Science.gov

Sample records for copolymer-1 immunization reduces

  1. Immunization with A91 peptide or copolymer-1 reduces the production of nitric oxide and inducible nitric oxide synthase gene expression after spinal cord injury.

    PubMed

    García, Elisa; Silva-García, Raúl; Mestre, Humberto; Flores, Nayeli; Martiñón, Susana; Calderón-Aranda, Emma S; Ibarra, Antonio

    2012-03-01

    Immunization with neurally derived peptides (INDP) boosts the action of an autoreactive immune response that has been shown to induce neuroprotection in several neurodegenerative diseases, especially after spinal cord (SC) injury. This strategy provides an environment that promotes neuronal survival and tissue preservation. The mechanisms by which this autoreactive response exerts its protective effects is not totally understood at the moment. A recent study showed that INDP reduces lipid peroxidation. Lipid peroxidation is a neurodegenerative phenomenon caused by the increased production of reactive nitrogen species such as nitric oxide (NO). It is possible that INDP could be interfering with NO production. To test this hypothesis, we examined the effect of INDP on the amount of NO produced by glial cells when cocultured with autoreactive T cells. We also evaluated the amount of NO and the expression of the inducible form of nitric oxide synthase (iNOS) at the injury site of SC-injured animals. The neural-derived peptides A91 and Cop-1 were used to immunize mice and rats with SC injury. In vitro studies showed that INDP significantly reduces the production of NO by glial cells. This observation was substantiated by in vivo experiments demonstrating that INDP decreases the amount of NO and iNOS gene expression at the site of injury. The present study provides substantial evidence on the inhibitory effect of INDP on NO production, helpingour understanding of the mechanisms through which protective autoimmunity promotes neuroprotection.

  2. Modulation of Innate Immunity by Copolymer-1 Leads to Neuroprotection in Murine HIV-1 Encephalitis

    PubMed Central

    Gorantla, Santhi; Liu, Jianuo; Wang, Tong; Holguin, Adelina; Sneller, Hannah M; Dou, Huanyu; Kipnis, Jonathan; Poluektova, Larisa; Gendelman, Howard E

    2009-01-01

    Virus-infected and immune competent mononuclear phagocytes (MP; perivascular macrophages and microglia) drive the neuropathogenesis of human immunodeficiency virus type one (HIV-1) infection. Modulation of the MP phenotype from neurodestructive to neuroprotective underlies adjunctive therapeutic strategies for human disease. We reasoned that, as Copolymer-1 (Cop-1) can induce neuroprotective activities in a number of neuroinflammatory and neurodegenerative disorders, it could directly modulate HIV-1 infected MP neurotoxic activities. We now demonstrate that, in laboratory assays, Cop-1-stimulated virus-infected human monocyte-derived macrophages protect against neuronal injury and elicit anti-retroviral activities. Severe combined immune deficient (SCID) mice were stereotactically injected with HIV-1 infected human monocyte-derived macrophages, into the basal ganglia, to induce HIV-1 encephalitis (HIVE). Cop-1 was administered subcutaneously for 7 days. In HIVE mice Cop-1 treatment led to anti-inflammatory and neuroprotective responses. Reduced micro- and astro- gliosis, and conserved NeuN/MAP-2 levels were observed in virus affected brain regions in Cop-1-treated mice. These were linked to interleukin-10 and brain-derived neurotrophic factor expression and downregulation of inducible nitric oxide synthase. The data, taken together, demonstrate that Cop-1 can modulate innate immunity and, as such, improve disease outcomes in an animal model of HIVE. PMID:18046731

  3. Increasing Immunization Compliance by Reducing Provisional Admittance

    ERIC Educational Resources Information Center

    Davis, Wendy S.; Varni, Susan E.; Barry, Sara E.; Frankowski, Barbara L.; Harder, Valerie S.

    2016-01-01

    Students in Vermont with incomplete or undocumented immunization status are provisionally admitted to schools and historically had a calendar year to resolve their immunization status. The process of resolving these students' immunization status was challenging for school nurses. We conducted a school-based quality improvement effort to increase…

  4. Sepsis-induced immune dysfunction: can immune therapies reduce mortality?

    PubMed Central

    Delano, Matthew J.; Ward, Peter A.

    2016-01-01

    Sepsis is a systemic inflammatory response induced by an infection, leading to organ dysfunction and mortality. Historically, sepsis-induced organ dysfunction and lethality were attributed to the interplay between inflammatory and antiinflammatory responses. With advances in intensive care management and goal-directed interventions, early sepsis mortality has diminished, only to surge later after “recovery” from acute events, prompting a search for sepsis-induced alterations in immune function. Sepsis is well known to alter innate and adaptive immune responses for sustained periods after clinical “recovery,” with immunosuppression being a prominent example of such alterations. Recent studies have centered on immune-modulatory therapy. These efforts are focused on defining and reversing the persistent immune cell dysfunction that is associated with mortality long after the acute events of sepsis have resolved. PMID:26727230

  5. Maternal antibodies reduce costs of an immune response during development.

    PubMed

    Grindstaff, Jennifer L

    2008-03-01

    Young vertebrates are dependent primarily on innate immunity and maternally derived antibodies for immune defense. This reliance on innate immunity and the associated inflammatory response often leads to reduced growth rates after antigenic challenge. However, if offspring have maternal antibodies that recognize an antigen, these antibodies should block stimulation of the inflammatory response and reduce growth suppression. To determine whether maternal and/or offspring antigen exposure affect antibody transmission and offspring growth, female Japanese quail (Coturnix japonica) and their newly hatched chicks were immunized. Mothers were immunized with lipopolysaccharide (LPS), killed avian reovirus vaccine (AR), or were given a control, phosphate-buffered saline, injection. Within each family, one-third of offspring were immunized with LPS, one-third were immunized with AR, and one-third were given the control treatment. Maternal immunization significantly affected the specific types of antibodies that were transmitted. In general, immunization depressed offspring growth. However, offspring immunized with the same antigen as their mother exhibited elevated growth in comparison to siblings immunized with a different antigen. This suggests that the growth suppressive effects of antigen exposure during development can be partially ameliorated by the presence of maternal antibodies, but in the absence of specific maternal antibodies, offspring are dependent on more costly innate immune defenses. Together, the results suggest that the local disease environment of mothers prior to reproduction significantly affects maternal antibody transmission and these maternal antibodies may allow offspring to partially maintain growth during infection in addition to providing passive humoral immune defense.

  6. Reduced cellular immune response in social insect lineages

    PubMed Central

    Sconiers, Warren B.; Frank, Steven D.; Dunn, Robert R.; Tarpy, David R.

    2016-01-01

    Social living poses challenges for individual fitness because of the increased risk of disease transmission among conspecifics. Despite this challenge, sociality is an evolutionarily successful lifestyle, occurring in the most abundant and diverse group of organisms on earth—the social insects. Two contrasting hypotheses predict the evolutionary consequences of sociality on immune systems. The social group hypothesis posits that sociality leads to stronger individual immune systems because of the higher risk of disease transmission in social species. By contrast, the relaxed selection hypothesis proposes that social species have evolved behavioural immune defences that lower disease risk within the group, resulting in lower immunity at the individual level. We tested these hypotheses by measuring the encapsulation response in 11 eusocial and non-eusocial insect lineages. We built phylogenetic mixed linear models to investigate the effect of behaviour, colony size and body size on cellular immune response. We found a significantly negative effect of colony size on encapsulation response (Markov chain Monte Carlo generalized linear mixed model (mcmcGLMM) p < 0.05; phylogenetic generalized least squares (PGLS) p < 0.05). Our findings suggest that insects living in large societies may rely more on behavioural mechanisms, such as hygienic behaviours, than on immune function to reduce the risk of disease transmission among nest-mates. PMID:26961895

  7. Improved immunization strategy to reduce energy consumption on nodes traffic

    NASA Astrophysics Data System (ADS)

    Yuan, Jiazheng; Zhao, Dongyan; Long, Keping; Zheng, Yongrong

    2017-04-01

    The increasing requirement of transmission network sizes would result in huge energy consumption with communication traffic. Green communication technologies are expected to help in reducing energy consumption impact to environment. Therefore, it is important to design energy-efficient strategy that can decrease energy consumption. This paper proposes to use the acquaintance and improved targeted immunization strategies from complex systems to resolve energy consumption issues and uses traffic as measure standard to obtain a stable threshold. The simulation results show that the improved control strategy is better and more effective to save as much energy as possible.

  8. Reduced immune cell responses on nano and submicron rough titanium.

    PubMed

    Lu, Jing; Webster, Thomas J

    2015-04-01

    Current bare metal stents can be improved by nanotechnology to support the simultaneous acceleration of endothelialization and consequent reduction of immune cell responses after implantation. In our prior study, electron beam deposition was utilized to create different scales of roughness on titanium stents including flat (F-Ti), a mixture of nanometer and submicron (S-Ti), and nanometer (N-Ti). Enhanced endothelial responses (adhesion, migration, and nitric acid/endothelin-1 secretion) on nanometer to submicron rough titanium were observed compared to flat titanium. The present study aimed to further investigate the influence of nano and submicron titanium surface features on immune cells. Initial monocyte adhesion was found to be reduced on nano and submicron surface features compared to a flat surface. In a model including both endothelial cells and monocytes, it was proven that the submicron surface gave rise to an endothelial cell monolayer which generated the highest amount of NOx and subsequently led to decreased adhesiveness of endothelial cells to monocytes. The analysis of monocyte morphology gave hints to less differentiated monocytes on a submicron surface. Furthermore, the adhesion of and pro-inflammatory cytokine release from macrophages were all reduced on nano and submicron titanium surface features compared to a flat surface. This study, thus, suggests that nano and submicron titanium surfaces should be further studied for improved vascular stent performance.

  9. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis

    PubMed Central

    Mortensen, Martin B.; Kjolby, Mads; Gunnersen, Stine; Larsen, Jakob V.; Palmfeldt, Johan; Falk, Erling; Nykjaer, Anders; Bentzon, Jacob F.

    2014-01-01

    Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis. PMID:25401472

  10. Immune Activation Reduces Sperm Quality in the Great Tit

    PubMed Central

    Losdat, Sylvain; Richner, Heinz; Blount, Jonathan D.; Helfenstein, Fabrice

    2011-01-01

    Mounting an immune response against pathogens incurs costs to organisms by its effects on important life-history traits, such as reproductive investment and survival. As shown recently, immune activation produces large amounts of reactive species and is suggested to induce oxidative stress. Sperm are highly susceptible to oxidative stress, which can negatively impact sperm function and ultimately male fertilizing efficiency. Here we address the question as to whether mounting an immune response affects sperm quality through the damaging effects of oxidative stress. It has been demonstrated recently in birds that carotenoid-based ornaments can be reliable signals of a male's ability to protect sperm from oxidative damage. In a full-factorial design, we immune-challenged great tit males while simultaneously increasing their vitamin E availability, and assessed the effect on sperm quality and oxidative damage. We conducted this experiment in a natural population and tested the males' response to the experimental treatment in relation to their carotenoid-based breast coloration, a condition-dependent trait. Immune activation induced a steeper decline in sperm swimming velocity, thus highlighting the potential costs of an induced immune response on sperm competitive ability and fertilizing efficiency. We found sperm oxidative damage to be negatively correlated with sperm swimming velocity. However, blood resistance to a free-radical attack (a measure of somatic antioxidant capacity) as well as plasma and sperm levels of oxidative damage (lipid peroxidation) remained unaffected, thus suggesting that the observed effect did not arise through oxidative stress. Towards the end of their breeding cycle, swimming velocity of sperm of more intensely colored males was higher, which has important implications for the evolution of mate choice and multiple mating in females because females may accrue both direct and indirect benefits by mating with males having better quality sperm

  11. Copolymer-1 promotes neurogenesis and improves functional recovery after acute ischemic stroke in rats.

    PubMed

    Cruz, Yolanda; Lorea, Jonathan; Mestre, Humberto; Kim-Lee, Jennifer Hyuna; Herrera, Judith; Mellado, Raúl; Gálvez, Vanesa; Cuellar, Leopoldo; Musri, Carolina; Ibarra, Antonio

    2015-01-01

    Stroke triggers a systemic inflammatory response that exacerbates the initial injury. Immunizing with peptides derived from CNS proteins can stimulate protective autoimmunity (PA). The most renowned of these peptides is copolymer-1 (Cop-1) also known as glatiramer acetate. This peptide has been approved for use in the treatment of multiple sclerosis. Cop-1-specific T cells cross the blood-brain barrier and secrete neurotrophins and anti-inflammatory cytokines that could stimulate proliferation of neural precursor cells and recruit them to the injury site; making it an ideal therapy for acute ischemic stroke. The aim of this work was to evaluate the effect of Cop-1 on neurogenesis and neurological recovery during the acute phase (7 days) and the chronic phase of stroke (60 days) in a rat model of transient middle cerebral artery occlusion (tMCAo). BDNF and NT-3 were quantified and infarct volumes were measured. We demonstrated that Cop-1 improves neurological deficit, enhances neurogenesis (at 7 and 60 days) in the SVZ, SGZ, and cerebral cortex through an increase in NT-3 production. It also decreased infarct volume even at the chronic phase of tMCAo. The present manuscript fortifies the support for the use of Cop-1 in acute ischemic stroke.

  12. Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael

    1999-03-01

    The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.

  13. Immunization with Brucella VirB Proteins Reduces Organ Colonization in Mice through a Th1-Type Immune Response and Elicits a Similar Immune Response in Dogs

    PubMed Central

    Pollak, Cora N.; Wanke, María Magdalena; Estein, Silvia M.; Delpino, M. Victoria; Monachesi, Norma E.; Comercio, Elida A.; Fossati, Carlos A.

    2014-01-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. PMID:25540276

  14. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    PubMed

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs.

  15. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

    PubMed Central

    Garofalo, Stefano; D’Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina

    2015-01-01

    Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment. PMID:25818172

  16. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris

    PubMed Central

    Brunner, Franziska S.; Schmid-Hempel, Paul; Barribeau, Seth M.

    2014-01-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions. PMID:24850921

  17. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System

    PubMed Central

    Arp, Alex P.; Hunter, Wayne B.; Pelz-Stelinski, Kirsten S.

    2016-01-01

    Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts. PMID:27965582

  18. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System.

    PubMed

    Arp, Alex P; Hunter, Wayne B; Pelz-Stelinski, Kirsten S

    2016-01-01

    Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.

  19. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus.

    PubMed

    Durrant, Joanna; Michaelides, Ellie B; Rupasinghe, Thusitha; Tull, Dedreia; Green, Mark P; Jones, Therésa M

    2015-01-01

    Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested.

  20. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus

    PubMed Central

    Michaelides, Ellie B.; Rupasinghe, Thusitha; Tull, Dedreia; Green, Mark P.; Jones, Therésa M.

    2015-01-01

    Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested. PMID:26339535

  1. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    PubMed

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-07-07

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases.

  2. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation

    PubMed Central

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  3. Immunizations

    MedlinePlus

    ... Get Weight Loss Surgery? A Week of Healthy Breakfasts Shyness Immunizations KidsHealth > For Teens > Immunizations Print A A A What's in this article? Why Are Vaccinations Important? Why Do I Need Shots? Which Vaccinations Do ...

  4. An Intact Reducing Glycan Promotes the Specific Immune Response to Lacto-N-neotetraose-BSA Neoglycoconjugates

    PubMed Central

    Prasanphanich, Nina S.; Song, Xuezheng; Heimburg-Molinaro, Jamie; Luyai, Anthony E.; Lasanajak, Yi; Cutler, Christopher E.; Smith, David F.; Cummings, Richard D.

    2015-01-01

    The mammalian immune system responds to eukaryotic glycan antigens during infections, cancer, and autoimmune disorders, but the immunological bases for such responses are unclear. Conjugate vaccines containing bacterial polysaccharides linked to carrier proteins (neoglycoconjugates) have proven successful, but these often contain repeating epitopes and the reducing end of the glycan is less important, unlike typical glycan determinants in eukaryotes, which are shorter in length and may include the reducing end. Here we have compared the effects of two linkage methods, one that opens the ring at the reducing end of the glycan, and one that leaves the reducing end closed, on the glycan specificity of the vaccine response in rabbits and mice. We immunized rabbits and mice with bovine serum albumin (BSA) conjugates of synthetic open- and closed-ring forms (OR versus CR) of a simple tetrasaccharide lacto-N-neo-tetraose (LNnT, Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and tested reactivity to the immunogens and several related glycans in both OR and CR versions on glycan microarrays. We found that in rabbits the immune response to the CR conjugate was directed toward the glycan, whereas the OR conjugate elicited antibodies to the reducing end of the glycan and linker region but not specifically to the glycan itself. Unexpectedly, mice did not generate a glycan-specific response to the CR conjugate. Our findings indicate that the reducing end of the sugar is crucial for generation of a glycan-specific response to some eukaryotic vaccine epitopes, and that there are species-specific differences in the ability to make a glycan-specific response to some glycoconjugates. These findings warrant further investigation with regard to rational design of glycoconjugate vaccines. PMID:25671348

  5. Chronic Schistosoma japonicum Infection Reduces Immune Response to Vaccine against Hepatitis B in Mice

    PubMed Central

    Chen, Lin; Liu, Wen-qi; Lei, Jia-hui; Guan, Fei; Li, Man-jun; Song, Wen-jian; Li, Yong-long; Wang, Ting

    2012-01-01

    Background Hepatitis B and schistosomiasis are most prevalent in Africa and Asia, and co-infections of both are frequent in these areas. The immunomodulation reported to be induced by schistosome infections might restrict immune control of hepatitis B virus (HBV) leading to more severe viral infection. Vaccination is the most effective measure to control and prevent HBV infection, but there is evidence for a reduced immune response to the vaccine in patients with chronic schistosomiasis japonica. Methodology/Principal Findings In this paper, we demonstrate in a mouse model that a chronic Schistosoma japonicum infection can inhibit the immune response to hepatitis B vaccine (HBV vaccine) and lead to lower production of anti-HBs antibodies, interferon-γ (IFN-γ) and interleukin-2 (IL-2). After deworming with Praziquantel (PZQ), the level of anti-HBs antibodies gradually increased and the Th2-biased profile slowly tapered. At 16 weeks after deworming, the levels of anti-HBs antibodies and Th1/Th2 cytokines returned to the normal levels. Conclusions/Significance The results suggest that the preexisting Th2-dominated immune profile in the host infected with the parasite may down–regulate levels of anti-HBs antibodies and Th1 cytokines. To improve the efficacy of HBV vaccination in schistosome infected humans it may be valuable to treat them with praziquantel (PZQ) some time prior to HBV vaccination. PMID:23272112

  6. P-Selectin preserves immune tolerance in mice and is reduced in human cutaneous lupus

    PubMed Central

    González-Tajuelo, Rafael; Silván, Javier; Pérez-Frías, Alicia; de la Fuente-Fernández, María; Tejedor, Reyes; Espartero-Santos, Marina; Vicente-Rabaneda, Esther; Juarranz, Ángeles; Muñoz-Calleja, Cecilia; Castañeda, Santos; Gamallo, Carlos; Urzainqui, Ana

    2017-01-01

    Mice deficient in P-Selectin presented altered immunity/tolerance balance. We have observed that the absence of P-Selectin promotes splenomegaly with reduced naïve T cell population, elevated activated/effector T cell subset, increased germinal center B and Tfh populations and high production of autoreactive antibodies. Moreover, 1.5-3-month-old P-selectin KO mice showed reduced IL-10-producing leukocytes in blood and a slightly reduced Treg population in the skin. With aging and, coinciding with disease severity, there is an increase in the IL17+ circulating and dermal T cell subpopulations and reduction of dermal Treg. As a consequence, P-Selectin deficient mice developed a progressive autoimmune syndrome showing skin alterations characteristic of lupus prone mice and elevated circulating autoantibodies, including anti-dsDNA. Similar to human SLE, disease pathogenesis was characterized by deposition of immune complexes in the dermoepidermal junction and renal glomeruli, and a complex pattern of autoantibodies. More important, skin biopsies of cutaneous lupus erythematosus patients did not show increased expression of P-Selectin, as described for other inflammatory diseases, and the number of vessels expressing P-Selectin was reduced. PMID:28150814

  7. P-Selectin preserves immune tolerance in mice and is reduced in human cutaneous lupus.

    PubMed

    González-Tajuelo, Rafael; Silván, Javier; Pérez-Frías, Alicia; de la Fuente-Fernández, María; Tejedor, Reyes; Espartero-Santos, Marina; Vicente-Rabaneda, Esther; Juarranz, Ángeles; Muñoz-Calleja, Cecilia; Castañeda, Santos; Gamallo, Carlos; Urzainqui, Ana

    2017-02-02

    Mice deficient in P-Selectin presented altered immunity/tolerance balance. We have observed that the absence of P-Selectin promotes splenomegaly with reduced naïve T cell population, elevated activated/effector T cell subset, increased germinal center B and Tfh populations and high production of autoreactive antibodies. Moreover, 1.5-3-month-old P-selectin KO mice showed reduced IL-10-producing leukocytes in blood and a slightly reduced Treg population in the skin. With aging and, coinciding with disease severity, there is an increase in the IL17(+) circulating and dermal T cell subpopulations and reduction of dermal Treg. As a consequence, P-Selectin deficient mice developed a progressive autoimmune syndrome showing skin alterations characteristic of lupus prone mice and elevated circulating autoantibodies, including anti-dsDNA. Similar to human SLE, disease pathogenesis was characterized by deposition of immune complexes in the dermoepidermal junction and renal glomeruli, and a complex pattern of autoantibodies. More important, skin biopsies of cutaneous lupus erythematosus patients did not show increased expression of P-Selectin, as described for other inflammatory diseases, and the number of vessels expressing P-Selectin was reduced.

  8. Seamustard (Undaria pinnatifida) Improves Growth, Immunity, Fatty Acid Profile and Reduces Cholesterol in Hanwoo Steers

    PubMed Central

    Hwang, J. A.; Islam, M. M.; Ahmed, S. T.; Mun, H. S.; Kim, G. M.; Kim, Y. J.; Yang, C. J.

    2014-01-01

    The study was designed to evaluate the effect of 2% seamustard (Undaria pinnatifida) by-product (SW) on growth performance, immunity, carcass characteristics, cholesterol content and fatty acid profile in Hanwoo steers. A total of 20 Hanwoo steers (ave. 22 months old; 619 kg body weight) were randomly assigned to control (basal diet) and 2% SW supplemented diet. Dietary SW supplementation significantly (p<0.05) improved average daily gain and gain:feed ratio as well as serum immunoglobulin G concentration. Chemical composition and quality grade of meat and carcass yield grades evaluated at the end of the trial were found to be unaffected by SW supplementation. Dietary SW significantly reduced meat cholesterol concentration (p<0.05). Dietary SW supplementation significantly reduced the myristic acid (C14:0) and palmitoleic acid (C16:ln-7) concentration, while SW increased the concentration of stearic acid (C18:0) and linolenic acid (C18:3n-3) compared to control (p<0.05). Dietary SW supplementation had no effect on saturated fatty acids (SFA), unsaturated fatty acids, poly unsaturated fatty acid (PUFA) or mono unsaturated fatty acid content in muscles. A reduced ratio of PUFA/SFA and n-6/n-3 were found in SW supplemented group (p<0.05). In conclusion, 2% SW supplementation was found to improve growth, immunity and fatty acid profile with significantly reduced cholesterol of beef. PMID:25083105

  9. Seamustard (Undaria pinnatifida) Improves Growth, Immunity, Fatty Acid Profile and Reduces Cholesterol in Hanwoo Steers.

    PubMed

    Hwang, J A; Islam, M M; Ahmed, S T; Mun, H S; Kim, G M; Kim, Y J; Yang, C J

    2014-08-01

    The study was designed to evaluate the effect of 2% seamustard (Undaria pinnatifida) by-product (SW) on growth performance, immunity, carcass characteristics, cholesterol content and fatty acid profile in Hanwoo steers. A total of 20 Hanwoo steers (ave. 22 months old; 619 kg body weight) were randomly assigned to control (basal diet) and 2% SW supplemented diet. Dietary SW supplementation significantly (p<0.05) improved average daily gain and gain:feed ratio as well as serum immunoglobulin G concentration. Chemical composition and quality grade of meat and carcass yield grades evaluated at the end of the trial were found to be unaffected by SW supplementation. Dietary SW significantly reduced meat cholesterol concentration (p<0.05). Dietary SW supplementation significantly reduced the myristic acid (C14:0) and palmitoleic acid (C16:ln-7) concentration, while SW increased the concentration of stearic acid (C18:0) and linolenic acid (C18:3n-3) compared to control (p<0.05). Dietary SW supplementation had no effect on saturated fatty acids (SFA), unsaturated fatty acids, poly unsaturated fatty acid (PUFA) or mono unsaturated fatty acid content in muscles. A reduced ratio of PUFA/SFA and n-6/n-3 were found in SW supplemented group (p<0.05). In conclusion, 2% SW supplementation was found to improve growth, immunity and fatty acid profile with significantly reduced cholesterol of beef.

  10. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection

    PubMed Central

    Meadows, Danielle N.; Bahous, Renata H.; Best, Ana F.; Rozen, Rima

    2015-01-01

    Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host’s immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs. PMID:26599510

  11. Passive immunization to reduce Campylobacter jejuni colonization and transmission in broiler chickens

    PubMed Central

    2014-01-01

    Campylobacter jejuni is the most common cause of bacterium-mediated diarrheal disease in humans worldwide. Poultry products are considered the most important source of C. jejuni infections in humans but to date no effective strategy exists to eradicate this zoonotic pathogen from poultry production. Here, the potential use of passive immunization to reduce Campylobacter colonization in broiler chicks was examined. For this purpose, laying hens were immunized with either a whole-cell lysate or the hydrophobic protein fraction of C. jejuni and their eggs were collected. In vitro tests validated the induction of specific ImmunoglobulinY (IgY) against C. jejuni in the immunized hens’ egg yolks, in particular. In seeder experiments, preventive administration of hyperimmune egg yolk significantly (P < 0.01) reduced bacterial counts of seeder animals three days after oral inoculation with approximately 104 cfu C. jejuni, compared with control birds. Moreover, transmission to non-seeder birds was dramatically reduced (hydrophobic protein fraction) or even completely prevented (whole-cell lysate). Purified IgY promoted bacterial binding to chicken intestinal mucus, suggesting enhanced mucosal clearance in vivo. Western blot analysis in combination with mass spectrometry after two-dimensional gel-electrophoresis revealed immunodominant antigens of C. jejuni that are involved in a variety of cell functions, including chemotaxis and adhesion. Some of these (AtpA, EF-Tu, GroEL and CtpA) are highly conserved proteins and could be promising targets for the development of subunit vaccines. PMID:24589217

  12. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection.

    PubMed

    Meadows, Danielle N; Bahous, Renata H; Best, Ana F; Rozen, Rima

    2015-01-01

    Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host's immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.

  13. Reduced oligomeric and vascular amyloid-beta following immunization of TgCRND8 mice with an Alzheimer's DNA vaccine.

    PubMed

    DaSilva, Kevin A; Brown, Mary E; McLaurin, JoAnne

    2009-02-25

    Immunization with amyloid-beta (Abeta) peptide reduces amyloid load in animal studies and in humans; however clinical trials resulted in the development of a pro-inflammatory cellular response to Abeta. Apoptosis has been employed to stimulate humoral and Th2-biased cellular immune responses. Thus, we sought to investigate whether immunization using a DNA vaccine encoding Abeta in conjunction with an attenuated caspase generates therapeutically effective antibodies. Plasmids encoding Abeta and an attenuated caspase were less effective in reducing amyloid pathology than those encoding Abeta alone. Moreover, use of Abeta with an Arctic mutation (E22G) as an immunogen was less effective than wild-type Abeta in terms of improvements in pathology. Low levels of IgG and IgM were generated in response to immunization with a plasmid encoding wild-type Abeta. These antibodies decreased plaque load by as much as 36+/-8% and insoluble Abeta42 levels by 56+/-3%. Clearance of Abeta was most effective when antibodies were directed against N-terminal epitopes of Abeta. Moreover, immunization reduced CAA by as much as 69+/-12% in TgCRND8 mice. Finally, high-molecular-weight oligomers and Abeta trimers were significantly reduced with immunization. Thus, immunization with a plasmid encoding Abeta alone drives an attenuated immune response that is sufficient to clear amyloid pathology in a mouse model of Alzheimer's disease.

  14. Altered Biomarkers of Mucosal Immunity and Reduced Vaginal Lactobacillus Concentrations in Sexually Active Female Adolescents

    PubMed Central

    Madan, Rebecca Pellett; Carpenter, Colleen; Fiedler, Tina; Kalyoussef, Sabah; McAndrew, Thomas C.; Viswanathan, Shankar; Kim, Mimi; Keller, Marla J.; Fredricks, David N.; Herold, Betsy C.

    2012-01-01

    Background Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. Methodology/Principal Findings Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15–18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. Conclusions/Significance Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females. PMID:22808157

  15. Vitamin A supplementation reduces the monocyte chemoattractant protein-1 intestinal immune response of Mexican children.

    PubMed

    Long, Kurt Z; Santos, Jose Ignacio; Estrada Garcia, Teresa; Haas, Meredith; Firestone, Mathew; Bhagwat, Jui; Dupont, Herbert L; Hertzmark, Ellen; Rosado, Jorge L; Nanthakumar, Nanda N

    2006-10-01

    The impact of vitamin A supplementation on childhood diarrhea may be determined by the regulatory effect supplementation has on the mucosal immune response in the gut. Previous studies have not addressed the impact of vitamin A supplementation on the production of monocyte chemoattractant protein 1 (MCP-1), an essential chemokine involved in pathogen-specific mucosal immune response. Fecal MCP-1 concentrations, determined by an enzyme-linked immuno absorption assay, were compared among 127 Mexican children 5-15 mo of age randomized to receive a vitamin A supplement (<12 mo of age, 20,000 IU of retinol; > or =12 mo, 45,000 iu) every 2 mo or a placebo as part of a larger vitamin A supplementation trial. Stools collected during the summer months were screened for MCP-1 and gastrointestinal pathogens. Values of MCP-1 were categorized into 3 levels (nondetectable, or =median). Multinomial logistic regression models were used to determine whether vitamin A-supplemented children had different categorical values of MCP-1 compared with children in the placebo group. Differences in categorical values were also analyzed stratified by gastrointestinal pathogen infections and by diarrheal symptoms. Overall, children who received the vitamin A supplement had reduced fecal concentrations of MCP-1 compared with children in the placebo group (median pg/mg protein +/- interquartile range: 284.88 +/- 885.35 vs. 403.39 +/- 913.16; odds ratio 0.64, 95% CI 0.42-97, P = 0.03). Vitamin A supplemented children infected with enteropathogenic Escherichia coli (EPEC) had reduced MCP-1 levels (odds ratio = 0.38, 95% CI 0.18-0.80) compared with children in the placebo group. Among children not infected with Ascaris lumbricoides vitamin A supplemented children had reduced MCP-1 levels (OR = 0.62, 95% CI 0.41-0.94). These findings suggest that vitamin A has an anti-inflammatory effect in the gastrointestinal tract by reducing MCP-1 concentrations.

  16. Immunization

    MedlinePlus

    ... remembers" the germ and can fight it again. Vaccines contain germs that have been killed or weakened. When given to a healthy person, the vaccine triggers the immune system to respond and thus ...

  17. Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab.

    PubMed

    Burnett, Louis E; Holman, Jeremy D; Jorgensen, Darwin D; Ikerd, Jennifer L; Burnett, Karen G

    2006-08-01

    Crustacean gills function in gas exchange, ion transport, and immune defense against microbial pathogens. Hemocyte aggregates that form in response to microbial pathogens become trapped in the fine vasculature of the gill, leading to the suggestion by others that respiration and ion regulation might by impaired during the course of an immune response. In the present study, injection of the pathogenic bacterium Vibrio campbellii into Callinectes sapidus, the Atlantic blue crab, caused a dramatic decline in oxygen uptake from 4.53 to 2.56 micromol g-1 h-1. This decline in oxygen uptake is associated with a large decrease in postbranchial PO2, from 16.2 (+/-0.46 SEM, n=7) to 13.1 kPa (+/-0.77 SEM, n=9), while prebranchial PO2 remains unchanged. In addition, injection of Vibrio results in the disappearance of a pH change across the gills, an indication of reduced CO2 excretion. The hemolymph hydrostatic pressure change across the gill circulation increases nearly 2-fold in Vibrio-injected crabs compared with a negligible change in pressure across the gill circulation in saline-injected, control crabs. This change, in combination with stability of heart rate and branchial chamber pressure, is indicative of a significant increase in vascular resistance across the gills that is induced by hemocyte nodule formation. A healthy, active blue crab can eliminate most invading bacteria, but the respiratory function of the gills is impaired. Thus, when blue crabs are engaged in the immune response, they are less equipped to engage in oxygen-fueled activities such as predator avoidance, prey capture, and migration. Furthermore, crabs are less fit to invade environments that are hypoxic.

  18. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  19. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    PubMed Central

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  20. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant.

    PubMed

    Monaris, D; Sbrogio-Almeida, M E; Dib, C C; Canhamero, T A; Souza, G O; Vasconcellos, S A; Ferreira, L C S; Abreu, P A E

    2015-08-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigA(C)) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigA(C), either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigA(C) or LigA(C) coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen.

  1. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain

    PubMed Central

    Xie, Wenrui; Chen, Sisi; Strong, Judith A.; Li, Ai-Ling; Lewkowich, Ian P.

    2016-01-01

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a “microsympathectomy” by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal

  2. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees.

    PubMed

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee's susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.

  3. Progesterone-based contraceptives reduce adaptive immune responses and protection against sequential influenza A virus infections.

    PubMed

    Hall, Olivia J; Nachbagauer, Raffael; Vermillion, Meghan S; Fink, Ashley L; Phuong, Vanessa; Krammer, Florian; Klein, Sabra L

    2017-02-08

    In addition to their intended use, progesterone (P4)-based contraceptives promote anti-inflammatory immune responses, yet their effects on the outcome of infectious diseases, including influenza A virus (IAV), are rarely evaluated. To evaluate their impact on immune responses to sequential IAV infections, adult female mice were treated with placebo or one of two progestins, P4 or levonorgestrel (LNG), and infected with mouse adapted (ma) H1N1 virus. Treatment with P4 or LNG reduced morbidity, but had no effect on pulmonary virus titers, during primary H1N1 infection as compared to placebo treatment. In serum and bronchoalveolar lavage fluid, total anti-IAV IgG and IgA titers and virus neutralizing antibody titers, but not hemagglutinin stalk antibody titers, were lower in progestin-treated mice as compared with placebo-treated mice. Females were challenged six weeks later with either a maH1N1 drift variant (maH1N1dv) or maH3N2 IAV. Protection following infection with the maH1N1dv was similar among all groups. In contrast, following challenge with maH3N2, progestin treatment reduced survival as well as numbers and activity of H1N1- and H3N2-specific memory CD8+ T cells, including tissue resident cells, compared with placebo treatment. In contrast to primary IAV infection, progestin treatment increased neutralizing and IgG antibody titers against both challenge viruses compared with placebo treatment. While the immunomodulatory properties of progestins protected naïve females against severe outcome from IAV infection, it made them more susceptible to secondary challenge with a heterologous IAV, despite improving their antibody responses against a secondary IAV infection. Taken together, the immunomodulatory effects of progestins differentially regulate the outcome of infection depending on exposure history.IMPORTANCE The impact of hormone-based contraceptives on the outcome of infectious diseases outside of the reproductive tract is rarely considered. Using a mouse

  4. Reduced PICD in Monocytes Mounts Altered Neonate Immune Response to Candida albicans

    PubMed Central

    Dreschers, Stephan; Saupp, Peter; Hornef, Mathias; Prehn, Andrea; Platen, Christopher; Morschhäuser, Joachim; Orlikowsky, Thorsten W.

    2016-01-01

    Background Invasive fungal infections with Candida albicans (C. albicans) occur frequently in extremely low birthweight (ELBW) infants and are associated with poor outcome. Phagocytosis of C.albicans initializes apoptosis in monocytes (phagocytosis induced cell death, PICD). PICD is reduced in neonatal cord blood monocytes (CBMO). Hypothesis Phagocytosis of C. albicans causes PICD which differs between neonatal monocytes (CBMO) and adult peripheral blood monocytes (PBMO) due to lower stimulation of TLR-mediated immune responses. Methods The ability to phagocytose C. albicans, expression of TLRs, the induction of apoptosis (assessment of sub-G1 and nick-strand breaks) were analyzed by FACS. TLR signalling was induced by agonists such as lipopolysaccharide (LPS), Pam3Cys, FSL-1 and Zymosan and blocked (neutralizing TLR2 antibodies and MYD88 inhibitor). Results Phagocytic indices of PBMO and CBMO were similar. Following stimulation with agonists and C. albicans induced up-regulation of TLR2 and consecutive phosphorylation of MAP kinase P38 and expression of TNF-α, which were stronger on PBMO compared to CBMO (p < 0.005). Downstream, TLR2 signalling initiated caspase-3-dependent PICD which was found reduced in CBMO (p < 0.05 vs PBMO). Conclusion Our data suggest direct involvement of TLR2-signalling in C. albicans-induced PICD in monocytes and an alteration of this pathway in CBMO. PMID:27870876

  5. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  6. Inosine-Containing RNA Is a Novel Innate Immune Recognition Element and Reduces RSV Infection

    PubMed Central

    Liao, Jie-ying; Thakur, Sheetal A.; Zalinger, Zachary B.; Gerrish, Kevin E.; Imani, Farhad

    2011-01-01

    During viral infections, single- and double-stranded RNA (ssRNA and dsRNA) are recognized by the host and induce innate immune responses. The cellular enzyme ADAR-1 (adenosine deaminase acting on RNA-1) activation in virally infected cells leads to presence of inosine-containing RNA (Ino-RNA). Here we report that ss-Ino-RNA is a novel viral recognition element. We synthesized unmodified ssRNA and ssRNA that had 6% to16% inosine residues. The results showed that in primary human cells, or in mice, 10% ss-Ino-RNA rapidly and potently induced a significant increase in inflammatory cytokines, such as interferon (IFN)-β (35 fold), tumor necrosis factor (TNF)-α (9.7 fold), and interleukin (IL)-6 (11.3 fold) (p<0.01). Flow cytometry data revealed a corresponding 4-fold increase in influx of neutrophils into the lungs by ss-Ino-RNA treatment. In our in vitro experiments, treatment of epithelial cells with ss-Ino-RNA reduced replication of respiratory syncytial virus (RSV). Interestingly, RNA structural analysis showed that ss-Ino-RNA had increased formation of secondary structures. Our data further revealed that extracellular ss-Ino-RNA was taken up by scavenger receptor class-A (SR-A) which activated downstream MAP Kinase pathways through Toll-like receptor 3 (TLR3) and dsRNA-activated protein kinase (PKR). Our data suggests that ss-Ino-RNA is an as yet undescribed virus-associated innate immune stimulus. PMID:22028885

  7. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets

    PubMed Central

    Nachbagauer, Raffael; Miller, Matthew S.; Hai, Rong; Ryder, Alex B.; Rose, John K.; Palese, Peter; García-Sastre, Adolfo

    2015-01-01

    We assessed whether influenza virus hemagglutinin stalk-based immunity protects ferrets against aerosol-transmitted H1N1 influenza virus infection. Immunization of ferrets by a universal influenza virus vaccine strategy based on viral vectors expressing chimeric hemagglutinin constructs induced stalk-specific antibody responses. Stalk-immunized ferrets were cohoused with H1N1-infected ferrets under conditions that permitted virus transmission. Hemagglutinin stalk-immunized ferrets had lower viral titers and delayed or no virus replication at all following natural exposure to influenza virus. PMID:26719251

  8. Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis.

    PubMed

    Lee, Sung Hyen; Lillehoj, Hyun S; Jang, Seung I; Lee, Kyung Woo; Park, Myeong Seon; Bravo, David; Lillehoj, Erik P

    2011-09-01

    The effects of cinnamaldehyde (CINN) on in vitro parameters of immunity and in vivo protection against avian coccidiosis were evaluated. In vitro stimulation of chicken spleen lymphocytes with CINN (25-400 ng/ml) induced greater cell proliferation compared with the medium control (P < 0·001). CINN activated cultured macrophages to produce higher levels of NO at 1·2-5·0 μg/ml (P < 0·001), inhibited the growth of chicken tumour cells at 0·6-2·5 μg/ml (P < 0·001) and reduced the viability of Eimeria tenella parasites at 10 and 100 μg/ml (P < 0·05 and P < 0·001, respectively), compared with media controls. In chickens fed a diet supplemented with CINN at 14·4 mg/kg, the levels of IL-1β, IL-6, IL-15 and interferon-γ transcripts in intestinal lymphocytes were 2- to 47-fold higher (P < 0·001) compared with chickens given a non-supplemented diet. To determine the effect of CINN diets on avian coccidiosis, chickens were fed diets supplemented with CINN at 14·4 mg/kg (E. maxima or E. tenella) or 125 mg/kg (E. acervulina) from hatch for 24 d, and orally infected with 2·0 × 10(4) sporulated oocysts at age 14 d. CINN-fed chickens showed 16·5 and 41·6 % increased body-weight gains between 0-9 d post-infection (DPI) with E. acervulina or E. maxima, reduced E. acervulina oocyst shedding between 5-9 DPI and increased E. tenella-stimulated parasite antibody responses at 9 DPI compared with controls.

  9. Increased colostral somatic cell counts reduce pre-weaning calf immunity, health and growth.

    PubMed

    Ferdowsi Nia, E; Nikkhah, A; Rahmani, H R; Alikhani, M; Mohammad Alipour, M; Ghorbani, G R

    2010-10-01

    Our objective was to study the relationships between colostral somatic cell counts (SCC, a criterion for mastitis severity at parturition) and early calf growth, blood indicators of immunity, and pre-weaning faecal and health states. Sixty-nine Holstein cows were assigned to three groups of greater (n = 21, 5051 × 10(3)), medium (n = 38, 2138 × 10(3)) and lower (n = 10, 960 × 10(3)) colostral SCC (per ml) in a completely randomized design. Calves received 2 l of colostrum on day 1, and jugular blood was sampled at birth, at 3 h after the first colostrum feeding and at 42 days of age for immunoglobulin G (IgG) measurements. Calves were fed transition milk from their dams until 3 days of age and whole milk from 4 to 60 days of age twice daily at 10% of body weight. Health status and faecal physical scores were recorded daily for 42 days. Increased colostral SCC was associated with increased serum IgG at parturition. Colostral pH increased and fat percentage decreased linearly with the rising SCC. Feeding colostrum with greater SCC was associated with reduced serum IgG concentrations at 3 h after first colostrum feeding, greater incidences of diarrhoea and compromised health status during the first 42 days of age, and reduced weaning weight gain, but had no effects on calf body length and withers height. Colostral volume and percentages of protein, lactose, solids-non-fat, total solids and IgG were comparable among groups. Results suggest a role for SCC, as an indicator of mastitis and colostral health quality, in affecting calf health. As a result of the novelty of calf health dependence on colostral SCC found, future studies to further characterize such relationships and to uncover or rule out possible mediators are required before colostral SCC could be recommended for routine on-farm use in managing dry cow and calf production.

  10. Experimentally activated immune defence in female pied flycatchers results in reduced breeding success.

    PubMed

    Ilmonen, P; Taarna, T; Hasselquist, D

    2000-04-07

    Traditional explanations for the negative fitness consequences of parasitism have focused on the direct pathogenic effects of infectious agents. However, because of the high selection pressure by the parasites, immune defences are likely to be costly and trade off with other fitness-related traits, such as reproductive effort. In a field experiment, we immunized breeding female flycatchers with non-pathogenic antigens (diphtheria-tetanus vaccine), which excluded the direct negative effects of parasites, in order to test the consequences of activated immune defence on hosts' investment in reproduction and self-maintenance. Immunized females decreased their feeding effort and investment in self-maintenance (rectrix regrowth) and had lower reproductive output (fledgling quality and number) than control females injected with saline. Our results reveal the phenotypic cost of immune defence by showing that an activated immune system per se can lower the host's breeding success. This may be caused by an energetic or nutritional trade-off between immune function and physical workload when feeding young or be an adaptive response to 'infection' to avoid physiological disorders such as oxidative stress and immunopathology.

  11. Reproductive state, but not testosterone, reduces immune function in male house sparrows (Passer domesticus).

    PubMed

    Greenman, Chris G; Martin, Lynn B; Hau, Michaela

    2005-01-01

    The immune system requires energetic and nutritional resources to optimally defend organisms against pathogens and parasites. Because resources are typically limited, immune function may require a trade-off with other physiologically demanding activities. Here, we examined whether photoperiodically induced seasonal states (breeding, molting, or nonbreeding) affected the cutaneous immune response of captive male house sparrows (Passer domesticus). To assess immune function in these birds, we injected the mitogen phytohemagglutinin (PHA) into the patagium and measured the resulting wing web swelling. Molting and nonbreeding birds had similar immune responses to PHA injection. However, males in a breeding state showed lower immune responses than both molting and nonbreeding birds even though they did not actually breed. We tested whether this decrease in the PHA swelling response in birds in a breeding state was due to elevated plasma concentrations of testosterone (T) by administering T to birds in a nonbreeding state. Contrary to some evidence in the literature, T did not suppress the response to PHA in house sparrows. Our data show that passerine birds show seasonal modulation in immune function, even in benign environmental conditions. However, even though T is often cited as a strong immunosuppressant, it is not fully responsible for this seasonal modulation.

  12. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees

    PubMed Central

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358

  13. Oral tungstate (Na2WO4) exposure reduces adaptive immune responses in mice after challenge.

    PubMed

    Osterburg, Andrew R; Robinson, Chad T; Mokashi, Vishwesh; Stockelman, Michael; Schwemberger, Sandy J; Chapman, Gail; Babcock, George F

    2014-01-01

    Tungstate (WO²⁻₄) has been identified as a ground water contaminant at military firing ranges and can be absorbed by ingestion. In this study, C57BL6 mice were exposed to sodium tungstate (Na2WO4·2H2O) (0, 2, 62.5, 125, and 200 mg/kg/day) in their drinking water for an initial 28-day screen and in a one-generation (one-gen) model. Twenty-four hours prior to euthanasia, mice were intraperitoneally injected with Staphylococcal enterotoxin B (SEB) (20 μg/mouse) or saline as controls. After euthanasia, splenocytes and blood were collected and stained with lymphocyte and/or myeloid immunophenotyping panels and analyzed by flow cytometry. In the 28-day and one-gen exposure, statistically significant reductions were observed in the quantities of activated cytotoxic T-cells (TCTL; CD3(+)CD8(+)CD71(+)) and helper T-cells (TH; CD3(+)CD4(+)CD71(+)) from spleens of SEB-treated mice. In the 28-day exposures, CD71(+) TCTL cells were 12.87 ± 2.05% (SE) in the 0 tungstate (control) group compared to 4.44 ± 1.42% in the 200 mg/kg/day (p < 0.001) group. TH cells were 4.85 ± 1.23% in controls and 2.76 ± 0.51% in the 200 mg/kg/day (p < 0.003) group. In the one-gen exposures, TCTL cells were 7.98 ± 0.49% and 6.33 ± 0.49% for P and F1 mice after 0 mg/kg/day tungstate vs 1.58 ± 0.23% and 2.52 ± 0.25% after 200 mg/kg/day of tungstate (p < 0.001). Similarly, TH cells were reduced to 6.21 ± 0.39% and 7.20 ± 0.76%, respectively, for the 0 mg/kg/day P and F1 mice, and 2.28 ± 0.41% and 2.85 ± 0.53%, respectively, for the 200 mg/kg/day tungstate P and F1 groups (p < 0.001). In delayed-type hypersensitivity Type IV experiments, tungstate exposure prior to primary and secondary antigen challenge significantly reduced footpad swelling at 20 and 200 mg/kg/day. These data indicate that exposure to tungstate can result in immune suppression that may, in turn, reduce host defense against

  14. Ebola Virus Makona Shows Reduced Lethality in an Immune-deficient Mouse Model.

    PubMed

    Smither, Sophie J; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn; Phelps, Amanda; Steward, Jackie; Lever, Mark Stephen

    2016-10-15

    Ebola virus Makona (EBOV-Makona; from the 2013-2016 West Africa outbreak) shows decreased virulence in an immune-deficient mouse model, compared with a strain from 1976. Unlike other filoviruses tested, EBOV-Makona may be slightly more virulent by the aerosol route than by the injected route, as 2 mice died following aerosol exposure, compared with no mortality among mice that received intraperitoneal injection of equivalent or higher doses. Although most mice did not succumb to infection, the detection of an immunoglobulin G antibody response along with observed clinical signs suggest that the mice were infected but able to clear the infection and recover. We hypothesize that this may be due to the growth rates and kinetics of the virus, which appear slower than that for other filoviruses and consequently give more time for an immune response that results in clearance of the virus. In this instance, the immune-deficient mouse model is unlikely to be appropriate for testing medical countermeasures against this EBOV-Makona stock but may provide insight into pathogenesis and the immune response to virus.

  15. Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens.

    PubMed

    Swaggerty, Christina L; Pevzner, Igal Y; He, Haiqi; Genovese, Kenneth J; Nisbet, David J; Kaiser, Pete; Kogut, Michael H

    2009-09-01

    Economic pressure on the modern poultry industry has directed the selection process towards fast-growing broilers that have a reduced feed conversion ratio. Selection based heavily on growth characteristics could adversely affect immune competence leaving chickens more susceptible to disease. Since the innate immune response directs the acquired immune response, efforts to select poultry with an efficient innate immune response would be beneficial. Our laboratories have been evaluating the innate immune system of two parental broiler lines to assess their capacity to protect against multiple infections. We have shown increased in vitro heterophil function corresponds with increased in vivo resistance to Gram-positive and Gram-negative bacterial infections. Additionally, there are increased mRNA expression levels of pro-inflammatory cytokines/chemokines in heterophils isolated from resistant lines compared to susceptible lines. Collectively, all data indicate there are measurable differences in innate responsiveness under genetic control. Recently, a small-scale selection trial was begun. We identified sires within a broiler population with higher and/or lower-than-average pro-inflammatory cytokine/chemokine mRNA expression levels and subsequently utilized small numbers of high-expressing and low-expressing sires to produce progeny with increased or decreased, respectively, pro-inflammatory cytokine/chemokine profiles. This novel approach should allow us to improve breeding stock by improving the overall immunological responsiveness. This will produce a line of chickens with an effective pro-inflammatory innate immune response that should improve resistance against diverse pathogens, improve responses to vaccines, and increase livability. Ongoing work from this project is providing fundamental information for the development of poultry lines that will be inherently resistant to colonization by pathogenic and food-poisoning microorganisms. Utilization of pathogen

  16. Managing population immunity to reduce or eliminate the risks of circulation following the importation of polioviruses.

    PubMed

    Thompson, Kimberly M; Kalkowska, Dominika A; Duintjer Tebbens, Radboud J

    2015-03-24

    Poliovirus importations into polio-free countries represent a major concern during the final phases of global eradication of wild polioviruses (WPVs). We extend dynamic transmission models to demonstrate the dynamics of population immunity out through 2020 for three countries that only used inactivated poliovirus vaccine (IPV) for routine immunization: the US, Israel, and The Netherlands. For each country, we explore the vulnerability to re-established transmission following an importation for each poliovirus serotype, including the impact of immunization choices following the serotype 1 WPV importation that occurred in 2013 in Israel. As population immunity declines below the threshold required to prevent transmission, countries become at risk for re-established transmission. Although importations represent stochastic events that countries cannot fully control because people cross borders and polioviruses mainly cause asymptomatic infections, countries can ensure that any importations die out. Our results suggest that the general US population will remain above the threshold for transmission through 2020. In contrast, Israel became vulnerable to re-established transmission of importations of live polioviruses by the late 2000s. In Israel, the recent WPV importation and outbreak response use of bivalent oral poliovirus vaccine (bOPV) eliminated the vulnerability to an importation of poliovirus serotypes 1 and 3 for several years, but not serotype 2. The Netherlands experienced a serotype 1 WPV outbreak in 1992-1993 and became vulnerable to re-established transmission in religious communities with low vaccine acceptance around the year 2000, although the general population remains well-protected from widespread transmission. All countries should invest in active management of population immunity to avoid the potential circulation of imported live polioviruses. IPV-using countries may wish to consider prevention opportunities and/or ensure preparedness for response

  17. Prevalence of Plasmodium falciparum transmission reducing immunity among primary school children in a malaria moderate transmission region in Zimbabwe.

