Sample records for copolymer phase separation

  1. Separation of Poly(styrene-block-t-butyl methacrylate) Copolymers by Various Liquid Chromatography Techniques

    PubMed Central

    Šmigovec Ljubič, Tina; Pahovnik, David; Žigon, Majda; Žagar, Ema

    2012-01-01

    The separation of a mixture of three poly(styrene-block-t-butyl methacrylate) copolymers (PS-b-PtBMA), consisting of polystyrene (PS) blocks of similar length and t-butyl methacrylate (PtBMA) blocks of different lengths, was performed using various chromatographic techniques, that is, a gradient liquid chromatography on reversed-phase (C18 and C8) and normal-phase columns, a liquid chromatography under critical conditions for polystyrene as well as a fully automated two-dimensional liquid chromatography that separates block copolymers by chemical composition in the first dimension and by molar mass in the second dimension. The results show that a partial separation of the mixture of PS-b-PtBMA copolymers can be achieved only by gradient liquid chromatography on reversed-phase columns. The coelution of the two block copolymers is ascribed to a much shorter PtBMA block length, compared to the PS block, as well as a small difference in the length of the PtBMA block in two of these copolymers, which was confirmed by SEC-MALS and NMR spectroscopy. PMID:22489207

  2. A Laterally-Mobile Mixed Polymer/Polyelectrolyte Brush Undergoes a Macroscopic Phase Separation

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Park, Hae-Woong; Tsouris, Vasilios; Choi, Je; Mustafa, Rafid; Lim, Yunho; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2013-03-01

    We studied mixed PEO and PDMAEMA brushes. The question we attempted to answer was: When the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Two different model mixed PEO/PDMAEMA brush systems were prepared: a mobile mixed brush by spreading a mixture of two diblock copolymers, PEO-PnBA and PDMAEMA-PnBA, onto the air-water interface, and an inseparable mixed brush using a PEO-PnBA-PDMAEMA triblock copolymer having respective brush molecular weights matched to those of the diblock copolymers. These two systems were investigated by surface pressure-area isotherm, X-ray reflectivity and AFM imaging measurements. The results suggest that the mobile mixed brush undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the inseparable system is only microscopically phase separated under comparable brush density conditions. We also conducted an SCF analysis of the phase behavior of the mixed brush system. This analysis further supported the experimental findings. The macroscopic phase separation observed in the mobile system is in contrast to the microphase separation behavior commonly observed in two-dimensional laterally-mobile small molecule mixtures.

  3. Facile preparation of an alternating copolymer-based high molecular shape-selective organic phase for reversed-phase liquid chromatography.

    PubMed

    Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka

    2018-06-22

    The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion chromatography (SEC) before grafting onto silica surface. Moreover, both of the monomers were commercially available. Therefore, the technique of preparation was very facile and better separation was achieved with the Sil-alt-T phase compared to the ODS, C 30 and other previously reported alternating copolymer-based columns. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Block Copolymers: Synthesis and Applications in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Lou, Qin

    This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic ring-opening crosslinking and can act as a negative-tone photoresist. The PGMA-b-PS thin films were also studied for phase separation with ˜25 nm patterns using transmission electron microscopy (TEM). Poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer thin films are shown to form perpendicular cylinder phase separated structures, and these may be used to template the formation of ordered titania nanostructures with sub-50 nm diameters on either silicon or indium tin oxide (ITO) substrates. A study of the mechanism of TiO2 formation within the P4VP cylinder phase was developed and tested. It was found that the titania nanostructure morphology is affected by pH and deposition temperatures, and successful deposition required the cross-linking of the P4VP phase in order to obtain individual nanostructures.

  5. Bicomponent Block Copolymers Derived from One or More Random Copolymers as an Alternative Route to Controllable Phase Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.

    Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less

  6. Fluids Density Functional Theory of Salt-Doped Block Copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Hall, Lisa M.

    Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.

  7. Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation

    PubMed Central

    Yoo, Seungmin; Kim, Jung-Hwan; Shin, Myoungsoo; Park, Hyungmin; Kim, Jeong-Hoon; Lee, Sang-Young; Park, Soojin

    2015-01-01

    The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. PMID:26601212

  8. Chimeric Plastics : a new class of thermoplastic

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Mark

    A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.

  9. Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less

  10. MesoDyn simulation study on the phase morphologies of Miktoarm PEO-b-PMMA copolymer doped by nanoparticles

    NASA Astrophysics Data System (ADS)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2013-03-01

    The compatibility of six groups of 12 miktoarm poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers is studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depend on both the architectures of the block copolymers and the simulation temperature, while the tendency to change of the order parameters at low temperature, such as 270 and 298 K, is nearly the same. However, the values of order parameters of the copolymer in the same group are the same at high temperature, i.e. 400 K. Obviously, temperature has a more obvious effect on long and PEO-rich chains. A study of plain copolymers doped with nanoparticles shows that the microscopic phase is influenced by not only the properties of the nanoparticles, such as the size, number and density, but also the composition and architecture of copolymers. Increasing the size and the number of the nanoparticles used as a dopant plays the most significant role on determining the phase morphologies of the copolymers at lower and higher temperature, respectively. In paricular, the 23141 and 23241-type copolymers, which are both of PEO-rich composition, presents microscopic phase separation as perforated lamallae phase morphologies at 400 K, alternated with PEO and PMMA components.

  11. Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.

  12. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM.

    PubMed

    Maity, Sudhangshu; Jana, Tushar

    2014-05-14

    A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.

  13. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.

    PubMed

    Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M

    2016-09-23

    Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Inducing Order from Disordered Copolymers: On Demand Generation of Triblock Morphologies Including Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tureau, Maëva S.; Kuan, Wei-Fan; Rong, Lixia

    Disordered block copolymers are generally impractical in nanopatterning applications due to their inability to self-assemble into well-defined nanostructures. However, inducing order in low molecular weight disordered systems permits the design of periodic structures with smaller characteristic sizes. Here, we have induced nanoscale phase separation from disordered triblock copolymer melts to form well-ordered lamellae, hexagonally packed cylinders, and a triply periodic gyroid network structure, using a copolymer/homopolymer blending approach, which incorporates constituent homopolymers into selective block domains. This versatile blending approach allows one to precisely target multiple nanostructures from a single disordered material and can be applied to a wide varietymore » of triblock copolymer systems for nanotemplating and nanoscale separation applications requiring nanoscale feature sizes and/or high areal feature densities.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora, E-mail: aurora.nogales@csic.es

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chainmore » segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.« less

  16. Hemicellulose block copolymers made from woods for wide-range directed self-assembly lithography enabling wider range of applicable patterning size

    NASA Astrophysics Data System (ADS)

    Morita, Kazuyo; Yamamoto, Kimiko

    2017-03-01

    Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.

  17. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.

    PubMed

    Ladner, Y; Cretier, G; Faure, K

    2015-01-01

    Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

  18. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  19. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  20. Extremely asymmetric phase diagram of homopolymer-monotethered nanoparticles: Competition between chain conformational entropy and particle steric interaction.

    PubMed

    Zhang, Tiancai; Fu, Chao; Yang, Yingzi; Qiu, Feng

    2017-02-07

    The phase behaviors of homopolymer-monotethered nanoparticles (HMNs) in melt are investigated via a theoretical method combining self-consistent field theory for polymers and density functional theory for hard spheres. An extremely asymmetric phase diagram is observed: (i) microphases are only possible for the volume fraction of the tethered polymer f A > 0.35; (ii) in addition to lamellar phase, the system can only self-assemble into various morphologies with a polymer-rich matrix, including gyroid phase, cylindrical phase, and spherical phase. In the frame of this theory, the critical point for HMNs' microphase separation is significantly lower than that of linear diblock copolymers. Furthermore, the characteristic length of microphase-separated structures of HMNs is much smaller than that of linear diblock copolymers with the same molecular weight. Our calculation results on morphologies and characteristic length agree well with recent simulations and experimental observations.

  1. Self-Consistent Field Theory for the Design of Thermoplastic Elastomers from Miktoarm Block Copolymer - Homopolymer Blends

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew Lawrence

    We have used self-consistent field theory to study the morphological characteristics of blends of miktoarm block copolymers and homopolymers. More specifically, we have studied the effects of segregation strength, miktoarm block copolymer composition, and homopolymer size and volume fraction on the phase diagrams of these systems. A15 domains with discrete A-monomer spherical domains were found to be stable with A-monomer loading fractions of at least as high as 52%. Hexagonally-packed cylindrical domains were found to be stable at A-monomer loadings of at least as high as 72%. These findings represent a significant improvement from the loading fractions of 43% and 60% reported by Lynd et al. for spherical and cylindrical domains in neat miktoarm block copolymers, respectively. It is also quite possible that even greater loading fractions are achievable in systems too large for our simulations. These results predict exciting new materials for next-generation thermoplastic elastomers, since the ideal TPE has a large loading of A monomers in discrete, crystalline or glassy domains, surrounded by a continuous matrix of elastomeric B domains. Additionally, we have performed SCFT simulations modelled after experimental blends of polystyrene and polyisoprene-based miktoarm block copolymers and homopolymers. Certain experimental samples showed fascinating new "bricks and mortar" phases and swollen asymmetric lamellar phases. In both cases, the A domains are highly swollen with homopolymer, forcing the miktoarm block copolymer to segregate near the interface and adopt the role of a surfactant. The resulting structures maintain separate A and B domains, but lack long-range order. While it is not possible to study these mesophases using SCFT, since they lack long-range order and therefore well-defined symmetry, our SCFT results show the onset of macrophase separation at similar homopolymer loadings, for both the bricks and mortar phases and the highly swollen lamellae. This supports the theory that both phases are fluctuation-induced mesophases, similar to microemulsions in character, that lie in between the typical ordered structures and full macrophase separation.

  2. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    DOE PAGES

    Misichronis, Konstantinos; Chen, Jihua; Imel, Adam; ...

    2017-03-15

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less

  3. Energy Storage and Dissipation in Random Copolymers during Biaxial Loading

    NASA Astrophysics Data System (ADS)

    Cho, Hansohl; Boyce, Mary

    2012-02-01

    Random copolymers composed of hard and soft segments in a glassy and rubbery state at the ambient conditions exhibit phase-separated morphologies which can be tailored to provide hybrid mechanical behaviors of the constituents. Here, phase-separated copolymers with hard and soft contents which form co-continuous structures are explored through experiments and modeling. The mechanics of the highly dissipative yet resilient behavior of an exemplar polyurea are studied under biaxial loading. The hard phase governs the initially stiff response followed by a highly dissipative viscoplasticity where dissipation arises from viscous relaxation as well as structural breakdown in the network structure that still provides energy storage resulting in the shape recovery. The soft phase provides additional energy storage that drives the resilience in high strain rate events. Biaxial experiments reveal the anisotropy and loading history dependence of energy storage and dissipation, validating the three-dimensional predictive capabilities of the microstructurally-based constitutive model. The combination of a highly dissipative and resilient behavior provides a versatile material for a myriad of applications ranging from self-healing microcapsules to ballistic protective coatings.

  4. Effects of the glycerophosphate-polylactic copolymer formation on electrospun fibers

    NASA Astrophysics Data System (ADS)

    Shen, Wen; Zhang, Guanghua; Li, YaLi; Fan, Guodong

    2018-06-01

    Poly-lactic (PLA) porous fibers are widely used in tissue engineering scaffolds and many other fields. Non-solvent induced phase separation is one of the best way for preparation of porous fiber. It is difficult to obtain the PLA electrospun porous fibers by phase separation. In this paper, glycerophosphate-polylactic copolymer (GP-PLA) are synthesized with sodium glyceryl phosphate and L-lactide to produce porous fibers. Furthermore, the Gel permeation chromatography (GPC), FT-IR and 1H-NMR are applied for characterizing the obtained copolymers. Thermogravimetric (TG) measurements indicate that the thermal stability of GP-PLA is lower than that of linear PLA. Under 30% humidity, porous GP-PLA fibers are obtained by electrospinning method, the scanning electron microscopy (SEM) refers that through the modification of the molecular structure, GP-PLA fibers are more porous under the same condition. The water contact angle is increased coming with the increase of GP contents. Hydrophilic porous GP-PLA fibers are obtained via solvent phase separation. The relationship between hydrophilicity and surface morphology of materials is further explained by Atomic Force Microscope (AFM). GP-PLA has a potential application in the field of scaffold for tissue engineering.

  5. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  6. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  7. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  8. Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  9. Gel phase formation in dilute triblock copolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  10. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    PubMed

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Preparation and evaluation of diblock copolymer-grafted silica by sequential surface initiated-atom transfer radical polymerization for reverse-phase/ion-exchange mixed-mode chromatography.

    PubMed

    Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao

    2017-12-01

    A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Two-dimensional phase separated structures of block copolymers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Ribbe, Alexander

    The fundamental, yet unsolved question in block copolymer (BCP) thin films is the self-organization process of BCPs at the solid-polymer melt interface. We here focus on the self-organization processes of cylinder-forming polystyrene-block-poly (4-vinylpyridine) diblock copolymer and lamellar-forming poly (styrene-block-butadiene-block-styrene) triblock copolymer on Si substrates as model systems. In order to reveal the buried interfacial structures, the following experimental protocols were utilized: the BCP monolayer films were annealed under vacuum at T>Tg of the blocks (to equilibrate the melts); vitrification of the annealed BCP films via rapid quench to room temperature; subsequent intensive solvent leaching (to remove unadsorbed chains) with chloroform, a non-selective good solvent for the blocks. The strongly bound BCP layers were then characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle X-ray scattering, and X-ray reflectivity. The results showed that both blocks lie flat on the substrate, forming the two-dimensional, randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. Acknowledgement of financial support from NSF Grant (CMMI -1332499).

  14. Diblock copolymers of polystyrene- b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    DOE PAGES

    Misichronis, Konstantinos; Chen, Jihua; Kahk, Jong K.; ...

    2016-03-29

    Here, the synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS- b-PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ Φ PS ≤ 0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)–shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strongmore » dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS- b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1564–1572« less

  15. Schizophrenic Diblock-Copolymer-Functionalized Nanoparticles as Temperature-Responsive Pickering Emulsifiers.

    PubMed

    Ranka, Mikhil; Katepalli, Hari; Blankschtein, Daniel; Hatton, T Alan

    2017-11-21

    Stimuli-responsive pickering emulsions have received considerable attention in recent years, and the utilization of temperature as a stimulus has been of particular interest. Previous efforts have led to responsive systems that enable the formation of stable emulsions at room temperature, which can subsequently be triggered to destabilize with an increase in temperature. The development of a thermoresponsive system that exhibits the opposite response, however, i.e., one that can be triggered to form stable emulsions at elevated temperatures and subsequently be induced to phase separate at lower temperatures, has so far been lacking. Here, we describe a system that accomplishes this goal by leveraging a schizophrenic diblock copolymer that exhibits both an upper and a lower critical solution temperature. The diblock copolymer was conjugated to 20 nm silica nanoparticles, which were subsequently demonstrated to stabilize O/W emulsions at 65 °C and trigger phase separation upon cooling to 25 °C. The effects of particle concentration, electrolyte concentration, and polymer architecture were investigated, and facile control of emulsion stability was demonstrated for multiple oil types. Our approach is likely to be broadly adaptable to other schizophrenic diblock copolymers and find significant utility in applications such as enhanced oil recovery and liquid-phase heterogeneous catalysis, where stable emulsions are desired only at elevated temperatures.

  16. Monte Carlo studies on the interfacial properties and interfacial structures of ternary symmetric blends with gradient copolymers.

    PubMed

    Sun, Dachuan; Guo, Hongxia

    2012-08-09

    Using Monte Carlo simulation methods, the effects of the comonomer sequence distribution on the interfacial properties (including interfacial tension, interfacial thickness, saturated interfacial area per copolymer, and bending modulus) and interfacial structures (including chain conformations and comonomer distributions of the simulated copolymers at the interfaces) of a ternary symmetric blend containing two immiscible homopolymers and one gradient copolymer are investigated. We find that copolymers with a larger composition gradient width have a broader comonomer distribution along the interface normal, and hence more pronouncedly enlarge the interfacial thickness and reduce the interfacial tension. Furthermore, the counteraction effect, which arises from the tendency of heterogeneous segments in gradient copolymers to phase separate and enter their miscible phases to reduce the local enthalpy, decreases the stretching of copolymers along the interface normal direction. As a result, copolymers with a larger width of gradient composition can occupy a larger interfacial area and form softer monolayers at saturation and are more efficient in facilitating the formation of bicontinuous microemulsions. Additionally, chain length ratio, segregation strength, and interactions between homopolymers and copolymers can alter the interfacial character of gradient copolymers. There exists a strong coupling between the comonomer sequence distribution, chain conformation, and interfacial properties. Especially, bending modulus is mainly determined by the complicated interplay of interfacial copolymer density and interfacial chain conformation.

  17. Macroscopic lateral heterogeneity observed in a laterally mobile immiscible mixed polyelectrolyte-neutral polymer brush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hoyoung; Tsouris, Vasilios; Lim, Yunho

    We studied mixed poly(ethylene oxide) (PEO) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The question we attempted to answer was: when the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Three different model mixed PEO/PDMAEMA brush systems were prepared: (1) a laterally mobile mixed brush by spreading onto the air–water interface a mixture of poly(ethylene oxide)–poly(n-butyl acrylate) (PEO–PnBA) and poly(2-(dimethylamino)ethyl methacrylate)–poly(n-butyl acrylate) (PDMAEMA–PnBA) diblock copolymers (the specific diblock copolymers used will be denoted as PEO 113–PnBA 100 and PDMAEMA 118–PnBA 100, where the subscripts refer to the number-average degreesmore » of polymerization of the individual blocks), (2) a mobility-restricted (inseparable) version of the above mixed brush prepared using a PEO–PnBA–PDMAEMA triblock copolymer (denoted as PEO 113–PnBA 89–PDMAEMA 120) having respective brush molecular weights matched with those of the diblock copolymers, and (3) a different laterally mobile mixed PEO and PDMAEMA brush prepared from a PEO 113–PnBA 100 and PDMAEMA 200–PnBA 103 diblock copolymer combination, which represents a further more height-mismatched mixed brush situation than described in (1). These three mixed brush systems were investigated by surface pressure–area isotherm and X-ray (XR) reflectivity measurements. These experimental data were analyzed within the theoretical framework of a continuum self-consistent field (SCF) polymer brush model. The combined experimental and theoretical results suggest that the mobile mixed brush derived using the PEO 113–PnBA 100 and PDMAEMA 118–PnBA 100 combination (i.e., mixed brush System #1) undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the more height-mismatched system (System #3) is only microscopically phase separated under comparable brush density conditions even though the lateral mobility of the grafted chains is unrestricted. The macroscopic phase separation observed in the laterally mobile mixed brush system is in contrast with the microphase separation behavior commonly observed in two-dimensional laterally mobile charged small molecule mixtures. Further study is needed to determine the detailed morphologies of the macro- and microphase-separated mixed PEO/PDMAEMA brushes.« less

  18. Phase Behavior of Binary Blends of High Molecular Weight Diblock Copolymers with a Low Molecular Weight Triblock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickiewicz, Rafal A.; Ntoukas, Eleftherios; Avgeropoulos, Apostolos

    2009-08-26

    Binary blends of four different high molecular weight poly(styrene-b-isoprene) (SI) diblock copolymers with a lower molecular weight poly(styrene-b-isoprene-b-styrene) (SIS) triblock copolymer were prepared, and their morphology was characterized by transmission electron microscopy and ultra-small-angle X-ray scattering. All the neat block copolymers have nearly symmetric composition and exhibit the lamellar morphology. The SI diblock copolymers had number-average molecular weights, Mn, in the range 4.4 x 10{sup 5}--1.3 x 10{sup 6} g/mol and volume fractions of poly(styrene), {Phi}{sub PS}, in the range 0.43--0.49, and the SIS triblock had a molecular weight of Mn 6.2 x 10{sup 4} g/mol with {Phi}{sub PS} =more » 0.41. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, {chi}N, in the range 470--1410. A morphological phase diagram in the parameter space of molecular weight ratio (R = M{sub n}{sup diblock}/1/2M{sub n}{sup triblock}) and blend composition was constructed, with R values in the range between 14 and 43, which are higher than previously reported. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase-separated domains for weight fractions of SI, w{sub SI} < 0.9, implying virtually no solubility of the much higher molecular weight diblocks in the lower molecular weight triblock. For certain blend compositions, above R 30, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed.« less

  19. Microphase separation of comb copolymers with two different lengths of side chains

    NASA Astrophysics Data System (ADS)

    Aliev, M. A.; Kuzminyh, N. Yu.

    2009-10-01

    The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.

  20. Heat capacity anomaly in a self-aggregating system: Triblock copolymer 17R4 in water

    NASA Astrophysics Data System (ADS)

    Dumancas, Lorenzo V.; Simpson, David E.; Jacobs, D. T.

    2015-05-01

    The reverse Pluronic, triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14 - PEO24 - PPO14, where the number of monomers in each block is denoted by the subscripts. In water, 17R4 has a micellization line marking the transition from a unimer network to self-aggregated spherical micelles which is quite near a cloud point curve above which the system separates into copolymer-rich and copolymer-poor liquid phases. The phase separation has an Ising-like, lower consolute critical point with a well-determined critical temperature and composition. We have measured the heat capacity as a function of temperature using an adiabatic calorimeter for three compositions: (1) the critical composition where the anomaly at the critical point is analyzed, (2) a composition much less than the critical composition with a much smaller spike when the cloud point curve is crossed, and (3) a composition near where the micellization line intersects the cloud point curve that only shows micellization. For the critical composition, the heat capacity anomaly very near the critical point is observed for the first time in a Pluronic/water system and is described well as a second-order phase transition resulting from the copolymer-water interaction. For all compositions, the onset of micellization is clear, but the formation of micelles occurs over a broad range of temperatures and never becomes complete because micelles form differently in each phase above the cloud point curve. The integrated heat capacity gives an enthalpy that is smaller than the standard state enthalpy of micellization given by a van't Hoff plot, a typical result for Pluronic systems.

  1. Guiding nanocrystal organization within mesoscale lipid thin-film templates

    NASA Astrophysics Data System (ADS)

    Steer, Dylan; Zhai, You; Oh, Nuri; Shim, Moonsub; Leal, Cecilia

    Recently a great deal of interest has been established in the cooperative intermolecular interactions in hard and soft meso-structured composite materials. Much of this research has focused on the effects of nanoparticle incorporation into block copolymers that otherwise self-assemble into periodic mesostructures through microphase separation. Through careful selection of the polymer components the nanoparticles can be directed to also microphase separate and therefore exhibit symmetry induced by the block copolymers. Such systems are promising for enabling the organization of nanoparticle superstructures. Although this is useful in many applications such as in bottom-up assembly of opti-electronic materials, most of these applications would benefit from interplay between structure and dynamics. Much like block-copolymers, lipids can self-assembly into a variety of structures with 1D lamellar, 2D Hexagonal, and 3D cubic symmetry. However, unlike block-copolymers phase stabilization and conversion from one geometry to another happens under a minute. We will show our recent efforts into using lipid thin films to guide the assembly of nanoparticle superstructures resembling those displayed by lipid polymorphs and how they distort lipid equilibrium phase behavior. Funding from the Office of Naval Research.

  2. Melt structure and self-nucleation of ethylene copolymers

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina G.

    A strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. These studies have been carried out by DSC, x-ray, TEM and optical microscopy on a large number of model, narrow, and broad copolymers with different comonomer types and contents. Melt memory is correlated with self-seeds that increase the crystallization rate of ethylene copolymers. The seeds are associated with molten ethylene sequences from the initial crystals that remain in close proximity and lower the nucleation barrier. Diffusion of all sequences to a randomized melt state is a slow process, restricted by topological chain constraints (loops, knots, and other entanglements) that build in the intercrystalline region during crystallization. Self-seeds dissolve above a critical melt temperature that demarcates homogeneity of the copolymer melt. There is a critical threshold level of crystallinity to observe the effect of melt memory on crystallization rate, thus supporting the correlation between melt memory and the change in melt structure during copolymer crystallization. Unlike binary blends, commercial ethylene-1-alkene copolymers with a range in inter-chain comonomer composition between 1 and about 15 mol % display an inversion of the crystallization rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. With decreasing the initial melt temperature, broadly distributed copolymers show enhanced crystallization followed by a decrease of crystallization rate. The inversion demarcates the onset of liquid-liquid phase separation (LLPS) and a reduction of self-nuclei due to the strong thermodynamic drive for molecular segregation inside the binodal. The strong effect of melt memory on crystallization rate can be used to identify liquid-liquid phase separation in broadly distributed copolymers, and offers strategies to control the state of copolymer melts in ways of technological relevance for melt processing of LLDPE and other random olefin copolymers. References: B. O. Reid, et al., Macromolecules 46, 6485-6497, 2013 H. Gao, et al., Macromolecules 46, 6498-6506, 2013 A. Mamun et al., Macromolecules 47, 7958-7970, 2014 X. Chen et al., Macromol. Chem. Phys. 216, 1220 -1226, 2015 M. Ren et al., Macromol. Symp. 356, 131-141, 2015 Work supported by the NSF (DMR1105129).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.

    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) resultsmore » that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.« less

  4. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    PubMed

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  5. Synthesis and Properties of Poly(l-lactide)-b-poly (l-phenylalanine) Hybrid Copolymers

    PubMed Central

    Planellas, Marc; Puiggalí, Jordi

    2014-01-01

    Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine) copolymers with various block lengths were synthesized by sequential ring-opening polymerization of l-lactide and the N-carboxyanhydride of l-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing the successful incorporation of the polyphenylalanine (PPhe) peptide into the previously formed poly(l-lactide) (PLLA) polymer chain. X-ray diffraction and DSC data also suggested that the copolymers were phase-separated in domains containing either crystalline PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric analysis when polyphenylalanine blocks were incorporated into polylactide. PMID:25075980

  6. Synthesis and properties of poly(L-lactide)-b-poly (L-phenylalanine) hybrid copolymers.

    PubMed

    Planellas, Marc; Puiggalí, Jordi

    2014-07-29

    Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine) copolymers with various block lengths were synthesized by sequential ring-opening polymerization of l-lactide and the N-carboxyanhydride of l-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing the successful incorporation of the polyphenylalanine (PPhe) peptide into the previously formed poly(l-lactide) (PLLA) polymer chain. X-ray diffraction and DSC data also suggested that the copolymers were phase-separated in domains containing either crystalline PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric analysis when polyphenylalanine blocks were incorporated into polylactide.

  7. Block copolymer self-assembly derived ultrafiltration membranes: From science to start-up

    NASA Astrophysics Data System (ADS)

    Wiesner, Ulrich

    In the last ten years a novel method to generate asymmetric ultrafiltration membranes has been established. It is based on the combination of block copolymer self-assembly with non-solvent induced phase separation (NIPS) and is now referred to as SNIPS. NIPS as an industry proven method for the formation of phase inversion membranes opening a pathway to scale up and commercialization of these membranes. The combination of NIPS with block copolymer self-assembly leads to asymmetric membranes with narrow pore size distributions in the top surface layer (so called isoporous membranes) as well as high pore densities, thereby potentially combining high resolution with high flux in membrane separation processes. Such membranes have potential applications in the biopharmaceutical industry where a large fraction of the costs are currently associated with time-consuming non-membrane based separation processes. This talk will describe a family of isoporous ultrafiltration membranes based on the self-assembly behavior of an ABC triblock terpolymer which has led to the formation of a start-up company out of Cornell University. After introduction of the SNIPS process in general, and its application to such ABC triblock terpolymers in particular, open scientific questions associated with the formation mechanisms of the top surface separation layer in such membranes is discussed, which is at the heart of enabling high performance separation behavior. Furthermore, challenges translating scientific work into industrial settings are highlighted.

  8. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides.

    PubMed

    Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo

    2010-09-17

    Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.

  9. Structure-property relationships in semicrystalline copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    Many outstanding physical properties of ethylene/(meth)acrylic acid (E/(M)AA) copolymers and ionomers are associated with their nanometer-scale morphology, which consists of ethylene crystallites, amorphous segments, and acid/ionic functional groups. The goal of this dissertation is a fundamental understanding of the interplay between these structural motifs and the consequent effects on the material properties. We identify small-strain modulus as a key mechanical property and investigate its dependence upon material structure through X-ray scattering, calorimetry, and mechanical property measurements. We first treat E/(M)AA copolymers as composites of polyethylene crystallites and amorphous regions, and establish a quantitative combining rule to describe the copolymer modulus. At temperatures above the Tg of the copolymers, a monotonic increase in modulus with crystallinity is quantitatively described by the Davies equation for two-phase composites, which serves as the basis for separating the effects of amorphous and crystalline phases throughout this dissertation. The room-temperature modulus of E/(M)AA copolymers is concurrently affected by ethylene crystallinity and proximity to the amorphous phase Tg, which rises through room temperature with increasing comonomer content. In E/(M)AA ionomers, phase separation and aggregation of ionic groups provide additional stiffness and toughness. Ionomers are modeled as composites of crystallites and ionically crosslinked rubber, whose amorphous phase modulus far above the ionomer Tg is satisfactorily described by simple rubber elasticity theory. Thermomechanical analyses probe the multi-step relaxation behavior of E/(M)AA ionomers and lead to the development of a new semicrystalline ionomer morphological model, wherein secondary crystallites and ionic aggregates together form rigid percolated pathways throughout the amorphous phase. Metal soaps are oligomeric analogs of E/(M)AA ionomers, which can be blended into ionomers to achieve high ion content and in turn desirable physical properties. We assess the compatibility of various types of metal soaps with E/(M)AA ionomers, and investigate how the soap modifies the ionomers' structure and properties. The mechanical properties and phase behavior of these hybrids, which are found to differ significantly depending on the neutralizing cation type and crystallinizability of the metal soap, are traced back to various levels of molecular coassembly involving the hydrocarbon chains and/or the ionic groups of both entities.

  10. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    PubMed

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    PubMed Central

    2011-01-01

    We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB) method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA) were studied at the nanometric scale by using atomic force microscopy (AFM) and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs), forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer. PMID:21711674

  12. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    PubMed

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Boosting Up Performance of Inverted Photovoltaic Cells from Bis(alkylthien-2-yl)dithieno[2,3-d:2',3'-d']benzo[1,2-b:4',5'-b']di thiophene-Based Copolymers by Advantageous Vertical Phase Separation.

    PubMed

    Guo, Pengzhi; Luo, Guoping; Su, Qiang; Li, Jianfeng; Zhang, Peng; Tong, Junfeng; Yang, Chunyan; Xia, Yangjun; Wu, Hongbin

    2017-03-29

    The photovoltaic cells (PVCs) from conjugated copolymers of PDTBDT-BT and PDTBDT-FBT with 5,10-bis(4,5-didecylthien-2-yl)dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as electron donor moieties and benzothiadiazole and/or 5,6-difluorobenzothiadiazole as electron acceptor moieties are optimized by employing alcohol-soluble PFN (poly(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)) as cathode modification interlayer. The power conversion efficiencies (PCEs) of inverted PVCs (i-PVCs) from PDTBDT-BT and PDTBDT-FBT with devices configuration as ITO/PFN/active layer/MoO 3 /Ag are increased from 4.97% to 8.54% and 5.92% to 8.74%, in contrast to those for the regular PVCs (r-PVCs) with devices configuration as ITO/PEDOT:PSS/active layer/Ca/Al under 100 mW/cm 2 AM 1.5 illumination. The optical modeling calculations and X-ray photoelectron spectroscopy (XPS) investigations reveal that the r-PVCs and i-PVCs from the copolymers exhibit similar light harvesting characteristics, and the enhancements of the PCEs of the i-PVCs from the copolymers are mainly contributed to the favorable vertical phase separation as the strongly polymer-enriched top surface layers and slightly PC 71 BM (phenyl-C 71 -butyric acid methyl ester)-enriched bottom surface layers are correspondingly connected to the anodes and cathodes of the i-PVCs, while they are opposite in the r-PVCs. As we known, it is the first time to experimentally verify that the i-PVCs with alcohol-soluble conjugated polymers cathode modification layers enjoy favorable vertical phase separation.

  14. Superhydrophobic perfluoropolymer/polystyrene blend films induced by nonsolvent

    NASA Astrophysics Data System (ADS)

    Gengec, Nevin Atalay; Cengiz, Ugur; Erbil, H. Yildirim

    2016-10-01

    Statistical copolymers of perfluoroalkyl ethyl acrylate (Zonyl-TAN) and methyl methacrylate (MMA) were synthesized in a CO2 polymerization system where a CO2-expanded monomer mixture was formed at 13 MPa, and 80 °C by using AIBN as initiator. Flat and superhydrophobic surfaces were subsequently prepared on glass slides by applying a phase separation process where the synthesized p(TAN-co-MMA) copolymer and polystyrene (PS) were dissolved in THF solvent. Ethanol was added as the non-solvent to introduce superhydrophobicity during film formation. Water contact angle on the flat p(TAN-co-MMA) copolymer was 118° and increased up to 170° with the formation of surface roughness. The ratio of the ethanol non-solvent in the blend solution has an important effect on the magnitude of surface roughness during the phase separation process. Both pits and protrusions of 1-10 μm in size were formed on the surface when non-solvent was used. Surface roughness increased with the increase in the ethanol ratio and the PS content of the blend solution.

  15. Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents

    PubMed Central

    Chavis, Michelle A.; Smilgies, Detlef-M.; Wiesner, Ulrich B.; Ober, Christopher K.

    2015-01-01

    Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, we investigated solvent vapor annealing in supported thin films of poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) [PHEMA-b-PMMA] by means of grazing incidence small angle X–ray scattering (GISAXS). A spin-coated thin film of lamellar block copolymer was solvent vapor annealed to induce microphase separation and improve the long-range order of the self-assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents (methanol, MeOH, and tetrahydrofuran, THF), which are chosen to be preferential for each block, enabled selective formation of ordered lamellae, gyroid, hexagonal or spherical morphologies from a single block copolymer with a fixed volume fraction. The selected microstructure was then kinetically trapped in the dry film by rapid drying. To our knowledge, this paper describes the first reported case where in-situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. PMID:26819574

  16. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    PubMed

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  17. Rod-Coil Block Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  18. Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces

    PubMed Central

    Kuan, Wei-Fan; Roy, Raghunath; Rong, Lixia; Hsiao, Benjamin S.; Epps, Thomas H.

    2012-01-01

    We report a strategy for generating novel dual-tapered poly(isoprene-b-isoprene/styrene-b-styrene-b-styrene/methyl methacrylate-b-methyl methacrylate) [P(I-IS-S-SM-M)] triblock copolymers that combines anionic polymerization, atom transfer radical polymerization (ATRP), and Huisgen 1,3-dipolar cycloaddition click chemistry. The tapered interfaces between blocks were synthesized via a semi-batch feed using programmable syringe pumps. This strategy allows us to manipulate the transition region between copolymer blocks in triblock copolymers providing control over the interfacial interactions in our nanoscale phase-separated materials independent of molecular weight and block constituents. Additionally, we show the ability to retain a desirous and complex multiply-continuous network structure (alternating gyroid) in our dual-tapered triblock material. PMID:23066522

  19. Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly

    NASA Astrophysics Data System (ADS)

    Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles

    Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.

  20. Relation between secondary doping and phase separation in PEDOT:PSS films

    NASA Astrophysics Data System (ADS)

    Donoval, Martin; Micjan, Michal; Novota, Miroslav; Nevrela, Juraj; Kovacova, Sona; Pavuk, Milan; Juhasz, Peter; Jagelka, Martin; Kovac, Jaroslav; Jakabovic, Jan; Cigan, Marek; Weis, Martin

    2017-02-01

    Conductive copolymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative to transparent conductive oxides because of its flexibility, transparency, and low-cost production. Four different secondary dopants, namely N,N-dimethylformamide, ethyleneglycol, sorbitol, and dimethyl sulfoxide, have been used to improve the conductivity. The relation between the structure changes and conductivity enhancement is studied in detail. Atomic force microscopy study of the thin film surface reveals the phase separation of PEDOT and PSS. We demonstrate that secondary doping induces the phase separation as well as the conductivity enhancement.

  1. Investigations into polymer and carbon nanomaterial separations

    NASA Astrophysics Data System (ADS)

    Owens, Cherie Nicole

    The work of this thesis follows a common theme of research focused on innovative separation science. Polyhydroxyalkanoates are biodegradable polyesters produced by bacteria that can have a wide distribution in molecular weight and monomer composition. This large distribution often leads to unpredictable physical properties making commercial applications challenging. To improve polymer homogeneity and obtain samples with a clear set of physical characteristics, poly-3-hydroxyvalerate-co-3-hydroxybutyrate copolymers were fractionated using gradient polymer elution chromatography (GPEC) with carefully optimized gradients. The resulting fractions were analyzed using Size Exclusion Chromatography (SEC) and NMR. As the percentage of “good” solvent was increased in the mobile phase, the polymers eluted with decreasing percentage of 3-hydroxyvalerate and increasing molecular weight, which indicates the importance of precipitation/redissolution in the separation. As such, GPEC is an excellent choice to provide polyhydroxyalkanoate samples with a narrower distribution in composition than the original bulk copolymer. Additionally, the critical condition was found for 3-hydroxybutyrate to erase its effects on retention of the copolymer. Copolymer samples were then separated using Liquid Chromatography at the Critical Condition (LCCC) and it was determined that poly(3-hydroxvalerate-co-3-hydroxybutyrate) is a statistically random copolymer. The second project uses ultra-thin layer chromatography (UTLC) to study the performance and behavior of polyhydroxybutyrate (P3HB) as a chromatographic substrate. One specific polyhydroxyalkanoate, polyhydroxybutyrate, is a liquid crystalline polymer that can be electrospun. Electrospinning involves the formation of nanofibers though the application of an electric potential to a polymer solution. Precisely controlled optimization of electrospinning parameters was conducted to achieve the smallest diameter PHA nanofibers to date to utilize as novel UTLC substrates. Additionally, aligned electrospun UTLC (AE-UTLC) substrates were developed to compare to the randomly oriented electrospun (E-UTLC) devices. The PHB plates were compared to commercially available substrates for the separation of biological samples: nucleotides and steroids. The electrospun substrates show lower band broadening and higher reproducibility in a smaller development distance than commercially available TLC plates, conserving both resources and time. The AE-UTLC plates provided further enhancement of reproducibility and development time compared to E-UTLC plates. Thus, the P3HB E-UTLC phases are an excellent sustainable option for TLC as they are biodegradable and perform better than commercial phases. A third topic of interest is the study of ordered carbon nanomaterials. The typical amorphous carbon used as a stationary phase in Hypercarb ® is known to consist of basal- and edge-plane oriented sites. This heterogeneity of the stationary phase can lead to peak broadening that may be improved by using homogeneous carbon throughout. Amorphous, basal-plane, and edge-plane carbons were produced in-house through membrane template synthesis. Amorphous, basal-plane, and edge-plane carbons were then used separately as chromatographic phases in capillary electrochomatography (CEC). Differences in chromatographic performance between these species were assessed by modeling retention data for test solutes to determine Linear Solvation Energy Relationships (LSER). The LSER study for the three carbon phases indicates that the main difference is in the polarizability, and hydrogen bonding character of the surface leading to unique solute interactions. These results highlight the possible usefulness of using these phases independently.

  2. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V; Gorkunov, Maxim V; Osipov, Mikhail A

    2017-04-14

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  3. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory

    NASA Astrophysics Data System (ADS)

    Berezkin, Anatoly V.; Kudryavtsev, Yaroslav V.; Gorkunov, Maxim V.; Osipov, Mikhail A.

    2017-04-01

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  4. A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles

    DTIC Science & Technology

    2014-04-02

    utilizing functional surfactants to control the phase separation of symmetric polystyrene- b -poly(2-vinylpyr- idine) ( PS - b - P2VP ) in dispersed droplets...Figure 1. Schematic representation of a mixed surfactant strategy for controlling the self-assembly of PS - b - P2VP and the generation of particles with...surfactant mixtures to control the phase separation of the symmetric polystyrene- b -poly(2-vinylpyridine) ( PS - b - P2VP ) block copolymers (BCPs) within

  5. Effect of solvent and subsequent thermal annealing on the performance of phenylenevinylene copolymer: PCBM solar cells.

