Inventor)

    2002-01-01

    Condensation curable poly(fluoroorgano)siloxane-poly(silarylene)siloxane block copolymer compositions having a glass transition temperature not exceeding about -54.degree. C. and excellent solvent resistance have been found useful as sealants. Polyalkoxysilylorgano compounds, such as 1,4-bis[trimethoxysilyl(ethyl)]benzene have been found to be effective as cross-linkers.

  1. Phase Transitions in Thin Block Copolymer Films

    SciTech Connect

    Kramer, Edward J.

    2010-10-08

    David Turnbull's experiments and theoretical insights paved the way for much of our modern understanding of phase transitions in materials. In recognition of his contributions, this lecture will concentrate on phase transitions in a material system not considered by Turnbull, thin diblock copolymer films. Well-ordered block copolymer films are attracting increasing interest as we attempt to extend photolithography to smaller dimensions. In the case of diblock copolymer spheres, an ordered monolayer is hexagonal, but the ordered bulk is body-centered cubic (bcc). There is no hexagonal plane in the bcc structure, so a phase transition must occur as n, the number of layers of spheres in the film, increases. How this phase transition occurs with n and how it can be manipulated is the subject of the first part of my presentation. In the second part of the talk, I show that monolayers of diblock copolymer spheres and cylinders undergo order-to-disorder transitions that differ greatly from those of the bulk. These ordered 2D monolayers are susceptible to phonon-generated disorder as well as to thermal generation of defects, such as dislocations, which, while they are line defects in 3D, are point defects in 2D. The results are compared to the theories of melting of 2D crystals (spheres) and of 2D smectic liquid crystals (cylinders), a comparison that will allow us to understand most, but not all, of the features of these order-disorder transitions that occur as the temperature is increased.

  2. Application of antifungal CFB to increase the durability of cement mortar.

    PubMed

    Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-07-01

    Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

  3. Experimental Calcium Silicate-Based Cement with and without Zirconium Oxide Modulates Fibroblasts Viability.

    PubMed

    Slompo, Camila; Peres-Buzalaf, Camila; Gasque, Kellen Cristina da Silva; Damante, Carla Andreotti; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; de Oliveira, Rodrigo Cardoso

    2015-01-01

    The aim of this study was to verify whether the use of zirconium oxide as a radiopacifier of an experimental calcium silicate-based cement (WPCZO) leads to cytotoxicity. Fibroblasts were treated with different concentrations (10 mg/mL, 1 mg/mL, and 0.1 mg/mL) of the cements diluted in Dulbecco's modified Eagle's medium (DMEM) for periods of 12, 24, and 48 h. Groups tested were white Portland cement (WPC), white Portland cement with zirconium oxide (WPCZO), and white mineral trioxide aggregate Angelus (MTA). Control group cells were not treated. The cytotoxicity was evaluated through mitochondrial-activity (MTT) and cell-density (crystal violet) assays. All cements showed low cytotoxicity. In general, at the concentration of 10 mg/mL there was an increase in viability of those groups treated with WPC and WPCZO when compared to the control group (p<0.05). A similar profile for the absorbance values was noted among the groups: 10 mg/mL presented an increase in viability compared to the control group. On the other hand, smaller concentrations presented a similar or lower viability compared to the control group, in general. A new dental material composed of calcium silicate-based cement with 20% zirconium oxide as the radiopacifier showed low cytotoxicity as a promising material to be exploited for root-end filling.

  4. Periodic nanoscale patterning of polyelectrolytes over square centimeter areas using block copolymer templates.

    PubMed

    Oded, Meirav; Kelly, Stephen T; Gilles, Mary K; Müller, Axel H E; Shenhar, Roy

    2016-05-18

    Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. Here, we present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm(2)-scale areas. Chemically modified block copolymer thin films featuring alternating charged and neutral domains are used as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topography that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.

  5. Mechanism for hierarchical self-assembly of nanoparticles on scaffolds derived from block copolymers.

    SciTech Connect

    Darling, S. B.

    2007-07-01

    Lithographically patterned substrates can direct the self-assembly of block copolymer films into aligned structures that, in turn, template the self-organization of colloidal nanoparticles. Deposition on pristine diblock copolymer films does not lead to reproducible selective decoration, but films modified to have nanoscale corrugation act as scaffolds for highly selective nanoparticle adsorption. The mechanism for this selectivity relies on the lateral forces inherent to spin casting to remove all of the nanoparticle suspension not confined within the nanoscopic trenches. This technique does not rely on interactions between the surfactant capping molecules and the polymer and is therefore general to a wide class of nanoparticle materials. Prospects to obtain long-range ordering and associated potential applications are discussed.

  6. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    PubMed

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces. PMID:26871736

  7. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    PubMed

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.

  8. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    NASA Astrophysics Data System (ADS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Chien Dang, Mau

    2015-09-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, 1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable.

  9. The Influence of Block Copolymers on the Rheology of Silica-Filled Polyisoprene

    NASA Astrophysics Data System (ADS)

    Gurovich, Daniel; Macosko, Christopher; Tirrell, Matthew

    2000-03-01

    The properties of filled polymeric materials depend on the balance between filler-filler and polymer-filler interactions. Polar surfaces of silica particles interact strongly with like polar surfaces, but not with the polyisoprene (PI) matrix. Thus, silica is difficult to disperse in polyisoprene, and the resulting dispersions tend to agglomerate upon aging. Polydimethyl siloxane (PDMS) strongly adsorbs onto silica surfaces via hydrogen bonds. Therefore, a PDMS-PI block copolymer is expected to anchor to a silica surface via its PDMS block and modify polymer-filler interactions. In the present work, precipitated silica, polyisoprene, and PDMS-PI copolymer are mixed in different formulations. The dynamic rheological properties of the resulting materials are measured, and the low-frequency storage modulus is used to assess filler-filler networking. The state of dispersion is visualized by transmission electron microscopy. The effects of aging on dispersions of different formulations are compared.

  10. Lateral structuring and stability phenomena induced by block copolymers and core-shell nanogel particles at immiscible polymer/polymer interfaces

    NASA Astrophysics Data System (ADS)

    Gozen, Arif Omer

    changing boundary conditions as spherical holes develop. These studies reveal that in-plane interfacial nanostructures produced by block copolymers may not always provide stabilization of the bilayer; this behavior has been attributed to the interplay between copolymer micellization and copolymer segregation at the immiscible polymer interface. Lastly, we have investigated the dewetting behavior of PS/PMMA assemblies containing compositionally varied mixtures of mirrored copolymers, such as PS50-b-PMMA10/PS10- b-PMMA50 and PS50-b-PMMA 20/PS20-b-PMMA50. The dewetting rates of systems composed of copolymer mixtures lie between those of systems modified with the neat copolymers. This observation suggests that the dewetting behavior of the double layer with a copolymer mixture may be approximated satisfactorily by a linear rule of mixtures.