    PubMed

    Paul, Noah H; Vengesai, Arthur; Mduluza, Takafira; Chipeta, James; Midzi, Nicholas; Bansal, Geetha P; Kumar, Nirbhay

    2016-11-01

    Malaria continues to cause alarming morbidity and mortality in more than 100 countries worldwide. Antigens in the various life cycle stages of malaria parasites are presented to the immune system during natural infection and it is widely recognized that after repeated malaria exposure, adults develop partially protective immunity. Specific antigens of natural immunity represent among the most important targets for the development of malaria vaccines. Immunity against the transmission stages of the malaria parasite represents an important approach to reduce malaria transmission and is believed to become an important tool for gradual elimination of malaria. Development of immunity against Plasmodium falciparum sexual stages was evaluated in primary school children aged 6-16 years in Makoni district of Zimbabwe, an area of low to modest malaria transmission. Malaria infection was screened by microscopy, rapid diagnostic tests and finally using nested PCR. Plasma samples were tested for antibodies against recombinant Pfs48/45 and Pfs47 by ELISA. Corresponding serum samples were used to test for P. falciparum transmission reducing activity in Anopheles stephensi and An. gambiae mosquitoes using the membrane feeding assay. The prevalence of malaria diagnosed by rapid diagnostic test kit (Paracheck)™ was 1.7%. However, of the randomly tested blood samples, 66% were positive by nested PCR. ELISA revealed prevalence (64% positivity at 1:500 dilution, in randomly selected 66 plasma samples) of antibodies against recombinant Pfs48/45 (mean A 405nm=0.53, CI=0.46-0.60) and Pfs47 (mean A405nm=0.91, CI=0.80-1.02); antigens specific to the sexual stages. The mosquito membrane feeding assay demonstrated measurable transmission reducing ability of the samples that were positive for Pfs48/45 antibodies by ELISA. Interestingly, 3 plasma samples revealed enhancement of infectivity of P. falciparum in An. stephensi mosquitoes. These studies revealed the presence of antibodies with

  18. Adaptive immune response in JAM-C-deficient mice: normal initiation but reduced IgG memory.

    PubMed

    Zimmerli, Claudia; Lee, Boris P L; Palmer, Gaby; Gabay, Cem; Adams, Ralf; Aurrand-Lions, Michel; Imhof, Beat A

    2009-04-15

    We have recently shown that junctional adhesion molecule (JAM)-C-deficient mice have leukocytic pulmonary infiltrates, disturbed neutrophil homeostasis, and increased postnatal mortality. This phenotype was partially rescued when mice were housed in ventilated isolators, suggesting an inability to cope with opportunistic infections. In the present study, we further examined the adaptive immune responses in JAM-C(-/-) mice. We found that murine conventional dendritic cells express in addition to Mac-1 and CD11c also JAM-B as ligand for JAM-C. By in vitro adhesion assay, we show that murine DCs can interact with recombinant JAM-C via Mac-1. However, this interaction does not seem to be necessary for dendritic cell migration and function in vivo, even though JAM-C is highly expressed by lymphatic sinuses of lymph nodes. Nevertheless, upon immunization and boosting with a protein Ag, JAM-C-deficient mice showed decreased persistence of specific circulating Abs although the initial response was normal. Such a phenotype has also been observed in a model of Ag-induced arthritis, showing that specific IgG2a Ab titers are reduced in the serum of JAM-C(-/-) compared with wild-type mice. Taken together, these data suggest that JAM-C deficiency affects the adaptive humoral immune response against pathogens, in addition to the innate immune system.

  19. Fluoride reduced the immune privileged function of mouse Sertoli cells via the regulation of Fas/FasL system.

    PubMed

    Sun, Zilong; Nie, Qingli; Zhang, Lianjie; Niu, Ruiyan; Wang, Jundong; Wang, Shaolin

    2017-02-01

    Previous investigations have demonstrated the adverse impacts of fluoride on Sertoli cells (SCs), such as oxidative stress and apoptosis. SCs are the crucial cellular components that can create the immune privileged environment in testis. However, the effect of fluoride on SCs immune privilege is unknown. In this study, mouse SCs were exposed to sodium fluoride with varying concentrations of 10(-5), 10(-4), and 10(-3) mol/L to establish the model of fluoride-treated SCs (F-SCs) in vitro. After 48 h of incubation, F-SCs were transplanted underneath the kidney capsule of mice for 21 days, or cocultured with spleen lymphocytes for another 48 h. Immunohistochemical analysis of GATA4 in SCs grafts underneath kidney capsule presented less SCs distribution and obvious immune cell infiltration in F-SCs groups. In addition, the levels of FasL protein and mRNA in non-cocultured F-SCs decreased with the increase of fluoride concentration. When cocultured with F-SCs, lymphocytes presented significantly high cell viability and low apoptosis in F-SCs groups. Protein and mRNA expressions of FasL in cocultured F-SCs and Fas in lymphocytes were reduced, and the caspase 8 and caspase 3 mRNA levels were also decreased in fluoride groups in a dose-dependent manner. These findings indicated that fluoride influenced the testicular immune privilege through disturbing the Fas/FasL system.

  20. Functions of innate and acquired immune system are reduced in domestic pigeons (Columba livia domestica) given a low protein diet

    PubMed Central

    Mabuchi, Yuko; Frankel, Theresa L.

    2016-01-01

    Racing pigeons are exposed to and act as carriers of diseases. Dietary protein requirement for their maintenance has not been determined experimentally despite their being domesticated for over 7000 years. A maintenance nitrogen (protein) requirement (MNR) for pigeons was determined in a balance study using diets containing 6, 10 and 14% crude protein (CP). Then, the effects of feeding the diets were investigated to determine whether they were adequate to sustain innate and acquired immune functions. Nitrogen intake from the 6% CP diet was sufficient to maintain nitrogen balance and body weight in pigeons. However, the immune functions of phagocytosis, oxidative burst and lymphocyte proliferation in pigeons fed this diet were reduced compared with those fed 10 and 14% CP diets. Pigeons given the 6 and 10% CP diets had lower antibody titres following inoculation against Newcastle disease (ND) than those on the 14% CP diet. A confounding factor found on autopsy was the presence of intestinal parasites in some of the pigeons given the 6 and 10% CP diets; however, none of the pigeons used to measure MNR or acquired immunity to ND were infested with parasites. In conclusion, neither the 6 nor 10% CP diets adequately sustained acquired immune function of pigeons. PMID:27069640

  1. Immune response to Plasmodium vivax has a potential to reduce malaria severity.

    PubMed

    Chuangchaiya, S; Jangpatarapongsa, K; Chootong, P; Sirichaisinthop, J; Sattabongkot, J; Pattanapanyasat, K; Chotivanich, K; Troye-Blomberg, M; Cui, L; Udomsangpetch, R

    2010-05-01

    Plasmodium falciparum infection causes transient immunosuppression during the parasitaemic stage. However, the immune response during simultaneous infections with both P. vivax and P. falciparum has been investigated rarely. In particular, it is not clear whether the host's immune response to malaria will be different when infected with a single or mixed malaria species. Phenotypes of T cells from mixed P. vivax-P. falciparum (PV-PF) infection were characterized by flow cytometry, and anti-malarial antibodies in the plasma were determined by an enzyme-linked immunosorbent assay. We found the percentage of CD3+delta2+-T cell receptor (TCR) T cells in the acute-mixed PV-PF infection and single P. vivax infection three times higher than in the single P. falciparum infection. This implied that P. vivax might lead to the host immune response to the production of effector T killer cells. During the parasitaemic stage, the mixed PV-PF infection had the highest number of plasma antibodies against both P. vivax and P. falciparum. Interestingly, plasma from the group of single P. vivax or P. falciparum malaria infections had both anti-P. vivax and anti-P. falciparum antibodies. In addition, antigenic cross-reactivity of P. vivax or P. falciparum resulting in antibodies against both malaria species was shown in the supernatant of lymphocyte cultures cross-stimulated with either antigen of P. vivax or P. falciparum. The role of delta2 +/- TCR T cells and the antibodies against both species during acute mixed malaria infection could have an impact on the immunity to malaria infection.

  2. Antiparasite treatments reduce humoral immunity and impact oxidative status in raptor nestlings

    PubMed Central

    Hanssen, Sveinn Are; Bustnes, Jan Ove; Schnug, Lisbeth; Bourgeon, Sophie; Johnsen, Trond Vidar; Ballesteros, Manuel; Sonne, Christian; Herzke, Dorte; Eulaers, Igor; Jaspers, Veerle L B; Covaci, Adrian; Eens, Marcel; Halley, Duncan J; Moum, Truls; Ims, Rolf Anker; Erikstad, Kjell Einar

    2013-01-01

    Parasites are natural stressors that may have multiple negative effects on their host as they usurp energy and nutrients and may lead to costly immune responses that may cause oxidative stress. At early stages, animals may be more sensitive to infectious organisms because of their rapid growth and partly immature immune system. The objective of this study was to explore effects of parasites by treating chicks of two raptor species (northern goshawk Accipiter gentilis and white-tailed sea eagle Haliaeetus albicilla) against both endoparasites (internal parasites) and ectoparasites (external parasites). Nests were either treated against ectoparasites by spraying with pyrethrin or left unsprayed as control nests. Within each nest, chicks were randomly orally treated with either an antihelminthic medication (fenbendazole) or sterile water as control treatment. We investigated treatment effects on plasma (1) total antioxidant capacity TAC (an index of nonenzymatic circulating antioxidant defenses), (2) total oxidant status TOS (a measure of plasmatic oxidants), and (3) immunoglobulin levels (a measure of humoral immune function). Treatment against ectoparasites led to a reduction in circulating immunoglobulin plasma levels in male chicks. TOS was higher when not receiving any parasite reduction treatment and when receiving both endo- and ectoparasitic reduction treatment compared with receiving only one treatment. TAC was higher in all treatment groups, when compared to controls. Despite the relatively low sample size, this experimental study suggests complex but similar relationships between treatment groups and oxidative status and immunoglobulin levels in two raptor species. PMID:24455145

  3. Reduced expression of selective immune-related genes in silver catfish (Rhamdia quelen) monocytes exposed to atrazine.

    PubMed

    Kirsten, Karina Schreiner; Canova, Raíssa; Soveral, Lucas de Figueiredo; Friedrich, Maria Tereza; Frandoloso, Rafael; Kreutz, Luiz Carlos

    2017-03-03

    The effect of atrazine (ATZ) and its metabolites on aquatic vertebrate species has been a matter of concern to researchers and environmentalist. In this study we exposed head kidney monocytes to sublethal concentrations of atrazine (1 and 10 μg/ml(-1)), corresponding to 1% and 10% of the LC50-96h, to evaluate the expression of immune-related genes central to immune stimulation. The mRNA levels of TNF-α, Mieloperoxidase and Mx genes were significantly reduced following 24 h exposure to both concentrations of ATZ. The mRNA levels of iRAK4 were reduced only at the higher ATZ concentration and the mRNA levels of IL-1β were not affected. The results reported here support our previous findings on the immunosuppressive effect of ATZ indicating its potential to interfere with the expression of immune-related genes, and strengthen the need to regulate ATZ usage aiming to preserve animal and human health.

  4. Immunization with recombinant Pb27 protein reduces the levels of pulmonary fibrosis caused by the inflammatory response against Paracoccidioides brasiliensis.

    PubMed

    Morais, Elis Araujo; Martins, Estefânia Mara do Nascimento; Boelone, Jankerle Neves; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-02-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis in which the host response to the infectious agent typically consists of a chronic granulomatous inflammatory process. This condition causes lesions that impair lung function and lead to chronic pulmonary insufficiency resulting from fibrosis development, which is a sequel and disabling feature of the disease. The rPb27 protein has been studied for prophylactic and therapeutic treatment against PCM. Previous studies from our laboratory have shown a protective effect of rPb27 against PCM. However, these studies have not determined whether rPb27 immunization prevents lung fibrosis. We therefore conducted this study to investigate fibrosis resulting from infection by Paracoccidioides brasiliensis in the lungs of animals immunized with rPb27. Animals were immunized with rPb27 and subsequently infected with a virulent strain of P. brasiliensis. Fungal load was evaluated by counting colony-forming units, and Masson's trichrome staining was performed to evaluate fibrosis at 30 and 90 days post-infection. The levels of CCR7, active caspase 3, collagen and cytokines were analyzed. At the two time intervals mentioned, the rPb27 group showed lower levels of fibrosis on histology and reduced levels of collagen and the chemokine receptor CCR7 in the lungs. CCR7 was detected at higher levels in the control groups that developed very high levels of pulmonary fibrosis. Additionally, the immunized groups showed high levels of active caspase 3, IFN-γ, TGF-β and IL-10 in the early phase of P. brasiliensis infection. Immunization with Pb27, in addition to its protective effect, was shown to prevent pulmonary fibrosis.

  5. Orthotopic bone transplantation in mice. III. Methods of reducing the immune response and their effect on healing

    SciTech Connect

    Kliman, M.; Halloran, P.F.; Lee, E.; Esses, S.; Fortner, P.; Langer, F.

    1981-01-01

    Various methods of reducing the immune response to allogeneic bone grafts, either by pretreating the graft or by immunosuppressing the recipient, were compared. Tibial grafts from B10.D2 mice, either untreated or pretreated in various ways, were transplanted into B10 recipients. The antibody response was followed and the extent of bone healing at 4 months was assessed. Pretreatment of the graft by X-irradiation, freezing, or by incubation in alloantisera (either anti-H-2 or anti-Ia) reduced or abolished the immunogenicity of the graft. Immunosuppression of the recipient with methotrexate or antilymphocyte serum (ALS) also greatly depressed the antibody response. But when healing was assessed, none of these treatments except ALS improved the delayed healing of the bone allografts. The reason for this failure was probably that X-irradiation, freezing, alloantiserum pretreatment, and methotrexate all interfered with bone healing directly, whereas ALS did not. We conclude that many methods will reduce the immune response to allogeneic bone, but that only ALS will improve the healing of the allogeneic bone. Furthermore, as a corollary to the observation that pretreatment with anti-Ia serum markedly reduced the immunogenicity of bone allografts, we conclude that much of the immunogenicity of bone allografts is attributable to a population of Ia-positive cells.

  6. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen

    PubMed Central

    Savage, Anna E.; Terrell, Kimberly A.; Gratwicke, Brian; Mattheus, Nichole M.; Augustine, Lauren; Fleischer, Robert C.

    2016-01-01

    The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1–15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29–55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations. PMID:27293759

  7. Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen.

    PubMed

    Savage, Anna E; Terrell, Kimberly A; Gratwicke, Brian; Mattheus, Nichole M; Augustine, Lauren; Fleischer, Robert C

    2016-01-01

    The relationship between amphibian immune function and disease susceptibility is of primary concern given current worldwide declines linked to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We experimentally infected lowland leopard frogs (Lithobates yavapaiensis) with Bd to test the hypothesis that infection causes physiological stress and stimulates humoral and cell-mediated immune function in the blood. We measured body mass, the ratio of circulating neutrophils to lymphocytes (a known indicator of physiological stress) and plasma bacterial killing ability (BKA; a measure of innate immune function). In early exposure (1-15 days post-infection), stress was elevated in Bd-positive vs. Bd-negative frogs, whereas other metrics were similar between the groups. At later stages (29-55 days post-infection), stress was increased in Bd-positive frogs with signs of chytridiomycosis compared with both Bd-positive frogs without disease signs and uninfected control frogs, which were similar to each other. Infection decreased growth during the same period, demonstrating that sustained resistance to Bd is energetically costly. Importantly, BKA was lower in Bd-positive frogs with disease than in those without signs of chytridiomycosis. However, neither group differed from Bd-negative control frogs. The low BKA values in dying frogs compared with infected individuals without disease signs suggests that complement activity might signify different immunogenetic backgrounds or gene-by-environment interactions between the host, Bd and abiotic factors. We conclude that protein complement activity might be a useful predictor of Bd susceptibility and might help to explain differential disease outcomes in natural amphibian populations.

  8. A reduced immunization scheme to obtain an experimental anti-Loxosceles laeta ("violinist spider") venom.

    PubMed

    de Roodt, Adolfo Rafael; Litwin, Silvana; Dokmetjian, José Christian; Vidal, Juan Carlos

    2002-08-01

    Bites by Loxosceles (L.) laeta spiders can produce severe envenomation in humans. The only specific treatment is the early administration of antivenom. The production of anti-Loxosceles antivenom is hampered by the extremely low venom yield by these spiders and by the difficulties in maintaining a large breeder of Loxosceles. We developed an experimental equinum L. laeta antivenom, using as immunogen venom glands homogenates from spiders captured in Argentina. Horses immunized with venom gland homogenate (1.0 mg total protein per horse) by the subcutaneous route were bled after completion of the immunization scheme. Plasma was fractionated by ammonium sulfate precipitation and treated with pepsin to obtain F(ab')2 fragments. The protein composition of the experimental antivenom was assessed by SDS-PAGE, and its immunochemical reactivity was compared with those of other anti-Loxosceles antivenoms available for therapeutic use in Argentina by ELISA and Western blot. The experimental, homologous anti-L. laeta antivenom appeared to be more efficient in neutralizing the lethal potency in mice and the necrotizing activity in rabbits than of the heterologous antivenom.

  9. Vitamin D Deficiency Reduces the Immune Response, Phagocytosis Rate, and Intracellular Killing Rate of Microglial Cells

    PubMed Central

    Onken, Marie Luise; Schütze, Sandra; Redlich, Sandra; Götz, Alexander; Hanisch, Uwe-Karsten; Bertsch, Thomas; Ribes, Sandra; Hanenberg, Andrea; Schneider, Simon; Bollheimer, Cornelius; Sieber, Cornel; Nau, Roland

    2014-01-01

    Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality and neurological sequelae. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Vitamin D has potent effects on human immunity, including induction of antimicrobial peptides (AMPs) and suppression of T-cell proliferation, but its influence on microglial cells is unknown. The purpose of the present study was to determine the effects of vitamin D deficiency on the phagocytosis rate, intracellular killing, and immune response of murine microglial cultures after stimulation with the Toll-like receptor (TLR) agonists tripalmitoyl-S-glyceryl-cysteine (TLR1/2), poly(I·C) (TLR3), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9). Upon stimulation with high concentrations of TLR agonists, the release of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was decreased in vitamin D-deficient compared to that in vitamin D-sufficient microglial cultures. Phagocytosis of E. coli K1 after stimulation of microglial cells with high concentrations of TLR3, -4, and -9 agonists and intracellular killing of E. coli K1 after stimulation with high concentrations of all TLR agonists were lower in vitamin D-deficient microglial cells than in the respective control cells. Our observations suggest that vitamin D deficiency may impair the resistance of the brain against bacterial infections. PMID:24686054

  10. Ionizing Radiation Selectively Reduces Skin Regulatory T Cells and Alters Immune Function

    PubMed Central

    Zhou, Yu; Ni, Houping; Balint, Klara; Sanzari, Jenine K.; Dentchev, Tzvete; Diffenderfer, Eric S.; Wilson, Jolaine M.; Cengel, Keith A.; Weissman, Drew

    2014-01-01

    The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth’s magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel. PMID:24959865

  11. [Pneumococcal vaccination: conjugated vaccine induces herd immunity and reduces antibiotic resistance].

    PubMed

    Pletz, M W; Maus, U; Hohlfeld, J M; Lode, H; Welte, T

    2008-02-01

    Pneumococcal infections (pneumonia, otitis media, sinusitis, meningitis) are common and usually involve toddlers and the elderly. Currently, two pneumococcal vaccines are in clinical use. The older vaccine consists of pure capsular polysaccharides from 23 pneumococcal serotypes and induces only a limited B-cell response because polysaccharides are poor antigens that stimulate mainly B-cells. In 2000, a vaccination program with a novel 7-valent pneumococcal conjugate vaccine was launched in the U.S. The conjugation of capsular polysaccharides with a highly immunogenic diphtheria toxoid protein induces both a T cell and B cell response that results in specific humoral and mucosal immunity. Since children are the main reservoir of pneumococci, the 7-valent conjugate vaccine seems to eradicate the respective pneumococcal serotypes within the population, as demonstrated by recent US data. Pronounced herd immunity resulted in a decrease in invasive pneumococcal diseases in vaccinees and non-vaccinees as well as in a reduction of antibiotic resistance rates. However, recent data suggest a replacement of vaccine-serotypes by non-vaccine serotypes, which conquer the ecological niche created by the vaccine. In order to encounter this problem a 13-valent conjugated vaccine is currently under development.

  12. Reducing the length of time between slaughter and the secondary gonadotropin-releasing factor immunization improves growth performance and clears boar taint compounds in male finishing pigs.

    PubMed

    Lealiifano, A K; Pluske, J R; Nicholls, R R; Dunshea, F R; Campbell, R G; Hennessy, D P; Miller, D W; Hansen, C F; Mullan, B P

    2011-09-01

    The objective of this study was to evaluate whether altering the timing of the secondary anti-gonadotropin-releasing factor (GnRF) immunization closer to slaughter in male finishing pigs would reduce the increase in P2 fat depth (6.5 cm from the midline over the last rib), while still limiting the incidence of boar taint. Entire male pigs are immunized against GnRF to reduce the concentration of testicular steroids that in turn limits the incidence of boar taint. Additionally, testicle measurements and color measurements were taken to examine whether they could be used to differentiate nonimmunized entire males from immunized male pigs. A total of 175 Large White × Landrace entire male pigs aged 16 wk (59 kg of BW) were used in a completely randomized design with 5 treatment groups based on the time that pigs received the secondary immunization before slaughter. Pigs were housed in groups of 7 and randomly allocated to 1 of 5 treatments with 5 replicates per treatment. The treatment groups were as follows: no secondary immunization before slaughter, and the secondary immunization given at 2, 3, 4, or 6 wk before slaughter. The P2 fat depth levels were reduced (P = 0.054) with the secondary immunization closer to slaughter (11.7, 11.3, 12.8, 12.6, and 13.7 mm for no secondary immunization, secondary immunization at 2, 3, 4, and 6 wk before slaughter, respectively). Androstenone concentration did not exceed the generally accepted industry sensory threshold of 1.0 µg/g of fat, and both androstenone concentration in the adipose tissue and testosterone concentrations in the blood were suppressed (P < 0.001) in all immunized pigs regardless of timing of the secondary immunization compared with pigs that did not receive the secondary immunization. Skatole concentration of all pigs in the experiment did not exceed the generally accepted industry sensory threshold of 0.2 µg/g. Testes weight was reduced (P < 0.001) with increased time between slaughter and the secondary

  13. The compatible solute ectoine reduces the exacerbating effect of environmental model particles on the immune response of the airways.

    PubMed

    Unfried, Klaus; Kroker, Matthias; Autengruber, Andrea; Gotić, Marijan; Sydlik, Ulrich

    2014-01-01

    Exposure of humans to particulate air pollution has been correlated with the incidence and aggravation of allergic airway diseases. In predisposed individuals, inhalation of environmental particles can lead to an exacerbation of immune responses. Previous studies demonstrated a beneficial effect of the compatible solute ectoine on lung inflammation in rats exposed to carbon nanoparticles (CNP) as a model of environmental particle exposure. In the current study we investigated the effect of such a treatment on airway inflammation in a mouse allergy model. Ectoine in nonsensitized animals significantly reduced the neutrophilic lung inflammation after CNP exposure. This effect was accompanied by a reduction of inflammatory factors in the bronchoalveolar lavage. Reduced IL-6 levels in the serum also indicate the effects of ectoine on systemic inflammation. In sensitized animals, an aggravation of the immune response was observed when animals were exposed to CNP prior to antigen provocation. The coadministration of ectoine together with the particles significantly reduced this exacerbation. The data indicate the role of neutrophilic lung inflammation in the exacerbation of allergic airway responses. Moreover, the data suggest to use ectoine as a preventive treatment to avoid the exacerbation of allergic airway responses induced by environmental air pollution.

  14. The Compatible Solute Ectoine Reduces the Exacerbating Effect of Environmental Model Particles on the Immune Response of the Airways

    PubMed Central

    Gotić, Marijan

    2014-01-01

    Exposure of humans to particulate air pollution has been correlated with the incidence and aggravation of allergic airway diseases. In predisposed individuals, inhalation of environmental particles can lead to an exacerbation of immune responses. Previous studies demonstrated a beneficial effect of the compatible solute ectoine on lung inflammation in rats exposed to carbon nanoparticles (CNP) as a model of environmental particle exposure. In the current study we investigated the effect of such a treatment on airway inflammation in a mouse allergy model. Ectoine in nonsensitized animals significantly reduced the neutrophilic lung inflammation after CNP exposure. This effect was accompanied by a reduction of inflammatory factors in the bronchoalveolar lavage. Reduced IL-6 levels in the serum also indicate the effects of ectoine on systemic inflammation. In sensitized animals, an aggravation of the immune response was observed when animals were exposed to CNP prior to antigen provocation. The coadministration of ectoine together with the particles significantly reduced this exacerbation. The data indicate the role of neutrophilic lung inflammation in the exacerbation of allergic airway responses. Moreover, the data suggest to use ectoine as a preventive treatment to avoid the exacerbation of allergic airway responses induced by environmental air pollution. PMID:24822073

  15. Soluble antigen profoundly reduces memory B-cell numbers even when given after challenge immunization.

    PubMed Central

    Nossal, G J; Karvelas, M; Pulendran, B

    1993-01-01

    The splenic B-cell repertoire of unimmunized C57BL/6 mice can be examined for anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) B cells of relatively high affinity by using a dual strategy. First, limiting numbers of splenocytes are polyclonally activated by Escherichia coli lipopolysaccharide and a mixture of interleukins 2, 4, and 5 in the presence of 3T3 filler cells, thus ensuring that many B-cell clones switch to IgG1 antibody production. Second, an enzyme-linked immunosorbent assay is geared to register only higher-affinity antibody by (i) detecting only bivalent IgG1 antibody and ignoring IgM and (ii) using a lowly substituted NP-conjugated protein as the capture layer. Naive spleens contain very few higher-affinity anti-NP B cells thus defined, but thymus (T)-dependent immunization causes the appearance of approximately 10(5) per spleen within 2 weeks. The development of these clonable anti-NP antibody-forming cell precursors can be virtually eliminated by a single injection of 1 mg of soluble, freshly deaggregated NP2-human serum albumin (HSA). This toleragen works not only if injected prior to challenge immunization, but even if given up to 6 days later. Soluble HSA works partially but not nearly as well as NP2-HSA, suggesting the possibility that the toleragen must act on T and B cells. NP conjugated to irrelevant carriers achieved partial tolerance in only one of four experiments. The studies demonstrate the need for continuing T-cell help throughout the process of memory B-cell generation. They also show that those recently activated T cells involved in this process can be silenced in vivo by soluble toleragen. PMID:8464928

  16. Interleukin-2/Anti-Interleukin-2 Immune Complex Expands Regulatory T Cells and Reduces Angiotensin II-Induced Aortic Stiffening

    PubMed Central

    Eberson, Lance S.; Secomb, Timothy W.; Larmonier, Nicolas; Larson, Douglas F.

    2014-01-01

    Adaptive immune function is implicated in the pathogenesis of vascular disease. Inhibition of T-lymphocyte function has been shown to reduce hypertension, target-organ damage, and vascular stiffness. To study the role of immune inhibitory cells, CD4+CD25+Foxp3+ regulatory T cells (Tregs), on vascular stiffness, we stimulated the proliferation of Treg lymphocytes in vivo using a novel cytokine immune complex of Interleukin-2 (IL-2) and anti-IL-2 monoclonal antibody clone JES6-1 (mAbCD25). Three-month-old male C57BL/6J mice were treated with IL-2/mAbCD25 concomitantly with continuous infusion of angiotensin type 1 receptor agonist, [Val5]angiotensin II. Our results indicate that the IL-2/mAbCD25 complex effectively induced Treg phenotype expansion by 5-fold in the spleens with minimal effects on total CD4+ and CD8+ T-lymphocyte numbers. The IL-2/mAbCD25 complex inhibited angiotensin II-mediated aortic collagen remodeling and the resulting stiffening, analyzed with in vivo pulse wave velocity and effective Young's modulus. Furthermore, the IL-2/mAbCD25 complex suppressed angiotensin II-mediated Th17 responses in the lymphoid organs and reduced gene expression of IL-17 as well as T cell and macrophage infiltrates in the aortic tissue. This study provides data that support the protective roles of Tregs in vascular stiffening and highlights the use of the IL-2/mAbCD25 complex as a new potential therapy in angiotensin II-related vascular diseases. PMID:25258681

  17. Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion?

    PubMed

    Soriano, Cyd; Mukaro, Violet; Hodge, Greg; Ahern, Jessica; Holmes, Mark; Jersmann, Hubertus; Moffat, David; Meredith, David; Jurisevic, Craig; Reynolds, Paul N; Hodge, Sandra

    2012-07-01

    Cytotoxic CD8(+) T-cells mount immune responses to cancer via cytotoxic pathways including granzyme B. Cancer cells are also known to develop immune evasion mechanisms. We hypothesised that lung cancer cells would over-express the granzyme B-inhibitor, proteinase inhibitor-9 (PI-9) and down-regulate granzyme B expression by neighbouring CD8(+) T-cells. We investigated PI-9 expression in lung cancer cell lines, and primary lung cancer cells obtained at curative lung resection from cancer patients with/without chronic obstructive pulmonary disease (COPD). Granzyme B and PI-9 expression was also determined in CD8(+) T-cells from the cancer and non-cancer areas of resected lung tissue and from bronchoalveolar lavage (BAL). We then evaluated the effects of conditioned media from lung cancer cell lines on granzyme B expression and the cytotoxic activity of CD8(+) T-cells. PI-9 was highly expressed in lung cancer cell lines. Increased PI-9 expression was also observed in primary cancer cells vs. epithelial cells from non-cancer tissue or bronchial brushing-derived normal primary large airway epithelial cells. Expression significantly correlated with cancer stage. Significantly reduced granzyme B was noted in CD8(+) T-cells from cancer vs. non-cancer tissue. Granzyme B production by CD8(+) T-cells was reduced in the presence of conditioned media from lung cancer cell lines. Our data suggest that lung cancer cells utilise their increased PI-9 expression to protect from granzyme B-mediated cytotoxicity as an immune evasion mechanism, a function that increases with lung cancer stage.

  18. Sodium dodecyl sulfate reduces bacterial contamination in goat colostrum without negative effects on immune passive transfer in goat kids.

    PubMed

    Morales-delaNuez, A; Moreno-Indias, I; Sánchez-Macías, D; Capote, J; Juste, M C; Castro, N; Hernández-Castellano, L E; Argüello, A

    2011-01-01

    To investigate the use of sodium dodecyl sulfate (SDS) as a biocide on goat colostrum, 2 experiments were performed. In the first, 20 goat colostrum samples were divided into 3 aliquots. A different treatment was performed on each aliquot: pasteurization (56°C, 30 min) or addition of SDS to a final concentration of either 0.1 or 1% (36°C, 10 min). Immunoglobulin G and colony-forming units were evaluated before and after treatment. Both pasteurization and treatment with 1% SDS significantly reduced the colony-forming units in colostrum. Treatment with 0.1% SDS was not effective at reducing the colony-forming units in colostrum. The IgG concentration of pasteurized colostrum was significantly lower than that of untreated colostrum, whereas treatment with 1% SDS did not affect the colostrum IgG concentration. In the second experiment, the effects of SDS colostrum treatment on immune passive transfer were evaluated. Forty goat kids were fed either refrigerated colostrum or colostrum treated with 1% SDS twice daily for 2 d. Blood samples were obtained at birth and every day for 5 d. IgG, IgM, and IgA were measured in blood serum to monitor the passive immune transfer process. Creatinine, glucose, total cholesterol, blood urea nitrogen, bilirubin, and aspartate transaminase were also monitored to evaluate the health of kids. No differences in serum IgG, IgM, IgA, creatinine, glucose, total cholesterol, blood urea nitrogen, bilirubin, or aspartate transaminase levels were observed between groups. Our findings indicate that SDS is an efficient colostrum biocide that, unlike pasteurization, does not affect immune passive transfer or goat kid health.

  19. Iron (FeII) Chelation, Ferric Reducing Antioxidant Power, and Immune Modulating Potential of Arisaema jacquemontii (Himalayan Cobra Lily)

    PubMed Central

    Sudan, Rasleen; Bhagat, Madhulika; Singh, Jasvinder; Koul, Anupurna

    2014-01-01

    This study explored the antioxidant and immunomodulatory potential of ethnomedicinally valuable species, namely, Arisaema jacquemontii of north-western Himalayan region. The tubers, leaves, and fruits of this plant were subjected to extraction using different solvents. In vitro antioxidant studies were performed in terms of chelation power on ferrous ions and FRAP assay. The crude methanol extract of leaves was found to harbour better chelating capacity (58% at 100 μg/mL) and reducing power (FRAP value 1085.4 ± 0.11 μMFe3+/g dry wt.) than all the other extracts. The crude methanol extract was thus further partitioned with solvents to yield five fractions. Antioxidant study of fractions suggested that the methanol fraction possessed significant chelation capacity (49.7% at 100 μg/mL) and reducing power with FRAP value of 1435.4 μM/g dry wt. The fractions were also studied for immune modulating potential where it was observed that hexane fraction had significant suppressive effect on mitogen induced T-cell and B-cell proliferation and remarkable stimulating effect on humoral response by 141% and on DTH response by 168% in immune suppressed mice as compared to the controls. Therefore, it can be concluded that A. jacquemontii leaves hold considerable antioxidant and immunomodulating potential and they can be explored further for the identification of their chemical composition for a better understanding of their biological activities. PMID:24895548

  20. Feasibility of reducing rabies immunoglobulin dosage for passive immunization against rabies: results of In vitro and In vivo studies.

    PubMed

    Madhusudana, Shampur Narayan; Ashwin, Belludi Yajaman; Sudarshan, Sampada

    2013-09-01

    Passive immunization is a crucial parameter for prevention of human rabies. Presently as World Health Organization (WHO) strongly advocates local infiltration of rabies immunoglobulin in and around the bite wound, we feel that there is no basis for calculating the dose of immunoglobulin based on body weight. Keeping this in view we conducted both in vitro and in vivo studies to know whether the dose of immunoglobulin can be reduced and still obtain complete neutralization of the virus. In vitro neutralization studies were conducted using CVS strain of virus and BHK 21 cells. In vivo experiments were conducted in 4 weeks old Swiss albino mice by initial challenge with CVS followed by infiltration with increasing dilutions of either human rabies immunoglobulin (HRIG) and equine rabies immunoglobulin (ERIG). In vitro studies showed that a dose of 100 FFD 50 of CVS was neutralized by increasing dilution of both HRIG and ERIG and 100% neutralization was observed with HRIG and ERIG in as low quantities as 0.025 IU. In mice studies there was 100% survival of mice infiltrated with 0.025 IU of both HRIG and ERIG compared with 100% mortality in mice infiltrated with normal saline. These results suggest that it is possible to reduce the dose of rabies immunoglobulins by at least 16 times the presently advocated dose. These findings needs to be further evaluated using larger animal models and street viruses prevalent in nature but cannot serve as recommendations for use of RIG for passive immunization in humans.

  1. Cytomegalovirus Infection May Contribute to the Reduced Immune Function, Growth, Development, and Health of HIV-Exposed, Uninfected African Children

    PubMed Central

    Filteau, Suzanne; Rowland-Jones, Sarah

    2016-01-01

    With increasing access to antiretroviral therapy (ART) in Africa, most children born to HIV-infected mothers are not themselves HIV-infected. These HIV-exposed, uninfected (HEU) children are at increased risk of mortality and have immune, growth, development, and health deficits compared to HIV-unexposed children. HEU children are known to be at higher risk than HIV-unexposed children of acquiring cytomegalovirus (CMV) infection in early life. This risk is largely unaffected by ART and is increased by breastfeeding, which itself is critically important for child health and survival. Early CMV infection, namely in utero or during early infancy, may contribute to reduced growth, altered or impaired immune functions, and sensory and cognitive deficits. We review the evidence that CMV may be responsible for the health impairments of HEU children. There are currently no ideal safe and effective interventions to reduce postnatal CMV infection. If a clinical trial showed proof of the principle that decreasing early CMV infection improved health and development of HEU children, this could provide the impetus needed for the development of better interventions to improve the health of this vulnerable population. PMID:27446087

  2. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity

    SciTech Connect

    Thom, Stephen R. . E-mail: sthom@mail.med.upenn.edu; Bhopale, Veena M.; Fisher, Donald

    2006-06-01

    The goal of this investigation was to determine whether exposure to hyperbaric oxygen (HBO{sub 2}) would ameliorate biochemical and functional brain abnormalities in an animal model of carbon monoxide (CO) poisoning. In this model, CO-mediated oxidative stress causes chemical alterations in myelin basic protein (MBP), which initiates an adaptive immunological response that leads to a functional deficit. CO-exposed rats do not show improvements in task performance in a radial maze. We found that HBO{sub 2} given after CO poisoning will prevent this deficit, but not eliminate all of the CO-mediated biochemical alterations in MBP. MBP from HBO{sub 2} treated CO-exposed rats is recognized normally by a battery of antibodies, but exhibits an abnormal charge pattern. Lymphocytes from HBO{sub 2}-treated and control rats do not become activated when incubated with MBP, immunohistological evidence of microglial activation is not apparent, and functional deficits did not occur, unlike untreated CO-exposed rats. The results indicate that HBO{sub 2} prevents immune-mediated delayed neurological dysfunction following CO poisoning.

  3. Immunization with DAT fragments is associated with long-term striatal impairment, hyperactivity and reduced cognitive flexibility in mice

    PubMed Central

    2012-01-01

    Background Possible interactions between nervous and immune systems in neuro-psychiatric disorders remain elusive. Levels of brain dopamine transporter (DAT) have been implicated in several impulse-control disorders, like attention deficit / hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Here, we assessed the interplay between DAT auto-immunity and behavioural / neurochemical phenotype. Methods Male CD-1 mice were immunized with DAT peptide fragments (DAT-i), or vehicle alone (VEH), to generate elevated circulating levels of DAT auto-antibodies (aAbs). Using an operant delay-of-reward task (20 min daily sessions; timeout 25 sec), mice had a choice between either an immediate small amount of food (SS), or a larger amount of food after a delay (LL), which increased progressively across sessions (from 0 to 150 sec). Results DAT-i mice exhibited spontaneous hyperactivity (2 h-longer wake-up peak; a wake-up attempt during rest). Two sub-populations differing in behavioural flexibility were identified in the VEH control group: they showed either a clear-cut decision to select LL or clear-cut shifting towards SS, as expected. Compared to VEH controls, choice-behaviour profile of DAT-i mice was markedly disturbed, together with long-lasting alterations of the striatal monoamines. Enhanced levels of DA metabolite HVA in DAT-i mice came along with slower acquisition of basal preferences and with impaired shifting; elevation also in DOPAC levels was associated with incapacity to change a rigid selection strategy. This scarce flexibility of performance is indicative of a poor adaptation to task contingencies. Conclusions Hyperactivity and reduced cognitive flexibility are patterns of behaviour consistent with enduring functional impairment of striatal regions. It is yet unclear how anti-DAT antibodies could enter or otherwise affect these brain areas, and which alterations in DAT activity exactly occurred after immunization. Present neuro

  4. Massage Therapy for Reducing Stress Hormones and Enhancing Immune Function in Breast Cancer Survivors

    DTIC Science & Technology

    2003-08-01

    effects suggesting that like many other interventions (e.g., exercise, diet, etc), for therapy effects to persist, continued massage treatments may be...In this study massage and relaxation therapies were examined for women with early stages of breast cancer for 1) reducing anxiety and stress hormone...16). Women in the massage and relaxation therapies received 3-30 minute sessions a week for 5 weeks. On the first and last days of the 5-week study

  5. Dietary resveratrol improves immunity but reduces reproduction of broodstock medaka Oryzias latipes (Temminck & Schlegel).

    PubMed

    Kowalska, Agata; Siwicki, Andrzej K; Kowalski, Radosław K

    2017-02-01

    Here, we investigated the effect of dietary resveratrol (20, 40, and 80 µg/g BW/day) on cell-mediated immunity (activity of spleen phagocytes and proliferative response of lymphocytes) and reproductive parameters (egg and sperm quality, i.e. fecundity-total number of eggs produced by individual fish, fertility, embryo survival, and hatching rate) in medaka. Fish fed feed with resveratrol at 40 and 80 µg/g BW/day had significantly higher metabolic activity and intracellular phagocyte killing activity than control. The proliferative lymphocyte activity of the fish from R80 group was greater by more than 20 % in comparison with the control group (P < 0.05). The percentage of macrophages (MO) and their mean fluorescence intensities (MFI) in R40 and R80 groups were significantly higher compared to C and R20 groups (P < 0.05). The differences in MO and MFI values ranged from 52.5 % (±1.5; R0 group) to 65.8 % (±1.6; R80 group) and from 23.2 (±1.4; R0 group) to 38.2 (±2.4; R80 group), respectively. Moreover, resveratrol at 80 µg/g BW/day decreased liver COX activity, i.e. 5.4 in R80 group and 7.9 in R0 group (P < 0.05). The motility parameters of the sperm obtained from the males fed feed supplemented with resveratrol at 80 µg/g BW/day exhibited the highest values except the linearity, which was lower as compared to the control (P < 0.05). The results indicate that diet supplemented with resveratrol at a dosage of 40 µg/g BW/day improves phagocyte killing ability and lymphocyte proliferation in broodstock and accelerates offspring hatch. Also, the results suggest that COX activity influences sperm and oocyte quality in fish; the presence of a COX inhibitor in the dose of 40 µg/g BW/day decreased the embryo survival.

  6. Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS

    PubMed Central

    Kong, Weimin; Li, Hongbo; Tuma, Ronald F.; Ganea, Doina

    2013-01-01

    CB2, the cannabinoid receptor expressed primarily on hematopoietic cells and activated microglia, mediates the immunoregulatory functions of cannabinoids. The involvement of CB2 in EAE has been demonstrated by using both endogenous and exogenous ligands. We showed previously that CB2 selective agonists inhibit leukocyte rolling and adhesion to CNS microvasculature and ameliorate clinical symptom in both chronic and remitting-relapsing EAE models. Here we showed that Gp1a, a highly selective CB2 agonist, with a four log higher affinity for CB2 than CB1, reduced clinical scores and facilitated recovery in EAE in conjunction with long term reduction in demyelination and axonal loss. We also established that Gp1a affected EAE through at least two different mechanisms, i.e. an early effect on Th1/Th17 differentiation in peripheral immune organs, and a later effect on the accumulation of pathogenic immune cells in the CNS, associated with reductions in the expression of CNS and T cell chemokine receptors, chemokines and adhesion molecules. This is the first report on the in vivo CB2-mediated Gp1a inhibition of Th17/Th1 differentiation. We also confirmed the Gp1a-induced inhibition of Th17/Th1 differentiation in vitro, both in non-polarizing and polarizing conditions. The CB2-induced inhibition of Th17 differentiation is highly relevant in view of recent studies emphasizing the importance of pathogenic self-reactive Th17 cells in EAE/MS. In addition, the combined effect on Th17 differentiation and immune cell accumulation into the CNS, emphasize the relevance of CB2 selective ligands as potential therapeutic agents in neuroinflammation. PMID:24342422

  7. A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy

    PubMed Central

    2012-01-01

    Introduction Recent studies reported that human IgG antibodies are susceptible to specific proteolytic cleavage in their lower hinge region, and the hinge cleavage results in a loss of Fc-mediated effector functions. Trastuzumab is a humanized IgG1 therapeutic monoclonal antibody for the treatment of HER2-overexpressing breast cancers, and its mechanisms of action consist of inhibition of HER2 signaling and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). The objective of this study is to investigate the potential effect of proteinase hinge cleavage on the efficacy of trastuzumab using both a breast cancer cell culture method and an in vivo mouse xenograft tumor model. Methods Trastuzumab antibody was incubated with a panel of human matrix metalloproteinases, and proteolytic cleavage in the lower hinge region was detected using both western blotting and mass spectrometry. Single hinge cleaved trastuzumab (scIgG-T) was purified and evaluated for its ability to mediate ADCC and inhibition of breast cancer cell proliferation in vitro as well as anti-tumor efficacy in the mouse xenograft tumor model. Infiltrated immune cells were detected in tumor tissues by immunohistochemistry. Results scIgG-T retains HER2 antigen binding activity and inhibits HER2-mediated downstream signaling and cell proliferation in vitro when compared with the intact trastuzumab. However, scIgG-T lost Fc-mediated ADCC activity in vitro, and had significantly reduced anti-tumor efficacy in a mouse xenograft tumor model. Immunohistochemistry showed reduced immune cell infiltration in tumor tissues treated with scIgG-T when compared with those treated with the intact trastuzumab, which is consistent with the decreased ADCC mediated by scIgG-T in vitro. Conclusion Trastuzumab can be cleaved by matrix metalloproteinases within the lower hinge. scIgG-T exhibited a significantly reduced anti-tumor efficacy in vivo due to the weakened immune effector function such as ADCC. The results

  8. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  9. Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression.

    PubMed

    Alvarado, Alvaro G; Thiagarajan, Praveena S; Mulkearns-Hubert, Erin E; Silver, Daniel J; Hale, James S; Alban, Tyler J; Turaga, Soumya M; Jarrar, Awad; Reizes, Ofer; Longworth, Michelle S; Vogelbaum, Michael A; Lathia, Justin D

    2016-12-27

    Tumors contain hostile inflammatory signals generated by aberrant proliferation, necrosis, and hypoxia. These signals are sensed and acted upon acutely by the Toll-like receptors (TLRs) to halt proliferation and activate an immune response. Despite the presence of TLR ligands within the microenvironment, tumors progress, and the mechanisms that permit this growth remain largely unknown. We report that self-renewing cancer stem cells (CSCs) in glioblastoma have low TLR4 expression that allows them to survive by disregarding inflammatory signals. Non-CSCs express high levels of TLR4 and respond to ligands. TLR4 signaling suppresses CSC properties by reducing retinoblastoma binding protein 5 (RBBP5), which is elevated in CSCs. RBBP5 activates core stem cell transcription factors, is necessary and sufficient for self-renewal, and is suppressed by TLR4 overexpression in CSCs. Our findings provide a mechanism through which CSCs persist in hostile environments because of an inability to respond to inflammatory signals.

  10. Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis.

    PubMed

    Barichello, Tatiana; Ceretta, Renan A; Generoso, Jaqueline S; Moreira, Ana Paula; Simões, Lutiana R; Comim, Clarissa M; Quevedo, João; Vilela, Márcia Carvalho; Zuardi, Antonio Waldo; Crippa, José A; Teixeira, Antônio Lucio

    2012-12-15

    Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory. The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis. Male Wistar rats underwent a cisterna magna tap and received either 10μl of sterile saline as a placebo or an equivalent volume of S. pneumoniae suspension. Rats subjected to meningitis were treated by intraperitoneal injection with cannabidiol (2.5, 5, or 10mg/kg once or daily for 9 days after meningitis induction) or a placebo. Six hours after meningitis induction, the rats that received one dose were killed and the hippocampus and frontal cortex were obtained to assess cytokines/chemokine and brain-derived neurotrophic factor levels. On the 10th day, the rats were submitted to the inhibitory avoidance task. After the task, the animals were killed and samples from the hippocampus and frontal cortex were obtained. The extended administration of cannabidiol at different doses reduced the TNF-α level in frontal cortex. Prolonged treatment with canabidiol, 10mg/kg, prevented memory impairment in rats with pneumococcal meningitis. Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel.

  11. Brugia pahangi: immunization with early L3 ES alters parasite migration, and reduces microfilaremia and lymphatic lesion formation in gerbils (Meriones unguiculatus).

    PubMed

    Zipperer, Ginger R; Arumugam, Sridhar; Chirgwin, Sharon R; Coleman, Sharon U; Shakya, Krishna P; Klei, Thomas R

    2013-10-01

    Previous studies have shown that intradermally (ID) injected Brugia pahangi L3 s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24h in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3 s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3 DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early Brugia malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.

  12. Acyclovir Therapy Reduces the CD4+ T Cell Response against the Immunodominant pp65 Protein from Cytomegalovirus in Immune Competent Individuals.

    PubMed

    Pachnio, Annette; Begum, Jusnara; Fox, Ashini; Moss, Paul

    2015-01-01

    Cytomegalovirus (CMV) infects the majority of the global population and leads to the development of a strong virus-specific immune response. The CMV-specific CD4+ and CD8+ T cell immune response can comprise between 10 and 50% of the T cell pool within peripheral blood and there is concern that this may impair immunity to other pathogens. Elderly individuals with the highest magnitude of CMV-specific immune response have been demonstrated to be at increased risk of mortality and there is increasing interest in interventions that may serve to moderate this. Acyclovir is an anti-viral drug with activity against a range of herpes viruses and is used as long term treatment to suppress reactivation of herpes simplex virus. We studied the immune response to CMV in patients who were taking acyclovir to assess if therapy could be used to suppress the CMV-specific immune response. The T cell reactivity against the immunodominant late viral protein pp65 was reduced by 53% in people who were taking acyclovir. This effect was seen within one year of therapy and was observed primarily within the CD4+ response. Acyclovir treatment only modestly influenced the immune response to the IE-1 target protein. These data show that low dose acyclovir treatment has the potential to modulate components of the T cell response to CMV antigen proteins and indicate that anti-viral drugs should be further investigated as a means to reduce the magnitude of CMV-specific immune response and potentially improve overall immune function.

  13. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    SciTech Connect

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi; Shiraishi, Hiroshi; Shimoda, Kouji; Yoshimura, Akihiko

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  14. World Health Organization perspectives on the contribution of the Global Alliance for Vaccines and Immunization on reducing child mortality.

    PubMed

    Bustreo, F; Okwo-Bele, J-M; Kamara, L

    2015-02-01

    Child mortality has decreased substantially globally-from 12.6 million in 1990 to 6.3 million in 2013-due, in large part to of governments' and organisations' work, to prevent pneumonia, diarrhoea and malaria, the main causes of death in the postneonatal period. In 2012, the World Health Assembly adopted the Decade of Vaccines Global Vaccine Action Plan 2011-2020 as the current framework aimed at preventing millions of deaths through more equitable access to existing vaccines for people in all communities. The Global Alliance for Vaccines and Immunization (GAVI) plays a critical role in this effort by financing and facilitating delivery platforms for vaccines, with focused support for the achievements of improved vaccination coverage and acceleration of the uptake of WHO-recommended lifesaving new vaccines in 73 low-income countries. The GAVI Alliance has contributed substantially towards the progress of Millennium Development Goal 4 and to improving women's lives. By 2013, the GAVI Alliance had immunised 440 million additional children and averted six million future deaths from vaccine-preventable diseases in the world's poorest countries. The GAVI Alliance is on track to reducing child mortality to 68 per 1000 live births by 2015 in supported countries. This paper discusses the GAVI Alliance achievements related to Millennium Development Goal 4 and its broader contribution to improving women's lives and health systems, as well as challenges and obstacles it has faced. Additionally, it looks at challenges for the future and how it will continue its work related to reducing child mortality and improving women's health.

  15. Immune stimulatory CpG oligodeoxynucleotides reduces Salmonella enterica subsp. Arizonae organ colonization and mortality in young turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic oligodeoxynucleotides (ODN) containing CpG dinucleotides (CpG ODN) mimic bacterial DNA and are stimulatory to the innate immune system of most vertebrate species. The immunostimulatory activities of CpG ODN have been studied extensively and are well characterized in human and murine immun...

  16. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity

    PubMed Central

    Botelho, Danielle J.; Leo, Bey Fen; Massa, Christopher B.; Sarkar, Srijata; Tetley, Terry D.; Chung, Kian Fan; Chen, Shu; Ryan, Mary P.; Porter, Alexandra E.; Zhang, Junfeng; Schwander, Stephan K.; Gow, Andrew J.

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered. PMID:26152688

  17. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity.

    PubMed

    Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.

  18. Nitric oxide synthase inhibitor, aminoguanidine reduces intracerebroventricular colchicine induced neurodegeneration, memory impairments and changes of systemic immune responses in rats.