    PubMed

    Sharma, G D; Suresh, P; Sharma, S S; Vijay, Y K; Mikroyannidis, John A

    2010-02-01

    The morphology of the photoactive layer used in the bulk heterojunction photovoltaic devices is crucial for efficient charge generation and their collection at the electrodes. We investigated the solvent vapor annealing and thermal annealing effect of an alternating phenylenevinylene copolymer P:PCBM blend on its morphology and optical properties. The UV-visible absorption spectroscopy shows that both solvent and thermal annealing can result in self-assembling of copolymer P to form an ordered structure, leading to enhanced absorption in the red region and hole transport enhancement. By combining the solvent and thermal annealing of the devices, the power conversion efficiency is improved. This feature was attributed to the fact that the PCBM molecules begin to diffuse into aggregates and together with the ordered copolymer P phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Furthermore, the measured photocurrent also suggests that the space charges no longer limit the values of the short circuit current (J(sc)) and fill factor (FF) for solvent-treated and thermally annealed devices. These results indicate that the higher J(sc) and PCE for the solvent-treated and thermally annealed devices can be attributed to the phase separation of active layers, which leads to a balanced carrier mobility. The overall PCE of the device based on the combination of solvent annealing and thermal annealing is about 3.7 %.

  6. Synthesis of Novel μ-Star Copolymers with Poly(N-Octyl Benzamide) and Poly(ε-Caprolactone) Miktoarms through Chain-Growth Condensation Polymerization, Styrenics-Assisted Atom Transfer Radical Coupling, and Ring-Opening Polymerization.

    PubMed

    Huang, Chih-Feng; Aimi, Junko; Lai, Kuan-Yu

    2017-02-01

    Star copolymers are known to phase separate on the nanoscale, providing useful self-assembled morphologies. In this study, the authors investigate synthesis and assembly behavior of miktoarm star (μ-star) copolymers. The authors employ a new strategy for the synthesis of unprecedented μ-star copolymers presenting poly(N-octyl benzamide) (PBA) and poly(ε-caprolactone) (PCL) arms: a combination of chain-growth condensation polymerization, styrenics-assisted atom transfer radical coupling, and ring-opening polymerization. Gel permeation chromatography, mass-analyzed laser desorption/ionization mass spectrometry, and 1 H NMR spectroscopy reveal the successful synthesis of a well-defined (PBA 11 ) 2 -(PCL 15 ) 4 μ-star copolymer (M n ,NMR ≈ 12 620; Đ = 1.22). Preliminary examination of the PBA 2 PCL 4 μ-star copolymer reveals assembled nanofibers having a uniform diameter of ≈20 nm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Incorporating fluorinated moieties in fully conjugated donor-acceptor block copolymers

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Wang, Qing; Gomez, Enrique D.

    Fully conjugated donor-acceptor block copolymers are promising candidates for photovoltaics due to their ability to microphase separate at length scales commensurate with exciton diffusion lengths. These materials can also serve as model systems to study the relationship between molecular structure, microstructure, and optoelectronic properties of conjugated polymers. The development of new donor-acceptor block copolymers relies on the manipulation of the chemical structure to fine tune properties and improve overall performance when employed in photovoltaic devices. To this end, we have demonstrated the incorporation of fluorinated moieties in conjugated block copolymers. The introduction of fluorine, a strong electron withdrawing element, is known to influence phase separation and the bandgap, and as a result, optoelectronic properties. Fluorine was introduced to the acceptor block of poly(3-hexylthiophene-2,5-diyl)-block-poly((9,9-bis(2-octyl)fluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5 ',5?-diyl) (P3HT- b-PFTBT). PFTBTs were prepared with di-fluorinated and mono-fluorinated TBT. We find that fluorination impacts the bandgap, morphology and performance in devices.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misichronis, Konstantinos; Chen, Jihua; Imel, Adam

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined in this paper by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (T ODT), for the first time formore » PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χ eff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. Finally, these copolymers exhibit well-ordered structures even at high temperatures (~260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.« less

  9. Translating Thermal Response of Triblock Copolymer Assemblies in Dilute Solution to Macroscopic Gelation and Phase Separation

    DOE PAGES

    Sun, Zhe; Tian, Ye; Hom, Wendy L.; ...

    2016-12-28

    The thermal response of semi-dilute solutions (5 w/w%) of two amphiphilic thermoresponsive poly(ethylene oxide)-b-poly(N,N-diethylacrylamide)-b-poly(N,N-dibutylacrylamide) (PEO 45-PDEAm x-PDBAm 12) triblock copolymers, which differ only in the size of the central responsive block, in water was examined in this paper. Aqueous PEO45-PDEAm41-PDBAm12 solutions, which undergo a thermally induced sphere-to-worm transition in dilute solution, were found to reversibly form soft (G'≈10 Pa) free-standing physical gels after 10 min at 55 °C. PEO 45-PDEAm 89-PDBAm 12 copolymer solutions, which undergo a thermally induced transition from spheres to large compound micelles (LCM) in dilute solution, underwent phase separation after heating at 55 °C for 10more » min owing to sedimentation of LCMs. The reversibility of LCM formation was investigated as a non-specific method for removal of a water-soluble dye from aqueous solution. Finally, the composition and size of the central responsive block in these polymers dictate the microscopic and macroscopic response of the polymer solutions as well as the rates of transition between assemblies.« less

  10. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that was mixed. The results provide insight into the chain conformation of ABC triblock copolymers, where the B blocks are completely bridged across the adjacent A and C domains. In the final part of the thesis, the swelling properties were used to study the directed assembly of ABC triblock copolymers on chemically nanopatterned surfaces.

  11. Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.

    PubMed

    Jung, Adina; Filiz, Volkan; Rangou, Sofia; Buhr, Kristian; Merten, Petra; Hahn, Janina; Clodt, Juliana; Abetz, Clarissa; Abetz, Volker

    2013-04-12

    The formation of integral asymmetric membranes from ABC triblock terpolymers by non-solvent-induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post-functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. End Groups of Functionalized Siloxane Oligomers Direct Block-Copolymeric or Liquid-Crystalline Self-Assembly Behavior

    PubMed Central

    2016-01-01

    Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of polymerization (N)–high block interaction parameter (χ) linear diblock copolymers despite their small size. Specifically, the phase morphology varies from lamellar to hexagonal to body-centered cubic with increasing asymmetry in molecular volume fraction. Mixing molecules with different molecular weights to give dispersity >1.13 results in disorder, showing importance of molecular monodispersity for ultrasmall ordered phase separation. In contrast, oligodimethylsiloxanes end-functionalized with an O-benzylated UPy derivative self-assemble into lamellar nanostructures regardless of volume fraction because of the strong preference of the end groups to aggregate in a planar geometry. Thus, these molecules display more classically liquid-crystalline self-assembly behavior where the lamellar bilayer thickness is determined by the siloxane midblock. Here the lamellar nanostructure is tolerant to molecular polydispersity. We show the importance of end groups in high χ–low N block molecules, where block-copolymer-like self-assembly in our UPy-functionalized oligodimethylsiloxanes relies upon the dominance of phase separation effects over directional end group aggregation. PMID:27054381

  13. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Determan, Michael Duane

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated.more » This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi-responsive properties of the pentablock copolymer. Demonstrate potential biomedical applications of these materials with in vitro drug release studies from pentablock copolymer hydrogels. The intent of this work is to contribute to the knowledge necessary for further tailoring of these, and other functional block copolymer materials for biomedical applications.« less

  14. One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers.

    PubMed

    Hong, Liangzhi; Sun, Guanqing; Cai, Jinge; Ngai, To

    2012-02-07

    Multiple emulsions are complex polydispersed systems in which both oil-in-water (O/W) and water-in-oil (W/O) emulsion exists simultaneously. They are often prepared accroding to a two-step process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Recently, some reports have shown that multiple emulsions can also be produced through one-step method with simultaneous occurrence of catastrophic and transitional phase inversions. However, these reported multiple emulsions need surfactant blends and are usually described as transitory or temporary systems. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) multiple emulsions stabilized solely by a synthetic diblock copolymer. Unlike the use of small molecule surfactant combinations, block copolymer stabilized multiple emulsions are remarkably stable and show the ability to separately encapsulate both polar and nonpolar cargos. The importance of the conformation of the copolymer surfactant at the interfaces with regards to the stability of the multiple emulsions using the one-step method is discussed.

  15. Synthesis and characterization of poly(L-alanine)-block-poly(ethylene glycol) monomethyl ether as amphiphilic biodegradable co-polymers.

    PubMed

    Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong

    2003-01-01

    Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.

  16. Thermodynamic confinement and alpha-helix persistence length in poly(gamma-benzyl-L-glutamate)-b-poly(dimethyl siloxane)-b-poly(gamma-benzyl-L-glutamate) triblock copolymers.

    PubMed

    Papadopoulos, P; Floudas, G; Schnell, I; Lieberwirth, I; Nguyen, T Q; Klok, H-A

    2006-02-01

    The structure and the associated dynamics of a series of poly(gamma-benzyl-L-glutamate)-b-poly(dimethyl siloxane)-b-poly(gamma-benzyl-L-glutamate) (PBLG-b-PDMS-b-PBLG) triblock copolymers were investigated using small- and wide-angle X-ray scattering, NMR, transmission electron microscopy, and dielectric spectroscopy, respectively. The structural analysis revealed phase separation in the case of the longer blocks with defected alpha-helical segments embedded within the block copolymer nanodomains. The alpha-helical persistence length was found to depend on the degree of segregation; thermodynamic confinement and chain stretching results in the partial annihilation of helical defects.

  17. Phase behavior of block copolymers in compressed carbon dioxide and as single domain-layer, nanolithographic etch resists for sub-10 nm pattern transfer

    NASA Astrophysics Data System (ADS)

    Chandler, Curran Matthew

    Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts -- the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including polystyrene and polyisoprene, as measured by high pressure ellipsometry at elevated temperatures and pressures. The ellipsometric technique was modified to produce accurate data at these conditions through a custom pressure vessel design. The order-disorder transition (ODT) temperatures of several poly(styrene-bisoprene) diblock copolymers were also investigated by static birefringence when dilated with compressed CO2. Sorption of CO2 in each copolymer resulted in significant depressions of the ODT temperature as a function of fluid pressure, and the data above was used to estimate the quantitative amount of solvent in each of the diblock copolymers. These depressions were not shown to follow dilution approximation, and showed interesting, exaggerated scaling of the ODT at near-bulk polymer concentrations. The phase behavior of block copolymer surfactants was studied when blended with polymer or small molecule additives capable of selective hydrogen bonds. This work used small angle X-ray scattering (SAXS) to identify several low molecular weight systems with strong phase separation and ordered domains as small as 2--3 nanometers upon blending. One blend of a commercially-available surfactant with a small molecule additive was further developed and showed promise as a thin-film pattern transfer template. In this scenario, block copolymer thin films on domain thick with self-assembled feature sizes of only 6--7 nm were used as plasma etch resists. Here the block copolymer's pattern was successfully transferred into the underlying SiO2 substrate using CF4--based reactive ion etching. The result was a parallel, cylindrical nanostructure etched into SiO2.

  18. Interaction chromatography for characterization and large-scale fractionation of chemically heterogeneous copolymers

    NASA Astrophysics Data System (ADS)

    Han, Junwon

    The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a gravity column. The second part of this thesis is focused on the liquid chromatography analysis and fractionation of RAFT-polymerized PS-b -PMMA diblock copolymers and AFM studies. In this study, PS- b-PMMA block copolymers were synthesized by a RAFT free radical polymerization process---the PMMA block with a phenyldithiobenzoate end group was synthesized first. The contents of unreacted PS and PMMA homopolymers in as-synthesized PS-b-PMMA block copolymers were quantitatively analyzed by solvent gradient interaction chromatography (SGIC) technique employing bare silica and C18-bonded silica columns, respectively. In addition, by 2-dimensional large-scale IC fractionation method, atomic force microscopy (AFM) study of these fractionated samples revealed various morphologies with respect to the chemical composition of each fraction. The third part of this thesis is to analyze random copolymers with tunable monomer sequence distributions using interaction chromatography. Here, IC was used for characterizing the composition and monomer sequence distribution in statistical copolymers of poly(styrene-co-4-bromostyrene) (PBrxS). The PBrS copolymers were synthesized by the bromination of monodisperse polystyrenes; the degree of bromination (x) and the sequence distribution were adjusted by varying the bromination time and the solvent quality, respectively. Both normal-phase (bare silica) and reversed-phase (C18-bonded silica) columns were used at different combinations of solvents and non-solvents to monitor the content of the 4-bromostyrene units in the copolymer and their average monomer sequence distribution. The fourth part of this thesis is to analyze and fractionate highly branched polymers such as dendronized polymers and star-shaped homo and copolymers. I have developed an interaction chromatography technique to separate polymers with nonlinear chain architecture. Specifically, the IC technique has been used to separate dendronized polymers and PS-based highly branched copolymers and to ultimately obtain well-defined dendronized or branched copolymers with a low polydispersity. The effects of excess arm-polymers on (1) the micellar self-assembly of dendronized polymers and (2) the regularity of the pore morphology in the low-k applications by the sol-gel process have been studied.

  19. Adjustable bridge blocks make huge difference to the self-assembly of multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Li, Weihua

    We present theoretical studies on two types of multiblock copolymers, whose self-assemblies lead to a lot of novel ordered nanostructures. The first example is BABCB multiblock terpolymer, where A- and C-blocks separately aggregate into isolated domains and the three B-blocks with adjustable lengths form the matrix. As a result, the middle B-block forms a natural bridge connecting A- and C-domains. In contrast to ABC, the BABCB can form many binary spherical and cylindrical phases with tunable coordination numbers. In addition, the ABCB solution can form a lot of planet-satellite micellar superstructures with tunable number of satellites that varies from 3 to 20. The another system is AB-type multiblock copolymers. In contrast to the above system, there is no natural bridge. Accordingly, we introduce multiple arms into the architecture which tend to partition themselves into different domains to maximize their configurational entropy, thus forming effective bridges. Furthermore, each arm is devised as BAB triblock to enable adjustable length of bridges. With this copolymer, we predict a few non-classical ordered phases, including a square array cylinder. Our study opens the possibilities of fabricating desired nanostructures using designed block copolymers. National Natural Science Foundation of China (No. 21322407, 21574026).

  20. Nonequilibrium phase transitions of sheared colloidal microphases: Results from dynamical density functional theory

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Roth, Roland

    2018-06-01

    By means of classical density functional theory and its dynamical extension, we consider a colloidal fluid with spherically symmetric competing interactions, which are well known to exhibit a rich bulk phase behavior. This includes complex three-dimensional periodically ordered cluster phases such as lamellae, two-dimensional hexagonally packed cylinders, gyroid structures, or spherical micelles. While the bulk phase behavior has been studied extensively in earlier work, in this paper we focus on such structures confined between planar repulsive walls under shear flow. For sufficiently high shear rates, we observe that microphase separation can become fully suppressed. For lower shear rates, however, we find that, e.g., the gyroid structure undergoes a kinetic phase transition to a hexagonally packed cylindrical phase, which is found experimentally and theoretically in amphiphilic block copolymer systems. As such, besides the known similarities between the latter and colloidal systems regarding the equilibrium phase behavior, our work reveals further intriguing nonequilibrium relations between copolymer melts and colloidal fluids with competing interactions.

  1. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  2. Morphology and conductivity of PEO-based polymers having various end functional groups

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong

    Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.

  3. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    PubMed

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  4. Ultrafast Self-Assembly of Sub-10 nm Block Copolymer Nanostructures by Solvent-Free High-Temperature Laser Annealing.

    PubMed

    Jiang, Jing; Jacobs, Alan G; Wenning, Brandon; Liedel, Clemens; Thompson, Michael O; Ober, Christopher K

    2017-09-20

    Laser spike annealing was applied to PS-b-PDMS diblock copolymers to induce short-time (millisecond time scale), high-temperature (300 to 700 °C) microphase segregation and directed self-assembly of sub-10 nm features. Conditions were identified that enabled uniform microphase separation in the time frame of tens of milliseconds. Microphase ordering improved with increased temperature and annealing time, whereas phase separation contrast was lost for very short annealing times at high temperature. PMMA brush underlayers aided ordering under otherwise identical laser annealing conditions. Good long-range order for sub-10 nm cylinder morphology was achieved using graphoepitaxy coupled with a 20 ms dwell laser spike anneal above 440 °C.

  5. Morphology of a highly asymmetric double crystallizable poly(ɛ-caprolactone-b-ethylene oxide) block copolymer

    NASA Astrophysics Data System (ADS)

    Li, Liangbin; Meng, Fenghua; Zhong, Zhiyuan; Byelov, Dmytro; de Jeu, Wim H.; Feijen, Jan

    2007-01-01

    The morphology of a highly asymmetric double crystallizable poly(ɛ-caprolactone-b-ethylene oxide) (PCL-b-PEO) block copolymer has been studied with in situ simultaneously small and wide-angle x-ray scattering as well as atomic force microscopy. The molecular masses Mn of the PCL and PEO blocks are 24 000 and 5800, respectively. X-ray scattering and rheological measurements indicate that no microphase separation occurs in the melt. Decreasing the temperature simultaneously triggers off a crystallization of PCL and microphase separation between the PCL and PEO blocks. Coupling and competition between microphase separation and crystallization results in a morphology of PEO spheres surrounded by PCL partially crystallized in lamella. Further decreasing temperature induces the crystallization of PEO spheres, which have a preferred orientation due to the confinements from hard PCL crystalline lamella and from soft amorphous PCL segments in different sides. The final morphology of this highly asymmetric block copolymer is similar to the granular morphology reported for syndiotactic polypropylene and other (co-) polymers. This implies a similar underlying mechanism of coupling and competition of various phase transitions, which is worth further exploration.

  6. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    PubMed

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantum dot-polymer conjugates for stable luminescent displays.

    PubMed

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  8. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  9. Modification of the morphology of P(S-b-EO) templated thin TiO2 films by swelling with PS homopolymer.

    PubMed

    Perlich, J; Schulz, L; Abul Kashem, M M; Cheng, Y-J; Memesa, M; Gutmann, J S; Roth, S V; Müller-Buschbaum, P

    2007-09-25

    For the controlled modification of sol-gel-templated polymer nanocomposites, which are transferred to a nanostructured, crystalline TiO2 phase by a calcination process, the addition of a single homopolymer was investigated. For the preparation, the homopolymer polystyrene (PS) is added in different amounts to the diblock copolymer P(S-b-EO) acting as a templating agent. The homopolymer/diblock copolymer blend system is combined with sol-gel chemistry to provide and attach the TiO2 nanoparticles to the diblock copolymer. So-called good-poor solvent-pair-induced phase separation leads to the formation of nanostructures by film preparation via spin coating. The fabricated morphologies are studied as a function of added homopolymer before and after calcination with atomic force microscopy, field emission scanning electron microscopy, and grazing incidence small-angle X-ray scattering. The observed behavior is discussed in the framework of controlling the block copolymer morphologies by the addition of homopolymers. At small homopolymer concentrations, the increase in homopolymer concentration changes the structure size, whereas at high homopolymer concentrations, a change in morphology is triggered. Thus, the behavior of a pure polymer system is transferred to a more complex hybrid system.

  10. Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Tureau; L Rong; B Hsiao

    The phase behavior of poly(isoprene-b-styrene-b-methyl methacrylate) (ISM) copolymers near the styrene-rich network phase window was examined through the use of neat triblock copolymers and copolymer/homopolymer blends. Both end-block and middle-block blending protocols were employed using poly(isoprene) (PI), poly(methyl methacrylate) (PMMA), and poly(styrene) (PS) homopolymers. Blended specimens exhibited phase transformations to well-ordered nanostructures (at homopolymer loadings up to 26 vol % of the total blend volume). Morphological consistency between neat and blended specimens was established at various locations in the ISM phase space. Copolymer/homopolymer blending permitted the refinement of lamellar, hexagonally packed cylinder, and disordered melt phase boundaries as well asmore » the identification of double gyroid (Q{sup 230}), alternating gyroid (Q{sup 214}), and orthorhombic (O{sup 70}) network regimes. Additionally, the experimental phase diagram exhibited similar trends to those found in a theoretical ABC triblock copolymer phase diagram with symmetric interactions and statistical segments lengths generated by Tyler et al.« less

  11. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  12. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    PubMed Central

    Pollard, Benjamin

    2016-01-01

    Summary Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM) with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA) reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties. PMID:27335750

  13. Understanding Melt-Memory of Commercial Polyolefins

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina

    Self-nucleation (SN) or controlling self-generated seeds in a polymer melt is an avenue to increase the rate of solidification of semicrystalline polymers of commercial relevance. Self-nuclei are remains in the melt of the segmental self-assembly to form polymer crystallites providing a path to enhance primary crystal nucleation. SN has been extensively studied in homopolymers such as iPP. Recently, a strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. The melt memory is associated with clusters or seeds that remain in the melt from the copolymer's sequence length partitioning. Cooling from progressively lower self-seeded melt temperatures, ethylene copolymers with a broad inter-chain comonomer composition (1 - 15 mol%) display first the expected accelerated crystallization, followed by a decrease in the rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. This unusual inversion of the crystallization rate was postulated to arise from the onset of liquid-liquid phase separation (LLPS) between comonomer-rich and comonomer-poor components of the broad copolymer. The UCST type phase diagram of these commercial copolymers has been documented via SANS using a blend of components, some deuterated, to reproduce the broad distribution. Furthermore, the components that contribute to LLPS have been identified by the crystallization behavior of molar mass fractions. The influence of long chain branching on the topology of copolymer melts has been analyzed using model 3-arm stars hydrogenated polybutadienes. The effect of melt viscosity on strength of melt memory is also evident when SN data of random ethylene copolymers are compared with those of propylene-ethylene copolymers. The strong dependence of melt viscosity on melt memory, and a critical threshold crystallinity level to observe the effect of melt memory on crystallization rate, support the kinetic nature of the SN phenomenon. Support from NSF, DMR-1105129 and DMR-1607786 is gratefully acknowledged.

  14. Sustainable thermoplastic elastomers derived from cellulose, fatty acid and furfural via ATRP and click chemistry.

    PubMed

    Yu, Juan; Lu, Chuanwei; Wang, Chunpeng; Wang, Jifu; Fan, Yimin; Chu, Fuxiang

    2017-11-15

    Cellulose-based thermoplastic elastomers (TPEs) have attracted considerable attention because of their rigid backbone, good mechanical properties, renewable nature and abundance. In the present study, sustainable TPEs based on ethyl cellulose (EC), fatty acid and furfural were generated by the combination of ATRP and "click chemistry". To fabricate sustainable TPEs with higher toughness, a range of polymers, including mono random-copolymer poly(tetrahydrofurfuryl methacrylate-co-lauryl methacrylate) (P(THFMA-co-LMA), dual polymer side chains PTHFMA and PLMA, and mono-block copolymer PTHFMA-b-PLMA, were designed as side chains to fabricate EC brush copolymers with random, dual or block side chain architectures using the "grafting from" and "grafting onto" methods. The multi-armed structures, chemical compositions and phase separation of these EC brush copolymers were confirmed by FT-IR, 1 H NMR, GPC, DSC, TEM and SEM. Overall, three types of EC brush copolymers all exhibited the desired mechanical properties of TPEs. In addition, the EC brush copolymers with dual/block side chain architectures showed higher tensile strength than that of the random polymers with similar compositions. Copyright © 2017. Published by Elsevier Ltd.

  15. Conjugated block copolymers: A building block for high-performance organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Guo, Changhe

    State-of-the-art organic photovoltaics rely on kinetically trapped, partially phase-separated structures of donor/acceptor mixtures to create a high interfacial area for exciton dissociation and networks of bicontinuous phases for charge transport. Nevertheless, intrinsic structural disorder and weak intermolecular interactions in polymer blends limit the performance and stability of organic electronic devices. We demonstrate a potential strategy to control morphology and donor/acceptor heterojunctions through conjugated block copolymer poly(3-hexylthiophene)- block-poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-b-PFTBT). Block copolymers can self-assemble into well-ordered nanostructures ideal for photovoltaic applications. When utilized as the photovoltaic active layer, P3HT-b-PFTBT block copolymer devices demonstrate thermal stability and photoconversion efficiency of 3% well beyond devices composed of the constituent polymer blends. Resonant soft X-ray scattering (RSOXS) is used to elucidate the structural origin for efficient block copolymer photovoltaics. Energy tuning in soft X-ray ranges gives RSOXS chemical sensitivity to characterize organic thin films with compositionally similar phases or complicated multiphase systems. RSOXS reveals that the remarkable performance of P3HT-b-PFTBT devices is due to self-assembly into nanoscale in-plane lamellar morphology, which not only establishes an equilibrium microstructure amenable for exciton dissociation but also provides pathways for efficient charge transport. Furthermore, we find evidence that covalent control of donor/acceptor interfaces in block copolymers has the potential to promote charge separation and optimize the photoconversion process by limiting charge recombination. To visualize the nanostructure in organic thin films, we introduce low energy-loss energy-filtered transmission electron microscopy (EFTEM) as an important alternative approach to generate contrast from differences in optoelectronic properties and enable chemical imaging of organic materials. The widely-studied polymer/fullerene system is used as a test sample to demonstrate the application of this technique for structure characterization in the active layer of organic solar cells. In addition, well-ordered equilibrium nanostructures and covalent control of donor/acceptor interfaces make P3HT-b-PFTBT an excellent model for studying the effect of crystalline texture in the active layer on charge transport and photovoltaic performance. Solvent additives are applied to induce a drastic texture change from mainly face-on to edge-on orientations in crystalline P3HT domains of block copolymer thin films. We find that P3HT- b-PFTBT block copolymer devices demonstrate similar optimal performance, regardless of the dramatic changes in the predominant crystalline orientations adopted in P3HT domains. Our results provide further insights into the molecular organization required for efficient charge transport and device operation.

  16. Asymmetric Membranes from Two Chemically Distinct Triblock Terpolymers Blended during Standard Membrane Fabrication.

    PubMed

    Li, Yuk Mun; Srinivasan, Divya; Vaidya, Parth; Gu, Yibei; Wiesner, Ulrich

    2016-10-01

    Deviating from the traditional formation of block copolymer derived isoporous membranes from one block copolymer chemistry, here asymmetric membranes with isoporous surface structure are derived from two chemically distinct block copolymers blended during standard membrane fabrication. As a first proof of principle, the fabrication of asymmetric membranes is reported, which are blended from two chemically distinct triblock terpolymers, poly(isoprene-b-styrene-b-(4-vinyl)pyridine) (ISV) and poly(isoprene-b-styrene-b-(dimethylamino)ethyl methacrylate) (ISA), differing in the pH-responsive hydrophilic segment. Using block copolymer self-assembly and nonsolvent induced phase separation process, pure and blended membranes are prepared by varying weight ratios of ISV to ISA. Pure and blended membranes exhibit a thin, selective layer of pores above a macroporous substructure. Observed permeabilities at varying pH values of blended membranes depend on relative triblock terpolymer composition. These results open a new direction for membrane fabrication through the use of mixtures of chemically distinct block copolymers enabling the tailoring of membrane surface chemistries and functionalities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mixing, diffusion, and percolation in binary supported membranes containing mixtures of lipids and amphiphilic block copolymers.

    PubMed

    Gettel, Douglas L; Sanborn, Jeremy; Patel, Mira A; de Hoog, Hans-Peter; Liedberg, Bo; Nallani, Madhavan; Parikh, Atul N

    2014-07-23

    Substrate-mediated fusion of small polymersomes, derived from mixtures of lipids and amphiphilic block copolymers, produces hybrid, supported planar bilayers at hydrophilic surfaces, monolayers at hydrophobic surfaces, and binary monolayer/bilayer patterns at amphiphilic surfaces, directly responding to local measures of (and variations in) surface free energy. Despite the large thickness mismatch in their hydrophobic cores, the hybrid membranes do not exhibit microscopic phase separation, reflecting irreversible adsorption and limited lateral reorganization of the polymer component. With increasing fluid-phase lipid fraction, these hybrid, supported membranes undergo a fluidity transition, producing a fully percolating fluid lipid phase beyond a critical area fraction, which matches the percolation threshold for the immobile point obstacles. This then suggests that polymer-lipid hybrid membranes might be useful models for studying obstructed diffusion, such as occurs in lipid membranes containing proteins.

  18. Synthesis and Characterization of a Novel -D-B-A-B- Block Copolymer System for Light Harvesting Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    Supra-molecular or nano-structured electro-active polymers are potentially useful for developing variety inexpensive and flexible shaped opto-electronic devices. In the case of organic photovoltaic materials or devices, for instance, photo induced electrons and holes need to be separated and transported in organic acceptor (A) and donor (D) phases respectively. In this paper, preliminary results of synthesis and characterizations of a coupled block copolymers containing a conjugated donor block RO-PPV and a conjugated acceptor block SF-PPV and some of their electronic/optical properties are presented. While the donor block film has a strong PL emission at around 570 nm, and acceptor block film has a strong PL emission at around 590 nm, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Experimental results demonstrated an effective photo induced electron transfer and charge separation due to the interfaces of donor and acceptor blocks. The system is very promising for variety light harvesting applications, including "plastic" photovoltaic devices.

  19. Honeycomb Films with Core-Shell Dispersed Phases Prepared by the Combination of Breath Figures and Phase Separation Process of Ternary Blends.

    PubMed

    Del Campo, A; de León, A S; Rodríguez-Hernández, J; Muñoz-Bonilla, A

    2017-03-21

    Herein, we propose a strategy to fabricate core-shell microstructures ordered in hexagonal arrays by combining the breath figures approach and phase separation of immiscible ternary blends. This simple strategy to fabricate these structures involves only the solvent casting of a ternary polymer blend under moist atmosphere, which provides a facile and low-cost fabrication method to obtain the porous structures with a core-shell morphology. For this purpose, blends consisting of polystyrene (PS) as a major component and PS 40 -b-P(PEGMA300) 48 amphiphilic copolymer and polydimethylsiloxane (PDMS) as minor components were dissolved in tetrahydrofuran and cast onto glass wafers under humid conditions, 70% of relative humidity. The resulting porous morphologies were characterized by optical and confocal Raman microscopy. In particular, confocal Raman results demonstrated the formation of core-shell morphologies into the ordered pores, in which the PS forms the continuous matrix, whereas the other two phases are located into the cavities (PDMS is the core while the amphiphilic copolymer is the shell). Besides, by controlling the weight ratio of the polymer blends, the structural parameters of the porous structure such as pore diameter and the size of the core can be effectively tuned.

  20. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.

  1. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    PubMed

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  2. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  3. Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers.

    PubMed

    Muiznieks, Lisa D; Keeley, Fred W

    2016-10-01

    Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin-like sequences as a strategy to rationally increase the strength of elastin-based materials while maintaining extensibility. We demonstrate a thermo-responsive phase separation and spontaneous colloid-like droplet formation from silk-elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross-linked materials. Silk-elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin-only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693-703, 2016. © 2016 Wiley Periodicals, Inc.

  4. Readily available titania nanostructuring routines based on mobility and polarity controlled phase separation of an amphiphilic diblock copolymer.

    PubMed

    Hohn, Nuri; Schlosser, Steffen J; Bießmann, Lorenz; Grott, Sebastian; Xia, Senlin; Wang, Kun; Schwartzkopf, Matthias; Roth, Stephan V; Müller-Buschbaum, Peter

    2018-03-15

    The amphiphilic diblock copolymer polystyrene-block-polyethylene oxide is combined with sol-gel chemistry to control the structure formation of blade-coated foam-like titania thin films. The influence of evaporation time before immersion into a poor solvent bath and polarity of the poor solvent bath are studied. Resulting morphological changes are quantified by scanning electron microscopy (SEM) and grazing incidence small angle X-ray scattering (GISAXS) measurements. SEM images surface structures while GISAXS accesses inner film structures. Due to the correlation of evaporation time and mobility of the polymer template during the phase separation process, a decrease in the distances of neighboring titania nanostructures from 50 nm to 22 nm is achieved. Furthermore, through an increase of polarity of an immersion bath the energetic incompatibility of the hydrophobic block and the solvent can be enhanced, leading to an increase of titania nanostructure distances from 35 nm to 55 nm. Thus, a simple approach is presented to control titania nanostructure in foam-like films prepared via blade coating, which enables an easy upscaling of film preparation.

  5. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE PAGES

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...

    2016-08-16

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  6. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  7. Hybrid films with phase-separated domains: A new class of functional materials

    NASA Astrophysics Data System (ADS)

    Kang, Minjee; Leal, Cecilia

    The cell membrane is highly compartmentalized over micro-and nano scale. The compartmentalized domains play an important role in regulating the diffusion and distribution of species within and across the membrane. In this work, we introduced nanoscale heterogeneities into lipid films for the purpose of developing nature-mimicking phase-separated materials. The mixtures of phospholipids and amphiphilic block copolymers self-assemble into supported 1D multi-bilayers. We observed that in each lamella, mixtures of lipid and polymer phase-separate into domains that differ in their composition akin to sub-phases in cholesterol-containing lipid bilayers. Interestingly, we found evidence that like-domains are in registry across multilayers, making phase separation three-dimensional. To exploit such distinctive domain structure for surface-mediated drug delivery, we incorporated pharmaceutical molecules into the films. The drug release study revealed that the presence of domains in hybrid films modifies the diffusion pathways of drugs that become confined within phase-separated domains. A comprehensive domain structure coupled with drug diffusion pathways in films will be presented, offering new perspectives in designing a thin-film matrix system for controlled drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1554435.

  8. Microphase separation in random multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Govorun, E. N.; Chertovich, A. V.

    2017-01-01

    Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.

  9. Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.

    PubMed

    Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich

    2013-01-01

    A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.

  10. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  11. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly.

    PubMed

    Nunes, Suzana P; Behzad, Ali Reza; Hooghan, Bobby; Sougrat, Rachid; Karunakaran, Madhavan; Pradeep, Neelakanda; Vainio, Ulla; Peinemann, Klaus-Viktor

    2011-05-24

    A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10(14) pores per m(2)), reproducible in m(2) scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Justin; Rzayev, Javid

    Polystyrene–poly(methyl methacrylate)–polylactide (PS–PMMA–PLA) triblock bottlebrush copolymer with nearly symmetric volume fractions was synthesized by grafting from a symmetrical triblock backbone and the resulting melt was characterized by scanning electron microscopy and small-angle X-ray scattering. The copolymer backbone was prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of solketal methacrylate (SM), 2-(bromoisobutyryl)ethyl methacrylate (BIEM), and 5-(trimethylsilyl)-4-pentyn-1-ol methacrylate (TPYM). PMMA branches were grafted by atom transfer radical polymerization from the poly(BIEM) segment, PS branches were grafted by RAFT polymerization from the poly(TPYM) block after installment of the RAFT agents, while PLA side chains were grafted from the deprotected poly(SM) block. Themore » resulting copolymer was found to exhibit a lamellae morphology with a domain spacing of 79 nm. Differential scanning calorimetry analysis indicated that PMMA was preferentially mixing with PS while phase separating from PLA domains.« less

  13. Mechanically Resilient Polymeric Films Doped with a Lithium Compound

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Kinder, James D. (Inventor)

    2005-01-01

    This invention is a series of mechanically resilient polymeric films, comprising rod-coil block polyimide copolymers, which are doped with a lithium compound providing lithium ion conductivity, that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consists of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

  14. Incipient microphase separation in short chain perfluoropolyether-block-poly(ethylene oxide) copolymers.

    PubMed

    Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P

    2017-06-07

    Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.

  15. Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development

    NASA Astrophysics Data System (ADS)

    Tallury, Syamal S.; Mineart, Kenneth P.; Woloszczuk, Sebastian; Williams, David N.; Thompson, Russell B.; Pasquinelli, Melissa A.; Banaszak, Michal; Spontak, Richard J.

    2014-09-01

    Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.

  16. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder the electron-hole recombination. Thus, improved charge separation is expected. In addition, charge migration will also be facilitated due to the expected nano-phase separated and highly ordered block copolymer ultrastructural. The combination of all these factors will result in significant overall enhancement of photovoltaic power conversion efficiency.

  17. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    PubMed

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  18. Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.

    2014-03-01

    Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.

  19. Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends.

    PubMed

    Grundy, Lorena S; Lee, Victoria E; Li, Nannan; Sosa, Chris; Mulhearn, William D; Liu, Rui; Register, Richard A; Nikoubashman, Arash; Prud'homme, Robert K; Panagiotopoulos, Athanassios Z; Priestley, Rodney D

    2018-05-08

    Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morphology consisting of concentric shells or a disordered lamellar morphology when chain dynamics are sufficiently slow to prevent defect annealing during solvent exchange. Blends of homopolymer and block copolymer in the feed stream generate more complex internally structured colloids, such as those with hierarchically structured Janus and patchy morphologies, due to additional phase separation and kinetic trapping effects. The ability of the FNP process to generate such a wide range of morphologies using a simple and scalable setup provides a pathway to manufacturing internally structured colloids on an industrial scale.

  20. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition

    PubMed Central

    Bamaga, Omar A.; Abdel-Aziz, M. H.

    2018-01-01

    In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability. PMID:29510555

  1. Molecular Dynamics Study of Polystyrene-b-poly(ethylene oxide) Asymmetric Diblock Copolymer Systems.

    PubMed

    Dobies, M; Makrocka-Rydzyk, M; Jenczyk, J; Jarek, M; Spontak, R J; Jurga, S

    2017-09-12

    Two polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers differing in molecular mass (49 and 78 kDa) but possessing the same PEO cylindrical morphology are examined to elucidate their molecular dynamics. Of particular interest here is the molecular motion of the PEO blocks involved in the rigid amorphous fraction (RAF). An analysis of complementary thermal calorimetry and X-ray scattering data confirms the presence of microphase-separated morphology as well as semicrystalline structure in each copolymer. Molecular motion within the copolymer systems is monitored by dielectric and nuclear magnetic resonance spectroscopies. The results reported herein reveal the existence of two local Arrhenius-type processes attributed to the noncooperative local motion of PEO segments involved in fully amorphous and rigid amorphous PEO microphases. In both systems, two structural relaxations governed by glass-transition phenomena are identified and assigned to cooperative segmental motion in the fully amorphous phase (the α process) and the RAF (the α c process). We measure the temperature dependence of the dynamics associated with all of the processes mentioned above and propose that these local processes are associated with corresponding cooperative segmental motion in both copolymer systems. In marked contrast to the thermal activation of the α process as discerned in both copolymers, the α c process appears to be a sensitive probe of the copolymer nanostructure. That is, the copolymer with shorter PEO blocks exhibits more highly restricted cooperative dynamics of PEO segments in the RAF, which can be explained in terms of the greater constraint imposed by the glassy PS matrix on the PEO blocks comprising smaller cylindrical microdomains.

  2. Surface and Bulk Phase Separations in Block Copolymers and Their Blends.

    DTIC Science & Technology

    1984-03-01

    research effort in _. the biomedical area to study polymeric surfaces which may be applied where biocompatibility (particularly, blood compatibilty) is...elasticity(thermoplastic) and good biocompatibility . Two such commercially available polyurethanes-, Avcothane and Biomer, have been used in this...the biocompatible properties depended considerably on the rate of evaporation of solvent during the film preparation. ATR-IR spectroscopy showed that

  3. Phase behaviors of supramolecular graft copolymers with reversible bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less

  4. Separation of Cd and Ni from Ni-Cd batteries by an environmentally safe methodology employing aqueous two-phase systems

    NASA Astrophysics Data System (ADS)

    Lacerda, Vânia Gonçalves; Mageste, Aparecida Barbosa; Santos, Igor José Boggione; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol

    The separation of Cd and Ni from Ni-Cd batteries using an aqueous two-phase system (ATPS) composed of copolymer L35, Li 2SO 4 and water is investigated. The extraction behavior of these metals from the bottom phase (BP) to the upper phase (UP) of the ATPS is affected by the amount of added extractant (potassium iodide), tie-line length (TLL), mass ratio between the phases of the ATPS, leaching and dilution factor of the battery samples. Maximum extraction of Cd (99.2 ± 3.1)% and Ni (10.6 ± 0.4)% is obtained when the batteries are leached with HCl, under the following conditions: 62.53% (w/w) TLL, concentration of KI equal to 50.00 mmol kg -1, mass ratio of the phases equal to 0.5 and a dilution factor of battery samples of 35. This novel methodology is efficient to separate the metals in question, with the advantage of being environmentally safe, since water is the main constituent of the ATPS, which is prepared with recyclable and biodegradable compounds.