  11. Block copolymer self-assembly fundamentals and applications in formulation of nano-structured fluids

    NASA Astrophysics Data System (ADS)

    Sarkar, Biswajit

    Dispersions of nanoparticles in polymer matrices form hybrid materials that can exhibit superior structural and functional properties and find applications in e.g. thermo-plastics, electronics, polymer electrolytes, catalysis, paint formulations, and drug delivery. Control over the particle location and orientation in the polymeric matrices are essential in order to realize the enhanced mechanical, electrical, and optical properties of the nanohybrids. Block copolymers, composed of two or more different monomers, are promising for controlling particle location and orientation because of their ability to organize into ordered nanostructures. Fundamental questions pertaining to nanoparticle-polymer interfacial interactions remain open and formulate the objectives of our investigation. Particle-polymer enthalpic and entropic interactions control the nanoparticle dispersion in polymer matrices. Synthetic chemical methods for modifying the particle surface in order to control polymer-particle interactions are involved and large scale production is not possible. In the current approach, a physical method is employed to control polymer-particle interactions. The use of commercially available solvents is found to be effective in modifying particle-polymer interfacial interactions. The approach is applicable to a wide range of particle-polymer systems and can thereby enable large scale processing of polymer nanohybrids. The systems of silica nanoparticles dispersed in long-range or short-range self-assembled structures of aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics) is considered here. The effect of various parameters such as the presence of organic solvents, pH, and particle size on the block copolymer organization and the ensuing particle-polymer interactions are investigated. Favorable surface interactions between the deprotonated silica nanoparticle and PEO-rich domain facilitate particle

  12. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  13. Surface functionalization of styrenic block copolymer elastomeric biomaterials with hyaluronic acid via a "grafting to" strategy.

    PubMed

    Li, Xiaomeng; Luan, Shifang; Yuan, Shuaishuai; Song, Lingjie; Zhao, Jie; Ma, Jiao; Shi, Hengchong; Yang, Huawei; Jin, Jing; Yin, Jinghua

    2013-12-01

    As a biostable elastomer, the hydrophobicity of styrenic block copolymer (SBC) intensely limits its biomedical applications. In order to overcome such shortcoming, the SBC films were grafted with hyaluronic acid (HA) using a coupling agent. The surface chemistry of the modified films was examined by ATR-FTIR and XPS techniques, and the surface morphology was visually described by AFM. The biological performances of the HA-modified films were evaluated by a series of experiments, such as protein adsorption, platelet adhesion, and in vitro cytocompatibility. It was found that the HA-modified samples showed a low adhesiveness to fibroblast at the initial stage; however, it stimulated the growth of fibroblast. The L929 fibroblast growth presented a strong dependence on the molecular weight (MW) of HA. The samples modified with 17kDa HA exhibited the worst wettability and platelet adhesion, while providing the best results of supporting fibroblast proliferation. PMID:23974002

  14. Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties.

    PubMed

    Slane, Josh; Vivanco, Juan; Meyer, Jill; Ploeg, Heidi-Lynn; Squire, Matthew

    2014-01-01

    Polymethyl methacrylate bone cement is the most common and successful method used to anchor orthopedic implants to bone, as evidenced by data from long-term national joint registries. Despite these successes, mechanical failure of the cement mantle can result in premature failure of an implant which has lead to the development of a variety of techniques aimed at enhancing the mechanical properties of the cement, such as the addition of particulate or fiber reinforcements. This technique however has not transitioned into clinical practice, likely due to problems relating to interfacial particle/matrix adhesion and high cement stiffness. Mesoporous silica nanoparticles (MSNs) are a class of materials that have received little attention as polymer reinforcements despite their potential ability to overcome these challenges. Therefore, the objective of the present study was to investigate the use of mesoporous silica nanoparticles (MSNs) as a reinforcement material within acrylic bone cement. Three different MSN loading ratios (0.5%, 2% and 5% (wt/wt)) were incorporated into a commercially available bone cement and the resulting impact on the cement's static mechanical properties, fatigue life and absorption/elution properties were quantified. The flexural modulus and compressive strength and modulus tended to increase with higher MSN concentration. Conversely, the flexural strength, fracture toughness and work to fracture all significantly decreased with increasing MSN content. The fatigue properties were found to be highly influenced by MSNs, with substantial detrimental effects seen with high MSN loadings. The incorporation of 5% MSNs significantly increased cement's hydration degree and elution percentage. The obtained results suggest that the interfacial adhesion strength between the nanoparticles and the polymer matrix was poor, leading to a decrease in the flexural and fatigue properties, or that adequate dispersion of the MSNs was not achieved. These findings

  15. Cement bond log evaluation of foam- and synthetic-cemented casings

    SciTech Connect

    Bruckdorfer, R.A.; Jacobs, W.R.; Masson, J.P.

    1984-11-01

    Cement bond log (CBL /SUP TM/ ) studies on foam- and synthetic-cemented wells were initiated to determine the feasibility of, as well as to develop technologies for, evaluating these novel cementing services. Early CBL's on these cementing systems showed little effect on the log amplitude curve. Hence, CBL evaluations were difficult to obtain and interpret. A special sonde with a 1.3-ft (0.4-m) transmitter-toreceiver spacing was developed for this study. Sonic signal amplitudes were determined by using cemented shortcasing test sections. Sonic attenuation rates were correlated to compressive strengths for a range of cement densities. Experimental details of the cementing operation and logging studies are discussed. Data relating attenuation rates to compressive strengths and cement densities also are presented. Field results are discussed.

  16. How to obtain good primary cement jobs

    SciTech Connect

    Kundert, D.P. ); Vacca, H.L. ); Smink, D.E

    1990-04-01

    A review of 23 primary cementing jobs performed over an 11-year period in four states has shown improved success with attention having been directed to low- cost means of improving displacement of drilling muds by cement slurries. The most important factors appear to be placement of centralizers and scratchers, conditioning of the drilling mud and pipe movement (reciprocation) while conditioning mud and while placing cement. Confidence gained in the use of these methods has resulted in a job technique wherein the top cementing plug is pumped down with 10% acetic acid or other desired perforating fluid followed by 2% KCI water. This technique permits lower-cost completions. The theory and application of cement bond logging is reviewed with five example CBL-VDL logs presented and discussed. Several examples are shown under applied surface pressure conditions. An example of a CBL-VDL log for an offset well where the principles of primary cementing were not observed is shown for comparison.

  17. Sustainable cement production-present and future

    SciTech Connect

    Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.

    2011-07-15

    Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

  18. Effect of surface treatment on the initial bond strength of different luting cements to zirconium oxide ceramic.

    PubMed

    Nothdurft, F P; Motter, P J; Pospiech, P R

    2009-06-01

    The objective of this study was to compare the shear bond strength to zirconium oxide ceramic of adhesive-phosphate-monomer-containing (APM) and non-APM-containing (nAPM) luting cements after different surface treatments. nAPM cements: Bifix QM, Dual Cement, Duo Cement Plus, Multilink Automix, ParaCem Universal DC, PermaCem Smartmix, RelyX ARC, Variolink Ultra, and Variolink II; APM cements: Panavia EX, Panavia F2.0, and RelyX UniCem. Groups of ten test specimens were each prepared by layering luting cement, using cylindrical Teflon molds, onto differently treated zirconium dioxide discs. The surface treatments were airborne-particle abrasion with 110 mum alumina particles, silica coating (SC) using 30 mum alumina particles modified by silica (Rocatec System) or SC and silanization. Bifix QM and Multilink Automix were used in combination with an additional bonding/priming agent recommended by the manufacturers. After 48 h of water storage, each specimen was subjected to a shear test. Combinations involving APM-containing cements (14.41-23.88 MPa) generally exhibited higher shear bond strength than those without APM (4.29-17.34 MPa). Exceptions were Bifix QM (14.20-25.11 MPa) and Multilink Automix (19.14-23.09 MPa) in combination with system-specific silane or priming agent, which were on the upper end of shear bond strength values. With the use of the Rocatec system, a partially significant increase in shear bond strength could be achieved in nAPM cement. Modified surface treatment modalities increased the bond strength to zirconium oxide, although the most important factor in achieving a strong bond was the selection of a suitable cement. System-specific priming or bonding agents lead to further improvement.