    PubMed

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa; Gupta, Pritha

    2017-02-15

    Intracerebroventricular (i.c.v.) injection of colchicine induces neurodegeneration, memory impairments and changes of some systemic immune responses in rats. Though the role of cox 2 in these colchicine induced changes have been evaluated, the influence of nitric oxide synthase (NOS) remains to be studied. The present study was designed to assess the role of NOS on the i.c.v. colchicine induced neurodegeneration, memory impairments and changes of some systemic immune responses by inhibiting its activity with aminoguanidine. In the present study the impairments of working and reference memories, neurodegeneration (chromatolysis and plaque formation) and changes of neuroinflammatory markers in the hippocampus (increased TNF α, IL 1β, ROS and nitrite) along with changes of serum inflammatory markers (TNF α, IL 1β, ROS and nitrite) and alteration of systemic immune responses (higher phagocytic activity of blood WBC and splenic PMN, higher cytotoxicity and lower leukocyte adhesion inhibition index of splenic MNC) were measured in the intracerebroventricular colchicine injected rats (ICIR). Administration of aminoguanidine (p.o. 30/50mg/kg body weight) to ICIR resulted in recovery of neuroinflammation and partial prevention of neurodegeneration which could be corroborated with the partial recovery of memory impairments in this model. The recovery of serum inflammatory markers and the systemic immune responses in ICIR was also observed after administration of aminoguanidine. Therefore, the present study shows that aminoguanidine can protect the colchicine induced neurodegeneration, memory impairments, and changes of systemic immune systemic responses in ICIR by inhibiting the iNOS.

  19. Maternal immune stimulation reduces both placental morphologic damage and down-regulated placental growth-factor and cell cycle gene expression caused by urethane: are these events related to reduced teratogenesis?

    PubMed

    Sharova, L V; Sharov, A A; Sura, P; Gogal, R M; Smith, B J; Holladay, S D

    2003-07-01

    Activation of the maternal immune system in mice decreased cleft palate caused by the chemical teratogen, urethane. Direct and indirect mechanisms for this phenomenon have been suggested, including maternal macrophages that cross the placenta to find and eliminate pre-teratogenic cells, or maternal immune proteins (cytokines) that cross placenta to alleviate or partially alleviate toxicant-mediated effects in the developing fetus. A third mechanism to explain improved fetal developmental outcome in teratogen-challenged pregnant mice might involve beneficial effects of immune stimulation on the placenta. In the present experiments, urethane treatment altered placental morphology and impaired placental function, the latter indicated by down-regulated activity of cell cycle genes and of genes encoding cytokines and growth factors. Maternal immune stimulation with either Freund's complete adjuvant (FCA) or interferon-gamma (IFNgamma) reduced morphologic damage to the placenta caused by urethane and normalized expression of several genes that were down-regulated by urethane. Urethane treatment also shifted placental cytokine gene expression toward a T cell helper 1 (Th1) profile, while immunostimulation tended to restore a Th2 profile that may be more beneficial to pregnancy and fetal development. These data suggest that the beneficial effects of maternal immune stimulation on fetal development in teratogen-exposed mice may, in part, result from improved placental structure and function.

  20. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B

    SciTech Connect

    Stoop, Jeroen N. . E-mail: j.n.stoop@erasmusmc.nl; Molen, Renate G. van der . E-mail: r.vandermolen@erasmusmc.nl; Kuipers, Ernst J. . E-mail: e.j.kuipers@erasmusmc.nl; Kusters, Johannes G. . E-mail: j.g.kusters@erasmusmc.nl; Janssen, Harry L.A. . E-mail: h.janssen@erasmusmc.nl

    2007-04-25

    Regulatory T cells (Treg) play a key role in the impaired immune response that is typical for a chronic Hepatitis B virus (HBV) infection. To gain more insight in the mechanism that is responsible for this impaired immune response, the effect of viral load reduction resulting from treatment with the nucleotide analogue adefovir dipivoxil on the percentages of Treg and HBV-specific T-cell responses was analyzed. Peripheral blood mononuclear cells (PBMC) of 12 patients were collected at baseline and during treatment. In parallel to the decline in viral load, we found a decline in circulating Treg, combined with an increase in HBV core antigen-specific IFN-{gamma} production and proliferation. The production of IL10 did not decrease during therapy. In conclusion, adefovir induced viral load reduction results in a decline of circulating Treg together with a partial recovery of the immune response.

  1. A nontoxic chimeric enterotoxin adjuvant induces protective immunity in both mucosal and systemic compartments with reduced IgE antibodies.

    PubMed

    Kweon, Mi-Na; Yamamoto, Masafumi; Watanabe, Fumiko; Tamura, Shinichi; Van Ginkel, Frederik W; Miyauchi, Akira; Takagi, Hiroaki; Takeda, Yoshifumi; Hamabata, Takashi; Fujihashi, Kohtaro; McGhee, Jerry R; Kiyono, Hiroshi

    2002-11-01

    A novel nontoxic form of chimeric mucosal adjuvant that combines the A subunit of mutant cholera toxin E112K with the pentameric B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli was constructed by use of the Brevibacillus choshinensis expression system (mCTA/LTB). Nasal immunization of mice with tetanus toxoid (TT) plus mCTA/LTB elicited significant TT-specific immunoglobulin A responses in mucosal compartments and induced high serum immunoglobulin G and immunoglobulin A anti-TT antibody responses. Although TT plus native CT induced high total and TT-specific immunoglobulin E responses, use of the chimera molecule as mucosal adjuvant did not. Furthermore, all mice immunized with TT plus mCTA/LTB were protected from lethal systemic challenge with tetanus toxin. Importantly, the mice were completely protected from influenza virus infection after nasal immunization with inactivated influenza vaccine together with mCTA/LTB. These results show that B. choshinensis-derived mCTA/LTB is an effective and safe mucosal adjuvant for the induction of protective immunity against potent bacterial exotoxin and influenza virus infection.

  2. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the availability of vaccines, influenza is a significant public health problem, emphasizing the need for development of additional strategies to enhance host defense against influenza. Wolfberry or Goji berry, long used as a medicinal food in China, has recently been shown to improve immune ...

  3. Live simian immunodeficiency virus vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability.

    PubMed

    Smith, Anthony J; Wietgrefe, Stephen W; Shang, Liang; Reilly, Cavan S; Southern, Peter J; Perkey, Katherine E; Duan, Lijie; Kohler, Heinz; Müller, Sybille; Robinson, James; Carlis, John V; Li, Qingsheng; Johnson, R Paul; Haase, Ashley T

    2014-09-15

    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic's epicenter in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer Ab production and neonatal FcR-mediated concentration of these Abs on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. In this study, we identify blocking CD4(+) T cell recruitment to thereby inhibit local expansion of infected founder populations as a second correlate of protection. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine.

  4. Yeast supplementation reduced the immune and metabolic responses to a combined viral-bacterial respiratory disease challenge in feedlot heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two treatments were evaluated in commercial feedlot heifers to determine the effects of a yeast supplement on immune and metabolic responses to a combined viral-bacterial respiratory disease challenge. Thirty-two beef heifers (324 ± 19.2 kg BW) were selected and randomly assigned to one of two treat...

  5. A nutritional supplement containing lactoferrin stimulates the immune system, extends lifespan, and reduces amyloid β peptide toxicity in Caenorhabditis elegans.

    PubMed

    Martorell, Patricia; Llopis, Silvia; Gonzalez, Nuria; Ramón, Daniel; Serrano, Gabriel; Torrens, Ana; Serrano, Juan M; Navarro, Maria; Genovés, Salvador

    2017-03-01

    Lactoferrin is a highly multifunctional glycoprotein involved in many physiological functions, including regulation of iron absorption and immune responses. Moreover, there is increasing evidence for neuroprotective effects of lactoferrin. We used Caenorhabditis elegans as a model to test the protective effects, both on phenotype and transcriptome, of a nutraceutical product based on lactoferrin liposomes. In a dose-dependent manner, the lactoferrin-based product protected against acute oxidative stress and extended lifespan of C. elegans N2. Furthermore, Paralysis of the transgenic C. elegans strain CL4176, caused by Aβ1-42 aggregates, was clearly ameliorated by treatment. Transcriptome analysis in treated nematodes indicated immune system stimulation, together with enhancement of processes involved in the oxidative stress response. The lactoferrin-based product also improved the protein homeostasis processes, cellular adhesion processes, and neurogenesis in the nematode. In summary, the tested product exerts protection against aging and neurodegeneration, modulating processes involved in oxidative stress response, protein homeostasis, synaptic function, and xenobiotic metabolism. This lactoferrin-based product is also able to stimulate the immune system, as well as improving reproductive status and energy metabolism. These findings suggest that oral supplementation with this lactoferrin-based product could improve the immune system and antioxidant capacity. Further studies to understand the molecular mechanisms related with neuronal function would be of interest.

  6. Live SIV vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cell availability

    PubMed Central

    Smith, Anthony J; Wietgrefe, Stephen W.; Shang, Liang; Reilly, Cavan S.; Southern, Peter J.; Perkey, Katherine E.; Duan, Lijie; Kohler, Heinz; Muller, Sybille; Robinson, James; Carlis, John V.; Li, Qingsheng; Johnson, R. Paul; Haase, Ashley T.

    2014-01-01

    Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicentre in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We have identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer antibody production and neonatal Fc receptor (FcRn)-mediated concentration of these antibodies on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. Here we identify as a second protection correlate, blocking CD4+ T cell recruitment to inhibit local expansion of infected founder populations. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex-FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine. PMID:25143442

  7. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

    PubMed Central

    Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong

    2016-01-01

    Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds. PMID:27098308

  8. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

    NASA Astrophysics Data System (ADS)

    Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong

    2016-04-01

    Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds.

  9. Role of reduced intensity conditioning in T-cell and B-cell immune reconstitution after HLA-identical bone marrow transplantation in ADA-SCID.

    PubMed

    Cancrini, Caterina; Ferrua, Francesca; Scarselli, Alessia; Brigida, Immacolata; Romiti, Maria Luisa; Barera, Graziano; Finocchi, Andrea; Roncarolo, Maria Grazia; Caniglia, Maurizio; Aiuti, Alessandro

    2010-10-01

    The treatment of choice for severe combined immunodeficiency is bone marrow transplantation from an HLA-identical donor sibling without conditioning. However, this may result in low donor stem cell chimerism, leading to reduced long-term immune reconstitution. We compared engraftment, metabolic, and T-cell and B-cell immune reconstitution of HLA-identical sibling bone marrow transplantation performed in 2 severe combined immunodeficiency infants with adenosine deaminase deficiency from the same family treated with or without a reduced intensity conditioning regimen (busulfan/fludarabine). Only the patient who received conditioning showed a stable mixed chimerism in all lineages, including bone marrow myeloid and B cells. The use of conditioning resulted in higher thymus-derived naïve T cells and T-cell receptor excision circles, normalization of the T-cell repertoire, and faster and complete B-cell and metabolic reconstitution. These results suggest the utility of exploring the use of reduced intensity conditioning in bone marrow transplantation from HLA-identical donor in severe combined immunodeficiency to improve long-term immune reconstitution.

  10. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function.

    PubMed

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J; He, Wei; Voss, Oliver H; Gonzalez-Mejia, M Elba; Guttridge, Denis C; Grotewold, Erich; Doseff, Andrea I

    2016-03-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors' accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo.

  11. Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain

    PubMed Central

    Ou, Judy J. J.; Drilling, Amanda J.; Cooksley, Clare; Bassiouni, Ahmed; Kidd, Stephen P.; Psaltis, Alkis J.; Wormald, Peter J.; Vreugde, Sarah

    2016-01-01

    Background: Staphylococcus aureus (S. aureus) small colony variants (SCVs) can survive within the host intracellular milieu and are associated with chronic relapsing infections. However, it is unknown whether host invasion rates and immune responses differ between SCVs and their wild-type counterparts. This study used a stable S. aureus SCV (WCH-SK2SCV) developed from a clinical isolate (WCH-SK2WT) in inflammation-relevant conditions. Intracellular infection rates as well as host immune responses to WCH-SK2WT and WCH-SK2SCV infections were investigated. Method: NuLi-1 cells were infected with either WCH-SK2WT or WCH-SK2SCV, and the intracellular infection rate was determined over time. mRNA expression of cells infected with each strain intra- and extra-cellularly was analyzed using a microfluidic qPCR array to generate an expression profile of thirty-nine genes involved in the host immune response. Results: No difference was found in the intracellular infection rate between WCH-SK2WT and WCH-SK2SCV. Whereas, extracellular infection induced a robust pro-inflammatory response, intracellular infection elicited a modest response. Intracellular WCH-SK2WT infection induced mRNA expression of TLR2, pro-inflammatory cytokines (IL1B, IL6, and IL12) and tissue remodeling factors (MMP9). In contrast, intracellular WCH-SK2SCV infection induced up regulation of only TLR2. Conclusions: Whereas, host intracellular infection rates of WCH-SK2SCV and WCH-SK2WT were similar, WCH-SK2SCV intracellular infection induced a less widespread up regulation of pro-inflammatory and tissue remodeling factors in comparison to intracellular WCH-SK2WT infection. These findings support the current view that SCVs are able to evade host immune detection to allow their own survival. PMID:28083514

  12. Reduced Innate Immune Response to a Staphylococcus aureus Small Colony Variant Compared to Its Wild-Type Parent Strain.

    PubMed

    Ou, Judy J J; Drilling, Amanda J; Cooksley, Clare; Bassiouni, Ahmed; Kidd, Stephen P; Psaltis, Alkis J; Wormald, Peter J; Vreugde, Sarah

    2016-01-01

    Background:Staphylococcus aureus (S. aureus) small colony variants (SCVs) can survive within the host intracellular milieu and are associated with chronic relapsing infections. However, it is unknown whether host invasion rates and immune responses differ between SCVs and their wild-type counterparts. This study used a stable S. aureus SCV (WCH-SK2(SCV)) developed from a clinical isolate (WCH-SK2(WT)) in inflammation-relevant conditions. Intracellular infection rates as well as host immune responses to WCH-SK2(WT) and WCH-SK2(SCV) infections were investigated. Method: NuLi-1 cells were infected with either WCH-SK2(WT) or WCH-SK2(SCV), and the intracellular infection rate was determined over time. mRNA expression of cells infected with each strain intra- and extra-cellularly was analyzed using a microfluidic qPCR array to generate an expression profile of thirty-nine genes involved in the host immune response. Results: No difference was found in the intracellular infection rate between WCH-SK2(WT) and WCH-SK2(SCV). Whereas, extracellular infection induced a robust pro-inflammatory response, intracellular infection elicited a modest response. Intracellular WCH-SK2(WT) infection induced mRNA expression of TLR2, pro-inflammatory cytokines (IL1B, IL6, and IL12) and tissue remodeling factors (MMP9). In contrast, intracellular WCH-SK2(SCV) infection induced up regulation of only TLR2. Conclusions: Whereas, host intracellular infection rates of WCH-SK2(SCV) and WCH-SK2(WT) were similar, WCH-SK2(SCV) intracellular infection induced a less widespread up regulation of pro-inflammatory and tissue remodeling factors in comparison to intracellular WCH-SK2(WT) infection. These findings support the current view that SCVs are able to evade host immune detection to allow their own survival.

  13. Vaccination prepartum enhances the beneficial effects of melatonin on the immune response and reduces platelet responsiveness in sheep

    PubMed Central

    2012-01-01

    Background Melatonin regulates several physiological processes and its powerful action as antioxidant has been widely reported. Melatonin acts modulating the immune system, showing a protective effect on the cardiovascular system and improving vaccine administration as an adjuvant-like agent. Here, we have investigated the role of melatonin as an adjuvant of the Clostridium perfringens vaccine in prepartum sheep and whether melatonin modulates platelet physiology during peripartum. Results The experiments were carried out in peripartum sheep from a farm located in an area of Mediterranean-type ecosystem. Plasma melatonin levels were determined by ELISA and sheep platelet aggregation was monitored using an aggregometer. Here we demonstrated for the first time that plasma melatonin concentration were higher in pregnant (125 pg/mL) than in non-pregnant sheep (15 pg/mL; P < 0.05). Administration of melatonin prepartum did not significantly modify platelet function but significantly improved the immune response to vaccination against C. perfringens. Conclusion Administration of melatonin as an adjuvant provides a significant improvement in the immune response to vaccine administration prepartum against C. perfringens. PMID:22716226

  14. The Use of Feed Additives to Reduce the Effects of Aflatoxin and Deoxynivalenol on Pig Growth, Organ Health and Immune Status during Chronic Exposure

    PubMed Central

    Weaver, Alexandra C.; See, M. Todd; Hansen, Jeff A.; Kim, Yong B.; De Souza, Anna L. P.; Middleton, Tina F.; Kim, Sung Woo

    2013-01-01

    Three feed additives were tested to improve the growth and health of pigs chronically challenged with aflatoxin (AF) and deoxynivalenol (DON). Gilts (n = 225, 8.8 ± 0.4 kg) were allotted to five treatments: CON (uncontaminated control); MT (contaminated with 150 µg/kg AF and 1100 µg/kg DON); A (MT + a clay additive); B (MT + a clay and dried yeast additive); and C (MT + a clay and yeast culture additive). Average daily gain (ADG) and feed intake (ADFI) were recorded for 42 days, blood collected for immune analysis and tissue samples to measure damage. Feeding mycotoxins tended to decrease ADG and altered the immune system through a tendency to increase monocytes and immunoglobulins. Mycotoxins caused tissue damage in the form of liver bile ductule hyperplasia and karyomegaly. The additives in diets A and B reduced mycotoxin effects on the immune system and the liver and showed some ability to improve growth. The diet C additive played a role in reducing liver damage. Collectively, we conclude that AF and DON can be harmful to the growth and health of pigs consuming mycotoxins chronically. The selected feed additives improved pig health and may play a role in pig growth. PMID:23867763

  15. Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model.

    PubMed

    Du Four, Stephanie; Maenhout, Sarah K; De Pierre, Kari; Renmans, Dries; Niclou, Simone P; Thielemans, Kris; Neyns, Bart; Aerts, Joeri L

    2015-04-01

    Melanoma patients are at a high risk of developing brain metastases, which are strongly vascularized and therefore have a significant risk of spontaneous bleeding. VEGF not only plays a role in neo-angiogenesis but also in the antitumor immune response. VEGFR-targeted therapy might not only have an impact on the tumor vascularization but also on tumor-infiltrating immune cells. In this study, we investigated the effect of axitinib, a small molecule TKI of VEGFR-1, -2, and -3, on tumor growth and on the composition of tumor-infiltrating immune cells in subcutaneous and intracranial mouse melanoma models. In vivo treatment with axitinib induced a strong inhibition of tumor growth and significantly improved survival in both tumor models. Characterization of the immune cells within the spleen and tumor of tumor-bearing mice respectively showed a significant increase in the number of CD3(+)CD8(+) T cells and CD11b(+) cells of axitinib-treated mice. More specifically, we observed a significant increase of intratumoral monocytic myeloid-derived suppressor cells (moMDSCs; CD11b(+)Ly6C(high)Ly6G(-)). Interestingly, in vitro proliferation assays showed that moMDSCs isolated from spleen or tumor of axitinib-treated mice had a reduced suppressive capacity on a per cell basis as compared to those isolated from vehicle-treated mice. Moreover, MDSCs from axitinib-treated animals displayed the capacity to stimulate allogeneic T cells. Thus, treatment with axitinib induces differentiation of moMDSC toward an antigen-presenting phenotype. Based on these observations, we conclude that the impact of axitinib on tumor growth and survival is most likely not restricted to direct anti-angiogenic effects but also involves important effects on tumor immunity.

  16. Hyperreactive onchocerciasis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells.

    PubMed

    Katawa, Gnatoulma; Layland, Laura E; Debrah, Alex Y; von Horn, Charlotte; Batsa, Linda; Kwarteng, Alexander; Arriens, Sandra; W Taylor, David; Specht, Sabine; Hoerauf, Achim; Adjobimey, Tomabu

    2015-01-01

    Clinical manifestations in onchocerciasis range from generalized onchocerciasis (GEO) to the rare but severe hyperreactive (HO)/sowda form. Since disease pathogenesis is associated with host inflammatory reactions, we investigated whether Th17 responses could be related to aggravated pathology in HO. Using flow cytometry, filarial-specific cytokine responses and PCR arrays, we compared the immune cell profiles, including Th subsets, in individuals presenting the two polar forms of infection and endemic normals (EN). In addition to elevated frequencies of memory CD4+ T cells, individuals with HO showed accentuated Th17 and Th2 profiles but decreased CD4+CD25hiFoxp3+ regulatory T cells. These profiles included increased IL-17A+, IL-4+, RORC2+ and GATA3+CD4+ T cell populations. Flow cytometry data was further confirmed using a PCR array since Th17-related genes (IL-17 family members, IL-6, IL-1β and IL-22) and Th2-related (IL-4, IL-13, STAT6) genes were all significantly up-regulated in HO individuals. In addition, stronger Onchocerca volvulus-specific Th2 responses, especially IL-13, were observed in vitro in hyperreactive individuals when compared to GEO or EN groups. This study provides initial evidence that elevated frequencies of Th17 and Th2 cells form part of the immune network instigating the development of severe onchocerciasis.

  17. The Innate Immune Receptor NLRX1 Functions as a Tumor Suppressor by Reducing Colon Tumorigenesis and Key Tumor-Promoting Signals.

    PubMed

    Koblansky, A Alicia; Truax, Agnieszka D; Liu, Rongrong; Montgomery, Stephanie A; Ding, Shengli; Wilson, Justin E; Brickey, W June; Mühlbauer, Marcus; McFadden, Rita-Marie T; Hu, Peizhen; Li, Zengshan; Jobin, Christian; Lund, Pauline Kay; Ting, Jenny P-Y

    2016-03-22

    NOD-like receptor (NLR) proteins are intracellular innate immune sensors/receptors that regulate immunity. This work shows that NLRX1 serves as a tumor suppressor in colitis-associated cancer (CAC) and sporadic colon cancer by keeping key tumor promoting pathways in check. Nlrx1(-/-) mice were highly susceptible to CAC, showing increases in key cancer-promoting pathways including nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and interleukin 6 (IL-6). The tumor-suppressive function of NLRX1 originated primarily from the non-hematopoietic compartment. This prompted an analysis of NLRX1 function in the Apc(min/+) genetic model of sporadic gastrointestinal cancer. NLRX1 attenuated Apc(min/+) colon tumorigenesis, cellular proliferation, NF-κB, MAPK, STAT3 activation, and IL-6 levels. Application of anti-interleukin 6 receptor (IL6R) antibody therapy reduced tumor burden, increased survival, and reduced STAT3 activation in Nlrx1(-/-)Apc(min/+) mice. As an important clinical correlate, human colon cancer samples expressed lower levels of NLRX1 than healthy controls in multiple patient cohorts. These data implicate anti-IL6R as a potential personalized therapy for colon cancers with reduced NLRX1.

  18. KIR and HLA Genotypes Implicated in Reduced Killer Lymphocytes Immunity Are Associated with Vogt-Koyanagi-Harada Disease

    PubMed Central

    Levinson, Ralph D.; Yung, Madeline; Meguro, Akira; Ashouri, Elham; Yu, Fei; Mizuki, Nobuhisa; Ohno, Shigeaki

    2016-01-01

    Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are killer lymphocytes that provide defense against viral infections and tumor transformation. Analogous to that of CTL, interactions of killer-cell immunoglobulin-like receptors (KIR) with specific human leukocyte antigen (HLA) class I ligands calibrate NK cell education and response. Gene families encoding KIRs and HLA ligands are located on different chromosomes, and feature variation in the number and type of genes. The independent segregation of KIR and HLA genes results in variable KIR-HLA interactions in individuals, which may impact disease susceptibility. We tested whether KIR-HLA combinations are associated with Vogt-Koyanagi-Harada (VKH) disease, a bilateral granulomatous panuveitis that has strong association with HLA-DR4. We present a case control study of 196 VKH patients and 209 controls from a highly homogeneous native population of Japan. KIR and HLA class I genes were typed using oligonucleotide hybridization method and analyzed using two-tailed Fisher’s exact probabilities. The incidence of Bx-KIR genotypes was decreased in VKH patients (odds ratio [OR] 0.58, P = 0.007), due primarily to a decrease in centromeric B-KIR motif and its associated KIRs 2DS2, 2DL2, 2DS3, and 2DL5B. HLA-B22, implicated in poor immune response, was increased in VKH (OR = 4.25, P = 0.0001). HLA-Bw4, the ligand for KIR3DL1, was decreased in VKH (OR = 0.59, P = 0.01). The KIR-HLA combinations 2DL2+C1/C2 and 3DL1+Bw4, which function in NK education, were also decreased in VKH (OR = 0.49, P = 0.012; OR = 0.59, P = 0.013). Genotypes missing these two inhibitory KIR-HLA combinations in addition to missing activating KIRs 2DS2 and 2DS3 were more common in VKH (OR = 1.90, P = 0.002). These results suggest that synergistic hyporesponsiveness of NK cells (due to poor NK education along with missing of activating KIRs) and CTL (due to HLA-B22 restriction) fail to mount an effective immune response against viral

  19. Effect of reducing milk production using a prolactin-release inhibitor or a glucocorticoid on metabolism and immune functions in cows subjected to acute nutritional stress.

    PubMed

    Ollier, S; Beaudoin, F; Vanacker, N; Lacasse, P

    2016-12-01

    When cows are unable to consume enough feed to support milk production, they often fall into severe negative energy balance. This leads to a weakened immune system and increases their susceptibility to infectious diseases. Reducing the milk production of cows subjected to acute nutritional stress decreases their energy deficit. The aim of this study was to compare the effects on metabolism and immune function of reducing milk production using quinagolide (a prolactin-release inhibitor) or dexamethasone in feed-restricted cows. A total of 23 cows in early/mid-lactation were fed for 5 d at 55.9% of their previous dry matter intake to subject them to acute nutritional stress. After 1 d of feed restriction and for 4 d afterward (d 2 to 5), cows received twice-daily i.m. injections of water (control group; n=8), 2mg of quinagolide (QN group; n=7), or water after a first injection of 20mg of dexamethasone (DEX group; n=8). Feed restriction decreased milk production, but the decrease was greater in the QN and DEX cows than in the control cows on d 2 and 3. As expected, feed restriction reduced the energy balance, but the reduction was lower in the QN cows than in the control cows. Feed restriction decreased plasma glucose concentration and increased plasma nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB) concentrations. The QN cows had higher glucose concentration and lower BHB concentration than the control cows. The NEFA concentration was also lower in the QN cows than in the control cows on d 2. Dexamethasone injection induced transient hyperglycemia concomitant with a reduction in milk lactose concentration; it also decreased BHB concentration and decreased NEFA initially but increased it later. Feed restriction and quinagolide injections did not affect the blood concentration or activity of polymorphonuclear leukocytes (PMN), whereas dexamethasone injection increased PMN blood concentration but decreased the proportion of PMN capable of inducing oxidative

  20. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    PubMed

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  1. Co-existence of Echinococcus granulosus infection and cancer metastasis in the liver correlates with reduced Th1 immune responses.

    PubMed

    Turhan, N; Esendagli, G; Ozkayar, O; Tunali, G; Sokmensuer, C; Abbasoglu, O

    2015-01-01

    A possible relationship between cancer and Echinococcus granulosus infection has been postulated. As T cells are critical players in immune responses against both infections and malignancies, in an experimental model of secondary echinococcosis and breast cancer, this study aims to observe the progression of cancer and to determine the characters of T-cell responses. 4T1 breast tumour cells were subcutaneously injected into mammary region, whereas protoscoleces were intraperitoneally inoculated into the mice. Hydatid cysts, tumours and metastases were determined with macroscopic and histopathological evaluation. T cells found in spleen, liver and tumour were characterised by flow cytometric analysis of CD3, CD4, CD8, CD25, CCR5, CCR3, IL-4 and IFN-γ. In the mice inoculated both with protoscoleces and with breast tumour cells, increased frequency of cancer metastasis was observed in the liver. The amount of CD4(+) T cells was increased in the liver and in the spleen of mice infected with E. granulosus. However, co-existence of echinococcosis and metastatic lesions in the liver was associated with significant reduction in the IFN-γ(+) and CCR5(+) Th1 cells and increase in the CD25(+) T cells. Our results may indicate an immunological link between cystic echinococcosis and cancer that allows tumour metastasis to flourish in the liver.

  2. Adolescent intermittent ethanol reduces serotonin expression in the adult raphe nucleus and upregulates innate immune expression that is prevented by exercise.

    PubMed

    Vetreno, Ryan P; Patel, Yesha; Patel, Urvi; Walter, T Jordan; Crews, Fulton T

    2017-02-01

    Serotonergic neurons of the raphe nucleus regulate sleep, mood, endocrine function, and other processes that mature during adolescence. Alcohol abuse and binge drinking are common during human adolescence. We tested the novel hypothesis that adolescent intermittent ethanol exposure would alter the serotonergic system that would persist into adulthood. Using a Wistar rat model of adolescent intermittent ethanol (AIE; 5.0g/kg, i.g., 2-day on/2-day off from postnatal day [P]25 to P55), we found a loss of dorsal raphe nucleus (DRN) serotonin (5-HT)-immunoreactive (+IR) neurons that persisted from late adolescence (P56) into adulthood (P220). Hypothalamic and amygdalar DRN serotonergic projections were reduced following AIE. Tryptophan hydroxylase 2, the rate-limiting 5-HT synthesizing enzyme, and vesicular monoamine transporter 2, which packages 5-HT into synaptic vesicles, were also reduced in the young adult midbrain following AIE treatment. Adolescent intermittent ethanol treatment increased expression of phosphorylated (activated) NF-κB p65 as well as markers of microglial activation (i.e., Iba-1 and CD11b) in the adult DRN. Administration of lipopolysaccharide to mimic AIE-induced innate immune activation reduced 5-HT+IR and increased phosphorylated NF-κB p65+IR similar to AIE treatment. Voluntary exercise during adolescence through young adulthood blunted microglial marker and phosphorylated NF-κB p65+IR, and prevented the AIE-induced loss of 5-HT+IR neurons in the DRN. Together, these novel data reveal that AIE reduces 5-HT+IR neurons in the adult DRN, possibly through an innate immune mechanism, which might impact adult cognition, arousal, or reward sensitivity. Further, exercise prevents the deleterious effects of AIE on the serotonergic system.

  3. VS411 Reduced Immune Activation and HIV-1 RNA Levels in 28 Days: Randomized Proof-of-Concept Study for AntiViral-HyperActivation Limiting Therapeutics

    PubMed Central

    Lori, Franco; De Forni, Davide; Katabira, Elly; Baev, Denis; Maserati, Renato; Calarota, Sandra A.; Cahn, Pedro; Testori, Marco; Rakhmanova, Aza; Stevens, Michael R.

    2012-01-01

    Background A new class of antiretrovirals, AntiViral-HyperActivation Limiting Therapeutics (AV-HALTs), has been proposed as a disease-modifying therapy to both reduce Human Immunodeficiency Virus Type 1 (HIV-1) RNA levels and the excessive immune activation now recognized as the major driver of not only the continual loss of CD4+ T cells and progression to Acquired Immunodeficiency Syndrome (AIDS), but also of the emergence of both AIDS-defining and non-AIDS events that negatively impact upon morbidity and mortality despite successful (ie, fully suppressive) therapy. VS411, the first-in-class AV-HALT, combined low-dose, slow-release didanosine with low-dose hydroxycarbamide to accomplish both objectives with a favorable toxicity profile during short-term administration. Five dose combinations were administered as VS411 to test the AV-HALT Proof-of-Concept in HIV-1-infected subjects. Methods Multinational, double-blind, 28-day Phase 2a dose-ranging Proof-of-Concept study of antiviral activity, immunological parameters, safety, and genotypic resistance in 58 evaluable antiretroviral-naïve HIV-1-infected adults. Randomization and allocation to study arms were carried out by a central computer system. Results were analyzed by ANOVA, Kruskal-Wallis, ANCOVA, and two-tailed paired t tests. Results VS411 was well-tolerated, produced significant reductions of HIV-1 RNA levels, increased CD4+ T cell counts, and led to significant, rapid, unprecedented reductions of immune activation markers after 28 days despite incomplete viral suppression and without inhibiting HIV-1-specific immune responses. The didanosine 200 mg/HC 900 mg once-daily formulation demonstrated the greatest antiviral efficacy (HIV-1 RNA: −1.47 log10 copies/mL; CD4+ T cell count: +135 cells/mm3) and fewest adverse events. Conclusions VS411 successfully established the Proof-of-Concept that AV-HALTs can combine antiviral efficacy with rapid, potentially beneficial reductions in the excessive immune system

  4. Initiation of antiretroviral therapy before detection of colonic infiltration by HIV reduces viral reservoirs, inflammation and immune activation

    PubMed Central

    Crowell, Trevor A; Fletcher, James LK; Sereti, Irini; Pinyakorn, Suteeraporn; Dewar, Robin; Krebs, Shelly J; Chomchey, Nitiya; Rerknimitr, Rungsun; Schuetz, Alexandra; Michael, Nelson L; Phanuphak, Nittaya; Chomont, Nicolas; Ananworanich, Jintanat

    2016-01-01

    Introduction Colonic infiltration by HIV occurs soon after infection, establishing a persistent viral reservoir and a barrier to cure. We investigated virologic and immunologic correlates of detectable colonic HIV RNA during acute HIV infection (AHI) and their response to antiretroviral treatment (ART). Methods From 49,458 samples screened for HIV, 74 participants were enrolled during AHI and 41 consented to optional sigmoidoscopy, HIV RNA was categorized as detectable (≥50 copies/mg) or undetectable in homogenized colon biopsy specimens. Biomarkers and HIV burden in blood, colon and cerebrospinal fluid were compared between groups and after 24 weeks of ART. Results Colonic HIV RNA was detectable in 31 participants (76%) and was associated with longer duration since HIV exposure (median 16 vs. 11 days, p=0.02), higher median plasma levels of cytokines and inflammatory markers (CXCL10 476 vs. 148 pg/mL, p=0.02; TNF-RII 1036 vs. 649 pg/mL, p<0.01; neopterin 2405 vs. 1368 pg/mL, p=0.01) and higher levels of CD8+ T cell activation in the blood (human leukocyte antigen - antigen D related (HLA-DR)/CD38 expression 14.4% vs. 7.6%, p <0.01) and colon (8.9% vs. 4.5%, p=0.01). After 24 weeks of ART, participants with baseline detectable colonic HIV RNA demonstrated persistent elevations in total HIV DNA in colonic mucosal mononuclear cells (CMMCs) (median 61 vs. 0 copies/106 CMMCs, p=0.03) and a trend towards higher total HIV DNA in peripheral blood mononuclear cells (PBMC) (41 vs. 1.5 copies/106 PBMCs, p=0.06). There were no persistent differences in immune activation and inflammation. Conclusions The presence of detectable colonic HIV RNA at the time of ART initiation during AHI is associated with higher levels of proviral DNA after 24 weeks of treatment. Seeding of HIV in the gut may have long-lasting effects on the size of persistent viral reservoirs and may represent an important therapeutic target in eradication strategies. PMID:27637172

  5. Immunization of teenagers with a fifth dose of reduced DTaP-IPV induces high levels of pertussis antibodies with a significant increase in opsonophagocytic activity.

    PubMed

    Aase, Audun; Herstad, Tove Karin; Merino, Samuel; Bolstad, Merete; Sandbu, Synne; Bakke, Hilde; Aaberge, Ingeborg S

    2011-08-01

    Waning vaccine-induced immunity against Bordetella pertussis is observed among adolescents and adults. A high incidence of pertussis has been reported in this population, which serves as a reservoir for B. pertussis. A fifth dose of reduced antigen of diphtheria-tetanus-acellular-pertussis and inactivated polio vaccine was given as a booster dose to healthy teenagers. The antibody activity against B. pertussis antigens was measured prior to and 4 to 8 weeks after the booster by different assays: enzyme-linked immunosorbent assays (ELISAs) of IgG and IgA against pertussis toxin (PT) and filamentous hemagglutinin (FHA), IgG against pertactin (PRN), opsonophagocytic activity (OPA), and IgG binding to live B. pertussis. There was a significant increase in the IgG activity against PT, FHA, and PRN following the booster immunization (P < 0.001). The prebooster sera showed a geometric mean OPA titer of 65.1 and IgG binding to live bacteria at a geometric mean concentration of 164.9 arbitrary units (AU)/ml. Following the fifth dose, the OPA increased to a titer of 360.4, and the IgG concentration against live bacteria increased to 833.4 AU/ml (P < 0.001 for both). The correlation analyses between the different assays suggest that antibodies against FHA and PRN contribute the most to the OPA and IgG binding.

  6. Common γ-chain blocking peptide reduces in vitro immune activation markers in HTLV-1-associated myelopathy/tropical spastic paraparesis.

    PubMed

    Massoud, Raya; Enose-Akahata, Yoshimi; Tagaya, Yutaka; Azimi, Nazli; Basheer, Asjad; Jacobson, Steven

    2015-09-01

    Human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive inflammatory myelopathy occurring in a subset of HTLV-1-infected individuals. Despite advances in understanding its immunopathogenesis, an effective treatment remains to be found. IL-2 and IL-15, members of the gamma chain (γc) family of cytokines, are prominently deregulated in HAM/TSP and underlie many of the characteristic immune abnormalities, such as spontaneous lymphocyte proliferation (SP), increased STAT5 phosphorylation in the lymphocytes, and increased frequency and cytotoxicity of virus-specific cytotoxic CD8(+) T lymphocytes (CTLs). In this study, we describe a novel immunomodulatory strategy consisting of selective blockade of certain γc family cytokines, including IL-2 and IL-15, with a γc antagonistic peptide. In vitro, a PEGylated form of the peptide, named BNZ132-1-40, reduced multiple immune activation markers such as SP, STAT5 phosphorylation, spontaneous degranulation of CD8(+) T cells, and the frequency of transactivator protein (Tax)-specific CD8(+) CTLs, thought to be major players in the immunopathogenesis of the disease. This strategy is thus a promising therapeutic approach to HAM/TSP with the potential of being more effective than single monoclonal antibodies targeting either IL-2 or IL-15 receptors and safer than inhibitors of downstream signaling molecules such as JAK1 inhibitors. Finally, selective cytokine blockade with antagonistic peptides might be applicable to multiple other conditions in which cytokines are pathogenic.

  7. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock.

    PubMed

    Zhang, Yong; Zhang, Jinxiang; Korff, Sebastian; Ayoob, Faez; Vodovotz, Yoram; Billiar, Timothy R

    2014-09-01

    An excessive and uncontrolled systemic inflammatory response is associated with organ failure, immunodepression, and increased susceptibility to nosocomial infection following trauma. Interleukin 6 (IL-6) plays a particularly prominent role in the host immune response after trauma with hemorrhage. However, as a result of its pleiotropic functions, the effect of IL-6 in trauma and hemorrhage is still controversial. It remains unclear whether suppression of IL-6 after hemorrhagic shock and trauma will attenuate organ injury and immunosuppression. In this study, C57BL/6 mice were treated with anti-mouse IL-6 monoclonal antibody immediately prior to resuscitation in an experimental model combining hemorrhagic shock and lower-extremity injury. Interleukin 6 levels and signaling were transiently suppressed following administrations of anti-IL-6 monoclonal antibody following hemorrhagic shock and lower-extremity injury. This resulted in reduced lung and liver injury, as well as suppression in the levels of key inflammatory mediators including IL-10, keratinocyte-derived chemokine, monocyte chemoattractant protein 1, and macrophage inhibitory protein 1α at both 6 and 24 h. Furthermore, the shift to TH2 cytokine production and suppressed lymphocyte response were partly prevented. These results demonstrate that IL-6 is not only a biomarker but also an important driver of injury-induced inflammation and immune suppression in mice. Rapid measurement of IL-6 levels in the early phase of postinjury care could be used to guide IL-6-based interventions.

  8. Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice

    PubMed Central

    Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat

    2009-01-01

    Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060

  9. Bone marrow-derived mesenchymal stem cells reduce immune reaction in a mouse model of allergic rhinitis

    PubMed Central

    Zhao, Ning; Liu, Yanjuan; Liang, Hongfeng; Jiang, Xuejun

    2016-01-01

    Object: To determine the potential of bone marrow-derived mesenchymal stem cells (BMSCs) for immunomodulatory mechanism in mice model of allergic rhinitis (AR). Methods: BMSCs were isolated and the surface markers and stemness were analyzed. The effect of BMSCs was evaluated in BALB/c mice that were randomly divided into three groups (control group, ovalbumin (OVA) group, OVA+BMSCs group). BMSCs were administered intravenously to OVA sensitized mice on days 1, 7, 14 and 21, and subsequent OVA challenge was conducted daily from days 22 to 35. Several parameters of allergic inflammation were assessed. Results: Mesenchymal stem cells can be successfully isolated from bone marrow of mice. Intravenous injection of BMSCs significantly reduced allergic symptoms, eosinophil infiltration, OVA-specific immunoglobulin E (IgE), T-helper 2 (Th2) cytokine profile (interleukin (IL)-4, IL-5 and IL-13) and regulatory cytokines (IL-10). In addition, level of Th1 (IFN-γ) was significantly increased. Conclusion: Administration of BMSCs effectively reduced allergic symptoms and inflammatory parameters in the mice model of AR. BMSCs treatment is potentially an alternative therapeutic modality in AR. PMID:28078033

  10. Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice.

    PubMed

    Imeri, Faik; Fallegger, Daniel; Zivkovic, Aleksandra; Schwalm, Stephanie; Enzmann, Gaby; Blankenbach, Kira; Meyer zu Heringdorf, Dagmar; Homann, Thomas; Kleuser, Burkhard; Pfeilschifter, Josef; Engelhardt, Britta; Stark, Holger; Huwiler, Andrea

    2014-10-01

    The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.

  11. Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization.

    PubMed

    Tachibana, Mayumi; Suwanabun, Nantavadee; Kaneko, Osamu; Iriko, Hideyuki; Otsuki, Hitoshi; Sattabongkot, Jetsumon; Kaneko, Akira; Herrera, Socrates; Torii, Motomi; Tsuboi, Takafumi

    2015-04-15

    Malaria transmission-blocking vaccines (TBV) aim to interfere with the development of the malaria parasite in the mosquito vector, and thus prevent spread of transmission in a community. To date three TBV candidates have been identified in Plasmodium vivax; namely, the gametocyte/gamete protein Pvs230, and the ookinete surface proteins Pvs25 and Pvs28. The Plasmodium falciparum gametocyte/gamete stage proteins Pfs48/45 and Pfs47 have been studied as TBV candidates, and Pfs48/45 shown to induce transmission-blocking antibodies, but the candidacy of their orthologs in P. vivax, Pvs48/45 (PVX_083235) and Pvs47 (PVX_083240), for vivax TBV have not been tested. Herein we investigated whether targeting Pvs48/45 and Pvs47 can inhibit parasite transmission to mosquitoes, using P. vivax isolates obtained in Thailand. Mouse antisera directed against the products from plasmids expressing Pvs48/45 and Pvs47 detected proteins of approximately 45- and 40-kDa, respectively, in the P. vivax gametocyte lysate, by Western blot analysis under non-reducing conditions. In immunofluorescence assays Pvs48/45 was detected predominantly on the surface and Pvs47 was detected in the cytoplasm of gametocytes. Membrane feeding transmission assays demonstrated that anti-Pvs48/45 and -Pvs47 mouse sera significantly reduced the number of P. vivax oocysts developing in the mosquito midgut. Limited amino acid polymorphism of these proteins was observed among 27 P. vivax isolates obtained from Thailand, Vanuatu, and Colombia; suggesting that polymorphism may not be an impediment for the utilization of Pvs48/45 and Pvs47 as TBV antigens. In one Thai isolate we found that the fourth cysteine residue in the Pvs47 cysteine-rich domain (CRD) III (amino acid position 337) is substituted to phenylalanine. However, antibodies targeting Pvs47 CRDI-III showed a significant transmission-reducing activity against this isolate, suggesting that this substitution in Pvs47 was not critical for recognition by the

  12. Immunization with H7-HCP-tir-intimin significantly reduces colonization and shedding of Escherichia coli O157:H7 in goats.

    PubMed

    Zhang, Xuehan; Yu, Zhengyu; Zhang, Shuping; He, Kongwang

    2014-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the causative agent of hemorrhagic colitis and hemolytic uremic syndrome in humans. However, the bacterium can colonize the intestines of ruminants without causing clinical signs. EHEC O157:H7 needs flagella (H7) and hemorrhagic coli pili (HCP) to adhere to epithelial cells. Then the bacterium uses the translocated intimin receptor (Tir) and an outer membrane adhesion (Intimin) protein to colonize hosts. This leads to the attachment and effacement of (A/E) lesions. A tetravalent recombinant vaccine (H7-HCP-Tir-Intimin) composed of immunologically important portions of H7, HCP, Tir and Intimin proteins was constructed and its efficacy was evaluated using a caprine model. The results showed that the recombinant vaccine induced strong humoral and mucosal immune responses and protected the subjects from live challenges with EHEC O157:H7 86-24 stain. After a second immunization, the average IgG titer peaked at 7.2 × 10(5). Five days after challenge, E. coli O157:H7 was no longer detectable in the feces of vaccinated goats, but naïve goats shed the bacterium throughout the course of the challenge. Cultures of intestinal tissues showed that vaccination of goats with H7-HCP-Tir-Intimin reduced the amount of intestinal colonization by EHEC O157:H7 effectively. Recombinant H7-HCP-Tir-Intimin protein is an excellent vaccine candidate. Data from the present study warrant further efficacy studies aimed at reducing EHEC O157:H7 load on farms and the contamination of carcasses by this zoonotic pathogen.

  13. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88.

    PubMed

    Liu, P; Piao, X S; Thacker, P A; Zeng, Z K; Li, P F; Wang, D; Kim, S W

    2010-12-01

    Seventy-two barrows (Landrace × Large White, initial BW of 4.9 ± 0.3 kg and 17 ± 3 d old) were used to determine if dietary chito-oligosaccharides can replace antibiotics as a means to reduce signs associated with infection in weaned pigs challenged with Escherichia coli. Pigs were assigned to 1 of 4 treatments in a randomized complete block design using 6 pens per treatment with 3 pigs per pen. The treatments consisted of pigs fed the unsupplemented corn-soybean meal diet challenged or unchallenged with E. coli K88 and pigs fed the same diet supplemented with 160 mg of chito-oligosaccharides or 100 mg of cyadox/kg and challenged with E. coli K88. On d 7, 1 group of pigs fed the unsupplemented diet, as well as all pigs fed diets containing chito-oligosaccharides or cyadox, were orally dosed with 30 mL of an alkaline broth containing E. coli K88. Another group of pigs fed the unsupplemented diet was orally dosed with 30 mL of sterilized alkaline broth. Fecal consistency was visually assessed each morning from d 7 to 14. Blood samples were collected at 0, 24, 48, and 168 h postinfection. On d 14 postchallenge, all pigs were killed to evaluate intestinal morphology and determine E. coli concentrations in the intestine. During the postchallenge period (wk 2), unsupplemented pigs challenged with E. coli had decreased (P < 0.05) BW gain, feed intake, fecal consistency, villus height, villus height:crypt depth ratio, and plasma IGF-1, and increased (P < 0.05) diarrhea incidence, E. coli counts in the intestine, plasma interleukin-1β, plasma IL-10, and IGA-positive cells in the jejunal and ileal lamina propria, compared with unchallenged pigs. Supplementation with cyadox largely mitigated these effects. Although chito-oligosaccharide reduced the incidence of diarrhea, the growth performance of E. coli-challenged pigs supplemented with chito-oligosaccharide was not better than that of unsupplemented pigs challenged with E. coli. Therefore, chito-oligosaccharide, at the

  14. Reduced in vitro immune responses of purified human Leu-3 (helper/inducer phenotype) cells after total lymphoid irradiation

    SciTech Connect

    Field, E.H.; Engleman, E.G.; Terrell, C.P.; Strober, S.

    1984-02-01

    Patients treated with total lymphoid irradiation (TLI) for intractible rheumatoid arthritis showed marked decreases in the in vitro proliferative responses of peripheral blood mononuclear cells (PBM) to antigens and mitogens. To determine whether an intrinsic deficit in helper/inducer cell proliferation contributed to decreased responses, cells of the helper/inducer phenotype were purified from the PBM of treated patients by using monoclonal anti-Leu-3 antibody and a modified panning procedure. The purified Leu-3 cells obtained after TLI showed a marked reduction in (/sup 3/H)thymidine incorporation in response to allogeneic lymphocytes, PHA, Con A, and several protein antigens, as compared with that of cells from the same patients obtained before TLI. In addition, the quantity of Leu-3 surface antigen on the panned cells was reduced after TLI. The results suggest that TLI induces prolonged qualitative as well as quantitative changes in circulating Leu-3 T cells. These changes may contribute to the clinical effects of TLI.

  15. Peripheral blood mononuclear cell supernatants from asymptomatic dogs immunized and experimentally challenged with Leishmania chagasi can stimulate canine macrophages to reduce infection in vitro.

    PubMed

    Rodrigues, Cleusa Alves Theodoro; Batista, Luís Fábio da Silva; Teixeira, Márcia Cristina Aquino; Pereira, Andréa Mendes; Santos, Patrícia Oliveira Meira; de Sá Oliveira, Geraldo Gileno; de Freitas, Luiz Antônio Rodrigues; Veras, Patrícia Sampaio Tavares

    2007-02-28

    Leishmania chagasi is the causative agent of visceral leishmaniasis in both humans and dogs in the New World. The dog is the main domestic reservoir and its infection displays different clinical presentations, from asymptomatic to severe disease. Macrophages play an important role in the control of Leishmania infection. Although it is not an area of intense study, some data suggest a role for canine macrophages in parasite killing by a NO-dependent mechanism. It has been proposed that control of human disease could be possible with the development of an effective vaccine against canine visceral leishmaniasis. Development of a rapid in vitro test to predict animal responses to Leishmania infection or vaccination should be helpful. In this study, an in vitro model was established to test whether peripheral blood mononuclear cell (PBMC) supernatants from dogs immunized with promastigote lysates and infected with L. chagasi promastigotes could stimulate macrophages from healthy dogs in order to control parasite infection. PBMC from a majority of the immunized and experimentally infected dogs expressed IFN-gamma mRNA and secreted IFN-gamma when stimulated with soluble L. chagasi antigen (SLA) in vitro. Additionally, the supernatants from stimulated PBMC were able to reduce the percentage of infected donor macrophages. The results also indicate that parasite killing in this system is dependent on NO, since aminoguanidine (AMG) reversed this effect. This in vitro test appears to be useful for screening animal responses to parasite inoculation as well as studying the lymphocyte effector mechanisms involved in pathogen killing by canine macrophages.

  16. Tadalafil Reduces Myeloid-Derived Suppressor Cells and Regulatory T Cells and Promotes Tumor Immunity in Patients with Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Vella, Jennifer L.; Reis, Isildinha M.; De la fuente, Adriana C.; Gomez, Carmen; Sargi, Zoukaa; Nazarian, Ronen; Califano, Joseph; Borrello, Ivan

    2015-01-01

    Purpose Myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) play a key role in the progression of head and neck squamous cell carcinoma (HNSCC). On the basis of our preclinical data demonstrating that phosphodiesterase-5 (PDE5) inhibition can modulate these cell populations, we evaluated whether the PDE5 inhibitor tadalafil can revert tumor-induced immunosuppression and promote tumor immunity in patients with HNSCC. Experimental Design First, we functionally and phenotypically characterized MDSCs in HNSCCs and determined, retrospectively, whether their presence at the tumor site correlates with recurrence. Then, we performed a prospective single-center, double-blinded, randomized, three-arm study in which patients with HNSCC undergoing definitive surgical resection of oral and oropharyngeal tumors were treated with tadalafil 10 μg/day, 20 μg/day, or placebo for at least 20 days preoperatively. Blood and tumor MDSC and Treg presence and CD8+ T-cell reactivity to tumor antigens were evaluated before and after treatment. Results MDSCs were characterized in HNSCC and their intratumoral presence significantly correlates with recurrence. Tadalafil treatment was well tolerated and significantly reduced both MDSCs and Treg concentrations in the blood and in the tumor (P < 0.05). In addition, the concentration of blood CD8+ T cells reactive to autologous tumor antigens significantly increased after treatment (P < 0.05). Tadalafil immunomodulatory activity was maximized at an intermediate dose but not at higher doses. Mechanistic analysis suggests a possible off-target effect on PDE11 at high dosages that, by increasing intracellular cAMP, may negatively affect antitumor immunity. Conclusions Tadalafil seems to beneficially modulate the tumor micro- and macro-environment in patients with HNSCC by lowering MDSCs and Tregs and increasing tumor-specific CD8+ T cells in a dose-dependent fashion. PMID:25320361

  17. HTLV-1 Tax-Specific CTL Epitope-Pulsed Dendritic Cell Therapy Reduces Proviral Load in Infected Rats with Immune Tolerance against Tax.