  5. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  6. Poly(vinylidene difluoride)/poly(tetrafluoroethylene-co-vinylpyrrolidone) blend membranes with antifouling properties.

    PubMed

    Sun, Yuchen; Rajabzadeh, Saeid; Fang, Lifeng; Jeon, Sungil; Zhou, Zhuang; Ohmukai, Yoshikage; Miki, Jun; Wang, Xiaolin; Matsuyama, Hideto

    2017-06-01

    To inhibit fouling phenomenon in membrane process, a new amphiphilic copolymer, poly(tetrafluoroethylene-co-vinylpyrrolidone) (P(TFE-VP)), was blended with poly(vinylidene difluoride) (PVDF) to fabricate a series of antifouling membranes via non solvent induced phase separation (NIPS) method. The effect of copolymer blend ratios and TFE/VP ratios on membrane properties were evaluated, and the stability of P(TFE-VP) in PVDF membrane was studied. The membrane morphology was controlled by adjusting polymer concentration in dope solution, such that all membranes have similar pore size and density, as well as pure water permeability. In evaluating the effect of TFE/VP ratios, the content of VP in dope solutions was also adjusted to allow a fair comparison. We found that for P(TFE-VP) with a higher VP content, adsorption of BSA on polymer film was negligible. Higher blend ratios of this copolymer resulted in higher surface VP content and better hydrophilicity, but antifouling performance ceased to improve when blend ratio was larger than 1:9 (copolymer:PVDF). Meanwhile, a lower VP content in copolymer resulted in inferior hydrophilicity and severe fouling of the blend membranes. It was also proved that comparing with PVP homopolymer, P(TFE-VP) had satisfying stability inside PVDF membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ion Conduction in Microphase-Separated Block Copolymer Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kambe, Yu; Arges, Christopher G.; Patel, Shrayesh

    2017-01-01

    Microphase separation of block copolymers provides a promising route towards engineering a mechanically robust ion conducting film for electrochemical devices. The separation into two different nano-domains enables the film to simultaneously exhibit both high ion conductivity and mechanical robustness, material properties inversely related in most homopolymer and random copolymer electrolytes. To exhibit the maximum conductivity and mechanical robustness, both domains would span across macroscopic length scales enabling uninterrupted ion conduction. One way to achieve this architecture is through external alignment fields that are applied during the microphase separation process. In this review, we present the progress and challenges for aligningmore » the ionic domains in block copolymer electrolytes. A survey of alignment and characterization is followed by a discussion of how the nanoscale architecture affects the bulk conductivity and how alignment may be improved to maximize the number of participating conduction domains.« less

  8. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer.

    PubMed

    Dominguez Pardo, Juan J; Dörr, Jonas M; Iyer, Aditya; Cox, Ruud C; Scheidelaar, Stefan; Koorengevel, Martijn C; Subramaniam, Vinod; Killian, J Antoinette

    2017-01-01

    A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.

  9. Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes.

    PubMed

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-11-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene-polyethylene oxide (PS-PEO) block copolymer (BCP) electrolytes doped with LiPF 6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  10. Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes

    DOE PAGES

    Kinsinger, Corey L.; Liu, Yuan; Liu, Feilong; ...

    2015-10-09

    We present here the experimental and computational characterization of two novel copolyaramide proton exchange membranes (PEMs) with higher conductivity than Nafion at relatively high temperatures, good mechanical properties, high thermal stability, and the capability to operate in low humidity conditions. The random and block copolyaramide PEMs are found to possess different ion exchange capacities (IEC) in addition to subtle structural and morphological differences, which impact the stability and conductivity of the membranes. SAXS patterns indicate the ionomer peak for the dry block copolymer resides at q = 0.1 Å –1, which increases in amplitude when initially hydrated to 25% relativemore » humidity, but then decrease in amplitude with additional hydration. This pattern is hypothesized to signal the transport of water into the polymer matrix resulting in a reduced degree of phase separation. Coupled to these morphological changes, the enhanced proton transport characteristics and structural/mechanical stability for the block copolymer are hypothesized to be primarily due to the ordered structure of ionic clusters that create connected proton transport pathways while reducing swelling upon hydration. Interestingly, the random copolymer did not possess an ionomer peak at any of the hydration levels investigated, indicating a lack of any significant ionomer structure. The random copolymer also demonstrated higher proton conductivity than the block copolymer, which is opposite to the trend normally seen in polymer membranes. However, it has reduced structural/mechanical stability as compared to the block copolymer. In conclusion, this reduction in stability is due to the random morphology formed by entanglements of polymer chains and the adverse swelling characteristics upon hydration. Therefore, the block copolymer with its enhanced proton conductivity characteristics, as compared to Nafion, and favorable structural/mechanical stability, as compared to the random copolymer, represents a viable alternative to current proton exchange membranes.« less

  11. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  12. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  13. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  14. Humidity-Induced Phase Transitions in Ion-Containing Block Copolymer Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Moon Jeong; Nedoma, Alisyn J.; Geissler, Phillip L.

    2008-08-21

    The phase behavior of ion-containing block copolymer membranes in equilibrium with humidified air is studied as a function of the relative humidity (RH) of the surrounding air, ion content of the copolymer, and temperature. Increasing RH at constant temperature results in both disorder-to-order and order-to-order transitions. In-situ small-angle neutron scattering experiments on the open block copolymer system, when combined with water uptake measurement, indicate that the disorder-to-order transition is driven by an increase in the partial molar entropy of the water molecules in the ordered phase relative to that in the disordered phase. This is in contrast to most systemsmore » wherein increasing entropy results in stabilization of the disordered phase.« less

  15. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.

    PubMed

    Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard

    2016-10-01

    The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inter and Intra Molecular Phase Separation Environment Effects on PI-PEO Block Copolymers for Batteries and Fuel Cells

    NASA Technical Reports Server (NTRS)

    Xue, Chen-Chen; Meador, Mary Ann B.; Eby, R. K.; Cheng, Stephen Z. D.; Ge, Jason J.; Cubon, Valerie A.

    2002-01-01

    Rod-coil molecules have been introduced as a novel type of block copolymers with unique microstructure due to their ability to self-assemble to various ordered morphologies on a nanometer length scale. These molecules, comprised two homo polymers joined together at one end, microphase separate into ordered, periodic arrays of spheres, cylinders in the bulk state and or solution. To get ordered structure in a reasonable scale, additional force field are applied, such as mechanical shearing, electric field and magnetic field. Recently, progress has made it a possible to develop a new class of polyimides (PI)-Polyethylene oxide (PEO) that are soluble in polar organic solvents. The solvent-soluble PI-PEO has a wide variety of applications in microelectronics, since these PI-PEO films exhibit a high degree of thermal and chemical stability. In this paper, we report the self-assembled ordered structure of PI-PEO molecules formed from concentrate solution.

  17. Cell adhesion on nanotopography

    NASA Astrophysics Data System (ADS)

    Tsai, Irene; Kimura, Masahiro; Stockton, Rebecca; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell adhesion, a key element in understanding the cell-biomaterial interactions, underpins proper cell growth, function and survival. Understanding the parameters influencing cell adhesion is critical for applications in biosensors, implants and bioreactors. A gradient surface is used to study the effect of the surface topography on cell adhesion. A gradient surface is generated by block copolymer and homopolymer blends. The two homopolymers will phase separate on the micron scale and gradually decrease to nano-scale by the microphase separation of the diblock. Gradient surfaces offer a unique opportunity to probe lateral variations in the topography and interactions. Using thin films of mixtures of diblock copolymers of PS-b-MMA with PS and PMMA homopolymers, where the concentration of the PS-b-MMA varies across the surface, a gradient in the size scale of the morphology, from the nanoscopic to microscopic, was produced. By UV exposure, the variation in morphology translated into a variation in topography. The extent of cell spreading and cytoskeleton formation was investigated and marked dependence on the length scale of the surface topography was found.

  18. Conformation of single block copolymer chain in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    PubMed

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-05-21

    The localization and orientation of the symmetric diblock copolymer chain in a quasi-two-dimensional microphase-separated structure were studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(isobutyl methacrylate)-block-poly(octadecyl methacrylate) (PiBMA-b-PODMA), the individual PiBMA subchains were directly observed by SNOM, and the center of mass (CM) and orientational angle relative to the phase interface were examined at the single chain level. It was found that the position of the CM and the orientation of the PiBMA subchain in the lamellar structure were dependent on the curvature of the PiBMA/PODMA interface. As the interface was bent toward the objective chain, the block chain preferred the CM position closer to the domain center, and the conformation was strongly oriented perpendicularly to the domain interface. With increase of the curvature, the steric hindrance among the block chain increases, resulting in the stretched conformation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ionmore » exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.« less

  20. Preparation of novel alkaline pH-responsive copolymers for the formation of recyclable aqueous two-phase systems and their application in the extraction of lincomycin.

    PubMed

    Liu, Jiali; Cao, Xuejun

    2016-02-01

    Aqueous two-phase systems have potential industrial application in bioseparation and biocatalysis engineering; however, their practical application is limited primarily because the copolymers involved in the formation of aqueous two-phase systems cannot be recovered. In this study, two novel alkaline pH-responsive copolymers were synthesized and examined for the extraction of lincomycin. The two copolymers could form a novel alkaline aqueous two-phase systems when their concentrations were both 6% w/w and the pH was 8.4(±0.1)-8.7(±0.1). One copolymer was synthesized using acrylic acid, 2-(dimethylamino)ethyl methacrylate, and butyl methacrylate as monomers. Moreover, 98.8% of the copolymer could be recovered by adjusting the solution pH to its isoelectric point (pH 6.29). The other copolymer was synthesized using the monomers methacrylic acid, 2-(dimethylamino)ethyl methacrylate, and methyl methacrylate. In this case, 96.7% of the copolymer could be recovered by adjusting the solution pH to 7.19. The optimal partition coefficient of lincomycin was 0.17 at 30°C in the presence of 10 mM KBr and 5.5 at 40°C in the presence of 80 mM Ti(SO4)2 using the novel alkaline aqueous two-phase systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Crystallization and Microphase Separation in Chiral Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ho, Rong-Ming

    2012-02-01

    Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA=x Tg,PS, respectively. Anisotropic arrangement of the PLLA crystallites grown within the microdomains was identified. The formation of this exclusive crystalline growth is attributed to the spatial confinement effect for crystallization. While Tc,PLLA=x Tg,PS, the preferential growth may modulate the curvature of microdomains by shifting the molecular chains to access the fast path for crystalline growth due to the increase in chain mobility. As a result, a spring-like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation of helices and to result in crystalline cylinders.

  2. High-temperature two-dimensional liquid chromatography of ethylene-vinylacetate copolymers.

    PubMed

    Ginzburg, Anton; Macko, Tibor; Dolle, Volker; Brüll, Robert

    2010-10-29

    Temperature rising elution fractionation hyphenated to size exclusion chromatography (TREF×SEC) is a routine technique to determine the chemical heterogeneity of semicrystalline olefin copolymers. Its applicability is limited to well crystallizing samples. High-temperature two-dimensional liquid chromatography, HT 2D-LC, where the chromatographic separation by HPLC is hyphenated to SEC (HPLC×SEC) holds the promise to separate such materials irrespective of their crystallizability. A model blend consisting of ethylene-vinyl acetate (EVA) copolymers covering a broad range of chemical composition distribution including amorphous and semicrystalline copolymers and a polyethylene standard was separated by HT 2D-LC at 140°C. Both axes of the contour plot, i.e. the compositional axis from the HPLC and the molar mass axis from the SEC separation were calibrated for the first time. Therefore, a new approach to determine the void and dwell volume of the developed HT 2D-LC instrument was applied. The results from the HT 2D-LC separation are compared to those from a cross-fractionation (TREF×SEC) experiment. Copyright © 2010. Published by Elsevier B.V.

  3. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co- bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fast separation of proteins and oligonucleotides.

    PubMed

    Jakschitz, Thomas A E; Huck, Christian W; Lubbad, Said; Bonn, Günther K

    2007-04-13

    In this paper the synthesis, optimisation and application of a silane based monolithic copolymer for the rapid separation of proteins and oligonucleotides is described. The monolith was prepared by thermal initiated in situ copolymerisation of trimethylsilyl-4-methylstyrene (TMSiMS) and bis(4-vinylbenzyl)dimethylsilane (BVBDMSi) in a silanised 200 microm I.D. fused silica column. Different ratios of monomer and crosslinker, as well as different ratios of micro- (toluene) and macro-porogen (2-propanol) were used for optimising the physical properties of the stationary phase regarding separation efficiency. The prepared monolithic stationary phases were characterised by measurement of permeability with different solvents, determination of pore size distribution by mercury intrusion porosimetry (MIP). Morphology was studied by scanning electron microscopy (SEM). Applying optimised conditions, a mixture comprised of five standard proteins ribunuclease A, cytochrome c, alpha-lactalbumine, myoglobine and ovalbumine was separated within 1 min by ion-pair reversed-phase liquid chromatography (IP-RPLC) obtaining half-height peak widths between 1.8 and 2.4 s. Baseline separation of oligonucleotides d(pT)(12-18) was achieved within 1.8 min obtaining half-height peak widths between 3.6 and 5.4 s. The results demonstrate the high potential of this stationary phase for fast separation of high-molecular weight biomolecules such as oligonucleotides and proteins.

  4. Stabilizing Various Bicontinuous Morphologies via Polydispersity of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Lai, Chi To; Shi, An-Chang

    Diblock copolymers are macromolecules composed of two chemically distinct homopolymers covalently bound end-to-end. The ability to self-assembly into a wide variety of ordered periodic structures, as means of minimizing the free energy, is their most well-studied property. There are many factors affecting the observed equilibrium morphology, one of which is polydispersity. The phase behaviour of polydispersed diblock copolymers is more rich, and diverse when compared to their monodispersed counterpart. The rich behaviour of polydispersed diblock copolymers provides an opportunity to engineer novel morphologies which are not available in monodispersed systems. Using the self-consistent field theory (SCFT), we explore the possibility of exploiting polydispersity of diblock copolymers in binary mixtures to stabilize the various bicontinuous phases, such as the double-diamond morphology. Specifically, solutions of the SCFT equations corresponding to different bicontinuous phases are obtained numerically for binary mixtures of diblock copolymers. The relative stability of the different ordered phases is examined by comparing their free energy. From the study, we determine optimal sets of parameters that stabilize the double-diamond or other exotic morphologies.

  5. Controlling block copolymer phase behavior using ionic surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D.; Aswal, V. K.

    2016-05-23

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at highermore » temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.« less

  6. Comprehensive overview of recent preparation and application trends of various open tubular capillary columns in separation science.

    PubMed

    Cheong, Won Jo; Ali, Faiz; Kim, Yune Sung; Lee, Jin Wook

    2013-09-20

    Open tubular (OT) capillary columns have been increasingly used in a variety of fields of separation science such as CEC, LC, and SPE. Especially their application in CEC has attracted a lot of attention for their outstanding separation performance. Various forms of OT stationary phase materials have been employed such as in-situ prepared polymers, molecular imprinted polymers (MIPs), brush ligands, host ligands, block copolymers, aptamers, carbon nanotubes, polysaccharides, proteins, tentacles, nanoparticles, monoliths, and polyelectrolyte multi-layers. They have been prepared either in the chemically bound format or physically adsorbed format. Sol-gel technologies and nanoparticles have been sometimes involved in their preparation. There have been also some unique miscellaneous studies, for example, adopting preferentially adsorbed mobile phase components as stationary phases. In this review, recent progresses since mostly 2007 will be critically discussed in detail with some summarized descriptions for the work before the date. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions

    NASA Astrophysics Data System (ADS)

    Tasios, Nikos; Samin, Sela; van Roij, René; Dijkstra, Marjolein

    2017-11-01

    We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially modulated solvent composition, in which the ions partition between water-rich and water-poor regions according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the concentrations, the ionic properties, and the temperature.

  8. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  9. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM AQUEOUS SOLUTIONS BY PERVAPORATION USING S-B-S BLOCK COPOLYMER MEMBRANES.

    EPA Science Inventory

    Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE, and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...

  10. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM AQUEOUS SOLUTIONS BY PERVAPORATION USING S-B-S BLOCK COPOLYMER MEMBRANES

    EPA Science Inventory

    Composite membranes of a block copolymer of styrene and butadiene (S-B-S) were cast on highly porous, hydrophobic thin films of PTFE and used for the separation and recovery of volatile organic compounds (VOCs) from aqueous solutions by pervaporation. Trichloroethane, trichloroe...

  11. Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC.

    PubMed

    Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng

    2016-11-01

    Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Water Transport in Bicontinuous, Phase-Separated Membranes Made from Reactive Block Copolymers

    DTIC Science & Technology

    2014-12-01

    polyurethane foam impregnated with activated carbon, a design that allows perspiration to evaporate while chemical agents are adsorbed onto the activated... dispersed into a minimal volume (4–5 drops) of ethanol. The catalyst solution was then added to the polymer solution while stirring rapidly. The solution...substituted styrene monomer; one interior block with units of other styrene monomers which have been sulfonated; non- dispersible and solid in water

  13. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  14. Intradomain phase transitions in flexible block copolymers with self-aligning segments.

    PubMed

    Burke, Christopher J; Grason, Gregory M

    2018-05-07

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

  15. Intradomain phase transitions in flexible block copolymers with self-aligning segments

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Grason, Gregory M.

    2018-05-01

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ɛ). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ɛ needed to induce this intra-domain phase transition.

  16. Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory.

    PubMed

    Wang, Rong; Tang, Ping; Qiu, Feng; Yang, Yuliang

    2005-09-15

    The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.

  17. Nanostructured membranes based on polysulfone homopolymers and copolymers

    NASA Astrophysics Data System (ADS)

    Nunes, Suzana

    Polyethersulfone is one of the most successful polymers for membranes with applications varying from seawater desalination to hemodialysis. Their manufacture however is traditionally done by solution casting and phase inversion using solvents, which are now considered negative for the environment. We have been working on the membrane manufacture using ionic liquids as green solvent alternative. Polyethersulfone, and polyetherimide sulfone membranes, as flat-sheet and hollow fibers, were prepared from solutions in different ionic liquids. Thermodynamic and rheological investigation were conducted to optimize the membrane morphology, leading to permeances of 20-65 Lm-2h-1bar-1 useful for instance for separations of peptides with molecular weight in the range of 800 to 3500 gmol-1. We also synthesized block copolymers with polysulfone segments and explored them for membrane preparation with low fouling, high porosity and narrow pore size distribution. The self-assembly of the copolymer in solution, leading to the membrane formation was investigated by cryo electron microscopy, supported by modeling (dissipative particle dynamics). In collaboration with: Dooli Kim, Yihui xie, Burhannudin Sutisna, King Abdullah University of Science and Technology

  18. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to promote efficient mixing of the polymer, initiator, monomer, and solvent. The grafting was qualitatively confirmed by means of a FTIR and quantitatively using titration. The polymer blends were synthesized in a single screw extruder. Rheological, morphological, thermal, mechanical, and molecular weight studies were done on these blends. The graft copolymers produced in larger batches had the same amount of graft content as those produced in smaller batches. This small success is a positive step towards the goal of commercializing this process. Grafting of acrylic acid onto polypropylene gave graft levels of 4 weight percent. However, the attempt to graft maleic anhydride onto polystyrene was not successful. The solid phase graft copolymers were successfully able to compatibilize the polymer blend systems studied (PS/PMMA, PS/nylon 6,6, PS/nylon 6, and PP/nylon 6). The properties of the blends compatibilized using the solid phase graft copolymers were comparable to and in some instances, better than those of the blends compatibilized with commercially available graft copolymers. The successful scale-up of the process, development of new graft copolymers and ability of copolymers to compatibilize blends augurs well for the solid phase grafting process.

  19. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  20. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    PubMed

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.

  2. The Influence of Charged Species on the Phase Behavior, Self-Assembly, and Electrochemical Performance of Block Copolymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Thelen, Jacob Lloyd

    One of the major barriers to expanding the capacity of large-scale electrochemical energy storage within batteries is the threat of a catastrophic failure. Catastrophic battery pack failure can be initiated by a defect within a single battery cell. If the failure of a defective battery cell is not contained, the damage can spread and subsequently compromise the integrity of the entire battery back, as well as the safety of those in its surroundings. Replacing the volatile, flammable liquid electrolyte components found in most current lithium ion batteries with a solid polymer electrolyte (SPE) would significantly improve the cell-level safety of batteries; however, poor ionic conductivity and restricted operating temperatures compared to liquid electrolytes have plagued the practical application of SPEs. Rather than competing with the performance of liquid electrolytes directly, our approach to developing SPEs relies on increasing electrolyte functionality through the use of block copolymer architectures. Block copolymers, wherein two or more chemically dissimilar polymer chains are covalently bound, have a propensity to microphase separate into nanoscale domains that have physical properties similar to those of each of the different polymer chains. For instance, the block copolymer, polystyrene-b-poly(ethylene oxide) (SEO), has often been employed as a solid polymer electrolyte because the nanoscale domains of polystyrene (PS) can provide mechanical reinforcement, while the poly(ethylene oxide) microphases can solvate and conduct lithium ions. Block copolymer electrolytes (BCEs) formed from SEO/salt mixtures result in a material with the bulk mechanical properties of a solid, but with the ion conducting properties of a viscoelastic fluid. The efficacy SEO-based BCEs has been demonstrated; the enhanced mechanical functionality provided by the PS domains resist the propagation of dendritic lithium structures during battery operation, thus enabling the use of a lithium metal anode. The increase in the specific energy of a battery upon replacing a graphite anode with lithium metal can offset the losses in performance due to the poor ion conduction of SPEs. However, BCEs that enable the use of a lithium anode and have improved performance would represent a major breakthrough for the development of high capacity batteries. The electrochemical performance of BCEs has a complex relationship with the nature of the microphase separated domains, which is not well-understood. The objective of this dissertation is to provide fundamental insight into the nature of microphase separation and self-assembly of block copolymer electrolytes. Specifically, I will focus on how the ion-polymer interactions within a diverse set of BCEs dictate nanostructure. Combining such insight with knowledge of how nanostructure influences ion motion will enable the rational design of new BCEs with enhanced performance and functionality. In order to facilitate the study of BCE nanostructure, synchrotron-based X-ray scattering techniques were used to study samples over a wide range of length-scales under conditions relevant to the battery environment. The development of the experimental aspects of the X-ray scattering techniques, as well as an improved treatment of scattering data, played a pivotal role in the success of this work. The dissemination of those developments will be the focus of the first section. The thermodynamic impact of adding salt to a neutral diblock copolymer was studied in a model BCE composed of a low molecular weight SEO diblock copolymer mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a common salt used in lithium batteries. In neutral block copolymers (BCPs), self-assembly is a thermodynamically driven process governed by a balance between unfavorable monomer contacts and the entropy of mixing. When the enthalpic and entropic contributions to free energy are similar in magnitude, a block copolymer can undergo a thermally reversible phase transition from an ordered to a disordered nanostructure. We used temperature-dependent small angle X-ray scattering (SAXS) to observe this transition in the model SEO/LiTFSI system. Unlike neutral BCPs, which to a first approximation are single component systems, the SEO/LiTFSI system demonstrated the thermodynamically stable coexistence phases of ordered lamellae and disordered polymer over a finite temperature window. Analysis of the lamellar domains revealed an increase in salt concentration during the ODT, indicating local salt partitioning due to the presence of nanostructure. The performance of BCEs can also be improved by chemically functionalizing one of the polymer blocks by covalently attaching the salt anion. Since the cation is the only mobile species, these materials are coined single-ion conducting block copolymers. Single ion conduction can improve the efficiency of battery operation. In order for cation motion to occur in single-ion conducting block copolymers, it must dissociate from the backbone of the anion-containing polymer block. This direct coupling of ion dissociation (and hence conduction) and nanostructure has interesting implications for BCE performance. (Abstract shortened by ProQuest.).

  3. Silacyclobutane-based diblock copolymers with vinylferrocene, ferrocenylmethyl methacrylate, and [1]dimethylsilaferrocenophane.

    PubMed

    Gallei, Markus; Tockner, Stefan; Klein, Roland; Rehahn, Matthias

    2010-05-12

    Well-defined diblock copolymers have been prepared in which three different ferrocene-based monomers are combined with 1,1-dimethylsilacyclobutane (DMSB) and 1-methylsilacyclobutane, respectively, as their carbosilane counterparts. Optimized procedures are reported for the living anionic chain growth following sequential monomer addition protocols, ensuring narrow polydispersities and high blocking efficiencies. The DMSB-containing copolymers show phase segregation in the bulk state, leading to micromorphologies composed of crystalline DMSB phases and amorphous polymetallocene phases. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrastructure Processing of Macromolecular Materials.

    DTIC Science & Technology

    1983-09-01

    349-356 (1982) (with R. Vukovic , V. Kuresevic, and W. J . MacKnight) "The Investigation of the Compatibility and Phase Separation of Poly (2,6-Dimethyl...Sci. 28, 219-224 (1983) (with R. Vukovic , W. J . MacKnight) "Compatibility of Some Fluorosubstituted Styrene Polymers and Copolymers in Blends with Poly...Points in Blends of Polystyrene and Poly (o-chlorostyrene)". 15. Polymer 24, 529-533 (1983) (with R. Vukovic and W. J . MacKnight) "Compati--ity of Poly(p

  5. Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride.

    PubMed

    Ahmed, Osama Abdelhakim Aly; Zidan, Ahmed Samir; Khayat, Maan

    2016-01-01

    The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride-Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel. Sixteen nanoparticle formulations were prepared by liquid-liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC), particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles. Furthermore, the feasibility of embedding the optimized Zein-based glimepiride nanoparticles within thermoresponsive triblock copolymers poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) in in situ gel was evaluated for controlling glimepiride release rate. Through the systematic optimization phase, improvement of glimepiride EC of 33.6%, nanoparticle size of 120.9 nm with a skewness value of 0.2, zeta potential of 11.1 mV, and sustained release features of 3.3% and 17.3% drug released after 2 and 24 hours, respectively, were obtained. These desirability functions were obtained at Zein and glimepiride loadings of 50 and 75 mg, respectively, utilizing didodecyldimethylammonium bromide as a stabilizer at 0.1% and 90% ethanol as a common solvent. Moreover, incorporating this optimized formulation in triblock copolymers-based in situ gel demonstrated pseudoplastic behavior with reduction of drug release rate as the concentration of polymer increased. This approach to control the release of glimepiride using Zein nanoparticles/triblock copolymers-based in situ gel forming intramuscular implants could be useful for improving diabetes treatment effectiveness.

  6. New self-assembly strategies for next generation lithography

    NASA Astrophysics Data System (ADS)

    Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.

    2010-04-01

    Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.

  7. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  8. Shifting the Phase Boundary with Electric Fields to Jump In and Out of the Phase Diagram at Constant Temperature

    NASA Astrophysics Data System (ADS)

    Roth, Connie B.; Kriisa, Annika

    Understanding the phase behavior of polymer blends and block copolymers under the presence of electric fields is important for advanced applications containing electrodes such as organic photovoltaics and batteries, as well as for field-directed assembly and alignment of domains. We have recently demonstrated that electric fields enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether blends) (PVME) blends, shifting the phase separation temperature Ts(E) up by 13.5 +/- 1.4 K for electric field strengths of E = 1.7 MV/m. Experimentally this effect is much larger than the traditional predictions from adding the standard electrostatic energy term for mixtures to the free energy of mixing. However, accounting for the energy penalty of dielectric interfaces between domains created during phase separation, the primary factor that drives alignment of domains, may also be responsible for the change in miscibility. Here we investigate the dynamics of repeatedly jumping the system from the one-phase to the two-phase region and demonstrate that this can be done at a constant temperature simply by turning the electric field on and off, illustrating electric-field-induced remixing in the two-phase region.

  9. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  10. Phase Structure and Properties of a Biodegradable Block Copolymer Coalesced from It's Crystalline Inclusion Compound Formed with alpha-Cyclodextrin

    NASA Astrophysics Data System (ADS)

    Shuai, Xintao; Wei, Min; Probeni, Francis; Bullions, Todd A.; Shin, I. Daniel; Tonelli, Alan E.

    2002-03-01

    A well-defined biodegradable block copolymer of poly(epsilon caprolactone) (PCL) and poly(L-lactic acid) (PLLA) was synthesized and characterized and then included as a guest in an inclusion compound (IC) formed with the host alpha-cyclodextrin (CD). The PCL-b-PLLA block copolymer was subsequently coalesced from it's CD-IC crystals by either treatment with hot water (50 C) or an aqueous amylase solution at 25 C. The coalesced PCL-b-PLLA was examined by FTIR, DSC, TGA, and WAXD and was found to be much more homogeneosly organized, with much less segregation and crystallinity of the PCL and PLLA microphases. The morpholgy, crystallization kinetics, thermal behavior, and biodegradability of the coalesced PCL-b-PLLA block copolymer was studied by comparison to similar observations made on as-synthesized PCL-b-PLLA, PCL and PLLA homopolymers, and their solution-cast blend. The PCL and PLLA blocks are found to be more intimately mixed, with less phase segregation, in the coalesced diblock copolymer, and this leads to homogeneous bulk crystallization, which is not observed for the as-synthesized diblock copolymer. The coalesced PCL-b-PLLA was also found to be more quickly biodegraded (lipase from Rhizopus arrhizus)than the as-synthesized PCL-b-PLLA or the physical blend of PCL and PLLA homopolymers. Overall, the coalescence of the inherently phase segregated diblock copolymer PCL-b-PLLA results in a small amount of compact, chain-extended PCL and PLLA crystals embedded in an amorphous phase, largely consisting of well-mixed PCL and PLLA blocks. Thus, we have demonstrated that it is possible to control the morpholgy of a biodegradable diblock copolymer, thereby significantly modifying it's properties, by coalescence from it's CD-IC crystals.

  11. Coupling of microphase separation and dewetting in weakly segregated diblock co-polymer ultrathin films.

    PubMed

    Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun

    2011-10-04

    We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society

  12. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior ofmore » the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].« less

  13. Self-doped microphase separated block copolymer electrolyte

    DOEpatents

    Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying

    2002-01-01

    A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.

  14. Amphiphilic block copolymer membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena

    2013-11-01

    An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.

  15. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  16. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE PAGES

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; ...

    2015-02-03

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  17. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this work, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate-monomer and monomer-monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. Finally, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  18. A Facile Synthesis of Dynamic, Shape Changing Polymer Particles

    PubMed Central

    Klinger, Daniel; Wang, Cynthia; Connal, Luke A.; Audus, Debra J.; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J.

    2014-01-01

    We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles exhibiting a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric PS-b-P2VP in dispersed droplets. In a second step, the dynamic shape change is realized by crosslinking the P2VP domains, hereby connecting glassy PS discs with pH-sensitive hydrogel actuators. PMID:24700705

  19. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Gavrilov, Alexey A.; Kudryavtsev, Yaroslav V.; Chertovich, Alexander V.

    2013-12-01

    Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D/N1/2 ˜ (χN)1/6, whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.

  20. Optoelectronic Properties of Conjugated Block Copolymer with Flexible Linking Group

    NASA Astrophysics Data System (ADS)

    Hu, Zhiqi; Verduzco, Rafael

    State-of-the-art organic photovoltaics (OPVs) are prepared by depositing a disordered, co-continuous donor and acceptor blend. While optimization of material processing has produced significant improvements in performance, a fundamental understanding of charge separation and recombination at the donor/acceptor interface is lacking. Block copolymers with donor and acceptor polymer blocks provide an opportunity for controlling the donor-accepter interfacial structure and understanding its relationship to charge separation and photovoltaic performance. Here, we report the synthesis and characterization of donor-linker-acceptor block copolymers for use in OPVs. A series of poly(3-hexylthiophene)-block- poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-linkerPFTBT) are synthesized with flexible oligo-ethylene glycol (PEG) linkers. Photoluminescence measurements demonstrate that the insertion of a non-conjugated linker has a significant impact on energy transfer between the two blocks, and the block copolymers are used as additives for bulk heterojunction OPVs. This work provides insight into the charge separation process and demonstrates a technique for tailoring the donor-accepter interface in OPVs.

  1. Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations

    DOE PAGES

    Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...

    2016-06-22

    Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less

  2. Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells.

    PubMed

    Khor, Hwei Ling; Kuan, Yujun; Kukula, Hildegard; Tamada, Kaoru; Knoll, Wolfgang; Moeller, Martin; Hutmacher, Dietmar W

    2007-05-01

    Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns.

  3. Supramolecular guests in solvent driven block copolymer assembly: From internally structured nanoparticles to micelles

    PubMed Central

    Klinger, Daniel; Robb, Maxwell J.; Spruell, Jason M.; Lynd, Nathaniel A.; Hawker, Craig J.

    2014-01-01

    Supramolecular interactions between different hydrogen-bonding guests and poly(2-vinyl pyridine)-block-poly (styrene) can be exploited to prepare remarkably diverse self-assembled nanostructures in dispersion from a single block copolymer (BCP). The characteristics of the BCP can be efficiently controlled by tailoring the properties of a guest which preferentially binds to the P2VP block. For example, the incorporation of a hydrophobic guest creates a hydrophobic BCP complex that forms phase separated nanoparticles upon self-assembly. Conversely, the incorporation of a hydrophilic guest results in an amphiphilic BCP complex that forms spherical micelles in water. The ability to tune the self-assembly behavior and access dramatically different nanostructures from a single BCP substrate demonstrates the exceptional versatility of the self-assembly of BCPs driven by supramolecular interactions. This approach represents a new methodology that will enable the further design of complex, responsive self-assembled nanostructures. PMID:25525473

  4. Perfect mixing of immiscible macromolecules at fluid interfaces

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Matyjaszewski, Krzysztof; Tsukruk, Vladimir; Carrillo, Jan-Michael; Rubinstein, Michael; Dobrynin, Andrey; Zhou, Jing

    2014-03-01

    Macromolecules typically phase separate unless their shapes and chemical compositions are tailored to explicitly drive mixing. But now our research has shown that physical constraints can drive spontaneous mixing of chemically different species. We have obtained long-range 2D arrays of perfectly mixed macromolecules having a variety of molecular architectures and chemistries, including linear chains, block-copolymer stars, and bottlebrush copolymers with hydrophobic, hydrophilic, and lipophobic chemical compositions. This is achieved by entropy-driven enhancement of steric repulsion between macromolecules anchored on a substrate. By monitoring the kinetics of mixing, we have proved that molecular intercalation is an equilibrium state. The array spacing is controlled by the length of the brush side chains. This entropic templating strategy opens new ways for generating patterns on sub-100 nm length scales with potential application in lithography, directed self-assembly, and biomedical assays. Financial support from the National Science Foundation DMR-0906985, DMR-1004576, DMR-1122483, and DMR-0907515.

  5. Capillary electrochromatography of inorganic cations in open tubular columns with a controllable capacity multilayered stationary phase architecture.

    PubMed

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr

    2008-05-09

    In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.

  6. Effects of organoclay to miscibility, mechanical and thermal properties of poly(lactic acid) and propylene-ethylene copolymer blends

    NASA Astrophysics Data System (ADS)

    Wacharawichanant, S.; Ounyai, C.; Rassamee, P.

    2017-07-01

    The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.

  7. Development of Ordered, Porous (Sub-25 nm Dimensions) Surface Membrane Structures Using a Block Copolymer Approach.

    PubMed

    Ghoshal, Tandra; Holmes, Justin D; Morris, Michael A

    2018-05-08

    In an effort to develop block copolymer lithography to create high aspect vertical pore arrangements in a substrate surface we have used a microphase separated poly(ethylene oxide) -b- polystyrene (PEO-b-PS) block copolymer (BCP) thin film where (and most unusually) PS not PEO is the cylinder forming phase and PEO is the majority block. Compared to previous work, we can amplify etch contrast by inclusion of hard mask material into the matrix block allowing the cylinder polymer to be removed and the exposed substrate subject to deep etching thereby generating uniform, arranged, sub-25 nm cylindrical nanopore arrays. Briefly, selective metal ion inclusion into the PEO matrix and subsequent processing (etch/modification) was applied for creating iron oxide nanohole arrays. The oxide nanoholes (22 nm diameter) were cylindrical, uniform diameter and mimics the original BCP nanopatterns. The oxide nanohole network is demonstrated as a resistant mask to fabricate ultra dense, well ordered, good sidewall profile silicon nanopore arrays on substrate surface through the pattern transfer approach. The Si nanopores have uniform diameter and smooth sidewalls throughout their depth. The depth of the porous structure can be controlled via the etch process.

  8. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  9. In-situ polymerized PLOT columns III: divinylbenzene copolymers and dimethacrylate homopolymers

    NASA Technical Reports Server (NTRS)

    Shen, T. C.; Fong, M. M.

    1994-01-01

    Studies of divinylbenzene copolymers and dimethacrylate homopolymers indicate that the polymer pore size controls the separation of water and ammonia on porous-layer-open-tubular (PLOT) columns. To a lesser degree, the polarity of the polymers also affects the separation of a water-ammonia gas mixture. Our results demonstrate that the pore size can be regulated by controlling the cross-linking density or the chain length between the cross-linking functional groups. An optimum pore size will provide the best separation of water and ammonia.

  10. Phase separation of DMDBS from iPP, and controlled crystalline orientation

    NASA Astrophysics Data System (ADS)

    Sreenivas, K.; Kumaraswamy, Guruswamy; Basargekar, R. S.

    2012-02-01

    We report an unexpected dependence of DMDBS phase separation temperature on the molecular weight of the matrix isotactic polypropylene (iPP). DMDBS crystallizes out at lower temperatures for iPP with decreasing molecular weight (and correspondingly lower tacticity). This molecular weight dependence is unique to iPP, and is not observed for either syndiotactic PP or for random ethylene-PP copolymers. We show that thermodynamic Flory-type arguments are unable to rationalize the observed results. We also results on extrusion film casting of iPP containing DMDBS and show that flow-alignment of DMDBS networks template the orientation of PP crystals. The modulus and yield strength increase on addition of DMDBS, relative to the neat iPP. Tensile modulus and yield stress of drawn films increase with the degree of orientation, and we are able to achieve a substantial increase even at relatively low draw ratios.

  11. Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa

    Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work supported by the National Science Foundation under Grant 1454343 and the Department of Energy under Grant DE-SC0014209.

  12. Hydrogen Bonding-Mediated Microphase Separation during the Formation of Mesoporous Novolac-Type Phenolic Resin Templated by the Triblock Copolymer, PEO-b-PPO-b-PEO

    PubMed Central

    Chu, Wei-Cheng; Chiang, Shih-Fan; Li, Jheng-Guang; Kuo, Shiao-Wei

    2013-01-01

    After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO) with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine as the curing agent resulted in the triblock copolymer being incorporated into the phenolic resin, forming a nanostructure through a mechanism involving reaction-induced microphase separation. Mild pyrolysis conditions led to the removal of the PEO-b-PPO-b-PEO triblock copolymer and formation of mesoporous phenolic resin. This approach provided a variety of composition-dependent nanostructures, including disordered wormlike, body-centered-cubic spherical and disorder micelles. The regular mesoporous novolac-type phenolic resin was formed only at a phenolic content of 40–60 wt %, the result of an intriguing balance of hydrogen bonding interactions among the phenolic resin and the PEO and PPO segments of the triblock copolymer. PMID:28788378

  13. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    PubMed

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains

    NASA Astrophysics Data System (ADS)

    Dorenbos, G.

    2017-06-01

    Phase separation within a series of polymer membranes in the presence of water is studied by dissipative particle dynamics. Each polymer contains hydrophobic A beads and hydrophilic C beads. Three parent architectures are constructed from a backbone composed of connected hydrophobic A beads to which short ([C]), long ([A3C]), or symmetrically branched A5[AC][AC] side chains spring off. Three di-block copolymer derivatives are constructed by covalently bonding an A30 block to each parent architecture. Also three tri-blocks with A15 blocks attached to both ends of each parent architecture are modeled. Monte Carlo tracer diffusion calculations through the water containing pores for 1226 morphologies reveal that water diffusion for parent architectures is slowest and diffusion through the di-blocks is fastest. Furthermore, diffusion increases with side chain length and is highest for branched side chains. This is explained by the increase of water pore size with , which is the average number of bonds that A beads are separated from a nearest C bead. Optimization of within the amphiphilic parent architecture is expected to be essential in improving proton conduction in polymer electrolyte membranes.