  19. Zirconia: cementation of prosthetic restorations. Literature review

    PubMed Central

    GARGARI, M.; GLORIA, F.; NAPOLI, E.; PUJIA, A.M.

    2011-01-01

    SUMMARY Aim of the work Aim of the work was to execute a review of the international literature about the cementation of zirconia restorations, analyzing the properties of the cements most commonly used in clinical activities. Materials and methods It was performed, through PubMed, a bibliographic search on the international literature of the last 10 years using the following limits: studies in English, in vitro studies, randomized clinical trial, reviews, meta-analysis, guide-lines. Were excluded from the search: descriptive studies, case reports, discussion articles, opinion’s leader. Results From studies results that common surface treatments (silanization, acid etching) are ineffective on zirconia because it has an inert surface without glassy component (on which this surface treatments act primarily), instead the sandblasting at 1atm with aluminium oxide (Al2O3) results significantly effective for the resulting roughening that increase the surface energy and the wettability of the material. Furthermore it has been shown that zinc phosphate-based cements, Bis-GMA-based and glass-ionomer cements can’t guarantee a stable long-term adhesion, instead resin cements containing phosphate monomer 10-methacryloyloxyidecyl-dihyidrogenphosphate (MDP) have shown higher adhesion and stability values than the other cements. In particular, it has seen that bond strength of zirconia copings on dentin, using MDP-based cement, is about 6,9MPa; this value is comparable to that obtained with gold copings cementation. Conclusions Analyzed studies have led to the following conclusions: sandblasting with aluminium oxide (Al2O3) is the best surface treatment to improve adhesion between resin cements and zirconia; resin cements containing phosphate ester monomers 10-methacryloyloxyidecyl-dihyidrogenphosphate (MDP) have shown in the studies an higher bond strength and stability after ageing treatment; the best procedure for cementing zirconia restorations results the combination of

  20. Pressurization of bioactive bone cement in vitro.

    PubMed

    Fujita, H; Iida, H; Kawanabe, K; Okada, Y; Oka, M; Masuda, T; Kitamura, Y; Nakamura, T

    1999-01-01

    We have developed a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 glass-ceramic powder (AW glass-ceramic powder), silica glass powder as an inorganic filler, and bisphenol-a-glycidyl methacrylate (bis-GMA) based resin as an organic matrix. The efficacy of this bioactive bone cement was investigated by evaluating its pressurization in a 5-mm hole and small pores using a simulated acetabular cavity. Two types of acetabular components were used (flanged and unflanged sockets) and a commercially available polymethylmethacrylate (PMMA) bone cement (CMW 1 Radiopaque Bone Cement) was selected as a comparative control. Bioactive bone cement exerted greater intrusion volume in 5-mm holes than PMMA bone cement in both the flanged and unflanged sockets 10 minutes after pressurization (p < 0.05). In the small pores the bioactive and PMMA bone cements exerted almost identical intrusion volumes in flanged and unflanged sockets 10 min after pressurization. The intrusion volume in the flanged socket 10 minutes after pressurization was greater than that in the unflanged socket in all groups (p < 0.05). These results show that bioactive bone cement intrudes deeper into anchor holes than PMMA bone cement.

  1. Proper selection of contemporary dental cements.

    PubMed

    Yu, Hao; Zheng, Ming; Chen, Run; Cheng, Hui

    2014-03-01

    Today proper selection of dental cements is a key factor to achieve a successful restoration and will greatly increase the chances of long-term success of the restoration. In recent years, many newly formulated dental cements have been developed with the claim of better performance compared to the traditional materials. Unfortunately, selection of suitable dental cement for a specific clinical application has become increasingly complicated, even for the most experienced dentists. The purpose of this article is to review the currently existing dental cements and to help the dentists choose the most suitable materials for clinical applications.

  2. Try-in Pastes Versus Resin Cements: A Color Comparison.

    PubMed

    Vaz, Edenize Cristina; Vaz, Maysa Magalhães; Rodrigues Gonçalves de Oliveira, Maria Beatriz; Takano, Alfa Emília; de Carvalho Cardoso, Paula; de Torres, Érica Miranda; Gonzaga Lopes, Lawrence

    2016-05-01

    This study aimed to compare the color of ceramic veneer restorations using different shades of try-in pastes and resin cement. Researchers found no differences between try-in pastes and resin cements after cementation. PMID:27213935

  3. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    SciTech Connect

    Bortolotti, Villiam; Fantazzini, Paola; Sauro, Salvatore; Zanna, Silvano

    2012-03-15

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of {sup 1}H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The 'Solid-liquid' separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C-S-H gel. {sup 1}H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C-S-H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  4. Modification of Mechanical Properties, Polymerization Temperature, and Handling Time of Polymethylmethacrylate Cement for Enhancing Applicability in Vertebroplasty

    PubMed Central

    Tsai, Tsung-Tin; Lee, Yen-Chen; Chen, Lih-Huei

    2016-01-01

    Polymethylmethacrylate (PMMA) bone cement is a popular bone void filler for vertebroplasty. However, the use of PMMA has some drawbacks, including the material's excessive stiffness, exothermic polymerization, and short handling time. This study aimed to create an ideal modified bone cement to solve the above-mentioned problems. Modified bone cements were prepared by combining PMMA with three different volume fractions of castor oil (5%, 10%, and 15%). The peak polymerization temperatures, times to achieve the peak polymerization temperature, porosities, densities, modulus and maximum compression strengths of standard (without castor oil), and modified cements were investigated following storage at ambient temperature (22°C) or under precooling conditions (3°C). Six specimens were tested in each group of the aforementioned parameters. Increasing castor oil content and precooling treatment effectively decreased the peak polymerization temperatures and increased the duration to achieve the peak polymerization temperature (P < 0.05). Furthermore, the mechanical properties of the material, including density, modulus, and maximum compression strength, decreased with increasing castor oil content. However, preparation temperature (room temperature versus precooling) had no significant effect (P > 0.05) on these mechanical properties. In conclusion, the addition of castor oil to PMMA followed by precooling created an ideal modified bone cement with a low modulus, low polymerization temperature, and long handling time, enhancing its applicability and safety for vertebroplasty. PMID:27812530

  5. Complex self-assembly of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) triblock copolymers with long hydrophobic and extremely lengthy hydrophilic blocks.

    PubMed

    Cambón, Adriana; Figueroa-Ochoa, Edgar; Juárez, Josué; Villar-Álvarez, Eva; Pardo, Alberto; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo; Mosquera, Víctor

    2014-05-15

    Amphiphilic block copolymers have emerged during last years as a fascinating substrate material to develop micellar nanocontainers able to solubilize, protect, transport, and release under external or internal stimuli different classes of cargos to diseased cells or tissues. However, this class of materials can also induce biologically relevant actions, which complement the therapeutic activity of their cargo molecules through their mutual interactions with biologically relevant entities (cellular membranes, proteins, organelles...); these interactions at the same time, are regulated by the nature, conformation, and state of the copolymeric chains. For these reasons, in this paper we investigated the self-assembly process and physico-chemcial properties of two reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BO14EO378BO14 and BO21EO385BO21, which have been recently found to be very useful as drug delivery nanovehicles and biological response modifiers under certain conditions (A. Cambón et al. Int. J. Pharm. 2013, 445, 47-57) in order to obtain a clear picture of the solution behavior of this class or block copolymers and to understand their biological activity. These block copolymers are characterized by possessing long BO blocks and extremely lengthy central EO ones, which provide them with a rich rheological behavior characterized by the formation of flowerlike micelles with sizes ranging from 20 to 40 nm in aqueous solution and the presence of intermicellar bridging even at low copolymers concentrations as denoted by atomic force microscopy. Bridging is also clearly observed by analyzing the rheological response of these block copolymers both storage and loss moduli upon changes on time, temperature, and or concentration. Strikingly, the relatively wide Poisson distribution of the polymeric chains make the present copolymers behave rather distinctly to conventional associative thickeners. The observed rich

  6. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that

  7. Solvent enhanced block copolymer ordering in thin films

    NASA Astrophysics Data System (ADS)

    Misner, Matthew J.