    PubMed

    Ando, Satomi; Hasegawa, Atsuhiko; Murakami, Yuji; Zeng, Na; Takatsuka, Natsuko; Maeda, Yasuhiro; Masuda, Takao; Suehiro, Youko; Kannagi, Mari

    2017-02-01

    Adult T cell leukemia/lymphoma (ATL), a CD4(+) T cell malignancy with a poor prognosis, is caused by human T cell leukemia virus type 1 (HTLV-1) infection. High proviral load (PVL) is a risk factor for the progression to ATL. We previously reported that some asymptomatic carriers had severely reduced functions of CTLs against HTLV-1 Tax, the major target Ag. Furthermore, the CTL responses tended to be inversely correlated with PVL, suggesting that weak HTLV-1-specific CTL responses may be involved in the elevation of PVL. Our previous animal studies indicated that oral HTLV-1 infection, the major route of infection, caused persistent infection with higher PVL in rats compared with other routes. In this study, we found that Tax-specific CD8(+) T cells were present, but not functional, in orally infected rats as observed in some human asymptomatic carriers. Even in the infected rats with immune unresponsiveness against Tax, Tax-specific CTL epitope-pulsed dendritic cell (DC) therapy reduced the PVL and induced Tax-specific CD8(+) T cells capable of proliferating and producing IFN-γ. Furthermore, we found that monocyte-derived DCs from most infected individuals still had the capacity to stimulate CMV-specific autologous CTLs in vitro, indicating that DC therapy may be applicable to most infected individuals. These data suggest that peptide-pulsed DC immunotherapy will be useful to induce functional HTLV-1-specific CTLs and decrease PVL in infected individuals with high PVL and impaired HTLV-1-specific CTL responses, thereby reducing the risk of the development of ATL.

  18. Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study.

    PubMed

    Klinke, David J

    2014-01-01

    Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre

  19. The effects of reduced gluten barley diet on humoral and cell-mediated systemic immune responses of gluten-sensitive rhesus macaques.

    PubMed

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P; Liu, David X; Moehs, Charles P

    2015-03-06

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading-by co-administration of additional treatments.

  20. The Effects of Reduced Gluten Barley Diet on Humoral and Cell-Mediated Systemic Immune Responses of Gluten-Sensitive Rhesus Macaques

    PubMed Central

    Sestak, Karol; Thwin, Hazel; Dufour, Jason; Aye, Pyone P.; Liu, David X.; Moehs, Charles P.

    2015-01-01

    Celiac disease (CD) affects approximately 1% of the general population while an estimated additional 6% suffers from a recently characterized, rapidly emerging, similar disease, referred to as non-celiac gluten sensitivity (NCGS). The only effective treatment of CD and NCGS requires removal of gluten sources from the diet. Since required adherence to a gluten-free diet (GFD) is difficult to accomplish, efforts to develop alternative treatments have been intensifying in recent years. In this study, the non-human primate model of CD/NCGS, e.g., gluten-sensitive rhesus macaque, was utilized with the objective to evaluate the treatment potential of reduced gluten cereals using a reduced gluten (RG; 1% of normal gluten) barley mutant as a model. Conventional and RG barleys were used for the formulation of experimental chows and fed to gluten-sensitive (GS) and control macaques to determine if RG barley causes a remission of dietary gluten-induced clinical and immune responses in GS macaques. The impacts of the RG barley diet were compared with the impacts of the conventional barley-containing chow and the GFD. Although remission of the anti-gliadin antibody (AGA) serum responses and an improvement of clinical diarrhea were noted after switching the conventional to the RG barley diet, production of inflammatory cytokines, e.g., interferon-gamma (IFN-γ), tumor necrosis factor (TNF) and interleukin-8 (IL-8) by peripheral CD4+ T helper lymphocytes, persisted during the RG chow treatment and were partially abolished only upon re-administration of the GFD. It was concluded that the RG barley diet might be used for the partial improvement of gluten-induced disease but its therapeutic value still requires upgrading—by co-administration of additional treatments. PMID:25756783

  1. Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCgamma1, and ERK in hippocampal synaptoneurosomes.

    PubMed

    Cortese, Giuseppe P; Barrientos, Ruth M; Maier, Steven F; Patterson, Susan L

    2011-03-16

    For reasons that are not well understood, aging significantly increases brain vulnerability to challenging life events. High-functioning older individuals often experience significant cognitive decline after an inflammatory event such as surgery, infection, or injury. We have modeled this phenomenon in rodents and have previously reported that a peripheral immune challenge (intraperitoneal injection of live Escherichia coli) selectively disrupts consolidation of hippocampus-dependent memory in aged (24-month-old), but not young (3-month-old), F344xBN rats. More recently, we have demonstrated that this infection-evoked memory deficit is mirrored by a selective deficit in long-lasting synaptic plasticity in the hippocampus. Interestingly, these deficits occur in forms of long-term memory and synaptic plasticity known to be strongly dependent on brain-derived neurotrophic factor (BDNF). Here, we begin to test the hypothesis that the combination of aging and an infection might disrupt production or processing of BDNF protein in the hippocampus, decreasing the availability of BDNF for plasticity-related processes at synaptic sites. We find that mature BDNF is markedly reduced in Western blots of hippocampal synaptoneurosomes prepared from aged animals following infection. This reduction is blocked by intra-cisterna magna administration of the anti-inflammatory cytokine IL-1Ra (interleukin 1-specific receptor antagonist). Levels of the pan-neurotrophin receptor p75(NTR) and the BDNF receptor TrkB (tropomyosin receptor kinase B) are not significantly altered in these synaptoneurosomes, but phosphorylation of TrkB and downstream activation of PLCγ1 (phospholipase Cγ1) and ERK (extracellular response kinase) are attenuated-observations consistent with reduced availability of mature BDNF to activate TrkB signaling. These data suggest that inflammation-evoked reductions in BDNF at synapses might contribute to inflammation-evoked disruptions in long-term memory and synaptic

  2. Immune System

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Immune System KidsHealth > For Teens > Immune System A A A ... could put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  3. Caloric Restriction reduces inflammation and improves T cell-mediated immune response in obese mice but concomitant consumption of curcumin/piperine adds no further benefit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with low-grade inflammation and impaired immune response. Caloric restriction (CR) has been shown to inhibit inflammatory response and enhance cell-mediated immune function. Curcumin, the bioactive phenolic component of turmeric spice, is proposed to have anti-obesity and anti-...

  4. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease

    PubMed Central

    Benner, Eric J.; Mosley, R. Lee; Destache, Chris J.; Lewis, Travis B.; Jackson-Lewis, Vernice; Gorantla, Santhi; Nemachek, Craig; Green, Steven R.; Przedborski, Serge; Gendelman, Howard E.

    2004-01-01

    Degeneration of the nigrostriatal dopaminergic pathway, the hallmark of Parkinson's disease, can be recapitulated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. Herein, we demonstrate that adoptive transfer of copolymer-1 immune cells to MPTP recipient mice leads to T cell accumulation within the substantia nigra pars compacta, suppression of microglial activation, and increased local expression of astrocyte-associated glial cell line-derived neurotrophic factor. This immunization strategy resulted in significant protection of nigrostriatal neurons against MPTP-induced neurodegeneration that was abrogated by depletion of donor T cells. Such vaccine treatment strategies may provide benefit for Parkinson's disease. PMID:15197276

  5. Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer

    PubMed Central

    2013-01-01

    Background and the purpose of the study Selenium enriched Lactobacillus has been reported as an immunostimulatory agent which can be used to increase the life span of cancer bearing animals. Lactic acid bacteria can reduce selenium ions to elemental selenium nanoparticles (SeNPs) and deposit them in intracellular spaces. In this strategy two known immunostimulators, lactic acid bacteria (LAB) and SeNPs, are concomitantly administered for enhancing of immune responses in cancer bearing mice. Methods Forty five female inbred BALB/c mice were divided into three groups of tests and control, each containing 15 mice. Test mice were orally administered with SeNP-enriched Lactobacillus brevis or Lactobacillus brevis alone for 3 weeks before tumor induction. After that the administration was followed in three cycles of seven days on/three days off. Control group received phosphate buffer saline (PBS) at same condition. During the study the tumor growth was monitored using caliper method. At the end of study the spleen cell culture was carried out for both NK cytotoxicity assay and cytokines measurement. Delayed type hypersensitivity (DTH) responses were also assayed after 72h of tumor antigen recall. Serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels were measured, the livers of mice were removed and prepared for histopathological analysis. Results High level of IFN-γ and IL-17 besides the significant raised in NK cytotoxicity and DTH responses were observed in SeNP-enriched L. brevis administered mice and the extended life span and decrease in the tumor metastasis to liver were also recorded in this group compared to the control mice or L.brevis alone administered mice. Conclusion Our results suggested that the better prognosis could be achieved by oral administration of SeNP-enriched L. brevis in highly metastatic breast cancer mice model. PMID:23631392

  6. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation.

    PubMed

    Kim, Janice J; Bridle, Byram W; Ghia, Jean-Eric; Wang, Huaqing; Syed, Shahzad N; Manocha, Marcus M; Rengasamy, Palanivel; Shajib, Mohammad Sharif; Wan, Yonghong; Hedlund, Peter B; Khan, Waliul I

    2013-05-01

    Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7(-/-)) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7(-/-) mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7(-/-) mice and in mice reconstituted with bone marrow cells from 5-HT7(-/-) mice compared with control mice after DSS colitis. 5-HT7(-/-) mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.

  7. Intramammary Immunization of Pregnant Mice with Staphylococcal Protein A Reduces the Post-Challenge Mammary Gland Bacterial Load but Not Pathology

    PubMed Central

    Gogoi-Tiwari, Jully; Williams, Vincent; Waryah, Charlene Babra; Mathavan, Sangeetha; Tiwari, Harish Kumar; Costantino, Paul; Mukkur, Trilochan

    2016-01-01

    Protein A, encoded by the spa gene, is one of the major immune evading MSCRAMM of S. aureus, demonstrated to be prevalent in a significant percentage of clinical bovine mastitis isolates in Australia. Given its’ reported significance in biofilm formation and the superior performance of S. aureus biofilm versus planktonic vaccine in the mouse mastitis model, it was of interest to determine the immunogenicity and protective potential of Protein A as a potential vaccine candidate against bovine mastitis using the mouse mastitis model. Pregnant Balb/c mice were immunised with Protein A emulsified in an alum-based adjuvant by subcutaneous (s/c) or intramammary (i/mam) routes. While humoral immune response of mice post-immunization were determined using indirect ELISA, cell-mediated immune response was assessed by estimation of interferon-gamma (IFN-γ) produced by protein A-stimulated splenocyte supernatants. Protective potential of Protein A against experimental mastitis was determined by challenge of immunized versus sham-vaccinated mice by i/mam route, based upon manifestation of clinical symptoms, total bacterial load and histopathological damage to mammary glands. Significantly (p<0.05) higher levels of IgG1 isotype were produced in mice immunized by the s/c route. In contrast, significantly higher levels of the antibody isotype IgG2a were produced in mice immunized by the i/mam route (p<0.05). There was significant reduction (p<0.05) in bacterial loads of the mammary glands of mice immunized by Protein A regardless of the route of immunization, with medium level of clinical symptoms observed up to day 3 post-challenge. However, Protein A vaccine failed to protect immunized mice post-challenge with biofilm producing encapsulated S. aureus via i/mam route, regardless of the route of immunization, as measured by the level of mammary tissue damage. It was concluded that, Protein A in its’ native state was apparently not a suitable candidate for inclusion in a cell

  8. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone.

    PubMed

    Awasthi, Sita; Lubinski, John M; Shaw, Carolyn E; Barrett, Shana M; Cai, Michael; Wang, Fushan; Betts, Michael; Kingsley, Susan; Distefano, Daniel J; Balliet, John W; Flynn, Jessica A; Casimiro, Danilo R; Bryan, Janine T; Friedman, Harvey M

    2011-10-01

    Attempts to develop a vaccine to prevent genital herpes simplex virus 2 (HSV-2) disease have been only marginally successful, suggesting that novel strategies are needed. Immunization with HSV-2 glycoprotein C (gC-2) and gD-2 was evaluated in mice and guinea pigs to determine whether adding gC-2 to a gD-2 subunit vaccine would improve protection by producing antibodies that block gC-2 immune evasion from complement. Antibodies produced by gC-2 immunization blocked the interaction between gC-2 and complement C3b, and passive transfer of gC-2 antibody protected complement-intact mice but not C3 knockout mice against HSV-2 challenge, indicating that gC-2 antibody is effective, at least in part, because it prevents HSV-2 evasion from complement. Immunization with gC-2 also produced neutralizing antibodies that were active in the absence of complement; however, the neutralizing titers were higher when complement was present, with the highest titers in animals immunized with both antigens. Animals immunized with the gC-2-plus-gD-2 combination had robust CD4+ T-cell responses to each immunogen. Multiple disease parameters were evaluated in mice and guinea pigs immunized with gC-2 alone, gD-2 alone, or both antigens. In general, gD-2 outperformed gC-2; however, the gC-2-plus-gD-2 combination outperformed gD-2 alone, particularly in protecting dorsal root ganglia in mice and reducing recurrent vaginal shedding of HSV-2 DNA in guinea pigs. Therefore, the gC-2 subunit antigen enhances a gD-2 subunit vaccine by stimulating a CD4+ T-cell response, by producing neutralizing antibodies that are effective in the absence and presence of complement, and by blocking immune evasion domains that inhibit complement activation.

  9. Immunization with a Vaccine Combining Herpes Simplex Virus 2 (HSV-2) Glycoprotein C (gC) and gD Subunits Improves the Protection of Dorsal Root Ganglia in Mice and Reduces the Frequency of Recurrent Vaginal Shedding of HSV-2 DNA in Guinea Pigs Compared to Immunization with gD Alone ▿

    PubMed Central

    Awasthi, Sita; Lubinski, John M.; Shaw, Carolyn E.; Barrett, Shana M.; Cai, Michael; Wang, Fushan; Betts, Michael; Kingsley, Susan; DiStefano, Daniel J.; Balliet, John W.; Flynn, Jessica A.; Casimiro, Danilo R.; Bryan, Janine T.; Friedman, Harvey M.

    2011-01-01

    Attempts to develop a vaccine to prevent genital herpes simplex virus 2 (HSV-2) disease have been only marginally successful, suggesting that novel strategies are needed. Immunization with HSV-2 glycoprotein C (gC-2) and gD-2 was evaluated in mice and guinea pigs to determine whether adding gC-2 to a gD-2 subunit vaccine would improve protection by producing antibodies that block gC-2 immune evasion from complement. Antibodies produced by gC-2 immunization blocked the interaction between gC-2 and complement C3b, and passive transfer of gC-2 antibody protected complement-intact mice but not C3 knockout mice against HSV-2 challenge, indicating that gC-2 antibody is effective, at least in part, because it prevents HSV-2 evasion from complement. Immunization with gC-2 also produced neutralizing antibodies that were active in the absence of complement; however, the neutralizing titers were higher when complement was present, with the highest titers in animals immunized with both antigens. Animals immunized with the gC-2-plus-gD-2 combination had robust CD4+ T-cell responses to each immunogen. Multiple disease parameters were evaluated in mice and guinea pigs immunized with gC-2 alone, gD-2 alone, or both antigens. In general, gD-2 outperformed gC-2; however, the gC-2-plus-gD-2 combination outperformed gD-2 alone, particularly in protecting dorsal root ganglia in mice and reducing recurrent vaginal shedding of HSV-2 DNA in guinea pigs. Therefore, the gC-2 subunit antigen enhances a gD-2 subunit vaccine by stimulating a CD4+ T-cell response, by producing neutralizing antibodies that are effective in the absence and presence of complement, and by blocking immune evasion domains that inhibit complement activation. PMID:21813597

  10. Immune Thrombocytopenia

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Immune Thrombocytopenia? Immune thrombocytopenia (THROM-bo-si-toe-PE-ne- ... from one person to another. Types of Immune Thrombocytopenia The two types of ITP are acute (temporary ...

  11. Effectiveness of an immunocastration vaccine formulation to reduce the gonadal function in female and male mice by Th1/Th2 immune response.

    PubMed

    Siel, Daniela; Vidal, Sonia; Sevilla, Rafael; Paredes, Rodolfo; Carvallo, Francisco; Lapierre, Lisette; Maino, Mario; Pérez, Oliver; Sáenz, Leonardo

    2016-10-01

    Immunocastration has emerged as an alternative to surgical castration in different animal species. This study examined the effectiveness of a new vaccine formulation for immunocastration using the biopolymer chitosan as adjuvant. First, female and male mice (n = 4), in three subsequent experiments were vaccinated at Days 1 and 30 of the study, to determine the immune response profile and gonadal alterations due to immunization. The results demonstrated that the vaccine was able to elicit strong antibody responses against native GnRH hormone (P < 0.01), with a T helper (Th) 1/Th2 immune response profile. Along with this, a suppression of gonadal activity with a decrease of luteal bodies (1.08 ± 0.22 and 4.08 ± 0.39) and antral follicles (1.17 ± 0.32 and 4.5 ± 0.38) in the ovaries of immunized females and control, respectively, and a reduction of seminiferous tubules size (142.3 ± 5.58 mm and 198.0 ± 6.11 mm) and germinal cellular layers (3.58 ± 0.26 and 5.08 ± 0.29) of immunized males and control animals, respectively, were observed (P < 0.01). Then, in a study of long-term immune response due to vaccination in female and male mice (n = 4) from two subsequent experiments, a suppression of gonadal function and an induction of a Th1/Th2 immune response was also observed, determined by both, immunoglobulin and cytokine profiles, which lasted until the end of the study (7 months; P < 0.01). The findings of this study have demonstrated that vaccination with a new immunocastration vaccine inducing a Th1/Th2 immune response against GnRH (P < 0.01) elicit a decrease of gonadal function in male and female mice (P < 0.01). Owing to long-term duration of the antibody levels generated, this vaccine formulation appears as a promising alternative for immunocastration of several animal species where long-lasting reproductive block is needed.

  12. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of active dry yeast, Saccharomyces cerevisiae boulardii (Scb), on the immune/cortisol response and subsequent mortality to E. coli lipopolysaccharide (LPS) administration were evaluated in newly weaned piglets (26.1 +/- 3.4 d of age). Barrows were assigned to 1 of 2 treatment groups, wit...

  13. 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces Radiation-induced DNA Damage and Induces Genes that Modulate Cell Cycle Progression and Apoptosis

    DTIC Science & Technology

    2012-01-01

    pre-irradiation) radio- protectants and (post-irradiation) therapeutics, as recognized by civilian and military government agencies [2– 4 ]. 5-AED is...2012 4 . TITLE AND SUBTITLE 5-AED Enhances Survival of Irradiated Mice in a G-CSF-Dependent Manner, Stimulates Innate Immune Cell Function, Reduces...control after 4 days, but not 8 days. The time course of plasma 5-AED after buccal de- livery (60 mg/kg) was similar, but levels were significantly lower

  14. Bacillus cereus var. Toyoi modulates the immune reaction and reduces the occurrence of diarrhea in piglets challenged with Salmonella Typhimurium DT104.

    PubMed

    Scharek-Tedin, L; Pieper, R; Vahjen, W; Tedin, K; Neumann, K; Zentek, J

    2013-12-01

    suspensions were compared. The infection rate (IR) of γδ T cells was higher in all six cell suspensions than the IR of CD8β expressing T cells (P = 0.002). In conclusion, B. cereus var. Toyoi supplementation of sows and their piglets had a positive impact on the health status of the piglets after a challenge with Salmonella, likely due to an altered immune response marked by reduced frequencies of CD8+ γδ T cells in the peripheral blood and the jejunal epithelium.

  15. Integrated Immune

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarnece

    2010-01-01

    This slide presentation reviews the program to replace several recent studies about astronaut immune systems with one comprehensive study that will include in-flight sampling. The study will address lack of in-flight data to determine the inflight status of immune systems, physiological stress, viral immunity, to determine the clinical risk related to immune dysregulation for exploration class spaceflight, and to determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  16. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  17. Adenovirus capsid-display of the retro-oriented human complement inhibitor DAF reduces Ad vector–triggered immune responses in vitro and in vivo

    PubMed Central

    Seregin, Sergey S.; Aldhamen, Yasser A.; Appledorn, Daniel M.; Hartman, Zachary C.; Schuldt, Nathaniel J.; Scott, Jeannine; Godbehere, Sarah; Jiang, Haixiang; Frank, Michael M.

    2010-01-01

    Adenovirus (Ad) vectors are widely used in human clinical trials. However, at higher dosages, Ad vector–triggered innate toxicities remain a major obstacle to many applications. Ad interactions with the complement system significantly contribute to innate immune responses in several models of Ad-mediated gene transfer. We constructed a novel class of Ad vectors, genetically engineered to “capsid-display” native and retro-oriented versions of the human complement inhibitor decay-accelerating factor (DAF), as a fusion protein from the C-terminus of the Ad capsid protein IX. In contrast to conventional Ad vectors, DAF-displaying Ads dramatically minimized complement activation in vitro and complement-dependent immune responses in vivo. DAF-displaying Ads did not trigger thrombocytopenia, minimized endothelial cell activation, and had diminished inductions of proinflammatory cytokine and chemokine responses. The retro-oriented display of DAF facilitated the greatest improvements in vivo, with diminished activation of innate immune cells, such as dendritic and natural killer cells. In conclusion, Ad vectors can capsid-display proteins in a manner that not only retains the functionality of the displayed proteins but also potentially can be harnessed to improve the efficacy of this important gene transfer platform for numerous gene transfer applications. PMID:20511542

  18. Pivotal Advance: Invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza A virus infection.

    PubMed

    Kok, Wai Ling; Denney, Laura; Benam, Kambez; Cole, Suzanne; Clelland, Colin; McMichael, Andrew J; Ho, Ling-Pei

    2012-03-01

    Little is known of how a strong immune response in the lungs is regulated to minimize tissue injury during severe influenza A virus (IAV) infection. Here, using a model of lethal, high-pathogenicity IAV infection, we first show that Ly6C(hi)Ly6G(-) inflammatory monocytes, and not neutrophils, are the main infiltrate in lungs of WT mice. Mice devoid of iNKT cells (Jα18(-/-) mice) have increased levels of inflammatory monocytes, which correlated with increased lung injury and mortality (but not viral load). Activation of iNKT cells correlated with reduction of MCP-1 levels and improved outcome. iNKT cells were able to selectively lyse infected, MCP-1-producing monocytes in vitro, in a CD1d-dependent process. Our study provides a detailed profile and kinetics of innate immune cells in the lungs during severe IAV infection, highlighting inflammatory monocytes as the major infiltrate and identifying a role for iNKT cells in control of these cells and lung immune-pathology.

  19. FTY720 and two novel butterfly derivatives exert a general anti-inflammatory potential by reducing immune cell adhesion to endothelial cells through activation of S1P(3) and phosphoinositide 3-kinase.

    PubMed

    Imeri, Faik; Blanchard, Olivier; Jenni, Aurelio; Schwalm, Stephanie; Wünsche, Christin; Zivkovic, Aleksandra; Stark, Holger; Pfeilschifter, Josef; Huwiler, Andrea

    2015-12-01

    Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.

  20. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis

    PubMed Central

    Zeng, Kaixuan; Wang, Zhe; Ohshima, Koichi; Liu, Yixiong; Zhang, Weichen; Wang, Lu; Fan, Linni; Li, Mingyang; Li, Xia; Wang, Yingmei; Yu, Zhou; Yan, Qingguo; Guo, Shuangping; Wei, Jie; Guo, Ying

    2016-01-01

    ABSTRACT Langerhans cell histiocytosis (LCH) is a neoplasm of myeloid origin characterized by a clonal proliferation of CD1a+/CD207+ dendritic cells. Recurrent BRAF V600E mutation has been reported in LCH. In the present report, we confirm the feasibility of the high-specificity monoclonal antibody VE1 for detecting BRAF V600E mutation in 36/97 (37.1%) retrospectively enrolled patients with LCH; concordant immunohistochemistry and Sanger sequencing results were seen in 94.8% of cases. We then assessed the tumor immune microenvironment status in LCH, and found that the GATA binding protein 3 (GATA3)+/T-bet+ ratio could distinguish between clinical multi-system/single-system (SS) multifocal and SS unifocal LCH. Notably, we found that BRAF V600E mutation is significantly correlated with increased programmed cell death 1 ligand 1 (PDL1) expression and forkhead box protein 3 (FOXP3)+ regulatory T cells (p < 0.001, 0.009, respectively). Moreover, Cox multivariate survival analysis showed that BRAF V600E mutation and PDL1 were independent prognostic factors of poor disease-free survival (DFS) in LCH (hazard ratio [HR] = 2.38, 95% confidence interval [CI] 1.02–5.56, p = 0.044; HR = 3.06, 95%CI 1.14–7.14, p = 0.025, respectively), and the superiority of PDL1 in sensitivity and specificity as biomarker for DFS in LCH was demonstrated by receiver operator characteristic (ROC) curves when compared with BRAF V600E and risk category. Collectively, this study identifies for the first time relationship between BRAF V600E mutation and a suppressive tumor immune microenvironment in LCH, resulting in disruption of host–tumor immune surveillance, which is DFS. Our findings may provide a rationale for combining immunotherapy and BRAF-targeted therapy for treating patients with BRAF V600E mutant LCH. PMID:27622040

  1. BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis.

    PubMed

    Zeng, Kaixuan; Wang, Zhe; Ohshima, Koichi; Liu, Yixiong; Zhang, Weichen; Wang, Lu; Fan, Linni; Li, Mingyang; Li, Xia; Wang, Yingmei; Yu, Zhou; Yan, Qingguo; Guo, Shuangping; Wei, Jie; Guo, Ying

    2016-07-01

    Langerhans cell histiocytosis (LCH) is a neoplasm of myeloid origin characterized by a clonal proliferation of CD1a(+)/CD207(+) dendritic cells. Recurrent BRAF V600E mutation has been reported in LCH. In the present report, we confirm the feasibility of the high-specificity monoclonal antibody VE1 for detecting BRAF V600E mutation in 36/97 (37.1%) retrospectively enrolled patients with LCH; concordant immunohistochemistry and Sanger sequencing results were seen in 94.8% of cases. We then assessed the tumor immune microenvironment status in LCH, and found that the GATA binding protein 3 (GATA3)(+)/T-bet(+) ratio could distinguish between clinical multi-system/single-system (SS) multifocal and SS unifocal LCH. Notably, we found that BRAF V600E mutation is significantly correlated with increased programmed cell death 1 ligand 1 (PDL1) expression and forkhead box protein 3 (FOXP3)(+) regulatory T cells (p < 0.001, 0.009, respectively). Moreover, Cox multivariate survival analysis showed that BRAF V600E mutation and PDL1 were independent prognostic factors of poor disease-free survival (DFS) in LCH (hazard ratio [HR] = 2.38, 95% confidence interval [CI] 1.02-5.56, p = 0.044; HR = 3.06, 95%CI 1.14-7.14, p = 0.025, respectively), and the superiority of PDL1 in sensitivity and specificity as biomarker for DFS in LCH was demonstrated by receiver operator characteristic (ROC) curves when compared with BRAF V600E and risk category. Collectively, this study identifies for the first time relationship between BRAF V600E mutation and a suppressive tumor immune microenvironment in LCH, resulting in disruption of host-tumor immune surveillance, which is DFS. Our findings may provide a rationale for combining immunotherapy and BRAF-targeted therapy for treating patients with BRAF V600E mutant LCH.

  2. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress.

    PubMed

    Walsh, Catherine J; Butawan, Matthew; Yordy, Jennifer; Ball, Ray; Flewelling, Leanne; de Wit, Martine; Bonde, Robert K

    2015-04-01

    The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida's southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p<0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the wild impacts some immune function components, and thus, overall health, in the Florida manatee.

  3. Immunization Coverage

    MedlinePlus

    ... and afford to pay for them. World Immunization Week The last week of April each year is marked by WHO and partners as World Immunization Week. It aims to accelerate action to increase awareness ...

  4. Pertussis immunization: an update

    PubMed Central

    Morgan, Lon G

    1997-01-01

    A segment of chiropractic has historically opposed the practice of immunization. This opposition has been based on historical and philosophical precedent, but with little support from the scientific literature. Pertussis immunization has successfully controlled a disease with a prior history of high childhood morbidity. An evaluation of the literature fails to find supporting evidence that whole-cell pertussis vaccine causes SIDS, asthma, or encephalopathy. Countries who discontinued pertussis immunization experienced a return of the disease, and in every case pertussis immunization has been reinstated. The recent successful clinical trials and subsequent approval of an acellular pertussis vaccine should reduce the local reactions and discomfort sometimes experienced with the whole-cell product. In view of the considerable scientific evidence for the desirability and efficacy of pertussis immunization, chiropractic should encourage patient participation in this worthwhile public health service.

  5. Bovine innate and adaptive immune responses against Escherichia coli O157:H7 and vaccination strategies to reduce faecal shedding in ruminants.

    PubMed

    Vande Walle, Kris; Vanrompay, Daisy; Cox, Eric

    2013-03-15

    Enterohaemorrhagic E. coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance causing foodborne infections with possibly life-threatening consequences in humans, such as haemorrhagic colitis and in a small percentage of zoonotic cases, haemolytic-uremic syndrome (HUS). Ruminants are an important reservoir of EHEC and human infections are most frequently associated with direct or indirect contact with ruminant faeces. A thorough understanding of the host-bacterium interaction in ruminants could lead to the development of novel interventions strategies, including innovative vaccines. This review aims to present the current knowledge regarding innate and adaptive immune responses in EHEC colonized ruminants. In addition, results on vaccination strategies in ruminants aiming at reduction of EHEC shedding are reviewed.

  6. Dasatinib enhances migration of monocyte-derived dendritic cells by reducing phosphorylation of inhibitory immune receptors Siglec-9 and Siglec-3.

    PubMed

    Nerreter, Thomas; Köchel, Christoph; Jesper, Daniel; Eichelbrönner, Irina; Putz, Evelyn; Einsele, Hermann; Seggewiss-Bernhardt, Ruth

    2014-09-01

    The SRC family of kinases (SFKs) is crucial to malignant growth, but also important for signaling in immune cells such as dendritic cells (DCs). These specialized antigen-presenting cells are essential for inducing and boosting specific T-cell responses against pathogens and malignancies. Targeted therapy with SFK inhibitors holds great promise as a direct anti-cancer treatment, but potentially also as an indirect treatment via immunomodulation. Here, we investigated whether the BCR-ABL/SRC inhibitor dasatinib would modulate the major effector functions of DCs, especially their migration, a prerequisite to interaction with lymphocytes in secondary lymphoid organs. We report for the first time that dasatinib more than doubled the number of mature human monocyte-derived DCs (moDCs) migrating toward a CCL19 gradient despite unchanged CCR7 expression when used for pretreatment. These effects were caused by dephosphorylation of SFKs, as confirmed by the specific SFK inhibitor SRC inhibitor 1, leading to dephosphorylation of the inhibitory immunoreceptors Siglec-9 and Siglec-3. The specific blocking of the latter also enhanced migration and underlined the importance of these SFK-dependent receptor systems for migration of moDCs. Dasatinib hampered the secretion of interleukin-12 by moDCs at clinically relevant concentrations. In contrast, endocytosis or boosting of cytomegalovirus-specific CD8(+) T-cell responses remained unaltered when applying dasatinib-pretreated moDCs, in line with minor effects on the expression of co-stimulatory molecules essential for DC-T cell interaction. The induction of enhanced migration of moDCs may potentially be useful in chemo-immunotherapeutic applications. Thus, the use of dasatinib or blocking Siglec antibodies as adjuvants in this setting to induce stronger immune responses is worthy of further study.

  7. Herd Immunity: A Brief Review.

    PubMed

    Alam, M J; Rahman, M F

    2016-04-01

    Immunization is a means of protecting the greatest number of people. By reducing the number of susceptible in the community, it augments "herd immunity" making the infection more difficult to spread. It also reduces the risk for those individuals who have escaped vaccination or those who have not developed satisfactory protection. It is well to bear in mind that immunizations are not at all 100 per cent effective, particularly when an individual is exposed to a large dose of pathogenic organisms.

  8. Immune interventions in stroke

    PubMed Central

    Fu, Ying; Liu, Qiang; Anrather, Josef

    2016-01-01

    Inflammatory and immune responses in the brain can shape the clinical presentation and outcome of stroke. Approaches for effective management of acute stroke are sparse and many measures for brain protection fail, but our ability to modulate the immune system and modify the disease progression of multiple sclerosis is increasing. As a result, immune interventions are currently being explored as therapeutic interventions in acute stroke. In this Review, we compare the immunological features of acute stroke with those of multiple sclerosis, identify unique immunological features of stroke, and consider the evidence for immune interventions. In acute stroke, microglia activation and cell death products trigger an inflammatory cascade that damages vessels and the parenchyma within minutes to hours of the ischaemia or haemorrhage. Immune interventions that restrict brain inflammation, vascular permeability and tissue oedema must be administered rapidly to reduce acute immune-mediated destruction and to avoid subsequent immunosuppression. Preliminary results suggest that the use of drugs that modify disease in multiple sclerosis might accomplish these goals in ischaemic and haemorrhagic stroke. Further elucidation of the immune mechanisms involved in stroke is likely to lead to successful immune interventions. PMID:26303850

  9. Anti-BlyS antibody reduces the immune reaction against enzyme and enhances the efficacy of enzyme replacement therapy in Fabry disease model mice.

    PubMed

    Sato, Yohei; Ida, Hiroyuki; Ohashi, Toya

    2017-02-02

    Formation of antibodies against a therapeutic enzyme is an important complication during enzyme replacement therapy (ERT) for lysosomal storage diseases. Fabry disease (FD) is caused by a deficiency of alpha-galactosidase (GLA), which results in the accumulation of globotriaosylceramide (GL-3). We have shown immune tolerance induction (ITI) during ERT in FD model mice by using an anti-B lymphocyte stimulator (anti-BlyS) antibody (belimumab). A single dose of the anti-BlyS antibody temporarily lowered the percentage of B cells and IgG antibody titer against recombinant human GLA. Administration of a low maintenance dose of the anti-BlyS antibody suppressed the B cell population and immunotolerance was induced in 20% of mice, but antibody formation could not be prevented. We then increased the maintenance dose of the anti-BlyS antibody and immunotolerance was induced in 50% of mice. Therapeutic enzyme distribution and clearance of GL-3 were also enhanced by a high maintenance dose of the anti-BlyS antibody.

  10. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  11. Immunization of guinea-pigs and cattle with a reduced dose Clostridium chauvoei vaccine produced in a semi-synthetic medium.

    PubMed

    Cameron, C M; Botha, W J; Schoeman, J H

    1986-03-01

    A semi-synthetic culture medium and method are described for the production of a reduced dose Clostridium chauvoei vaccine. The vaccine gave excellent results in guinea-pigs, and 2 injections of 2.0 ml protected cattle against challenge with 2 M.L.D. of a virulent culture for at least 12 months. The suitability of C. chauvoei Strain OP64 as a vaccine strain was confirmed.

  12. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  13. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  14. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  15. Prognostic impact of immune status and hematopoietic recovery before and after fludarabine, IV busulfan, and antithymocyte globulins (FB2 regimen) reduced-intensity conditioning regimen (RIC) allogeneic stem cell transplantation (allo-SCT).

    PubMed

    Le Bourgeois, Amandine; Lestang, Elsa; Guillaume, Thierry; Delaunay, Jacques; Ayari, Sameh; Blin, Nicolas; Clavert, Aline; Tessoulin, Benoit; Dubruille, Viviane; Mahe, Beatrice; Roland, Virginie; Gastinne, Thomas; Le Gouill, Steven; Moreau, Philippe; Mohty, Mohamad; Planche, Lucie; Chevallier, Patrice

    2013-03-01

    This retrospective analysis aimed to assess hematopoietic and immune recovery in a cohort of 53 patients [males: n = 33; median age: 59 yr (range: 22-70)] who received a FB2 (fludarabine 120-150 mg/m² + IV busulfan 6.4 mg/kg + antithymocyte globulin thymoglobulin 5 mg/kg) reduced-intensity conditioning (RIC) allo-stem cells transplantations (SCT). With a median follow-up of 19 months (range: 2-53), the 2-yr overall survival, disease-free survival (DFS), relapse incidence, and non-relapse mortality were 63%, 59.5%, 35%, and 6%, respectively. In univariate analysis, the factors correlated with a significantly higher 2-yr OS and DFS were a higher total circulating lymphocytes count at transplant (>730/mm(3) ; OS: 81% vs. 43%, P = 0.02; DFS: 73% vs. 45.5%, P = 0.03) and a higher recovery of leukocytes (>5300/mm(3) ) (2-yr OS: 81% vs. 44%, P = 0.007; 2-yr DFS: 72% vs. 46%, P = 0.08), neutrophils (>3200/mm(3) ) (2-yr OS: 76% vs. 50%, P = 0.03; 2-yr DFS: 67% vs. 52.0%, P = 0.1), and monocytes (>590/mm(3) ; 2-yr OS: 80% vs. 45%, P = 0.004; 2-yr DFS: 76% vs. 42%, P = 0.01) at day +30 post-transplant. In multivariate analysis, the only independent factors associated with a significantly higher OS and DFS were a better immune status at transplant (lymphocytes count >730/mm(3) ) and a higher monocytes count (>590/mm(3) ) at day +30 post-transplant. These results suggest that immune status and hematopoietic recovery before and after FB2 RIC allo-SCT can be significant predictors of outcome. This paves the way for future studies aiming to closely monitor the kinetics of immune recovery after RIC allo-SCT and to evaluate the impact of growth factors and other immunostimulatory cytokines in the setting of RIC allo-SCT.

  16. Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine in adults aged 65 years and older - Advisory Committee on Immunization Practices (ACIP), 2012.

    PubMed

    2012-06-29

    Since 2005, the Advisory Committee on Immunization Practices (ACIP) has recommended a tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine booster dose for all adolescents aged 11 through 18 years (preferred at 11 through 12 years) and for those adults aged 19 through 64 years who have not yet received a dose. In October 2010, despite the lack of an approved Tdap vaccine for adults aged 65 years and older, ACIP recommended that unvaccinated adults aged 65 years and older be vaccinated with Tdap if in close contact with an infant, and that other adults aged 65 years and older may receive Tdap. In July 2011, the Food and Drug Administration (FDA) approved expanding the age indication for Boostrix (GlaxoSmithKline Biologicals, Rixensart, Belgium) to aged 65 years and older. In February 2012, ACIP recommended Tdap for all adults aged 65 years and older. This recommendation supersedes previous Tdap recommendations regarding adults aged 65 years and older.

  17. Innate immunity.

    PubMed

    Revillard, Jean-Pierre

    2002-01-01

    For more than half a century immunological research has been almost exclusively orientated towards the acquired immune response and the mechanisms of immune tolerance. Major discoveries have enabled us to better understand the functioning of the specific immune system: the structure of antibody molecules, the genetic mechanisms leading to the molecular diversity of B (BCR) and T (TCR) lymphocyte antigen receptors, the biological function of major histocompatibility complex (MHC) molecules in the presentation of peptides to alpha/beta receptor bearing T lymphocytes, the processes of positive and negative selection of lymphocytes during the course of their differentiation. The major role of specific or acquired immunity has been shown by the rapidly lethal character of severe combined immune deficiency diseases and various alterations in the mechanisms of tolerance have been proposed to explain the chronic inflammatory illnesses which are considered to be auto-immune. Natural or innate immunity has been known since the first description of an inflammatory reaction attributed to Cornelius Celsus. It entered into the scientific era at the end of the 19th century with the discovery of phagocytes by Metchnikoff and of the properties of the complement system by Bordet [1] but due to the vastness of the field and its lack of clear definition, it failed to excite the interest of researchers. The discovery of cytokines and progress in knowledge of the mechanisms of the inflammatory reaction have certainly helped to banish preconceived ideas about natural immunity, which was wrongly labelled as non-specific. This has led to the proposition of a wider role for immune functions beyond the level of the cell or the organism [2] and to a better understanding of the importance of the immediate defence mechanisms and their role in the later orientation of the acquired response.

  18. Maternal Immunization

    PubMed Central

    Chu, Helen Y.; Englund, Janet A.

    2014-01-01

    Maternal immunization has the potential to protect the pregnant woman, fetus, and infant from vaccine-preventable diseases. Maternal immunoglobulin G is actively transported across the placenta, providing passive immunity to the neonate and infant prior to the infant's ability to respond to vaccines. Currently inactivated influenza, tetanus toxoid, and acellular pertussis vaccines are recommended during pregnancy. Several other vaccines have been studied in pregnancy and found to be safe and immunogenic and to provide antibody to infants. These include pneumococcus, group B Streptococcus, Haemophilus influenzae type b, and meningococcus vaccines. Other vaccines in development for potential maternal immunization include respiratory syncytial virus, herpes simplex virus, and cytomegalovirus vaccines. PMID:24799324

  19. Immune response

    MedlinePlus Videos and Cool Tools

    The immune system includes specialized white blood cells, called lymphocytes that adapt themselves to fight specific foreign invaders. These cells develop into two groups in the bone marrow. From the bone ...

  20. The triterpenoid CDDO-imidazolide reduces immune cell infiltration and cytokine secretion in the KrasG12D;Pdx1-Cre (KC) mouse model of pancreatic cancer.

    PubMed

    Leal, Ana S; Sporn, Michael B; Pioli, Patricia A; Liby, Karen T

    2016-12-01

    Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-Kras(G12D/+);Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4-8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations.

  1. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC.

    PubMed

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2012-08-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction).

  2. Vaccines and Immunization Practice.

    PubMed

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices.

  3. Sculpting humoral immunity through dengue vaccination to enhance protective immunity

    PubMed Central

    Crill, Wayne D.; Hughes, Holly R.; Trainor, Nicole B.; Davis, Brent S.; Whitney, Matt T.; Chang, Gwong-Jen J.

    2012-01-01

    Dengue viruses (DENV) are the most important mosquito transmitted viral pathogens infecting humans. DENV infection produces a spectrum of disease, most commonly causing a self-limiting flu-like illness known as dengue fever; yet with increased frequency, manifesting as life-threatening dengue hemorrhagic fever (DHF). Waning cross-protective immunity from any of the four dengue serotypes may enhance subsequent infection with another heterologous serotype to increase the probability of DHF. Decades of effort to develop dengue vaccines are reaching the finishing line with multiple candidates in clinical trials. Nevertheless, concerns remain that imbalanced immunity, due to the prolonged prime-boost schedules currently used in clinical trials, could leave some vaccinees temporarily unprotected or with increased susceptibility to enhanced disease. Here we develop a DENV serotype 1 (DENV-1) DNA vaccine with the immunodominant cross-reactive B cell epitopes associated with immune enhancement removed. We compare wild-type (WT) with this cross-reactivity reduced (CRR) vaccine and demonstrate that both vaccines are equally protective against lethal homologous DENV-1 challenge. Under conditions mimicking natural exposure prior to acquiring protective immunity, WT vaccinated mice enhanced a normally sub-lethal heterologous DENV-2 infection resulting in DHF-like disease and 95% mortality in AG129 mice. However, CRR vaccinated mice exhibited redirected serotype-specific and protective immunity, and significantly reduced morbidity and mortality not differing from naїve mice. Thus, we demonstrate in an in vivo DENV disease model, that non-protective vaccine-induced immunity can prime vaccinees for enhanced DHF-like disease and that CRR DNA immunization significantly reduces this potential vaccine safety concern. The sculpting of immune memory by the modified vaccine and resulting redirection of humoral immunity provide insight into DENV vaccine-induced immune responses. PMID

  4. Immunization of preterm infants

    PubMed Central

    Gagneur, Arnaud; Pinquier, Didier; Quach, Caroline

    2015-01-01

    Vaccinations of premature infants are often delayed despite being at an increased risk of contracting vaccine preventable diseases. This article reviews the current knowledge on the immune response to widely used vaccines, on the protection derived from routine immunization and on vaccine safety and tolerability in a population of preterm infants. Available data evaluating the immune response of preterm infants support early immunization without correction for gestational age. For a number of antigens, the antibody response to initial doses of vaccines may be lower than that of term infants, but protective concentrations are often achieved and memory successfully induced. Vaccines are immunogenic, safe and well tolerated in preterm infants. Preterm infants should be vaccinated using the same schedules as those usually recommended for full-term infants, with the exception of the hepatitis B vaccine, where additional doses should be administered in infants receiving the first dose during the first days of life if they weighed less than 2000 g because of a documented reduced immune response. PMID:26291883

  5. Plant Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants are faced with defending themselves against a multitude of pathogens, including bacteria, fungi, viruses, nematodes, etc. Immunity is multi-layered and complex. Plants can induce defenses when they recognize small peptides, proteins or double-stranded RNA associated with pathogens. Recognitio...

  6. Combined immunization using DNA-Sm14 and DNA-Hsp65 increases CD8+ memory T cells, reduces chronic pathology and decreases egg viability during Schistosoma mansoni infection

    PubMed Central

    2014-01-01

    Background Schistosomiasis is one of the most important neglected diseases found in developing countries and affects 249 million people worldwide. The development of an efficient vaccination strategy is essential for the control of this disease. Previous work showed partial protection induced by DNA-Sm14 against Schistosoma mansoni infection, whereas DNA-Hsp65 showed immunostimulatory properties against infectious diseases, autoimmune diseases, cancer and antifibrotic properties in an egg-induced granuloma model. Methods C57BL/6 mice received 4 doses of DNA-Sm14 (100 μg/dose) and DNA-Hsp65 (100 μg/dose), simultaneously administrated, or DNA-Sm14 alone, once a week, during four weeks. Three groups were included: 1- Control (no immunization); 2- DNA-Sm14; 3- DNA-Sm14/DNA-Hsp65. Two weeks following last immunization, animals were challenged subcutaneously with 30 cercariae. Fifteen, 48 and 69 days after infection splenocytes were collected to evaluate the number of CD8+ memory T cells (CD44highCD62low) using flow cytometry. Forty-eight days after challenge adult worms were collected by portal veins perfusion and intestines were collected to analyze the intestinal egg viability. Histological, immunohistochemical and soluble quantification of collagen and α-SMA accumulation were performed on the liver. Results In the current work, we tested a new vaccination strategy using DNA-Sm14 with DNA-Hsp65 to potentiate the protection against schistosomiasis. Combined vaccination increased the number of CD8+ memory T cells and decreased egg viability on the intestinal wall of infected mice. In addition, simultaneous vaccination with DNA-Sm14/DNA-Hsp65 reduced collagen and α-SMA accumulation during the chronic phase of granuloma formation. Conclusion Simultaneous vaccination with DNA-Sm14/DNA-Hsp65 showed an immunostimulatory potential and antifibrotic property that is associated with the reduction of tissue damage on Schistosoma mansoni experimental infection. PMID

  7. "Herd immunity": a rough guide.

    PubMed

    Fine, Paul; Eames, Ken; Heymann, David L

    2011-04-01

    The term "herd immunity" is widely used but carries a variety of meanings. Some authors use it to describe the proportion immune among individuals in a population. Others use it with reference to a particular threshold proportion of immune individuals that should lead to a decline in incidence of infection. Still others use it to refer to a pattern of immunity that should protect a population from invasion of a new infection. A common implication of the term is that the risk of infection among susceptible individuals in a population is reduced by the presence and proximity of immune individuals (this is sometimes referred to as "indirect protection" or a "herd effect"). We provide brief historical, epidemiologic, theoretical, and pragmatic public health perspectives on this concept.

  8. Immunization Schedules for Adults

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Adults in Easy-to-read Formats ... previous immunizations. View or Print a Schedule Recommended Immunizations for Adults (19 Years and Older) by Age ...

  9. Immune System (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Immune System KidsHealth > For Parents > Immune System A A A ... can lead to illness and infection. About the Immune System The immune system is the body's defense against ...

  10. Nasal Vaccination with the 40-Kilodalton Outer Membrane Protein of Porphyromonas gingivalis and a Nontoxic Chimeric Enterotoxin Adjuvant Induces Long-Term Protective Immunity with Reduced Levels of Immunoglobulin E Antibodies▿

    PubMed Central

    Momoi, Fumiki; Hashizume, Tomomi; Kurita-Ochiai, Tomoko; Yuki, Yoshikazu; Kiyono, Hiroshi; Yamamoto, Masafumi

    2008-01-01

    In this study, we demonstrated that the 40-kDa outer membrane protein of Porphyromonas gingivalis (40-kDa OMP) nasally administered with a nontoxic chimeric adjuvant that combines the A subunit of mutant cholera toxin E112K with the pentameric B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli (mCTA/LTB) elicited a long-term protective immune response. Immunization with the 40-kDa OMP and mCTA/LTB induced high levels of 40-kDa-OMP-specific immunoglobulin G (IgG) and IgA antibodies (Abs) in sera and elicited a significant IgA anti-40-kDa OMP Ab response in saliva. These Ab responses were maintained for at least 1 year after the immunization. Although using adjuvant mCTA/LTB gave Ab responses in the saliva comparable to those obtained using native cholera toxin (nCT) as the adjuvant, the levels of total IgE and 40-kDa-OMP-specific IgE Abs as well as interleukin-4 levels induced by the immunization with mCTA/LTB were lower than those induced by the immunization with nCT. Importantly, IgG Abs generated by nasal immunization with the 40-kDa OMP plus mCTA/LTB inhibited the coaggregation and hemagglutinin activities of P. gingivalis. Furthermore, the mice given nasal 40-kDa OMP plus mCTA/LTB showed a significant reduction of alveolar bone loss caused by oral infection with P. gingivalis even 1 year after the immunization compared to the loss in unimmunized mice. Because mCTA/LTB is nontoxic, nasally administered 40-kDa OMP together with mCTA/LTB should be an effective and safe mucosal vaccine against P. gingivalis infection in humans and may be an important tool for the prevention of chronic periodontitis. PMID:18411288

  11. Integrated Circuit Immunity

    NASA Technical Reports Server (NTRS)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  12. Instant Childhood Immunization Schedule

    MedlinePlus

    ... Recommendations Why Immunize? Vaccines: The Basics Instant Childhood Immunization Schedule Recommend on Facebook Tweet Share Compartir Get ... date. See Disclaimer for additional details. Based on Immunization Schedule for Children 0 through 6 Years of ...

  13. Immune System Quiz

    MedlinePlus

    ... Room? What Happens in the Operating Room? Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System A A A How much do you know about your immune system? Find out by taking this quiz! About KidsHealth ...

  14. In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling

    PubMed Central

    RIGHI, VALERIA; APIDIANAKIS, YIORGOS; MINTZOPOULOS, DIONYSSIOS; ASTRAKAS, LOUKAS; RAHME, LAURENCE G.; TZIKA, A. ARIA

    2010-01-01

    In vivo magnetic resonance spectroscopy (MRS), a non-destructive biochemical tool for investigating live organisms, has yet to be used in the fruit fly Drosophila melanogaster, a useful model organism for investigating genetics and physiology. We developed and implemented a high-resolution magic-angle-spinning (HRMAS) MRS method to investigate live Drosophila at 14.1 T. We demonstrated, for the first time, the feasibility of using HRMAS MRS for molecular characterization of Drosophila with a conventional MR spectrometer equipped with an HRMAS probe. We showed that the metabolic HRMAS MRS profiles of injured, aged wild-type (wt) flies and of immune deficient (imd) flies were more similar to chico flies mutated at the chico gene in the insulin signaling pathway, which is analogous to insulin receptor substrate 1–4 (IRS1–4) in mammals and less to those of adipokinetic hormone receptor (akhr) mutant flies, which have an obese phenotype. We thus provide evidence for the hypothesis that trauma in aging and in innate immune-deficiency is linked to insulin signaling. This link may explain the mitochondrial dysfunction that accompanies insulin resistance and muscle wasting that occurs in trauma, aging and immune system deficiencies, leading to higher susceptibility to infection. Our approach advances the development of novel in vivo non-destructive research approaches in Drosophila, suggests biomarkers for investigation of biomedical paradigms, and thus may contribute to novel therapeutic development. PMID:20596596

  15. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors

    PubMed Central

    Loi, Sherene; Dushyanthen, Sathana; Beavis, Paul A; Salgado, Roberto; Denkert, Carsten; Savas, Peter; Combs, Susan; Rimm, David L.; Giltnane, Jennifer M.; Estrada, Monica V.; Sánchez, Violeta; Sanders, Melinda E.; Cook, Rebecca S.; Pilkinton, Mark A.; Mallal, Simon A.; Wang, Kai; Miller, Vincent A.; Stephens, Phil J.; Yelensky, Roman; Doimi, Franco D.; Gómez, Henry; Ryzhov, Sergey V.; Darcy, Phillip K.; Arteaga, Carlos L.; Balko, Justin M.