  15. Critical Conditions for Liquid Chromatography of Statistical Copolymers: Functionality Type and Composition Distribution Characterization by UP-LCCC/ESI-MS.

    PubMed

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2017-02-07

    Statistical ethylene oxide (EO) and propylene oxide (PO) copolymers of different monomer compositions and different average molar masses additionally containing two kinds of end groups (FTD) were investigated by ultra high pressure liquid chromatography under critical conditions (UP-LCCC) combined with electrospray ionization time-of flight mass spectrometry (ESI-TOF-MS). Theoretical predictions of the existence of a critical adsorption point (CPA) for statistical copolymers with a given chemical and sequence distribution1 could be studied and confirmed. A fundamentally new approach to determine these critical conditions in a copolymer, alongside the inevitable chemical composition distribution (CCD), with mass spectrometric detection, is described. The shift of the critical eluent composition with the monomer composition of the polymers was determined. Due to the broad molar mass distribution (MMD) and the presumed existence of different end group functionalities as well as monomer sequence distribution (MSD), gradient separation only by CCD was not possible. Therefore, isocratic separation conditions at the CPA of definite CCD fractions were developed. Although the various present distributions partly superimposed the separation process, the goal of separation by end group functionality was still achieved on the basis of the additional dimension of ESI-TOF-MS. The existence of HO-H besides the desired allylO-H end group functionalities was confirmed and their amount estimated. Furthermore, indications for a MSD were found by UPLC/MS/MS measurements. This approach offers for the first time the possibility to obtain a fingerprint of a broad distributed statistical copolymer including MMD, FTD, CCD, and MSD.

  16. Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes.

    PubMed

    Ran, Fen; Wu, Yage; Jiang, Minghuan; Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2018-03-28

    In this study, a hybrid electrode material for supercapacitors based on hierarchical porous carbon fiber@vanadium nitride nanoparticles is fabricated using the method of phase-separation mediated by the PAA-b-PAN-b-PAA tri-block copolymer. In the phase-separation procedure, the ionic block copolymer self-assembled on the surface of carbon nanofibers, and is used to adsorb NH 4 VO 3 . Thermal treatment at controlled temperatures under an NH 3  : N 2 atmosphere led to the formation of vanadium nitride nanoparticles that are distributed uniformly on the nanofiber surface. By changing the PAN to PAA-b-PAN-b-PAA ratio in the casting solution, a maximum specific capacitance of 240.5 F g -1 is achieved at the current density of 0.5 A g -1 with good rate capability at a capacitance retention of 72.1% at 5.0 A g -1 in an aqueous electrolyte of 6 mol L -1 KOH within the potential range of -1.10 to 0 V (rN/A = 1.5/1.0). Moreover, an asymmetric supercapacitor is assembled by using the hierarchical porous carbon fiber@vanadium nitride as the negative electrode and Ni(OH) 2 as the positive electrode. Remarkably, at the power density of 400 W kg -1 , the supercapacitor device delivers a better energy density of 39.3 W h kg -1 . It also shows excellent electrochemical stability, and thus might be used as a promising energy-storage device.

  17. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer combinations were carried out to investigate the interplay between morphology, mesophase behavior and blend composition (molar ratios of proton acceptors to proton donors). A critical composition for mesophase formation was identified and the characteristics of the H-bonded complexes below the critical blend ratios were very different than those above. Hydrogen bonding was also used to direct microphase separation of miscible poly(hydroxystyrene-b-methyl methacrylate) diblock copolymer by adopting imidazolyl additives able to hydrogen bond with poly(hydroxystyrene). The miscibility between PHS and PMMA segments was diminished significantly by introducing small quantities of H-binding additives. The critical blend ratio for microphase separation was determined more by the molecular structure of the additives than the number of hydrogen bonds formed between PHS and additives.

  18. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC-b-PS. The incorporation of the hydrophilic polymer allows for an investigation of the effect of hydration on ionic conductivity, resulting in the increase in membrane water affinity, enhancement of conductivity and reduced dependence of conductivity on relative humidity. A study of crosslinking of block copolymers was done wherein the crosslinking occurs in the non-matrix phase in order to maintain mechanical properties. The formation of a cationic crosslinked structure improves the mechanical integrity of the membrane in water while showing little deleterious effect on ionic conductivity and mechanical properties.

  19. Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions.

    PubMed

    Ng, K L; Chan, H L; Choy, C L

    2000-01-01

    Composites of lead zirconate titanate (PZT) powder dispersed in a vinylidene fluoride-trifluoroethylene copolymer [P(VDF-TrFE)] matrix have been prepared by compression molding. Three groups of polarized samples have been prepared by poling: only the ceramic phase, the ceramic and polymer phases in parallel directions, and the two phases in antiparallel directions. The measured permittivities of the unpoled composites are consistent with the predictions of the Bruggeman model. The changes in the pyroelectric and piezoelectric coefficients of the poled composites with increasing ceramic volume fraction can be described by modified linear mixture rules. When the ceramic and copolymer phases are poled in the same direction, their pyroelectric activities reinforce while their piezoelectric activities partially cancel. However, when the ceramic and copolymer phases are poled in opposite directions, their piezoelectric activities reinforce while their pyroelectric activities partially cancel.

  20. Phase Behavior of Binary Blends of AB+AC Block Copolymers with compatible B and C blocks

    NASA Astrophysics Data System (ADS)

    Pryamitsyn, Victor; Ganesan, Venkat

    2012-02-01

    Recently the experimental studies of phase behavior of binary blends of PS-b-P2VP and PS-b-PHS demonstrated an interesting effect: blends of symmetric PS-b-P2VP and shorter symmetric (PS-b-PHS) formed cylindrical HEX and spherical BCC phases, while each pure component formed lamellas. The miscibility of P2VP and PHS is caused by the hydrogen bonding between P2VP and PHS,which can be described as a negative Flory ?-parameter between P2VP and PHS. We developed a theory of the microphase segregation of AB+AC blends of diblock copolymers based on strong stretching theory. The main result of our theory is that in the copolymer brush-like layer formed by longer B chain and shorter C chains, the attraction between B and shorter C chains causes relative stretching of short C chains and compression of longer B chains. The latter manifests in an excessive bending force towards the grafting surface (BC|AA interface). Such bending force causes a transition from a symmetric lamella phase to a HEX cylinder or BCC spherical phases with the BC phase being a ``matrix'' component. In a blend of asymmetric BCC sphere forming copolymers (where B and C segments are the minor components), such bending force may unfold BCC spherical phase to a HEX cylinder phase, or even highly uneven lamella phases.

  1. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  2. Ceramic composite separators coated with moisturized ZrO(2) nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries.

    PubMed

    Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-28

    We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.

  3. Theoretical study of the self-assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers

    NASA Astrophysics Data System (ADS)

    Gadelrab, Karim; Alexander-Katz, Alfredo; LaboratoryTheoretical Soft Materials Team

    The self-assembly of block copolymers BCP has provided an impressive control over the nanoscale structure of soft matter. While the main focus of the research in the field has been directed towards simple linear diblocks, the development of advanced polymer architecture provided improved performance and access to new structures. In particular, bottlebrush BCPs (BBCPs) have interesting characteristics due to their dense functionality, high molecular weight, low levels of entanglement, and tendency to efficiently undergo rapid bulk phase separation. In this work, we are interested in theoretically studying the self-assembly of Janus-type ``A-branch-B'' BBCPs where A and B blocks can phase separate with the bottlebrush polymer backbone serving as the interface between the two blocks. Hence, the polymer backbone adds an extra constraint on the equilibrium spacing between neighboring linear diblock chains. In this regard, the segment length of the backbone separating the AB junctions has a direct effect of the observed domain spacing and effective segregation strength of the AB blocks. We employ self-consistent field theoretic SCFT simulations to capture the effect of volume fraction of different constituents and construct a phase diagram of the accessible morphologies of these BBCPs.

  4. Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains

    NASA Astrophysics Data System (ADS)

    Mandare, Prashant N.

    2007-12-01

    Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.

  5. Molecular Mobility in Phase Segregated Bottlebrush Block Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Yavitt, Benjamin; Gai, Yue; Song, Dongpo; Winter, H. Henning; Watkins, James

    We investigate the linear viscoelastic behavior of poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) brush block copolymer (BBCP) materials over a range of vol. fractions and with side chain lengths below the entanglement molecular weights. The high chain mobility of the brush architecture results in rapid micro-phase segregation of the brush copolymer segments, which occurs during thermal annealing at mild temperatures. Master curves of the dynamic moduli were obtained by time-temperature superposition. The reduced degree of chain entanglements leads to a unique liquid-like rheology similar to that of bottlebrush homopolymers, even in the phase segregated state. We also explore the alignment of phase segregated domains at exceptionally low strain amplitudes (γ = 0.01) and mild processing temperatures using small angle X-ray scattering (SAXS). Domain orientation occurred readily at strains within the linear viscoelastic regime without noticeable effect on the moduli. This interplay of high molecular mobility and rapid phase segregation that are exhibited simultaneously in BBCPs is in contrast to the behavior of conventional linear block copolymer (LBCP) analogs and opens up new possibilities for processing BBCP materials for a wide range of nanotechnology applications. NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst (CMMI-1025020).

  6. Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.

    2003-01-01

    This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.

  7. The development of novel Nexar block copolymer/Ultem composite membranes for C2-C4 alcohols dehydration via pervaporation.

    PubMed

    Zuo, Jian; Shi, Gui Min; Wei, Shawn; Chung, Tai-Shung

    2014-08-27

    Novel composite membranes comprising sulfonated styrenic Nexar pentablock copolymers were developed by dip-coating on poly(ether imide) hollow fibers for pervaporation dehydration of C2-C4 alcohols. The advantages of using block copolymers as the selective layer are (1) their effectiveness to synergize the physicochemical properties of different chemical and structural moieties and (2) tunable nanoscale morphology and nanostructure via molecular engineering. To achieve high-performance composite membranes, the effects of coating time, ion exchange capacity (IEC) of the copolymer, and solvent systems for coating were investigated. It is revealed that a minimum coating time of 30 s is needed for the formation of a continuous and less-defective top layer. A higher IEC value results in a membrane with a higher flux and lower separation factor because of enhanced hydrophilicity and stretched chain conformation. Moreover, the composite membranes prepared from hexane/ethanol mixtures show higher separation factors and lower fluxes than those from the hexane solvent owing to microdomain segregation induced by ethanol and a smooth and dense top selective layer. These hypotheses were verified by atomic force microscopy and positron annihilation spectroscopy. The newly developed composite membranes demonstrate impressive separation performance with fluxes exceeding 2 kg/m(2) h and separation factors more than 200 for isopropyl alcohol and n-butanol dehydration from 85/15 wt % alcohol/water feed mixtures at 50 °C.

  8. Separator for alkaline batteries and method of making same

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The preparation of membranes suitable for use as separators in concentrated alkaline battery cells by selective solvolysis of copolymers of methacrylate esters with acrylate esters followed by addition of a base and to the resultant products is described. The method of making copolymers by first copolymerizing a methacrylate ester (or esters) with a more readily hydrolyzable ester, followed by a selective saponification whereby the methacrylate ester moieties remain essentially intact and the readily hydrolyzable ester moiety is suponified and to the partial or complete neutralization of the relatively brittle copolymer acid with a base to make membranes which are sufficiently flexible in the dry state so that they may be wrapped around electrodes without damage by handling is described.

  9. Fatigue crack propagation in self-assembling nanocomposites

    NASA Astrophysics Data System (ADS)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  10. Fluctuation effects in blends of A + B homopolymers with AB diblock copolymer

    NASA Astrophysics Data System (ADS)

    Spencer, Russell K. W.; Matsen, Mark W.

    2018-05-01

    Field-theoretic simulations (FTSs) are performed on ternary blends of A- and B-type homopolymers of polymerization Nh and symmetric AB diblock copolymers of polymerization Nc. Unlike previous studies, our FTSs are conducted in three-dimensional space, with the help of two new semi-grand canonical ensembles. Motivated by the first experiment to discover bicontinuous microemulsion (BμE) in the polyethylene-polyethylene propylene system, we consider molecules of high molecular weight with size ratios of α ≡ Nh/Nc = 0.1, 0.2, and 0.4. Our focus is on the A + B coexistence between the two homopolymer-rich phases in the low-copolymer region of the phase diagram. The Scott line, at which the A + B phases mix to form a disordered melt with increasing temperature (or decreasing χ), is accurately determined using finite-size scaling techniques. We also examine how the copolymer affects the interface between the A + B phases, reducing the interfacial tension toward zero. Although comparisons with self-consistent field theory (SCFT) illustrate that fluctuation effects are relatively small, fluctuations do nevertheless produce the observed BμE that is absent in the SCFT phase diagram. Furthermore, we find evidence of three-phase A + B + BμE coexistence, which may have been missed in the original as well as subsequent experiments.

  11. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    PubMed

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  12. High temperature thermoplastic elastomers synthesized by living anionic polymerization in hydrocarbon solvent at room temperature

    DOE PAGES

    Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry; ...

    2016-03-30

    We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (T g) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using amore » nonaffine tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less

  13. High temperature thermoplastic elastomers synthesized by living anionic polymerization in hydrocarbon solvent at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, Ralf; Williams, Katherine; Voyloy, Dimitry

    We present the synthesis and characterization of a new class of high temperature thermoplastic elastomers composed of polybenzofulvene–polyisoprene–polybenzofulvene (FIF) triblock copolymers. All copolymers were prepared by living anionic polymerization in benzene at room temperature. Homopolymerization and effects of additives on the glass transition temperature (T g) of polybenzofulvene (PBF) were also investigated. Among all triblock copolymers studied, FIF with 14 vol % of PBF exhibited a maximum stress of 14.3 ± 1.3 MPa and strain at break of 1390 ± 66% from tensile tests. The stress–strain curves of FIF-10 and 14 were analyzed by a statistical molecular approach using amore » nonaffine tube model to estimate the thermoplastic elastomer behavior. Dynamic mechanical analysis showed that the softening temperature of PBF in FIF was 145 °C, much higher than that of thermoplastic elastomers with polystyrene hard blocks. Microphase separation of FIF triblock copolymers was observed by small-angle X-ray scattering, even though long-range order was not achieved under the annealing conditions employed. Additionally, the microphase separation of the resulting triblock copolymers was examined by atomic force microscopy.« less

  14. Synthesis of thermo-responsive polymers recycling aqueous two-phase systems and phase formation mechanism with partition of ε-polylysine.

    PubMed

    Xu, Chengning; Dong, Wenying; Wan, Junfen; Cao, Xuejun

    2016-11-11

    Aqueous two-phase systems (ATPS) have the potential application in bioseparation and biocatalysis engineering. In this paper, a recyclable ATPS was developed by two thermo-responsive copolymers, P VBAm and P N . Copolymer P VBAm was copolymerized using N-vinylcaprolactam, Butyl methacrylate and Acrylamide as monomers, and P N was synthesized by N-isopropylacrylamide. The lower critical solution temperature (LCST) of P VBAm and P N were 45.0°C and 33.5°C, respectively. The recoveries of both polymers could achieve over 95.0%. The phase behavior and formation mechanism of P VBAm /P N ATPS was studied. Low-field nuclear magnetic resonance (LF-NMR) was applied in the phase-forming mechanism study in ATPS. In addition, combining the analysis results of surface tension, transmission electron microscopy and dynamic light scattering, the phase-forming of the P VBAm /P N ATPS was proved. The application was performed by partition of ε-polylysine in the 2% P VBAm /2% P N (w/w) ATPS. The results demonstrated that ε-polylysine was extracted into the P N -rich phase, the maximal partition coefficient (1/K) and extraction recovery of pure ε-polylysine were 6.87 and 96.36%, respectively, and 7.41 partition coefficient and 97.85% extraction recovery for ε-polylysine fermentation broth were obtained in the presence of 50mM (NH 4 ) 2 SO 4 at room temperature. And this method can effectively remove the most impurities from fermentation broth when (NH 4 ) 2 SO 4 exists in the ATPS. It is believed that the thermo-responsive recycling ATPS has a good application prospect in the field of bio-separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  16. Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations

    DOE PAGES

    Mahalik, Jyoti P.; Dugger, Jason W.; Sides, Scott W.; ...

    2018-04-10

    Mixtures of block copolymers and nanoparticles (block copolymer nanocomposites) are known to microphase separate into a plethora of microstructures, depending on the composition, length scale and nature of interactions among its different constituents. Theoretical and experimental works on this class of nanocomposites have already high-lighted intricate relations among chemical details of the polymers, nanoparticles, and various microstructures. Confining these nanocomposites in thin films yields an even larger array of structures, which are not normally observed in the bulk. In contrast to the bulk, exploring various microstructures in thin films by the experimental route remains a challenging task. Here in thismore » work, we construct a model for the thin films of lamellar forming diblock copolymers containing spherical nanoparticles based on a hybrid particle-field approach. The model is benchmarked by comparison with the depth profiles obtained from the neutron reflectivity experiments for symmetric poly(deuterated styrene-b-n butyl methacrylate) copolymers blended with spherical magnetite nanoparticles covered with hydrogenated poly(styrene) corona. We show that the model based on a hybrid particle-field approach provides details of the underlying microphase separation in the presence of the nanoparticles through a direct comparison to the neutron reflectivity data. This work benchmarks the application of the hybrid particle-field model to extract the interaction parameters for exploring different microstructures in thin films containing block copolymers and nanocomposites.« less

  17. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology.

    PubMed

    Ladner, Yoann; Crétier, Gérard; Faure, Karine

    2012-10-01

    This article shows that there is great interest in using an electrochromatographic microchip made of hexyl acrylate (HA) based porous monolith cast within the channel of a cyclic olefin copolymer (COC) device. The monolith is simultaneously in situ synthesized and anchored to the inner walls of the channel in less than 10 min. By appropriate choice of light intensity used during the synthesis, the separation efficiency obtained for nonpolar solutes such as polycyclic aromatic hydrocarbons (PAH) is increased up to 250 000 plates/m. The performance of this HA-filled COC microchip was investigated for a wide range of analytes of varying nature. The reversed-phase separation of four aflatoxins is obtained in less than 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is possible thanks to the superimposition of the differences in electrophoretic mobility on the chromatographic process. The durability of the system at pH 13 allows the separation of five biogenic amines and the quantitative determination of two of them in numerous wine samples. The feasibility of on-line preconcentration is also demonstrated. Hydrophilic surface modification of COC channel via UV-photografting with poly(ethylene glycol) methacrylate (PEGMA) before in situ synthesis of HA, is necessary to reduce the adsorption of very hydrophobic solutes such as PAH during enrichment. The detection limit of fluoranthene is decreased down to less than 1 ppb with a preconcentration of 4.5 h on the HA-filled PEGMA functionalized COC microchip. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chain end distribution of block copolymer in two-dimensional microphase-separated structure studied by scanning near-field optical microscopy.

    PubMed

    Sekine, Ryojun; Aoki, Hiroyuki; Ito, Shinzaburo

    2009-10-01

    The chain end distribution of a block copolymer in a two-dimensional microphase-separated structure was studied by scanning near-field optical microscopy (SNOM). In the monolayer of poly(octadecyl methacrylate)-block-poly(isobutyl methacrylate) (PODMA-b-PiBMA), the free end of the PiBMA subchain was directly observed by SNOM, and the spatial distributions of the whole block and the chain end are examined and compared with the convolution of the point spread function of the microscope and distribution function of the model structures. It was found that the chain end distribution of the block copolymer confined in two dimensions has a peak near the domain center, being concentrated in the narrower region, as compared with three-dimensional systems.

  19. Modeling random methyl branching in ethylene/ propylene copolymers using metathesis chemistry: synthesis and thermal behavior.

    PubMed

    Sworen, John C; Smith, Jason A; Wagener, Kenneth B; Baugh, Lisa S; Rucker, Steven P

    2003-02-26

    The structure of random ethylene/propylene (EP) copolymers has been modeled using step polymerization chemistry. Six ethylene/propylene model copolymers have been prepared via acyclic diene metathesis (ADMET) polymerization and characterized for primary and higher level structure using in-depth NMR, IR, DSC, WAXD, and GPC analysis. These copolymers possess 1.5, 7.1, 13.6, 25.0, 43.3, and 55.6 methyl branches per 1000 carbons. Examination of these macromolecules by IR and WAXD analysis has demonstrated the first hexagonal phase in EP copolymers containing high ethylene content (90%) without the influence of sample manipulation (temperature, pressure, or radiation). Thermal behavior studies have shown that the melting point and heat of fusion decrease as the branch content increases. Further, comparisons have been made between these random ADMET EP copolymers, random EP copolymers made by typical chain addition techniques, and precisely branched ADMET EP copolymers.

  20. Flexible Epoxy Resin Formed Upon Blending with a Triblock Copolymer through Reaction-Induced Microphase Separation

    PubMed Central

    Chu, Wei-Cheng; Lin, Wei-Sheng; Kuo, Shiao-Wei

    2016-01-01

    In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide–b–propylene oxide–b–ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydrogen bonding between the poly(ethylene oxide) segment of F127 and the OH groups of the DGEBA resin. Small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy all revealed evidence for the microphase separation of F127 within the epoxy resin. Glass transition temperature (Tg) phenomena and mechanical properties (modulus) were determined through differential scanning calorimetry and dynamic mechanical analysis, respectively, of samples at various blend compositions. The modulus data provided evidence for the formation of wormlike micelle structures, through a RIMPS mechanism, in the flexible epoxy resin upon blending with the F127 triblock copolymer. PMID:28773571

  1. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  2. Synthesis and Characterization of Hydrophilic-Hydrophobic Poly(Arylene Ether Sulfone) Random and Segmented Copolymers for Membrane Applications

    NASA Astrophysics Data System (ADS)

    Nebipasagil, Ali

    Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and a,u-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivity of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and alpha,o-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology.

  3. Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering.

    PubMed

    Carfì Pavia, Francesco; La Carrubba, Vincenzo; Brucato, Valerio; Palumbo, Fabio Salvatore; Giammona, Gaetano

    2014-08-01

    In this study a chemical grafting procedure was set up in order to link high molecular weight poly L-lactic acid (PLLA) chains to the hydrophilic α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) backbone. A graft copolymer named PHEA-g-PLLA (or simply PHEA-PLLA) was obtained bearing a degree of derivatization of 1.0 mol.% of PLLA as grafted chain. This new hybrid derivative offers both the opportune crystallinity necessary for the production of scaffolds trough a thermally induced phase separation (TIPS) technique and the proper chemical reactivity to perform further functionalizations with bio-effectors and drugs. PHEA-PLLA porous scaffolds for tissue engineering applications were successfully obtained via TIPS and characterized. Structures with an open porosity and a good level of interconnection were detected. As the applicability of the scaffold is mainly dependent on its pore size, preliminary studies about the mechanisms governing scaffold's pore diameter were carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Block copolymer templated self-assembly of disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Aragones, J. L.; Alexander-Katz, A.

    2017-08-01

    Stacking of disk-shaped organic molecules is a promising strategy to develop electronic and photovoltaic devices. Here, we investigate the capability of a soft block copolymer matrix that microphase separates into a cylindrical phase to direct the self-assembly of disk-shaped molecules by means of molecular simulations. We show that two disk molecules confined in the cylinder domain experience a depletion force, induced by the polymer chains, which results in the formation of stacks of disks. This entropic interaction and the soft confinement provided by the matrix are both responsible for the structures that can be self-assembled, which include slanted or columnar stacks. In addition, we evidence the transmission of stresses between the different minority domains of the microphase, which results in the establishment of a long-ranged interaction between disk molecules embedded in different domains; this interaction is of the order of the microphase periodicity and may be exploited to direct assembly of disks at larger scales.

  5. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K [Ames, IA; Anderson, Brian C [Lake Bluff, IA

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  6. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    PubMed

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  7. Integrated electrokinetically driven microfluidic devices with pH-mediated solid-phase extraction coupled to microchip electrophoresis for preterm birth biomarkers.

    PubMed

    Sonker, Mukul; Knob, Radim; Sahore, Vishal; Woolley, Adam T

    2017-07-01

    Integration in microfluidics is important for achieving automation. Sample preconcentration integrated with separation in a microfluidic setup can have a substantial impact on rapid analysis of low-abundance disease biomarkers. Here, we have developed a microfluidic device that uses pH-mediated solid-phase extraction (SPE) for the enrichment and elution of preterm birth (PTB) biomarkers. Furthermore, this SPE module was integrated with microchip electrophoresis for combined enrichment and separation of multiple analytes, including a PTB peptide biomarker (P1). A reversed-phase octyl methacrylate monolith was polymerized as the SPE medium in polyethylene glycol diacrylate modified cyclic olefin copolymer microfluidic channels. Eluent for pH-mediated SPE of PTB biomarkers on the monolith was optimized using different pH values and ionic concentrations. Nearly 50-fold enrichment was observed in single channel SPE devices for a low nanomolar solution of P1, with great elution time reproducibility (<7% RSD). The monolith binding capacity was determined to be 400 pg (0.2 pmol). A mixture of a model peptide (FA) and a PTB biomarker (P1) was extracted, eluted, injected, and then separated by microchip electrophoresis in our integrated device with ∼15-fold enrichment. This device shows important progress towards an integrated electrokinetically operated platform for preconcentration and separation of biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Non-Classical Order in Sphere Forming ABAC Tetrablock Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Sides, Scott; Bates, Frank

    2013-03-01

    AB diblock and ABC triblock copolymers have been studied thoroughly. ABAC tetrablock copolymers, representing the simplest variation from ABC triblock by breaking the molecular symmetry via inserting some of the A block in between B and C blocks, have been studied systematically in this research. The model system is poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) (SISO) tetrablock terpolymers and the resulting morphologies were characterized by nuclear magnetic resonance, gel permeation chromatography, small-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry and dynamic mechanical spectroscopy. Two novel phases are first discovered in a single component block copolymers: hexagonally ordered spherical phase and tentatively identified dodecagonal quasicrystalline (QC) phase. In particular, the discovery of QC phase bridges the world of soft matters to that of metals. These unusual sets of morphologies will be discussed in the context of segregation under the constraints associated with the tetrablock molecular architecture. Theoretical calculations based on the assumption of Gaussian chain statistics provide valuable insights into the molecular configurations associated with these morphologies. the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, under contract number DEAC05-00OR22725 with UT-Battelle LLC at Oak Ridge National Lab.

  9. Fatigue crack propagation in self-assembling nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingler, Andreas; Wetzel, Bernd

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite.more » To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.« less

  10. Synthesis and Characterization of Itaconic Anhydride and Stearyl Methacrylate Copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, S.; Huang, S; Weiss, R

    The free-radical copolymerization and the properties of comb-like copolymers derived from renewable resources, itaconic anhydride (ITA) and stearyl methacrylate (SM), are described. The ITA-SM copolymers were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The melting point (Tm) of the side-chains and the crystallinity decreased with increasing ITA concentration. The crystalline side-chains suppressed molecular motion of the main chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > Tm. The softening point and modulusmore » of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased.« less

  11. Preparation and characterization of a new microwave immobilized poly(2-phenylpropyl)methylsiloxane stationary phase for reversed phase high-performance liquid chromatography.

    PubMed

    Begnini, Fernanda R; Jardim, Isabel C S F

    2013-07-05

    A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Non-native three-dimensional block copolymer morphologies

    DOE PAGES

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; ...

    2016-12-22

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  13. Long Range In-Plane Order of Oriented Diblock Copolymer Thin Films by Graphoepitaxy

    NASA Astrophysics Data System (ADS)

    Fontana, Scott; Dadmun, Mark; Lowndes, Douglas

    2003-03-01

    Previous work by Russell and coworkers has demonstrated that controlling the interfacial energies and wetting behavior of an asymmetric diblock copolymer enables the control of the orientation of its microphases. In particular the cylindrical phase can be readily aligned perpendicular to a substrate when it is placed on a surface that is neutral to both components of the copolymer. The minor phase, PMMA may then be removed using UV radiation leaving a nanoporous template. In this work, we will report long range, in-plane ordering of the hexagonally packed nanopores that is achieved using graphoepitaxy. The long range ordered and vertically aligned diblock copolymer film can be used to produce arrays of catalytic nickel dots, which grow vertically aligned carbon nano-fibers (VACNF), resulting in a well ordered array of VACNFs.

  14. Non-native three-dimensional block copolymer morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  15. General and simple approach for control cage and cylindrical mesopores, and thermal/hydrothermal stable frameworks.

    PubMed

    El-Safty, Sherif A; Mizukami, Fujio; Hanaoka, Takaaki

    2005-05-19

    Highly ordered cage and cylindrical mesoporeous silica monoliths (HOM) with 2- and 3-dimensional (2D and 3D, respectively) structures, mesopore/micropore volumes, and thick-walled frameworks were successfully fabricated by instant direct templating of lyotropic phases of copolymer (EO(m)-PO(n)-EO(m)) surfactants. Large cage-like pores with uniform constriction sizes up to 10 nm and open cylindrical channel-like mesopores can be easily achieved by this simple and efficient synthesis design. Our results show that the cage-like pores could be fabricated at relatively lower copolymer concentrations used in the lyotropic phase domains at copolymer/TMOS ratios of 35 wt %. These ordered cage pore architectures underwent transition to open-cylindrical pores by increasing the copolymer concentration. High EO/PO block copolymers, in general, were crucially affected on the increase of the interior cavity sizes and on the stability of the cage mesopore characters. However, for F108 (EO(141)PO(44)EO(141)) systems, the fabrication of ordered and stable cage pore monoliths was achieved with significantly higher copolymer concentrations up to 90 wt %. Interestingly, the effective copolymer molecular nature was also observed in the ability to design various ordered mesophase geometries in large domain sizes. Our findings here show evidence that the synthetic strategy provides realistic control over a wide range of mesostructured phase geometries and their extended long-range ordering in the final replicas of the silica monolith frameworks. In addition, the HOM silica monoliths exhibited considerable structural stability against higher thermal temperature (up to 1000 degrees C) and longer hydrothermal treatment times under boiling water and steam. The remarkable structural findings of 3D frameworks, transparent monoliths, and micropores combined with large cage- and cylindrical-like mesopores are expected to find promising uses in materials chemistry.

  16. Effects of nanoparticles on the compatibility of PEO-PMMA block copolymers.

    PubMed

    Mu, Dan; Li, Jian-Quan; Li, Wei-Dong; Wang, Song

    2011-12-01

    The compatibility of six kinds of designed poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers was studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depended on both the structures of the block copolymers and the simulation temperature, while the values of the order parameters of the long chains were higher than those of the short ones; temperature had a more obvious effect on long chains than on the short ones. Plain copolymers doped with poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA) homopolymer showed different order parameter values. When a triblock copolymer had the same component at both ends and was doped with one of its component polymers as a homopolymer (such as A5B6A5 doped with B6 or A5 homopolymer), the value of its order parameter depended on the simulation temperature. The highest order parameter values were observed for A5B6A5 doped with B6 at 400 K and for A5B6A5 doped with A5 at 270 K. A study of copolymers doped with nanoparticles showed that the mesoscopic phase was influenced by not only the properties of the nanoparticles, such as the size and density, but also the compositions of the copolymers. Increasing the size of the nanoparticles used as a dopant had the most significant effect on the phase morphologies of the copolymers.

  17. Controlled self-assembly of conjugated rod-coil block copolymers for applications in organic optoelectronics

    NASA Astrophysics Data System (ADS)

    Tao, Yuefei

    Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous techniques have been demonstrated for classical block copolymers, the pi conjugation in the rod blocks allow for additional control mechanisms. Liquid crystals are traditionally aligned in magnetic fields. Here, it is demonstrated that if the rod-like blocks are aligned unidirectionally, the block copolymer interfaces follow to create macroscopic alignment of the nanostructures. Organic Light Emitting Diodes (OLEDs) are generally composed of electron transporting and hole transporting moieties to balance charge recombination. Here, a new multifunctional bipolar rod-coil block copolymer containing the hole transporting and electron transporting materials is synthesized. Self-assembly of this new block copolymer results in 15nm lamellae oriented in grains both parallel and perpendicula to the anode. The self-assembled block copolymer shows superior device performance to controls consisting of a luminescent, analogous homopolymer, and a blend of the two component homopolymers. The effects of the morphologies and chemical structure on photovoltaics is explored with a rod-coil block copolymer, (poly(3-hexylthiophene-b-acrylic perylene)). By varying the kinetics of self-assembly through processing, the block copolymer can be disordered, ordered with only short range registry between the nanodomains, or with long-range order. The short range ordered samples showed the best device performance suggesting that the connectivity that is a biproduct of poor order is beneficial for device performance.

  18. Facile approach to the fabrication of a micropattern possessing nanoscale substructure.

    PubMed

    Ji, Qiang; Jiang, Xuesong; Yin, Jie

    2007-12-04

    On the basis of the combined technologies of photolithography and reaction-induced phase separation (RIPS), a facile approach has been successfully developed for the fabrication of a micropattern possessing nanoscale substructure on the thin film surface. This approach involves three steps. In the first step, a thin film was prepared by spin coating from a solution of a commercial random copolymer, polystyrene-r-poly(methyl methacrylate) (PS-r-PMMA) and a commercial crosslinker, trimethylolpropane triacrylate (TMPTA). In the second step, photolithograph was performed with the thin film using a 250 W high-pressure mercury lamp to produce the micropattern. Finally, the resulting micropattern was annealed at 200 degrees C for a certain time, and reaction-induced phase separation occurred. After soaking in chloroform for 4 h, nanoscale substructure was obtained. The whole processes were traced by atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and Fourier transform infrared (FTIR) spectroscopy, and the results supported the proposed structure.

  19. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

    PubMed Central

    Asefnejad, Azadeh; Khorasani, Mohammad Taghi; Behnamghader, Aliasghar; Farsadzadeh, Babak; Bonakdar, Shahin

    2011-01-01

    Background Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. Methods In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butanediol as a chain extender. Polyurethane scaffolds were fabricated by a combination of liquid–liquid phase separation and salt leaching techniques. The effect of the NCO:OH ratio on porosity content and pore morphology was investigated. Results Scanning electron micrographs demonstrated that the scaffolds had a regular distribution of interconnected pores, with pore diameters of 50–300 μm, and porosities of 64%–83%. It was observed that, by increasing the NCO:OH ratio, the average pore size, compressive strength, and compressive modulus increased. L929 fibroblast and chondrocytes were cultured on the scaffolds, and all samples exhibited suitable cell attachment and growth, with a high level of biocompatibility. Conclusion These biodegradable polyurethane scaffolds demonstrate potential for soft tissue engineering applications. PMID:22072874

  20. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  1. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid–Polymer Hybrid Membranes

    DOE PAGES

    Kang, Minjee; Lee, Byeongdu; Leal, Cecilia

    2017-10-20

    Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less

  2. Block copolymer battery separator

    DOEpatents

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  3. Environmentally Compliant Thermoplastic Powder Coating, Phase 1

    DTIC Science & Technology

    1992-10-07

    TPC flame sprayed application equipment and ethylene acrylic acid (EAA) and ethylene methacrylic acid (EMAA) copolymers thermoplastic powder...have worked closely with Dow Chemical to develop and optimize their systems using Dow "Envelon" ethylene acrylic acid (EAA) thermoplastic copolymers...provide on/off control. CFS recommends the use of Dow "Envelon" ethylene acrylic acid (EAA) copolymer thermoplastic powder with this unit. The CFS system

  4. Relationship between morphological change and crystalline phase transitions of polyethylene-poly(ethylene oxide) diblock copolymers, revealed by the temperature-dependent synchrotron WAXD/SAXS and infrared/Raman spectral measurements.

    PubMed

    Weiyu, Cao; Tashiro, Kohji; Hanesaka, Makoto; Takeda, Shinichi; Masunaga, Hiroyasu; Sasaki, Sono; Takata, Masaki

    2009-02-26

    The phase transition behaviors of low-molecular-weight polyethylene-poly(ethylene oxide) (PE-b-PEO) diblock copolymers with the monomeric units of PE/PEO = 17/40 and 39/86 have been successfully investigated through the temperature-dependent measurements of wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), infrared and Raman spectra, as well as thermal analysis. These diblock copolymers had been believed to show only order-to-disorder transition of lamellar morphology in a wide temperature region, but it has been found here for the first time that this copolymer clearly exhibits the three stages of transitions among lamella, gyroid, cylinder, and spherical phases in the heating and cooling processes. The WAXD and IR/Raman spectral measurements allowed us to relate these morphological changes to the microscopic changes in the aggregation states of PEO and PE segments. In the low-temperature region the PEO segments form the monoclinic crystal of (7/2) helical chain conformation and the PE segments of planar-zigzag form take the orthorhombic crystalline phase. These crystalline lamellae of PEO and PE segments are alternately stacked with the long period of 165 Angstroms. In a higher temperature region, where the PEO crystalline parts are on the way of melting but the PE parts are still in the orthorhombic phase, the gyroid morphology is detected in the SAXS data. By heating further, the gyroid morphology changes to the hexagonally packed cylindrical morphology, where the orthorhombic phase of PE segments is gradually disordered because of thermally activated molecular motion and finally transforms to the pseudohexagonal or rotator phase. Once the PE segments are perfectly melted, the higher-order structure changes from the cylinder to the spherical morphology. These morphological transitions might relate to the thermally activated motions of two short chain segments of the diblock copolymer, although the details of the transition mechanism are unclear at the present stage.

  5. A facile synthesis of dynamic, shape-changing polymer particles.

    PubMed

    Klinger, Daniel; Wang, Cynthia X; Connal, Luke A; Audus, Debra J; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L; Fredrickson, Glenn H; Kramer, Edward J; Hawker, Craig J

    2014-07-01

    We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross-linking the P2VP domains, thereby connecting glassy PS discs with pH-sensitive hydrogel actuators. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  7. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  8. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  9. Fabrication of high-density In3Sb1Te2 phase change nanoarray on glass-fabric reinforced flexible substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jong Moon; Shin, Dong Ok; Yin, You; Seo, Hyeon Kook; Kim, Daewoon; In Kim, Yong; Jin, Jung Ho; Kim, Yong Tae; Bae, Byeong-Soo; Ouk Kim, Sang; Lee, Jeong Yong

    2012-06-01

    Mushroom-shaped phase change memory (PCM) consisting of a Cr/In3Sb1Te2 (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl2. The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in2.

  10. Ferroelectric to paraelectric phase transition mechanism in poled PVDF-TrFE copolymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanick, A.; T. Misture, Scott; Osti, Naresh C.

    2017-11-01

    Direct experimental insights into the structural and dynamical mechanisms for ferroelectric β to paraelectric α phase transition in a poled PVDF-TrFE copolymer is obtained from in situ x-ray diffraction and quasielastic neutron scattering measurements at high temperatures. It is observed that the β-to-α phase transition proceeds through two energetically distinct processes, which are identified here as the nucleation and growth of an intermediate γ phase with random skew linkages followed by a γ-to-α transition. The two energetically distinct microscopic processes can explain the stages of evolution for β-to-α phase transition observed from heat flow measurements.