    Diblock copolymer self-assembly of materials is emerging as a key element in the fabrication of functional nanostructured materials. By solvent casting or solvent annealing block copolymer thin films, we have demonstrated methods to produce diblock copolymer films with highly oriented, close-packed arrays of nanoscopic cylindrical domains with a high degree of long-range lateral order with few defects. The solvent imparts a high degree of mobility in the microphase-separated copolymer that enables a rapid removal of defects and a high degree of lateral order. Though the use of a selective cosolvent during solvent casting, it was found that the microdomain size and spacing could be increased, leading to a size-tunable system. Additionally, the presence of water also led to the ability to control the microdomain orientation during solvent annealing. Ionic complexation within cylinder-forming PS- b-EO block copolymer thin films was also investigated, where added salts bind PEO block as the minor component. Small amounts of added salts, on the order a few ions per chain, show large effects on the ordering of the copolymer films during solvent annealing. By using gold or cobalt salts, well-organized patterns of nanoparticles can be generated in the copolymer microdomains. Topographically and chemically patterned surfaces were used as a route to sectorizing and controlling the lattice orientation of copolymer films. Topographically patterned surfaces allow well-defined boundaries to confine the copolymer microdomains on a surface and effectively direct the ordering and grain orientation of the copolymer microdomains. Chemically patterned surfaces provide a route to direct the block copolymer ordering on completely flat surface, which may have advantages in applications where adding additional topography may be undesirable. To generate nanoporous templates from PS-b-PEO bases materials several routs were followed. The first route was through the addition and selective

  8. Quartz cement in sandstones: a review

    NASA Astrophysics Data System (ADS)

    McBride, Earle F.

    Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the "silica mobility window"; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H 4SiO 4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within

  9. Impact of zeolite-based nanomodified additive on the structure and strength of the cement stone

    NASA Astrophysics Data System (ADS)

    Egorova, A. D.; Filippova, K. E.

    2015-01-01

    Portland cement is the main binder in the building materials industry; its properties strongly influence properties of mortars and concretes. Some regions experience difficulties with delivery and storage of Portland cement, raising the need to develop an effective additive from the available raw materials. Such materials for the Republic of Sakha (Yakutia) are zeolite-containing rocks. Studies have shown that introducing of dibutylphthalate to the composition of modified additive during mechanochemical activation leads to achievement of up to 11% of total amount particles with the size of 3-30 nm. After introducing 0.5% of the obtained additives, the compressive strength of cement-sand slurry samples increases up to 28%. Positive effect of additives introduction is also observed at high flow rate of water (W / C = 0.7). Gaining strength reaches 23%, allowing the efficient use of additive for movable mixtures with enhanced strength properties. In general, the proposed supplement allows reducing the water flow in the solution without decreasing its mobility, and increasing strength properties, which makes it possible to obtain a whole class of solutions of modified cement binder. The market value of the developed additives is 18 rubles per 1 kg, making sound competition in the market of modifying additives.

  10. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification... adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer,...

  11. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  12. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  13. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  14. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  15. A Confocal Microscopic Evaluation of the Dehydration Effect on Conventional, Resin Reinforced Powder/Liquid and Paste to Paste Glass Ionomer Luting Cements

    PubMed Central

    George, Liza; Kandaswamy, D

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of dehydration of resin-modified glass ionomer powder/liquid system, resin-modified glass ionomer paste/paste luting cements in three different quantities and to compare them with a conventional glass ionomer luting cement using confocal laser scanning microscope. Materials and Methods: A conventional glass ionomer (Group I), a resin modified powder/liquid system (Group II), and a resin-modified paste/paste system (Group III) were selected for the study. In Group III, there were three subgroups based on the quantity of material dispensed. 50 premolar teeth were selected and randomly divided among the groups with 10 samples in each. The teeth were ground flat to expose a flat occlusal dentin. A device was made to standardize the thickness of cement placed on the teeth. The teeth were stored in distilled water for 24 h and then longitudinally sectioned to examine the tooth dentin interface under a confocal microscope. The specimens were allowed to dehydrate under the microscope for different time intervals. The width of the crack after dehydration near the dentinal interface was measured at definite intervals in all the groups and analyzed statistically using Student’s t-test. Results: Conventional glass ionomer cement showed the maximum width of the crack followed by resin modified paste/paste system during the dehydration period. Resin modified powder/liquid system did not show cohesive failure. Conclusions: Conventional glass ionomer luting cement is more susceptible to cohesive failure when subjected to dehydration compared to resin-modified glass ionomer paste/paste luting cement. Among the luting cements, resin-modified glass ionomer powder/liquid system showed the best results when subjected to dehydration. PMID:26464535

  16. Mechanism of Molecular Exchange in Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  17. Multigraft Copolymer Superelastomers: Synthesis Morphology, and Properties

    SciTech Connect

    Uhrig, David; Schlegel, Ralf; Weidisch, Roland; Mays, Jimmy

    2011-01-01

    The synthesis of well-defined multigraft copolymers having a polydiene backbone with polystyrene side chains is briefly reviewed, with particular focus on controlling branch point spacing and branch point functionality. Use of living anionic polymerization and chlorosilane linking chemistry has led to the synthesis of series of materials having regularly spaced trifunctional (comb), tetrafunctional (centipede), and hexafunctional (barbwire) branch points. The morphologies of these materials were characterized by transmission electron microscopy and small-angle X-ray scattering, and it was found that the morphologies were controlled by the local architectural asymmetry associated with each branch point. Mechanical properties studies revealed that such multigraft copolymers represent a new class of thermoplastic elastomers (TPEs) with superior elongation at break and low residual strains as compared to conventional TPEs.

  18. Block copolymers for opto-electronics

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James H.; Maaref, Shahin; Ledbetter, Abram J.; Bonner, Carl E.

    2004-05-01

    A D(donor)-B(bridge)-A(acceptor)-B(bridge)-type block copolymer system has been developed and preliminarily examined for potential opto-electronic photovoltaic functions. The unique feature of the device includes a primary DBAB-type block copolymer backbone, where D and A are conjugated donor and acceptor polymer blocks, and B is a non-conjugated and flexible chain, a π orbital stacked and conjugated chain self-assembled and ordered "secondary structure", and a donor/acceptor asymmetric layers sandwiched D/A columnar "tertiary structure". This structure is expected to improve photovoltaic power conversion efficiency significantly in comparison to most existing organic or polymeric donor/acceptor binary photovoltaic systems due to the reduction of "exciton loss", the "carrier loss", as well as the "photon loss" via three-dimensional space and energy level optimizations. Preliminary experimental results revealed better morphology and opto-electronic properties of DBAB vs. D/A blends.