    2015-01-01

    Purpose Tumor-infiltrating lymphocytes (TILs) in the residual disease (RD) of triple-negative breast cancers (TNBCs) after neoadjuvant chemotherapy (NAC) are associated with improved survival, but insight into tumor cell-autonomous molecular pathways affecting these features are lacking. Experimental Design We analyzed TILs in the RD of clinically and molecularly characterized TNBCs after NAC and explored therapeutic strategies targeting combinations of MEK inhibitors with PD-1/PD-L1-targeted immunotherapy in mouse models of breast cancer. Results Presence of TILs in the RD was significantly associated with improved prognosis. Genetic or transcriptomic alterations in Ras/MAPK signaling were significantly correlated with lower TILs. MEK inhibition up-regulated cell-surface major histocompatibility complex (MHC) expression and PD-L1 in TNBC cells both in vivo and in vitro. Moreover, combined MEK and PDL-1/PD-1 inhibition enhanced anti-tumor immune responses in mouse models of breast cancer. Conclusions These data suggest the possibility that Ras/MAPK pathway activation promotes immune-evasion in TNBC, and support clinical trials combining MEK- and PD-L1-targeted therapies. Furthermore, Ras/MAPK activation and MHC expression may be predictive biomarkers of response to immune checkpoint inhibitors. PMID:26515496

  16. Immunization for Women

    MedlinePlus

    ... nfid.org/#sthash.eZ72dCSP.dpuf Diseases & Vaccines Overview Immunization Schedules Talk to you doctor about your immunization ... years Immunization Schedule for Children, 7-18 years Immunization News July 8, 2016 HPV-related cancers on ...

  17. Epigenetic Control of Immunity

    PubMed Central

    Busslinger, Meinrad; Tarakhovsky, Alexander

    2014-01-01

    Immunity relies on the heterogeneity of immune cells and their ability to respond to pathogen challenges. In the adaptive immune system, lymphocytes display a highly diverse antigen receptor repertoire that matches the vast diversity of pathogens. In the innate immune system, the cell's heterogeneity and phenotypic plasticity enable flexible responses to changes in tissue homeostasis caused by infection or damage. The immune responses are calibrated by the graded activity of immune cells that can vary from yeast-like proliferation to lifetime dormancy. This article describes key epigenetic processes that contribute to the function of immune cells during health and disease. PMID:24890513

  18. Integrated Immune Experiment

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2009-01-01

    This viewgraph presentation reviews NASA's Integrated Immune Experiment. The objectives include: 1) Address significant lack of data regarding immune status during flight; 2) Replace several recent immune studies with one comprehensive study that will include in-flight sampling; 3) Determine the in-flight status of immunity, physiological stress, viral immunity/reactivation; 4) Determine the clinical risk related to immune dysregulation for exploration class spaceflight; and 5) Determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.

  19. Understanding Herd Immunity.

    PubMed

    Metcalf, C J E; Ferrari, M; Graham, A L; Grenfell, B T

    2015-12-01

    Individual immunity is a powerful force affecting host health and pathogen evolution. Importantly, the effects of individual immunity also scale up to affect pathogen transmission dynamics and the success of vaccination campaigns for entire host populations. Population-scale immunity is often termed 'herd immunity'. Here we outline how individual immunity maps to population outcomes and discuss implications for control of infectious diseases. Particular immunological characteristics may be more or less likely to result in a population level signature of herd immunity; we detail this and also discuss other population-level outcomes that might emerge from individual-level immunity.

  20. Immune interactions in endometriosis.

    PubMed

    Herington, Jennifer L; Bruner-Tran, Kaylon L; Lucas, John A; Osteen, Kevin G

    2011-09-01

    Endometriosis is a common, complex gynecologic disorder characterized by the presence of endometrial glands and stroma at extrauterine (ectopic) sites. In women who develop this disease, alterations in specific biological processes involving both the endocrine and immune systems have been observed, which may explain the survival and growth of displaced endometrial tissue in affected women. In the past decade, a considerable amount of research has implicated a role for alterations in progesterone action at both eutopic and ectopic sites of endometrial growth which may contribute to the excessive inflammation associated with progression of endometriosis; however, it remains unclear whether these anomalies induce the condition or are simply a consequence of the disease process. In this article, we summarize current knowledge of alterations within the immune system of endometriosis patients and discuss how endometrial cells from women with this disease not only have the capacity to escape immunosurveillance, but also use inflammatory mechanisms to promote their growth within the peritoneal cavity. Finally, we discuss evidence that exposure to an environmental endocrine disruptor, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, can mediate the development of an endometrial phenotype that exhibits both reduced progesterone responsiveness and hypersensitivity to proinflammatory stimuli mimicking the endometriosis phenotype. Future studies in women with endometriosis should consider whether a heightened inflammatory response within the peritoneal microenvironment contributes to the development and persistence of this disease.

  1. Selenium and immune responses

    SciTech Connect

    Kiremidjian-Schumacher, L.; Stotzky, G.

    1987-04-01

    Selenium (Se) affects all components of the immune system, i.e., the development and expression of nonspecific, humoral, and cell-mediated responses. In general, a deficiency in Se appears to result in immunosuppression, whereas supplementation with low doses of Se appears to result in augmentation and/or restoration of immunologic functions. A deficiency of Se has been shown to inhibit (1) resistance to microbial and viral infections, (2) neutrophil function, (3) antibody production, (4) proliferation of T and B lymphocytes in response to mitogens, and (5) cytodestruction by T lymphocytes and NK cells. Supplementation with Se has been shown to stimulate (1) the function of neutrophils, (2) production of antibodies, (3) proliferation of T and B lymphocytes in response to mitogens, (4) production of lymphokines, (5) NK cell-mediated cytodestruction, (6) delayed-type hypersensitivity reactions and allograft rejection, and (7) the ability of a host to reject transplanted malignant tumors. The mechanism(s) whereby Se affects the immune system is speculative. The effects of Se on the function of glutathione peroxidase and on the cellular levels of reduced glutathione and H/sub 2/Se, as well as the ability of Se to interact with cell membranes, probably represent only a few of many regulatory mechanisms. The manipulation of cellular levels of Se may be significant for the maintenance of general health and for the control of immunodeficiency disorders and the chemoprevention of cancer.

  2. Influence of dynamic immunization on epidemic spreading in networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Fu, Xinchu; Jin, Zhen; Small, Michael

    2015-02-01

    We introduce a new dynamic immunization method based on the static immunization algorithm and study the relationship between dynamic and static immunization. By nodes to be immunized according to static immunization strategies, we build a connection between dynamic and static immunization. Using theoretical arguments and computational simulation we show that dynamic immunization (from a finite vaccine reservoir) is not sufficient to prevent epidemic outbreak, nor does it significantly change the asymptotic prevalence. Nonetheless, we do find that less total vaccine is required to implement this strategy. To help understand this better, we examine the extent and distribution of dynamic immunization required to achieve this reduced vaccine demand. Our results suggest that it is not necessary to increase the immunization rate when the infection rate is relatively small.

  3. Investing in Immunity: Prepandemic Immunization to Combat Future Influenza Pandemics.

    PubMed

    Goodman, Jesse L

    2016-02-15

    We are unlikely, with current technologies, to have sufficient pandemic influenza vaccine ready in time to impact the first wave of the next pandemic. Emerging data show that prior immunization with an immunologically distinct hemagglutinin of the same subtype offers the potential to "prime" recipients for rapid protection with a booster dose, years later, of a vaccine then manufactured to match the pandemic strain. This article proposes making prepandemic priming vaccine(s) available for voluntary use, particularly to those at high risk of early occupational exposure, such as first responders and healthcare workers, and to others maintaining critical infrastructure. In addition to providing faster protection and potentially reducing social disruption, being able, early in a pandemic, to immunize those who had received prepandemic vaccine with one dose of the pandemic vaccine, rather than the 2 doses typically required, would reduce the total doses of pandemic vaccine then needed, extending vaccine supplies.

  4. Imbalanced immune homeostasis in immune thrombocytopenia.

    PubMed

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders.

  5. Imbalanced immune homeostasis in immune thrombocytopenia

    PubMed Central

    Yazdanbakhsh, Karina

    2017-01-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. PMID:27312156

  6. Immune Responses in Neonates

    PubMed Central

    Basha, Saleem; Surendran, Naveen; Pichichero, Michael

    2015-01-01

    Neonates have little immunological memory and a developing immune system, which increases their vulnerability to infectious agents. Recent advances in understanding of neonatal immunity indicate that both innate and adaptive responses are dependent on precursor frequency of lymphocytes, antigenic dose and mode of exposure. Studies in neonatal mouse models and human umbilical cord blood cells demonstrate the capability of neonatal immune cells to produce immune responses similar to adults in some aspects but not others. This review focuses mainly on the developmental and functional mechanisms of the human neonatal immune system. In particular, the mechanism of innate and adaptive immunity and the role of neutrophils, antigen presenting cells, differences in subclasses of T lymphocytes (Th1, Th2, Tregs) and B cells are discussed. In addition, we have included the recent developments in neonatal mouse immune system. Understanding neonatal immunity is essential to development of therapeutic vaccines to combat newly emerging infectious agents. PMID:25088080

  7. Aging changes in immunity

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/004008.htm Aging changes in immunity To use the sharing features ... cells and antibodies that destroy these harmful substances. AGING CHANGES AND THEIR EFFECTS ON THE IMMUNE SYSTEM ...

  8. Immunity to cancer

    SciTech Connect

    Reif, A.E.; Mitchell, M.S.

    1985-01-01

    This book contains five sections, each containing several papers. The section titles are: Identification and Characterization of Tumor Antigens; Immune Responses to Tumor Antigens; Regulation of the Immune Response to Tumor Cells, Immunotherapy and Biomodulators, and Immunotherapy and Immunoprophylaxis.

  9. Immune System and Disorders

    MedlinePlus

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  10. [Immune system and tumors].

    PubMed

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope.

  11. Your Child's Immunization Record

    MedlinePlus

    Your Child’s Immunization Record It’s important to keep up-to-date records of all your child’s immunizations, beginning at birth and continuing through ... receives a vaccination by filling in the date. Record of Immunizations Date Given: Where Given: Reaction: Hepatitis ...

  12. The Immune System Game

    ERIC Educational Resources Information Center

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  13. Immune System Quiz

    MedlinePlus

    ... los dientes Video: Getting an X-ray Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System Print A A A How much do you know about your immune system? Find out by taking this quiz! About KidsHealth ...

  14. Immune Disorder HSCT Protocol

    ClinicalTrials.gov

    2016-11-01

    Immune Deficiency Disorders; Severe Combined Immunodeficiency; Chronic Granulomatous Disease; X-linked Agammaglobulinemia; Wiskott-Aldrich Syndrome; Hyper-IgM; DiGeorge Syndrome; Chediak-Higashi Syndrome; Common Variable Immune Deficiency; Immune Dysregulatory Disorders; Hemophagocytic Lymphohistiocytosis; IPEX; Autoimmune Lymphoproliferative Syndrome; X-linked Lymphoproliferative Syndrome

  15. Kidney and innate immunity.

    PubMed

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed.

  16. Chapter 2: Innate Immunity

    PubMed Central

    Turvey, Stuart E.; Broide, David H.

    2009-01-01

    Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920

  17. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  18. [Olive oil, immune system and infection].

    PubMed

    Puertollano, M A; Puertollano, E; Alvarez de Cienfuegos, G; de Pablo Martínez, Manuel Antonio

    2010-01-01

    Polyunsaturated fatty acids contribute to the suppression of immune system functions. For this reason, n-3 polyunsaturated fatty acids have been applied in the resolution of inflammatory disorders. Although the inhibition of several immune functions promotes beneficial effects on the human health, this state may lead to a significant reduction of immune protection against infectious microorganisms (viruses, bacteria, fungi and parasites). Nevertheless, less attention has been paid to the action of olive oil in immunonutrition. Olive oil, a main constituent of the Mediterranean diet, is capable of modulating several immune functions, but it does not reduce host immune resistance to infectious microorganisms. Based on these criteria, we corroborate that olive oil administration may exert beneficial effects on the human health and especially on immune system, because it contributes to the reduction of typical inflammatory activity observed in patients suffering from autoimmune disorders, but without exacerbating the susceptibility to pathogen agents. The administration of olive oil in lipid emulsions may exert beneficial effects on the health and particularly on the immune system of immunocompromised patients. Therefore, this fact acquires a crucial importance in clinical nutrition. This review contributes to clarify the interaction between the administration of diets containing olive oil and immune system, as well as to determine the effect promoted by this essential component of Mediterranean diet in the immunomodulation against an infectious agent.

  19. Measuring polio immunity to plan immunization activities.

    PubMed

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries.

  20. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  1. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    PubMed

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-02-22

    Several prophylactic vaccines targeting HSV-2 have failed in the clinic to demonstrate a sustained depression in viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies, their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the neutralizing antibody (nAb) targets gD and gB, the novel T cell antigen and tegument protein UL40, and we compared this to a whole-inactivated virus vaccine (FI-HSV-2). We evaluated different formulations in combination with several Th1-inducing TLR agonists in vivo. In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted the most robust, functional HSV-2 antigen-specific CD8 T cell responses and high neutralizing antibodies, demonstrating superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)/alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of nAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus type 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on

  2. Human immune system variation

    PubMed Central

    Brodin, Petter; Davis, Mark M.

    2017-01-01

    The human immune system is highly variable between individuals but relatively stable over time within a given person. Recent conceptual and technological advances have enabled systems immunology analyses, which reveal the composition of immune cells and proteins in populations of healthy individuals. The range of variation and some specific influences that shape an individual’s immune system is now becoming clearer. Human immune systems vary as a consequence of heritable and non-heritable influences, but symbiotic and pathogenic microbes and other non-heritable influences explain most of this variation. Understanding when and how such influences shape the human immune system is key for defining metrics of immunological health and understanding the risk of immune-mediated and infectious diseases. PMID:27916977

  3. Immune Regulation of Cancer

    PubMed Central

    Disis, Mary L.

    2010-01-01

    Innate and adaptive immune system cells play a major role in regulating the growth of cancer. Although it is commonly thought that an immune response localized to the tumor will inhibit cancer growth, it is clear that some types of inflammation induced in a tumor may also lead to cancer proliferation, invasion, and dissemination. Recent evidence suggests, however, that some patients with cancer can mount an antitumor immune response that has the potential to control or eliminate cancer. Indeed, a so-called “immune response” signature has been described in malignancy that is associated with improved outcomes in several tumor types. Moreover, the presence of specific subsets of T cells, which have the capability to penetrate tumor stroma and infiltrate deep into the parenchyma, identifies patients with an improved prognosis. Immune-based therapies have the potential to modulate the tumor microenvironment by eliciting immune system cells that will initiate acute inflammation that leads to tissue destruction. PMID:20516428

  4. Immunizations: vaccinations in general.

    PubMed

    Wiley, Catherine C

    2015-06-01

    The childhood immunization schedule is complex and nuanced. Although serious adverse reactions to immunizations are uncommon, clinicians must be well-versed in these reactions as well as the contraindications and precautions to each vaccine. • Conjugate vaccine technology links polysaccharide antigens to carrier proteins, triggering T-cell-dependent immunity to polysaccharides, thereby strengthening immune memory. • On the basis of some research evidence and consensus, live vaccines are generally contraindicated in immunocompromised patients and in pregnancy. Most live vaccines can be administered to household contacts of immunocompromised patients. • On the basis of some research and consensus, modified administration of meningococcal, pneumococcal, and less commonly, other vaccines may be indicated to protect immunocompromised patients. • On the basis of disease epidemiology and consensus, international travelers should be up-to-date with all routine immunizations; depending on destination, additional vaccines or immune globulin may be required.

  5. Neural circuitry and immunity.

    PubMed

    Pavlov, Valentin A; Tracey, Kevin J

    2015-12-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine.

  6. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  7. Innate Immunity in Disease

    PubMed Central

    Elliott, David E.; Siddique, Sana S.; Weinstock, Joel V.

    2014-01-01

    Cells can innately recognize generic products of viruses, bacteria, fungi, or injured tissue by engagement of pattern recognition receptors. Innate immune cells rapidly respond to this engagement in order to control commensals, thwart pathogens and/or prompt repair. Insufficient or excessive activation of the innate immune response results in disease. This review focuses on pattern recognition receptors and cells of the innate immune system important for intestinal function. Our improving knowledge pertaining to this important aspect of our immune response is opening potential important new therapeutic opportunities for the treatment of disease. PMID:24632348

  8. Improving immunization strategies

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Liljeros, Fredrik; Argyrakis, Panos; Bunde, Armin; Havlin, Shlomo

    2007-04-01

    We introduce an immunization method where the percentage of required vaccinations for immunity are close to the optimal value of a targeted immunization scheme of highest degree nodes. Our strategy retains the advantage of being purely local, without the need for knowledge on the global network structure or identification of the highest degree nodes. The method consists of selecting a random node and asking for a neighbor that has more links than himself or more than a given threshold and immunizing him. We compare this method to other efficient strategies on three real social networks and on a scale-free network model and find it to be significantly more effective.

  9. Nutritional strategies to optimize dairy cattle immunity.

    PubMed

    Sordillo, L M

    2016-06-01

    Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows.

  10. Modulation of Immune Functions by Foods

    PubMed Central

    2004-01-01

    Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i) studies examining the effect of foods in healthy individuals; (ii) studies analyzing the effect of foods on patients with hypersensitivity; and (iii) studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity) or acquired immunity (T cell response, antibody production). Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity. PMID:15841257

  11. Immunity and the burden of herpes zoster.

    PubMed

    Choi, Won Suk; Kwon, Soon Sun; Lee, Jacob; Choi, Su-Mi; Lee, Jin Soo; Eom, Joong Sik; Sohn, Jang Wook; Choeng, Hee Jin

    2014-03-01

    The burden of herpes zoster may be related to patients' immunity, although this has not been studied extensively. This hypothesis was tested in a matched case-control study of patients with herpes zoster who sought treatment at one of seven university hospitals in Korea from January 1, 2007, to December 31, 2010. Patients diagnosed with herpes zoster were placed into three groups based on their immune status: severely immunocompromised, mild-to-moderately immunocompromised, and normal immunity. Each patient in the severely immunocompromised group was matched with one patient in the mild-to-moderately immunocompromised group and one patient in the normal immunity group in the same hospital based on age, sex, and date of herpes zoster onset. A total of 582 patients with herpes zoster were included in the analysis: 194 in each of the three groups. Patients in the severely immunocompromised group had the highest herpes zoster-related hospitalization rate as compared to patients in the mild-to-moderately immunocompromised and normal immune groups (P < 0.01). The length of hospital stay and herpes zoster-related medical cost increased significantly with the deterioration of patients' immunity (P < 0.01, respectively). Cutaneous complications occurred more frequently in the severely immunocompromised group than in the other two groups (P < 0.01). An increase in herpes zoster burden was observed as the patients' immunity decreased. Therefore, effective measures are necessary to prevent herpes zoster and reduce its burden in severely immunocompromised patients.

  12. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation.

    PubMed

    Oevermann, Lena; Lang, Peter; Feuchtinger, Tobias; Schumm, Michael; Teltschik, Heiko-Manuel; Schlegel, Patrick; Handgretinger, Rupert

    2012-08-01

    Haploidentical hematopoietic stem cell transplantation is a curative alternative option for patients without an otherwise suitable stem cell donor. In order to prevent graft-versus-host disease (GvHD), different in vitro and in vivo T cell-depletion strategies have been developed. A delayed immune reconstitution is common to all these strategies, and an impaired immune function after haploidentical transplantation with subsequent infections is a major cause of deaths in these patients. In addition to in vitro and in vivo T cell-depletion methods, posttransplant strategies to rapidly rebuild the immune system have been introduced in order to improve the outcome. Advances in in vitro and in vivo T cell-depletion methods, and adoptive transfer of immune cells of the innate and specific immune system, will contribute to reduce the risk of GvHD, lethal infections, and the risk of relapse of the underlying malignant disease.

  13. Immune response inhibits associative learning in insects.

    PubMed Central

    Mallon, Eamonn B; Brockmann, Axel; Schmid-Hempel, Paul

    2003-01-01

    In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysaccharide (LPS) have reduced abilities to associate an odour with sugar reward in a classical conditioning paradigm. The cost of an immune response therefore not only affects survival of the host, as previously shown, but also everyday behaviour and memory formation. PMID:14667337

  14. Immunizations. Position Statement. Revised

    ERIC Educational Resources Information Center

    Bobo, Nichole; Garrett, Jennifer; Teskey, Carmen; Duncan, Kay; Strasser, Kathy; Burrows-Mezu, Alicia L.

    2015-01-01

    It is the position of the National Association of School Nurses (NASN) that immunizations are essential to primary prevention of disease from infancy through adulthood. Promotion of immunizations by the registered professional school nurse (hereinafter referred to as school nurse) is central to the public health focus of school nursing practice…

  15. Coping and Immune Function

    DTIC Science & Technology

    1988-07-01

    immunization, and a single session of inescapable shock. The results are superimposable on thoce shown in Figure 1. The fact that we can obtain our...effect with a single session of shock following a single immunization with KLH makes exploration of factors such as antigen-stress timing much simpler. We

  16. Innate immunity and adjuvants

    PubMed Central

    Akira, Shizuo

    2011-01-01

    Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection. PMID:21893536

  17. HETEROLOGOUS IMMUNITY BETWEEN VIRUSES

    PubMed Central

    Welsh, Raymond M.; Che, Jenny; Brehm, Michael A.; Selin, Liisa K.

    2010-01-01

    Summary Immune memory responses to previously encountered pathogens can sometimes alter the immune response to and the course of infection of an unrelated pathogen by a process known as heterologous immunity. This response can lead to enhanced or diminished protective immunity and altered immunopathology. Here we discuss the nature of T-cell cross-reactivity and describe matrices of epitopes from different viruses eliciting cross-reactive CD8+ T-cell responses. We examine the parameters of heterologous immunity mediated by these cross-reactive T cells during viral infections in mice and humans. We show that heterologous immunity can disrupt T-cell memory pools, alter the complexity of the T-cell repertoire, change patterns of T-cell immunodominance, lead to the selection of viral epitope-escape variants, alter the pathogenesis of viral infections, and, by virtue of the private specificity of T-cell repertoires within individuals, contribute to dramatic variations in viral disease. We propose that heterologous immunity is an important factor in resistance to and variations of human viral infections and that issues of heterologous immunity should be considered in the design of vaccines. PMID:20536568

  18. Immunizations: Active vs. Passive

    MedlinePlus

    ... a certain type of wild animal bites a child. Passive immunizations for hepatitis A (gamma globulin) may be helpful ... A is common. They are typically given before children or adults leave on their ... active vaccination is preferable. Keep in mind that passive immunizations ...

  19. Immunity and Nutrition.

    ERIC Educational Resources Information Center

    Dupin, Henri; Guerin, Nicole

    1990-01-01

    The three articles in this issue of a periodical focussed on various aspects of the life and health of children in the tropics concern: (1) immune defenses; (2) interactions between nutrition disorders and infection; and (3) immunity and vaccination. The science of immunology has progressed rapidly in recent years. A brief review of present…

  20. Swine immune system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probably no area of veterinary medicine has seen a greater explosion in knowledge then the immune system and its implications in disease and vaccination. In this chapter on the Swine Immune System for the 10th Edition of Diseases of Swine we expand on the information provided in past editions by in...

  1. The genetics of immunity.

    PubMed

    Lazzaro, Brian P; Schneider, David S

    2014-06-17

    In this commentary, Brian P. Lazzaro and David S. Schneider examine the topic of the Genetics of Immunity as explored in this month's issues of GENETICS and G3: Genes|Genomes|Genetics. These inaugural articles are part of a joint Genetics of Immunity collection (ongoing) in the GSA journals.

  2. Immune System 101

    MedlinePlus

    ... Infectious Diseases - The Immune System Related Topics on AIDS.gov CD4 Count Viral Load Cancer Opportunistic Infections ... Immune Response (video) Last revised: 08/22/2011 AIDS.gov HIV/AIDS Basics • Federal Resources • Using New ...

  3. Neural circuitry and immunity

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  4. Cytokines in Drosophila immunity.

    PubMed

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.

  5. Transplantation Immunity. Contemporary Views.

    PubMed

    Zaretskaya, Yuliya M.

    1999-12-01

    "Transplantation immunity in Cyclosporin era" is a special chapter in science under name transplantation immunity. Nowadays, practically all the organs can be grafted: kidney, heart, lung, liver, pancreas both as organ, and as islet cells, bone marrow from relative and unrelative donors. The broad spectrum of grafted organs gave one more surprising peculiarity of transplantation immunity: it operates with different strength after transplantation of various organs. If the decreasing gradient of transplantation immunity could be composed, then it appeared to be approximately in the following order: bone marrow - skin - kidney - heart - lung. The most complicated operating activity of transplantation immunity is occurring after bone marrow transplantation, especially from unrelative donor, because in bone marrow transplantation immunological process develops in both directions. Therefore now, bone marrow is the only organ (tissue), when the complete compatibility between donor and recipient is required after its transplantation; especially in cases with unrelative donors.

  6. Forecasting Epidemiological Consequences of Maternal Immunization

    PubMed Central

    Bento, Ana I.; Rohani, Pejman

    2016-01-01

    Background. The increase in the incidence of whooping cough (pertussis) in many countries with high vaccination coverage is alarming. Maternal pertussis immunization has been proposed as an effective means of protecting newborns during the interval between birth and the first routine dose. However, there are concerns regarding potential interference between maternal antibodies and the immune response elicited by the routine schedule, with possible long-term population-level effects. Methods. We formulated a transmission model comprising both primary routine and maternal immunization. This model was examined to evaluate the long-term epidemiological effects of routine and maternal immunization, together with consequences of potential immune interference scenarios. Results. Overall, our model demonstrates that maternal immunization is an effective strategy in reducing the incidence of pertussis in neonates prior to the onset of the primary schedule. However, if maternal antibodies lead to blunting, incidence increases among older age groups. For instance, our model predicts that with 60% routine and maternal immunization coverage and 30% blunting, the incidence among neonates (0–2 months) is reduced by 43%. Under the same scenario, we observe a 20% increase in incidence among children aged 5–10 years. However, the downstream increase in the older age groups occurs with a delay of approximately a decade or more. Conclusions. Maternal immunization has clear positive effects on infant burden of disease, lowering mean infant incidence. However, if maternally derived antibodies adversely affect the immunogenicity of the routine schedule, we predict eventual population-level repercussions that may lead to an overall increase in incidence in older age groups. PMID:27838674

  7. Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span

    PubMed Central

    Dixit, Vishwa Deep

    2008-01-01

    Increasing evidence suggests a tight coupling of metabolic and immune systems. This cross-talk mediated by neuroendocrine peptides as well as numerous cytokines and chemokines is believed to be responsible for integrating energy balance to immune function. These neuroendocrine-immune interactions are heightened during the state of chronic positive energy balance, as seen during obesity, and negative energy balance caused by caloric restriction (CR). Emerging evidence suggests that obesity may be associated with an immunodeficient state and chronic inflammation, which contribute to an increased risk of premature death. The direct interactions between expanded leukocyte populations within the adipose tissue during obesity and an increased number of adipocytes within an aging lymphoid microenvironment may constitute an important adaptive or pathological response as a result of change in energy balance. In stark contrast to obesity, CR causes negative energy balance and robustly prolongs a healthy lifespan in all of the species studied to date. Therefore, the endogenous neuroendocrine-metabolic sensors elevated or suppressed as a result of changes in energy balance may offer an important mechanism in understanding the antiaging and potential immune-enhancing nature of CR. Ghrelin, one such sensor of negative energy balance, is reduced during obesity and increased by CR. Ghrelin also regulates immune function by reducing proinflammatory cytokines and promotes thymopoiesis during aging and thus, may be a new CR mimetic target. The identification of immune effects and molecular pathways used by such orexigenic metabolic factors could offer potentially novel approaches to enhance immunity and increase healthy lifespan. PMID:18579754

  8. The Thai expanded programme on immunization: role of immunization sessions and their cost-effectiveness.

    PubMed Central

    Phonboon, K.; Shepard, D. S.; Ramaboot, S.; Kunasol, P.; Preuksaraj, S.

    1989-01-01

    A cost-effectiveness study of the Thai expanded programme on immunization was carried out in district hospitals and health centres in Thailand during early 1987. The total annual spending on immunization was US $3852 in hospitals and US $813 in health centres. The percentage distribution of annual costs was similar in both facilities. Salaries were the largest component, followed by building and vaccine costs. The frequency of immunization sessions was the most important factor in determining total costs--immunization costs increasing with the frequency of sessions. In hospitals the average number of fully immunized children was 184, compared with 49 in health centres. The cost per fully immunized child varied widely from US $5.30 to US $33.20, and the most cost-effective facilities were those that immunized the greatest number of children. With the present number of health facilities in all areas of the country, which correspond to saturation levels, the most likely way for the Thai programme to reduce costs would be to make better use of staff time by decreasing the frequency of the services offered, thereby increasing the efficiency of each session. Hospitals should adjust the frequency of their immunization sessions according to the number of children being served, but health centres should offer sessions only monthly or once every two months. PMID:2501043

  9. Recommended Immunizations for Adults 50+

    MedlinePlus

    ... page please turn Javascript on. Health Screenings and Immunizations Recommended Immunizations For Adults 50+ The content in this section ... out more, visit How Vaccines Prevent Disease . Vaccines, Vaccinations, and Immunizations Understanding the difference between vaccines, vaccinations, ...

  10. Innate immune targets of hepatitis B virus infection

    PubMed Central

    Zou, Zhi-Qiang; Wang, Li; Wang, Kai; Yu, Ji-Guang

    2016-01-01

    Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection. PMID:27330680

  11. Innate immune targets of hepatitis B virus infection.

    PubMed

    Zou, Zhi-Qiang; Wang, Li; Wang, Kai; Yu, Ji-Guang

    2016-06-18

    Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.

  12. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system.

  13. Immunity to Francisella

    PubMed Central

    Cowley, Siobhán C.; Elkins, Karen L.

    2011-01-01

    In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal. PMID:21687418

  14. Immunity in urogenital protozoa.

    PubMed

    Malla, N; Goyal, K; Dhanda, R S; Yadav, M

    2014-09-01

    Innate and adaptive immunity play a significant role in urogenital infections. Innate immunity is provided by the epithelial cells and mucus lining along with acidic pH, which forms a strong physical barrier against the pathogens in female reproductive tract. Cells of innate immune system, antimicrobial peptides, cytokines, chemokines and adaptive immunity in the reproductive tract are evolved during infection, and a pro-inflammatory response is generated to fight against the invading pathogen Trichomonas vaginalis, a primary urogenital protozoa, the etiological agent of human trichomoniasis, a curable sexually transmitted infection. The involvement of the urogenital tract by other protozoal infections such as P. falciparum, Trypanosoma, Leishmania, Toxoplasma, Entamoeba histolytica and Acanthamoeba infection is rarely reported. Trichomonas induce pro-inflammatory and immunosuppressive responses in infected subjects. Multifactorial pathogenic mechanisms including parasite adherence, cysteine proteases, lipophosphoglycan, free radical, cytokine generation and Toll-like receptors appear to interplay with the induction of local and systemic immune responses that ultimately determine the outcome of the infection. However, the involvement of urogenital pathogen-specific immune mechanisms and effect of normal local resident flora on the outcome (symptomatic vs. asymptomatic) of infection are poorly understood. Moreover, immune interactions in trichomoniasis subjects co-infected with bacterial and viral pathogens need to be elucidated.

  15. Immunizations for foreign travel.

    PubMed Central

    Hill, D. R.

    1992-01-01

    One of the most important aspects of preparing travelers for destinations throughout the world is providing them with immunizations. Before administering any vaccines, however, a careful health and immunization history and travel itinerary should be obtained in order to determine vaccine indications and contraindications. There are three categories of immunizations for foreign travel. The first category includes immunizations which are routinely recommended whether or not the individual is traveling. Many travelers are due for primary vaccination or boosting against tetanus-diphtheria, measles-mumps-rubella, pneumococcal pneumonia, and influenza, for example, and the pre-travel visit is an ideal time to administer these. The second category are immunizations which might be required by a country as a condition for entry; these are yellow fever and cholera. The final category contains immunizations which are recommended because there is a risk of acquiring a particular disease during travel. Typhoid fever, meningococcal disease, rabies, and hepatitis are some examples. Travelers who are pregnant or who are infected with the human immunodeficiency virus require special consideration. Provision of appropriate immunizations for foreign travel is an important aspect of preventing illness in travelers. PMID:1337807

  16. Parental care improves immunity in the seahorse (Hippocampus erectus).

    PubMed

    Lin, Tingting; Zhang, Dong; Liu, Xin; Xiao, Dongxue

    2016-11-01

    In the present study, the sexual dimorphism in immune response in the seahorse Hippocampus erectus in which males compete for mates and invest heavily in parental care was assessed. Variability in immunocompetence in virginal seahorses with differing levels of sexual maturity (i.e., immaturity, early maturity and maturity) and with different mating statuses (i.e., virginal, experienced mating failure and experienced mating success) were analyzed by evaluating immune parameters in the plasma. Additionally, ultrastructural characteristics of the inner epithelium of the brood pouch were compared between males that had experienced mating failure and those that had succeeded. Generally, immunity in sexually mature virgin males was greater than in females, and mating competition significantly reduced males' immunity. However, parental care gave males stronger immune and metabolic abilities and resulted in their immunity significantly rebounding after a successful mating. The present study quantitatively clarifies, for the first time, how parental care and mating competition jointly affect immunity. Moreover, previous findings that females display more efficient immune defenses than males in conventional species (i.e., males are as competitor and females as care giver) and that males' immunity is higher than females' in the pipefish (i.e., females are as competitor and males as care giver) in combination with the present results indicate that parental care is a key factor for sexual dimorphism in immunity. The care-giving sex has strong immunity regardless of the sex in charge of mating competition or not.

  17. Analysing immune cell migration.

    PubMed

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2009-11-01

    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  18. Immune System (For Parents)

    MedlinePlus

    ... teens. Environmental allergies (to dust mites, for example), seasonal allergies (such as hay fever), drug allergies (reactions to ... For Parents MORE ON THIS TOPIC Definition: ... Allergies Activity: Immune System Word! Autoimmunity HIV and AIDS ...

  19. Equine immunity to parasites.

    PubMed

    Klei, T R

    2000-04-01

    Helminths are among the most significant parasites of horses in developed countries. This article examines immune responses against helminth parasites and the implications that immunologic investigations have on vaccine development, improvement of diagnostic procedures, and disease eradication.

  20. Antiviral immunity in crustaceans.

    PubMed

    Liu, Haipeng; Söderhäll, Kenneth; Jiravanichpaisal, Pikul

    2009-08-01

    Viral diseases of shrimp have caused negative effects on the economy in several countries in Asia, South America and America, where they have numerous shrimp culture industries. The studies on the immunity of shrimp and other crustaceans have mainly focused on general aspects of immunity and as a consequence little is known about the antiviral responses in crustaceans. The aim of this review is to update recent knowledge of innate immunity against viral infections in crustaceans. Several antiviral molecules have been isolated and characterized recently from decapods. Characterization and identification of these molecules might provide a promising strategy for protection and treatment of these viral diseases. In addition dsRNA-induced antiviral immunity is also included.

  1. Immunization Against Infectious Disease

    ERIC Educational Resources Information Center

    Mortimer, Edward A., Jr.

    1978-01-01

    The success of present and future immunization programs is endangered by public and physician complacency and by complex legal and ethical problems related to informed consent and responsibility for rare, vaccine-related injury. (BB)

  2. Immunization Against Rabies

    PubMed Central

    McWilliam, R. S.; Penistan, J. L.

    1967-01-01

    The methods used for both pre-exposure and post-exposure immunization against rabies were studied. In pre-exposure immunization duck embryo vaccine should be used. In post-exposure immunization either duck embryo or Semple-type vaccine appears to be effective in stimulating antibody production. Both vaccines may cause neurological sequelae. A dose of vaccine should be given 20-50 days after completion of the primary course of vaccination. Immune serum should be used in all severe exposures especially of the head and neck, and in individuals in whom the commencement of vaccination has been unduly delayed. In individuals who have been previously vaccinated reinforcing doses have been found to be effective even as long as 20 years after the primary vaccination. A tissue culture vaccine has been developed and is about to undergo field trials. PMID:6066820

  3. Antiviral immunity in amphibians.

    PubMed

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  4. Exercise and immunity

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007165.htm Exercise and immunity To use the sharing features on ... take a daily walk or follow a simple exercise routine a few times a week. Exercise helps ...

  5. FastStats: Immunization

    MedlinePlus

    ... this? Submit What's this? Submit Button NCHS Home Immunization Recommend on Facebook Tweet Share Compartir Data are ... Percent of children 19-35 months old receiving vaccinations for: Diphtheria, Tetanus, Pertussis (4+ doses DTP, DT, ...

  6. Your Child's Immunizations

    MedlinePlus

    ... Hepatitis B vaccine (HepB) Hib vaccine Human papillomavirus (HPV) vaccine Influenza vaccine Measles, mumps, and rubella vaccine (MMR) ... to Shots Who Needs a Flu Shot? Immunizations HPV Vaccine 5 Tips for Surviving Shots The Flu Vaccine ...

  7. Immune responses to metastases

    SciTech Connect

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors.

  8. Incorporating immunizations into routine obstetric care to facilitate Health Care Practitioners in implementing maternal immunization recommendations

    PubMed Central

    Webb, Heather; Street, Jackie; Marshall, Helen

    2014-01-01

    Immunization against pertussis, influenza, and rubella reduces morbidity and mortality in pregnant women and their offspring. Health care professionals (HCPs) caring for women perinatally are uniquely placed to reduce maternal vaccine preventable diseases (VPDs). Despite guidelines recommending immunization during the perinatal period, maternal vaccine uptake remains low. This qualitative study explored the role of obstetricians, general practitioners, and midwives in maternal vaccine uptake. Semi-structured interviews (n = 15) were conducted with perinatal HCPs at a tertiary maternity hospital in South Australia. HCPs were asked to reflect on their knowledge, beliefs, and practice relating to immunization advice and vaccine provision. Interviews were transcribed and coded using thematic analysis. Data collection and analysis was an iterative process, with collection ceasing with theoretical saturation. Participants unanimously supported maternal vaccination as an effective way of reducing risk of disease in this vulnerable population, however only rubella immunity detection and immunization is embedded in routine care. Among these professionals, delegation of responsibility for maternal immunization was unclear and knowledge about maternal immunization was variable. Influenza and pertussis vaccine prevention measures were not included in standard pregnancy record documentation, information provision to patients was “ad hoc” and vaccinations not offered on-site. The key finding was that the incorporation of maternal vaccinations into standard care through a structured process is an important facilitator for immunization uptake. Incorporating vaccine preventable disease management measures into routine obstetric care including incorporation into the Pregnancy Record would facilitate HCPs in implementing recommendations. Rubella prevention provides a useful “template” for other vaccines. PMID:24509790

  9. Immune Gamma Globulin Therapeutic Indications in Immune Deficiency and Autoimmunity.

    PubMed

    Yang, Luanna; Wu, Eveline Y; Tarrant, Teresa K

    2016-07-01

    Immune gamma globulin (IgG) has a long history in the treatment of both primary immune deficiency and autoimmune disorders. Disease indications continue to expand and new-generation products increase the versatility of delivery. This review encompasses a historical perspective as well as current and future implications of human immune globulin for the treatment of immune-mediated illness.

  10. The immune system

    PubMed Central

    2016-01-01

    All organisms are connected in a complex web of relationships. Although many of these are benign, not all are, and everything alive devotes significant resources to identifying and neutralizing threats from other species. From bacteria through to primates, the presence of some kind of effective immune system has gone hand in hand with evolutionary success. This article focuses on mammalian immunity, the challenges that it faces, the mechanisms by which these are addressed, and the consequences that arise when it malfunctions. PMID:27784777

  11. Immune Therapy for Sarcomas.

    PubMed

    Anderson, Peter M

    2017-01-01

    Absolute lymphocyte count (ALC) recovery rapidly occurring at 14 days after start of chemotherapy for osteosarcoma and Ewing sarcoma is a good prognostic factor. Conversely, lymphopenia is associated with significantly decreased sarcoma survival. Clearly, the immune system can contribute towards better survival from sarcoma. This chapter will describe treatment and host factors that influence immune function and how effective local control and systemic interventions of sarcoma therapy can cause inflammation and/or immune suppression but are currently the standard of care. Preclinical and clinical efforts to enhance immune function against sarcoma will be reviewed. Interventions to enhance immune function against sarcoma have included regional therapy (surgery, cryoablation, radiofrequency ablation, electroporation, and radiotherapy), cytokines, macrophage activators (mifamurtide), vaccines, natural killer (NK) cells, T cell receptor (TCR) and chimeric antigen receptor (CAR) T cells, and efforts to decrease inflammation. The latter is particularly important because of new knowledge about factors influencing expression of checkpoint inhibitory molecules, PD1 and CTLA-4, in the tumor microenvironment. Since these molecules can now be blocked using anti-PD1 and anti-CTLA-4 antibodies, how to translate this knowledge into more effective immune therapies in the future as well as how to augment effectiveness of current interventions (e.g., radiotherapy) is a challenge. Barriers to implementing this knowledge include cost of agents that release immune checkpoint blockade and coordination of cost-effective outpatient sarcoma treatment. Information on how to research clinical trial eligibility criteria and how to access current immune therapy trials against sarcoma are shared, too.

  12. Auto-immune disease.

    PubMed

    Panayi, G S

    1976-02-01

    Auto-immune disease may result from the interaction of the genetic load of the individual, modification of self-tissue antigens by environmental agents such as virus or drugs and abnormalities of the immunological system itself such as the loss of controlling or suppressor T cells with age. In the majority of people the outcome is tolerance, maintenance of normal tissue architecture and function. In the unfortunate few the outcome is auto-immune disease, that is, failure to recognize "self".

  13. Problematic Internet Usage and Immune Function

    PubMed Central

    Reed, Phil; Vile, Rebecca; Osborne, Lisa A.; Romano, Michela; Truzoli, Roberto

    2015-01-01

    Problematic internet use has been associated with a variety of psychological comorbidities, but it relationship with physical illness has not received the same degree of investigation. The current study surveyed 505 participants online, and asked about their levels of problematic internet usage (Internet Addiction Test), depression and anxiety (Hospital Anxiety and Depression Scales), social isolation (UCLA Loneliness Questionnaire), sleep problems (Pittsburgh Sleep Quality Index), and their current health – General Health Questionnaire (GHQ-28), and the Immune Function Questionnaire. The results demonstrated that around 30% of the sample displayed mild or worse levels of internet addiction, as measured by the IAT. Although there were differences in the purposes for which males and females used the internet, there were no differences in terms of levels of problematic usage between genders. The internet problems were strongly related to all of the other psychological variables such as depression, anxiety, social-isolation, and sleep problems. Internet addiction was also associated with reduced self-reported immune function, but not with the measure of general health (GHQ-28). This relationship between problematic internet use and reduced immune function was found to be independent of the impact of the co-morbidities. It is suggested that the negative relationship between level of problematic internet use and immune function may be mediated by levels of stress produced by such internet use, and subsequent sympathetic nervous activity, which related to immune-supressants, such as cortisol. PMID:26244339

  14. Using a registry to improve immunization delivery.

    PubMed

    Kairys, Steven W; Gubernick, Ruth S; Millican, Adrienne; Adams, William G

    2006-07-01

    The NJIPSP was successful in encouraging a group of small urban practices to adopt the use of immunization registry and to transform immunization delivery from a mechanistic well-child service to a visible, monitored process of care. The project represents a unique combination of technology, public-private collaboration, and well-established quality improvement techniques. The change process involved the whole office as a team in adopting new immunization delivery roles and services. The greatest barrier to acceptance of the registry was (and continues to be) the need for manual data entry as the primary source of data collection, rather than electronic data transfer from other systems. The manual entry of data was labor intensive for participating practices and affected data measurement. Despite this barrier, however, the majority of practices substantially improved the quality of their immunization delivery practices in multiple areas. The rapid movement of primary care practices toward some form of electronic record may reduce this barrier and increase the percentage of practices willing to use a community registry. Practices that engaged collectively in the change process gained momentum from the group effort. Equally important was the public health partnership that helped identify and reduce improvement obstacles. Sustainability of practice-based immunization changes will rely, in part, on the registry's ease of use and the continued visibility of public health at the practice level. Active practice level collaboration by public health adds great value to change efforts. We believe that the best possible immunization delivery relies on both technology (registries and the EMR) and effective office systems. Projects like the NJIPSP are models for systems that integrate technology, practice change, and quality improvement, and their success has the potential to foster the spread of this approach to other primary care practices (especially in New Jersey). The

  15. Is sporozoite refractile body protein expression different in Eimeria acervulina sporozoites isolated from non-immune versus immune chickens?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hallmark of Eimeria infection in avians is the establishment of immunity against clinical signs of coccidiosis. Resistant birds experience improved weight gain and feed conversion efficiency and lack intestinal lesions. Oocysts excretion is reduced, but not eliminated, in such immune chickens. ...

  16. Inborn Errors in Immunity

    PubMed Central

    Lionakis, M.S.; Hajishengallis, G.

    2015-01-01

    In recent years, the study of genetic defects arising from inborn errors in immunity has resulted in the discovery of new genes involved in the function of the immune system and in the elucidation of the roles of known genes whose importance was previously unappreciated. With the recent explosion in the field of genomics and the increasing number of genetic defects identified, the study of naturally occurring mutations has become a powerful tool for gaining mechanistic insight into the functions of the human immune system. In this concise perspective, we discuss emerging evidence that inborn errors in immunity constitute real-life models that are indispensable both for the in-depth understanding of human biology and for obtaining critical insights into common diseases, such as those affecting oral health. In the field of oral mucosal immunity, through the study of patients with select gene disruptions, the interleukin-17 (IL-17) pathway has emerged as a critical element in oral immune surveillance and susceptibility to inflammatory disease, with disruptions in the IL-17 axis now strongly linked to mucosal fungal susceptibility, whereas overactivation of the same pathways is linked to inflammatory periodontitis. PMID:25900229

  17. Military Healthcare Battlefield Immunity.

    PubMed

    Kelly, J C

    2012-12-01

    The combatant soldier on the battlefield remains protected from any claim in negligence by the doctrine of combat immunity for any negligent act or omission they may make when fighting. In other words, the combatant soldier does not owe a fellow soldier a duty of care on the battlefield, as the duty of care is non-justiciable. However, the non-combatant Military Healthcare Professional, although sometimes operating in the same hostile circumstances as the fighting soldier, is unlikely to benefit from combat immunity for any clinical negligence on the battlefield. This is because they continue to owe their patient a duty of care, although this has not been tested in the courts. This paper considers if any military healthcare professional could ever benefit from combat immunity, which is unlikely due to their non-combatant status. Instead, this paper suggests that a modified form of immunity; namely, Military Healthcare Battlefield Immunity could be a new, unique and viable doctrine, however, this could only be granted in rare circumstances and to a much lesser degree than combat immunity.

  18. Adaptive immunity in the liver

    PubMed Central

    Shuai, Zongwen; Leung, Miranda WY; He, Xiaosong; Zhang, Weici; Yang, Guoxiang; Leung, Patrick SC; Eric Gershwin, M

    2016-01-01

    The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver. PMID:26996069

  19. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  20. The evolution of resistance through costly acquired immunity.

    PubMed Central

    Boots, Michael; Bowers, Roger G.

    2004-01-01

    We examine the evolutionary dynamics of resistance to parasites through acquired immunity. Resistance can be achieved through the innate mechanisms of avoidance of infection and reduced pathogenicity once infected, through recovery from infection and through remaining immune to infection: acquired immunity. We assume that each of these mechanisms is costly to the host and find that the evolutionary dynamics of innate immunity in hosts that also have acquired immunity are quantitatively the same as in hosts that possess only innate immunity. However, compared with resistance through avoidance or recovery, there is less likely to be polymorphism in the length of acquired immunity within populations. Long-lived organisms that can recover at intermediate rates faced with fast-transmitting pathogens that cause intermediate pathogenicity (mortality of infected individuals) are most likely to evolve long-lived acquired immunity. Our work emphasizes that because whether or not acquired immunity is beneficial depends on the characteristics of the disease, organisms may be selected to only develop acquired immunity to some of the diseases that they encounter. PMID:15209105

  1. The discontinuity theory of immunity

    PubMed Central

    Pradeu, Thomas; Vivier, Eric

    2017-01-01

    Some biological systems detect the rate of change in a stimulus rather than the stimulus itself only. We suggest that the immune system works in this way. According to the discontinuity theory of immunity, the immune system responds to sudden changes in antigenic stimulation and is rendered tolerant by slow or continuous stimulation. This basic principle, which is supported by recent data on immune checkpoints in viral infections, cancers, and allergies, can be seen as a unifying framework for diverse immune responses.

  2. Reproduction-Immunity Trade-Offs in Insects.

    PubMed

    Schwenke, Robin A; Lazzaro, Brian P; Wolfner, Mariana F

    2016-01-01

    Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context.

  3. Reproduction–Immunity Trade-Offs in Insects

    PubMed Central

    Schwenke, Robin A.; Lazzaro, Brian P.; Wolfner, Mariana F.

    2017-01-01

    Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context. PMID:26667271

  4. Immune quiescence: a model of protection against HIV infection.

    PubMed

    Card, Catherine M; Ball, Terry Blake; Fowke, Keith R

    2013-11-20

    Aberrant immune activation is a strong correlate of HIV disease progression, but little is known about how immune activation alters susceptibility to HIV infection. Susceptibility to HIV infection varies between individuals, but the immunological determinants of HIV transmission are not well understood. Here, we present evidence from studies of HIV transmission in the context of clinical trials and HIV-exposed seronegative (HESN) cohorts that implicates elevated immune activation as a risk factor for acquiring HIV. We propose a model of protection from infection based on a phenotype of low baseline immune activation referred to as immune quiescence. Immune quiescence is evidenced by reduced expression of T cell activation markers, low levels of generalized gene transcription and low levels of proinflammatory cytokine and chemokine production in the periphery and genital mucosa of HESN. Since HIV preferentially replicates in activated CD4+ T cells, immune quiescence may protect against infection by limiting HIV target cell availability. Although the determinants of immune quiescence are unclear, several potential factors have been identified that may be involved in driving this phenotype. HESN were shown to have elevated proportions of regulatory T cells (Tregs), which are known to suppress T cell activation. Likewise, proteins involved in controlling inflammation in the genital tract have been found to be elevated in HESN. Furthermore, expression of interferon regulatory factor 1 (IRF-1) is reduced in HESN as a consequence of genetic polymorphisms and differential epigenetic regulation. Since IRF-1 is an important regulator of immune responses, it may play a role in maintaining immune quiescence. Based on this model, we propose a novel avenue for HIV prevention targeted based on reducing host mucosal immune activation.