  11. Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irwin, Matthew T.; Hickey, Robert J.; Xie, Shuyi

    2016-11-21

    We examine the relationship between structure and ionic conductivity in salt-containing ternary polymer blends that exhibit various microstructured morphologies, including lamellae, a hexagonal phase, and a bicontinuous microemulsion, as well as the disordered phase. These blends consist of polystyrene (PS, M n ≈ 600 g/mol) and poly(ethylene oxide) (PEO, M n ≈ 400 g/mol) homopolymers, a nearly symmetric PS–PEO block copolymer (M n ≈ 4700 g/mol), and lithium bis(trifluoromethane)sulfonamide (LiTFSI). These pseudoternary blends exhibit phase behavior that parallels that of well-studied ternary polymer blends consisting of A and B homopolymers compatibilized by an AB diblock copolymer. The utility of thismore » framework is that all blends have nominally the same number of ethylene oxide, styrene, Li +, and TFSI– units, yet can exhibit a variety of microstructures depending on the relative ratio of the homopolymers to the block copolymer. For the systems studied, the ratio r = [Li +]/[EO] is maintained at 0.06, and the volume fraction of PS homopolymer is kept equal to that of PEO homopolymer plus salt. The total volume fraction of homopolymer is varied from 0 to 0.70. When heated through the order–disorder transition, all blends exhibit an abrupt increase in conductivity. However, analysis of small-angle X-ray scattering data indicates significant structure even in the disordered state for several blend compositions. By comparing the nature and structure of the disordered states with their corresponding ordered states, we find that this increase in conductivity through the order–disorder transition is most likely due to the elimination of grain boundaries. In either disordered or ordered states, the conductivity decreases as the total amount of homopolymer is increased, an unanticipated observation. This trend with increasing homopolymer loading is hypothesized to result from an increased density of “dead ends” in the conducting channel due to poor continuity across grain boundaries in the ordered state and the formation of concave interfaces in the disordered state. The results demonstrate that disordered, microphase-separated morphologies provide better transport properties than compositionally equivalent polycrystalline systems with long-range order, an important criterion when optimizing the design of polymer electrolytes.« less

  12. Functional and Multifunctional Polymers: Materials for Smart Structures

    NASA Technical Reports Server (NTRS)

    Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.

    1996-01-01

    The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three examples of multifunctional polymers developed in our labs will be reported. The first class of multifunctional polymers are the microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers. The second class being developed in our labs are the biocompatible conductive materials and the conductive fluids. The final class may be considered microwave active smart polymers.

  13. The influence of chain rigidity and the degree of sulfonation on the morphology of block copolymers as nano reactor

    NASA Astrophysics Data System (ADS)

    Hong, K.; Zhang, X.

    2005-03-01

    Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.

  14. Molecular and morphological characterization of midblock-sulfonated styrenic triblock copolymers

    DOE PAGES

    Mineart, Kenneth P.; Ryan, Justin J.; Lee, Byeongdu; ...

    2017-01-11

    Midblock-sulfonated triblock copolymers afford a desirable opportunity to generate network-forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel-cell, water-desalination, ion-exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly( p- tert-butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly( p- tert-butylstyrene- b-styrene- b- p- tert- butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development ofmore » charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross-linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent-vapor annealing to promote nanostructural refinement. Furthermore, the effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored.« less

  15. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  16. Study of structural morphologies of thermoresponsive diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-03-01

    Structural morphologies of diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene) in aqueous environment have been investigated by dissipative particle dynamics (DPD). In triblock copolymers insoluble PS blocks contract while soluble pNIPAM blocks stay at the periphery forming looped chains as corona. As the temperature is increased there is a continuous morphological transition and micelles form ellipsoidal structures with segregated polymer zones. The phase transition of looped pNIPAM chains occurs at lower temperature than for linear chains and within broader temperature range. It is discussed how the chain topology of pNIPAM affects the phase transition.

  17. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    PubMed Central

    Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.

    2016-01-01

    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964

  18. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    NASA Astrophysics Data System (ADS)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence of a third phase attributed to PIB chains near the PS domain interface which experience reduced mobility due to their firm attachment to the hard PS domain. The relative amount of this phase decreased in samples with larger PS blocks, while the temperature of the associated transition increased. Tensile testing showed increased tensile strength but decreased elongation at break with larger PS blocks. DMA of the ionomers indicated improved dynamic modulus at temperatures above 100spcirc$C. Tensile testing of the ionomers indicated slight improvements in tensile strength with little loss in elongation at break. PS-PIB-PS block copolymer ionomer (BCP01, center block molecular weight = 53,000 g/mole; 25.5 wt % polystyrene, 4.7% sulfonation of phenyl units, 100% neutralized with KOH) was compounded with various organic and inorganic acid salts of 2-ethylhexyl-p-dimethyl aminobenzoate (ODAB) to explore the efficacy of these compounds as ionic plasticizers. (Abstract shortened by UMI.)

  19. Synthesis and Characterization of Comb and Centipede Multigraft Copolymers P nBA- g-PS with High Molecular Weight Using Miniemulsion Polymerization

    DOE PAGES

    Wang, Wenwen; Wang, Weiyu; Lu, Xinyi; ...

    2014-10-23

    For this study, comb and centipede multigraft copolymers, poly(n-butyl acrylate)-g-polystyrene (PnBA-g-PS) with PnBA backbones and PS side chains, were synthesized via high-vacuum anionic polymerization and miniemulsion polymerization. Single-tailed and double-tailed PS macromonomers were synthesized by anionic polymerization and Steglich esterification. Subsequently, the copolymerization of each macromonomer and nBA was carried out in miniemulsion, and multigraft copolymers were obtained. The latex particles of multigraft copolymers were characterized using dynamic light scattering. The molecular weights of macromonomers and multigraft copolymers were analyzed by size exclusion chromatography. Moreover, the molecular weights and structures of macromonomers were investigated by matrix-assisted laser desorption/ionization time-of-flight massmore » spectrometry and 1H nuclear magnetic resonance spectroscopy. The weight contents of PS in comb and centipede multigraft copolymers were calculated by 1H nuclear magnetic resonance spectroscopy. The thermal properties of multigraft copolymers were characterized by thermogravimetric analysis and differential scanning calorimetry. The microphase separation of multigraft copolymers was observed by atomic force microscopy and transmission electronic microscopy. Rheological measurements showed that comb and centipede multigraft copolymers have elastic properties when the weight content of PS side chains is 26–32 wt %. Centipede multigraft copolymers possess better elastic properties than comb multigraft copolymers with the similar weight content of PS. In conclusion, these findings are similar to previous results on poly(isoprene-g-polystyrene) comb and centipede copolymers made by anionic polymerization.« less

  20. Co-crystallization phase transformations in all π-conjugated block copolymers with different main-chain moieties.

    PubMed

    Lee, Yi-Huan; Chen, Wei-Chih; Yang, Yi-Lung; Chiang, Chi-Ju; Yokozawa, Tsutomu; Dai, Chi-An

    2014-05-21

    Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. With increasing P3EHT fraction, PPP-P3EHTs undergo sequential phase transitions and form hierarchical superstructures including predominately PPP nanofibrils, co-crystalline nanofibrils, a bilayer co-crystalline/pure P3EHT lamellar structure, a microphase-separated bilayer PPP-P3EHT lamellar structure, and finally P3EHT nanofibrils. In particular, the presence of the new co-crystalline lamellar structure is the manifestation of the interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main-chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.

  1. Electric-Field-Induced Alignment of Block Copolymer/Nanoparticle Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liedel, Clemens; Schindler, Kerstin; Pavan, Mariela J.

    External electric fi elds readily align birefringent block-copolymer mesophases. In this study the effect of gold nanoparticles on the electric-fi eld-induced alignment of a lamellae-forming polystyrene- block -poly(2-vinylpyridine) copolymer is assessed. Nanoparticles are homogeneously dispersed in the styrenic phase and promote the quantitative alignment of lamellar domains by substantially lowering the critical field strength above which alignment proceeds. The results suggest that the electric-fi eldassisted alignment of nanostructured block copolymer/nanoparticle composites may offer a simple way to greatly mitigate structural and orientational defects of such fi lms under benign experimental conditions.

  2. Effect of matrix chemical heterogeneity on effective filler interactions in model polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Hall, Lisa; Schweizer, Kenneth

    2010-03-01

    The microscopic Polymer Reference Interaction Site Model theory has been applied to spherical and rodlike fillers dissolved in three types of chemically heterogeneous polymer melts: alternating AB copolymer, random AB copolymers, and an equimolar blend of two homopolymers. In each case, one monomer species adsorbs more strongly on the filler mimicking a specific attraction, while all inter-monomer potentials are hard core which precludes macrophase or microphase separation. Qualitative differences in the filler potential-of-mean force are predicted relative to the homopolymer case. The adsorbed bound layer for alternating copolymers exhibits a spatial moduluation or layering effect but is otherwise similar to that of the homopolymer system. Random copolymers and the polymer blend mediate a novel strong, long-range bridging interaction between fillers at moderate to high adsorption strengths. The bridging strength is a non-monotonic function of random copolymer composition, reflecting subtle competing enthalpic and entropic considerations.

  3. ABC triblock copolymer vesicles with mesh-like morphology.

    PubMed

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  4. Highly Permeable Oligo(ethylene oxide)- co-poly(dimethylsiloxane) Membranes for Carbon Dioxide Separation

    DOE PAGES

    Hong, Tao; Lai, Sophia C.; Mahurin, Shannon Mark; ...

    2017-12-27

    Here, a series of cross–linked, freestanding oligo(ethylene oxide)– co–(polydimethylsiloxane–norbornene) membranes with varied composition is synthesized via in situ ring–opening metathesis polymerization. These membranes show remarkably high CO 2 permeabilities (3400 Barrer) and their separation performance approaches the Robeson upper bound. The excellent permeability of these copolymer membranes provides great potential for real–world applications where enormous volumes of gases must be separated. The gas transport properties of these films are found to be directly proportional to oligo(ethylene oxide) content incorporation, which stems from the increased solubility selectivity change within the copolymer matrix. This work provides a systematic study of how gasmore » separation performance in rubbery membranes can be enhanced by tuning the CO 2–philicity of their constituent monomeric subunits.« less

  5. Nano-structured polymer composites and process for preparing same

    DOEpatents

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  6. Pathway-engineering for highly-aligned block copolymer arrays

    DOE PAGES

    Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi; ...

    2017-12-06

    While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.

  7. Pathway-engineering for highly-aligned block copolymer arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi

    While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.

  8. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  9. Thin-film Organic-based Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2002-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6 percent loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge- Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99 percent. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approx. 0.14 percent under white light. Devices fabricated from 2 percent solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  10. Thin-Film Organic-Based Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2001-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitaized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10 (exp -7)torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge-Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approximately 0.14% under white light. Devices fabricated from 2% solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  11. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: Dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology

    NASA Astrophysics Data System (ADS)

    Hahm, J.; Sibener, S. J.

    2001-03-01

    Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.

  12. Solid-state NMR characterization of copolymers of nylon 11 and nylon 12.

    PubMed

    Johnson, C G; Mathias, L J

    1997-05-01

    Solid-state 13C and 15N NMR spectroscopy, in conjunction with differential scanning calorimetry, wide-angle X-ray diffraction and infrared spectroscopy, were used to characterize a series of nylon 11 and 12 copolymers with mole percentages of nylon 12 monomer of 0, 15, 35, 50, 65, 85, and 100%. Monotonic melting point (Tm) and heat of fusion depressions were observed for the copolymer series with the 65 mol% nylon 12 copolymer having the lowest apparent crystallinity and Tm at 148 degrees C. Solid-state 15N NMR spectra showed a smooth shift of the main peak position for the as-prepared copolymers from 84 ppm for the alpha-form of pure nylon 11 to 89 ppm for the gamma-form of pure nylon 12. Similar behavior was seen for FTIR amide V and VI modes which are also sensitive to the alpha- and gamma-crystal forms. 13C NMR T1 measurements showed that the overall most mobile sample was the 65:35 copolymer. The amide group of the 1:1 copolymer was labelled using 15N-labelled amino acids available through the Gabriel synthesis; an annealed, solution-cast film of this sample showed a T1N value of 349 s, similar to values seen for annealed nylon 11 and nylon 12 homopolymers. The WAXS pattern for the 65 mol% nylon 12 sample showed a sharp peak at 2 theta = 21.3, overlapping a broad peak centered at 2 theta = 21.0. These are consistent with the values seen for gamma-form nylon 12. The 1:1 copolymer (15N labelled) was shown to be polymorphic, like the homopolymers after specific treatments, with a gamma-like phase formed upon solvent casting, and an alpha-like phase dominating for as-polymerized material and precipitated flakes.

  13. The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers.

    PubMed

    Hofman, Anton H; Reza, Mehedi; Ruokolainen, Janne; Ten Brinke, Gerrit; Loos, Katja

    2017-09-01

    Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Membrane-Based Gas Separation Accelerated by Hollow Nanosphere Architectures

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Univ. of Tennessee, Knoxville, TN; ...

    2016-11-15

    We report that the coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes, because the symmetric microporous shells combine with the hollow space to promote gas transport and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength.

  15. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    PubMed

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  16. Simulations of the gyroid phase in diblock copolymers with the Gaussian disphere model

    NASA Astrophysics Data System (ADS)

    Karatchentsev, A.; Sommer, J.-U.

    2010-12-01

    Pure melts of asymmetric diblock copolymers are studied by means of the off-lattice Gaussian disphere model with Monte-Carlo kinetics. In this model, a diblock copolymer chain is mapped onto two soft repulsive spheres with fluctuating radii of gyration and distance between centers of mass of the spheres. Microscopic input quantities of the model such as the combined probability distribution for the radii of gyration and the distance between the spheres as well as conditional monomer number densities assigned to each block were derived in the previous work of F. Eurich and P. Maass [J. Chem. Phys. 114, 7655 (2001)] within an underlying Gaussian chain model. The polymerization degree of the whole chain as well as those of the individual blocks are freely tunable parameters thus enabling a precise determination of the regions of stability of various phases. The model neglects entanglement effects which are irrelevant for the formation of ordered structures in diblock copolymers and which would otherwise unnecessarily increase the equilibration time of the system. The gyroid phase was reproduced in between the cylindrical and lamellar phases in systems with box sizes being commensurate with the size of the unit cell of the gyroid morphology. The region of stability of the gyroid phase was studied in detail and found to be consistent with the prediction of the mean-field theory. Packing frustration was observed in the form of increased radii of gyration of both blocks of the chains located close to the gyroid nodes.

  17. Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.

    2007-01-01

    Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.

  18. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    NASA Astrophysics Data System (ADS)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  19. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.

    PubMed

    Atanase, Leonard Ionut; Riess, Gérard

    2013-05-20

    Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Phase separation and ion conductivity in the bulk and at the surface of anion exchange membranes with different ion exchange capacities at different humidities

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Akiyama, Ryo; Miyatake, Kenji; Inukai, Junji

    2018-01-01

    For higher performances of anion exchange membrane (AEM) fuel cells, understanding the phase-separated structures inside AEMs is essential, as well as those at the catalyst layer/membrane interfaces. The AEMs based on quaternized aromatic semi-block copolymers with different ion exchange capacities (IECs) were systematically investigated. With IECs of 1.23 and 1.95 mequiv g-1, the water uptakes at room temperature were 37% and 98%, and the anion conductivities 23.6 and 71.4 mS cm-1, respectively. The increases were not proportional to the IEC. Images obtained by transmission electron microscopy in vacuum were similar with both IEC values, but the development of a clear phase separation in humidified nitrogen was observed in the profiles only with 1.95 mequiv g-1obtained by small-angle X-ray scattering. At the temperature of 40 °C and the relative humidity (RH) of 30%, the average currents observed at the tip apex by current-sensing atomic force microscopy were <0.5 and 10 pA with 1.23 and 1.95 mequiv g-1, respectively, and those at 70% RH were 10 and 15 pA, respectively. The humidity gave a larger influence on the bulk structure with 1.95 mequiv g-1, whereas a larger influence on the surface conductivity with 1.23 mequiv g-1.

  1. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.

    PubMed

    Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L

    2011-10-05

    Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.

  2. Dynamic photoinduced realignment processes in photoresponsive block copolymer films: effects of the chain length and block copolymer architecture.

    PubMed

    Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro

    2015-08-07

    A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.

  3. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  4. Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments.

    PubMed

    Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan

    2016-01-27

    Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.

  5. Membrane surface engineering for protein separations: experiments and simulations.

    PubMed

    Liu, Zizhao; Du, Hongbo; Wickramasinghe, S Ranil; Qian, Xianghong

    2014-09-09

    A bisphosphonate derived ligand was successfully synthesized and grafted from the surface of regenerated cellulose membrane using atom transfer radical polymerization (ATRP) for protein separations. This ligand has a remarkable affinity for arginine (Arg) residues on protein surface. Hydrophilic residues N-(2-hydroxypropyl) methacrylamide (HPMA) was copolymerized to enhance the flexibility of the copolymer ligand and further improve specific protein adsorption. The polymerization of bisphosphonate derivatives was successful for the first time using ATRP. Static and dynamic binding capacities were determined for binding and elution of Arg rich lysozyme. The interaction mechanism between the copolymer ligand and lysozyme was elucidated using classical molecular dynamics (MD) simulations.

  6. Tunable PhoXonic Band Gap Materials from Self-Assembly of Block Copolymers and Colloidal Nanocrystals (NBIT Phase II)

    DTIC Science & Technology

    2013-12-12

    their application in sensors and as displays. We found that the thermochromic behavior of a lamellar block copolymer poly(styrene-b-2-vinylpyridine...the solution pH. The findings of this work provide the basis for understanding and controlling the properties of thermochromic block copolymers...by the glassy PS layers . The glassy layers completely constrain the lateral expansion of the P2VP gel block and the dislocation defect network that

  7. Testing strong-segregation theory against self-consistent-field theory for block copolymer melts

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.

    2001-06-01

    We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.

  8. Effects of ion size and charge asymmetry on the salt distribution in polyelectrolyte blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Shull, Kenneth R.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    Polyelectrolytes have received much attention as potential candidates for rechargeable batteries, membrane fuel cells, and drug delivery carriers, as they can combine the electrochemical properties of the charged components with the mechanical stability and biocompatibility of the polymer backbone. The role of salt in determining the bulk and interfacial behaviors of polyelectrolytes has been of particular interest, as the miscibility has shown to depend significantly on salt identity and concentration. Recent studies employing the SCFT-LS method have shown that ionic correlations can enhance phase separation in polyelectrolytes and can induce selectivity in neutral solvents. Here, we extend the theory to investigate the role of salt in strongly correlated polyelectrolytes. We find that in lamellae-forming block copolymers, the addition of monovalent, symmetric salt can lead to a decreased lamellar spacing due to increased selectivity of the salt. When multiple electrostatic interactions are introduced via size and valency asymmetry in the salt pair, the bulk phase behavior and salt distribution across interfaces are significantly altered, as size and charge mismatch can transform the charge ordering seen in monovalent, symmetric salts. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  9. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester.

    PubMed

    Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka

    2014-01-22

    Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.

  10. Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection.

    PubMed

    Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok

    2010-03-01

    Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.

  11. Phase transitions and structural formation of PEG-PCL-PEG copolymer in the processes of fused deposition 3D printing

    NASA Astrophysics Data System (ADS)

    Dunaev, A.; Mariyanac, A.; Mironov, A.; Mironova, O.; Popov, V.; Syachina, M.

    2018-04-01

    In present work the analysis of thermal field distribution and thermal analysis were used to study phase and structural transformations in the block copolymer of polycaprolactone and polyethylene glycol in the process of scaffolds fabrication for tissue engineering using fused deposition modeling. It was shown that the intact polymer has a noticeable thermal history and formed degree of crystallinity which is close to its equilibrium value, while the microstructure of the polymer stays unchanged.

  12. Beyond native block copolymer morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerk, Gregory S.; Yager, Kevin G.

    Block copolymers self-assemble into a range of canonical morphologies. Here, we review a broad range of techniques for inducing these materials to form structures beyond the ‘native’ morphologies seen in the bulk equilibrium phase diagram. Methods that exploit intrinsic encoding (molecular design) and external enforcement (directed assembly) are compared.

  13. Beyond native block copolymer morphologies

    DOE PAGES

    Doerk, Gregory S.; Yager, Kevin G.

    2017-09-20

    Block copolymers self-assemble into a range of canonical morphologies. Here, we review a broad range of techniques for inducing these materials to form structures beyond the ‘native’ morphologies seen in the bulk equilibrium phase diagram. Methods that exploit intrinsic encoding (molecular design) and external enforcement (directed assembly) are compared.

  14. Ionic Salt Effect on the Phase Transition of PS-b-P2VP Copolymers

    NASA Astrophysics Data System (ADS)

    Kim, Bokyung; An, Hyungju; Ryu, Du Yeol; Kim, Jehan

    2009-03-01

    Solid-state electrolytes have long been considered as suitable candidates owing to the simple and easy processes for rechargeable battery manufactures, compared to conventional liquid electrolyte counterparts. Especially, polymer/salt systems involving PMMA and PVP complex forms have been studied since they provide stable electrochemical characteristics as well as mechanical properties. We studied the phase behavior of PS-b-P2VP upon the salt addition by small angle x-ray scattering (SAXS) and depolarized light scattering. Transition temperatures of block copolymer were significantly influenced by the salt addition in addition to the changes of d-spacings, which is caused by the effective coordinative interaction between P2VP block and salt. This study suggests a simple approach to solid-state block copolymer electrolytes.

  15. Formation of ordered microphase-separated pattern during spin coating of ABC triblock copolymer.

    PubMed

    Huang, Weihuan; Luo, Chunxia; Zhang, Jilin; Han, Yanchun

    2007-03-14

    In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared. When the film thickness exceeds another definite value (12.0 nm), the crystallization of PEO dominates the surface morphology. For films with thickness between these two values, microphase separation and crystallization can simultaneously occur.

  16. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril.

    PubMed

    Danafar, H; Rostamizadeh, K; Davaran, S; Hamidi, M

    2014-10-01

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA-PEG-PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs.

  17. Polydiacetylene/triblock copolymer nanoblend applied as a sensor for micellar casein: A thermodynamic approach.

    PubMed

    de Souza, Luana Cypriano; de Paula Rezende, Jaqueline; Pires, Ana Clarissa dos Santos; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol; Castrillon, Elkin Dario Castellon; de Andrade, Nélio José

    2016-04-15

    Polydiacetylene (PDA) and triblock copolymer nanoblends were synthesized to detect micellar casein (MC), the main milk protein and an indicator of milk quality. UV-Vis spectrum showed that MC induced blue-to-red transition in nanoblends. When nanoblends and MC were separated by dialysis membrane colorimetric response (CR) was similar, whereas a remarkable CR reduction was noticed after addition of dialyzed-MC, suggesting that small molecules present in MC (salts) caused PDA color change. Interaction enthalpy variation between nanoblends and MC showed an abrupt increase that coincided with MC concentration when colorimetric transition occurred. Copolymer hydrophobic/hydrophilic balance and presence of other molecules in the system affected nanoblends CR. MC salts were found to interact with nanoblends leading to color changes. MC concentration, MC salt release, copolymer hydrophobic/hydrophilic balance, and presence of other molecules in the system affected responses of the sensors. These results contribute to future applications of PDA/copolymer nanosensors to dairy models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    PubMed

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  19. Directed Self-Assembly of Poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) Triblock Copolymer with Sub-15 nm Spacing Line Patterns Using a Nanoimprinted Photoresist Template.

    PubMed

    Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Choi, Jaewon; Huang, Caili; Jeong, Gajin; Coughlin, E Bryan; Hsu, Yautzong; Yang, XiaoMin; Lee, Kim Y; Kuo, David S; Xiao, Shuaigang; Russell, Thomas P

    2015-08-05

    Low molecular weight P2VP-b-PS-b-P2VP triblock copolymer (poly(2-vinlypyridine)-block-polystyrene-block-poly(2-vinylpyridine)] is doped with copper chloride and microphase separated into lamellar line patterns with ultrahigh area density. Salt-doped P2VP-b-PS-b-P2VP triblock copolymer is self-assembled on the top of the nanoimprinted photoresist template, and metallic nanowires with long-range ordering are prepared with platinum-salt infiltration and plasma etching. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DEVELOPMENT OF AN AFFINITY SILICA MONOLITH CONTAINING HUMAN SERUM ALBUMIN FOR CHIRAL SEPARATIONS

    PubMed Central

    Mallik, Rangan; Hage, David S.

    2008-01-01

    An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3- to 2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: D/L-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase. PMID:17475436

  1. High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes

    NASA Astrophysics Data System (ADS)

    Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew

    Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.

  2. Unique Pressure Dependence of the Order-Disorder Transition Temperature of a Series of PEP-PDMS Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Mortensen, K.; Almdal, K.; Schwahn, D.; Frielinghaus, H.

    1997-03-01

    Studies of the phase behavior of polymer systems has proven that the sensitivity to fluctuations is much more distinct than originally anticipated based on theoretical arguments. In blends of homo-polymers, studies have revealed that fluctuations give rise to significant re-normalized critical behavior. It has been argued that the free volume causes an entropic contribution to the Flory-Huggins interaction parameter, \\chi, and is thereby responsible for the re-normalized behavior. In block copolymers fluctuations have even more pronounced effects, as it changes the second order critical point at f=0.5 to first order and additional complex phases are stabilized. Measurements of the structure factor S(q) of PEP-PDMS diblock copolymers have revealed unique character in the phase-diagram with re-entrant ordered structure. Moreover, an unexpected singularity in the conformational compressibility, as identified from the peak-position, q, is observed. In contrary to binary polymer blends, pressure does not affect the Ginzburg number.

  3. Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.; Gu, W.; Chen, W.

    2012-01-01

    We investigated thin film morphologies of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide, where the thermal alkyne/azide click reaction between the two components induced a disorder-to-order transition (DOT) of the copolymer. By controlling the composition of the neat copolymers and the mole ratio between the alkyne and azide groups, different microphase separated morphologies were achieved. At higher azide loading ratios, a perpendicular orientation of the microdomains was observed with wide accessible film thickness window. As less azide was incorporated, the microdomains have a stronger tendency to be parallel to the substrate, andmore » the film thickness window for perpendicular orientation also became narrower.« less

  4. Directed Self-Assembly of Star-Block Copolymers by Topographic Nanopatterns through Nucleation and Growth Mechanism.

    PubMed

    Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming

    2018-04-01

    Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phase Behavior in Blends of Asymmetrical Polyolefins

    NASA Astrophysics Data System (ADS)

    Nedoma, Alisyn Jenise

    This dissertation presents the most comprehensive study of chi to date for a single pair of homopolymers. Polyisobutylene (component B) and deuterated polybutadiene with 63 % 1,2 addition (component C) were selected for this study because they exhibit a large window of miscibility and may be tailored to cross the spinodal at experimentally accessible temperatures. Binary blends were designed across a range of values for NB/ NC and the composition of the blend, φB, to study the effect of these parameters on the measured value, chi sc. In addition to the strict temperature dependence presumed for chi, this study documented a composition and molecular weight dependence. The empirical expression for chisc, measured using small angle neutron scattering, was three times more dependent on composition then the expression for chi used to predict thermodynamic behavior. Despite this three-fold diminished dependence on φB, the composition-dependent chi profoundly affected the phase behavior of binary blends. A range of values was studied for NB/ NC ≤ 1, and in all cases φB,cirt was found to be < 0.5, in stark contrast to the expectation of Flory-Huggins Theory that φB,crit ≥ 0.5. This effect was shown to result from the combined effects of a composition-dependent chi and N B/NC removed from values of 1. Remarkable agreement was obtained between the predicted phase diagrams and measured phase transitions, over a range of values for NB/ NC and φB, by accounting for the composition and molecular weight dependence of chi. The miscibility of binary B/C blends was used as the basis for designing a diblock copolymer (component A-C) to order immiscible binary blends of polyisobutylene and deuterated polybutadiene with 89 % 1,2 addition (component A). The copolymer comprised one block chemically identical to component C (miscible in component B) and one block chemically identical to component A. This is in contrast to the majority of ternary blend studies which comprise A/B/A-B polymer systems with neutral interactions between each homopolymer and the corresponding block of the diblock copolymer. Ternary A/B/A-C blends exhibit a favorable interaction between the B homopolymer and C block, demonstrated by the miscibility of B/C blends. The A-C diblock copolymer surfactant can produce microstructures when added to A/B blends at much lower concentrations of copolymer than for an analagous A-B copolymer. This dissertation introduces the use of lamellar structure factor that fits scattering profiles unsuitable for the microemulsion fit. In addition, the lamellar fits include as adjustable parameters the size of each microdomain and corresponding interfacial width. These fit values agree quantitatively with independently generated predictions using self-consistent field theory, indicating a broad understanding of the physical parameters that affect thermodynamic behavior in the A/B/A-C system studied. This dissertation presents a study for which the concentration of diblock copolymer was fixed and the composition of the A and B homopolymers was systematically varied across a range of compositions including φA,crit. The experiment corresponded to tracing the copolymer isopleth on a ternary phase prism. Theoretical groups have predicted a rich phase behavior along the isopleth for similar ternary systems, however, the observed phase behavior was quantitatively identical for all blends studied. Self-consistent field theory predictions agreed with fit values of the domain spacing and microdomain widths. There was no discernible correlation between φA and phase behavior. This finding, and that of the study with critical A/B/A-C blends, together suggest that NA/NB correlates strongly with the phase behavior of a blend, while φ A does not. This relationship, captured by mean-field theory, provides a simple method for tuning the phase behavior of polymer nanocomposites without using additional surfactant. (Abstract shortened by UMI.)

  6. Covalent attachment of microbial lipase onto microporous styrene-divinylbenzene copolymer by means of polyglutaraldehyde.

    PubMed

    Dizge, Nadir; Keskinler, Bülent; Tanriseven, Aziz

    2008-10-01

    A novel method for immobilization of Thermomyces lanuginosus lipase onto polyglutaraldehyde-activated poly(styrene-divinylbenzene) (STY-DVB), which is a hydrophobic microporous support has been successfully developed. The copolymer was prepared by the polymerization of the continuous phase of a high internal phase emulsion (polyHIPE). The concentrated emulsion consists of a mixture of styrene and divinylbenzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. Lipase from T. lanuginosus was immobilized covalently with 85% yield on the internal surface of the hydrophobic microporous poly(styrene-divinylbenzene) copolymer and used as a biocatalyst for the transesterification reaction. The immobilized enzyme has been fully active 30 days in storage and retained the activity during the 15 repeated batch reactions. The properties of free and immobilized lipase were studied. The effects of protein concentration, pH, temperature, and time on the immobilization, activity, and stability of the immobilized lipase were also studied. The newly synthesized microporous poly(styrene-divinylbenzene) copolymer constitutes excellent support for lipase. It given rise to high immobilization yield, retains enzymatic activity for 30 days, stable in structure and allows for the immobilization of large amount of protein (11.4mg/g support). Since immobilization is simple yet effective, the newly immobilized lipase could be used in several application including oil hydrolysis, production of modified oils, biodiesel synthesis, and removal of fatty acids from oils.

  7. Rich Variety of Three-Dimensional Nanostructures Enabled by Geometrically Constraining Star-like Block Copolymers.

    PubMed

    Wang, Chao; Xu, Yuci; Li, Weihua; Lin, Zhiqun

    2016-08-09

    The influence of star-like architecture on phase behavior of star-like block copolymer under cylindrical confinement differs largely from the bulk (i.e., nonconfinement). A set of intriguing self-assembled morphologies and the corresponding phase diagrams of star-like (AB)f diblock copolymers with different numbers of arms f (i.e., f = 3, 9, 15, and 21) in four scenarios (ϕA = 0.3 and V0 > 0; ϕA = 0.3 and V0 < 0; ϕA = 0.7 and V0 > 0; and ϕA = 0.7 and V0 < 0 (where ϕA is the volume fraction of A block) and V0 < 0 and V0 > 0 represent that the pore wall of cylindrical confinement prefers the inner A block (i.e., A-preferential) and B block (i.e., B-preferential), respectively) were for the first time scrutinized by employing the pseudospectral method of self-consistent mean-field theory. Surprisingly, a new nanoscopic phase, that is, perforated-lamellae-on-cylinder (denoted PC), was observed in star-like (AB)3 diblock copolymer at ϕA = 0.3 and V0 > 0. With a further increase in f, a single lamellae (denoted L1) was found to possess a larger phase region. Under the confinement of A-preferential wall (i.e., V0 < 0) at ϕA = 0.3, PC phase became metastable and its free energy increased as f increased. Quite intriguingly, when ϕA = 0.7 and V0 > 0, where an inverted cylinder was formed in bulk, the PC phase became stable, and its free energy decreased as f increased, suggesting the propensity to form PC phase under this condition. Moreover, in stark contrast to the phase transition of C1 → L1 → PC (C1, a single cylindrical microdmain) at ϕA = 0.3 and V0 > 0, when subjected to the A-preferential wall (ϕA = 0.7), a different phase transition sequence (i.e., C1 → PC → L1) was identified due to the formation of a double-layer structure. On the basis of our calculations, the influence of star-like architecture on (AB)f diblock copolymer under the imposed cylindrical confinement, particularly the shift of the phase boundaries as a function of f, was thoroughly understood. These self-assembled nanostructures may hold the promise for applications as lithographic templates for nanowires, photonic crystals, and nanotechnology.

  8. Thermal Annealing to Modulate the Shape Memory Behavior of a Biobased and Biocompatible Triblock Copolymer Scaffold in the Human Body Temperature Range.

    PubMed

    Merlettini, Andrea; Gigli, Matteo; Ramella, Martina; Gualandi, Chiara; Soccio, Michelina; Boccafoschi, Francesca; Munari, Andrea; Lotti, Nadia; Focarete, Maria Letizia

    2017-08-14

    A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.

  9. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    PubMed

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.

    PubMed

    Essawy, Hisham A; Mohamed, Magdy F; Ammar, Nabila S; Ibrahim, Hanan S

    2017-10-01

    A specially-designed graft copolymer of acrylic acid onto in-situ formed cellulose-fulvate hybrid showed privileged tendency for uptake of Pb(II) during competitive removal from a mixture containing Cd(II) and Ni(II) within 5min at pH 5. This novel trend is attributed mainly to the crowded high content of coordinating centers within the designed graft copolymer along with the acquired superabsorbency. This provides an outstanding tool to separate some metal ions selectively from mixtures containing multiple ions on kinetic basis. Thus, the designed graft copolymer structure exhibited superior efficiency that reached ∼95% for sole removal of Pb(II). Kinetic modeling for Pb(II) individual removal showed excellent fitting with a pseudo second-order model. Intraparticle diffusion model on the other hand ensured governance of boundary layer effect over diffusion during the removal process due to the superabsorbency feature of the graft copolymer. The experimental findings were described with models such as Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir and Freundlich models showed convenience with the adsorption isotherm of Pb(II) onto the developed graft copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Simultaneous determination of the styrene unit content and assessment of molecular weight of triblock copolymers in adhesives by a size exclusion chromatography method.

    PubMed

    Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping

    2017-10-01

    The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A New Strategy to Prepare Polymer-based Shape Memory Elastomers.

    PubMed

    Song, Shijie; Feng, Jiachun; Wu, Peiyi

    2011-10-04

    A new strategy that utilizes the microphase separation of block copolymer and phase transition of small molecules for preparing polymer-based shape memory elastomer has been proposed. According to this strategy, a novel kind of shape memory elastomer comprising styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and paraffin has been prepared. Because paraffins are midblock-selective molecules for SEBS, they will preferentially enter and swell EB blocks supporting paraffins as an excellent switch phase for shape memory effect. Microstructures of SEBS/paraffin composites have been characterized by transmission electron microscopy, polarized light microscopy, and differential scanning calorimetry. The composites demonstrate various phase morphologies with regard to different paraffin loading. It has been found that under low paraffin loading, all the paraffins precisely embed in and swell EB-rich domains. While under higher loading, part of the paraffins become free and a larger-scaled phase separation has been observed. However, within wide paraffin loadings, all composites show good shape fixing, shape recovery performances, and improved tensile properties. Compared to the reported methods for shape memory elastomers preparation, this method not only simplifies the fabrication procedure from raw materials to processing but also offers a controllable approach for the optimization of shape memory properties as well as balancing the rigidity and softness of the material. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE PAGES

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...

    2018-10-02

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  14. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  15. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    NASA Astrophysics Data System (ADS)

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.

  16. Electroactive poly(vinylidene fluoride)-based structures for advanced applications.

    PubMed

    Ribeiro, Clarisse; Costa, Carlos M; Correia, Daniela M; Nunes-Pereira, João; Oliveira, Juliana; Martins, Pedro; Gonçalves, Renato; Cardoso, Vanessa F; Lanceros-Méndez, Senentxu

    2018-04-01

    Poly(vinylidene fluoride) (PVDF) and its copolymers are the polymers with the highest dielectric constants and electroactive responses, including piezoelectric, pyroelectric and ferroelectric effects. This semicrystalline polymer can crystallize in five different forms, each related to a different chain conformation. Of these different phases, the β phase is the one with the highest dipolar moment and the highest piezoelectric response; therefore, it is the most interesting for a diverse range of applications. Thus, a variety of processing methods have been developed to induce the formation of the polymer β phase. In addition, PVDF has the advantage of being easily processable, flexible and low-cost. In this protocol, we present a number of reproducible and effective methods to produce β-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres. These structures can be fabricated by different processing techniques, including doctor blade, spin coating, printing technologies, non-solvent-induced phase separation (NIPS), temperature-induced phase separation (TIPS), solvent-casting particulate leaching, solvent-casting using a 3D nylon template, freeze extraction with a 3D poly(vinyl alcohol) (PVA) template, replica molding, and electrospinning or electrospray, with the fabrication method depending on the desired characteristics of the structure. The developed electroactive structures have shown potential to be used in a wide range of applications, including the formation of sensors and actuators, in biomedicine, for energy generation and storage, and as filtration membranes.

  17. Double-phase-functionalized magnetic Janus polymer microparticles containing TiO2 and Fe2O3 nanoparticles encapsulated in mussel-inspired amphiphilic polymers.

    PubMed

    Yabu, Hiroshi; Ohshima, Hiroyuki; Saito, Yuta

    2014-10-22

    Recently, anisotropic colloidal polymeric materials including Janus microparticles, which have two distinct aspects on their surfaces or interiors, have garnered much interest due to their anisotropic alignment and rotational orientation with respect to external electric or magnetic fields. Janus microparticles are also good candidates for pigments in "twisting ball type" electronic paper, which is considered promising for next-generation flexible display devices. We demonstrate here a universal strategy to encapsulate inorganic nanoparticles and to introduce different such inorganic nanoparticles into distinct polymer phases in Janus microparticles. TiO2 and Fe2O3 nanoparticles were separately encapsulated in two different mussel-inspired amphiphilic copolymers, and then organic-inorganic composite Janus microparticles were prepared by simple evaporation of solvent from the dispersion containing the polymer and nanoparticle. These Janus microparticles were observed to rotate quickly in response to applied magnetic fields.

  18. Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil

    PubMed Central

    Brandl, Ferdinand; Bertrand, Nicolas; Lima, Eliana Martins; Langer, Robert

    2015-01-01

    Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as a result, the nanoparticles are rapidly and irreversibly converted to macroscopic aggregates. The associated phase separation allows measuring the partitioning of small molecules between the aqueous phase and nanoparticles; data suggests that interactions are enhanced by decreasing the particle size. Adsorption onto nanoparticles can be exploited to efficiently remove hydrophobic pollutants from water and contaminated soil. Preliminary in vivo experiments suggest that treatment with photocleavable nanoparticles can significantly reduce the teratogenicity of bisphenol A, triclosan and 17α-ethinyl estradiol without generating obviously toxic byproducts. Small-scale pilot experiments on wastewater, thermal printing paper and contaminated soil demonstrate the applicability of the approach. PMID:26196119

  19. Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil

    NASA Astrophysics Data System (ADS)

    Brandl, Ferdinand; Bertrand, Nicolas; Lima, Eliana Martins; Langer, Robert

    2015-07-01

    Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as a result, the nanoparticles are rapidly and irreversibly converted to macroscopic aggregates. The associated phase separation allows measuring the partitioning of small molecules between the aqueous phase and nanoparticles; data suggests that interactions are enhanced by decreasing the particle size. Adsorption onto nanoparticles can be exploited to efficiently remove hydrophobic pollutants from water and contaminated soil. Preliminary in vivo experiments suggest that treatment with photocleavable nanoparticles can significantly reduce the teratogenicity of bisphenol A, triclosan and 17α-ethinyl estradiol without generating obviously toxic byproducts. Small-scale pilot experiments on wastewater, thermal printing paper and contaminated soil demonstrate the applicability of the approach.

  20. Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.

    2018-04-01

    A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.

  1. Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement.