  19. Rapid ordering of block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  20. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  1. Phase Behavior of Gradient Copolymer Solution

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Gallow, Keith; Loo, Yueh-Lin; Ganesan, Venkat

    2012-02-01

    We study the behavior of amphiphilic linear gradient copolymer chains under poor solvent conditions. Using Bond Fluctuation model and parallel tempering algorithm, we explore qualitative behavior of this class of polymers with varying gradient strength; which is the largest difference in the instantaneous composition along the polymer chain. Under poor solvent conditions, the chains collapse to form micelles. We find a linear dependence of hydrophilic to hydrophobic transition temperature on gradient strength. Systematic analysis of these clusters reveals a strong dependence of micelle properties on gradient strength. Also, we discuss our results with reference to recent experiments on synthesis and cloud point depression in gradient copolymers confirming gradient strength as key parameter in tuning micelle properties.

  2. On the birefringence of multilayered symmetric diblock copolymer films

    SciTech Connect

    Kim, J.; Chin, I.; Smith, B.A.; Russell, T.P. ); Mays, J.W. . Dept. of Chemistry)

    1993-09-27

    The chain extension at lamellar interfaces was studied in thin films of symmetric diblock copolymers on gold substrates. The first copolymer consisted of blocks of polystyrene (PS) and poly(2-vinylpyridine) (P2VP), denoted P(S-b-2VP). The second was a diblock copolymer of PS and poly(methyl methacrylate) (PMMA), denoted P(S-b-MMA), on a gold substrate. Using attenuated total reflectance spectroscopy, the refractive indices parallel, n[sub [parallel

  3. Reversible geling co-polymer and method of making

    DOEpatents

    Gutowska, Anna

    2005-12-27

    The present invention is a thereapeutic agent carrier having a thermally reversible gel or geling copolymer that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum geling molecular weight cutoff and a therapeutic agent.

  4. Failure load of teeth restored by use of alumina copings: Influence of residual tooth structure and cementation.

    PubMed

    Schmitter, Marc; Posavec, Tomislav; Mueller, Denise; Mussotter, Katrin; Rammelsberg, Peter; Rues, Stefan

    2013-01-01

    To evaluate failure loads of teeth restored by use of alumina-coping, and to assess the effects of different amounts of residual tooth structure and different cements, standardized artificial alumina copings were fabricated on seventy-two molars. 24 of the copings were cemented by use of an adhesive resin cement (P-group), n=24 by use of glass-ionomer cement (K-group), and n=24 by use of a self-adhesive modified composite resin-cement (R-group). After artificial ageing (10,000 thermal-cycles between 6.5 and 60°C; 1,200,000 chewing cycles with Fmax=64 N), the specimens were loaded until failure (cross-head-speed: 0.5 mm/min). In the K-group 83% of the specimens failed during chewing simulation. Statistical analysis included chi-squared-test, unpaired-to-sample-t-test, and ANOVA. For severely damaged teeth, loads to failure in the P-group (384 N) were significantly (p=0.03) higher than in the R-group (295 N). For severely damaged teeth, use of composite resin cement resulted in higher loads to failure than use of other cements.

  5. Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites.

    PubMed

    Payá, J; Bonilla, M; Borrachero, M V; Monzó, J; Peris-Mora, E; Lalinde, L F

    2007-01-01

    New composite materials based on an alkali-resistant glass-fibre reinforced cement (AR-GRC) system are being developed by using fly ash (FA) produced at coal thermoelectric power plants, and fluid catalytic cracking catalyst residue (FC3R) from the petrol industry as cement replacement materials. These wastes are reactive from the pozzolanic viewpoint, and modify the nature and the microstructure of the cement matrix when a part of the Portland cement is replaced in the formulation of GRC. Several microstructural and mechanical aspects are being studied for AR-GRC systems. The behaviour of composites exposed to ageing shows that the pozzolanic activity of the ground FA added in high amounts and its mixture with the FC3R increase the flexural strength and no evidences of strength decay are observed. Additionally, the fibres due to the high alkalinity of the cementing matrix can be deteriorated. Fibres in the control (only Portland cement) and FC3R containing composites were attacked, whereas composites with FA and their mixture with FC3R show that the fibres have not been attacked, due to the pozzolanic activity of replacing materials that reduce the calcium hydroxide content in the cementing matrix. PMID:17512718

  6. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    PubMed

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-09-05

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens.

  7. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    SciTech Connect

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration products are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.

  8. EFFECT OF FLUORIDE-CONTAINING DESENSITIZING AGENTS ON THE BOND STRENGTH OF RESIN-BASED CEMENTS TO DENTIN

    PubMed Central

    Saraç, Duygu; Külünk, Safak; Saraç, Y. Sinasi; Karakas, Özlem

    2009-01-01

    Objective: The objective of this study was to evaluate the effect of desensitizing agents containing different amounts of fluoride on the shear bond strength of a dual polymerized resin cement and a resin-modified glass ionomer cement (RMGIC) to dentin. Material and Methods: One hundred human molars were mounted in acrylic resin blocks and prepared until the dentin surface was exposed. The specimens were treated with one of four desensitizing agents: Bifluorid 12, Fluoridin, Thermoline and PrepEze. The remaining 20 specimens served as untreated controls. All groups were further divided into 2 subgroups in which a dual polymerized resin cement (Bifix QM) or a resin-modified glass ionomer cement (AVANTO) was used. The shear bond strength (MPa) was measured using a universal testing machine at a 0.5 mm/min crosshead speed. The data were analyzed statistically with a 2-way ANOVA, Tukey HSD test and regression analysis (α=0.05). The effect of the desensitizing agents on the dentin surface was examined by scanning electron microscopy. Results: The fluoride-containing desensitizing agents affected the bond strength of the resin-based cements to dentin (p<0.001). PrepEze showed the highest bond strength values in all groups (p<0.001). Conclusion: Regression analysis showed a reverse relation between bond strength values of resin cements to dentin and the amount of fluoride in the desensitizing agent (p<0.05). PMID:19936532

  9. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  10. Crystallization in Ordered Polydisperse Polyolefin Diblock Copolymers

    SciTech Connect

    Li, Sheng; Register, Richard A.; Landes, Brian G.; Hustad, Phillip D.; Weinhold, Jeffrey D.

    2010-12-07

    The morphologies of polydisperse ethylene-octene diblock copolymers, synthesized via a novel coordinative chain transfer polymerization process, are examined using two-dimensional synchrotron small-angle and wide-angle X-ray scattering on flow-aligned specimens. The diblock copolymers comprise one amorphous block with high 1-octene content and one semicrystalline block with relatively low 1-octene content, and each block ideally exhibits the most-probable distribution. Near-symmetric diblocks with a sufficiently large octene differential between the amorphous and semicrystalline blocks show well-ordered lamellar domain structures with long periods exceeding 100 nm. Orientation of these domain structures persists through multiple melting/recrystallization cycles, reflecting a robust structure which self-assembles in the melt. The domain spacings are nearly 3-fold larger than those in near-monodisperse polyethylene block copolymers of similar molecular weights. Although the well-ordered lamellar domain structure established in the melt is preserved in the solid state, the crystallites are isotropic in orientation. These materials display crystallization kinetics consistent with a spreading growth habit, indicating that the lamellae do not confine or template the growing crystals. The exceptionally large domain spacings and isotropic crystal growth are attributed to interblock mixing resulting from the large polydispersity; short hard blocks dissolved in the soft-block-rich domains swell the domain spacing in the melt and allow hard block crystallization to proceed across the lamellar domain interfaces.