  5. Plant immunity to necrotrophs.

    PubMed

    Mengiste, Tesfaye

    2012-01-01

    Plants inhabit environments crowded with infectious microbes that pose constant threats to their survival. Necrotrophic pathogens are notorious for their aggressive and wide-ranging virulence strategies that promote host cell death and acquire nutrients for growth and reproduction from dead cells. This lifestyle constitutes the axis of their pathogenesis and virulence strategies and marks contrasting immune responses to biotrophic pathogens. The diversity of virulence strategies in necrotrophic species corresponds to multifaceted host immune response mechanisms. When effective, the plant immune system disarms the infectious necrotroph of its pathogenic arsenal or attenuates its effect, restricting further ingress and disease symptom development. Simply inherited resistance traits confer protection against host-specific necrotrophs (HSNs), whereas resistance to broad host-range necrotrophs (BHNs) is complex. Components of host genetic networks, as well as the molecular and cellular processes that mediate host immune responses to necrotrophs, are being identified. In this review, recent advances in our understanding of plant immune responses to necrotrophs and comparison with responses to biotrophic pathogens are summarized, highlighting common and contrasting mechanisms.

  6. Adaptive Immunity to Fungi

    PubMed Central

    Verma, Akash; Wüthrich, Marcel; Deepe, George; Klein, Bruce

    2015-01-01

    Life-threatening fungal infections have risen sharply in recent years, owing to the advances and intensity of medical care that may blunt immunity in patients. This emerging crisis has created the growing need to clarify immune defense mechanisms against fungi with the ultimate goal of therapeutic intervention. We describe recent insights in understanding the mammalian immune defenses that are deployed against pathogenic fungi. We focus on adaptive immunity to the major medically important fungi and emphasize three elements that coordinate the response: (1) dendritic cells and subsets that are mobilized against fungi in various anatomical compartments; (2) fungal molecular patterns and their corresponding receptors that signal responses and shape the differentiation of T-cell subsets and B cells; and, ultimately (3) the effector and regulatory mechanisms that eliminate these invaders while constraining collateral damage to vital tissue. These insights create a foundation for the development of new, immune-based strategies for prevention or enhanced clearance of systemic fungal diseases. PMID:25377140

  7. Filoviral immune evasion mechanisms.

    PubMed

    Ramanan, Parameshwaran; Shabman, Reed S; Brown, Craig S; Amarasinghe, Gaya K; Basler, Christopher F; Leung, Daisy W

    2011-09-01

    The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV) and Marburgvirus (MARV), causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN) response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.

  8. Immunity to fish rhabdoviruses

    USGS Publications Warehouse

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  9. Aging, immunity, and cancer.

    PubMed

    Fulop, Tamas; Larbi, Anis; Kotb, Rami; de Angelis, Flavia; Pawelec, Graham

    2011-06-01

    Age is the most important risk factor for tumorigenesis. More than 60% of new cancers and more than 70% of cancer deaths occur in elderly subjects >65 years. The immune system plays an important role in the battle of the host against cancer development. Deleterious alterations occur to the immune response with aging, termed immunosenescence. It is tempting to speculate that this waning immune response contributes to the higher incidence of cancer, but robust data on this important topic are few and far between. This review is devoted to discussing state of the art knowledge on the relationship between immunosenescence and cancer. Emerging understanding of the aging process at the molecular level is viewed from the perspective of this increased tumorigenesis. We also consider some of the most recent means to intervene in the modulation of immunosenescence to increase the ability of the immune system to fight against tumors. Future research will unravel new aspects of the immune response against tumors which will be modulable to decrease the burden of cancer in elderly individuals.

  10. Immunization of baboons with Schistosoma mansoni cercariae attenuated by gamma irradiation

    SciTech Connect

    Stek, M. Jr.; Minard, P.; Dean, D.A.; Hall, J.E.

    1981-06-26

    Studies on the efficacy of a vaccine against schistosomiasis in young baboons (Papio anubis) disclosed that immunization with Schistosoma mansoni cercariae attenuated by gamma irradiation induced significant protection against subsequent infection with normal, viable S. mansoni cercariae. Such immunization resulted in reduced worm burdens (70%) and egg excretion rates (82%). These results support immunization as a potential method for schistosomiasis control.

  11. Immunization of Baboons with Schistosoma mansoni Cercariae attenuated by gamma irradiation

    SciTech Connect

    Stek, M.; Minard, P.; Dean, D.A.; Hall, J.E.

    1981-06-01

    Studies on the efficacy of a vaccine against schistosomiasis in young baboons (Papio anubis) disclosed that immunization with Schistosoma mansoni cercariae attenuated by gamma irradiation induced significant protection against subsequent infection with normal, viable S. mansoni cercariae. Such immunization resulted in reduced worm burdens (70 percent) and egg excretion rates (82 percent). These results support immunization as a potential method for schistosomiasis control.

  12. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bees (Apis mellifera) have a number of traits that effectively reduce the spread of pathogens and parasites throughout the colony. These mechanisms of social immunity are often analogous to the individual immune system. As such social immune defences function to protect the colony or superorga...

  13. Maternal Immunization: Opportunities for Scientific Advancement

    PubMed Central

    Beigi, Richard H.; Fortner, Kimberly B.; Munoz, Flor M.; Roberts, Jeff; Gordon, Jennifer L.; Han, Htay Htay; Glenn, Greg; Dormitzer, Philip R.; Gu, Xing Xing; Read, Jennifer S.; Edwards, Kathryn; Patel, Shital M.; Swamy, Geeta K.

    2014-01-01

    Maternal immunization is an effective strategy to prevent and/or minimize the severity of infectious diseases in pregnant women and their infants. Based on the success of vaccination programs to prevent maternal and neonatal tetanus, maternal immunization has been well received in the United States and globally as a promising strategy for the prevention of other vaccine-preventable diseases that threaten pregnant women and infants, such as influenza and pertussis. Given the promise for reducing the burden of infectious conditions of perinatal significance through the development of vaccines against relevant pathogens, the Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) sponsored a series of meetings to foster progress toward clinical development of vaccines for use in pregnancy. A multidisciplinary group of stakeholders convened at the NIH in December 2013 to identify potential barriers and opportunities for scientific advancement in maternal immunization. PMID:25425719

  14. The immune system in hypertension.

    PubMed

    Harrison, David G

    2014-01-01

    Hypertension is generally attributed to perturbations of the vasculature, the kidney, and the central nervous system. During the past several years, it has become apparent that cells of the innate and adaptive immune system also contribute to this disease. Macrophages and T cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension, and likely contribute to end-organ damage. We have shown that mice lacking lymphocytes, such as recombinase-activating gene-deficient (RAG-1(-/-)) mice, have blunted hypertension in response to angiotensin II, increased salt levels, and norepinephrine. Adoptive transfer of T cells restores the blood pressure response to these stimuli. Others have shown that mice with severe combined immunodeficiency have blunted hypertension in response to angiotensin II. Deletion of the RAG gene in Dahl salt-sensitive rats reduces the hypertensive response to salt feeding. The central nervous system seems to orchestrate immune cell activation. We produced lesions of the anteroventral third ventricle and showed that these block T cell activation in response to angiotensin II. Likewise, we showed that genetic manipulation of reactive oxygen species in the subfornical organ modulates both hypertension and T cell activation. Current evidence indicates that production of cytokines including tumor necrosis factor alpha, interleukin 17, and interleukin 6 contribute to hypertension, likely by promoting vasoconstriction, production of reactive oxygen species, and sodium reabsorption in the kidney. We propose a working hypothesis linking the sympathetic nervous system, immune cells, the production of cytokines, and ultimately vascular and renal dysfunction, leading to augmentation of hypertension.

  15. TSLP and immune homeostasis.

    PubMed

    Hanabuchi, Shino; Watanabe, Norihiko; Liu, Yong-Jun

    2012-03-01

    In an immune system, dendritic cells (DCs) are professional antigen-presenting cells (APCs) as well as powerful sensors of danger signals. When DCs receive signals from infection and tissue stress, they immediately activate and instruct the initiation of appropriate immune responses to T cells. However, it has remained unclear how the tissue microenvironment in a steady state shapes the function of DCs. Recent many works on thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine that has the strong ability to activate DCs, provide evidence that TSLP mediates crosstalk between epithelial cells and DCs, involving in DC-mediated immune homeostasis. Here, we review recent progress made on how TSLP expressed within the thymus and peripheral lymphoid and non-lymphoid tissues regulates DC-mediated T-cell development in the thymus and T-cell homeostasis in the periphery.

  16. Telomeres and immune competency.

    PubMed

    Weng, Nan-ping

    2012-08-01

    Telomeres are essential for the integrity of chromosomes and for cellular replication. Attrition of telomeres occurs during DNA replication owing to the inability of conventional DNA polymerase to replicate chromosomal termini and the insufficient compensation for telomere loss by telomerase, an enzyme that synthesizes telomeric DNA. A number of genetic defects have been described in humans and in animal models that cause accelerated telomere attrition, in turn leading to severe phenotypes of hematopoietic and other proliferating cells. Telomere length, most frequently measured as an average value in heterogeneous peripheral blood leukocyte populations in humans, has been associated with a wide range of health conditions and diseases of immune and non-immune cells. Here, I review recent studies of telomere length dynamics with particular relevance to immune function.

  17. Immunizations, immunology, and autism.

    PubMed

    Chez, Michael G; Chin, Kathleen; Hung, Paul C

    2004-09-01

    Public fears of rising rates of children being diagnosed with autistic spectrum disorders has led to a fear that immunizations, specifically the measles-mumps-varicella vaccine (MMR), may trigger autism. This article reviews theories of immunization as a risk factor for autism, including thimerosal exposure. We also review theories of autoimmunity as a predisposing genetic risk in autistic patients. We summarize from multiple population-based studies and extensive review committee reports that neither immunization nor thimerosal exposure has been conclusively linked to autism. Current treatments for autoimmunity in autism are reviewed and summarized as being only anecdotally effective, with no controlled studies to conclusively determine effectiveness. The goal of this article is to allow child neurologists to effectively counsel parents of autistic patients about vaccination risks and treatment options in presumed cases of autoimmune dysfunction.

  18. Immune Therapies for Neuroblastoma

    PubMed Central

    Navid, Fariba; Armstrong, Michael; Barfield, Raymond C.

    2009-01-01

    Neuroblastoma, a solid tumor arising from developing cells of the sympathetic nervous system, is the most common extracranial tumor in children. The prognosis for high-risk neuroblastoma remains poor with conventional treatment, and new approaches are therefore being explored to treat this disease. One such alternative therapy that holds promise is immune therapy. We review here the recent advances in 4 types of immune therapy – cytokine, vaccine, antibody, and cellular therapy – to treat neuroblastoma. We present preclinical research and clinical trials on several promising candidates such as IL-12, dendritic cell vaccines, anti-GD2 antibodies, and allogeneic hematopoietic stem cell transplant. An optimal treatment plan for neuroblastoma will most likely involve multimodal approaches and combinations of immune therapies. PMID:19342881

  19. Acupuncture and immune modulation.

    PubMed

    Kim, Sun Kwang; Bae, Hyunsu

    2010-10-28

    Acupuncture is probably the most popular alternative therapy practiced in the United States, Europe and many Asian countries. It has been applied clinically for more than 5 thousand years according to the ancient oriental medical theory. A great deal of acupuncture research has been achieved, with particular efforts toward understanding the pain control effects. In addition to the analgesic effect of acupuncture, an increasing number of studies have demonstrated that acupuncture treatment can control autonomic nerve system functions such as blood pressure regulation, sphincter Oddi relaxation, and immune modulation. Although only a limited number of controlled studies have assessed the efficacy of acupuncture, increasing clinical evidences support that EA treatment is effective for various immunological diseases including allergic disorders, infections, autoimmune diseases and immunodifficiency-syndromes. This review will address the mechanism of acupuncture in modulating various immune responses and the relationship between acupuncture mediated immune regulation and neurological involvement.

  20. Inflammatory bowel disease related innate immunity and adaptive immunity.

    PubMed

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD.

  1. Global immunization: status, progress, challenges and future

    PubMed Central

    Philippe, Duclos; Jean-Marie, Okwo-Bele; Marta, Gacic-Dobo; Thomas, Cherian

    2009-01-01

    quality of immunization coverage monitoring and use the data to improve programme performance; and explore financing options for reaching the GIVS goals, particularly in lower-middle income countries. Although introduction of new vaccines is important,this should not be at the expense of sustaining existing immunization activities. Instead the introduction of new vaccine introduction should be viewed as an opportunity to strengthen immunization systems, increase vaccine coverage and reduce inequities of access to immunization services. PMID:19828060

  2. Aged Garlic Extract Modifies Human Immunity.

    PubMed

    Percival, Susan S

    2016-02-01

    Garlic contains numerous compounds that have the potential to influence immunity. Immune cells, especially innate immune cells, are responsible for the inflammation necessary to kill pathogens. Two innate lymphocytes, γδ-T and natural killer (NK) cells, appear to be susceptible to diet modification. The purpose of this review was to summarize the influence of aged garlic extract (AGE) on the immune system. The author's laboratory is interested in AGE's effects on cell proliferation and activation and inflammation and to learn whether those changes might affect the occurrence and severity of colds and flu. Healthy human participants (n = 120), between 21 and 50 y of age, were recruited for a randomized, double-blind, placebo-controlled parallel-intervention study to consume 2.56 g AGE/d or placebo supplements for 90 d during the cold and flu season. Peripheral blood mononuclear cells were isolated before and after consumption, and γδ-T and NK cell function was assessed by flow cytometry. The effect on cold and flu symptoms was determined by using daily diary records of self-reported illnesses. After 45 d of AGE consumption, γδ-T and NK cells proliferated better and were more activated than cells from the placebo group. After 90 d, although the number of illnesses was not significantly different, the AGE group showed reduced cold and flu severity, with a reduction in the number of symptoms, the number of days participants functioned suboptimally, and the number of work/school days missed. These results suggest that AGE supplementation may enhance immune cell function and may be partly responsible for the reduced severity of colds and flu reported. The results also suggest that the immune system functions well with AGE supplementation, perhaps with less accompanying inflammation. This trial was registered at clinicaltrials.gov as NCT01390116.

  3. Quercetin, Inflammation and Immunity

    PubMed Central

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-01-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  4. Quercetin, Inflammation and Immunity.

    PubMed

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-15

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  5. Exercise boosts immune response.

    PubMed

    Sander, Ruth

    2012-06-29

    Ageing is associated with a decline in normal functioning of the immune system described as 'immunosenescence'. This contributes to poorer vaccine response and increased incidence of infection and malignancy seen in older people. Regular exercise can enhance vaccination response, increase T-cells and boost the function of the natural killer cells in the immune system. Exercise also lowers levels of the inflammatory cytokines that cause the 'inflamm-ageing' that is thought to play a role in conditions including cardiovascular disease; type 2 diabetes; Alzheimer's disease; osteoporosis and some cancers.

  6. Mammalian glycosylation in immunity.

    PubMed

    Marth, Jamey D; Grewal, Prabhjit K

    2008-11-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome.

  7. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1979-08-01

    1974. 5. Frame, J. D. Surveillance of Lassa Fever amohg missionaries stationed in West Africa . Bull. WVHO 52: 593-59a, 1975 6. Monath, T.- P. Lassa ...A883 049 COLUMBIA UNIV NEW YORK DIV OF TROPIAL MEDIC.NE F/S 6/5 LASSA FEVER IMMUNE PLASMA U) AUG 79 J D FRAME DAMD17-79-C-9024 UNCLASSIFIED...NL’mmmEmmEmmEE.inuuuuwi LLVIL j~~AD’ LEVEL REPORT NO. 1I 0) LASSA FEVER IMMUNE PLASMA Annual Summary Report John 0. Frame, M.D. i Division of Tropical

  8. Restoring immune tolerance in neuromyelitis optica

    PubMed Central

    Steinman, Larry; Bar-Or, Amit; Behne, Jacinta M.; Benitez-Ribas, Daniel; Chin, Peter S.; Clare-Salzler, Michael; Healey, Donald; Kim, James I.; Kranz, David M.; Lutterotti, Andreas; Martin, Roland; Schippling, Sven; Villoslada, Pablo; Wei, Cheng-Hong; Weiner, Howard L.; Zamvil, Scott S.; Smith, Terry J.

    2016-01-01

    Neuromyelitis optica (NMO) and spectrum disorder (NMO/SD) represent a vexing process and its clinical variants appear to have at their pathogenic core the loss of immune tolerance to the aquaporin-4 water channel protein. This process results in a characteristic pattern of astrocyte dysfunction, loss, and demyelination that predominantly affects the spinal cord and optic nerves. Although several empirical therapies are currently used in the treatment of NMO/SD, none has been proven effective in prospective, adequately powered, randomized trials. Furthermore, most of the current therapies subject patients to long-term immunologic suppression that can cause serious infections and development of cancers. The following is the first of a 2-part description of several key immune mechanisms in NMO/SD that might be amenable to therapeutic restoration of immune tolerance. It is intended to provide a roadmap for how potential immune tolerance restorative techniques might be applied to patients with NMO/SD. This initial installment provides a background rationale underlying attempts at immune tolerization. It provides specific examples of innovative approaches that have emerged recently as a consequence of technical advances. In several autoimmune diseases, these strategies have been reduced to practice. Therefore, in theory, the identification of aquaporin-4 as the dominant autoantigen makes NMO/SD an ideal candidate for the development of tolerizing therapies or cures for this increasingly recognized disease. PMID:27648463

  9. Adult immunization in India: Importance and recommendations.

    PubMed

    Verma, Ramesh; Khanna, Pardeep; Chawla, Suraj

    2015-01-01

    Vaccination is recommended throughout life to prevent infectious diseases and their sequelae. Vaccines are crucial to prevent mortality in that >25% of deaths are due to infections. Vaccines are recommended for adults on the basis of a range of factors. Substantial improvement and increases in adult vaccination are needed to reduce the health consequences of vaccine-preventable diseases among adults. Incomplete and inadequate immunization in India against these communicable diseases results in substantial and unnecessary costs both in terms of hospitalization and treatment. The government of India as well as the World Health Organization (WHO) consider childhood vaccination as the first priority, but there is not yet focus on adult immunization. Adult immunization in India is the most ignored part of heath care services. The Expert Group recommended that data on infectious diseases in India should be updated, refined, and reviewed periodically and published regularly. This group suggested that the consensus guidelines about adult immunization should be reviewed every 3 years to incorporate new strategies from any emerging research from India. There is an immediate need to address the problem of adult immunization in India. Although many issues revolving around efficacy, safety, and cost of introducing vaccines for adults at the national level are yet to be resolved, there is an urgent need to sensitize the health planners as well as health care providers regarding this pertinent issue.

  10. Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics.

    PubMed

    Eikenaar, Cas; Hegemann, Arne

    2016-03-01

    Animals need a well-functioning immune system to protect themselves against pathogens. The immune system, however, is costly and resource trade-offs with other demands exist. For migratory animals several (not mutually exclusive) hypotheses exist. First, migrants reduce immune function to be able to allocate resources to migration. Second, migrants boost immune function to cope with more and/or novel pathogens encountered during migration. Third, migrants reallocate resources within the immune system. We tested these hypotheses by comparing baseline immune function in resident and migratory common blackbirds (Turdus merula), both caught during the autumn migration season on the island of Helgoland, Germany. Indices of baseline innate immune function (microbial killing capacity and haptoglobin-like activity) were lower in migrants than in residents. There was no difference between the groups in total immunoglobulins, a measure of baseline acquired immune function. Our study on a short-distance avian migrant supports the hypothesis that innate immune function is compromised during migration.

  11. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  12. Increasing Immunization Compliance

    ERIC Educational Resources Information Center

    Toole, Kimberly; Perry, Cynthia S.

    2004-01-01

    School nurses often have the responsibility to ensure that students meet all immunization requirements for school entry and school attendance. In large inner-city school districts, many obstacles exist which make this task daunting and often result in lengthy absences and exclusions for students. It is critical that school nurses find creative and…

  13. Neurologic complications of immunizations.

    PubMed

    Rutledge, S L; Snead, O C

    1986-12-01

    Although there does appear to be at least a temporal relationship between pertussis immunization and serious acute neurologic illness, data to suggest that children with stable preexisting neurologic disease or positive family history of neurologic disease are at increased risk for complications of pertussis immunizations are inconclusive. Furthermore, there are no firm statistical data concerning the incidence of pertussis vaccine-related encephalopathy. Rather, the literature on pertussis vaccine complications is replete with anecdotal reports and retrospective studies with a number of questionable conclusions drawn from this inadequate data base. Unfortunately, these conclusions have been sensationalized and exploited with litigious fervor to the point that the practice of pertussis immunization is being questioned in the United States. A number of points should be reiterated: pertussis is a dangerous and deadly disease, as seen in the epidemic in Great Britain; pertussis immunization is effective in protecting against the disease; and there is no conclusive proof that the incidence of complications from pertussis vaccination of children with seizure disorders or other preexisting stable neurologic abnormalities is higher, because appropriate studies have not been done to define such a risk. We would do well to keep these facts in mind in order to avoid a disaster similar to the pertussis epidemic in Great Britain. Pertussis vaccination should be given to all children except those with allergic hypersensitivity, a progressive neurologic disorder, or an adverse reaction to a previous pertussis dose.

  14. Lipids and immune function.

    PubMed

    Vitale, J J; Broitman, S A

    1981-09-01

    There is in vitro and in vivo evidence to suggest that dietary lipids play a role in modulating immune function. A review of the current literature on the interrelationships among dietary lipids, blood cholesterol levels, immunosuppression, and tumorigenesis makes for a very strong argument that (a) immunosuppression may be causally related to lymphoproliferative disorders, as well as to tumorigenesis and (b) diets high in polyunsaturated fat, relative to diets high in saturated fat, are more immunosuppressive and are better promotors of tumorigenesis. The effects of dietary fat on immune function seem to be mediated though its component parts, the unsaturated fatty acids, specially linoleic, linolenic, and arachidonic. It is not clear how these components affect immune function. Several studies suggest that one effect is mediated by altering the lipid component of the cell membrane and thus its fluidity; the more fluid the membrane, the less responsive it is. Thus, fluidity of both immune cells and those to be destroyed or protected may be affected. The effects of saturated as well as unsaturated fatty acids may be mediated by modulating serum lipoprotein levels, prostaglandin metabolism, and cholesterol concentrations and metabolism.

  15. Photodynamic immune modulation (PIM)

    NASA Astrophysics Data System (ADS)

    North, John R.; Hunt, David W. C.; Simkin, Guillermo O.; Ratkay, Leslie G.; Chan, Agnes H.; Lui, Harvey; Levy, Julia G.

    1999-09-01

    Photodynamic Therapy (PDT) is accepted for treatment of superficial and lumen-occluding tumors in regions accessible to activating light and is now known to be effective in closure of choroidal neovasculature in Age Related Macular Degeneration. PDT utilizes light absorbing drugs (photosensitizers) that generate the localized formation of reactive oxygen species after light exposure. In a number of systems, PDT has immunomodulatory effects; Photodynamic Immune Modulation (PIM). Using low- intensity photodynamic regimens applied over a large body surface area, progression of mouse autoimmune disease could be inhibited. Further, this treatment strongly inhibited the immunologically- medicated contact hypersensitivity response to topically applied chemical haptens. Immune modulation appears to result from selective targeting of activated T lymphocytes and reduction in immunostimulation by antigen presenting cells. Psoriasis, an immune-mediated skin condition, exhibits heightened epidermal cell proliferation, epidermal layer thickening and plaque formation at different body sites. In a recent clinical trial, approximately one-third of patients with psoriasis and arthritis symptoms (psoriatic arthritis) displayed a significant clinical improvement in several psoriasis-related parameters after four weekly whole-body PIM treatments with verteporfin. The safety profile was favorable. The capacity of PIM to influence other human immune disorders including rheumatoid arthritis is under extensive evaluation.

  16. Immunity to brucellosis.

    PubMed

    Skendros, P; Boura, P

    2013-04-01

    Resistance to intracellular bacterial pathogens such as Brucella spp. relies on cell-mediated immunity, which involves activation of the bactericidal mechanisms of antigen-presenting cells (macrophages and dendritic cells) and the subsequent expansion of antigen-specific CD4+ and CD8+ T-cell clones. Brucella antigens induce the production of T helper type 1 (Th1) cytokines, and an adequate Th1 immune response is critical for the clearance of Brucella infection. Studies on experimental and human brucellosis indicate that interferon-gamma (IFNgamma) is the principal cytokine active against Brucella infection. On the other hand, Brucella has evolutionarily developed diverse evasion strategies to avoid the host's innate and adaptive immunity in order to establish an intracellular niche for long-term parasitism. Disturbances of the Thl response and anergy have been described in patients with chronic brucellosis, and are associated with poor outcome. Accordingly, chronic brucellosis represents a challenge for the study of immune mechanisms against Brucella and the development of novel therapeutic or vaccination approaches.

  17. Auto immune hepatitis.

    PubMed

    van Gerven, Nicole Mf; de Boer, Ynto S; Mulder, Chris Jj; van Nieuwkerk, Carin Mj; Bouma, Gerd

    2016-05-21

    To provide an update of the latest trends in epidemiology, clinical course, diagnostics, complications and treatment of auto immune hepatitis (AIH). A search of the MEDLINE database was performed using the search terms: "auto immune hepatitis", "clinical presentation", "symptoms", "signs", "diagnosis", "auto antibodies", "laboratory values", "serology", "histopathology", "histology", "genetics", "HLA genes", "non-HLA genes", "environment", "epidemiology", "prevalence", "incidence", "demographics", "complications", "HCC", "PBC", "PSC", "corticosteroid", "therapy", "treatment", "alternative treatment". English-language full-text articles and abstracts were considered. Articles included reviews, meta-analysis, prospective retrospective studies. No publication date restrictions were applied. AIH is an immune meditated progressive inflammatory liver disease that predominantly affects middle-aged females but may affect people of all ages. The clinical spectrum of AIH is wide, ranging from absent or mild symptoms to fulminant hepatic failure. The aetiology of AIH is still unknown, but is believed to occur as the consequence of an aberrant immune response towards an un-known trigger in a genetically susceptible host. In the absence of a gold standard, diagnosis is based on the combination of clinical, biochemical and histopathological criteria. Immunosuppressive treatment has been the cornerstone of treatment since the earliest description of the disease in 1950 by Waldenström. Such treatment is often successful at inducing remission and generally leads to normal life expectancy. Nevertheless, there remain significant areas of unmet aetiological a clinical needs including fundamental insight in disease pathogenesis, optimal therapy, duration of treatment and treatment alternatives in those patients unresponsive to standard treatment regimens.

  18. Lymphatic vessels regulate immune microenvironments in human and murine melanoma

    PubMed Central

    Lund, Amanda W.; Wagner, Marek; Fankhauser, Manuel; Steinskog, Eli S.; Broggi, Maria A.; Spranger, Stefani; Gajewski, Thomas F.; Alitalo, Kari; Eikesdal, Hans P.

    2016-01-01

    Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment. PMID:27525437

  19. Host immunity to Cryptococcus neoformans

    PubMed Central

    Rohatgi, Soma; Pirofski, Liise-anne

    2015-01-01

    Cryptococcosis is caused by the fungal genus Cryptococcus. Cryptococcosis, predominantly meningoencephalitis, emerged with the HIV pandemic, primarily afflicting HIV-infected patients with profound T-cell deficiency. Where in use, combination antiretroviral therapy has markedly reduced the incidence of and risk for disease, but cryptococcosis continues to afflict those without access to therapy, particularly in sub-Saharan Africa and Asia. However, cryptococcosis also occurs in solid organ transplant recipients and patients with other immunodeficiencies as well as those with no known immunodeficiency. This article reviews innate and adaptive immune responses to C. neoformans, with an emphasis on recent studies on the role of B cells, natural IgM and Fc gamma receptor polymorphisms in resistance to cryptococcosis. PMID:25865194

  20. Increasing immunization coverage.

    PubMed

    Hammer, Lawrence D; Curry, Edward S; Harlor, Allen D; Laughlin, James J; Leeds, Andrea J; Lessin, Herschel R; Rodgers, Chadwick T; Granado-Villar, Deise C; Brown, Jeffrey M; Cotton, William H; Gaines, Beverly Marie Madry; Gambon, Thresia B; Gitterman, Benjamin A; Gorski, Peter A; Kraft, Colleen A; Marino, Ronald Vincent; Paz-Soldan, Gonzalo J; Zind, Barbara

    2010-06-01

    In 1977, the American Academy of Pediatrics issued a statement calling for universal immunization of all children for whom vaccines are not contraindicated. In 1995, the policy statement "Implementation of the Immunization Policy" was published by the American Academy of Pediatrics, followed in 2003 with publication of the first version of this statement, "Increasing Immunization Coverage." Since 2003, there have continued to be improvements in immunization coverage, with progress toward meeting the goals set forth in Healthy People 2010. Data from the 2007 National Immunization Survey showed that 90% of children 19 to 35 months of age have received recommended doses of each of the following vaccines: inactivated poliovirus (IPV), measles-mumps-rubella (MMR), varicella-zoster virus (VZB), hepatitis B virus (HBV), and Haemophilus influenzae type b (Hib). For diphtheria and tetanus and acellular pertussis (DTaP) vaccine, 84.5% have received the recommended 4 doses by 35 months of age. Nevertheless, the Healthy People 2010 goal of at least 80% coverage for the full series (at least 4 doses of DTaP, 3 doses of IPV, 1 dose of MMR, 3 doses of Hib, 3 doses of HBV, and 1 dose of varicella-zoster virus vaccine) has not yet been met, and immunization coverage of adolescents continues to lag behind the goals set forth in Healthy People 2010. Despite these encouraging data, a vast number of new challenges that threaten continued success toward the goal of universal immunization coverage have emerged. These challenges include an increase in new vaccines and new vaccine combinations as well as a significant number of vaccines currently under development; a dramatic increase in the acquisition cost of vaccines, coupled with a lack of adequate payment to practitioners to buy and administer vaccines; unanticipated manufacturing and delivery problems that have caused significant shortages of various vaccine products; and the rise of a public antivaccination movement that uses the

  1. Maternal immune transfer in mollusc.

    PubMed

    Wang, Lingling; Yue, Feng; Song, Xiaorui; Song, Linsheng

    2015-02-01

    Maternal immunity refers to the immunity transferred from mother to offspring via egg, playing an important role in protecting the offspring at early life stages and contributing a trans-generational effect on offspring's phenotype. Because fertilization is external in most of the molluscs, oocytes and early embryos are directly exposed to pathogens in the seawater, and thus maternal immunity could provide a better protection before full maturation of their immunological systems. Several innate immune factors including pattern recognition receptors (PRRs) like lectins, and immune effectors like lysozyme, lipopolysaccharide binding protein/bacterial permeability-increasing proteins (LBP/BPI) and antioxidant enzymes have been identified as maternally derived immune factors in mollusc eggs. Among these immune factors, some maternally derived lectins and antibacterial factors have been proved to endue mollusc eggs with effective defense ability against pathogen infection, while the roles of other factors still remain untested. The physiological condition of mollusc broodstock has a profound effect on their offspring fitness. Many other factors such as nutrients, pathogens, environment conditions and pollutants could exert considerable influence on the maternal transfer of immunity. The parent molluscs which have encountered an immune stimulation endow their offspring with a trans-generational immune capability to protect them against infections effectively. The knowledge on maternal transfer of immunity and the trans-generational immune effect could provide us with an ideal management strategy of mollusc broodstock to improve the immunity of offspring and to establish a disease-resistant family for a long-term improvement of cultured stocks.

  2. Evolutionary responses of innate Immunity to adaptive immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  3. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  4. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    PubMed

    Marcu, Oana; Lera, Matthew P; Sanchez, Max E; Levic, Edina; Higgins, Laura A; Shmygelska, Alena; Fahlen, Thomas F; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-11

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  5. Reconfiguration of the immune system network during food limitation in the caterpillar Manduca sexta.

    PubMed

    Adamo, Shelley A; Davies, Gillian; Easy, Russell; Kovalko, Ilya; Turnbull, Kurtis F

    2016-03-01

    Dwindling resources might be expected to induce a gradual decline in immune function. However, food limitation has complex and seemingly paradoxical effects on the immune system. Examining these changes from an immune system network perspective may help illuminate the purpose of these fluctuations. We found that food limitation lowered long-term (i.e. lipid) and short-term (i.e. sugars) energy stores in the caterpillar Manduca sexta. Food limitation also: altered immune gene expression, changed the activity of key immune enzymes, depressed the concentration of a major antioxidant (glutathione), reduced resistance to oxidative stress, reduced resistance to bacteria (Gram-positive and -negative bacteria) but appeared to have less effect on resistance to a fungus. These results provide evidence that food limitation led to a restructuring of the immune system network. In severely food-limited caterpillars, some immune functions were enhanced. As resources dwindled within the caterpillar, the immune response shifted its emphasis away from inducible immune defenses (i.e. those responses that are activated during an immune challenge) and increased emphasis on constitutive defenses (i.e. immune components that are produced consistently). We also found changes suggesting that the activation threshold for some immune responses (e.g. phenoloxidase) was lowered. Changes in the configuration of the immune system network will lead to different immunological strengths and vulnerabilities for the organism.

  6. Innate immune memory in plants.

    PubMed

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.

  7. Overview of the Immune System

    MedlinePlus

    ... in the bone marrow is the precursor to innate immune cells—neutrophils, eosinophils, basophils, mast cells, monocytes, ... common lymphoid progenitor and share features of both innate and adaptive immune cells, as they provide immediate ...

  8. Bridging innate and adaptive immunity.

    PubMed

    Paul, William E

    2011-12-09

    The Nobel Prize in Physiology or Medicine for 2011 to Jules Hoffmann, Bruce Beutler, and the late Ralph Steinman recognizes accomplishments in understanding and unifying the two strands of immunology, the evolutionarily ancient innate immune response and modern adaptive immunity.

  9. Biosignatures of Exposure/Transmission and Immunity.

    PubMed

    King, Christopher L; Davies, D Huw; Felgner, Phil; Baum, Elizabeth; Jain, Aarti; Randall, Arlo; Tetteh, Kevin; Drakeley, Christopher J; Greenhouse, Bryan

    2015-09-01

    A blood test that captures cumulative exposure over time and assesses levels of naturally acquired immunity (NAI) would provide a critical tool to monitor the impact of interventions to reduce malaria transmission and broaden our understanding of how NAI develops around the world as a function of age and exposure. This article describes a collaborative effort in multiple International Centers of Excellence in Malaria Research (ICEMRs) to develop such tests using malaria-specific antibody responses as biosignatures of transmission and immunity. The focus is on the use of Plasmodium falciparum and Plasmodium vivax protein microarrays to identify a panel of the most informative antibody responses in diverse malaria-endemic settings representing an unparalleled spectrum of malaria transmission and malaria species mixes before and after interventions to reduce malaria transmission.

  10. miRNA-124 in Immune System and Immune Disorders

    PubMed Central

    Qin, Zhen; Wang, Peng-Yuan; Su, Ding-Feng; Liu, Xia

    2016-01-01

    In recent years, miR-124 has emerged as a critical modulator of immunity and inflammation. Here, we summarize studies on the function and mechanism of miR-124 in the immune system and immunity-related diseases. They indicated that miR-124 exerts a crucial role in the development of immune system, regulation of immune responses, and inflammatory disorders. It is evident that miR-124 may serve as an informative diagnostic biomarker and therapeutic target in the future. PMID:27757114

  11. Adaptive immune resistance: How cancer protects from immune attack

    PubMed Central

    Ribas, Antoni

    2015-01-01

    Adaptive immune resistance is a process where the cancer changes its phenotype in response to a cytotoxic or pro-inflammatory immune response, thereby evading it. This adaptive process is triggered by the specific recognition of cancer cells by T cells, which leads to the production of immune-activating cytokines. Cancers then hijack mechanisms developed to limit inflammatory and immune responses and protect themselves from the T cell attack. Inhibiting adaptive immune resistance is the mechanistic basis of responses to PD-1 or PD-L1 blocking antibodies, and may be of relevance for the development of other cancer immunotherapy strategies. PMID:26272491

  12. Helminthic therapy: using worms to treat immune-mediated disease.

    PubMed

    Elliott, David E; Weinstock, Joel V

    2009-01-01

    There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.

  13. Maternal immunization. Clinical experiences, challenges, and opportunities in vaccine acceptance.

    PubMed

    Moniz, Michelle H; Beigi, Richard H

    2014-01-01

    Maternal immunization holds tremendous promise to improve maternal and neonatal health for a number of infectious conditions. The unique susceptibilities of pregnant women to infectious conditions, as well as the ability of maternally-derived antibody to offer vital neonatal protection (via placental transfer), together have produced the recent increased attention on maternal immunization. The Advisory Committee on Immunization Practices (ACIP) currently recommends 2 immunizations for all pregnant women lacking contraindication, inactivated Influenza and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap). Given ongoing research the number of vaccines recommended during pregnancy is likely to increase. Thus, achieving high vaccination coverage of pregnant women for all recommended immunizations is a key public health enterprise. This review will focus on the present state of vaccine acceptance in pregnancy, with attention to currently identified barriers and determinants of vaccine acceptance. Additionally, opportunities for improvement will be considered.

  14. Life-history strategy determines constraints on immune function.

    PubMed

    Parker, Benjamin J; Barribeau, Seth M; Laughton, Alice M; Griffin, Lynn H; Gerardo, Nicole M

    2017-05-01

    Determining the factors governing investment in immunity is critical to understanding host-pathogen ecological and evolutionary dynamics. Studies often consider disease resistance in the context of life-history theory, with the expectation that investment in immunity will be optimized in anticipation of disease risk. Immunity, however, is constrained by context-dependent fitness costs. How the costs of immunity vary across life-history strategies has yet to be considered. Pea aphids are typically unwinged but produce winged offspring in response to high population densities and deteriorating conditions. This is an example of polyphenism, a strategy used by many organisms to adjust to environmental cues. The goal of this study was to examine the relationship between the fitness costs of immunity, pathogen resistance and the strength of an immune response across aphid morphs that differ in life-history strategy but are genetically identical. We measured fecundity of winged and unwinged aphids challenged with a heat-inactivated fungal pathogen, and found that immune costs are limited to winged aphids. We hypothesized that these costs reflect stronger investment in immunity in anticipation of higher disease risk, and that winged aphids would be more resistant due to a stronger immune response. However, producing wings is energetically expensive. This guided an alternative hypothesis - that investing resources into wings could lead to a reduced capacity to resist infection. We measured survival and pathogen load after live fungal infection, and we characterized the aphid immune response to fungi by measuring immune cell concentration and gene expression. We found that winged aphids are less resistant and mount a weaker immune response than unwinged aphids, demonstrating that winged aphids pay higher costs for a less effective immune response. Our results show that polyphenism is an understudied factor influencing the expression of immune costs. More generally, our work

  15. Immunization strategies against henipaviruses.

    PubMed

    Broder, Christopher C; Geisbert, Thomas W; Xu, Kai; Nikolov, Dimitar B; Wang, Lin-Fa; Middleton, Deborah; Pallister, Jackie; Bossart, Katharine N

    2012-01-01

    Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.

  16. Epigenetics meets immune checkpoints.

    PubMed

    Covre, Alessia; Coral, Sandra; Di Giacomo, Anna Maria; Taverna, Pietro; Azab, Mohammad; Maio, Michele

    2015-06-01

    Epigenetic alterations play a pivotal role in cancer development and progression. Pharmacologic reversion of such alterations is feasible, and second generation "epigenetic drugs" are in development and have been demonstrated to possess significant immunomodulatory properties. This knowledge, together with the availability of new and highly effective immunotherapeutic agents including immune checkpoint(s) blocking monoclonal antibodies, allows us to plan for highly innovative proof-of-principle combination studies that will likely open the path to more effective anticancer therapies.

  17. Single Nutrients and Immunity

    DTIC Science & Technology

    1982-02-01

    control group, cot- vitamin C deficiencies, humoral immune re- ton- topped marmosets fed a large dietary ex- sponses do not differ appreciably from...vac- duction of interferon. They commented (61) cine (75). that "the literature in this field is bedeviled The long-term feeding of cotton- topped by...repletion: a marked numbers were also found in the lungs. sub- rebound to higher serum lgG values then maxillary glands, and lymph nodes (310). occurred over

  18. Research in Plague Immunity

    DTIC Science & Technology

    1976-06-01

    Purified Antigen of Brucella melitensis Prior to Injection of Rev. I Vaccine or with Both Injected Concomitantly. J. Infect. Dis. September 1976 issue...with observa- tion on the structure of the-bacterial cells and its relationships to infection and immunity, J. Immunol. 72:282-298, 1954. Chen, T. H...a vaccine prepared with killed virulent whole organisms. J. Immunol. 87:64-71, 1961. Chen, T.H. The antigenic structure of Pasteurella pestis and its

  19. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1986-05-01

    the period 246 Lassa Fever Immune Plasma (LFIP) units were obtained by plasmapheresis , 106 were forwarded to USAMRIID. During the whole life of the...Fever in Plasmapheresis #20 - the inception of the Contract LV has been isolated from 139 of 213 LF patients and another 71 presumptive LF cases have...During the year plasmapheresis at Curran Lutheran Hospital (CLH) and Phebe Hospital (PH) resulted in the collection of 246 units of Lassa Fever

  20. Immunity to amoeba.

    PubMed

    Nowak, Barbara; Valdenegro-Vega, Victoria; Crosbie, Philip; Bridle, Andrew

    2014-04-01

    Amoebic infections in fish are most likely underestimated and sometimes overlooked due to the challenges associated with their diagnosis. Amoebic diseases reported in fish affect either gills or internal organs or may be systemic. Host response ranges from hyperplastic response in gill infections to inflammation (including granuloma formation) in internal organs. This review focuses on the immune response of Atlantic salmon to Neoparamoeba perurans, the causative agent of Amoebic Gill Disease (AGD).

  1. Lassa Fever Immune Plasma.

    DTIC Science & Technology

    1983-08-01

    Lassa fever , a new virus disease of man from West Africa . Clinical... Lassa fever in missionaries stationed in West Africa . Bull. W.H.O. 52: 593-598 (1975). 5. Clayton, A.J. Lassa immune serum. Bull. W.H.O. 55: 435-439...1977). 6. Leifer, E., Gocke, D.J., & Bourne, H. Lassa fever , a new virus disease of man from West Africa . II. Report of a laboratory acquired

  2. Silencing nociceptor neurons reduces allergic airway inflammation

    PubMed Central

    Talbot, Sébastien; Abdulnour, Raja-Elie E.; Burkett, Patrick R.; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie L.; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac M.; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay K.; Bean, Bruce P.; Levy, Bruce D.; Woolf, Clifford J.

    2015-01-01

    Summary Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  3. Bateman's principle and immunity.

    PubMed Central

    Rolff, Jens

    2002-01-01

    The immunocompetence handicap hypothesis (ICHH) of Folstad and Karter has inspired a large number of studies that have tried to understand the causal basis of parasite-mediated sexual selection. Even though this hypothesis is based on the double function of testosterone, a hormone restricted to vertebrates, studies of invertebrates have tended to provide central support for specific predictions of the ICHH. I propose an alternative hypothesis that explains many of the findings without relying on testosterone or other biochemical feedback loops. This alternative is based on Bateman's principle, that males gain fitness by increasing their mating success whilst females increase fitness through longevity because their reproductive effort is much higher. Consequently, I predict that females should invest more in immunity than males. The extent of this dimorphism is determined by the mating system and the genetic correlation between males and females in immune traits. In support of my arguments, I mainly use studies on insects that share innate immunity with vertebrates and have the advantage that they are easier to study. PMID:11958720

  4. Why parents refuse immunization?

    PubMed

    Kajetanowicz, Andrzej; Kajetanowicz, Aleksandra

    Rates of child immunization are falling in many countries, leading to the increase of morbidity and mortality from diseases controlled by vaccinations. The simplified model of the natural history of immunization follows a sequence of fear of the disease before vaccination, followed by acceptance of the vaccination until plateau, where the population forgets the morbidity and mortality of pre-immunization. Historical factors including withdrawals of vaccines, and publications regarding the true or falsified dangers of vaccines still resonate with parents. Building on these historical factors, unscientific sources such as naturopaths, homeopaths, chiropractors, celebrities and lay-people with anecdotal evidence and even scientific sources such as some universities and some medical doctors push their views on anti-vaccination, which proves to make the decision to vaccinate more difficult on parents. The main reason that parents refuse vaccination is a desire to protect their children. These parents believe that vaccination is harmful, or that not vaccinated children are healthier than vaccinated children. Scientific data often will lose with pseudoscientific, false or anecdotal data that have higher sensational and emotional impact on parents. With so many sources giving so many factors which sometimes contradict themselves, it is indeed difficult for a parent to make a clear decision for their child.

  5. Cystatins in Immune System

    PubMed Central

    Magister, Špela; Kos, Janko

    2013-01-01

    Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion. PMID:23386904

  6. Linear ubiquitination in immunity.

    PubMed

    Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning

    2015-07-01

    Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types.

  7. Brucella evasion of adaptive immunity.

    PubMed

    Martirosyan, Anna; Gorvel, Jean-Pierre

    2013-02-01

    The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system.

  8. Factors influencing innate immunity and vaccine responses in infancy

    PubMed Central

    Kampmann, Beate; Jones, Christine E

    2015-01-01

    Despite significant progress in reducing the burden of mortality in children under the age of five, reducing mortality in newborns remains a major challenge. Infection plays a significant role in infant deaths and interventions such as early vaccination or antenatal immunization could make a significant contribution to prevention of such deaths. In the last few years, we have gained new insights into immune ontogeny and are now beginning to understand the impact of vaccines, nutrition and environmental factors on ‘training′ of the immune response in early life. This review article sets out to explain why vaccine responses can be heterogeneous between populations and individuals by providing examples chosen to illustrate the impact of host, pathogen and environmental factors on shaping the immune ‘interactome′ in young children. PMID:25964459

  9. Strategies to enhance immune function for marathon runners : what can be done?

    PubMed

    Akerström, Thorbjörn C A; Pedersen, Bente K

    2007-01-01

    Marathoners are at an increased risk of developing upper respiratory tract infections (URTIs) following races and periods of hard training, which are associated with temporary changes in the immune system. The majority of the reported changes are decreases in function or concentration of certain immune cells. During this period of immune suppression, by some referred to as an 'open window' in immune function, it has been hypothesised that viruses and bacteria might gain a foothold, which would increase the risk of infections. In light of this, nutritional interventions that can enhance immune function and reduce the risk of URTIs have been sought. This paper focuses on the effect of glutamine, vitamin C, bovine colostrum and glucose. Although, some of these supplements can affect the physiological and immune changes associated with marathon racing, none of the supplements discussed have consistently been shown to reduce the risk of URTIs and therefore cannot be recommended for use as enhancers of immune function in marathon runners.

  10. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  11. IMMUNE ACTIVATION AND PAEDIATRIC HIV-1 DISEASE OUTCOME

    PubMed Central

    Roider, J; Muenchhoff, M; Goulder, PJR

    2016-01-01

    Purpose of review The paediatric HIV epidemic is changing. Over the past decade, new infections have substantially reduced whilst access to antiretroviral therapy (ART) has increased. Overall this success means that numbers of children living with HIV are climbing. In addition, the problems in adults of chronic inflammation resulting from persistent immune activation even following ART-mediated suppression of viral replication are magnified in children infected from birth. Recent findings Features of immune ontogeny favor low immune activation in early life, whilst specific aspects of paediatric HIV infection tend to increase it. A subset of ART-naïve non-progressing children exists in whom normal CD4 counts are maintained in the setting of persistent high viremia and yet in the context of low immune activation. This sooty mangabey-like phenotype contrasts with non-progressing adult infection characterized by the expression of protective HLA class I molecules and low viral load. The particular factors contributing to raised or lowered immune activation in paediatric infection, and that ultimately influence disease outcome, are discussed. Summary Novel strategies to circumvent the unwanted long-term consequences of HIV infection may be possible in children in whom natural immune ontogeny in early life militates against immune activation. Defining the mechanisms underlying low immune activation in natural HIV infection would have applications beyond paediatric HIV. PMID:26679413

  12. Epigenetic and immune function profiles associated with posttraumatic stress disorder

    PubMed Central

    Uddin, Monica; Aiello, Allison E.; Wildman, Derek E.; Koenen, Karestan C.; Pawelec, Graham; de los Santos, Regina; Goldmann, Emily; Galea, Sandro

    2010-01-01

    The biologic underpinnings of posttraumatic stress disorder (PTSD) have not been fully elucidated. Previous work suggests that alterations in the immune system are characteristic of the disorder. Identifying the biologic mechanisms by which such alterations occur could provide fundamental insights into the etiology and treatment of PTSD. Here we identify specific epigenetic profiles underlying immune system changes associated with PTSD. Using blood samples (n = 100) obtained from an ongoing, prospective epidemiologic study in Detroit, the Detroit Neighborhood Health Study, we applied methylation microarrays to assay CpG sites from more than 14,000 genes among 23 PTSD-affected and 77 PTSD-unaffected individuals. We show that immune system functions are significantly overrepresented among the annotations associated with genes uniquely unmethylated among those with PTSD. We further demonstrate that genes whose methylation levels are significantly and negatively correlated with traumatic burden show a similar strong signal of immune function among the PTSD affected. The observed epigenetic variability in immune function by PTSD is corroborated using an independent biologic marker of immune response to infection, CMV—a typically latent herpesvirus whose activity was significantly higher among those with PTSD. This report of peripheral epigenomic and CMV profiles associated with mental illness suggests a biologic model of PTSD etiology in which an externally experienced traumatic event induces downstream alterations in immune function by reducing methylation levels of immune-related genes. PMID:20439746

  13. Immunotherapy comes of age: Immune aging & checkpoint inhibitors.

    PubMed

    Elias, Rawad; Karantanos, Theodoros; Sira, Elizabeth; Hartshorn, Kevan L

    2017-02-17

    Immune checkpoint inhibitors (ICIs) are based on the understanding that there are multilayered checks and balances which can be manipulated to unleash already existing, but paralyzed, immune responses to cancer. These agents are safer and more efficacious than classic cytotoxic drugs making them a very attractive therapeutic option, especially in older adults. Current available data do not suggest significant age-associated differences in the clinical profile of ICIs. It must be noted, however, that there is still relatively little information on the use of ICIs in adults over 75years of age and aging is associated with a decline in the immune system or "immunosenescence" which theoretically can reduce the efficacy of these immune based therapies. In this paper, we review the mechanism of action of ICIs, current clinical data on their use in older adults, and age-associated immune changes that might have a direct impact on their activity in this population. We chose to focus on mainly adaptive cellular immunity, and especially on components of the immune system that are implicated directly in the immune checkpoint process.

  14. The Bidirectional Relationship between Sleep and Immunity against Infections

    PubMed Central

    Ibarra-Coronado, Elizabeth G.; Pantaleón-Martínez, Ana Ma.; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed. PMID:26417606

  15. Immune tolerance induction by integrating innate and adaptive immune regulators

    PubMed Central

    Suzuki, Jun; Ricordi, Camillo; Chen, Zhibin

    2009-01-01

    A diversity of immune tolerance mechanisms have evolved to protect normal tissues from immune damage. Immune regulatory cells are critical contributors to peripheral tolerance. These regulatory cells, exemplified by the CD4+Foxp3+ regulatory T (Treg) cells and a recently identified population named myeloid-derived suppressor cells (MDSCs), regulate immune responses and limiting immune-mediated pathology. In a chronic inflammatory setting, such as allograft-directed immunity, there may be a dynamic “crosstalk” between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage. CTLA4-B7-based interaction between the two branches may function as a molecular “bridge” to facilitate such “crosstalk”. Understanding the interplays among Treg cells, innate suppressors and pathogenic effector T (Teff) cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immunosuppressive elements in the innate and adaptive immune system. Successful development of localized strategies of regulatory cell therapies could circumvent the requirement for very high number of cells and decrease the risks associated with systemic immunosuppression. To realize the potential of innate and adaptive immune regulators for the still-elusive goal of immune tolerance induction, adoptive cell therapies may also need to be coupled with agents enhancing endogenous tolerance mechanisms. PMID:19919733

  16. Adaptation in the innate immune system and heterologous innate immunity.

    PubMed

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  17. A new synthesis for antibody-mediated immunity

    PubMed Central

    Casadevall, Arturo; Pirofski, Liise-anne

    2013-01-01

    The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity. PMID:22179281

  18. Sympathetic neural modulation of the immune system

    SciTech Connect

    Madden, K.S.

    1989-01-01

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of {sup 125}iododeoxyuridine ({sup 125}IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated {sup 125}IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining {sup 51}Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function.