    PubMed

    Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias

    2013-04-12

    An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling zone and mobile phase were identified as the main parameters affecting TCZR performance. In contrast to conventional systems, which rely on cooling the whole column to effect elution and permit only batch-wise operation, TCZR chromatography generates sharp concentrated elution peaks without tailing effects and appears ideally suited for continuous operation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Relationships between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting matrixes containing a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal.

    PubMed

    Tercjak, Agnieszka; Mondragon, Iñaki

    2008-10-07

    Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.

  3. Structure-properties relationships of novel poly(carbonate-co-amide) segmented copolymers with polyamide-6 as hard segments and polycarbonate as soft segments

    NASA Astrophysics Data System (ADS)

    Yang, Yunyun; Kong, Weibo; Yuan, Ye; Zhou, Changlin; Cai, Xufu

    2018-04-01

    Novel poly(carbonate-co-amide) (PCA) block copolymers are prepared with polycarbonate diol (PCD) as soft segments, polyamide-6 (PA6) as hard segments and 4,4'-diphenylmethane diisocyanate (MDI) as coupling agent through reactive processing. The reactive processing strategy is eco-friendly and resolve the incompatibility between polyamide segments and PCD segments in preparation processing. The chemical structure, crystalline properties, thermal properties, mechanical properties and water resistance were extensively studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermal gravity analysis (TGA), Dynamic mechanical analysis (DMA), tensile testing, water contact angle and water absorption, respectively. The as-prepared PCAs exhibit obvious microphase separation between the crystalline hard PA6 phase and amorphous PCD soft segments. Meanwhile, PCAs showed outstanding mechanical with the maximum tensile strength of 46.3 MPa and elongation at break of 909%. The contact angle and water absorption results indicate that PCAs demonstrate outstanding water resistance even though possess the hydrophilic surfaces. The TGA measurements prove that the thermal stability of PCA can satisfy the requirement of multiple-processing without decomposition.

  4. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  5. Picosecond absorption studies of photoinduced charge separation in polyelectrolyte bound aromatic chromophores

    NASA Astrophysics Data System (ADS)

    Shand, M. A.; Rodgers, M. A. J.; Webber, S. E.

    1991-02-01

    Picosecond absorption studies of photoinduced electron transfer between aromatic chromophores bound to polymethacrylic acid (P) and methylviologen (MV 2+ have been carried out in aqueous solution. The diphenylanthracene copolymer/viologen system at pH 2.8 shows the corresponding redox products DPA + rad and MV + rad arising from the singlet state of DPA with a forward rate constant of electron transfer of 2.6 × 10 9 s -1. At pH 9.0 the quenching of the S 1 state of DPA occurs with no charge separated products being observed. The pyrene copolymer shows no evidence of charge separated products at any pH in the range 2.8-9.0. It is proposed that the differences in the radical pair kinetics arise from differences in the degree of binding of the ground state complexes formed by the donor and acceptor species.

  6. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

    NASA Astrophysics Data System (ADS)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2014-06-01

    The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances.

  7. Recyclable magnetic nanocluster crosslinked with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) copolymer for adsorption with antibody.

    PubMed

    Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha

    2016-10-01

    Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior

    NASA Astrophysics Data System (ADS)

    Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo

    2005-04-01

    Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.

  9. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.

    PubMed

    Wouters, Sam; De Vos, Jelle; Dores-Sousa, José Luís; Wouters, Bert; Desmet, Gert; Eeltink, Sebastiaan

    2017-11-10

    The present paper discusses practical aspects of prototyping of microfluidic chips using cyclic olefin copolymer as substrate and the application in high-performance liquid chromatography. The developed chips feature a 60mm long straight separation channel with circular cross section (500μm i.d.) that was created using a micromilling robot. To irreversibly seal the top and bottom chip substrates, a solvent-vapor-assisted bonding approach was optimized, allowing to approximate the ideal circular channel geometry. Four different approaches to establish the micro-to-macro interface were pursued. The average burst pressure of the microfluidic chips in combination with an encasing holder was established at 38MPa and the maximum burst pressure was 47MPa, which is believed to be the highest ever report for these polymer-based microfluidic chips. Porous polymer monolithic frits were synthesized in-situ via UV-initiated polymerization and their locations were spatially controlled by the application of a photomask. Next, high-pressure slurry packing was performed to introduce 3μm silica reversed-phase particles as the stationary phase in the separation channel. Finally, the application of the chip technology is demonstrated for the separation of alkyl phenones in gradient mode yielding baseline peak widths of 6s by applying a steep gradient of 1.8min at a flow rate of 10μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure.

    PubMed

    Cui, Qianling; Wu, Feipeng; Wang, Erjian

    2011-05-19

    Stimuli-responsive, well-defined diblock copolymers (PEG-b-PADMO) comprising poly(ethylene glycol) (PEG, DP (degree of polymerization)=45) as the hydrophilic and temperature-sensitive part and poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO, DP=18-47) as the hydrophobic and acid-labile part self-assembled in water into spherical micelles with high aggregation number. The micellar structures and thermally induced phase transitions of the copolymers were investigated with (1)H NMR spectroscopy, light scattering, microscopy, turbidimetry, and fluorescence techniques. Thermoresponsive phase transitions of the copolymers in water were controlled via formation of core-shell-type micelles with densely compact PEG corona. Their lower critical solution temperatures (LCSTs) were modulated within the range 40-72 °C by varying PADMO block length. This unusually low LCST was attributed to the densely packed PEG structure in the polymer micelles, which resulted in strong n-clustering attractive interactions and insufficient hydration of PEG chains in the shell and greatly enhanced the thermosensitivity. The LCST behavior can also be modulated by partial acid hydrolysis of PADMO segments through the resulting change of hydrophobicity. © 2011 American Chemical Society

  11. Direct quantification of molar masses of copolymers by online liquid chromatography under critical conditions-nuclear magnetic resonance and size exclusion chromatography-nuclear magnetic resonance.

    PubMed

    Hehn, Mathias; Wagner, Thomas; Hiller, Wolf

    2014-01-07

    Online LCCC-NMR and SEC-NMR are compared regarding the determination of molar masses of block copolymers. Two different direct referencing methods are particularly demonstrated in LCCC-NMR for a detailed characterization of diblock copolymers and their co-monomers. First, an intramolecular reference group was used for the direct determination of block lengths and molar masses. For the first time, it was shown that LCCC-NMR can be used for an accurate determination of Mw and Mn of copolymers. These data were in perfect agreement with SEC-NMR measurements using the same intramolecular referencing method. In contrast, the determination of molar masses with common relative methods based on calibrations with homopolymers delivered inaccurate results for all investigated diblock copolymers due to different hydrodynamic volumes of the diblock copolymer compared to their homopolymers. The intramolecular referencing method provided detailed insights in the co-monomer behavior during the chromatographic separation of LCCC. Especially, accurate chain lengths and chemical compositions of the "invisible" and "visible" blocks were quantified during the elution under critical conditions and provided new aspects to the concept of critical conditions. Second, an external reference NMR signal was used to directly determine concentrations and molar masses of the block copolymers from the chromatographic elution profile. Consequently, the intensity axes of the resulting chromatograms were converted to molar amounts and masses, allowing for determination of the amount of polymer chains with respect to elution volume, the evaluation of the limiting magnitude of concentration for LCCC-NMR, and determination of the molar masses of copolymers.

  12. Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via Solvent Annealing.

    PubMed

    Xiong, Shisheng; Wan, Lei; Ishida, Yoshihito; Chapuis, Yves-Andre; Craig, Gordon S W; Ruiz, Ricardo; Nealey, Paul F

    2016-08-23

    Directed self-assembly (DSA) of block copolymers (BCPs) is a leading strategy to pattern at sublithographic resolution in the technology roadmap for semiconductors and is the only known solution to fabricate nanoimprint templates for the production of bit pattern media. While great progress has been made to implement block copolymer lithography with features in the range of 10-20 nm, patterning solutions below 10 nm are still not mature. Many BCP systems self-assemble at this length scale, but challenges remain in simultaneously tuning the interfacial energy atop the film to control the orientation of BCP domains, designing materials, templates, and processes for ultra-high-density DSA, and establishing a robust pattern transfer strategy. Among the various solutions to achieve domains that are perpendicular to the substrate, solvent annealing is advantageous because it is a versatile method that can be applied to a diversity of materials. Here we report a DSA process based on chemical contrast templates and solvent annealing to fabricate 8 nm features on a 16 nm pitch. To make this possible, a number of innovations were brought in concert with a common platform: (1) assembling the BCP in the phase-separated, solvated state, (2) identifying a larger process window for solvated triblock vs diblock BCPs as a function of solvent volume fraction, (3) employing templates for sub-10-nm BCP systems accessible by lithography, and (4) integrating a robust pattern transfer strategy by vapor infiltration of organometallic precursors for selective metal oxide synthesis to prepare an inorganic hard mask.

  13. Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media.

    PubMed

    Kim, Ginam; Sousa, Alioscka; Meyers, Deborah; Shope, Marilyn; Libera, Matthew

    2006-05-24

    Using valence electron energy loss spectroscopy (EELS) in the cryo-scanning transmission electron microscopy (STEM), we found that the polymer-polymer interface in two-phase nanocolloids of polydimethyl siloxane (PDMS) and copolymer (methyl acrylate (MA)-methyl methacrylate (MMA)-vinyl acetate (VA)) preserved in water was diffuse despite the fact that equilibrium thermodynamics indicates it should only be on the order of a few nanometers. The diffuse interface is a result of the kinetic trapping of the copolymer within the PDMS phase, and this finding suggests new nonequilibrium pathways to control interfaces during the synthesis of multicomponent polymeric nanostructures.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Hu; D Samanta; S Parelkar

    Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylenemore » oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.« less

  15. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    PubMed

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  16. Principle of two-dimensional characterization of copolymers.

    PubMed

    Weidner, Steffen; Falkenhagen, Jana; Krueger, Ralph-Peter; Just, Ulrich

    2007-07-01

    Two-dimensional polymer characterization is used for a simultaneous analysis of molar masses and chemical heterogeneities (e.g., end groups, copolymer composition, etc.). This principle is based on coupling of two different chromatographic modes. Liquid adsorption chromatography at critical conditions (LACCC) is applied for a separation according to the chemical heterogeneity, whereas in the second-dimension fractions are analyzed with regard to their molar mass distribution by means of size exclusion chromatography (SEC). Because appropriate standards for a calibration of the SEC are seldom available, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was used to substitute the SEC. The LACCC-MALDI MS coupling enables acquiring additional structural information on copolymer composition, which can considerably enhance the performance of this coupled method.

  17. Ion Correlation Effects in Salt-Doped Block Copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Hall, Lisa M.

    2018-03-01

    We apply classical density functional theory to study how salt changes the microphase morphology of diblock copolymers. Polymers are freely jointed and one monomer type favorably interacts with ions, to account for the selective solvation that arises from different dielectric constants of the microphases. By including correlations from liquid state theory of an unbound reference fluid, the theory can treat chain behavior, microphase separation, ion correlations, and preferential solvation, at the same coarse-grained level. We show good agreement with molecular dynamics simulations.

  18. Magnetic hydrogels from alkyne/cobalt carbonyl-functionalized ABA triblock copolymers

    DOE PAGES

    Jiang, Bingyin; Hom, Wendy L.; Chen, Xianyin; ...

    2016-03-09

    A series of alkyne-functionalized poly(4-(phenylethynyl)styrene)- block-poly(ethylene oxide)- block-poly(4-(phenylethynyl)styrene) (PPES-b-PEO-b-PPES) ABA triblock copolymers was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. PES n[Co 2(CO) 6] x-EO 800-PES n[Co 2(CO) 6] x ABA triblock copolymer/cobalt adducts (10–67 wt % PEO) were subsequently prepared by reaction of the alkyne-functionalized PPES block with Co 2(CO) 8 and their phase behavior was studied by TEM. Heating triblock copolymer/cobalt carbonyl adducts at 120 °C led to cross-linking of the PPES/Co domains and the formation of magnetic cobalt nanoparticles within the PPES/Co domains. Magnetic hydrogels could be prepared by swelling the PEO domains of the cross-linkedmore » materials with water. Furthermore, swelling tests, rheological studies and actuation tests demonstrated that the water capacity and modulus of the hydrogels were dependent upon the composition of the block copolymer precursors.« less

  19. Block Copolymer Micelles as Nanocontainers for Controlled Release of Proteins from Biocompatible Oil Phases

    PubMed Central

    2009-01-01

    Biocompatible oils are used in a variety of medical applications ranging from vaccine adjuvants to vehicles for oral drug delivery. To enable such nonpolar organic phases to serve as reservoirs for delivery of hydrophilic compounds, we explored the ability of block copolymer micelles in organic solvents to sequester proteins for sustained release across an oil−water interface. Self-assembly of the block copolymer, poly(ϵ-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP), was investigated in toluene and oleic acid, a biocompatible naturally occurring fatty acid. Micelle formation in toluene was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) imaging of micelles cast onto silicon substrates. Cryogenic transmission electron microscopy confirmed a spherical morphology in oleic acid. Studies of homopolymer solubility implied that micelles in oleic acid consist of a P2VP corona and a PCL core, while P2VP formed the core of micelles assembled in toluene. The loading of two model proteins (ovalbumin (ova) and bovine serum albumin (BSA)) into micelles was demonstrated with loadings as high as 7.8% wt of protein per wt of P2VP in oleic acid. Characterization of block copolymer morphology in the two solvents after protein loading revealed spherical particles with similar size distributions to the as-assembled micelles. Release of ova from micelles in oleic acid was sustained for 12−30 h upon placing the oil phase in contact with an aqueous bath. Unique to the situation of micelle assembly in an oily phase, the data suggest protein is sequestered in the P2VP corona block of PCL-b-P2VP micelles in oleic acid. More conventionally, protein loading occurs in the P2VP core of micelles assembled in toluene. PMID:19235932

  20. Synthetic/Biosynthetic Phase Transfer Polymers for Pollution Minimization, Remediation, and Waste Management

    DTIC Science & Technology

    1994-01-01

    in the viscosity profile is observed. DAMAB induces strong intermolecular associations via hydrophobic interactions . When copolymers of comparable...techniques such as viscosity studies. The AM/DAMAB copolymer series also interacts with surfactants in an interesting manner.’ The surface tension of...in polymer dimensions as hydrophobe is added. The shape of the viscosity curves does not suggest intermolecular interactions , as in typical

  1. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    PubMed Central

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-01-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist. PMID:27480327

  2. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, A.; Wright, G.; Yager, K. G.

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less

  3. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    DOE PAGES

    Stein, A.; Wright, G.; Yager, K. G.; ...

    2016-08-02

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less

  4. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  5. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  6. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Woosoon; Bae, Chulsung

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in ordermore » to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling. Recently, sulfonated SEBS became commercially available and has been extensively explored for membrane-mediated water purification technology. The sulfonated block copolymer creates a well developed nano-sale phase-separated morphologies composed of hydrophilic domains (sulfonated polystyrene) and hydrophobic domains (polyethylene/polybutylene). The hydrophilic domains determines transport properties (water transport, salt and/or ion rejection, etc) and the hydrophobic domains provides mechanical stability of the membrane. Unfortunately, a high degree of sulfonation of SEBS induces excessive swelling and deterioration of mechanical stability of the membrane. In an effort to develop robust polymeric membrane materials for water purification technology, phosphonic acid-functionalized SEBS membranes are investigated during this report period. In compare to sulfonated polymers, the corresponding phosphonated polymers are known to swell less because of the formation of extensive hydrogen bonding networks between phosphonates. In addition to the expected better mechanical stability, phosphonated polymers has another advantage over sulfonated polymers for the use water purification membrane; each phosphonate can accommodate two ions while each sulfonate accommodates only one ion. Membrane properties (ion type, ionic density, etc) of new membranes will be studied and their separation performance will be evaluated in water purification and desalination process. Through systematic study of the relationship of chemical structure–surface property–membrane performance, we aim to better understand the nature of membrane fouling and develop more fouling-resistant water purification membranes. The basic understanding of this relationship will lead to the development of advanced membrane materials which can offer a solution to environmentally sustainable production of fresh water.« less

  7. Controlling sub-microdomain structure in microphase-ordered block copolymers and their nanocomposites

    NASA Astrophysics Data System (ADS)

    Bowman, Michelle Kathleen

    Block copolymers exhibit a wealth of morphologies that continue to find ubiquitous use in a diverse variety of mature and emergent (nano)technologies, such as photonic crystals, integrated circuits, pharmaceutical encapsulents, fuel cells and separation membranes. While numerous studies have explored the effects of molecular confinement on such copolymers, relatively few have examined the sub-microdomain structure that develops upon modification of copolymer molecular architecture or physical incorporation of nanoscale objects. This work will address two relevant topics in this vein: (i) bidisperse brushes formed by single block copolymer molecules and (ii) copolymer nanocomposites formed by addition of molecular or nanoscale additives. In the first case, an isomorphic series of asymmetric poly(styrene-b -isoprene-b-styrene) (S1IS2) triblock copolymers of systematically varied chain length has been synthesized from a parent SI diblock copolymer. Small-angle x-ray scattering, coupled with dynamic rheology and self-consistent field theory (SCFT), reveals that the progressively grown S2 block initially resides in the I-rich matrix and effectively reduces the copolymer incompatibility until a critical length is reached. At this length, the S2 block co-locates with the S1 block so that the two blocks generate a bidisperse brush (insofar as the S1 and S2 lengths differ). This single-molecule analog to binary block copolymer blends affords unique opportunities for materials design at sub-microdomain length scales and provides insight into the transition from diblock to triblock copolymer (and thermoplastic elastomeric nature). In the second case, I explore the distribution of molecular and nanoscale additives in microphase-ordered block copolymers and demonstrate via SCFT that an interfacial excess, which depends strongly on additive concentration, selectivity and relative size, develops. These predictions are in agreement with experimental findings. Moreover, using a poly(styrene-b-methyl methacrylate) (SM) diblock copolymer with an order-disorder transition temperature (TODT) of 186°C, we find that the addition of clustered and discrete nanoparticles of varying size and surface selectivity can cause T ODT to generally decrease, but occasionally increase. Also experimenting with a poly(styrene-b-isoprene) (SI) diblock copolymer with an TODT of 116°C, we find that the addition of smaller nanoparticles at small volume fractions effect the TODT more profoundly. The latter unexpected results are likewise predicted by SCFT and provide a unique strategy by which to improve the nanostructure stability of block copolymers by physical means.

  8. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE PAGES

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; ...

    2016-05-04

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  9. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  10. Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks

    NASA Astrophysics Data System (ADS)

    Parviz, Dorsa; Yu, Ziniu; Hedden, Ronald C.; Green, Micah J.

    2014-09-01

    A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite.A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01431f

  11. Characterization of pigments from different high speed countercurrent chromatography wine fractions.

    PubMed

    Salas, Erika; Dueñas, Montserrat; Schwarz, Michael; Winterhalter, Peter; Cheynier, Véronique; Fulcrand, Hélène

    2005-06-01

    A red wine, made from Cabernet Sauvignon (60%) and Tannat (40%) cultivars, was fractionated by high speed countercurrent chromatography (HSCCC). The biphasic solvent system consisting of tert-butyl methyl ether/n-butanol/acetonitrile/water (2/2/1/5, acidified with 0.1% trifluoroacetic acid) was chosen for its demonstrated efficiency in separating anthocyanins. The different native and derived anthocyanins were identified on the basis of their UV-visible spectra, their elution time on reversed-phase high-performance liquid chromatography (HPLC), and their mass spectra, before and after thiolysis. The HSCCC method allowed the separation of different families of anthocyanin-derived pigments that were eluted in different fractions according to their structures. The hydrosoluble fraction was almost devoid of native anthocyanins. Further characterization (glucose quantification, UV-visible absorbance measurements) indicated that it contained flavanol and anthocyanin copolymers in which parts of the anthocyanin units were in colorless forms. Pigments in the hydrosoluble fraction showed increased resistance to sulfite bleaching and to the nucleophilic attack of water.

  12. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation

    NASA Astrophysics Data System (ADS)

    Sandhu, Paramvir; Zong, Jing; Yang, Delian; Wang, Qiang

    2013-05-01

    To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998), 10.1063/1.476300] and Chen et al. [J. Chem. Phys. 122, 104907 (2005), 10.1063/1.1860351] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996), 10.1021/ma951138i] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987), 10.1063/1.453566] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD model. Finally, in 11 of the total 20 cases (f-χN combinations) studied in the DPD simulations, a morphology different from the SCF prediction was obtained due to the differences between these two methods.

  13. Homogeneous synthesis of cellulose acrylate-g-poly (n-alkyl acrylate) solid-solid phase change materials via free radical polymerization.

    PubMed

    Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang

    2018-08-01

    A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. CdS/C60 binary nanocomposite films prepared via phase transition of PS-b-P2VP block copolymer.

    PubMed

    Lee, Jung-Pil; Koh, Haeng-Deog; Shin, Won-Jeong; Kang, Nam-Goo; Park, Soojin; Lee, Jae-Suk

    2014-03-01

    We demonstrate the well-defined control of phase transition of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer from spherical micelles to lamellar structures, in which CdS and C60 nanoparticles (NPs) are selectively positioned at the P2VP domains. The CdS NPs are in situ synthesized using PS-b-P2VP block copolymer templates that are self-assembled in PS-selective solvents. The CdS-PS-b-P2VP micellar structures are transformed to lamellar phase by adjusting a solvent selectivity for both blocks. In addition, a binary system of CdS/C60 embedded in PS-b-P2VP lamellar structures (CdS/C60-PS-b-P2VP) is fabricated by embedding C60 molecules into P2VP domain though charge-transfer complexation between pyridine units of PS-b-P2VP and C60 molecules. The CdS/C60-PS-b-P2VP nanostructured films are characterized by transmission electron microscopy (TEM) and UV-Vis spectrometer. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong

    2015-03-01

    As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.

  16. One-step preparation of superhydrophobic acrylonitrile-butadiene-styrene copolymer coating for ultrafast separation of water-in-oil emulsions.

    PubMed

    Deng, Wanshun; Long, Mengying; Zhou, Qiannan; Wen, Ni; Deng, Wenli

    2018-02-01

    Superhydrophobic membranes with opposite wettability toward water and oil are able to separate water-in-oil emulsions. By constructing porous and hierarchal-structured superhydrophobic coating on filter paper, we hope a quick separation process could be achieved due to the acceleration of both demulsification and penetration process. Here, superhydrophobic coatings were prepared by simply spraying environmental and cost-effective acrylonitrile-butadiene-styrene copolymer (ABS) colloid in dichloromethane onto filter paper. The morphologies and wettability of the obtained coatings were carefully studied. Moreover, the separation performances in dealing with various surfactant-stabilized water-in-oil emulsions (SSWOE) were also investigated to verify our hypothesis. The morphologies of the ABS coatings varied with its weight concentration in dichloromethane and they changed from porous and plain surface into porous and hierarchal-structured surface. Besides, the hydrophobicity of the above coatings varied form hydrophobic to superhydrophobic. Moreover, the resulted superhydrophobic membranes show great separation capability in separating various span 80-stabilized water-in-oil emulsions with oil filtrate purities larger than 99.90% and huge penetration fluxes whose maximum is over 13,000L/(m 2 h). Thus, we envision that such membrane can be a practical candidate in dealing with water-in-oil emulsions to obtain pure oils. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  18. Accurate diblock copolymer phase boundaries at strong segregations

    NASA Astrophysics Data System (ADS)

    Matsen, M. W.; Whitmore, M. D.

    1996-12-01

    We examine the lamellar/cylinder and cylinder/sphere phase boundaries for strongly segregated diblock copolymer melts using self-consistent-field theory (SCFT) and the standard Gaussian chain model. Calculations are performed with and without the conventional unit-cell approximation (UCA). We find that for strongly segregated melts, the UCA simply produces a small constant shift in each of the phase boundaries. Furthermore, the boundaries are found to be linear at strong segregations when plotted versus (χN)-1, which allows for accurate extrapolations to χN=∞. Our calculations using the UCA allow direct comparisons to strong-segregation theory (SST), which is accepted as the χN=∞ limit of SCFT. A significant discrepancy between the SST and SCFT results indicate otherwise, suggesting that the present formulation of SST is incomplete.

  19. EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures

    NASA Astrophysics Data System (ADS)

    Farquet, Patrick; Padeste, Celestino; Solak, Harun H.; Gürsel, Selmiye Alkan; Scherer, Günther G.; Wokaun, Alexander

    2007-12-01

    Nanostructures of the thermoresponsive poly( N-isopropyl acrylamide) (PNIPAAm) and of PNIPAAm-block-poly(acrylic acid) copolymers were produced on poly(tetrafluoroethylene-co-ethyelene) (ETFE) films using extreme ultraviolet (EUV) lithographic exposure with subsequent graft-polymerization. The phase transition of PNIPAAm nanostructures at the low critical solution temperature (LCST) at 32 °C was imaged by atomic force microscopy (AFM) phase contrast measurements in pure water. Results show a higher phase contrast for samples measured below the LCST temperature than for samples above the LCST, proving that the soft PNIPAAm hydrogel transforms into a much more compact conformation above the LCST. EUV lithographic exposures were combined with the reversible addition-fragment chain transfer (RAFT)-mediated polymerization using cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agent to synthesize PNIPAAm block-copolymer nanostructures.

  20. The nanoscale phase distinguishing of PCL-PB-PCL blended in epoxy resin by tapping mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Huiqin; Sun, Limin; Shen, Guangxia; Liang, Qi

    2012-02-01

    In this work, we investigated the bulk phase distinguishing of the poly(ɛ-caprolactone)-polybutadiene-poly(ɛ-caprolactone) (PCL-PB-PCL) triblock copolymer blended in epoxy resin by tapping mode atomic force microscopy (TM-AFM). We found that at a set-point amplitude ratio ( r sp) less than or equal to 0.85, a clear phase contrast could be obtained using a probe with a force constant of 40 N/m. When r sp was decreased to 0.1 or less, the measured size of the PB-rich domain relatively shrank; however, the height images of the PB-rich domain would take reverse (translating from the original light to dark) at r sp = 0.85. Force-probe measurements were carried out on the phase-separated regions by TM-AFM. According to the phase shift angle vs. r sp curve, it could be concluded that the different force exerting on the epoxy matrix or on the PB-rich domain might result in the height and phase image reversion. Furthermore, the indentation depth vs. r sp plot showed that with large tapping force (lower r sp), the indentation depth for the PB-rich domain was nearly identical for the epoxy resin matrix.

  1. [Phase transfer catalyzed bioconversion of penicillin G to 6-APA by immobilized penicillin acylase in recyclable aqueous two-phase systems with light/pH sensitive copolymers].

    PubMed

    Jin, Ke-ming; Cao, Xue-jun; Su, Jin; Ma, Li; Zhuang, Ying-ping; Chu, Ju; Zhang, Si-liang

    2008-03-01

    Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.

  2. Synthesis of a conjugated pyrrolopyridazinedione-benzodithiophene (PPD-BDT) copolymer and its application in organic and hybrid solar cells.

    PubMed

    Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas

    2017-01-01

    Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.

  3. Reordering transitions during annealing of block copolymer cylinder phases

    DOE PAGES

    Majewski, Pawel W.; Yager, Kevin G.

    2015-10-06

    While equilibrium block-copolymer morphologies are dictated by energy-minimization effects, the semi-ordered states observed experimentally often depend on the details of ordering pathways and kinetics. In this study, we explore reordering transitions in thin films of block-copolymer cylinder-forming polystyrene- block-poly(methyl methacrylate). We observe several transient states as films order towards horizontally-aligned cylinders. In particular, there is an early-stage reorganization from randomly-packed cylinders into hexagonally-packed vertically-aligned cylinders; followed by a reorientation transition from vertical to horizontal cylinder states. These transitions are thermally activated. The growth of horizontal grains within an otherwise vertical morphology proceeds anisotropically, resulting in anisotropic grains in the finalmore » horizontal state. The size, shape, and anisotropy of grains are influenced by ordering history; for instance, faster heating rates reduce grain anisotropy. These results help elucidate aspects of pathway-dependent ordering in block-copolymer thin films.« less

  4. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    PubMed

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  5. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE PAGES

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; ...

    2016-02-16

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  6. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  7. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming

    2017-04-01

    In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m2 h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the goal of long term usage without compromising flux.

  8. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  9. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer

    DOE PAGES

    Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw; ...

    2017-02-22

    Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less

  10. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw

    Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less

  11. Characterization of multiblock copolymers by chromatographic techniques.

    PubMed

    N'Goma, Patrick Yoba; Radke, Wolfgang; Malz, Frank; Ziegler, Hans Jörg; Zierke, Michael; Behl, Marc; Lendlein, Andreas

    2011-02-01

    Multiblock copolymers (MBC) composed of blocks of poly(1,4-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) were investigated in order to gain information on the extend of chemical heterogeneity of the samples. A gradient chromatographic method was established allowing separation of purely PPDO- from purely PCL-containing chains. Application of the gradient to MBC made of PPDO- and PCL-diols connected by trimethylhexamethylene diisocyanate (TMDI) resulted in two well separated peaks which were analyzed by means of FTIR, 1H-NMR and pyrolysis GC-MS. It was shown that the first peak was composed to a large extent of PPDO and only lower amounts of PCL were incorporated. Conversely, the second peak consisted predominantly of PCL with only a minor fraction of PPDO. Thus, the MBCs having PPDO and PCL segments show an unexpected broad chemical heterogeneity.

  12. Phase Equilibria and Transition in Mixtures of a Homopolymer and a Block Copolymer. I. Small-Angle X-Ray Scattering Study.

    DTIC Science & Technology

    1983-03-08

    tlh repow ) !Unclassified lie. DECLASSI FICATION/ DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT ( of this Report) Distribution Unlimited, Approved for...a block copolymer can sometimes be transformed into a homogeneous, disordered structure. The tem- perature of the transition depends on the degree of ...probably that the morphology is gradually transformed from spherical to cylindrical and eventually to lamellar packing. There is, however, no evidence of

  13. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLAmore » comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.« less

  14. Structural and chemical aspects of HPMA copolymers as drug carriers.

    PubMed

    Ulbrich, Karel; Subr, Vladimír

    2010-02-17

    Synthetic strategies and chemical and structural aspects of the synthesis of HPMA copolymer conjugates with various drugs and other biologically active molecules are described and discussed in this chapter. The discussion is held from the viewpoint of design and structure of the polymer backbone and biodegradable spacer between a polymer and drug, structure and methods of attachment of the employed drugs to the carrier and structure and methods of conjugation with targeting moieties. Physicochemical properties of the water-soluble polymer-drug conjugates and polymer micelles including mechanisms of drug release are also discussed. Detailed description of biological behavior of the polymer-drug conjugates as well as application of the copolymers for surface modification and targeting of gene delivery vectors are not included, they are presented and discussed in separate chapters of this issue. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Synthesis and Characterization of Graft Copolymers Poly(isoprene-g-styrene) of High Molecular Weight by a Combination of Anionic Polymerization and Emulsion Polymerization

    DOE PAGES

    Wang, Wenwen; Wang, Weiyu; Li, Hui; ...

    2015-01-14

    In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less

  16. LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma

    NASA Technical Reports Server (NTRS)

    Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi

    2004-01-01

    Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.

  17. Super-hydrophobic coatings based on non-solvent induced phase separation during electro-spraying.

    PubMed

    Gao, Jiefeng; Huang, Xuewu; Wang, Ling; Zheng, Nan; Li, Wan; Xue, Huaiguo; Li, Robert K Y; Mai, Yiu-Wing

    2017-11-15

    The polymer solution concentration determines whether electrospinning or electro-spraying occurs, while the addition of the non-solvent into the polymer solution strongly influences the surface morphology of the obtained products. Both smooth and porous surfaces of the electro-sprayed microspheres can be harvested by choosing different non-solvent and its amount as well as incorporating polymeric additives. The influences of the solution concentration, weight ratio between the non-solvent and the copolymer, and the polymeric additives on the surface morphology and the wettability of the electro-sprayed products were systematically studied. Surface pores and/or asperities on the microsphere surface were mainly caused by the non-solvent induced phase separation (NIPS) and subsequent evaporation of the non-solvent during electro-spraying. With increasing polymer solution concentration, the microsphere was gradually changed to the bead-on-string geometry and finally to a nanofiber form, leading to a sustained decrease of the contact angle (CA). It was found that the substrate coatings derived from the microspheres possessing hierarchical surface pores or dense asperities had high surface roughness and super-hydrophobicity with CAs larger than 150° while sliding angles smaller than 10°; but coatings composed of microspheres with smooth surfaces gave relatively low CAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    PubMed

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.

    PubMed

    Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D

    2017-09-06

    Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.

  20. Simulation of free energies of bicontinuous morphologies formed through block copolymer/homopolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Poornima; Martinez-Veracoechea, Francisco; Escobedo, Fernando

    Different types of bicontinuous phases can be formed from A-B diblock copolymers by the addition of A-type homopolymers over a range of compositions and relative chain lengths. Particle-based molecular simulations were used to study three bicontinuous phases - double gyroid (G), double diamond (D) and plumber's nightmare (P) - near their triple point of coexistence. For 3-D ordered phases, the stability of the morphology formed in simulation is highly sensitive to box size whose exact size is unknown a-priori. Accurate free energy estimates are required to ascertain the stable phase, particularly when multiple competing phases spontaneously form at the conditions of interest. A variant of thermodynamic integration was implemented to obtain free energies and hence identify the stable phases and their optimal box sizes by tracing a reversible path that connects the ordered and disordered phases. Clear evidence was found of D-G and D-P phase coexistence, consistent with previous predictions for the same blend using Self-consistent field theory. Our simulations also allowed us to examine the microscopic details of these coexisting bicontinuous phases and detect key differences between the microstructure of their nodes and struts.

  1. Rheological Design of Sustainable Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mannion, Alexander M.

    Block copolymers are extremely versatile materials that microphase separate to give rise to a rich array of complex behavior, making them the ideal platform for the development of rheologically sophisticated soft matter. In line with growing environmental concerns of conventional plastics from petroleum feedstocks, this work focuses on the rheological design of sustainable block copolymers--those derived from renewable sources and are degradable--based on poly(lactide). Although commercially viable, poly(lactide) has a number of inherent deficiencies that result in a host of challenges that require both creative and practical solutions that are cost-effective and amenable to large-scale production. Specifically, this dissertation looks at applications in which both shear and extensional rheology dictate performance attributes, namely chewing gum, pressure-sensitive adhesives, and polymers for blown film extrusion. Structure-property relationships in the context of block polymer architecture, polymer composition, morphology, and branching are explored in depth. The basic principles and fundamental findings presented in this thesis are applicable to a broader range of substances that incorporate block copolymers for which rheology plays a pivotal role.

  2. Structure/permeability relationships of silicon-containing polyimides

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Vaidyanathan, R.; Pratt, J. R.

    1989-01-01

    The permeability to H2, O2, N2, CO2 and CH4 of three silicone-polyimide random copolymers and two polyimides containing silicon atoms in their backbone chains, was determined at 35.0 C and at pressures up to about 120 psig (approximately 8.2 atm). The copolymers contained different amounts of BPADA-m-PDA and amine-terminated poly (dimethyl siloxane) and also had different numbers of siloxane linkages in their silicone component. The polyimides containing silicon atoms (silicon-modified polyimides) were SiDA-4,4'-ODA and SiDA-p-PDA. The gas permeability and selectivity of the copolymers are more similar to those of their silicone component than of the polyimide component. By contrast, the permeability and selectivity of the silicon-modified polyimides are more similar to those of their parent polyimides, PMDA-4,4'-ODA and SiDA-p-PDA. The substitution of SiDA for the PMDA moiety in a polyimide appears to result in a significant increase in gas permeability, without a correspondingly large decrease in selectivity. The potential usefulness of the above polymers and copolymers as gas separation membranes is discussed.

  3. Ordering transition in salt-doped diblock copolymers

    DOE PAGES

    Qin, Jian; de Pablo, Juan J.

    2016-04-26

    Lithium salt-doped block copolymers offer promise for applications as solid electrolytes in lithium ion batteries. Control of the conductivity and mechanical properties of these materials, for membrane applications relies critically on the ability to predict and manipulate their microphase separation temperature. Past attempts to predict the so-called "order-disorder transition temperature" of copolymer electrolytes have relied on approximate treatments of electrostatic interactions. In this work, we introduce a coarse-grained simulation model that treats Coulomb interactions explicitly, and we use it to investigate the ordering transition of charged block copolymers. The order-disorder transition temperature is determined from the ordering free energy, whichmore » we calculate with a high level of precision using a density-of-states approach. Our calculations allow us to discern a delicate competition between two physical effects: ion association, which raises the transition temperature, and solvent dilution, which lowers the transition temperature. Lastly, in the intermediate salt concentration regime, our results predict that the order-disorder transition temperature increases with salt content, in agreement with available experimental data.« less

  4. Comparison between hot-melt extrusion and spray-drying for manufacturing solid dispersions of the graft copolymer of ethylene glycol and vinylalcohol.

    PubMed

    Guns, Sandra; Dereymaker, Aswin; Kayaert, Pieterjan; Mathot, Vincent; Martens, Johan A; Van den Mooter, Guy

    2011-03-01

    To investigate the effect of the manufacturing method (spray-drying or hot-melt extrusion) on the kinetic miscibility of miconazole and the graft copolymer poly(ethyleneglycol-g-vinylalcohol). The effect of heat pre-treatment of solutions used for spray-drying and the use of spray-dried copolymer as excipient for hot-melt extrusion was investigated. The solid dispersions were prepared at different drug-polymer ratios and analyzed with modulated differential scanning calorimetry and X-ray powder diffraction. Miconazole either mixed with the PEG-fraction of the copolymer or crystallized in the same or a different polymorph as the starting material. The kinetic miscibility was higher for the solid dispersions obtained from solutions which were pre-heated compared to those spray-dried from solutions at ambient temperature. Hot-melt extrusion resulted in an even higher mixing capability. Here the use of the spray-dried copolymer did not show any benefit concerning the kinetic miscibility of the drug and copolymer, but it resulted in a remarkable decrease in the torque experienced by the extruder allowing extrusion at lower temperature and torque. The manufacturing method has an influence on the mixing capacity and phase behavior of solid dispersions. Heat pre-treatment of the solutions before spray-drying can result in a higher kinetic miscibility. Amorphization of the copolymer by spray-drying before using it as an excipient for hot-melt extrusion can be a manufacturing benefit.

  5. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    PubMed

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates

    PubMed Central

    Xie, Yujiao; Liu, Xiaofeng; Hu, Zhuang; Hou, Zhipeng; Chen, Zhangpei; Hu, Jianshe; Yang, Liqun

    2018-01-01

    New amphiphilic liquid crystal (LC) polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR) spectrum, 1H NMR, gel permeation chromatographic (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing optical microscope (POM), and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td), glass temperature (Tg), and isotropic temperature (Ti) increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX), together with drug release tracking, were evaluated by dynamic light scattering (DLS), SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications. PMID:29584691

  7. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain recovery at low to intermediate temperatures, a widening of the transition region, and an eventual crossover at high temperatures. Our results corroborate experimental findings on shape-memory behavior and provide new insight into factors governing deformation recovery that can be leveraged in biomaterials design. The established computational methodology can be extended in straightforward ways to investigate the effects of monomer chemistry, low-molecular-weight solvents, physical and chemical crosslinking, different phase-separation morphologies, and more complicated mechanical deformation toward predictive modeling capabilities for stimuli-responsive polymers.

  8. Study on the mesophase development of pressure-responsive ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    Here we focus on the revelation of new nanoscale morphologies for a molten compressible polymeric surfactant through a compressible self-consistent field approach. A linear ABC block copolymer is set to allow a disparity in the propensities for curved interfaces and in pressure responses of ij-pairs. Under these conditions, the copolymer evolves into noble morphologies at selected segregation levels such as networks with tetrapod connections, rectangularly packed cylinders in a 2-dimensional array, and also body-centered cubic phases. Those new structures are considered to turn up by interplay between disparity in the densities of block domains and packing frustration. Comparison with the classical mesophase structures is also given. The author acknowledges the support from the Center for Photofunctional Energy Materials (GRRC).

  9. Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochervinskii, V. V., E-mail: kochval@mail.ru; Kiselev, D. A.; Malinkovich, M. D.