  11. Regulating block copolymer phases via selective homopolymers

    SciTech Connect

    Yang, Shuang E-mail: eqchen@pku.edu.cn; Lei, Zhen; Hu, Nan; Chen, Er-Qiang E-mail: eqchen@pku.edu.cn; Shi, An-Chang

    2015-03-28

    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composition of A-blocks is too small and the content of added C-homopolymers is large enough, where the SCFT predicts a narrow co-existence region between different ordered phases. Furthermore, it is found that the phase behavior of the system is insensitive to the molecular weight of C-homopolymer.

  12. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  13. Regulating block copolymer phases via selective homopolymers.

    PubMed

    Yang, Shuang; Lei, Zhen; Hu, Nan; Chen, Er-Qiang; Shi, An-Chang

    2015-03-28

    The phase behavior of strongly segregated AB diblock copolymer and selective C homopolymer blends is examined theoretically using a combination of strong stretching theory (SST) and self-consistent field theory (SCFT). The C-homopolymer is immiscible with the B-blocks but strongly attractive with the A-blocks. The effect of homopolymer content on the order-order phase transitions is analyzed. It is observed that, for AB diblock copolymers with majority A-blocks, the addition of the C-homopolymers results in lamellar to cylindrical to spherical phase transitions because of the A/C complexation. For diblock copolymers with minor A-blocks, adding C-homopolymers leads to transitions from spherical or cylindrical morphology with A-rich core to lamellae to inverted cylindrical and spherical morphologies with B-rich core. The results from analytical SST and numerical SCFT are in good agreement within most regions of the phase diagram. But the deviation becomes more obvious when the composition of A-blocks is too small and the content of added C-homopolymers is large enough, where the SCFT predicts a narrow co-existence region between different ordered phases. Furthermore, it is found that the phase behavior of the system is insensitive to the molecular weight of C-homopolymer. PMID:25833605

  14. Sulfur copolymers for infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Namnabat, S.; Gabriel, J. J.; Pyun, J.; Norwood, R. A.; Dereniak, E. L.; van der Laan, J.

    2014-06-01

    The development of organic polymers with low infrared absorption has been investigated as a possible alternative to inorganic metal oxide, semiconductor, or chalcogenide-based materials for a variety of optical devices and components, such as lenses, goggles, thermal imaging cameras and optical fibers. In principle, organic-based polymers are attractive for these applications because of their low weight, ease of processing, mechanical toughness, and facile chemical variation using commercially available precursors. Herein we report on the optical characterization of a new class of sulfur copolymers that are readily moldable, transparent above 500 nm, possess high refractive index (n > 1.8) and take advantage of the low infrared absorption of S-S bonds for potential use in the mid-infrared at 3-5 microns. These materials are largely made from elemental sulfur by an inverse vulcanization process; in the current study we focus on the properties of a chemically stable, branched copolymer of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r- DIB). Copolymers with elemental sulfur content ranging from 50% to 80% by weight were studied by UV-VIS spectroscopy, FTIR, and prism coupling for refractive index measurement. Clear correlation between material composition and the optical properties was established, confirming that the high polarizability of the sulfur atom leads to high refractive index while also maintaining low optical loss in the infrared.

  15. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  16. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials. PMID:25208609

  17. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  18. Structure and Properties of Block Copolymers of Polystyrene and Polybutadiene

    NASA Astrophysics Data System (ADS)

    Askadskii, Andrei A.; Andryushchenko, T. A.; Zubov, P. I.

    1984-08-01

    Recent studies of the structure and properties of block copolymers of polystyrene and polybutadiene are reviewed, with special emphasis on the effect of the structure and of the formation conditions for the samples on the interrelated physico-mechanical properties. Problems associated with the macro- and micro-layering of block copolymer solutions are examined in detail. Work on the analysis of block copolymer structures from measurements of sorption characteristics is reviewed in the light of an assumed relaxation mechanism for the sorption and swelling processes. The prospects of controlling the structure and properties of block copolymers are shown to be good. The bibliography contains 190 references.

  19. Synthetic Cell Elements from Block Copolymers. Dynamic Aspects

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2003-03-01

    Amphiphilic block copolymers can self-assemble in water into various stable morphologies which resemble key cell structures, notably filaments and membranes. Filamentous worms of copolymer, microns-long, will be introduced, and related dynamics of copolymer vesicle polymersomes will be detailed. Fluorescence visualization of single worms stretched under flow demonstrates their stability as well as a means to control flexibility. Polymersome membranes have been more thoroughly studied, especially copolymer molecular weight effects. We summarize results suggestive of a transition from Rouse-like behavior to entangled chains. Viewed together, the results ask the question: what physics are needed next to mimic cell activities such as crawling?

  20. Cytotoxicity of glass ionomer cements containing silver nanoparticles

    PubMed Central

    Magalhães, Ana-Paula-Rodrigues; Pires, Wanessa-Carvalho; Pereira, Flávia-Castro; Silveira-Lacerda, Elisângela-Paula; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Souza-Costa, Carlos-Alberto; Lopes, Lawrence-Gonzaga; Estrela, Carlos

    2015-01-01

    Background Some studies have investigated the possibility of incorporating silver nanoparticles (NAg) into dental materials to improve their antibacterial properties. However, the potential toxic effect of this material on pulp cells should be investigated in order to avoid additional damage to the pulp tissue. This study evaluated the cytotoxicity of conventional and resin-modified glass ionomer cements (GIC) with and without addition of NAg. Material and Methods NAg were added to the materials at two different concentrations by weight: 0.1% and 0.2%. Specimens with standardized dimensions were prepared, immersed in 400 µL of culture medium and incubated at 37°C and 5% CO2 for 48 h to prepare GIC liquid extracts, which were then incubated in contact with cells for 48 h. Culture medium and 0.78% NAg solution were used as negative and positive controls, respectively. Cell viability was determined by MTT and Trypan Blue assays. ANOVA and the Tukey test (α=0.05) were used for statistical analyses. Results Both tests revealed a significant decrease in cell viability in all groups of resin modified cements (p<0.001). There were no statistically significant differences between groups with and without NAg (p>0.05). The differences in cell viability between any group of conventional GIC and the negative control were not statistically significant (p>0.05). Conclusions NAg did not affect the cytotoxicity of the GIC under evaluation. Key words:Glass ionomer cements, totoxicity, cell culture techniques, nanotechnology, metal nanoparticles. PMID:26644839

  1. Surface modification of titanium substrate with a novel covalently-bound copolymer thin film for improving its platelet compatibility.

    PubMed

    Shen, Ching-Hsiung; Cho, Yu-Jen; Lin, Yi-Ching; Chien, Li-Chin; Lee, Tzer-Min; Chuang, Wen-Hsi; Lin, Jui-Che

    2015-02-01

    Despite of its widely uses in various clinical applications, the titanium-based material still faces different challenges, such as hemocompatibility and anti-biofouling characteristics required in various situations. The objective of this investigation was to develop a novel surface modification strategy for titanium-based material to improve the platelet compatibility that is important in rigorous blood-contacting cardiovascular applications. In this work, a series of copolymers, which composed of novel 6-acryloyloxy hexyl phosphonic acid (AcrHPA) and sulfobetaine methacrylate (SBMA) was synthesized. The phosphonic acid group in these copolymers can impart covalent binding to the titanium substrate while the zwitterionic sulfobetaine functionality is considered being able to reduce the platelet adhesion and activation on the modified titanium substrate. NMR analyses suggested that copolymerization reaction is likely not an ideal statistical reaction but to add the monomers in a random order. Studies have shown that the composition of the monomers affected the surface characteristics and platelet compatibility of these covalent-bound AcrHPA-SBMA copolymers on titanium substrate. Contact angle analysis has shown the addition of SBMA can increase surface hydrophilicity of the spun-coated copolymers. In addition, AFM analyses have revealed that the surface roughness of the spun-coated copolymer layer were varied with the ratio of AcrHPA and SBMA. The most platelet compatible surface was noted on the one modified by the highest amount of SBMA added (i.e. 70 mol%) in copolymerization. In summary, the surface modification scheme presented here would be of potential as well as manufacturing process applicable for future development in blood-contacting titanium-based biomedical devices. PMID:25631276

  2. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  3. A note on cement in asteroids

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  4. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1)...