  19. How Parents' Negative Experiences at Immunization Visits Affect Child Immunization Status in a Community in New York City

    PubMed Central

    Stockwell, Melissa S.; Irigoyen, Matilde; Martinez, Raquel Andres; Findley, Sally

    2011-01-01

    Objective Little is known about how families' experiences with immunization visits within the medical home may affect children's immunization status. We assessed the association between families' negative immunization experiences within the medical home and underimmunization. Methods We surveyed parents (n=392) of children aged 2–36 months about immunization experiences at community health centers, hospital-based clinics, private practices, and community-based organizations in New York City. We used Chi-square tests and odds ratios (ORs) to assess the relationship between medical home elements and parental immunization experience ratings. We used multivariable analysis to determine the association between negative experiences during immunization visits and underimmunization, controlling for insurance, maternal education, and receipt of benefits from the Special Supplemental Nutrition Program for Women, Infants, and Children. Results The majority of children were of Latino race/ethnicity and had Medicaid and a medical home. One-sixth (16.9%) of families reported a previous negative immunization experience, primarily related to the child's reaction, waiting time, and attitudes of medical and office staff. Parents' negative immunization experiences were associated with the absence of four components of the medical home: continuity of care, family-centered care, compassionate care, and comprehensive care. In addition, children in families who reported a negative experience were more likely to have been underimmunized (adjusted OR=2.00; 95% confidence interval 1.12, 3.58). Conclusions In a community in New York City, underimmunization of young children was associated with negative immunization experiences. Strategies to improve family experiences with immunization visits within the medical home (particularly around support for the family), medical and ancillary staff attitudes, and reduced waiting time may lead to improved immunization delivery. PMID:21812166

  20. Control of adaptive immunity by the innate immune system

    PubMed Central

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-01-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity. PMID:25789684

  1. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity.

    PubMed

    Arthur, Connie M; Patel, Seema R; Mener, Amanda; Kamili, Nourine A; Fasano, Ross M; Meyer, Erin; Winkler, Annie M; Sola-Visner, Martha; Josephson, Cassandra D; Stowell, Sean R

    2015-12-01

    Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.

  2. Immune Modulation in Hematologic Malignancies

    PubMed Central

    Dhodapkar, Madhav V.; Dhodapkar, Kavita M.

    2015-01-01

    The therapeutic potential of the immune system in the context of hematologic malignancies has long been appreciated particularly due to the curative impact of allogeneic hematopoietic stem cell transplantation. The role of immune system in shaping the biology and evolution of these tumors is now well recognized. While the contribution of the immune system in anti-tumor effects of certain therapies such as immune-modulatory drugs and monoclonal antibodies active in hematologic malignancies is quite evident, the immune system has also been implicated in anti-tumor effects of other targeted therapies. The horizon of immune-based therapies in hematologic malignancies is rapidly expanding with promising results from immune-modulatory drugs, immune-checkpoint blockade and adoptive cellular therapies, including genetically-modified T cells. Hematologic malignancies present distinct issues (relative to solid tumors) for the application of immune therapies due to differences in cell of origin/developmental niche of tumor cells, and patterns of involvement such as common systemic involvement of secondary lymphoid tissues. This article discusses the rapidly changing landscape of immune modulation in hematologic malignancies and emphasizes areas wherein hematologic malignancies present distinct opportunities for immunologic approaches to prevent or treat cancer. PMID:26320065

  3. Exercise, nutrition and immune function.

    PubMed

    Gleeson, Michael; Nieman, David C; Pedersen, Bente K

    2004-01-01

    Strenuous bouts of prolonged exercise and heavy training are associated with depressed immune cell function. Furthermore, inadequate or inappropriate nutrition can compound the negative influence of heavy exertion on immunocompetence. Dietary deficiencies of protein and specific micronutrients have long been associated with immune dysfunction. An adequate intake of iron, zinc and vitamins A, E, B6 and B12 is particularly important for the maintenance of immune function, but excess intakes of some micronutrients can also impair immune function and have other adverse effects on health. Immune system depression has also been associated with an excess intake of fat. To maintain immune function, athletes should eat a well-balanced diet sufficient to meet their energy requirements. An athlete exercising in a carbohydrate-depleted state experiences larger increases in circulating stress hormones and a greater perturbation of several immune function indices. Conversely, consuming 30-60 g carbohydrate x h(-1) during sustained intensive exercise attenuates rises in stress hormones such as cortisol and appears to limit the degree of exercise-induced immune depression. Convincing evidence that so-called 'immune-boosting' supplements, including high doses of antioxidant vitamins, glutamine, zinc, probiotics and Echinacea, prevent exercise-induced immune impairment is currently lacking.

  4. Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu; Deem, Michael W.

    2006-11-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1.

  5. A Physical Theory of the Competition that Allows HIV to Escape from the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2007-03-01

    Competition within the immune system may degrade immune control of viral infections. We formalize the evolution that occurs in both HIV-1 and the immune system quasispecies [1]. Inclusion of competition in the immune system leads to a novel balance between the immune response and HIV-1, in which the eventual outcome is HIV-1 escape rather than control. The analytical model reproduces the three stages of HIV-1 infection. We propose a vaccine regimen that may be able to reduce competition between T cells, potentially eliminating the third stage of HIV-1. 1) G. Wang and M. W. Deem, Phys. Rev. Lett. 97 (2006) 188106.

  6. Immunity's fourth dimension: approaching the circadian-immune connection.

    PubMed

    Arjona, Alvaro; Silver, Adam C; Walker, Wendy E; Fikrig, Erol

    2012-12-01

    The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions.

  7. Induction of mucosal immunity through systemic immunization: Phantom or reality?

    PubMed Central

    Su, Fei; Patel, Girishchandra B.; Hu, Songhua; Chen, Wangxue

    2016-01-01

    ABSTRACT Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity. PMID:26752023

  8. Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitors.

    PubMed

    Day, Daphne; Hansen, Aaron R

    2016-12-01

    Immune checkpoint inhibitors (ICIs), including antibodies targeting cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein-1 (PD-1), have shown durable treatment responses in multiple tumor types by enhancing antitumor immunity. However, removal of self-tolerance can induce autoimmunity and produce a unique immune-driven toxicity profile, termed immune-related adverse events (irAEs). As ICIs gain approval for a growing number of indications, it is imperative clinicians increase their knowledge of and ability to manage irAEs. This review examines the etiology, presentation, kinetics, and treatment of irAEs and aims to provide practical guidance for clinicians.

  9. Allergic immune-regulatory effects of adlay bran on an OVA-immunized mice allergic model.

    PubMed

    Chen, Hong-Jhang; Hsu, Hsin-Yi; Chiang, Wenchang

    2012-10-01

    Allergy is an inflammation associated with an elevated T helper (Th) 2 lymphocyte responses to allergens and elevated serum IgE levels and cytokines. In one of our previous studies using a cell model, various flavonoids were found to be involved the anti-inflammatory effects of adlay bran. The present study investigated the effect of the ethyl-acetate fraction of ethanolic extract of adlay bran (ABE-EtOAc) in an ovalbumin (OVA)-immunized murine model. Six-week-old female BALB/c mice underwent OVA sensitization and were used as an allergy model. An orogastric gavage was used to force feed these mice with 240 mg/kg ABE-EtOAc from their sixth week through their twelfth week. Immune reactions were determined by measuring changes in Th2-type cytokine (IL-4 and IL-5) levels and production of antibodies. ABE-EtOAc was found capable of regulating the Th1/Th2 immune reaction through its regulation of IL-2 and IL-4. It also significantly reduced the production of anti-OVA IgE antibodies (10%), increased the secretion of IFN-γ and decreased the secretion of IL-6 (38%). These results suggest that adlay bran extract can reduce an allergic reaction by balancing Th1/Th2 immune responses and that it might be used in the treatment of this condition.

  10. Microbes and mucosal immune responses in asthma.

    PubMed

    Hansel, Trevor T; Johnston, Sebastian L; Openshaw, Peter J

    2013-03-09

    The substantial increase in the worldwide prevalence of asthma and atopy has been attributed to lifestyle changes that reduce exposure to bacteria. A recent insight is that the largely bacterial microbiome maintains a state of basal immune homoeostasis, which modulates immune responses to microbial pathogens. However, some respiratory viral infections cause bronchiolitis of infancy and childhood wheeze, and can exacerbate established asthma; whereas allergens can partly mimic infectious agents. New insights into the host’s innate sensing systems, combined with recently developed methods that characterise commensal and pathogenic microbial exposure, now allow a unified theory for how microbes cause mucosal inflammation in asthma. The respiratory mucosa provides a key microbial interface where epithelial and dendritic cells interact with a range of functionally distinct lymphocytes. Lymphoid cells then control a range of pathways, both innate and specific, which organise the host mucosal immune response. Fundamental to innate immune responses to microbes are the interactions between pathogen-associated molecular patterns and pattern recognition receptors, which are associated with production of type I interferons, proinflammatory cytokines, and the T-helper-2 cell pathway in predisposed people. These coordinated, dynamic immune responses underlie the differing asthma phenotypes, which we delineate in terms of Seven Ages of Asthma. An understanding of the role of microbes in the atopic march towards asthma, and in causing exacerbations of established asthma, provides the rationale for new specific treatments that can be assessed in clinical trials. On the basis of these new ideas, specific host biomarkers might then allow personalised treatment to become a reality for patients with asthma.

  11. Immune cell phenotype and function in sepsis

    PubMed Central

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis. The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of non extracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed. A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8 and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes and the cell function. PMID:26529661

  12. Leptin Regulation of Immune Responses.

    PubMed

    Naylor, Caitlin; Petri, William A

    2016-02-01

    Leptin is a regulatory hormone with multiple roles in the immune system. We favor the concept that leptin signaling 'licenses' various immune cells to engage in immune responses and/or to differentiate. Leptin is an inflammatory molecule that is capable of activating both adaptive and innate immunity. It can also 'enhance' immune functions, including inflammatory cytokine production in macrophages, granulocyte chemotaxis, and increased Th17 proliferation. Leptin can also 'inhibit' cells; CD4(+) T cells are inhibited from differentiating into regulatory T cells in the presence of elevated leptin, while NK cells can exhibit impaired cytotoxicity under the same circumstances. Consequently, understanding the effect of leptin signaling is important to appreciate various aspects of immune dysregulation observed in malnutrition, obesity, and autoimmunity.

  13. Immune Aspects of Female Infertility

    PubMed Central

    Brazdova, Andrea; Senechal, Helene; Peltre, Gabriel; Poncet, Pascal

    2016-01-01

    Immune infertility, in terms of reproductive failure, has become a serious health issue involving approximately 1 out of 5 couples at reproductive age. Semen that is defined as a complex fluid containing sperm, cellular vesicles and other cells and components, could sensitize the female genital tract. The immune rejection of male semen in the female reproductive tract is explained as the failure of natural tolerance leading to local and/or systemic immune response. Present active immune mechanism may induce high levels of anti-seminal/sperm antibodies. It has already been proven that iso-immunization is associated with infertility. Comprehensive studies with regards to the identification of antibody-targets and the determination of specific antibody class contribute to the development of effective immuno-therapy and, on the other hand, potential immuno-contraception, and then of course to complex patient diagnosis. This review summarizes the aspects of female immune infertility. PMID:27123194

  14. Hypothalamic neurohormones and immune responses

    PubMed Central

    Quintanar, J. Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed. PMID:23964208

  15. Hypothalamic neurohormones and immune responses.

    PubMed

    Quintanar, J Luis; Guzmán-Soto, Irene

    2013-01-01

    The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.

  16. Chemokines and immunity

    PubMed Central

    Palomino, Diana Carolina Torres; Marti, Luciana Cavalheiro

    2015-01-01

    Chemokines are a large family of small cytokines and generally have low molecular weight ranging from 7 to 15kDa. Chemokines and their receptors are able to control the migration and residence of all immune cells. Some chemokines are considered pro-inflammatory, and their release can be induced during an immune response at a site of infection, while others are considered homeostatic and are involved in controlling of cells migration during tissue development or maintenance. The physiologic importance of this family of mediators is resulting from their specificity − members of the chemokine family induce recruitment of well-defined leukocyte subsets. There are two major chemokine sub-families based upon cysteine residues position: CXC and CC. As a general rule, members of the CXC chemokines are chemotactic for neutrophils, and CC chemokines are chemotactic for monocytes and sub-set of lymphocytes, although there are some exceptions. This review discusses the potential role of chemokines in inflammation focusing on the two best-characterized chemokines: monocyte chemoattractant protein-1, a CC chemokine, and interleukin-8, a member of the CXC chemokine sub-family. PMID:26466066

  17. Hyperthyroidism and immune thrombocytopenia.

    PubMed Central

    Jacobs, P.; Majoos, F.; Perrotta, A.

    1984-01-01

    Hyperthyroidism and immune thrombocytopenia occurred concurrently in five patients; in a sixth, thyrotoxicosis developed after successful treatment of the thrombocytopenia. Correction of the hyperthyroidism was followed by a variable pattern of clinical response. In one case with mild asymptomatic thrombocytopenia spontaneous complete remission occurred. Two patients required adrenocorticosteroids to control severe thrombocytopenic purpura during the period of hyperthyroidism, after which complete remission occurred. Another patient with severe symptomatic thrombocytopenia remains with a partially compensated thrombocytolytic state but is without purpura and off all therapy. A fifth patient required splenectomy for drug-resistant thrombocytopenia and remains critically dependent on immunosuppressive therapy. The sixth patient had a relapse of immune thrombocytopenia with subsequent development of thyrotoxicosis but platelet count spontaneously returned to normal after correction of the hyperthyroidism. Pregnancy in two of these six patients was not associated with recurrence of either hyperthyroidism or thrombocytopenia. Management of symptomatic purpura in adults with co-existent hyperthyroidism may differ from that customarily employed since adrenocorticosteroid therapy may need to be extended until euthyroidism has been established before proceeding to splenectomy. When surgery is necessary, the risk of thyrotoxic storm should be anticipated, and the patient appropriately premedicated. PMID:6494085

  18. Immunization against Brucella infection*

    PubMed Central

    Elberg, Sanford S.; Faunce, W. K.

    1962-01-01

    Experiments have been carried out on monkeys, goats and guinea-pigs to define as closely as possible the degree of attenuation of the Rev I strain of B. melitensis. Earlier studies had conclusively demonstrated the effectiveness of the strain as an immunizing agent of the three animal species and had suggested that the degree of attenuation was such as to warrant limited study in humans. Results of such a limited study suggested more intensive measurement of the virulence of the strain in other stocks of animals as well as in individual animals rendered increasingly susceptible. A comparison of Rev I with B. abortus, strain 19-BA, and with a fully virulent strain of B. melitensis in guinea-pigs confirmed that the BA strain was more attenuated than Rev I. Cynomolgus monkeys were effectively immunized by Rev I and showed temporary signs of generalized infection. Human isolates of the Rev I strain were striking in the temporary infectivity possessed by rough colony types. PMID:13889789

  19. Government introduces action plan to reduce deaths from sepsis.

    PubMed

    Kleebauer, Alistair

    2015-01-20

    Tackling sepsis - the potentially fatal over-reaction of the immune system to infection - must be given the same priority as reducing Clostridium difficile and MRSA infections, the government has said.

  20. Endocrine immune interactions in human parturition.

    PubMed

    Golightly, E; Jabbour, H N; Norman, J E

    2011-03-15

    Human parturition is an inflammatory event, modulated and influenced by a host of other environmental and physiological processes, including the endocrine hormones. Complex bidirectional communication occurs between the two systems to bring about some of the changes that are seen in labour, an event that is not yet fully understood. Preterm birth is a major problem in obstetrics and neonatology, with dysfunctional labour or prolonged pregnancy also making increasingly significant contributions to maternal morbidity. With better understanding of normal and abnormal parturition we may be able to develop novel ways of treating these complications of pregnancy and reduce maternal and neonatal morbidity and mortality. This review discusses the crucial role that endocrine-immune interaction plays in the process of labour and in the processes of abnormal and preterm labour. We propose that amongst these complex interactions it is the immune system that is the driving force behind human parturition.

  1. Protective immunity to liver-stage malaria

    PubMed Central

    Holz, Lauren E; Fernandez-Ruiz, Daniel; Heath, William R

    2016-01-01

    Despite decades of research and recent clinical trials, an efficacious long-lasting preventative vaccine for malaria remains elusive. This parasite infects mammals via mosquito bites, progressing through several stages including the relatively short asymptomatic liver stage followed by the more persistent cyclic blood stage, the latter of which is responsible for all disease symptoms. As the liver acts as a bottleneck to blood-stage infection, it represents a potential site for parasite and disease control. In this review, we discuss immunity to liver-stage malaria. It is hoped that the knowledge gained from animal models of malaria immunity will translate into a more powerful and effective vaccine to reduce this global health problem. PMID:27867517

  2. Protective immunity to liver-stage malaria.

    PubMed

    Holz, Lauren E; Fernandez-Ruiz, Daniel; Heath, William R

    2016-10-01

    Despite decades of research and recent clinical trials, an efficacious long-lasting preventative vaccine for malaria remains elusive. This parasite infects mammals via mosquito bites, progressing through several stages including the relatively short asymptomatic liver stage followed by the more persistent cyclic blood stage, the latter of which is responsible for all disease symptoms. As the liver acts as a bottleneck to blood-stage infection, it represents a potential site for parasite and disease control. In this review, we discuss immunity to liver-stage malaria. It is hoped that the knowledge gained from animal models of malaria immunity will translate into a more powerful and effective vaccine to reduce this global health problem.

  3. Neural tube defects, folate, and immune modulation.

    PubMed

    Denny, Kerina J; Jeanes, Angela; Fathe, Kristin; Finnell, Richard H; Taylor, Stephen M; Woodruff, Trent M

    2013-09-01

    Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored.

  4. Immune Evasion, Immunopathology and the Regulation of the Immune System

    PubMed Central

    Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno

    2013-01-01

    Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response. PMID:25436882

  5. Ubiquitin signaling in immune responses

    PubMed Central

    Hu, Hongbo; Sun, Shao-Cong

    2016-01-01

    Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. PMID:27012466

  6. Restoring HIV-specific immunity.

    PubMed

    James, J S

    1999-02-12

    When HIV is controlled with antiretrovirals, immunity to other infections often returns. Sometimes patients can stop prophylactic treatment, and sometimes opportunistic infections can clear up without treatment. However, immunity to HIV itself does not return, or returns very slowly, even when HIV has been suppressed for years with drug therapy. Researchers do not know why HIV immunity reacts differently, but several possible approaches to restoring HIV-specific immunity are being researched. One approach involves a therapeutic vaccination while the virus is well suppressed with antiretrovirals. The other approach is beginning HIV treatment very early, before the virus begins destroying the cells that recognize it. Several studies are discussed.

  7. Cellular immunity in ASFV responses.

    PubMed

    Takamatsu, Haru-Hisa; Denyer, Michael S; Lacasta, Anna; Stirling, Catrina M A; Argilaguet, Jordi M; Netherton, Christopher L; Oura, Chris A L; Martins, Carlos; Rodríguez, Fernando

    2013-04-01

    African swine fever virus (ASFV) infection usually results in an acute haemorrhagic disease with a mortality rate approaching 100% in domestic pigs. However, pigs can survive infection with less-virulent isolates of ASFV and may become chronically infected. Surviving animals are resistant to challenge with homologous or, in some cases, closely related isolates of the virus indicating that pigs can develop protective immunity against ASFV. During asymptomatic, non-virulent ASFV infections natural killer cell activity increases in pigs, suggesting this cell type plays a role in ASFV immunity. Furthermore, depletion of CD8(+) lymphocytes from ASFV immune pigs demolishes protective immunity against related virulent viruses. This suggests that ASFV specific antibody alone is not sufficient for protection against ASFV infection and that there is an important role for the CD8(+) lymphocyte subset in ASFV protective immunity. These results were supported by DNA immunization studies, demonstrating a correlation between the protection afforded against lethal challenge and the detection of a large number of vaccine-induced antigen-specific CD8(+) T-cells. Peripheral blood mononuclear cells (PBMCs) from ASF immune pigs protected from clinical disease show higher proportions of ASFV specific CD4(+)CD8(high+) double positive cytotoxic T cells than PBMCs from ASF immune but clinically diseased pig. The frequency of ASFV specific IFNγ producing T cells induced by immunization correlates to the degree of protection from ASFV challenge, and this may prove to be a useful indicator of any potential cross-protection against heterologous ASFV isolates.

  8. [Ultraviolet: a regulator of immunity].

    PubMed

    Komura, Kazuhiro

    2008-06-01

    Humans establish acquired immune systems during the growth, which can sufficiently eliminate pathogen avoiding immune responses to self, such as allergy and autoimmunity. An imbalance of the acquired immune system leads up to immune-mediated disorders. Ultraviolet (UV) exposure helps to establish the normal peripheral tolerance to contact allergen avoiding excessive immune responses. By contrast, UV develops kinds of autoimmune diseases on rare occasions, suggesting that abnormality in the process of UV-induced peripheral tolerance may induce these diseases. To elucidate the mechanism of UV-induced tolerance is possible to provide a new approach for the management of immune diseases. In the current review, focus is on the suggested players of UV-induced tolerance, blocking mechanisms on the elicitation phase of contact hypersensitivity, and the association between UV and autoimmunity. The major impact in basic immunology in this area is the discovery of cell surface marker of regulatory T cells. Therefore, we first discuss about the association of regulatory/suppressor T cells with UV-induced tolerance. Since the elicitation phase depends on cellular influx into the inflammatory sites, which is tightly regulated by adhesion molecules, we also focused on the role of adhesion molecules. Finally, this paper also includes statistical findings concerning the association between UV-radiation and the prevalence of a myositis specific autoantibody. Thus, UV is one of the nice regulators of an immune network and the knowledge of UV-mediated immune regulation will be translated into new therapeutic strategies to human immune-mediated disorders.

  9. Innate immunity in allergic disease.

    PubMed

    Minnicozzi, Michael; Sawyer, Richard T; Fenton, Matthew J

    2011-07-01

    The innate immune system consists of multiple cell types that express germline-encoded pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Allergens are frequently found in forms and mixtures that contain PAMPs and DAMPs. The innate immune system is interposed between the external environment and the internal acquired immune system. It is also an integral part of the airways, gut, and skin. These tissues face continuous exposure to allergens, PAMPs, and DAMPs. Interaction of allergens with the innate immune system normally results in immune tolerance but, in the case of allergic disease, this interaction induces recurring and/or chronic inflammation as well as the loss of immunologic tolerance. Upon activation by allergens, the innate immune response commits the acquired immune response to a variety of outcomes mediated by distinct T-cell subsets, such as T-helper 2, regulatory T, or T-helper 17 cells. New studies highlighted in this review underscore the close relationship between allergens, the innate immune system, and the acquired immune system that promotes homeostasis versus allergic disease.

  10. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  11. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease

    PubMed Central

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD. PMID:26900473

  12. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    PubMed

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  13. Immune cell trafficking from the brain maintains CNS immune tolerance.

    PubMed

    Mohammad, Mohammad G; Tsai, Vicky W W; Ruitenberg, Marc J; Hassanpour, Masoud; Li, Hui; Hart, Prue H; Breit, Samuel N; Sawchenko, Paul E; Brown, David A

    2014-03-01

    In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.

  14. Targeting Immune Regulatory Networks to Counteract Immune Suppression in Cancer

    PubMed Central

    Camisaschi, Chiara; Vallacchi, Viviana; Vergani, Elisabetta; Tazzari, Marcella; Ferro, Simona; Tuccitto, Alessandra; Kuchuk, Olga; Shahaj, Eriomina; Sulsenti, Roberta; Castelli, Chiara; Rodolfo, Monica; Rivoltini, Licia; Huber, Veronica

    2016-01-01

    The onset of cancer is unavoidably accompanied by suppression of antitumor immunity. This occurs through mechanisms ranging from the progressive accumulation of regulatory immune cells associated with chronic immune stimulation and inflammation, to the expression of immunosuppressive molecules. Some of them are being successfully exploited as therapeutic targets, with impressive clinical results achieved in patients, as in the case of immune checkpoint inhibitors. To limit immune attack, tumor cells exploit specific pathways to render the tumor microenvironment hostile for antitumor effector cells. Local acidification might, in fact, anergize activated T cells and facilitate the accumulation of immune suppressive cells. Moreover, the release of extracellular vesicles by tumor cells can condition distant immune sites contributing to the onset of systemic immune suppression. Understanding which mechanisms may be prevalent in specific cancers or disease stages, and identifying possible strategies to counterbalance would majorly contribute to improving clinical efficacy of cancer immunotherapy. Here, we intend to highlight these mechanisms, how they could be targeted and the tools that might be available in the near future to achieve this goal. PMID:27827921

  15. Targeting Immune Regulatory Networks to Counteract Immune Suppression in Cancer.

    PubMed

    Camisaschi, Chiara; Vallacchi, Viviana; Vergani, Elisabetta; Tazzari, Marcella; Ferro, Simona; Tuccitto, Alessandra; Kuchuk, Olga; Shahaj, Eriomina; Sulsenti, Roberta; Castelli, Chiara; Rodolfo, Monica; Rivoltini, Licia; Huber, Veronica

    2016-11-04

    The onset of cancer is unavoidably accompanied by suppression of antitumor immunity. This occurs through mechanisms ranging from the progressive accumulation of regulatory immune cells associated with chronic immune stimulation and inflammation, to the expression of immunosuppressive molecules. Some of them are being successfully exploited as therapeutic targets, with impressive clinical results achieved in patients, as in the case of immune checkpoint inhibitors. To limit immune attack, tumor cells exploit specific pathways to render the tumor microenvironment hostile for antitumor effector cells. Local acidification might, in fact, anergize activated T cells and facilitate the accumulation of immune suppressive cells. Moreover, the release of extracellular vesicles by tumor cells can condition distant immune sites contributing to the onset of systemic immune suppression. Understanding which mechanisms may be prevalent in specific cancers or disease stages, and identifying possible strategies to counterbalance would majorly contribute to improving clinical efficacy of cancer immunotherapy. Here, we intend to highlight these mechanisms, how they could be targeted and the tools that might be available in the near future to achieve this goal.

  16. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

    PubMed Central

    Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. PMID:23818851

  17. Antigen processing and immune regulation in the response to tumours.

    PubMed

    Reeves, Emma; James, Edward

    2017-01-01

    The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8(+) cytotoxic and CD4(+) helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8(+) cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4(+) T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down-regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8(+) cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour-specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti-tumour immune response, considering the role of tumour-infiltrating cell populations and highlighting possible future therapeutic targets.

  18. Anti-PEG immunity: emergence, characteristics, and unaddressed questions.

    PubMed

    Yang, Qi; Lai, Samuel K

    2015-01-01

    The modification of protein and nanoparticle therapeutics with polyethylene glycol (PEG), a flexible, uncharged, and highly hydrophilic polymer, is a widely adopted approach to reduce RES clearance, extend circulation time, and improve drug efficacy. Nevertheless, an emerging body of literature, generated by numerous research groups, demonstrates that the immune system can produce antibodies that specifically bind PEG, which can lead to the 'accelerated blood clearance' of PEGylated therapeutics. In animals, anti-PEG immunity is typically robust but short-lived and consists of a predominantly anti-PEG IgM response. Rodent studies suggest that the induction of anti-PEG antibodies (α-PEG Abs) primarily occurs through a type 2 T-cell independent mechanism. Although anti-PEG immunity is less well-studied in humans, the presence of α-PEG Abs has been correlated with reduced efficacy of PEGylated therapeutics in clinical trials. The prevalence of anti-PEG IgG and reports of memory immune responses, as well as the existence of α-PEG Abs in healthy untreated individuals, suggests that the mechanism(s) and features of human anti-PEG immune responses may differ from those of animal models. Many questions, including the incidence rate of pre-existing α-PEG Abs and immunological mechanism(s) of α-PEG Ab formation in humans, must be answered in order to fully address the potential complications of anti-PEG immunity.

  19. Anti-PEG immunity: emergence, characteristics, and unaddressed questions

    PubMed Central

    Yang, Qi; Lai, Samuel K.

    2015-01-01

    The modification of protein and nanoparticle therapeutics with polyethylene glycol (PEG), a flexible, uncharged and highly hydrophilic polymer, is a widely adopted approach to reduce RES clearance, extend circulation time, and improve drug efficacy. Nevertheless, an emerging body of literature, generated by numerous research groups, demonstrates that the immune system can produce antibodies that specifically bind PEG, which can lead to the “accelerated blood clearance” of PEGylated therapeutics. In animals, anti-PEG immunity is typically robust but short-lived and consists of a predominantly anti-PEG IgM response. Rodent studies suggest that the induction of anti-PEG antibodies (α-PEG Abs) primarily occurs through a type 2 T-cell independent mechanism. Although anti-PEG immunity is less well-studied in humans, the presence of α-PEG Abs has been correlated with reduced efficacy of PEGylated therapeutics in clinical trials. The prevalence of anti-PEG IgG and reports of memory immune responses, as well as the existence of α-PEG Abs in healthy untreated individuals, suggests that the mechanism(s) and features of human anti-PEG immune responses may differ from those of animal models. Many questions, including the incidence rate of pre-existing α-PEG Abs and immunological mechanism(s) of α-PEG Ab formation in humans, must be answered in order to fully address the potential complications of anti-PEG immunity. PMID:25707913

  20. Getting nervous about immunity.

    PubMed

    Kelley, Keith W; McCusker, Robert H

    2014-10-01

    Twenty-five years ago, immunologists and neuroscientists had little science of mutual interest. This is no longer the case. Neuroscientists now know that the first formally defined cytokine, IL-1, activates a discrete population of hypothalamic neurons. This interaction leads to the release of glucocorticoids from the adrenal gland, a hormone that has a long history in immunoregulation. Immunologists have been surprised to learn that lymphoid cells synthesize acetylcholine, the first formally recognized neurotransmitter. This neurotransmitter suppresses the synthesis of TNF. These discoveries blur the distinction of neuroscience and immunology as distinct disciplines. There are now 37 formally recognized cytokines and their receptors, and at least 60 classical neurotransmitters plus over 50 neuroactive peptides. These findings explain why both immunologists and neuroscientists are getting nervous about immunity and highlight a real need to apply integrative physiological approaches in biomedical research.

  1. Getting nervous about immunity

    PubMed Central

    Kelley, Keith W.; McCusker, Robert H.

    2014-01-01

    Twenty-five years ago, immunologists and neuroscientists had little science of mutual interest. This is no longer the case. Neuroscientists now know that the first formally defined cytokine, IL-1, activates a discrete population of hypothalamic neurons. This interaction leads to the release of glucocorticoids from the adrenal gland, a hormone that has a long history in immunoregulation. Immunologists have been surprised to learn that lymphoid cells synthesize acetylcholine, the first formally recognized neurotransmitter. This neurotransmitter suppresses the synthesis of TNF. These discoveries blur the distinction of neuroscience and immunology as distinct disciplines. There are now 37 formally recognized cytokines and their receptors, and at least 60 classical neurotransmitters plus over 50 neuroactive peptides. These findings explain why both immunologists and neuroscientists are getting nervous about immunity and highlight a real need to apply integrative physiological approaches in biomedical research. PMID:24556600

  2. TLRs and innate immunity

    PubMed Central

    2009-01-01

    One of the most fundamental questions in immunology pertains to the recognition of non-self, which for the most part means microbes. How do we initially realize that we have been inoculated with microbes, and how is the immune response ignited? Genetic studies have made important inroads into this question during the past decade, and we now know that in mammals, a relatively small number of receptors operate to detect signature molecules that herald infection. One or more of these signature molecules are displayed by almost all microbes. These receptors and the signals they initiate have been studied in depth by random germline mutagenesis and positional cloning (forward genetics). Herein is a concise description of what has been learned about the Toll-like receptors, which play an essential part in the perception of microbes and shape the complex host responses that occur during infection. PMID:18757776

  3. Microscale Immune Studies Laboratory.

    SciTech Connect

    Poschet, Jens Fredrich; Carroll-Portillo, Amanda; Wu, Meiye; Manginell, Ronald Paul; Herr, Amy Elizabeth; Martino, Anthony A.; Perroud, Thomas D.; Branda, Catherine; Srivastava, Nimisha; Sinclair, Michael B.; Moorman, Matthew Wallace; Apblett, Christopher Alan; Sale, Kenneth L.; James, Conrad D.; Carles, Elizabeth L.; Lidke, Diane S.; Van Benthem, Mark Hilary; Rebeil, Roberto; Kaiser, Julie; Seaman, William; Rempe, Susan; Brozik, Susan Marie; Jones, Howland D. T.; Gemperline, Paul; Throckmorton, Daniel J.; Misra, Milind; Murton, Jaclyn K.; Carson, Bryan D.; Zhang, Zhaoduo; Plimpton, Steven James; Renzi, Ronald F.; Lane, Todd W.; Ndiaye-Dulac, Elsa; Singh, Anup K.; Haaland, David Michael; Faulon, Jean-Loup Michel; Davis, Ryan W.; Ricken, James Bryce; Branda, Steven S.; Patel, Kamlesh D.; Joo, Jaewook; Kubiak, Glenn D.; Brennan, James S.; Martin, Shawn Bryan; Brasier, Allan

    2009-01-01

    The overarching goal is to develop novel technologies to elucidate molecular mechanisms of the innate immune response in host cells to pathogens such as bacteria and viruses including the mechanisms used by pathogens to subvert/suppress/obfuscate the immune response to cause their harmful effects. Innate immunity is our first line of defense against a pathogenic bacteria or virus. A comprehensive 'system-level' understanding of innate immunity pathways such as toll-like receptor (TLR) pathways is the key to deciphering mechanisms of pathogenesis and can lead to improvements in early diagnosis or developing improved therapeutics. Current methods for studying signaling focus on measurements of a limited number of components in a pathway and hence, fail to provide a systems-level understanding. We have developed a systems biology approach to decipher TLR4 pathways in macrophage cell lines in response to exposure to pathogenic bacteria and their lipopolysaccharide (LPS). Our approach integrates biological reagents, a microfluidic cell handling and analysis platform, high-resolution imaging and computational modeling to provide spatially- and temporally-resolved measurement of TLR-network components. The Integrated microfluidic platform is capable of imaging single cells to obtain dynamic translocation data as well as high-throughput acquisition of quantitative protein expression and phosphorylation information of selected cell populations. The platform consists of multiple modules such as single-cell array, cell sorter, and phosphoflow chip to provide confocal imaging, cell sorting, flow cytomtery and phosphorylation assays. The single-cell array module contains fluidic constrictions designed to trap and hold single host cells. Up to 100 single cells can be trapped and monitored for hours, enabling detailed statistically-significant measurements. The module was used to analyze translocation behavior of transcription factor NF-kB in macrophages upon activation by E

  4. Mosquito Immunity against Arboviruses

    PubMed Central

    Sim, Shuzhen; Jupatanakul, Natapong; Dimopoulos, George

    2014-01-01

    Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector. PMID:25415198

  5. Effects of NO/sub 2/ on immune responses

    SciTech Connect

    Lefkowitz, S.S.; McGrath, J.J.; Lefkowitz, D.L.

    1986-01-01

    The effects of NO/sub 2/ on immune responses of mice were investigated. Mice were exposed to various concentrations of NO/sub 2/ in inhalation chambers. After exposure the following parameters were measured: phagocytosis of polystyrene beads by both peritoneal and alveolar macrophages, production of antibody-forming cells from mice immunized with sheep erythrocytes, lymphocyte blastogenesis of splenic cells, and susceptibility to influenza virus. The production of antibody-forming cells was reduced in mice that were exposed to 5 ppm NO/sub 2/. The serum antibody titers, phagocytosis, and other immune parameters measured were not affected. Exposure to NO/sub 2/ did not affect mortality to influenza virus. These data indicate that certain immune parameters were altered by exposure to NO/sub 2/; however, NO/sub 2/ does not appear to be a major immunosuppressive factor at the concentrations tested.

  6. An Immunization Education Program for Childcare Providers

    ERIC Educational Resources Information Center

    Hayney, Mary S.; Bartell, Julie C.

    2005-01-01

    The childhood immunization schedule includes at least 17 scheduled immunizations prior to the age of 24 months. Immunization laws require childcare centers to maintain immunization records and enforce immunization standards for children who attend these centers. Childcare providers generally receive little formal education about infectious…

  7. Plain Talk about Childhood Immunizations.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Health and Social Services, Juneau. Div. of Family and Youth Services.

    This booklet provides parents with information about immunizations and vaccine-preventable diseases, balances the benefits and risk of vaccination, and responds to inaccuracies or misinformation about immunizations and vaccine-preventable diseases. Section 1 presents a message to parents about vaccination. Section 2 offers facts about…

  8. Recommendations for Institutional Prematriculation Immunizations

    ERIC Educational Resources Information Center

    Journal of American College Health, 2006

    2006-01-01

    The "Recommendations for Institutional Prematriculation Immunizations" described in this article are provided to colleges and universities to facilitate the implementation of a comprehensive institutional prematriculation immunization policy. In response to changing epidemiology and the introduction of new vaccines, the American College Health…

  9. EFFECT OF STRESS ON IMMUNITY

    PubMed Central

    Sharma, D.N.K; Padma, P.; Khosa, R.L.

    1997-01-01

    Immunological system is part of the complex component kapha of Ayurveda. Composed of an array of constituents, it acts as the internal surveillance system of the body. Diseases appear when immunity is compromised. This paper describes in detail the effect of stress on immunity. PMID:22556797

  10. Questions of Mind Over Immunity.

    ERIC Educational Resources Information Center

    Bower, Bruce

    1991-01-01

    Discussed is the possibility of disturbed immunity among people experiencing either clinical depression or some type of severe stress. Psychoneuroimmunology, the study of psychological treatment and its ability to shore up a person's immunity and slow the spread of infectious disease, is reviewed. (KR)

  11. Adaptive Immunity Against Staphylococcus aureus.

    PubMed

    Karauzum, Hatice; Datta, Sandip K

    2016-02-27

    A complex interplay between host and bacterial factors allows Staphylococcus aureus to occupy its niche as a human commensal and a major human pathogen. The role of neutrophils as a critical component of the innate immune response against S. aureus, particularly for control of systemic infection, has been established in both animal models and in humans with acquired and congenital neutrophil dysfunction. The role of the adaptive immune system is less clear. Although deficiencies in adaptive immunity do not result in the marked susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging evidence suggests both T cell- and B cell-mediated adaptive immunity can influence host susceptibility and control of S. aureus. The contribution of adaptive immunity depends on the context and site of infection and can be either beneficial or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to manipulate adaptive immune responses to its advantage. In this chapter, we will review the evidence for the role of adaptive immunity during S. aureus infections. Further elucidation of this role will be important to understand how it influences susceptibility to infection and to appropriately design vaccines that elicit adaptive immune responses to protect against subsequent infections.

  12. Overview of the immune system.

    PubMed

    Medina, Kay L

    2016-01-01

    The immune system is designed to execute rapid, specific, and protective responses against foreign pathogens. To protect against the potentially harmful effects of autoreactive escapees that might arise during the course of the immune response, multiple tolerance checkpoints exist in both the primary and secondary lymphoid organs. Regardless, autoantibodies targeting neural antigens exist in multiple neurologic diseases. The goal of this introductory chapter is to provide a foundation of the major principles and components of the immune system as a framework to understanding autoimmunity and autoimmune neurologic disorders. A broad overview of: (1) innate mechanisms of immunity and their contribution in demyelinating diseases; (2) B and T lymphocytes as effector arms of the adaptive immune response and their contribution to the pathophysiology of neurologic diseases; and (3) emerging therapeutic modalities for treatment of autoimmune disease is provided.

  13. Melatonin: Buffering the Immune System

    PubMed Central

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  14. Human immune responses in cryptosporidiosis

    PubMed Central

    Borad, Anoli; Ward, Honorine

    2010-01-01

    Immune responses play a critical role in protection from, and resolution of, cryptosporidiosis. However, the nature of these responses, particularly in humans, is not completely understood. Both innate and adaptive immune responses are important. Innate immune responses may be mediated by Toll-like receptor pathways, antimicrobial peptides, prostaglandins, mannose-binding lectin, cytokines and chemokines. Cell-mediated responses, particularly those involving CD4+ T cells and IFN-γ play a dominant role. Mucosal antibody responses may also be involved. Proteins mediating attachment and invasion may serve as putative protective antigens. Further knowledge of human immune responses in cryptosporidiosis is essential in order to develop targeted prophylactic and therapeutic interventions. This review focuses on recent advances and future prospects in the understanding of human immune responses to Cryptosporidium infection. PMID:20210556

  15. Candidate immune biomarkers for radioimmunotherapy.

    PubMed

    Levy, Antonin; Nigro, Giulia; Sansonetti, Philippe J; Deutsch, Eric

    2017-02-28

    Newly available immune checkpoint blockers (ICBs), capable to revert tumor immune tolerance, are revolutionizing the anticancer armamentarium. Recent evidence also established that ionizing radiation (IR) could produce antitumor immune responses, and may as well synergize with ICBs. Multiple radioimmunotherapy combinations are thenceforth currently assessed in early clinical trials. Past examples have highlighted the need for treatment personalization, and there is an unmet need to decipher immunological biomarkers that could allow selecting patients who could benefit from these promising but expensive associations. Recent studies have identified potential predictive and prognostic immune assays at the cellular (tumor microenvironment composition), genomic (mutational/neoantigen load), and peripheral blood levels. Within this review, we collected the available evidence regarding potential personalized immune biomarker-directed radiation therapy strategies that might be used for patient selection in the era of radioimmunotherapy.

  16. Immune Regulation by Pericytes: Modulating Innate and Adaptive Immunity

    PubMed Central

    Navarro, Rocío; Compte, Marta; Álvarez-Vallina, Luis; Sanz, Laura

    2016-01-01

    Pericytes (PC) are mural cells that surround endothelial cells in small blood vessels. PC have traditionally been credited with structural functions, being essential for vessel maturation and stabilization. However, an accumulating body of evidence suggests that PC also display immune properties. They can respond to a series of pro-inflammatory stimuli and are able to sense different types of danger due to their expression of functional pattern-recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines but also overexpress adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, PC are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, which is attributed, at least in part, to the expression of PD-L1. As components of the tumor microenvironment, PC can also modulate the antitumor immune response. However, their role is complex, and further studies will be required to better understand the crosstalk of PC with immune cells in order to consider them as potential therapeutic targets. In any case, PC will be looked at with new eyes by immunologists from now on. PMID:27867386

  17. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    PubMed Central

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  18. Trained immunity: A smart way to enhance innate immune defence.

    PubMed

    van der Meer, Jos W M; Joosten, Leo A B; Riksen, Niels; Netea, Mihai G

    2015-11-01

    The innate arm of the immune system is generally viewed as primitive and non-specific and - in contrast to the adaptive immune arm - not to possess memory. However in plants and invertebrate animals that lack adaptive immunity, innate immunity will exhibit a prolonged enhanced functional state after adequate priming. A similar enhancement of function of the innate immunity has occasionally been described in vertebrates, including humans. Over the past few years we have studied this phenomenon in greater detail and we have coined the term 'Trained (innate) immunity' (TI). TI can be induced by a variety of stimuli, of which we have studied BCG and β-glucan in greater detail. The non-specific protective effects of BCG that have been observed in vaccination studies in the literature are probably due to TI. Monocytes and macrophages are among the main cells of the innate immune arm that can be trained. We have discovered that both BCG (via NOD2 signalling) and β-glucan (via dectin-1) induce epigenetic reprogramming, in particular stable changes in histone trimethylation at H3K4. These epigenetic changes lead to cellular activation, enhanced cytokine production and a change in the metabolic state of the cell with a shift from oxidative phosphorylation to aerobic glycolysis. TI is not only important for host defence and vaccine responses, but most probably also for diseases like atherosclerosis. Modulation of TI is a promising area for new treatments.

  19. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    PubMed

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  20. [Cystatin C--modulator of immune processes].

    PubMed

    Wittek, Natalia; Majewska, Ewa

    2010-01-01

    Cystatin C is a lowmolecular protein (13 kDa) that inhibits the activity of lysosomal cysteine proteinases with the strongest activity against cathepsin B and H. The recent experiments show that the level of cystatin C is independented of chronic and acute inflammatory process which frequently coexist with end stage renal diseases. Recent studies challange the theory because a higher concentration of cystatin C in serum correlated well with a higher concentration of inflammatory markers such as a CRP and fibrinogen in the patients. In vitro experiments on cultured monocytes and macrophages discovered that after stimulation by LPS and INF the expression of the cystatin C gene and synthesis of this protein was reduced. Cystatin C plays important modulatory function in regulation of the natural immunity, protecting our body against viruses, bacteries and parasites. Moreover, cystatin C binds the C4 component and modulates activation of the classical complement pathway. The experiments also show that cystatin C could influence non-specific immune response through the inhibition of the superoxide anion generation (respiratory burst), phagocytosis, chemotaxis and apoptosis of neutrophils. Similarly, the cystatin C can modulate the specific immune response through the inhibition of cathepsin S, bindining membrane receptors for TGF-beta or increasing MHC class II expression on dendritic cells.

  1. Vaccines and immunization strategies for dengue prevention

    PubMed Central

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-01-01

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future. PMID:27436365

  2. Heme on innate immunity and inflammation

    PubMed Central

    Dutra, Fabianno F.; Bozza, Marcelo T.

    2014-01-01

    Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases. PMID:24904418

  3. Vaccines and immunization strategies for dengue prevention.

    PubMed

    Liu, Yang; Liu, Jianying; Cheng, Gong

    2016-07-20

    Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future.

  4. Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore.

    PubMed

    Gherlenda, Andrew N; Haigh, Anthony M; Moore, Ben D; Johnson, Scott N; Riegler, Markus

    2016-02-01

    Balanced nutrition is fundamental to health and immunity. For herbivorous insects, nutrient-compositional shifts in host plants due to elevated atmospheric CO2 concentrations and temperature may compromise this balance. Therefore, understanding their immune responses to such shifts is vital if we are to predict the outcomes of climate change for plant-herbivore-parasitoid and pathogen interactions. We tested the immune response of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) feeding on Eucalyptus tereticornis Sm. seedlings exposed to elevated CO2 (640 μmol mol(-1); CE) and temperature (ambient plus 4 °C; TE). Larvae were immune-challenged with a nylon monofilament in order to simulate parasitoid or pathogen attack without other effects of actual parasitism or pathology. The cellular (in vivo melanisation) and humoral (in vitro phenoloxidase PO activity) immune responses were assessed, and linked to changes in leaf chemistry. CE reduced foliar nitrogen (N) concentrations and increased C:N ratios and concentrations of total phenolics. The humoral response was reduced at CE. PO activity and haemolymph protein concentrations decreased at CE, while haemolymph protein concentrations were positively correlated with foliar N concentrations. However, the cellular response increased at CE and this was not correlated with any foliar traits. Immune parameters were not impacted by TE. Our study revealed that opposite cellular and humoral immune responses occurred as a result of plant-mediated effects at CE. In contrast, elevated temperatures within the tested range had minimal impact on immune responses. These complex interactions may alter the outcomes of parasitoid and pathogen attack in future climates.

  5. Remune. Immune Response.

    PubMed

    Lai, Derhsing; Jones, Taff

    2002-03-01

    The Immune Response Corp (IRC) is developing Remune, a potential HIV therapeutic vaccine. Remune is based on the Salk Immunogen, which is derived from an HIV isolate which has been inactivated by chemical depletion of glycoprotein 120 (gp120). Preliminary data suggested that Remune, in combination with antiviral drug therapy, results in undetectable levels of HIV. Phase III trials commenced in May 1997 and it was initially expected that registration filings would be made in 1999. However, following interim analysis of the 2500-patient, multicenter, double-blind, pivotal phase III study (study 806) in May 1999, an independent panel recommended concluding the clinical endpoint trial and IRC and licensee, Agouron, decided to pursue alternative regulatory strategies, including initiating two additional phase III surrogate marker trials. Despite this, Agouron gave IRC notice of termination of its continued development in July 2001. In August 2001, IRC informed Agouron that, due to the total number of endpoints to date falling short of that previously assumed by Agouron, it did not intend to continue Agouron's Study 202 of Remune. In July 2001, licensee Trinity Medical Group filed an NDA with the governing health authorities in Thailand for Remune. The Thai FDA certified Immune Response's Remune manufacturing facility as being in compliance with GMP standards, following an on site inspection by Thai officials in November 2001 that was performed as a requirement of Trinity's Thai NDA. As a result of this certification, Trinity expected that a "timely determination" could be made by the Thai FDA. Rhĵne-Poulenc Rorer discontinued its part in the development of Remune, with all manufacturing, marketing and distribution rights reverting to IRC. After Agouron returned rights to Remune in July 2001, IRC heldfull rights in the US, Europe and Japan, while collaborating with its partners Trinity Medical Group and Roemmers Laboratory in the Southeast Asian and Latin American

  6. Immunization Schedules for Infants and Children

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Infants and Children United States, 2017 ... any questions. View or Print a Schedule Recommended Immunizations for Children (Birth through 6 years) Schedule for ...

  7. Immunization Schedules for Preteens and Teens

    MedlinePlus

    ... ACIP Vaccination Recommendations Why Immunize? Vaccines: The Basics Immunization Schedules for Preteens and Teens United States, 2017 ... on track. View or Print a Schedule Recommended Immunizations for Preteens and Teens (7-18 years) Recommended ...

  8. Drug-induced immune hemolytic anemia

    MedlinePlus

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... In some cases, a drug can cause the immune system to mistake your own red blood cells for foreign substances. The body responds by making ...

  9. Sympathetic Modulation of Immunity: Relevance to Disease

    PubMed Central

    Bellinger, Denise L.; Millar, Brooke A.; Perez, Sam; Carter, Jeff; Wood, Carlo; ThyagaRajan, Srinivasan; Molinaro, Christine; Lubahn, Cheri; Lorton, Dianne

    2008-01-01

    Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far as focused on neural-immune modulation in secondary lymphoid organs, and have revealed complex sympathetic modulation resulting in both potentiation and inhibition of immune functions. SNS-immune interaction may enhance immune readiness during disease- or injury-induced ‘fight’ responses. Research also indicate that dysregulation of the SNS can significantly affect the progression of immune-mediated diseases. However, a better understanding of neural-immune interactions is needed to develop strategies for treatment of immune-mediated diseases that are designed to return homeostasis and restore normal functioning neural-immune networks. PMID:18308299

  10. Primary Immune Deficiency Disease Genetics & Inheritance

    MedlinePlus

    ... twitter share with linkedin Primary Immune Deficiency Disease Genetics & Inheritance Primary Immune Deficiency Diseases (PIDDs) Primary Immune Deficiency Diseases (PIDDs) Types of PIDDs Genetics & Inheritance Talking to Your Doctor Featured Research Credit: ...

  11. Effects of gastrointestinal nematode infection on the ruminant immune system.

    PubMed

    Gasbarre, L C

    1997-11-01

    Gastrointestinal (GI) nematodes of ruminants evoke a wide variety of immune responses in their hosts. In terms of specific immune responses directed against parasite antigens, the resulting immune responses may vary from those that give strong protection from reinfection after a relatively light exposure (e.g. Oesophagostomum radiatum) to responses that are very weak and delayed in their onset (e.g. Ostertagia ostertagi). The nature of these protective immune responses has been covered in another section of the workshop and the purpose of this section will be to explore the nature of changes that occur in the immune system of infected animals and to discuss the effect of GI nematode infections upon the overall immunoresponsiveness of the host. The discussion will focus primarily on Ostertagia ostertagi because this parasite has received the most attention in published studies. The interaction of Ostertagia and the host immune system presents what appears to be an interesting contradiction. Protective immunity directed against the parasite is slow to arise and when compared to some of the other GI nematodes, is relatively weak. Although responses that reduce egg output in the feces or increase the number of larvae undergoing inhibition may occur after a relatively brief exposure (3-4 months), immune responses which reduce the number of parasites that can establish in the host are not evident until the animal's second year. Additionally, even older animals that have spent several seasons on infected pastures will have low numbers of Ostertagia in their abomasa, indicating that sterilizing immune responses against the parasite are uncommon. In spite of this apparent lack of specific protective immune responses, infections with Ostertagia induce profound changes in the host immune system. These changes include a tremendous expansion of both the number of lymphocytes in the local lymph nodes and the number of lymphoid cells in the mucosa of the abomasum. This expansion

  12. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  13. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert

    2017-03-01

    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces.

  14. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis

    PubMed Central

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert

    2017-01-01

    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces. PMID:28317839

  15. Rh immunization in Manitoba: progress in prevention and management.

    PubMed Central

    Bowman, J. M.; Pollock, J.