    2017-03-15

    The crystallization of a copolymer from a solution at room temperature is found to lead to the formation of a metastable structure, characterized by the coexistence of ferroelectric and paraelectric phases. The fraction of the latter decreases after annealing above the Curie point. Atomic force microscopy (AFM) has revealed a difference in the surface topographies between the films contacting with air and the films contacting with a glass substrate. The microstructure of copolymer chains has been investigated by {sup 19}F NMR spectroscopy. The chain fragments with “defect” attached monomeric units are ejected to the surface. The character of the ferroelectricmore » domains formed during crystallization and their size distribution are analyzed.« less

  10. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    NASA Astrophysics Data System (ADS)

    Yoo, Hana; Park, Soojin

    2010-06-01

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.

  11. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots.

    PubMed

    Yoo, Hana; Park, Soojin

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.

  12. Self-oscillating AB diblock copolymer developed by post modification strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle atmore » reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.« less

  13. Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-k, Ultrathin Polymer Gate Dielectrics.

    PubMed

    Choi, Junhwan; Joo, Munkyu; Seong, Hyejeong; Pak, Kwanyong; Park, Hongkeun; Park, Chan Woo; Im, Sung Gap

    2017-06-21

    A series of high-k, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (k) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10 -8 A/cm 2 in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-k dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-k organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics.

  14. RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies

    PubMed Central

    2013-01-01

    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by 1H NMR spectroscopy and relatively low diblock copolymer polydispersities (Mw/Mn < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMAx diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMAx phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications. PMID:24400622

  15. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  16. Effect of rod length on the morphology of block copolymer/magnetic nanorod composites.

    PubMed

    Lo, Chieh-Tsung; Lin, Wei-Ting

    2013-05-02

    The organization of magnetic nanorods in microphase-separated diblock copolymers composed of poly(styrene-b-2-vinylpyridine) (PS-PVP) as a function of rod length and rod concentration was investigated using both transmission electron microscopy and small-angle X-ray scattering. Our results reveal that the nanorods were sequestered into the PVP domains, which is attributed to the preferential interaction between pyridine-tethered nanorods and PVP. Meanwhile, the addition of nanorods in PS-PVP caused chain stretching. To minimize the energy penalty, nanorods tended to align parallel to the interface between PS and PVP to increase the conformational entropy. As the length of nanorods increased, the increasing van der Waals interaction and magnetic interaction caused extensive rod aggregation, which suppressed the domain size of PVP and amplified the local compositional fluctuations. This creates conditions to induce disorder in the polymer morphology and nanorods undergo macrophase separation.

  17. Combinatorial Methodology for Screening Selectivity in Polymeric Pervaporation Membranes.

    PubMed

    Godbole, Rutvik V; Ma, Lan; Doerfert, Michael D; Williams, Porsche; Hedden, Ronald C

    2015-11-09

    Combinatorial methodology is described for rapid screening of selectivity in polymeric pervaporation membrane materials for alcohol-water separations. The screening technique is demonstrated for ethanol-water separation using a model polyacrylate system. The materials studied are cross-linked random copolymers of a hydrophobic comonomer (n-butyl acrylate, B) and a hydrophilic comonomer (2-hydroxyethyl acrylate, H). A matrix of materials is prepared that has orthogonal variations in two key variables, H:B ratio and cross-linker concentration. For mixtures of ethanol and water, equilibrium selectivities and distribution coefficients are obtained by combining swelling measurements with high-throughput HPLC analysis. Based on the screening results, two copolymers are selected for further study as pervaporation membranes to quantify permeability selectivity and the flux of ethanol. The screening methodology described has good potential to accelerate the search for new membrane materials, as it is adaptable to a broad range of polymer chemistries.

  18. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose.

    PubMed

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T

    2009-04-07

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1-2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips.

  19. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose

    PubMed Central

    Sun, Xiuhua; Yang, Weichun; Geng, Yanli; Woolley, Adam T.

    2009-01-01

    We have developed a simple and effective method for surface modification of polymer microchips by entrapping hydroxypropyl cellulose (HPC) in a spin-coated thin film on the surface. Poly(methyl methacrylate-8.5-methacrylic acid), a widely available commercial resist formulation, was utilized as a matrix for dissolving HPC and providing adherence to native polymer surfaces. Various amounts of HPC (0.1–2.0%) dissolved in the copolymer and spun on polymer surfaces were evaluated. The modified surfaces were characterized by contact angle measurement, X-ray photoelectron spectroscopy and atomic force microscopy. The developed method was applied on both poly(methyl methacrylate) and cyclic olefin copolymer microchips. A fluorescently labeled myoglobin digest, binary protein mixture, and human serum sample were all separated in these surface-modified polymer microdevices. Our work exhibits an easy and reliable way to achieve favorable biomolecular separation performance in polymer microchips. PMID:19294306

  20. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  1. Development of mass production technology for block copolymer lithographic materials

    NASA Astrophysics Data System (ADS)

    Himi, Toshiyuki; Matsuki, Ryota; Kosaka, Terumasa; Ogaki, Ryosuke; Kawaguchi, Yukio; Shimizu, Tetsuo

    2017-03-01

    We have successfully synthesized various and over wide range molecular weight block copolymers (BCPs): these are polystyrene(PS)-polymethylmethacrylate(PMMA) as general components and poly(4-trimethylsilylstyrene)(PTMSS)- poly(4-hydroxystyrene)(PHS) system as very strong segregated components (high chi) and multiblock type of those copolymers which form the microphase-separated structure pattern using living anionic polymerizing method by which the size of polymer can be precisely controlled. In addition, we were able to observe alternating lamellar and cylinder structures which were formed by our various BCPs using small angle X-ray scattering (SAXS). Moreover, we have successfully developed new apparatus for high volume manufacturing including our original technologies such as purification of monomer, improvement of wetted surface, and mechanical technology for high vacuum. And we have successfully synthesized all the BCPs with narrow molecular weight distribution (PDI <1.1) with large-scale apparatus.

  2. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    NASA Astrophysics Data System (ADS)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  3. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less

  4. Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.

    A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less

  5. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  6. Energy storage crystalline gel materials for 3D printing application

    NASA Astrophysics Data System (ADS)

    Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang

    2017-04-01

    Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.

  7. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    NASA Astrophysics Data System (ADS)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid-like environment around the ion while the second mechanism of ion conduction is attributed to diffusion of the entire polymer chain with coordinated ions. Equilibrated block copolymer electrolytes exhibit a non-monotonic dependence on molecular weight, decreasing with increasing molecular weight in the small molecular weight limit before increasing when molecular weight exceeds about 10 kg mol-1. Conductivity in annealed electrolytes was shown to be affected by two competing factors: the glass transition temperature of the insulating polystyrene block and the width of the conducting poly(ethylene oxide) (PEO) channel. In the low molecular weight limit, all ions are in contact with both polystyrene (PS) and PEO segments. The intermixing between PS and PEO segments is restricted to an interfacial zone of width of about 5 nm. The fraction of ions affected by the interfacial zone decreases as the conducting channel width increases. Furthermore, the effect of thermal history on the conductivity of the block copolymer electrolytes was examined. Results suggest that long-range order impedes ion transport, and consequently decreases in conductivity of up to 80% were seen upon annealing. The effect of morphology on ion transport was studied by conducting simultaneous impedance and X-ray scattering experiments as the block copolymer electrolyte transitioned from an ordered lamellar structure to a disordered phase. The ionic conductivity increased discontinuously through the transition from order to disorder. A simple framework for quantifying the magnitude of the discontinuity was presented. Finally, block copolymer electrolytes were examined specifically for use in high energy density solid state lithium/sulfur batteries. Such materials have been shown to form a stable interface with lithium metal anodes, maintain intimate contact upon cycling, and have sufficiently high shear moduli to retard dendrite formation. Having previously satisfied the concerns associated with the lithium metal anode, the compatibility of the sulfur cathode was explored. The sulfur cathode presents many unique challenges, including the generation of soluble lithium polysulfides (Li2Sx, 2 ≤ x ≤ 8) during discharge. The solubility of such species in block copolymers and their effect on morphology was examined. The lithium polysulfides were found to exhibit similar solubility in the block copolymers as in typical organic electrolytes, however induced unusual and unexpected phase behavior in the block copolymers. Inspired by successful efforts to physically confine the soluble lithium polysulfides via nanostructured carbon-sulfur composites in the cathode, our nanostructured block copolymer electrolytes were employed in full electrochemical cells with a lithium metal anode and sulfur cathode. Different cathode compositions, electrolyte additives, and cell architectures were tested. Surprisingly, the polysulfides diffused readily from the cathode through the block copolymer electrolyte, and the normally robust SEO|Li metal interface was detrimentally affected their presence during cycling. The polysulfides appeared to change the mechanical properties of the electrolyte such that intimate contact with the lithium metal was lost. Several promising strategies to overcome this problem were investigated and offer exciting avenues for improvement for future researchers. (Abstract shortened by UMI.).

  8. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  9. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  10. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE PAGES

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...

    2017-02-24

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  11. Organic-inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior.

    PubMed

    Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi

    2014-01-14

    In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.

  12. Magnetic nanoparticles for bio-analytical applications

    NASA Astrophysics Data System (ADS)

    Yedlapalli, Sri Lakshmi

    Magnetic nanoparticles are widely being used in various fields of medicine, biology and separations. This dissertation focuses on the synthesis and use of magnetic nanoparticles for targeted drug delivery and analytical separations. The goals of this research include synthesis of biocompatible surface modified monodisperse superparamagnetic iron oxide nanoparticles (SPIONs) by novel techniques for targeted drug delivery and use of SPIONs as analytical sensing tools. Surface modification of SPIONs was performed with two different co-polymers: tri block co-polymer Pluronics and octylamine modified polyacrylic acid. Samples of SPIONs were subsequently modified with 4 different commercially available, FDA approved tri-block copolymers (Pluronics), covering a wide range of molecular weights (5.75-14.6 kDa). A novel, technically simpler and faster phase transfer approach was developed to surface modify the SPIONs with Pluronics for drug delivery and other biomedical applications. The hydrodynamic diameter and aggregation properties of the Pluronic modified SPIONs were studied by dynamic light scattering (DLS). The coverage of SPIONs with Pluronics was supported with IR Spectroscopy and characterized by Thermo gravimetric Analysis (TGA). The drug entrapment capacity of SPIONs was studied by UV-VIS spectroscopy using a hydrophobic carbocyanine dye, which serves as a model for hydrophobic drugs. These studies resulted in a comparison of physical properties and their implications for drug loading capacities of the four types of Pluronic coated SPIONs for drug delivery assessment. These drug delivery systems could be used for passive drug targeting. However, Pluronics lack the functional group necessary for bioconjugation and hence cannot achieve active targeting. SPIONs were functionalized with octylamine modified polyacrylic acid-based copolymer, providing water solubility and facile biomolecular conjugation. Epirubicin was loaded onto SPIONs and the drug entrapment was studied by UVVIS spectrophotometry. In this study, the antisense oligonucleotide sequence to the anti-apoptopic protein survivin was coupled to SPIONs to provide molecular targeting and potential therapy for cancer cells. Successful coupling of antisense survivin to SPIONs was demonstrated by circular dichroism studies of the conjugate and its complementary sequence. Such multifunctional SPIONs can be used as active targeting agents for cancer cells, producing enhanced magnetic resonance imaging contrast and releasing chemotherapeutic agents to targeted cells. SPIONs also serve as an excellent platform for analytical sensing. Streptavidin modified SPIONs were used as substrates to immobilize biotinylated aptamers (single-stranded DNA). The binding affinity of such aptamers to its target was achieved by quantifying the amount of target released from the aptamer. This quantification was achieved using pH-mediated stacking capillary electrophoresis. SPIONs were shown to be more efficient compared to magnetic microbeads as the sensing elements. The binding affinity constant of the aptamer determined was almost 8-fold better than that obtained using magnetic microbeads.

  13. Dynamic Self-Consistent Field Theories for Polymer Blends and Block Copolymers

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Toshihiro

    Understanding the behavior of the phase separated domain structures and rheological properties of multi-component polymeric systems require detailed information on the dynamics of domains and that of conformations of constituent polymer chains. Self-consistent field (SCF) theory is a useful tool to treat such a problem because the conformation entropy of polymer chains in inhomogeneous systems can be evaluated quantitatively using this theory. However, when we turn our attention to the dynamic properties in a non-equilibrium state, the basic assumption of the SCF theory, i.e. the assumption of equilibrium chain conformation, breaks down. In order to avoid such a difficulty, dynamic SCF theories were developed. In this chapter, we give a brief review of the recent developments of dynamic SCF theories, and discuss where the cutting-edge of this theory is.

  14. An Injectable Hydrogel Prepared Using a PEG/Vitamin E Copolymer Facilitating Aqueous-Driven Gelation.

    PubMed

    Zhang, Jianfeng; Muirhead, Ben; Dodd, Megan; Liu, Lina; Xu, Fei; Mangiacotte, Nicole; Hoare, Todd; Sheardown, Heather

    2016-11-14

    Hydrogels have been widely explored for biomedical applications, with injectable hydrogels being of particular interest for their ability to precisely deliver drugs and cells to targets. Although these hydrogels have demonstrated satisfactory properties in many cases, challenges still remain for commercialization. In this paper, we describe a simple injectable hydrogel based on poly(ethylene glycol) (PEG) and a vitamin E (Ve) methacrylate copolymer prepared via simple free radical polymerization and delivered in a solution of low molecular weight PEG and Ve as the solvent instead of water. The hydrogel formed immediately in an aqueous environment with a controllable gelation time. The driving force for gelation is attributed to the self-assembly of hydrophobic Ve residues upon exposure to water to form a physically cross-linked polymer network via polymer chain rearrangement and subsequent phase separation, a spontaneous process with water uptake. The hydrogels can be customized to give the desired water content, mechanical strength, and drug release kinetics simply by formulating the PEGMA-co-Ve polymer with an appropriate solvent mixture or by varying the molecular weight of the polymer. The hydrogels exhibited no significant cytotoxicity in vitro using fibroblasts and good tissue compatibility in the eye and when injected subcutaneously. These polymers thus have the potential to be used in a variety of applications where injection of a drug or cell containing depot would be desirable.

  15. Supramolecular Assembly of Gold Nanoparticles in PS-b-P2VP Diblock Copolymers via Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Jang, Se Gyu; Hawker, Craig J.; Kramer, Edward J.

    2011-03-01

    We report a simple route to control the spatial distribution of Au nanoparticles (Au-NPs) in PS- b -P2VP diblock copolymers using hydrogen bonding between P2VP and the hydroxyl-containing (PI-OH) units in PS- b -PIOH thiol-terminated ligands on Au-NP. End-functional thiol ligands of poly(styrene- b -1,2&3,4-isoprene-SH) are synthesized by anionic polymerization. After synthesis of Au-NPs, the inner PI block is hydroxylated by hydroboration and the resulting micelle-like Au-NPs consist of a hydrophobic PS outer brush and a hydrophilic inner PI-OH block. The influence of the hydroxyl groups is significant with strong segregation being observed to the PS/P2VP interface and then to the P2VP domain of lamellar-forming PS-b-P2VP diblock copolymers as the length of the PI-OH block is increased. The strong hydrogen bonding between nanoparticle block copolymer ligands and the P2VP block allows the Au-NPs to be incorporated within the P2VP domain to high Au--NP volume fractions ϕp without macrophase separation, driving transitions from lamellar to bicontinuous morphologies as ϕp increases.

  16. Dynamics and order-disorder transitions in bidisperse diblock copolymer blends

    NASA Astrophysics Data System (ADS)

    Wang, Yueqiang; Li, Xuan; Tang, Ping; Yang, Yuliang

    2011-03-01

    We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G‧ corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, ( χN) ODT, whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in ( χN) ODT. To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in ( χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT.

  17. Investigation of the Corrosion Behavior of Poly(Aniline-co-o-Anisidine)/ZnO Nanocomposite Coating on Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Mobin, M.; Alam, R.; Aslam, J.

    2016-07-01

    A copolymer of aniline (AN) and o-anisidine (OA), Poly(AN-co-OA) and its nanocomposite with ZnO nanoparticles, Poly(AN-co-OA)/ZnO were synthesized by chemical oxidative polymerization using ammonium persulfate as an oxidant in hydrochloric acid medium. The synthesized compounds were characterized using FTIR, XRD, SEM-EDS, TEM, and electrical conductivity techniques. The copolymer and nanocomposite were separately dissolved in N-methyl-2-pyrrolidone and were casted on low-carbon steel specimens using 10% epoxy resin as a binder. The anticorrosive properties of the coatings were studied in different corrosive environments such as 0.1 M HCl, 5% NaCl solution, and distilled water at a temperature of 30 °C by conducting corrosion tests which include immersion test, open circuit potential measurements, potentiodynamic polarization measurements, and atmospheric exposure test. The surface morphology of the coatings prior to and after one-month immersion in corrosive solution was evaluated using SEM. It was observed that the nanocomposite coating exhibited higher corrosion resistance and provided better barrier properties in comparison with copolymer coating. The presence of ZnO nanoparticles improved the anticorrosion properties of copolymer coating in all corrosive media subjected to investigation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenwen; Wang, Weiyu; Li, Hui

    In this study, high molecular weight “comb-shaped” graft copolymers, poly(isoprene-g-styrene), with polyisoprene as the backbone and polystyrene as side chains, were synthesized via free radical emulsion polymerization by copolymerization of isoprene with a polystyrene macromonomer synthesized using anionic polymerization. A small amount of toluene was used in order to successfully disperse the macromonomer. Both a redox and thermal initiation system were used in the emulsion polymerization, and the latex particle size and distribution were investigated by dynamic light scattering. The structural characteristics of the macromonomer and comb graft copolymers were investigated through use of size exclusion chromatography, spectroscopy, microscopy, thermalmore » analysis, and rheology. While the macromonomer was successfully copolymerized to obtain the desired multigraft copolymers, small amounts of unreacted macromonomer remained in the products, reflecting its reduced reactivity due to steric effects. Nevertheless, the multigraft copolymers obtained were very high in molecular weight (5–12 × 10 5 g/mol) and up to 10 branches per chain, on average, could be incorporated. A material incorporating 29 wt% polystyrene exhibits a disordered microphase separated morphology and elastomeric properties. As a result, these materials show promise as new, highly tunable, and potentially low cost thermoplastic elastomers.« less

  19. On the abnormal "forced hydration" behavior of P(MEA-co-OEGA) aqueous solutions during phase transition from infrared spectroscopic insights.

    PubMed

    Hou, Lei; Wu, Peiyi

    2016-06-21

    Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.

  20. Towards ultraporous poly(L-lactide) scaffolds from quaternary immiscible polymer blends.

    PubMed

    Virgilio, N; Sarazin, P; Favis, B D

    2010-08-01

    Ultraporous poly(l-lactide) (PLLA) scaffolds were prepared by melt-processing quaternary ethylene propylene diene rubber/poly(epsilon-caprolactone)/polystyrene/poly(l-lactide) (EPDM/PCL/PS/PLLA) 45/45/5/5 %vol. polymer blends modified with a PS-b-PLLA diblock copolymer. The morphology consists of a PS+PLLA+copolymer sub-blend layer forming at the interface of the EPDM and PCL phases. Quiescent annealing and interfacial modification using the block copolymer are used to control the blend microstructure. The ultraporous structure is subsequently obtained by selectively extracting the EPDM, PS and PCL phases. The PLLA scaffolds modified with the PS-b-PLLA copolymer present themselves as fully interconnected porous networks with asymmetric channel walls, one side being smooth while the other is covered with an array of submicron-sized PLLA droplets. They are prepared with a high degree of control over the pore size, with averages ranging from 5microm to over 100microm and a specific surface from 9.1 to 23.1m(2)/g of PLLA, as annealing is carried out from 0 to 60min. The void volume reaches values as high as 95% and in all cases the shape and dimensions of the scaffolds are maintained with a high level of integrity. The proposed method represents a comprehensive approach towards the design and generation of porous PLLA scaffolds based on complex morphologies from melt-processed multiphase polymer systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Toward Strong Thermoplastic Elastomers with Asymmetric Miktoarm Block Copolymer Architectures

    DTIC Science & Technology

    2014-03-05

    temperature [such as poly(phenylene oxide), PPO ].7,8 Yet, this method does not lift the volume fraction limitation, and the total hard phase fraction f...PS + f PPO must still remain below approximately 0.3. Being able to significantly displace the classical phase diagram and stabilize morphologies

  2. Structure, rheology and shear alignment of Pluronic block copolymer mixtures.

    PubMed

    Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J

    2009-01-01

    The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.

  3. Selective separation of fluorinated compounds from complex organic mixtures by pyrolysis-comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi

    2014-12-29

    The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Interconnected ionic domains enhance conductivity in microphase separated block copolymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe

    Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less

  5. Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Ghoroghchian, P. Peter; Li, Guizhi; Hammer, Daniel A.; Therien, Michael J.

    2013-10-01

    Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application.Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant release based on the intended in vivo application. Electronic supplementary information (ESI) available: Materials and methods, characterization data. See DOI: 10.1039/c3nr03250g

  6. Self-assembly of block copolymers for the fabrication of functional nanomaterials

    NASA Astrophysics Data System (ADS)

    Yao, Li

    This dissertation explores the use of block copolymers which can self-assemble into different morphologies as templates to fabricate nanostructured materials. The first section (Chapters 2-4) reports the formation of mesoporous silica films with spherical, cylindrical and bicontinuous pores up to 40 nm in diameter through replicating the morphologies of the solid block copolymer (BCP) templates, polystyrene-b-poly(tert-butyl acrylate) (PS-b-PtBA), via phase selective condensation of tetraethylorthosilicate in supercritical CO2. Next, directed self-assembly was used to control the orientation of cylindrical domains in PS- b-PtBA templates. Large-area aligned mesochannels in silica films with diameters tunable between 5 and 30 nm were achieved through the replication of oriented templates via scCO2 infusion. The long-range alignment of mesochannels was confirmed through GISAXS with sample stage azimuthal rotation. In the second section (Chapters 5-6), enantiopure tartaric acid was used as an additive to dramatically improve ordering in poly(ethylene oxide-block- tert-butyl acrylate) (PEO-b-PtBA) copolymers. Transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray scattering were used to study the phase behavior and morphologies within both bulk and thin films. With the addition of a photo acid generator, photo-induced disorder in the PEO-b-PtBA/tartaric acid composite system was achieved upon UV exposure which deprotected the PtBA block to yield poly(acrylic acid) (PAA), which is phase-miscible with PEO. Area-selective UV exposure using a photo-mask was applied with the assistance of trace amounts of base quencher to achieve high-resolution hierarchical patterns. Helical superstructures were observed by TEM in this BCP/chiral additive system with 3D handedness confirmed by TEM tomography. In the last section (Chapter 7), ultra-high loadings of nanoparticles into target domains of block copolymer composites were achieved by blending the block copolymer hosts with small molecule additives that exhibit strong interactions with one of the polymer chain segments and with the nanoparticle ligands via hydrogen bonding. The addition of 40 wt% D-tartaric acid to poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) enabled the loading of up to 150 wt% of 4-hydroxythiophenol functionalized Au nanoparticles relative to the mass of the target hydrophilic domain. This was equivalent to over 40% Au by mass of the resulting well ordered composite as measured by thermal gravimetric analysis.

  7. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    NASA Astrophysics Data System (ADS)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma

    2016-06-01

    In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01409g

  8. Effect of demulsifiers on interfacial properties governing crude oil demulsification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S.; Kushnick, A.P.

    1988-05-01

    Crude oil is almost always produced as persistent water-in-oil emulsions which must be resolved into two separate phases before the crude can be accepted for pipelining. The water droplets are sterically stabilized by the asphaltene and resin fractions of the crude oil. These are condensed aromatic rings containing saturated carbon chains and napthenic rings as substituents, along with a distribution of heteroatoms and metals. They are capable of crosslinking at the water drop-oil interface. Chemical demulsifiers are most commonly used to separate the emulsions into water and oil phases. The demulsifiers are moderate (2,000-50,000) molecular weight polydisperse mostly nonionic blockmore » copolymers with hydrophilic and hydrophobic segments. An example (Figure 1) of the most commonly used demulsifier is the oxyalkylated alkyl phenol formaldehyde resin. The alkyl group can be butyl, amyl, or nonyl and the interfacial activity is controlled by the relative amounts of ethylene oxide (EO) and propylene oxide (PO) attached to the polar end. The purpose of this paper is to illustrate how various parameters such as interfacial tension, interfacial shear viscosity, dynamic interfacial tension gradient, dilational elasticity and demulsifier clustering affect the demulsification effectiveness. To this end, the authors have studied both crude oil as well as asphaltene stabilized ''model' water-in-oil emulsions. In this paper, some of the results of the authors' study are presented.« less

  9. Exploiting Photo-induced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-free Materials

    ScienceCinema

    Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States

    2017-12-09

    Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.

  10. Thermal processing of diblock copolymer melts mimics metallurgy

    NASA Astrophysics Data System (ADS)

    Kim, Kyungtae; Schulze, Morgan W.; Arora, Akash; Lewis, Ronald M.; Hillmyer, Marc A.; Dorfman, Kevin D.; Bates, Frank S.

    2017-05-01

    Small-angle x-ray scattering experiments conducted with compositionally asymmetric low molar mass poly(isoprene)-b-poly(lactide) diblock copolymers reveal an extraordinary thermal history dependence. The development of distinct periodic crystalline or aperiodic quasicrystalline states depends on how specimens are cooled from the disordered state to temperatures below the order-disorder transition temperature. Whereas direct cooling leads to the formation of documented morphologies, rapidly quenched samples that are then heated from low temperature form the hexagonal C14 and cubic C15 Laves phases commonly found in metal alloys. Self-consistent mean-field theory calculations show that these, and other associated Frank-Kasper phases, have nearly degenerate free energies, suggesting that processing history drives the material into long-lived metastable states defined by self-assembled particles with discrete populations of volumes and polyhedral shapes.

  11. Construction of chiral ligand exchange capillary electrochromatography for d,l-amino acids enantioseparation and its application in glutaminase kinetics study.

    PubMed

    Zhao, Liping; Qiao, Juan; Zhang, Ke; Li, Dan; Zhang, Hongyi; Qi, Li

    2018-05-04

    A chiral ligand exchange capillary electrochromatography (CLE-CEC) protocol was designed and implemented for d,l-amino acids enantioseparation with poly(maleic anhydride-styrene-methacryloyl-l-arginine methyl ester) as the coating. The block copolymer was synthesized through the reversible addition fragmentation chain transfer reaction. In the constructed CLE-CEC system, poly (methacryloyl-l-arginine methyl ester) moiety of the block copolymer played the role as the immobilized chiral ligand and Zn (II) was used as the central ion. Key factors, including pH of buffer solution, ratio of Zn (II) to ligands, the mass ratio of monomers in the block copolymer, which affect the enantioresolution were investigated. Comparing with the bare capillary, the CLE-CEC enantioresolution was enhanced greatly with the coating one. 5 Pairs of d,l-amino acids enantiomers obtained baseline separation with 5 pairs partly separated. The mechanism of enhancement enantioresolution of the developed CLE-CEC system was explored briefly. Further, good linearities were achieved in the range of 25.0 μM-5.0 mM for quantitative analysis of d-glutamine (r 2  = 0.997) and l-glutamine (r 2  = 0.991). Moreover, the proposed CLE-CEC assay was successfully applied in the kinetics study of glutaminase by using l-glutamine as the substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity.

    PubMed

    Li, Xin; Wang, Mengmeng; Wang, Lei; Shi, Xiujuan; Xu, Yajun; Song, Bo; Chen, Hong

    2013-01-29

    Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials.

  13. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.

    PubMed

    Wei, Liqing; McDonald, Armando G; Stark, Nicole M

    2015-03-09

    Polyhydroxybutyrate (PHB) was grafted onto cellulose fiber by dicumyl peroxide (DCP) radical initiation via in situ reactive extrusion. The yield of the grafted (cellulose-g-PHB) copolymer was recorded and grafting efficiency was found to be dependent on the reaction time and DCP concentration. The grafting mechanism was investigated by electron spin resonance (ESR) analysis and showed the presence of radicals produced by DCP radical initiation. The grafted copolymer structure was determined by nuclear magnetic resonance (NMR) spectroscopy. Scanning electronic microscopy (SEM) showed that the cellulose-g-PHB copolymer formed a continuous phase between the surfaces of cellulose and PHB as compared to cellulose-PHB blends. The relative crystallinity of cellulose and PHB were quantified from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) results, while the absolute degree of crystallinity was evaluated by differential scanning calorimetry (DSC). The reduction of crystallinity indicated the grafting reaction occurred not just in the amorphous region but also slightly in crystalline regions of both cellulose and PHB. The smaller crystal sizes suggested the brittleness of PHB was decreased. Thermogravimetric analysis (TGA) showed that the grafted copolymer was stabilized relative to PHB. By varying the reaction parameters the compositions (%PHB and %cellulose) of resultant cellulose-g-PHB copolymer are expected to be manipulated to obtain tunable properties.

  14. Rational synthesis of low-polydispersity block copolymer vesicles in concentrated solution via polymerization-induced self-assembly.

    PubMed

    Gonzato, Carlo; Semsarilar, Mona; Jones, Elizabeth R; Li, Feng; Krooshof, Gerard J P; Wyman, Paul; Mykhaylyk, Oleksandr O; Tuinier, Remco; Armes, Steven P

    2014-08-06

    Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we report the rational synthesis of low-polydispersity diblock copolymer vesicles in concentrated solution via polymerization-induced self-assembly using reversible addition-fragmentation chain transfer (RAFT) polymerization of benzyl methacrylate. Our strategy utilizes a binary mixture of a relatively long and a relatively short poly(methacrylic acid) stabilizer block, which become preferentially expressed at the outer and inner poly(benzyl methacrylate) membrane surface, respectively. Dynamic light scattering was utilized to construct phase diagrams to identify suitable conditions for the synthesis of relatively small, low-polydispersity vesicles. Small-angle X-ray scattering (SAXS) was used to verify that this binary mixture approach produced vesicles with significantly narrower size distributions compared to conventional vesicles prepared using a single (short) stabilizer block. Calculations performed using self-consistent mean field theory (SCMFT) account for the preferred self-assembled structures of the block copolymer binary mixtures and are in reasonable agreement with experiment. Finally, both SAXS and SCMFT indicate a significant degree of solvent plasticization for the membrane-forming poly(benzyl methacrylate) chains.

  15. Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Hyo Seon; Kim, Do Han; Moni, Priya

    2017-03-27

    Directed self-assembly (DSA) of the domain structure in block copolymer (BCP) thin films is a promising approach for sub-10-nm surface patterning. DSA requires the control of interfacial properties on both interfaces of a BCP film to induce the formation of domains that traverse the entire film with a perpendicular orientation. Here we show a methodology to control the interfacial properties of BCP films that uses a polymer topcoat deposited by initiated chemical vapour deposition (iCVD). The iCVD topcoat forms a crosslinked network that grafts to and immobilizes BCP chains to create an interface that is equally attractive to both blocksmore » of the underlying copolymer. The topcoat, in conjunction with a chemically patterned substrate, directs the assembly of the grating structures in BCP films with a half-pitch dimension of 9.3 nm. As the iCVD topcoat can be as thin as 7 nm, it is amenable to pattern transfer without removal. As a result, the ease of vapour-phase deposition, applicability to high-resolution BCP systems and integration with pattern-transfer schemes are attractive properties of iCVD topcoats for industrial applications.« less

  16. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia

    PubMed Central

    Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver

    2017-01-01

    Background Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Materials and methods Six different N-(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. Results The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. Conclusion The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO2) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient. PMID:28831253

  17. Endocytotic uptake of HPMA-based polymers by different cancer cells: impact of extracellular acidosis and hypoxia.

    PubMed

    Gündel, Daniel; Allmeroth, Mareli; Reime, Sarah; Zentel, Rudolf; Thews, Oliver

    2017-01-01

    Polymeric nanoparticles allow to selectively transport chemotherapeutic drugs to the tumor tissue. These nanocarriers have to be taken up into the cells to release the drug. In addition, tumors often show pathological metabolic characteristics (hypoxia and acidosis) which might affect the polymer endocytosis. Six different N -(2-hydroxypropyl)methacrylamide (HPMA)-based polymer structures (homopolymer as well as random and block copolymers with lauryl methacrylate containing hydrophobic side chains) varying in molecular weight and size were analyzed in two different tumor models. The cellular uptake of fluorescence-labeled polymers was measured under hypoxic (pO 2 ≈1.5 mmHg) and acidic (pH 6.6) conditions. By using specific inhibitors, different endocytotic routes (macropinocytosis and clathrin-mediated, dynamin-dependent, cholesterol-dependent endocytosis) were analyzed separately. The current results revealed that the polymer uptake depends on the molecular structure, molecular weight and tumor line used. In AT1 cells, the uptake of random copolymer was five times stronger than the homopolymer, whereas in Walker-256 cells, the uptake of all polymers was much stronger, but this was independent of the molecular structure and size. Acidosis increased the uptake of random copolymer in AT1 cells but reduced the intracellular accumulation of homopolymer and block copolymer. Hypoxia reduced the uptake of all polymers in Walker-256 cells. Hydrophilic polymers (homopolymer and block copolymer) were taken up by all endocytotic routes studied, whereas the more lipophilic random copolymer seemed to be taken up preferentially by cholesterol- and dynamin-dependent endocytosis. The study indicates that numerous parameters of the polymer (structure, size) and of the tumor (perfusion, vascular permeability, pH, pO 2 ) modulate drug delivery, which makes it difficult to select the appropriate polymer for the individual patient.

  18. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold

    DOE PAGES

    Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.; ...

    2017-04-07

    The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less

  19. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.

    The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less

  20. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture in order to optimize the mechanical and other properties of the membrane without sacrificing conductivity. The derived scaling relationships are shown to be general for many block copolymer and ionic liquid chemistries. In certain cases, the mechanism of ion conduction in the ionic liquid is affected by block copolymer nanoconfinement. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced proton conductivity as well as a high H+ transference number due to facilitated proton hopping between imidazole molecules. We show that there is increased proton hopping when the nonstoichiometric ionic liquid is confined to lamellar block copolymer nanodomains, which we hypothesize is due to changes in the hydrogen bond structure of the ionic liquid under confinement. This, in combination with unique ion aggregation behavior, leads to a lower activation energy for macroscopic ion transport compared to that in a corresponding homopolymer/ionic liquid mixture. Through this work, we further the understanding of the relationship between membrane composition, structure, and ion transport. The findings presented herein portend the rational design of nanostructured membranes having improved mechanical properties and conductivity.

  1. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Schulze, Morgan W.; Lewis, Ronald M.; Lettow, James H.; Hickey, Robert J.; Gillard, Timothy M.; Hillmyer, Marc A.; Bates, Frank S.

    2017-05-01

    Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.

  2. Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators.

    PubMed

    Davalos, Rafael V; McGraw, Gregory J; Wallow, Thomas I; Morales, Alfredo M; Krafcik, Karen L; Fintschenko, Yolanda; Cummings, Eric B; Simmons, Blake A

    2008-02-01

    Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor 1060R. This publication is the first to demonstrate insulator-based dielectrophoretic biological particle differentiation in a polymeric device injection molded from a silicon master. The results demonstrate that the polymer devices achieve the same performance metrics as glass devices. We also demonstrate an effective means of enhancing performance of these microsystems in terms of system power demand through the use of a dynamic surface coating. We demonstrate that the commercially available nonionic block copolymer surfactant, Pluronic F127, has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the electric field necessary to achieve particle trapping by an order of magnitude. The presence of this dynamic surface coating, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that iDEP polymeric microfluidic devices with surfactant coatings provide an affordable engineering strategy for selective particle enrichment and sorting.

  3. Structurally Stable Attractive Nanoscale Emulsions with Dipole-Dipole Interaction-Driven Interdrop Percolation.

    PubMed

    Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong

    2017-03-28

    This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect.

  5. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement

    PubMed Central

    Lee, Jae Won; Cho, Hye Jin; Chun, Jinsung; Kim, Kyeong Nam; Kim, Seongsu; Ahn, Chang Won; Kim, Ill Won; Kim, Ju-Young; Kim, Sang-Woo; Yang, Changduk; Baik, Jeong Min

    2017-01-01

    A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)–grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 μA/cm2, a 20-fold enhancement in output power, compared to pristine PVDF–based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study. PMID:28560339

  6. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    PubMed

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  7. Interfacial fluctuations of block copolymers: a coarse-grain molecular dynamics simulation study.

    PubMed

    Srinivas, Goundla; Swope, William C; Pitera, Jed W

    2007-12-13

    The lamellar and cylindrical phases of block copolymers have a number of technological applications, particularly when they occur in supported thin films. One such application is block copolymer lithography, the use of these materials to subdivide or enhance submicrometer patterns defined by optical or electron beam methods. A key parameter of all lithographic methods is the line edge roughness (LER), because the electronic or optical activities of interest are sensitive to small pattern variations. While mean-field models provide a partial picture of the LER and interfacial width expected for the block interface in a diblock copolymer, these models lack chemical detail. To complement mean-field approaches, we have carried out coarse-grain molecular dynamics simulations on model poly(ethyleneoxide)-poly(ethylethylene) (PEO-PEE) lamellae, exploring the influence of chain length and hypothetical chemical modifications on the observed line edge roughness. As expected, our simulations show that increasing chi (the Flory-Huggins parameter) is the most direct route to decreased roughness, although the addition of strong specific interactions at the block interface can also produce smoother patterns.

  8. Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer.

    PubMed

    Dong, Chuan-Ding; Beenken, Wichard J D

    2016-10-10

    In this work, we report an in-depth investigation on the π-stacking and interdigitating structures of poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymer with octyl and ethyl-hexyl side chains and the resulting electronic band structures using density functional theory calculations. We found that in the π-stacking direction, the preferred stacking structure, determined by the steric effect of the branched ethyl-hexyl side chains, is featured by the anthracene-ethynylene units stacking on the phenylene-vinylene units of the neighboring chains and vice versa. This stacking structure, combined with the interdigitating structure where the branched side chains of the laterally neighboring chains are isolated, defines the energetically favorable structure of the ordered copolymer phase, which provides a good compromise between light absorption and charge-carrier transport.

  9. Molecular Structure Controlled Transitions between Free-Charge Generation and Trap Formation in a Conjugated Copolymer Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandit, Bill; Jackson, Nicholas E.; Zheng, Tianyue

    2016-03-03

    Charge transfer copolymers, where each repeating unit has at least one “donor” and one “acceptor” block, have played important roles in recent advances in organic photovoltaic (OPV) devices, however design criteria for these materials are still not completely clear. Here we show that the well-recognized LUMO-LUMO energy off-set design criterion for OPV materials using a fullerene acceptor is challenged in a series of copolymers, PTRn (n = 3, 5, 7 and 9), where n is the number of fused aromatic rings in the “donor” block and thienothiophene is the “acceptor” block in each repeating unit. Photoexcitation dynamics of PTRn copolymersmore » in solution and BHJ (bulk heterojunction) films demonstrated that local push-pull interactions between the “donor” block and the “acceptor” block weakens with increasing n, whereas the LUMO-LUMO off-set between the polymer and PC71BM (Phenyl-C71-butyric acid methyl ester) increases. Such a counter intuitive trend can be explained by local energetics of each repeating unit as a function of n. The energetic changes transform the copolymer with strong local charge transfer character for efficient hole-electron separation to localized hole-electron pairs with low mobility, despite the apparent increase of the polymer/PC71BM LUMO-LUMO off-set. This suggests the importance of local charge transfer character in these copolymers in the initial exciton splitting dynamics, which could ultimately be reflected in the device performance.« less

  10. Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes

    PubMed Central

    Li, Jinghui; Chen, Zhuo; Umar, Ahmad; Liu, Yang; Shang, Ying; Zhang, Xiaokai; Wang, Yao

    2017-01-01

    Crosslinking is an effective way to fabricate high-selective CO2 separation membranes because of its unique crosslinking framework. Thus, it is essentially significant to study the influence of crosslinking degree on the permeation selectivities of CO2. Herein, we report a successful and facile synthesis of a series of polyethylene oxide (PEO)-based diblock copolymers (BCP) incorporated with an unique UV-crosslinkable chalcone unit using Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) process. The membranes of as-prepared BCPs show superior carbon dioxide (CO2) separation properties as compared to nitrogen (N2) after UV-crosslinking. Importantly, the influence of different proportions of crosslinked chalcone on CO2 selectivities was systematically investigated, which revealed that CO2 selectivities increased obviously with the enhancement of chalcone fractions within a certain limit. Further, the CO2 selectivities of block copolymer with the best block proportion was studied by varying the crosslinking time which confirmed that the high crosslinking degree exhibited a better CO2/N2 (αCO2/N2) selectivities. A possible mechanism model revealing that the crosslinking degree played a key role in the gas separation process was also proposed. PMID:28051190

  11. Probe Into the Influence of Crosslinking on CO2 Permeation of Membranes

    NASA Astrophysics Data System (ADS)

    Li, Jinghui; Chen, Zhuo; Umar, Ahmad; Liu, Yang; Shang, Ying; Zhang, Xiaokai; Wang, Yao

    2017-01-01

    Crosslinking is an effective way to fabricate high-selective CO2 separation membranes because of its unique crosslinking framework. Thus, it is essentially significant to study the influence of crosslinking degree on the permeation selectivities of CO2. Herein, we report a successful and facile synthesis of a series of polyethylene oxide (PEO)-based diblock copolymers (BCP) incorporated with an unique UV-crosslinkable chalcone unit using Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) process. The membranes of as-prepared BCPs show superior carbon dioxide (CO2) separation properties as compared to nitrogen (N2) after UV-crosslinking. Importantly, the influence of different proportions of crosslinked chalcone on CO2 selectivities was systematically investigated, which revealed that CO2 selectivities increased obviously with the enhancement of chalcone fractions within a certain limit. Further, the CO2 selectivities of block copolymer with the best block proportion was studied by varying the crosslinking time which confirmed that the high crosslinking degree exhibited a better CO2/N2 (αCO2/N2) selectivities. A possible mechanism model revealing that the crosslinking degree played a key role in the gas separation process was also proposed.