  5. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental cement. 872.3275 Section 872.3275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1)...

  6. Tires fuel oil field cement manufacturing

    SciTech Connect

    Caveny, B.; Ashford, D.; Garcia, J.G.; Hammack, R.

    1998-08-31

    In a new process, waste automobile tires added to the fuel mix of gas, coal, and coke help fire kilns to produce API-quality oil field cement. Capital Cement uses this process in its cement-manufacturing plant in San Antonio, in which it also produces construction cement. The tires provide a lower-cost fuel and boost the temperature at a critical stage in the kiln burn process. Also, steel-belted tires add iron content to the mix. According to lab results, tire-burned cement slurries will perform the same as conventionally burned cement slurries. Actual field applications have proven that cement produced by burning tires performs no different than conventionally produced slurries. Capital`s plant uses both dry and wet processes, with separate kilns running both processes at the same time. Cement clinker is partially fired by waste tires in both kiln processes. The tires represent 12% of the fuel consumed by the plant, a number that is expected to increase. Capital burns about 200 tires/hr, or about 1.6 million tires/year.

  7. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    ERIC Educational Resources Information Center

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  8. Triblock siloxane copolymer surfactant: template for spherical mesoporous silica with a hexagonal pore ordering.

    PubMed

    Stébé, M J; Emo, M; Forny-Le Follotec, A; Metlas-Komunjer, L; Pezron, I; Blin, J L

    2013-02-01

    Ordered mesoporous silica materials with a spherical morphology have been prepared for the first time through the cooperative templating mechanism (CTM) by using a silicone triblock copolymer as template. The behavior of the pure siloxane copolymer amphiphile in water was first investigated. A direct micellar phase (L(1)) and a hexagonal (H(1)) liquid crystal were found. The determination of the structural parameters by SAXS measurements leads us to conclude that in the hexagonal liquid crystal phase a part of the ethylene oxide group is not hydrated as observed for the micelles. Mesoporous materials were then synthesized from the cooperative templating mechanism. The recovered materials were characterized by SAXS measurements, nitrogen adsorption-desorption analysis, and transmission and scanning electron microscopy. The results clearly evidence that one can control the morphology and the nanostructuring of the resulting material by modifying the synthesis parameters. Actually, highly ordered mesoporous materials with a spherical morphology have been obtained with a siloxane copolymer/tetramethoxysilane molar ratio of 0.10 after hydrothermal treatment at 100 °C. Our study also supports the fact that the interactions between micelles and the hydrolyzed precursor are one of the key parameters governing the formation of ordered mesostructures through the cooperative templating mechanism. Indeed, we have demonstrated that when the interactions between micelles are important, only wormhole-like structures are recovered.

  9. Solution assembly behaviors of 3-hexylthiophene polymer based rod-coil graft copolymer

    NASA Astrophysics Data System (ADS)

    Kim, Youngkwon; Kim, Jin-Sung; Kim, Hyeong Jun; Kim, Bumjoon

    Solution assembly of conjugated polymer based block copolymers (BCPs) is an attractive approach for achieving conducting nanowires (NWs) with nanometer-scale cross-sectional dimensions. In particular, conjugated block offers one-dimensional self-growth of crystalline NWs, and secondary block gives rise to stable dispersion of NWs and additional tuning parameter for the structures of NWs. Herein, we developed a series of poly(3-hexylthiophene)-graft-poly(2-vinylpyridine) (P3HT-g-P2VP) rod-coil copolymers with systematically controlled crystallinity by modifying both grafting density and molecular weight (Mn) of coil block, and their solution assembly behaviors were carefully examined. As increasing the volume fraction and grafting density of the secondary blocks, melting temperatures, crystallization temperatures, and the crystallinity were gradually decreased by hindering rod-rod interaction between P3HT backbones, resulting in the formation of short NWs. Furthermore, the length of NMs was relatively shorter for the densely grafted copolymer despite same volume fraction of secondary block. These results suggested that controlling Mn and the number of branched coil block was critical to regulate the crystalline properties and new approach for determining the NWs growth.

  10. Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment.

    PubMed

    Shao, Wenya; Liu, Jianxi; Yang, Kaiguang; Liang, Yu; Weng, Yejing; Li, Senwu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-09-01

    Hydrophilic interaction chromatography (HILIC) has attracted increasing attention in recent years due to its efficient application in the separation of polar compounds and the enrichment of glycopeptides. However, HILIC materials are still of weak hydrophilicity and thereby present weak retention and selectivity. In this work, branched copolymer modified hydrophilic material Sil@Poly(THMA-co-MBAAm), with high hydrophilicity and unique "claw-like" polyhydric groups, were prepared by "grafting from" thiol-ene click reaction. Due to the abundant functional groups provided by branched copolymer, the material showed excellent retention for nucleosides, necleobases, acidic compounds, sugars and peptides. Furthermore, Sil@Poly(THMA-co-MBAAm) was also applied for the N-glycosylation sites profiling towards the digests of the mouse brain, and 1997N-glycosylated peptides were identified, corresponding to 686 glycoprotein groups. Due to the assisted hydrogen-bond interaction, the selectivity for glycopeptide enrichment in the real sample reached 94.6%, which was the highest as far as we know. All these results indicated that such hydrogen-bond interaction assisted branched copolymer HILIC material possessed great potential for the separation and large scale glycoproteomics analysis. PMID:27343616

  11. "Hairy" Nanoparticles in Block Copolymers and Homopolymers: Modeling using Hybrid Self-Consistent Field Theory

    NASA Astrophysics Data System (ADS)

    Ginzburg, Valeriy

    2011-03-01

    Today, dispersed nanoparticles play important role in various applications (toughened plastics, healthcare, personal care, etc.) Mesoscale simulations and theory are important in understanding what governs the morphology of nanoparticles under various conditions. In particular, for nanoparticle/block copolymer mixtures, two popular simulation methods are Self-Consistent Field/Density Functional Theory (SCF-DFT) (Thompson, Ginzburg, Matsen, and Balazs, Science 292, 2469 [2001]), and Hybrid Self-Consistent Field Theory (HSCFT) (Sides et al., Phys Rev Lett 96, 250601 [2006]). The two methods are shown to be very similar in their assumptions and end-results; the choice of the method to be used can depend on the specific problem. Here, we use modified HSCFT to explicitly account for the complicated role of short-chain ligands grafted onto nanoparticles to promote dispersion. In particular, we discuss the phase diagrams of such ``hairy'' nanoparticles in diblock copolymers as function of diblock composition, nanoparticle volume fraction, and ligand length. Depending on the particle size and ligand coverage, particles could segregate into favorable domain, stay close to the interface, or phase-separate from the block copolymer altogether. We also consider the dispersion of ``hairy'' nanoparticles in a homopolymer and analyze the morphologies of particle clusters as function of ligand length. The results could have interesting implications for the design of new nanocomposite materials.