    1983-01-01

    For two decades the perinatal mortality caused by erythroblastosis has been decreasing in Manitoba. The improved management of Rh-immunized pregnancies has lowered the death rate among affected infants from 10.8% to 3.4%, while the prevention of Rh immunization has reduced its incidence from 9.1 to 2.2 per 1000 total births. In its first 6 years and 8 months Manitoba's antenatal prophylaxis program, in which immunoglobulin is administered to Rh-negative women at 28 weeks' gestation, reduced the incidence of Rh immunization during pregnancy by 93%. In combination with post-abortion and postpartum prophylaxis the antenatal treatment has provided a protection rate of 98.6% among primigravidas at risk. Further improvements are expected. PMID:6409390

  16. Immune privilege of stem cells.

    PubMed

    Ichiryu, Naoki; Fairchild, Paul J

    2013-01-01

    Immune privilege provides protection to vital tissues or cells of the body when foreign antigens are introduced into these sites. The modern concept of relative immune privilege applies to a variety of tissues and anatomical structures, including the hair follicles and mucosal surfaces. Even sites of chronic inflammation and developing tumors may acquire immune privilege by recruiting immunoregulatory effector cells. Adult stem cells are no exception. For their importance and vitality, many adult stem cell populations are believed to be immune privileged. A preimplantation-stage embryo that derives from a totipotent stem cell (i.e., a fertilized oocyte) must be protected from maternal allo-rejection for successful implantation and development to occur. Embryonic stem cells, laboratory-derived cell lines of preimplantation blastocyst-origin, may, therefore, retain some of the immunological properties of the developing embryo. However, embryonic stem cells and their differentiated tissue derivatives transplanted into a recipient do not necessarily have an ability to subvert immune responses to the extent required to exploit their pluripotency for regenerative medicine. In this review, an extended definition of immune privilege is developed and the capacity of adult and embryonic stem cells to display both relative and acquired immune privilege is discussed. Furthermore, we explore how these intrinsic properties of stem cells may one day be harnessed for therapeutic gain.

  17. The National Immunization Information Hotline.

    PubMed

    Gust, D A; Gangarosa, P; Hibbs, B; Wilkins, C; Ford, K; Stuart, M; Brown-Bryant, R; Wallach, G; Chen, R T

    2004-01-01

    The National Immunization Information Hotline (NIIH) has been providing information regarding immunizations to the public and to health care professionals since March 1997. We describe the operations of the NIIH, its experience over the first two and a half years of operation and lessons learned for other immunization hotlines. From 1998-2000, the hotline answered 246,859 calls. Calls concerning immunization information requests totaled 175,367; data about the calls were collected from 35,102. Approximately a third of the 35,102 calls were from health care providers. Of the remaining calls from the public, the greatest number of calls concerned childhood immunizations. Immunization schedule queries from the public increased 323.0% from 1998 to 2000. While the major goal of the NIIH is to provide accurate and reliable information to the public and to health care providers, data from the hotline can be used to monitor changes over time in calls concerning inquiries about the immunization schedule in addition to other variables of interest.

  18. Immunity: plants as effective mediators.

    PubMed

    Sultan, M Tauseef; Butt, Masood Sadiq; Qayyum, Mir M Nasir; Suleria, Hafiz Ansar Rasul

    2014-01-01

    In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.

  19. Immune therapy for hepatitis B.

    PubMed

    Akbar, Sheikh Mohammad Fazle; Al-Mahtab, Mamun; Khan, Md Sakilur Islam; Raihan, Ruksana; Shrestha, Ananta

    2016-09-01

    Although several antiviral drugs are now available for treatment of patients with chronic hepatitis B (CHB), sustained off-treatment clinical responses and containment of CHB-related complications are not achieved in majority of CHB patients by antiviral therapy. In addition, use of these drugs is endowed with substantial long term risk of viral resistance and drug toxicity. The infinite treatment regimens of antiviral drugs for CHB patients are also costly and usually unbearable by most patients of developing and resource-constrained countries. Taken together, there is a pressing need to develop new and innovative therapeutic approaches for CHB patients. Immune therapy seems to be an alternate therapeutic approach for CHB patients because impaired or distorted or diminished immune responses have been detected in most of these patients. Also, investigators have shown that restoration or induction of proper types of immune responses may have therapeutic implications in CHB. Various immunomodulatory agents have been used to treat patients with CHB around the world and the outcomes of these clinical trials show that the properties of immune modulators and nature and designing of immune therapeutic regimens seem to be highly relevant in the context of treatment of CHB patients. In this review, the general properties and specific features of immune therapy for CHB have been discussed for developing the guidelines of effective regimens of immune therapy for CHB.

  20. Dynamics of immune system vulnerabilities

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  1. Photosensitizers for photodynamic immune modulation

    NASA Astrophysics Data System (ADS)

    North, John R.; Boch, Ronald; Hunt, David W. C.; Ratkay, Leslie G.; Simkin, Guillermo O.; Tao, Jing-Song; Richter, Anna M.; Levy, Julia G.

    2000-06-01

    PDT may be an effective treatment for certain immune-mediated disorders. The immunomodulatory action of PDT is likely a consequence of effects exerted at a number of levels including stimulation of specific cell signaling pathways, selective depletion of activated immune cells, alteration of receptor expression by immune and non-immune cells, and the modulation of cytokine availability. QLT0074, a potent photosensitizer that exhibits rapid clearance kinetics in vivo, is in development for the treatment of immune disorders. In comparison to the well-characterized and structurally related photosensitizer verteporfin, lower concentrations of QLT0074 were required to induce apoptosis in human blood T cells and keratinocytes using blue light for photoactivation. Both photosensitizers triggered the stress activated protein kinase (SAPK) and p38 (HOG1) pathways but not extracellularly regulated kinase (ERK) activity in mouse Pam212 keratinocytes. In cell signaling responses, QLT0074 was active at lower concentrations than verteporfin. For all in vitro test systems, the stronger photodynamic activity of QLT0074 was associated with a greater cell uptake of this photosensitize than verteporfin. In mouse immune models, sub-erythemogenic doses of QLT0074 in combination with whole body blue light irradiation inhibited the contact hypersensitivity response and limited the development of adjuvant-induced arthritis. QLT0074 exhibits activities that indicate it may be a favorable agent for the photodynamic treatment of human immune disease.

  2. Immunization against brucella infection

    PubMed Central

    Elberg, Sanford S.

    1959-01-01

    The author describes a study, carried out in the Province of Córdoba, Spain, to test the efficacy of a live vaccine prepared from the Rev I strain of Brucella melitensis against caprine brucellosis and to determine the extent of natural infection in goats and humans in the Province. It was found that the vaccine significantly increased the resistance of the goats to infection without inducing a carrier state of the vaccine strain and that the immunity persisted for at least 15 months—the period of test. Serum agglutination tests, milk ring tests, and milk culture tests on goats showed that approximately 16-29% of the individual animals examined would be considered infective on the basis of one or other of the tests. Of the 118 herds tested, 111 were discovered to be harbouring infected animals. Serum agglutination tests on humans revealed that 25 of the 880 people tested (2.8%) had titres of 160 International Units (IU) or above and that, on the basis of a diagnostic titre of 80 IU or above, 7% of the population would be regarded as showing evidence of a past or present infection. PMID:13819864

  3. [Chronobiology and immunity].

    PubMed

    Kwiatkowski, F; Lévi, F

    2005-06-01

    At all times, cycles have focused men's attention and fashioned his life. Today, thanks to genetic, one can find tracks of circadian rhythms programming until cell's DNA, and this in a very amazing and similar manner from amoebas to mammals. A particular rhythm interests the researcher in oncology: the circadian rhythm of melatonin. It stands at the junction of several domains: somatic, immune and psychic, through the many receptors found on leukocytes, through the links between this hormone production and the one of many cytokines but also with activity, life habits and "stress". On an other hand, antioxydant action of melatonin gives a serious argument concerning its possible role in cancer aetiology. As for them, studies on sleep confirm the large ubiquity of biological cycles, for instance thanks to the observation of the impact of particular genetic mutations on advance or delayed sleep syndrome. Because of the great diversity of cyclic phenomena, the study of chronobiology cannot be undertaken today without a wide interdisciplinary collaboration. During the 13th congress of the "Association Francaise de Chronobiologie Medicale", this study has been continued mainly in three different directions of research: fundamental, applied and transverse. Many original experimental results have been presented and new ways of multidisciplinary research specified. The important scientific fecundity of this very convivial annual congress never lacks to satisfy its participants: it continues to favour the onset of new projects, enabling to avoid major shelves thanks to the constructive criticism of each domain specialists.

  4. Social immunity of the family: parental contributions to a public good modulated by brood size.

    PubMed

    Duarte, Ana; Cotter, Sheena C; Reavey, Catherine E; Ward, Richard J S; De Gasperin, Ornela; Kilner, Rebecca M

    Social immunity refers to any immune defence that benefits others, besides the individual that mounts the response. Since contributions to social immunity are known to be personally costly, they are contributions to a public good. However, individuals vary in their contributions to this public good and it is unclear why. Here we investigate whether they are responding to contributions made by others with experiments on burying beetle (Nicrophorus vespilloides) families. In this species, females, males and larvae each contribute to social immunity through the application of antimicrobial exudates upon the carrion breeding resource. We show experimentally that mothers reduce their contributions to social immunity when raising large broods, and test two contrasting hypotheses to explain why. Either mothers are treating social immunity as a public good, investing less in social immunity when their offspring collectively contribute more, or mothers are trading off investment in social immunity with investment in parental care. Overall, our experiments yield no evidence to support the existence of a trade-off between social immunity and other parental care traits: we found no evidence of a trade-off in terms of time allocated to each activity, nor did the relationship between social immunity and brood size change with female condition. Instead, and consistent with predictions from models of public goods games, we found that higher quality mothers contributed more to social immunity. Therefore our results suggest that mothers are playing a public goods game with their offspring to determine their personal contribution to the defence of the carrion breeding resource.

  5. Immune responses to improving welfare.

    PubMed

    Berghman, L R

    2016-09-01

    The relationship between animal welfare and the immune status of an animal has a complex nature. Indeed, the intuitive notion that "increased vigilance of the immune system is by definition better" because it is expected to better keep the animal healthy, does not hold up under scrutiny. This is mostly due to the fact that the immune system consists of 2 distinct branches, the innate and the adaptive immune system. While they are intimately intertwined and synergistic in the living organism, they are profoundly different in their costs, both in terms of performance and wellbeing. In contrast to the adaptive immune system, the action of the innate immune system has a high metabolic cost as well as undesirable behavioral consequences. When a pathogen breaches the first line of defense (often a mucosal barrier), that organism's molecular signature is recognized by resident macrophages. The macrophages respond by releasing a cocktail of pro-inflammatory cytokines (including interleukin-1 and -6) that signal the brain via multiple pathways (humoral as well as neural) of the ongoing peripheral innate immune response. The behavioral response to the release of proinflammatory cytokines, known as "sickness behavior," includes nearly all the behavioral aspects that are symptomatic for clinical depression in humans. Hence, undesired innate immune activity, such as chronic inflammation, needs to be avoided by the industry. From an immunological standpoint, one of the most pressing poultry industry needs is the refinement of our current veterinary vaccine arsenal. The response to a vaccine, especially to a live attenuated vaccine, is often a combination of innate and adaptive immune activities, and the desired immunogenicity comes at the price of high reactogenicity. The morbidity, albeit limited and transient, caused by live vaccines against respiratory diseases and coccidiosis are good examples. Thankfully, the advent of various post-genomics technologies, such as DNA

  6. The immune system and hypertension.

    PubMed

    Singh, Madhu V; Chapleau, Mark W; Harwani, Sailesh C; Abboud, Francois M

    2014-08-01

    A powerful interaction between the autonomic and the immune systems plays a prominent role in the initiation and maintenance of hypertension and significantly contributes to cardiovascular pathology, end-organ damage and mortality. Studies have shown consistent association between hypertension, proinflammatory cytokines and the cells of the innate and adaptive immune systems. The sympathetic nervous system, a major determinant of hypertension, innervates the bone marrow, spleen and peripheral lymphatic system and is proinflammatory, whereas the parasympathetic nerve activity dampens the inflammatory response through α7-nicotinic acetylcholine receptors. The neuro-immune synapse is bidirectional as cytokines may enhance the sympathetic activity through their central nervous system action that in turn increases the mobilization, migration and infiltration of immune cells in the end organs. Kidneys may be infiltrated by immune cells and mesangial cells that may originate in the bone marrow and release inflammatory cytokines that cause renal damage. Hypertension is also accompanied by infiltration of the adventitia and perivascular adipose tissue by inflammatory immune cells including macrophages. Increased cytokine production induces myogenic and structural changes in the resistance vessels, causing elevated blood pressure. Cardiac hypertrophy in hypertension may result from the mechanical afterload and the inflammatory response to resident or migratory immune cells. Toll-like receptors on innate immune cells function as sterile injury detectors and initiate the inflammatory pathway. Finally, abnormalities of innate immune cells and the molecular determinants of their activation that include toll-like receptor, adrenergic, cholinergic and AT1 receptors can define the severity of inflammation in hypertension. These receptors are putative therapeutic targets.

  7. Precision Immunization: NASA Studies Immune Response to Flu Vaccine

    NASA Video Gallery

    NASA Human Research Program Twins Study investigator Emmanuel Mignot, M.D., Ph.D, known for discovering the cause of narcolepsy is related to the immune system, is studying twin astronauts Scott an...

  8. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    PubMed

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates.

  9. EXPERIMENTAL STUDIES OF IMMUNITY AGAINST SEASONAL ENCEPHALITIS,

    DTIC Science & Technology

    ARBOVIRUSES, *IMMUNITY, DISEASES, VACCINES, ANTIGENS, ANTIBODIES, IMMUNE SERUMS, COLLOIDS, CULTURE MEDIA, ULTRAVIOLET RADIATION, METHYLENE BLUE , FORMALDEHYDE, SERODIAGNOSIS, INJECTIONS(MEDICINE), BLOOD ANALYSIS, TABLES(DATA), USSR.

  10. Innate Immune Evasion by Filoviruses

    PubMed Central

    Basler, Christopher F.

    2015-01-01

    Ebola viruses and Marburg viruses, members of the filovirus family, cause severe hemorrhagic fever. The ability of these viruses to potently counteract host innate immune responses is thought to be an important component of viral pathogenesis. Several mechanisms of filoviral innate immune evasion have been defined and are reviewed here. These mechanisms inclue suppression of type I interferon (IFN) production; inhibition of IFN-signaling and mechanisms that either prevent cell stress responses or allow the virus to replication in the face of such responses. A greater understanding these innate immune evasion mechanisms may suggest novel therapeutic approaches for these deadly pathogens. PMID:25843618

  11. Immune modulation following immunization with polyvalent vaccines in dogs.

    PubMed

    Strasser, Alois; May, Bettina; Teltscher, Andrea; Wistrela, Eva; Niedermüller, Hans

    2003-08-15

    A decline in T-cell-mediated immunity and transient state of immunosuppression after immunization has been reported in dogs. Nevertheless, dogs are still routinely vaccinated with polyvalent live vaccines and severe disease does not generally occur. In order to investigate these effects on the canine immune system and to elucidate possible mechanisms we determined the following immune parameters in the blood of 33 clinically sound German shepherd dogs before and after standard vaccination with a polyvalent vaccine against distemper, parvovirus, viral hepatitis, leptospirosis, kennel cough and rabies: white and differential blood cell count, the serum concentrations and/or activities of IL-1, IL-2, IFN-gamma, TNF-alpha, neopterin and IgG, natural killer (NK) cell activity, bactericidal activity and complement hemolytic activity, lymphocyte proliferation test (LPT) and nitroblue tetrazolium test (NBT). Our major findings were that significant postvaccinal decreases in T-cell mitogenic response to PHA and in neutrophil function and neopterin serum concentration were accompanied by simultaneous increase in plasma IgG and hemolytic complement activity. This suggests a transient shift in the balance between cell-mediated and humoral (T(H)1/T(H)2) immunity rather than immunosuppression. These results do not imply that dogs should not receive live vaccines, as the response to vaccines just seems to create a state of altered homeostasis when immunization elicits protection by humoral and cell-mediated immunity. However, these recognized compromises of immune function should be considered and vaccines still be applied only in healthy animals and strictly according to the rules and regulations given by the manufacturer.

  12. Immunity in Dengue

    DTIC Science & Technology

    1983-09-01

    mice. By 7 passages in both cell cultures, DEN-4 viruses exhitibed reduced plaque-size in LLC-MK2, failure to plaque in GMK, to produce CPE in LLC...which differed from antecedents. Plaque size of PDK 15 was medium, PDK 30, small and PDK 50, pin -point. PDK 19-3C1 and 34-3C1 were medium and 56-3C1...incubation neurovirulence In mice. By 7 passages in bcth cell cultures, DEN-4 viruses exhibited reduced plaque-size In LLC-MK2, failure to plaque V in

  13. Immunization Uptake in Younger Siblings of Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kuwaik, Ghassan Abu; Roberts, Wendy; Zwaigenbaum, Lonnie; Bryson, Susan; Smith, Isabel M.; Szatmari, Peter; Modi, Bonnie M.; Tanel, Nadia; Brian, Jessica

    2014-01-01

    Background: Parental concerns persist that immunization increases the risk of autism spectrum disorder, resulting in the potential for reduced uptake by parents of younger siblings of children with autism spectrum disorder ("younger sibs"). Objective: To compare immunization uptake by parents for their younger child relative to their…

  14. Social immunity in honey bees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bees tend to have a reduced number of immune genes compared to solitary insects. They actually developed an alternative collective defence consisting in the cooperation of individuals to decrease disease development. We identified a set of genes involved in this social immunity by comparing br...

  15. Exercise, Immunity, and Susceptibility to Infection: A J-Shaped Relationship?

    ERIC Educational Resources Information Center

    Shephard, Roy J.; Shek, Pang N.

    1999-01-01

    Epidemiologic data suggest that regular moderate exercise boosts immunity, but intense training may reduce it. Objective data do not clearly show a J-shaped relationship between exercise and immune function. Nutritional, hygienic, exercise, environmental, and pharmacologic strategies can minimize risks of infection. Practical measures to reduce…

  16. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni

    PubMed Central

    Radomska, Katarzyna A.; Vaezirad, Mahdi M.; Verstappen, Koen M.; Wösten, Marc M. S. M.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20–40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization. PMID:27760175

  17. Acute stress elicited by bungee jumping suppresses human innate immunity.

    PubMed

    van Westerloo, David J; Choi, Goda; Löwenberg, Ester C; Truijen, Jasper; de Vos, Alex F; Endert, Erik; Meijers, Joost C M; Zhou, Lu; Pereira, Manuel P F L; Queiroz, Karla C S; Diks, Sander H; Levi, Marcel; Peppelenbosch, Maikel P; van der Poll, Tom

    2011-01-01

    Although a relation between diminished human immunity and stress is well recognized both within the general public and the scientific literature, the molecular mechanisms by which stress alters immunity remain poorly understood. We explored a novel model for acute human stress involving volunteers performing a first-time bungee jump from an altitude of 60 m and exploited this model to characterize the effects of acute stress in the peripheral blood compartment. Twenty volunteers were included in the study; half of this group was pretreated for 3 d with the β-receptor blocking agent propranolol. Blood was drawn 2 h before, right before, immediately after and 2 h after the jump. Plasma catecholamine and cortisol levels increased significantly during jumping, which was accompanied by significantly reduced ex vivo inducibility of proinflammatory cytokines as well as activation of coagulation and vascular endothelium. Kinome profiles obtained from the peripheral blood leukocyte fraction contained a strong noncanonical glucocorticoid receptor signal transduction signature after jumping. In apparent agreement, jumping down-regulated Lck/Fyn and cellular innate immune effector function (phagocytosis). Pretreatment of volunteers with propranolol abolished the effects of jumping on coagulation and endothelial activation but left the inhibitory effects on innate immune function intact. Taken together, these results indicate that bungee jumping leads to a catecholamine-independent immune suppressive phenotype and implicate noncanonical glucocorticoid receptor signal transduction as a major pathway linking human stress to impaired functioning of the human innate immune system.

  18. Acute Stress Elicited by Bungee Jumping Suppresses Human Innate Immunity

    PubMed Central

    van Westerloo, David J; Choi, Goda; Löwenberg, Ester C; Truijen, Jasper; de Vos, Alex F; Endert, Erik; Meijers, Joost C M; Zhou, Lu; Pereira, Manuel PFL; Queiroz, Karla CS; Diks, Sander H; Levi, Marcel; Peppelenbosch, Maikel P; van der Poll, Tom

    2011-01-01

    Although a relation between diminished human immunity and stress is well recognized both within the general public and the scientific literature, the molecular mechanisms by which stress alters immunity remain poorly understood. We explored a novel model for acute human stress involving volunteers performing a first-time bungee jump from an altitude of 60 m and exploited this model to characterize the effects of acute stress in the peripheral blood compartment. Twenty volunteers were included in the study; half of this group was pretreated for 3 d with the β-receptor blocking agent propranolol. Blood was drawn 2 h before, right before, immediately after and 2 h after the jump. Plasma catecholamine and cortisol levels increased significantly during jumping, which was accompanied by significantly reduced ex vivo inducibility of proinflammatory cytokines as well as activation of coagulation and vascular endothelium. Kinome profiles obtained from the peripheral blood leukocyte fraction contained a strong noncanonical glucocorticoid receptor signal transduction signature after jumping. In apparent agreement, jumping down-regulated Lck/Fyn and cellular innate immune effector function (phagocytosis). Pretreatment of volunteers with propranolol abolished the effects of jumping on coagulation and endothelial activation but left the inhibitory effects on innate immune function intact. Taken together, these results indicate that bungee jumping leads to a catecholamine-independent immune suppressive phenotype and implicate noncanonical glucocorticoid receptor signal transduction as a major pathway linking human stress to impaired functioning of the human innate immune system. PMID:21203694

  19. The vagal innervation of the gut and immune homeostasis.

    PubMed

    Matteoli, Gianluca; Boeckxstaens, Guy E

    2013-08-01

    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune disease.

  20. Modulation of immune responses in stress by Yoga

    PubMed Central

    Arora, Sarika; Bhattacharjee, Jayashree

    2008-01-01

    Stress is a constant factor in today's fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS) and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress. PMID:21829284

  1. Innate Immunity to Adenovirus

    PubMed Central

    Hendrickx, Rodinde; Stichling, Nicole; Koelen, Jorien; Kuryk, Lukasz; Lipiec, Agnieszka

    2014-01-01

    Abstract Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate–adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features. PMID:24512150

  2. Hypo-gravity and immune system effects

    NASA Technical Reports Server (NTRS)

    Carter, Paul D.; Barnes, Frank

    1990-01-01

    Recent studies on the effects of hypo-gravity on astronauts have shown depressed response of the immune system component cells (e.g. T-lymphocytes activity) and associated bone-mass loss due to demineralization. The widespread use of various electrical stimulation techniques in fracture repair and bone growth make use of the inherent piezoelectric and streaming potentials in Ca(2++) depositation. In-vitro and in-vivo experiments were designed to determine if these potentials, absent or greatly reduced in space, could be artificially enhanced to advantageously effect the bone marrow and, consequently, immune system cells. The bone marrow plays an extremely important role in the development and maturation of all blood cells and, specifically, T- and B-lymphocytes. It is our belief that simulated E-fields will enhance this development when 'ambient' physiological fields are absent during spaceflight or extended bedrest. Our investigation began with a look at the component immune system cells and their growth patterns in vitro. The first chamber will induce E-fields by current densities produced from an agar-bridge electrode arrangement. The cells are immersed in a nutrient agar and isolated from the electrodes by an agar bridge to prevent electrolytic contamination. The second chamber induces current densities by mutual induction from a magnetic field produced by a solenoid coil. Cells are isolated in a small radial area to reduce (1/r) effects and for accurate field calculations. We anticipate inducing currents in the nano- and microampere range as indicated by our calculations of physiological fields.

  3. Vitamin D and Immune Function

    PubMed Central

    Prietl, Barbara; Treiber, Gerlies; Pieber, Thomas R.; Amrein, Karin

    2013-01-01

    Vitamin D metabolizing enzymes and vitamin D receptors are present in many cell types including various immune cells such as antigen-presenting-cells, T cells, B cells and monocytes. In vitro data show that, in addition to modulating innate immune cells, vitamin D also promotes a more tolerogenic immunological status. In vivo data from animals and from human vitamin D supplementation studies have shown beneficial effects of vitamin D on immune function, in particular in the context of autoimmunity. In this review, currently available data are summarized to give an overview of the effects of vitamin D on the immune system in general and on the regulation of inflammatory responses, as well as regulatory mechanisms connected to autoimmune diseases particularly in type 1 diabetes mellitus. PMID:23857223

  4. High noise immunity one shot

    NASA Technical Reports Server (NTRS)

    Schaffer, G. L.

    1972-01-01

    Multivibrator circuit, which includes constant current source, isolates line noise from timing circuitry and field effect transistor controls circuit's operational modes. Circuit has high immunity to supply line noise.

  5. Immune Responses in Parasitic Diseases

    DTIC Science & Technology

    1982-09-01

    RESPONSES IN PARASITIC DISEASES Final Scientific Report Daniel J. Stechschulte, M.D. Herbert B. Lindsley, M.D. September 1982 (July 1974 - December 1979...REPORT & PERIOD COVERED IMMUNE RESPONSES IN PARASITIC DISEASES Final Report July 1977 - Dec. 1979 6. PERFORMING ORG. REPORT NUMBER S 4 7. AUTNIOR(a) 6...DAMD 17-74-C-4136 AD_______________ IMMUNE RESPONSES IN PARASITIC DISEASES Final Scientific Report Daniel J. Stechschulte, M.D. Herbert B. Lindsley

  6. [Sexuality and auto-immunity].

    PubMed

    Abraham, Georges; Vlatkovic, Dejan

    2010-03-24

    The idea that it might be a link between auto-immune affections and sexual disturbances could appear a vain purpose at a first glance. Nevertheless, as we start from a new point of view, it is understandable that we focus on a possible common tendency to develop self-aggression and self-destruction. Similarities which could play a role in the development of an auto-immune disease and of a sexual dixturbance as well.

  7. P2 receptors and immunity

    PubMed Central

    Rayah, Amel; Kanellopoulos, Jean M.; Di Virgilio, Francesco

    2012-01-01

    Immune cells express receptors for extracellular nucleotides named P2 receptors. P2 receptors transduce signals delivered by nucleotides present in the extracellular environment. Accruing evidence shows that purinergic signalling has a profound effect on multiple immune cell responses such as T lymphocyte proliferation, chemotaxis, cytokine release, phagocytosis, Ag presentation and cytotoxicity. This makes P2 receptors an attractive target for the therapy of immuno-mediated disease and cancer. PMID:22909902

  8. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  9. Cancer, aging and immune reconstitution.

    PubMed

    Zanussi, Stefania; Serraino, Diego; Dolcetti, Riccardo; Berretta, Massimiliano; De Paoli, Paolo

    2013-11-01

    Aging is a complex phenomenon involving multiple physiological functions. Among these, very important are the modifications induced in the immune system; these modifications may be related to cancer development, a disease of older people. We herein describe the age-dependent alterations observed in the various arms of the immune system. Both innate and adaptive immunity are compromised during aging, a condition where an inflammatory status contributes to promote immune suppression and tumour growth. Collectively, aging of the immune system may produce detrimental consequences on the response against tumours in old patients. In fact, preclinical studies and clinical observations in humans have demonstrated age-associated alterations in antitumor immunity. Immunological recovery of old patients after conventional chemotherapy (CT) has not been fully investigated, while several studies conducted in patients undergoing blood stem cell transplantation have demonstrated that a delayed immune reconstitution associated with older age results in increased susceptibility to opportunistic infections and risk of tumour relapse. Cellular immunotherapy and vaccination are becoming viable options for improving survival and quality of life of cancer patients targeting both the host defences and the tumour. The clinical experience in elderly patients is still in its infancy, but available data indicate that these approaches are feasible and promising. A key problem in the studies on aging, immunity and cancer is that it is difficult to distinguish changes related to age from those related to cancer-dependent immunosuppression, but independent from the age of the subject. Longitudinal studies on aged healthy and cancer persons and the use of new immunological techniques may be required to clarify these issues.

  10. Barrier immunity and IL-17

    PubMed Central

    Marks, Benjamin R.; Craft, Joe

    2009-01-01

    CD4+ TH17 cells display a featured role in barrier immunity. This effector population of T cells is important for clearance of microorganisms but can also promote autoimmunity at barrier sites. Recent work has indicated that these effector cells share a pathway with CD4+ regulatory T cells (TR cells) that also have a critical function in barrier protection and immune regulation. The development and function of TH17 cells, and their relationship with TR cells are discussed. PMID:19386512

  11. Semiquantitative measure of immune responses against erythropoietic stem cell antigens

    SciTech Connect

    Harrison, D.E.

    1987-01-01

    A semiquantitative assay was developed and used to measure the effects of immune responses against 16 independent non-H-2 antigenic loci on erythropoietic stem cells. The assay compares repopulation in genetically anemic WBB6F1-W/Wv recipients that have normal immune responses, and in lethally irradiated WBB6F1 +/+ mice whose immune responses are suppressed by the irradiation. The differences in repopulating ability between these two types of recipients measure how immune responses affect erythropoietic stem cells. Stem cell repopulating abilities for the cells with antigens specified by the Thy-1, H-1, H-24, Ly-1, H-37, and H-17 loci were affected slightly, if at all. Repopulating abilities were moderately reduced by responses against antigens specified by H-15, 16, Ea-2, and Ly-2, 3 loci, and against the differences between the B6 and B10 genotypes, although marrow of these types cured W/Wv recipients. A surprising result occurred for the antigen specified by the H-8 locus, in which immune responses strongly reduced repopulating abilities, although this type of marrow cell cured W/Wv recipients. A comparison of these results with skin graft survival times suggests that the antigens specified by the H-17 and H-24 loci are strongly immunogenic on skin but not on marrow stem cells, while those specified by the H-12 and H-8 loci are strongly immunogenic on marrow stem cells but not on skin.

  12. Nutritionally mediated programming of the developing immune system.

    PubMed

    Palmer, Amanda C

    2011-09-01

    A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.

  13. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    PubMed

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  14. Immune Suppression and Inflammation in the Progression of Breast Cancer

    DTIC Science & Technology

    2007-03-01

    population of inflammation-induced MDSC . Reducing inflammation by blocking the IL-1 signaling pathway (IL-1R-/-) reduces tumor growth and metastatic...Suppressor Cells ( MDSC ). These cells have potent immunosuppressive activity and inhibit both innate and adaptive immunity by inhibiting T cell activation... MDSC by inducing a phenotypically and functionally distinct population of MDSC , which are more potent suppressors of CD8+ T cells. Using mice

  15. [Immune proteasomes in the development of rat immune system].

    PubMed

    Karpova, Ia D; Lyupina, Iu V; Astakhova, T M; Stepanova, A A; Erokhov, P A; Abramova, E B; Sharova, N P

    2013-01-01

    The dynamics of the expression of LMP7 and LMP2 proteasome subunits in embryonic and early postnatal development of rat spleen and liver is investigated in comparison with the dynamics of chymotrypsin-like and caspase-like proteasome activities and expression of MHC (major histocompatibility complex) class I molecules. The immune subunits LMP7 and LMP2 distribution in spleen and liver cells in the development process is also studied. A mutual for both organs tendency to the increase of the expression of both LMP7 subunit and LMP2 one on P21 (the 21st postnatal day) as compared to the embryonic period is discovered. However, the total proteasome level is shown to be constant. At definite development stages, the dynamics of immune subunits expression in the spleen and liver was different. In the spleen gradual enhancement of both immune subunits level being detected on P1, P18 and P21, in the liver gradual enhancement periods on E16 (the 16th embryonic day) and E18 changed to the stage of the shrink of immune subunits level on P5. This level did not reliably change till P18 and was augmented on P21. The alterations revealed were accompanied by chymotrypsin-like activity raise and caspase-like activity drop in spleen by P21 as compared with the embryonic period, which proves the enlargement of proteasome ability to form antigenic epitopes for MHC class I molecules. In the liver, both activities increased by P21 in comparison with the embryonic period. Such dynamics of caspase-like activity can be explained not only by the change of proteolytic constitutive and immune subunits, but also by additional regulatory mechanisms. Besides, it is discovered that the increment of immune subunits expression in the early spleen development is connected with the process of successive forming the white pulp by B- and T-lymphocytes enriched by immune subunits. In the liver, the growth of immune subunits level by P21 was accompanied by their expression expansion in hepatocytes, while

  16. Innate cellular immunity and xenotransplantation

    PubMed Central

    Wang, Hui; Yang, Yong-Guang

    2012-01-01

    Purpose of review This review assesses the recent progress in xenograft rejection by innate immune responses, with a focus on innate cellular xenoreactivity. Recent findings Current literature was reviewed for new insights into the role of innate cellular immunity in xenograft rejection. Increasing evidence confirms that vigorous innate immune cell activation is accounted for by a combination of xenoantigen recognition by activating receptors, and incompatibility in inhibitory receptor-ligand interactions. Although both innate humoral and cellular xenoimmune responses are predominantly elicited by preformed and induced xenoreactive antibodies in nonhuman primates following porcine xenotransplantation, innate immune cells can also be activated by xenografts in the absence of antibodies. The latter antibody-independent response will likely persist in recipients even when adaptive xenoimmune responses are suppressed. In addition to xenograft rejection by recipient innate immune cells, phagocytic cells within liver xenografts are also deleterious to recipients by causing thrombocytopenia. Summary Strategies of overcoming innate immune responses are required for successful clinical xenotransplantation. In addition to developing better immunosuppressive and tolerance induction protocols, endeavors towards further genetic modifications of porcine source animals are ultimately important for successful clinical xenotransplantation. PMID:22262106

  17. Innate immune recognition of cancer.

    PubMed

    Woo, Seng-Ryong; Corrales, Leticia; Gajewski, Thomas F

    2015-01-01

    The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.

  18. Immunization of high-risk paediatric populations: Central European Vaccination Awareness Group recommendations.

    PubMed

    Richter, Darko; Anca, Ioana; André, Francis E; Bakir, Mustafa; Chlibek, Roman; Čižman, Milan; Mangarov, Atanas; Mészner, Zsófia; Pokorn, Marko; Prymula, Roman; Salman, Nuran; Simurka, Pavol; Tamm, Eda; Tešović, Goran; Urbančíková, Ingrid; Usonis, Vytautas; Wysocki, Jacek; Zavadska, Dace; Central European Vaccination Awareness Group

    2014-06-01

    Over the last decade, childhood immunization has substantially reduced morbidity and mortality from vaccine-preventable diseases. However, particular paediatric risk groups, such as those with comorbidities, may not be adequately vaccinated despite being more susceptible to complications and death from certain infectious diseases. This may be due to lack of immunization recommendations, lack of awareness, or incomplete adherence to existing guidelines. Furthermore, recommendations for immunization can be inconsistent across Europe. An expanded initiative from the Central European Vaccination Awareness Group aims to raise awareness of the different high-risk paediatric groups, differentiate them according to their specific risk, and formalise a guidance statement for the immunization of each population.

  19. Policy statement--recommendation for mandatory influenza immunization of all health care personnel.

    PubMed

    Bernstein, Henry H; Starke, Jeffrey R

    2010-10-01

    The purpose of this statement is to recommend implementation of a mandatory influenza immunization policy for all health care personnel. Immunization of health care personnel is a critically important step to substantially reduce health care-associated influenza infections. Despite the efforts of many organizations to improve influenza immunization rates with the use of voluntary campaigns, influenza coverage among health care personnel remains unacceptably low. Mandatory influenza immunization for all health care personnel is ethically justified, necessary, and long overdue to ensure patient safety.

  20. Humoral immune response to the antigen administered as an immune complex.

    PubMed

    Marusić, M; Marusić-Galesić, S; Pokrić, B

    1992-12-01

    Antigen (HSA) bound in immune complexes at equivalence with syngeneic anti-HSA antibodies elicit much stronger humoral immune response then soluble HSA. On the other hand, administration of immune complexes formed with xenogeneic (rabbit) anti-HSA antibodies suppressed humoral immune response against HSA, but not against rabbit IgG in mice. We suggest that immunization with antigen bound in immune complex might represent a powerful tool in enhancing humoral immune responses.

  1. Alternative adaptive immunity strategies: coelacanth, cod and shark immunity.

    PubMed

    Buonocore, Francesco; Gerdol, Marco

    2016-01-01

    The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life.

  2. Evaluation of hepatic changes and local and systemic immune responses in goats immunized with recombinant Peroxiredoxin (Prx) and challenged with Fasciola hepatica.

    PubMed

    Mendes, Ricardo E; Pérez-Ecija, Rafael A; Zafra, Rafael; Buffoni, Leandro; Martínez-Moreno, Alvaro; Dalton, John P; Mulcahy, Grace; Pérez, José

    2010-04-01

    Protection against Fasciola hepatica in goats immunized with Peroxiredoxin (Prx) was assessed. The experimental trial consisted of three groups of seven animals; group 1 were unimmunized and uninfected, group 2 were immunized with adjuvant only and group 3 were immunized with recombinant Prx in adjuvant (immunized and infected). Immunization with Prx in Quil A adjuvant, group 3, induced a reduction in fluke burden of 33.04% when compared to adjuvant control, group 2, although this difference was not significant. The hepatic gross and microscopical morphometric study revealed lower damage in the Prx-immunized compared to group 2 (p<0.05). Furthermore, immunohistochemical studies revealed that the Prx-immunized group exhibited reduced infiltration of CD4(+), CD8(+), IFN-gamma(+) and TCR(+) (p<0.05); and CD2(+) and IL-4(+) (p<0.001) in hepatic lesions. Levels of anti-Prx serum IgG in group 3 showed a significant increase at the 4th week after challenge infection compared with group 2 (p<0.0001). This is the first report of ruminant immunization with recombinant Prx of F. hepatica. The study shows that this vaccine significantly reduces hepatic damage and encourages further studies to improve the vaccine efficacy.

  3. Ginseng Diminishes Lung Disease in Mice Immunized with Formalin-Inactivated Respiratory Syncytial Virus After Challenge by Modulating Host Immune Responses

    PubMed Central

    Lee, Jong Seok; Cho, Min Kyoung; Hwang, Hye Suk; Ko, Eun-Ju; Lee, Yu-Na; Kwon, Young-Man; Kim, Min-Chul; Kim, Ki-Hye; Lee, Young-Tae; Jung, Yu-Jin

    2014-01-01

    Formalin-inactivated respiratory syncytial virus (FI-RSV) immunization is known to cause severe pulmonary inflammatory disease after subsequent RSV infection. Ginseng has been used in humans for thousands of years due to its potential health benefits. We investigated whether ginseng would have immune modulating effects on RSV infection in mice previously immunized with FI-RSV. Oral administration of mice with ginseng increased IgG2a isotype antibody responses to FI-RSV immunization, indicating T-helper type 1 (Th1) immune responses. Ginseng-treated mice that were nonimmunized or previously immunized with FI-RSV showed improved protection against RSV challenge compared with control mice without ginseng treatment. Ginseng-mediated improved clinical outcomes after live RSV infection were evidenced by diminished weight losses, decreased interleukin-4 cytokine production but increased interferon-γ production, modulation of CD3 T-cell populations toward a Th1 response, and reduced inflammatory response. Ginseng-mediated protective host immune modulation against RSV pulmonary inflammation was observed in different strains of wild-type and mutant mice. These results indicate that ginseng can modulate host immune responses to FI-RSV immunization and RSV infection, resulting in protective effects against pulmonary inflammatory disease. PMID:25051168

  4. Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    PubMed Central

    Gungor, Bilgi; Kahraman, Tamer; Gursel, Mayda; Yilmaz, Bilge

    2017-01-01

    Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients. PMID:28170444

  5. Efficacy of screening immune system function in at-risk newborns.

    PubMed

    Pavlovski, Christopher J

    2014-01-01

    This paper explores the introduction of a screening test to highlight impaired immune system status for newborn infants and its efficacy as a preventative clinical measure. Moreover, it is suggested that screening of the infantile immune system has the potential to highlight susceptibility to a range of infant and childhood diseases, bestowing an opportunity to introduce early intervention to reduce the incidence of these diseases. Development of the neonatal immune system is an important health issue, implicated in many childhood problems such as allergies, infection, and autoimmunity. The neonate has a limited immune system and ability to combat bacteria. Depleted levels of the tripeptide reduced glutathione (GSH) have been linked to numerous conditions and its intracellular level is acknowledged as an indicator of immune system function. Introduction of an immune system screening programme for infants is formally reviewed and assessed. Several benefits are reported in the treatment of impaired immune systems, a trial screening programme is proposed for at-risk infants to gather further evidence as to its efficacy. Infants at risk of impaired immune system function include cystic fibrosis, premature infants, and low birth weight infants. The interventions include breastfeeding, milk banks, and appropriate formula to support the immune system.

  6. Transfer of Maternal Antimicrobial Immunity to HIV-Exposed Uninfected Newborns

    PubMed Central

    Abu-Raya, Bahaa; Smolen, Kinga K.; Willems, Fabienne; Kollmann, Tobias R.; Marchant, Arnaud

    2016-01-01

    The transfer of maternal immune factors to the newborn is critical for protection from infectious disease in early life. Maternally acquired passive immunity provides protection until the infant is beyond early life’s increased susceptibility to severe infections or until active immunity is achieved following infant’s primary immunization. However, as reviewed here, human immunodeficiency virus (HIV) infection alters the transfer of immune factors from HIV-infected mothers to the HIV-exposed newborns and young infants. This may relate to the immune activation in HIV-infected pregnant women, associated with the production of inflammatory cytokines at the maternofetal interface associated with inflammatory responses in the newborn. We also summarize mother-targeting interventions to improve the health of infants born to HIV-infected women, such as immunization during pregnancy and reduction of maternal inflammation. Maternal immunization offers the potential to compensate for the decreased transplacentally transferred maternal antibodies observed in HIV-exposed infants. Current data suggest reduced immunogenicity of vaccines in HIV-infected pregnant women, possibly reducing the protective impact of maternal immunization for HIV-exposed infants. Fortunately, levels of antibodies appear preserved in the breast milk of HIV-infected women, which supports the recommendation to breast-feed during antiretroviral treatment to protect HIV-exposed infants. PMID:27630640

  7. The effect of aging on cognate function and development of immune memory

    PubMed Central

    Haynes, Laura

    2011-01-01

    Immunological memory is one of the central features of the immune system and can be described as the ability of the immune system to respond more efficiently to a second encounter with the same pathogen. The immune system is dramatically affected by age-related changes and it is becoming apparent that immune memory exhibits significant defects as a result of aging. Although immune memory generated during youth functions well into old age, that generated later in life functions poorly. Importantly, age-related defects in the cognate helper function of CD4+ T cells can potentially influence the development of both humoral and cell-mediated immune memory. These defects ultimately result in aged individuals who exhibit reduced responses to both infections and vaccinations. PMID:16054352

  8. MMP-25 Metalloprotease Regulates Innate Immune Response through NF-κB Signaling.

    PubMed

    Soria-Valles, Clara; Gutiérrez-Fernández, Ana; Osorio, Fernando G; Carrero, Dido; Ferrando, Adolfo A; Colado, Enrique; Fernández-García, M Soledad; Bonzon-Kulichenko, Elena; Vázquez, Jesús; Fueyo, Antonio; López-Otín, Carlos

    2016-07-01

    Matrix metalloproteases (MMPs) regulate innate immunity acting over proinflammatory cytokines, chemokines, and other immune-related proteins. MMP-25 (membrane-type 6-MMP) is a membrane-bound enzyme predominantly expressed in leukocytes whose biological function has remained largely unknown. We have generated Mmp25-deficient mice to elucidate the in vivo function of this protease. These mutant mice are viable and fertile and do not show any spontaneous phenotype. However, Mmp25-null mice exhibit a defective innate immune response characterized by low sensitivity to bacterial LPS, hypergammaglobulinemia, and reduced secretion of proinflammatory molecules. Moreover, these immune defects can be tracked to a defective NF-κB activation observed in Mmp25-deficient leukocytes. Globally, our findings provide new mechanistic insights into innate immunity through the activity of MMP-25, suggesting that this proteinase could be a potential therapeutic target for immune-related diseases.

  9. Economic evaluation of vaccination programs: the impact of herd-immunity.

    PubMed

    Brisson, M; Edmunds, W J

    2003-01-01

    The unique characteristic of vaccination is that it not only reduces the incidence of disease in those immunized but also indirectly protects nonvaccinated susceptibles against infection (produces herd-immunity). The bulk of economic evaluations of vaccination programs continue to use models that cannot take into account the indirect effects produced by herd-immunity. Here, the authors illustrate the importance of incorporating herd-immunity externalities when assessing the cost-effectiveness of vaccination progams. To do this, they compare 2 methods of estimating the benefits of routine mass vaccination: one that includes herd-immunity (dynamic approach) and one that does not (static approach). Finally, they use the results to clarify a number of misconceptions that are common in the literature concerning herd-immunity and dynamical effects produced by models.

  10. Th1-mediated immunity against Helicobacter pylori can compensate for lack of Th17 cells and can protect mice in the absence of immunization.

    PubMed

    Ding, Hua; Nedrud, John G; Blanchard, Thomas G; Zagorski, Brandon M; Li, Guanghui; Shiu, Jessica; Xu, Jinghua; Czinn, Steven J

    2013-01-01

    Helicobacter pylori (H. pylori) infection can be significantly reduced by immunization in mice. Th17 cells play an essential role in the protective immune response. Th1 immunity has also been demonstrated to play a role in the protective immune response and can compensate in the absence of IL-17. To further address the potential of Th1 immunity, we investigated the efficacy of immunization in mice deficient in IL-23p19, a cytokine that promotes Th17 cell development. We also examined the course of Helicobacter infection in unimmunized mice treated with Th1 promoting cytokine IL-12. C57BL/6, IL-12 p35 KO, and IL-23 p19 KO mice were immunized and challenged with H. pylori. Protective immunity was evaluated by CFU determination and QPCR on gastric biopsies. Gastric and splenic IL-17 and IFNγ levels were determined by PCR or by ELISA. Balb/c mice were infected with H. felis and treated with IL-12 therapy and the resulting gastric bacterial load and inflammatory response were assessed by histologic evaluation. Vaccine induced reductions in bacterial load that were comparable to wild type mice were observed in both IL-12 p35 and IL-23 p19 KO mice. In the absence of IL-23 p19, IL-17 levels remained low but IFNγ levels increased significantly in both immunized challenged and unimmunized/challenged mice. Additionally, treatment of H. felis-infected Balb/c mice with IL-12 resulted in increased gastric inflammation and the eradication of bacteria in most mice. These data suggest that Th1 immunity can compensate for the lack of IL-23 mediated Th17 responses, and that protective Th1 immunity can be induced in the absence of immunization through cytokine therapy of the infected host.

  11. Protective immune response induced by co-immunization with the Trichinella spiralis recombinant Ts87 protein and a Ts87 DNA vaccine.

    PubMed

    Yang, Yaping; Yang, Xiaodi; Gu, Yuan; Wang, Yunyun; Zhao, Xi; Zhu, Xinping

    2013-05-20

    Ts87 is an immunodominant antigen that induces protective immunity against Trichinella spiralis larval challenge in mice. To determine if a combination of recombinant Ts87 protein and its coding DNA induces a stronger immune response in female C57BL/6 mice were immunized with 100 μg of recombinant Ts87 protein plus its coding DNA cloned in vector pVAX1, or the same amount of recombinant protein or DNA only. Mouse subclass IgG responses showed that both co-immunized and single-immunized mice produced a balanced IgG2a/IgG1 (Th1/Th2) response. T-cell proliferation in co-immunized animals was significantly higher than in single-immunized mice. Cytokine profiling in the co-immunization group showed a significant increase in the levels of IL-2, IL-4, IL-6 and IFN-γ in the splenocytes of mice upon stimulation with the recombinant Ts87 protein; however, the expression of IL-17 was down-regulated. Challenge results showed that mice immunized with the recombinant Ts87 protein and its coding DNA produced reduced the muscle larval burden to a greater extent (43.8%) than the groups immunized with only the protein (39.7%) or the DNA (9.7%). A better Th1/Th2 immune response and consequent protection induced by co-immunization with the recombinant Ts87 protein and its coding DNA may result from an adjuvant effect of DNA and a specific persistent expression of Ts87.

  12. Immunometabolism: Cellular Metabolism Turns Immune Regulator*

    PubMed Central

    Loftus, Róisín M.; Finlay, David K.

    2016-01-01

    Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses. PMID:26534957

  13. Immunometabolism: Cellular Metabolism Turns Immune Regulator.

    PubMed

    Loftus, Róisín M; Finlay, David K

    2016-01-01

    Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses.

  14. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules

    PubMed Central

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L.

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the

  15. Enteric Immunization of Mice Against Influenza with Recombinant Vaccinia

    NASA Astrophysics Data System (ADS)

    Meitin, Catherine A.; Bender, Bradley S.; Small, Parker A., Jr.

    1994-11-01

    Intrajejunal administration to mice of a recombinant vaccinia virus containing the influenza virus hemagglutinin gene induced IgA antibody in nasal, gut, and vaginal secretions. It also induced IgG antibody in serum and cell-mediated immunity. The immunization provided significant protection against an influenza virus challenge. This work suggests that enteric-coated recombinant vaccinia could be an orally administered, inexpensive, multivalent, temperature-stable, safe, and effective vaccine for children that could be particularly useful in developing nations, where multiple injections are not easily administered. Oral administration of vaccines should also reduce children's fear of shots at the doctor's office.

  16. Influenza Immunization for All Health Care Personnel: Keep It Mandatory.

    PubMed

    2015-10-01

    The purpose of this statement is to reaffirm the American Academy of Pediatrics' support for a mandatory influenza immunization policy for all health care personnel. With an increasing number of organizations requiring influenza vaccination, coverage among health care personnel has risen to 75% in the 2013 to 2014 influenza season but still remains below the Healthy People 2020 objective of 90%. Mandatory influenza immunization for all health care personnel is ethical, just, and necessary to improve patient safety. It is a crucial step in efforts to reduce health care-associated influenza infections.

  17. Inflammation, immunity, and vaccines for Helicobacter pylori infection.

    PubMed

    Velin, Dominique; Straubinger, Kathrin; Gerhard, Markus

    2016-09-01

    The tight control of the innate and adaptive immune responses in the stomach mucosa during chronic Helicobacter pylori infection is of prime importance for the bacteria to persist and for the host to prevent inflammation-driven diseases. This review summarizes recent data on the roles of innate and adaptive immune responses during H. pylori/host interactions. In addition, the latest preclinical developments of H. pylori vaccines are discussed with a special focus on the clinical trial reported by Zeng et al., who provided evidence that oral vaccination significantly reduces the acquisition of natural H. pylori infection in children.

  18. Seasonal benefits of a natural propolis envelope to honey bee immunity and colony health.

    PubMed

    Borba, Renata S; Klyczek, Karen K; Mogen, Kim L; Spivak, Marla

    2015-11-01

    Honey bees, as social insects, rely on collective behavioral defenses that produce a colony-level immune phenotype, or social immunity, which in turn impacts the immune response of individuals. One behavioral defense is the collection and deposition of antimicrobial plant resins, or propolis, in the nest. We tested the effect of a naturally constructed propolis envelope within standard beekeeping equipment on the pathogen and parasite load of large field colonies, and on immune system activity, virus and storage protein levels of individual bees over the course of a year. The main effect of the propolis envelope was a decreased and more uniform baseline expression of immune genes in bees during summer and autumn months each year, compared with the immune activity in bees with no propolis envelope in the colony. The most important function of the propolis envelope may be to modulate costly immune system activity. As no differences were found in levels of bacteria, pathogens and parasites between the treatment groups, the propolis envelope may act directly on the immune system, reducing the bees' need to activate the physiologically costly production of humoral immune responses. Colonies with a natural propolis envelope had increased colony strength and vitellogenin levels after surviving the winter in one of the two years of the study, despite the fact that the biological activity of the propolis diminished over the winter. A natural propolis envelope acts as an important antimicrobial layer enshrouding the colony, benefiting individual immunity and ultimately colony health.

  19. Fish gut-liver