  12. Ultrafast photoinduced electron transfer in the micelle and the gel phase of a PEO-PPO-PEO triblock copolymer

    NASA Astrophysics Data System (ADS)

    Mandal, Ujjwal; Ghosh, Subhadip; Dey, Shantanu; Adhikari, Aniruddha; Bhattacharyya, Kankan

    2008-04-01

    Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to coumarin dyes is studied in the micelle and the gel phase of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (Pluronic P123) by picosecond and femtosecond emission spectroscopies. The rate of PET in a P123 micelle and gel is found to be nonexponential and faster than the slow components of solvation dynamics. In a P123 micelle and gel, PET occurs on multiple time scales ranging from a subpicosecond time scale to a few nanoseconds. In the gel phase, the highest rate constant (9.3×109M-1s-1) of ET for C152 is about two times higher than that (3.8×109M-1s-1) observed in micelle phase. The ultrafast components of electron transfer (ET) exhibits a bell shaped dependence with the free energy change which is similar to the Marcus inversion. Possible reasons for slower PET in P123 micelle compared to other micelles and relative to P123 gel are discussed.

  13. Use of RSM for the multivariate, simultaneous multiobjective optimization of the operating conditions of aliphatic carboxylic acids ion-exclusion chromatography column: Quantitative study of hydrodynamic, isotherm, and thermodynamic behavior.

    PubMed

    Shojaeimehr, Tahereh; Rahimpour, Farshad; Schwarze, Michael; Repke, Jens-Uwe; Godini, Hamid Reza; Wozny, Günter

    2018-04-15

    The present study evaluates the capability of ion exclusion chromatography (IEC) of short chain aliphatic carboxylic acids using a cation exchange column (8% sulfonated cross-linked styrene-divinylbenzene copolymer) in different experimental conditions. Since one of the prerequisites to the development of an efficient carboxylic acid separation process is to obtain the optimum operational conditions, response surface methodology (RSM) was used to develop an approach to evaluate carboxylic acids separation process in IEC columns. The effect of the operating conditions such as column temperature, sulfuric acid concentration as the mobile phase, and the flow rate was studied using Central Composite Face (CCF) design. The optimum operating conditions for the separate injection of lactic acid and acetic acid is temperature of 75 °C, sulfuric acid concentration of 0.003 N for both acids and flow rate of 0.916 (0.886) mL/min for acetic acid (lactic acid). Likewise, the optimum conditions for the simultaneous injection of acetic and lactic acid mixture are the column temperature of 68 °C, sulfuric acid concentration of 0.0003 N, and flow rate of 0.777 mL/min. In the next step, the adsorption equilibria of acetic acid and lactic acid on the stationary phase were investigated through a series of Frontal Analysis (FA), Frontal Analysis by Characteristic Points (FACP), and using Langmuir isotherm model. The results showed an excellent agreement between the model and experimental data. Finally, the results of thermodynamic studies proved that the IEC process for separation of acetic and lactic acid is a spontaneous, feasible, exothermic, and random process with a physical adsorption mechanism. The results of the current paper can be a valuable information in the stages of designing IEC columns for separation of aliphatic carboxylic acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Wade Braunecker | NREL

    Science.gov Websites

    ; copolymers for a number of systematic studies in the field of organic photovoltaics (OPV). He became a Staff nitroxide radical groups for application as organic radical cathode materials, the development of materials been developing covalent organic frameworks for gas storage and separation applications. Research

  15. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  16. Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent

    DOE PAGES

    Armstrong, Daniel P.; Mineart, Kenneth P.; Lee, Byeongdu; ...

    2016-11-01

    Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, in this study we examine the unique structure-property behavior of TPEGs composed of olefinic block copolymers (OBCs). Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-α-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. We prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swellsmore » the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wideangle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships.« less

  17. Synthesis and application of lignin-based copolymer LSAA on controlling non-point source pollution resulted from surface runoff.

    PubMed

    Liu, Chen; Wu, Guangxia; Mu, Huanzhen; Yuan, Zonghuan; Tang, Lianyi; Lin, Xiangwei

    2008-01-01

    In this article, alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin, starch, acrylamide, and acrylic acid). Its practical application effect and environmental safety were studied. The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants. The runoff quantity was decreased by 16.67%-47.00% and the loads of total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were reduced by 17.78%-62.14%, 26.32%-59.91%, 15.25%-47.42%, and 22.18%-52.78%, respectively. The tests on its environmental safety showed that LSAA did no harm the soil. Compared with polyacrylamide (PAM), a dominant product in this field, LSAA exhibited similar effects and cheap cost. Thus, this study not only created a new product for controlling runoff water quality but also offered a beneficial application for industrial paper waste.

  18. Structural correlations in the generation of polaron pairs in low-bandgap polymers for photovoltaics

    NASA Astrophysics Data System (ADS)

    Tautz, Raphael; da Como, Enrico; Limmer, Thomas; Feldmann, Jochen; Egelhaaf, Hans-Joachim; von Hauff, Elizabeth; Lemaur, Vincent; Beljonne, David; Yilmaz, Seyfullah; Dumsch, Ines; Allard, Sybille; Scherf, Ullrich

    2012-07-01

    Polymeric semiconductors are materials where unique optical and electronic properties often originate from a tailored chemical structure. This allows for synthesizing conjugated macromolecules with ad hoc functionalities for organic electronics. In photovoltaics, donor-acceptor co-polymers, with moieties of different electron affinity alternating on the chain, have attracted considerable interest. The low bandgap offers optimal light-harvesting characteristics and has inspired work towards record power conversion efficiencies. Here we show for the first time how the chemical structure of donor and acceptor moieties controls the photogeneration of polaron pairs. We show that co-polymers with strong acceptors show large yields of polaron pair formation up to 24% of the initial photoexcitations as compared with a homopolymer (η=8%). π-conjugated spacers, separating the donor and acceptor centre of masses, have the beneficial role of increasing the recombination time. The results provide useful input into the understanding of polaron pair photogeneration in low-bandgap co-polymers for photovoltaics.

  19. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.

    PubMed

    Wang, Huai-Song; Song, Min; Hang, Tai-Jun

    2016-02-10

    The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.

  20. Fabrication of biofunctional nanomaterials via Escherichia coli OmpF protein air/water interface insertion/integration with copolymeric amphiphiles.

    PubMed

    Ho, Dean; Chang, Stacy; Montemagno, Carlo D

    2006-06-01

    Fabrication of next-generation biologically active materials will involve the integration of proteins with synthetic membrane materials toward a wide spectrum of applications in nanoscale medicine, including high-throughput drug testing, energy conversion for powering medical devices, and bio-cloaking films for mimicry of cellular membrane surfaces toward the enhancement of implant biocompatibility. We have used ABA triblock copolymer membranes (PMOXA-PDMS-PMOXA) of varied thicknesses as platform materials for Langmuir film-based functionalization with the OmpF pore protein from Escherichia coli by fabricating monolayers of copolymer amphiphile-protein complexes on the air/water interface. Here we demonstrate that the ability for protein insertion at the air/water interface during device fabrication is dependent upon the initial surface coverage with the copolymer as well as copolymer thickness. Methacrylate-terminated block copolymer structures that were 4 nm (4METH) and 8 nm (8METH) in length were used as the protein reconstitution matrix, whereas a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid (~4 nm thickness) was used as a comparison to demonstrate the effects of copolymer length on protein integration capabilities. Wilhemy surface pressure measurements (mN/m) revealed a greater protein insertion in the 4METH and POPC structures compared with the 8METH structure, indicating that shorter copolymer chains possess enhanced biomimicry of natural lipid-based membranes. In addition, comparisons between the isothermal characteristics of the 4METH, 8METH, and POPC membranes reveal that phase transitions of the 4METH resemble a blend of the 8METH and POPC materials, indicating that the 4METH chain may possess hybrid properties of both copolymers and lipids. Furthermore, we have shown that following the deposition of the amphiphilic materials on the air/water interface, the OmpF can be deposited directly on top of the amphiphiles (surface addition), thus effectively further enhancing protein insertion because of the buoying effects of the membranes. These characteristics of Langmuir-Blodgett-based fabrication of copolymer-biomolecule hybrids represent a synthesis strategy for next-generation biomedical materials.

  1. Synthesis and characterization of PEO-PCL-PEO triblock copolymers: effects of the PCL chain length on the physical property of W(1)/O/W(2) multiple emulsions.

    PubMed

    Cho, Heui Kyoung; Cho, Kwang Soo; Cho, Jin Hun; Choi, Sung Wook; Kim, Jung Hyun; Cheong, In Woo

    2008-08-01

    A series of poly(ethylene glycol)-block-poly(epsilon-caprolactone)-block-poly(ethylene glycol) (PEO-PCL-PEO) triblock copolymers were prepared and then used for the investigation of the effects of the ratio of epsilon-caprolactone to poly(ethylene glycol) (i.e., [CL]/[EO]) on the physical properties of water-in-oil-in-water (W(1)/O/W(2)) multiple emulsions containing a model reagent, ascorbic acid-2-glucoside (AA2G). In the synthesis, the [CL]/[EO] was varied from 0.11 to 0.31. The molecular weights and compositions of PEO-PCL-PEO were determined by GPC and (1)H NMR analyses. Thermal behavior and crystal formation were studied by DSC, XRD, FT-IR, and polarized optical microscopy (POM). Aggregate behavior of PEO-PCL-PEO was confirmed by DLS, UV, and (1)H NMR. Morphology and relative stiffness of the W(1)/O/W(2) multiple emulsions in the presence of PEO-PCL-PEO were studied by confocal laser scanning microscopy (CLSM) and rheometer. Variation in the [CL]/[EO] significantly affects the crystalline temperature and spherulite morphology of PEO-PCL-PEO. As the [CL]/[EO] increases, the CMCs of PEO-PCL-PEO decreases and the slope of aggregate size reduction against the copolymer concentration becomes steeper except for the lowest [CL]/[EO] value of PEO-PCL-PEO (i.e., P-222). P-222 significantly increases the viscosity of continuous (W(2)) phase, which implies the copolymer would exist in the W(2) phase. On the other hand, the triblock copolymers with relatively high [CL]/[EO] ratios mainly contribute to the size reduction of multiple emulsions and the formation of a firm wall structure. The particle size of the multiple emulsion decreases and the elastic modulus increased as [CL]/[EO] increases, confirmed by microscopic and rheometric analyses.

  2. Kinetics of Phase Transition from Lamellar to Hexagonally Packed Cylinders for a Triblock Copolymer in a Selective Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,Y.; Li, M.; Bansil, R.

    2007-01-01

    We examined the kinetics of the transformation from the lamellar (LAM) to the hexagonally packed cylinder (HEX) phase for the triblock copolymer, polystyrene-b-poly (ethylene-co-butylene)-b-polystyrene (SEBS) in dibutyl phthalate (DBP), a selective solvent for polystyrene (PS), using time-resolved small-angle X-ray scattering (SAXS). We observe the HEX phase with the EB block in the cores at a lower temperature than that observed for the LAM phase due to the solvent selectivity of DBP for the PS block. Analysis of the SAXS data for a deep temperature quench well below the LAM-HEX transition shows that the transformation occurs in a one-step process. Wemore » calculate the scattering using a geometric model of rippled layers with adjacent layers totally out of phase during the transformation. The agreement of the calculations with the data further supports the continuous transformation mechanism from the LAM to HEX for a deep quench. In contrast, for a shallow quench close to the order-order transition, we find agreement with a two-step nucleation and growth mechanism.« less

  3. Maltopentaose-conjugated CTA for RAFT polymerization generating nanostructured bioresource-block copolymer.

    PubMed

    Togashi, Daichi; Otsuka, Issei; Borsali, Redouane; Takeda, Koichi; Enomoto, Kazushi; Kawaguchi, Seigou; Narumi, Atsushi

    2014-12-08

    We now describe the synthesis of a new family of oligosaccharide-conjugated functional molecules, which act as chain transfer agents (CTAs) for the reversible addition-fragmentation chain transfer (RAFT) polymerization. The synthesis was started from the catalyst-free direct N-glycosyl reaction of 5-azidopentylamine onto maltopentaose (Mal5) in dry methanol at room temperature and subsequent N-protected reaction with acetic anhydride, producing a stable oligosaccharide-building block, such as Mal5 with an azidopentyl group (Mal5-N3). The azido group was hydrogenated using platinum dioxide (PtO2) as a catalyst to give Mal5 with aminopentyl group (Mal5-NH2), which was then reacted with CTA molecules bearing activated ester moieties. These reactions produced Mal5-modified macro-CTAs (Mal5-CTAs, 1), which were used for the RAFT polymerizations of styrene (St) and methyl methacrylate (MMA) in DMF. The polymerizations were performed using the [M]0/[1]0 values ranging from 50 to 600, affording the Mal5-hybrid amphiphilic block copolymers (BCPs), such as Mal5-polystyrene (2) and Mal5-poly(methyl methacrylate) (3), with a quantitative end-functionality and the controlled molecular weights between 4310 and 20 300 g mol(-1). The small-angle X-ray scattering (SAXS) measurements were accomplished for 2 and 3 to ensure their abilities to form phase separated structures in their bulk states with the increasing temperatures from 30 to 190 °C. The featured results were observed for 2 (ϕMal5 = 0.14) and 3 (ϕMal5 = 0.16) at temperatures above 100 °C, where ϕMal5 denotes the volume fraction of the Mal5 unit in the BCP sample. For both BCP samples, the primary scattering peaks q* were clearly observed together with the higher-ordered scattering peaks √2q* and √3q*. Thus, these Mal5-hybrid amphiphilic BCP samples have a body centered cubic (BCC) phase morphology. The domain spacing (d) values of the BCC morphology for 2 (ϕMal5 = 0.14) and 3 (ϕMal5 = 0.16) were 10.4 and 9.55 nm, respectively, which were determined using Bragg's relation (d = 2π/q*). The present RAFT agents were shown to eventually provide the phase separated structural polymeric materials in which 5.4 nm bioresource-spherical domains were periodically arrayed at the interval of about 10 nm.

  4. Preparation of end-grafted polymer brushes by nitroxide-mediated free radical polymerization of vaporized vinyl monomers.

    PubMed

    Li, Jun; Chen, Xiaoru; Chang, Ying-Chih

    2005-10-11

    In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.

  5. High-Efficiency Polymer Solar Cells by Using Co-solvents 1-Chloronaphthalene and 1,8-Octanedithiol as Processing Additives

    NASA Astrophysics Data System (ADS)

    Gao, Bowen; Meng, Jing

    2018-07-01

    The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.

  6. High-Efficiency Polymer Solar Cells by Using Co-solvents 1-Chloronaphthalene and 1,8-Octanedithiol as Processing Additives

    NASA Astrophysics Data System (ADS)

    Gao, Bowen; Meng, Jing

    2018-04-01

    The copolymer poly-BDT-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (PC20BDTDPP) with the bulkier alkoxy on BDT and alkyl on DPP is widely used in organic photovoltaic cells as a potential donor material. Power conversion efficiency (PCE) of polymer solar cells fabricated withPC20BDTDPP as the electron donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the electron acceptor was improved from 4.90% to 9.10% by adding 1-5% of the co-solvents (1-chloronaphthalene and 1,8-octanedithiol) as processing additives. The enhanced PCE was attributed to optimized surface morphology and packed polymer chains leading to better phase separation morphology by the solvent additive. Furthermore, owing to its very narrow band gap, the synthesized polymer demonstrates a great potential for tandem or parallel-like solar cells.

  7. High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films

    NASA Astrophysics Data System (ADS)

    Park, Hyungmin; Kim, Jae-Up; Park, Soojin

    2012-02-01

    A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process.A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process. Electronic supplementary information (ESI) available: AFM images of PS-b-P2VP/PMMA blend films and cross-sectional line scans. See DOI: 10.1039/c2nr11792d

  8. Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.

    PubMed

    Zhou, Zhengping; Liu, Guoliang

    2017-04-01

    Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  10. Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model

    NASA Astrophysics Data System (ADS)

    Cheng, Qing; Yang, Xiaofeng; Shen, Jie

    2017-07-01

    In this paper, we consider numerical approximations of a hydro-dynamically coupled phase field diblock copolymer model, in which the free energy contains a kinetic potential, a gradient entropy, a Ginzburg-Landau double well potential, and a long range nonlocal type potential. We develop a set of second order time marching schemes for this system using the "Invariant Energy Quadratization" approach for the double well potential, the projection method for the Navier-Stokes equation, and a subtle implicit-explicit treatment for the stress and convective term. The resulting schemes are linear and lead to symmetric positive definite systems at each time step, thus they can be efficiently solved. We further prove that these schemes are unconditionally energy stable. Various numerical experiments are performed to validate the accuracy and energy stability of the proposed schemes.

  11. Effects of intermolecular forces and backbone architecture on the phase behavior of fluorocopolymer-supercritical fluid mixtures

    NASA Astrophysics Data System (ADS)

    Mertdogan, Cynthia Asli

    The impact of polymer backbone architecture on fluorocopolymer solubility in supercritical fluid (SCF) solvents is studied by systematically varying the chemical type of the repeat units in the main chain. The fluorocopolymers investigated include nonpolar copolymers of tetrafluoroethylene with 19 mol% hexafluoropropylene (FEPsb{19}) and 48 mol% hexafluoropropylene (FEPsb{48}) and a polar copolymer of vinylidene fluoride with 22 mol% hexafluoropropylene (Fluorelsp°ler ). The solvents are methodically varied from nonpolar perfluoroalkanes and SFsb6 to polar fluorocarbons and COsb2. Low molecular weight solvents are used to facilitate in interpreting the intermolecular forces that control fluorocopolymer solubility, although pressures in excess of 2,500 bar are sometimes needed to dissolve the fluorocopolymers in these simple solvents. Polarity effects, which vary inversely with temperature, are moderated by operating over a large temperature range from 0 to 300sp° C. A variable-volume view cell, capable of operating to high temperatures and high pressures, was designed and implemented to meet these extreme operating conditions. Increasing the polarizability of nonpolar solvents reduces the pressures required to dissolve FEPsb{19} by as much as 1,500 bar going from perfluoromethane to perfluoropropane. However, in polar solvents, the pressures required for FEPsb{19} solubility rise dramatically as the temperature is decreased due to the increase in polar, solvent-solvent interactions that do not favor the solubility of a nonpolar copolymer. Replacing semi-crystalline FEPsb{19} with amorphous FEPsb{48} yields the same trends in phase behavior. Therefore, crystallinity does not control the shape of these fluorocopolymer-SCF cloud-point curves. Adding a cosolvent to the solution can dramatically lower the pressures needed to dissolve the copolymer. Introducing the "cosolvent" directly into the polymer backbone by changing copolymer architecture is another method of modifying fluorocopolymer solubility as seen with the results for Fluorel-SCF mixtures compared to those for FEPsb{19}-SCF mixtures. A supercritical fractionation of FEPsb{19} provides information on the impact of molecular weight and end-group content on fluorocopolymer solubility. Challenges remain for modeling fluorocopolymer-solvent mixtures. The Sanchez-Lacombe equation cannot capture the characteristics of FEPsb{19}-SCF solvent phase behavior unless two empirical mixture parameters, one of which varies with temperature, are used.

  12. Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Luo, Xueyi; Liao, Youhao; Zhu, Yunmin; Li, Minsui; Chen, Fangbing; Huang, Qiming; Li, Weishan

    2017-04-01

    Currently, the suitable proportion of inorganic particles in the ceramic separator has not been reported yet, due to the contradictory about the content of nano-particles in research papers (10 wt.%) and commercial application (large amount) [1,2]. In this paper, the nano-CeO2 contents on the properties of polyethylene (PE)-supported separator coating with poly (methyl methacrylate-butyl acrylate-acrylonitrile-styrene) (P(MMA-BA-AN-St)) copolymer is investigated systematically used in high voltage batteries for the first time. Since the copolymer contributes to high electrolyte uptake, and nano-CeO2 dedicates dimensional stability, the separator with 10 wt.% nano-CeO2 shows the highest ionic conductivity (2.5 × 10-3 S cm-1) at room temperature and the maximal electrolyte uptake (81.0 g m-2), while the separator with 100 wt.% nano-CeO2 exhibits better mechanical strength (52 MPa) and smaller shrinkage percentage (36%). Successively, cyclic performance of Li/LiNi0.5Mn1.5O4 cells indicates that the capacity retention of the cell using separator with 100 wt.% nano-CeO2 (72%) is second only to that with 10 wt.% nano-CeO2 (74%) after 200 cycles at 0.2 C between 3 V and 5 V, far larger than that without doping nano-CeO2 (51%) and PE (40%). By the consideration both of comprehensive performances and economic cost, 100 wt.% content is regarded as the most suitable appending proportion.

  13. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    NASA Astrophysics Data System (ADS)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na2S and Cd(CH3COO)2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  14. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    PubMed

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimization of disintegration behavior of biodegradable poly (hydroxy butanoic acid) copolymer mulch films in soil environment

    NASA Astrophysics Data System (ADS)

    Mahajan, Viabhav

    Biodegradation of polymeric films used for mulch film applications in agriculture not only eliminates problems of sorting out and disposal of plastics films, but also ensures increased yields in crop growth and cost reduction. One such polymer which is completely biodegradable in the soil is poly 3-hydroxy butanoic acid copolymer, which is a promising alternative to non-biodegradable incumbent polyethylene mulch films. The purpose of mulch film made of poly 3-hydroxy butanoic acid copolymers is to sustain itself during the crop growth and disintegrate and eventually biodegrade back to nature after the crop cycle is over. The disintegration phase of the biodegradation process was evaluated for poly 3-hydroxy butanoic acid copolymer incorporated with no additive, antimicrobial additives, varying amount of crystallinities, another biodegradable polymer, and in different soils, with or without varying soil moisture content. The tools used for quantification were weight loss and visual observation. The test method was standardized using repeatability tests. The onset of disintegration was optimized with addition of right anti-microbial additives, higher crystallinity of film, blending with other biodegradable polymers, compared to virgin poly 3-hydroxy butanoic acid copolymer film. The onset of disintegration time was reduced when soil moisture content was reduced. After the onset of disintegration, the polymer film was physically and mechanically deteriorated, withering away in soil, which is possible to tailor with the crop growth cycle.

  16. Binary Polymer Brushes of Strongly Immiscible Polymers.

    PubMed

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  17. Pluronic®-bile salt mixed micelles.

    PubMed

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

    DOE PAGES

    Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.; ...

    2016-01-22

    A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 Å. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 °C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. Lastly, this is particularly true for the film cast from ethyl lactate.« less

  19. Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.

    A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 A. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 degrees C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. This is particularly true for the film cast from ethyl lactate.« less

  20. Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Zhang, Bingzi; Kinsinger, Corey L.

    A random copolymer, tris(2,4,6-trimethoxyphenyl) phosphonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (PPO-TPQP) was cast from three different solvents: dimethyl sulfoxide (DMSO), ethyl lactate, or a 41:59 vol% mixture of DMSO and ethyl lactate. Solvents were selected via analysis of the Hansen solubility parameters to vary the phase separation of the polymer in the films. An optimized mixture of DMSO and ethyl lactate chosen for film fabrication and this film was contrasted with films cast from the neat constituent solvents. Atomic force microscopy identified domains from nanometer to tens of nanometer sizes, while the light microscopy showed features on the order of micron. SAXSmore » revealed a cation scattering peak with a d-spacing from 7 to 15 Å. Trends in conductivity and water diffusion for the membranes vary depending on the solvent from which they are cast. The mixed solvent cast membrane shows a linear Arrhenius behavior indicating fully dissociated cationic/anionic groups, and has the highest bromide conductivity of 3 mS/cm at 95% RH, 90 °C. The ethyl lactate cast membrane shows a linear Arrhenius relation in conductivity, but a Vogel-Tamman-Fulcher behavior in its water self-diffusion. While water increases bromide dissociation, water and bromide transport in these films seems to be decoupled. Lastly, this is particularly true for the film cast from ethyl lactate.« less

  1. Highly Efficient Ternary-Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance.

    PubMed

    Xu, Xiaopeng; Bi, Zhaozhao; Ma, Wei; Wang, Zishuai; Choy, Wallace C H; Wu, Wenlin; Zhang, Guangjun; Li, Ying; Peng, Qiang

    2017-12-01

    In this work, highly efficient ternary-blend organic solar cells (TB-OSCs) are reported based on a low-bandgap copolymer of PTB7-Th, a medium-bandgap copolymer of PBDB-T, and a wide-bandgap small molecule of SFBRCN. The ternary-blend layer exhibits a good complementary absorption in the range of 300-800 nm, in which PTB7-Th and PBDB-T have excellent miscibility with each other and a desirable phase separation with SFBRCN. In such devices, there exist multiple energy transfer pathways from PBDB-T to PTB7-Th, and from SFBRCN to the above two polymer donors. The hole-back transfer from PTB7-Th to PBDB-T and multiple electron transfers between the acceptor and the donor materials are also observed for elevating the whole device performance. After systematically optimizing the weight ratio of PBDB-T:PTB7-Th:SFBRCN, a champion power conversion efficiency (PCE) of 12.27% is finally achieved with an open-circuit voltage (V oc ) of 0.93 V, a short-circuit current density (J sc ) of 17.86 mA cm -2 , and a fill factor of 73.9%, which is the highest value for the ternary OSCs reported so far. Importantly, the TB-OSCs exhibit a broad composition tolerance with a high PCE over 10% throughout the whole blend ratios. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Understanding How the Presence of Uniform Electric Fields Can Shift the Miscibility of Polystyrene/Poly(vinyl methyl ether) Blends

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Roth, Connie B.

    2015-03-01

    Techniques which can externally control and manipulate the phase behavior of polymeric systems, without altering chemistry on a molecular level, have great practical benefits. One such possible mechanism is the use of electric fields, shown to cause interfacial instabilities, orientation of morphologies, and phase transitions in polymer blends and block copolymers. We have recently demonstrated that the presence of uniform electric fields can also strongly enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether) (PVME) blends [J. Chem. Phys. 2014, 141, 134908]. Using fluorescence to measure the phase separation temperature Ts of PS/PVME blends with and without electric fields, we show that Ts can be reproducibly and reversibly increased by 13.5 +/- 1.4 K for electric fields of 17 kV/mm for this lower critical solution temperature (LCST) blend. This increase in blend miscibility with electric fields represents some of the largest absolute shifts in Ts ever recorded, well outside of experimental error. The best theoretical prediction for the expected shift in Ts with electric field for this system is still two orders of magnitude smaller than that observed experimentally. We discuss the limitations of this theoretical prediction and consider possible factors affecting miscibility that may need to be also included.

  3. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry

    USGS Publications Warehouse

    Lindsey, M.E.; Meyer, M.; Thurman, E.M.

    2001-01-01

    A method has been developed for the trace analysis of two classes of antimicrobials consisting of six sulfonamides (SAs) and five tetracyclines (TCs), which commonly are used for veterinary purposes and agricultural feed additives and are suspected to leach into ground and surface water. The method used solid-phase extraction and liquid chromatography/mass spectrometry (LC/MS) with positive ion electrospray. The unique combination of a metal chelation agent (Na2EDTA) with a macroporous copolymer resulted in quantitative recoveries by solid-phase extraction (mean recovery, 98 ?? 12%) at submicrogram-per-liter concentrations. An ammonium formate/formic acid buffer with a methanol/water gradient was used to separate the antimicrobials and to optimize the signal intensity. Mass spectral fragmentation and ionization characteristics were determined for each class of compounds for unequivocal identification. For all SAs, a characteristic m/z 156 ion representing the sulfanilyl fragment was identified. TCs exhibited neutral losses of 17 amu resulting from the loss of ammonia and 35 amu from the subsequent loss of water. Unusual matrix effects were seen only for TCs in this first survey of groundwater and surface water samples from sites around the United States, requiring that TCs be quantitated using the method of standard additions.

  4. Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2018-01-12

    Charged block copolymer self-assemblies, such as charged micelles, have attracted much attention as versatile drug delivery systems due to their readily tunable characteristics such as size and surface charge. However, current column-based analytical techniques are not suitable to fractionate and comprehensively characterize charged micelles in terms of size, molar mass, chemical composition and morphology. Multidetector thermal field-flow fractionation (ThFFF) is shown to be a unique characterization platform that can be used to characterize charged micelles in terms of size, molar mass, chemical composition and morphology in aqueous mobile phases with various ionic strengths and pH. This is demonstrated by the characterization of poly(methacrylic acid)-b-poly(methyl methacrylate) self-assemblies in high pH buffers as well as the characterization of cationic poly(2-vinyl pyridine)-b-polystyrene and poly(4-vinyl pyridine)-b-polystyrene self-assemblies in low pH buffers. Moreover, it is shown that ThFFF is capable of separating charged micelles according to the corona composition. These investigations prove convincingly that ThFFF is broadly applicable to the comprehensive characterization of amphiphilic self-assemblies even when aqueous mobile phases are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. John H. Dillon Medal Lecture: Magnetic Field Directed Self-Assembly of Block Copolymers and Surfactant Mesophases

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum

    2015-03-01

    Molecular self-assembly of block copolymers and small molecule surfactants gives rise to a rich phase behavior as a function of temperature, composition, and other variables. We consider the directed self-assembly of such soft mesophases using magnetic fields, principally through the use of in situ x-ray scattering studies. Field alignment is predicated on a sufficiently large product of magnetic anisotropy and grain size to produce magnetostatic interactions which are substantive relative to thermal forces. We examine the role of field strength on the phase behavior and alignment dynamics of a series of soft mesophases, outlining the possibility to readily create highly ordered functional materials over macroscopic length scales. We show that magnetic fields as large as 10 T have little discernable impact on the stability of block copolymer systems considered, with shifts in order-disorder transition temperatures of roughly 5 mK or smaller. Consequently, directed self-assembly in these systems proceeds by nucleation of randomly aligned grains which thereafter rotate into registry with the field. We highlight the tradeoff between decreasing mobility and increasing anisotropic field interaction that dictates alignment kinetics while transiting from a high temperature disordered state to an ordered system at lower temperatures. NSF support through DMR-0847534 is gratefully acknowledged.

  6. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    PubMed

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  7. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    DOE PAGES

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; ...

    2016-07-19

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less

  8. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less

  9. High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films.

    PubMed

    Park, Hyungmin; Kim, Jae-Up; Park, Soojin

    2012-02-21

    A simple, straightforward process for fabricating multi-scale micro- and nanostructured patterns from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP)/poly(methyl methacrylate) (PMMA) homopolymer in a preferential solvent for PS and PMMA is demonstrated. When the PS-b-P2VP/PMMA blend films were spin-coated onto a silicon wafer, PS-b-P2VP micellar arrays consisting of a PS corona and a P2VP core were formed, while the PMMA macrodomains were isolated, due to the macrophase separation caused by the incompatibility between block copolymer micelles and PMMA homopolymer during the spin-coating process. With an increase of PMMA composition, the size of PMMA macrodomains increased. Moreover, the P2VP blocks have a strong interaction with a native oxide of the surface of the silicon wafer, so that the P2VP wetting layer was first formed during spin-coating, and PS nanoclusters were observed on the PMMA macrodomains beneath. Whereas when a silicon surface was modified with a PS brush layer, the PS nanoclusters underlying PMMA domains were not formed. The multi-scale patterns prepared from copolymer micelle/homopolymer blend films are used as templates for the fabrication of gold nanoparticle arrays by incorporating the gold precursor into the P2VP chains. The combination of nanostructures prepared from block copolymer micellar arrays and macrostructures induced by incompatibility between the copolymer and the homopolymer leads to the formation of complex, multi-scale surface patterns by a simple casting process. This journal is © The Royal Society of Chemistry 2012

  10. Reactivity ratios and sequence structures of the copolymers prepared using photo-induced copolymerization of MMA with MTMP.

    PubMed

    Liu, Xiaoxuan; Zhang, Yongtao; Cui, Yanyan; Dong, Zhixian

    2012-05-01

    4-Methacryloyl-2,2,6,6-tetramethyl-piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo-induced copolymerization of methyl methacrylate (MMA, M(1)) with MTMP (M(2)) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using (1)H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r(1)= 0.37 and r(2)= 1.14 from extended Kelen-Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using (1)H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr', and lr' in the syndiotactic configuration are found. The sequence-length distribution in the MMA/MTMP copolymers is also obtained. For f(1)= 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f(1)= 0.6, the alternating tendency prevails and a large number of mono-sequences are formed; further up to f(1)= 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Effect of cationic monomer content on polyacrylamide copolymers by frit-inlet asymmetrical flow field-flow fractionation/multi-angle light scattering.

    PubMed

    Lee, Hyejin; Kim, Jin Yong; Choi, Woonjin; Moon, Myeong Hee

    2017-06-23

    In this study, ultrahigh-molecular-weight (MW) (>10 7 Da) cationic polyacrylamides (C-PAMs), which are water-soluble polymers used in waste water treatment, were characterized using frit-inlet asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractive detection. C-PAMs copolymerized with acryloxyethyltrimethyl ammonium chloride (DAC) were prepared by varying the feed amount of cationic monomer, polymerization method (solution vs. emulsion), and degree of branching. The MW of the copolymers prepared using emulsion polymerization (10 7 -10 9 Da) was generally larger than that of copolymers prepared using solution polymerization (4×10 7 -10 8 Da). When the amount of cationic monomer was increased from 10 to 55mol% in solution polymerization, hydrophobic contraction of the core induced formation of more compact C-PAMs. The copolymers prepared using emulsion polymerization formed highly aggregated or supercoil structures owing to increased intermolecular hydrophobic interaction when less cationic monomer was used. However, the MW decreased with increased cationic group content. In addition, C-PAMs larger than ∼10 8 Da prepared using the emulsion method were separated by steric/hyperlayer elution mode while those in the 10 7 -10 8 Da range were analyzed in either normal or steric/hyperlayer mode depending on the decay patterns of field programming. Moreover, branched copolymers were found to be resolved with different elution modes under the same field decay pattern depending on the degree of branching: steric/hyperlayer for low-branching and normal for high-branching C-PAMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. An investigative study of polymer adsorption onto montmorillonite clay

    NASA Astrophysics Data System (ADS)

    McConnell Boykin, Cheri Lynn

    For colloidal systems with adsorbed polymer, the mechanisms governing stabilization and flocculation are defined by the critical overlap concentration, c*. Below c*, steric stabilization or bridging flocculation are viable mechanisms of adsorption, while above c* associative thickening stabilization, depletion stabilization or depletion flocculation may occur. While these types of systems have been described by their mechanism of interaction, few studies have been geared towards evaluating and actually defining these interactions. This research focuses on elucidating the mechanisms of interaction for a series of polyacrylamide copolymers adsorbed onto montmorillonite clay. The well-defined copolymers synthesized and characterized for these studies include: nonionic polyacrylamide, (PAm); cationic poly(acrylamide-co-[3-(methacryloylamino) propyl] trimethylammonium chloride), (PAmMaap Quat); nonionic/anionic poly(acrylamide-co-acrylic acid), (PAmAA); and anionic poly(acrylamide-co-[2-acrylamido-2-methylpropane sulfonic acid]), (PAmAmps). By combining the results from the following experiments it was possible to determine the mechanisms of interaction for each of the clay/polymer systems at pH 3, 7 and 10. The adsorption capacity of each of the copolymers was determined from constructing adsorption isotherms while the polymer conformation was determined from 13C NMR line-broadening experiments. FTIR spectroscopy verified which surface of the clay was involved in adsorption along with the polymer moiety bound to the surface. Finally, the stabilization behavior was evaluated from statistically designed phase diagrams as a function of polymer and clay concentrations. By evaluating the phase behavior as well as c* for the polymer/solvent systems, it was determined that there was no direct correlation between c* for a polymer/solvent system and the mechanism of interaction for colloid/polymer/solvent systems previously defined by Vincent, Sato and Napper. In general, the nonionic polymers act as H-bond acceptors (amide and acid moieties) and donators (acid groups) which result in associatively stabilized homogeneous montmorillonite clay dispersions. The cationic copolymers exhibit strong, irreversible interactions with the clay resulting in heterogeneous bridging flocculation, which was shown to be dependent on the charge density of the copolymer. Furthermore, the anionic copolymers show no signs of adsorption, but create a network of repulsive forces with the montmorillonite clay, which ultimately results in depletion stabilization with some degree of depletion flocculation.

  14. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bo; Edwards, Brian J., E-mail: bje@utk.edu

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated withmore » the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.« less

  15. Controlling the Morphology of Side Chain Liquid Crystalline Block Copolymer Thin Films through Variations in Liquid Crystalline Content

    PubMed Central

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.

    2009-01-01

    In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835

  16. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  17. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-04-28

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology.

  18. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    PubMed

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  19. InAs nanowires grown by metal-organic vapor-phase epitaxy (MOVPE) employing PS/PMMA diblock copolymer nanopatterning.

    PubMed

    Huang, Yinggang; Kim, Tae Wan; Xiong, Shisheng; Mawst, Luke J; Kuech, Thomas F; Nealey, Paul F; Dai, Yushuai; Wang, Zihao; Guo, Wei; Forbes, David; Hubbard, Seth M; Nesnidal, Michael

    2013-01-01

    Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (~10 nm) SiNx layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ~ 20 nm and micrometer-scale lengths were achieved with a density of ~ 5 × 10(10) cm(2). The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.

  20. Micellization and phase transitions in a triblock copolymer-D2O system

    NASA Astrophysics Data System (ADS)

    Odhner, Hosanna; Huff, Alison; Patton, Kelly; Jacobs, D. T.; Clover, Bryna; Greer, Sandra

    2011-03-01

    The triblock copolymer (``unimer'') of PPO-PEO-PPO (commercially known as 17R4) has hydrophobic ends and a hydrophilic center. When placed in D2 O at lower concentrations and temperatures, only a network of unimers exists. However, at higher concentrations or temperatures, micelles of different geometries can form. We have measured the micellization line marking the transition from only unimers to some micelles, as well as a one- to two-phase transition at higher temperatures. This second transition is an Ising-like, LCST critical point, based on the shape of the coexistence curve. We find the LCST to not correspond to the minimum of the cloud point curve, which indicates polydispersity as described by Sollich. We acknowledge the support from Research Corporation, NSF-REU grant DMR 0649112, The College of Wooster, and (for BC and SG) to the donors of the Petroleum Research Fund, administered by the American Chemical Society.

Top