  12. Comparative Evaluation of Shear Bond Strength of Luting Cements to Different Core Buildup Materials in Lactic Acid Buffer Solution

    PubMed Central

    Patil, Siddharam M.; Desai, Raviraj G.; Arabbi, Kashinath C.; Prakash, Ved

    2015-01-01

    Aim and Objectives The core buildup material is used to restore badly broken down tooth to provide better retention for fixed restorations. The shear bond strength of a luting agent to core buildup is one of the crucial factors in the success of the cast restoration. The aim of this invitro study was to evaluate and compare the shear bond strength of luting cements with different core buildup materials in lactic acid buffer solution. Materials and Methods Two luting cements {Traditional Glass Ionomer luting cement (GIC) and Resin Modified Glass Ionomer luting cement (RMGIC)} and five core buildup materials {Silver Amalgam, Glass ionomer (GI), Glass Ionomer Silver Reinforced (GI Silver reinforced), Composite Resin and Resin Modified Glass Ionomer(RMGIC)} were selected for this study. Total 100 specimens were prepared with 20 specimens for each core buildup material using a stainless steel split metal die. Out of these 20 specimens, 10 specimens were bonded with each luting cement. All the bonded specimens were stored at 370c in a 0.01M lactic acid buffer solution at a pH of 4 for 7days. Shear bond strength was determined using a Universal Testing Machine at a cross head speed of 0.5mm/min. The peak load at fracture was recorded and shear bond strength was calculated. The data was statistically analysed using Two-way ANOVA followed by HOLM-SIDAK method for pair wise comparison at significance level of p<0.05. Results Two-Way ANOVA showed significant differences in bond strength of the luting cements (p<0.05) and core materials (p<0.05) and the interactions (p<0.05). Pairwise comparison of luting cements by HOLM-SIDAK test, showed that the RMGIC luting cement had higher shear bond strength values than Traditional GIC luting cement for all the core buildup materials. RMGIC core material showed higher bond strength values followed by Composite resin, GI silver reinforced, GI and silver amalgam core materials for both the luting agents. Conclusion Shear bond strength of

  13. Long Term Results of Liner Polyethylene Cementation Technique in Revision for Peri-acetabular Osteolysis.

    PubMed

    Rivkin, Gurion; Kandel, Leonid; Qutteineh, Bilal; Liebergall, Meir; Mattan, Yoav

    2015-06-01

    Patients with peri-acetabular osteolysis around a well fixed cementless acetabular component may be treated with liner exchange. When the locking mechanism is unreliable or unavailable, cementing the liner into the fixed acetabular component is a feasible option. The purpose of this study was to evaluate the clinical and radiographic long term results of this technique. Forty hip revisions with liner cementation in 37 patients were performed. The minimum follow up was 10 years. Modified Harris Hip Score and recent x rays were reviewed. Four hips were re-revised. Two patients were diagnosed with exacerbation of osteolysis but refused revision. Dislocation rate was relatively high (16%). Liner cementation technique in revision hip surgery is useful in patients with a well fixed metal backed acetabular component.

  14. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect

    Sugama, T.; Pyatina, T.

    2014-11-01

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  15. Inorganic Corrosion-Inhibitive Pigments for High-Temperature Alkali-activated Well Casing Foam Cement

    SciTech Connect

    Sugama, T.; Pyatina, T.

    2014-11-14

    This study evaluates inorganic pigments for improving carbon steel (CS) brine-corrosion protection by the sodium metasilicate-activated calcium aluminate cement/Fly Ash blend at 300°C. Calcium borosilicate (CBS) and zinc phosphate, significantly improved CS corrosion-protection by decreasing cement’s permeability for corrosive ions and inhibiting anodic corrosion. An amorphous Na2O-Al2O3-SiO2-H2O phase tightly attached to CS surface formed at 300oC in CBS-modified cement pore solution. The corrosion rate of the CS covered with this phase was nearly 4-fold lower than in the case of nonmodified cement pore solution where the major phase formed on the surface of CS was crystalline analcime.

  16. Rheological Characterization of Oil Cement Suspensions

    NASA Astrophysics Data System (ADS)

    Abderrahmane, Mellak; Moh-Amokrane, Aitouche

    2015-04-01

    This study is a contribution to the study of the rheological behavior of cement suspensions. An oil well is drilled, cased, cemented and set completion. The well drilling is done in several phases then at various diameters to isolate the following problems like land fragile subsidence and poorly consolidated aquifer formations, loss of the movement in the porous and permeable formations. Therefore, it would go down a casing and cementing to work safely. The materials studied were chosen to satisfy the requirements and the problems encountered in real applications in the oil field (casing cementing wells). So it was used an oil hydraulic binder "G". This systematic study of rheological properties of cement Class "G" standardized API (American Petroleum Institute) deal with a formulation which is compatible with the surrounding environment taking account an optimal efficiency.

  17. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  18. Evaluation of products recovered from scrap tires for use as asphalt modifiers

    SciTech Connect

    McKay, J.

    1992-05-01

    Western Research Institute performed rheological tests and water sensitivity tests on asphalt cements that had been modified with carbonous residues obtained from the pyrolysis of scrap tires and waste motor oil. These tests are part of an ongoing program at the University of Wyoming Chemical Engineering Department to evaluate, as asphalt additives, solid carbonous products recovered from the scrap tire and waste motor oil pyrolysis experiments conducted at the University. The tests showed that carbonous residues increased the viscosity and decreased the elasticity of AC-10 and AC-20 asphalts. The tests also indicatedthat asphalt cements modified with carbonous residues were less sensitive to water damage and age embrittlement than unmodified asphalt cements.

  19. Nanoclay addition to a conventional glass ionomer cements: Influence on physical properties

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective: The objective of the present study is to investigate the reinforcement effect of polymer-grade montmorillonite (PGN nanoclay) on physical properties of glass ionomer cement (GIC). Materials and Methods: The PGN nanoclay was dispersed in the liquid portion of GIC (HiFi, Advanced Healthcare, Kent, UK) at 1%, 2% and 4% (w/w). Fourier-transform infrared (FTIR) spectroscopy was used to quantify the polymer liquid of GICs after dispersion of nanoclay. The molecular weight (Mw) of HiFi liquid was determined by gel permeation chromatography. The compressive strength (CS), diametral-tensile strength, flexural strength (FS) and flexural modulus (Ef) of cements (n = 20) were measured after storage for 1 day, 1 week and 1 month. Fractured surface was analyzed by scanning electron microscopy. The working and setting time (WT and ST) of cements was measured by a modified Wilson's rheometer. Results: The FTIR results showed a new peak at 1041 cm−1 which increased in intensity with an increase in the nanoclay content and was related to the Si-O stretching mode in PGN nanoclay. The Mw of poly (acrylic acid) used to form cement was in the range of 53,000 g/mol. The nanoclay reinforced GICs containing <2% nanoclays exhibited higher CS and FS. The Ef cement with 1% nanoclays was significantly higher. The WT and ST of 1% nanoclay reinforced cement were similar to the control cement but were reduced with 2% and 4% nanoclay addition. Conclusion: The dispersion of nanoclays in GICs was achieved, and GIC containing 2 wt% nanoclay is a promising restorative materials with improved physical properties. PMID:25512724

  20. Cements with low Clinker Content

    NASA Astrophysics Data System (ADS)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (<30%) of Portland clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.