Science.gov

Sample records for copolymerization reactions experimental

  1. Chain Copolymerization Reactions: An Algorithm to Predict the Reaction Evolution with Conversion

    ERIC Educational Resources Information Center

    Gallardo, Alberto; Aguilar, Maria Rosa; Abraham, Gustavo A.; Roman, Julio San

    2004-01-01

    An algorithm is developed to study and understand the behavior of chain copolymerization reactions. When a binary copolymerization reaction follows the terminal model, Conversion is able to predict the evolution of different parameters, such as instantaneous and cumulative copolymer molar fractions, or molar fractions of any sequence with the…

  2. Chain Copolymerization Reactions: An Algorithm to Predict the Reaction Evolution with Conversion

    ERIC Educational Resources Information Center

    Gallardo, Alberto; Aguilar, Maria Rosa; Abraham, Gustavo A.; Roman, Julio San

    2004-01-01

    An algorithm is developed to study and understand the behavior of chain copolymerization reactions. When a binary copolymerization reaction follows the terminal model, Conversion is able to predict the evolution of different parameters, such as instantaneous and cumulative copolymer molar fractions, or molar fractions of any sequence with the…

  3. Copolymerization on Selective Substrates: Experimental Test and Computer Simulations.

    PubMed

    Kozhunova, Elena Yu; Gavrilov, Alexey A; Zaremski, Mikhail Yu; Chertovich, Alexander V

    2017-04-11

    We explore the influence of a selective substrate on the composition and sequence statistics during the free radical copolymerization. In particular, we study the radical copolymerization of styrene and acrylic acid in bulk and in silica pores of different sizes. We show that the substrate affects both polymer composition and sequence statistics. We use dissipative particle dynamics simulations to study the polymerization process in detail, trying to pinpoint the parameters responsible for the observed differences in the polymer chain composition and sequences. The magnitude of the observed effect depends on the fraction of adsorbed monomer units, which cannot be described in the framework of the copolymerization theories based on the terminal unit model.

  4. Aluminium coordination complexes in copolymerization reactions of carbon dioxide and epoxides.

    PubMed

    Ikpo, Nduka; Flogeras, Jenna C; Kerton, Francesca M

    2013-07-07

    Al complexes are widely used in a range of polymerization reactions (ROP of cyclic esters and cationic polymerization of alkenes). Since the discovery in 1978 that an Al porphyrin complex could copolymerize propylene oxide with carbon dioxide, Al coordination compounds have been studied extensively as catalysts for epoxide-carbon dioxide copolymerizations. The most widely studied catalysts are Al porphyrin and Al salen derivatives. This is partially due to their ability to act as mechanistic models for more reactive, paramagnetic Cr catalysts. However, this in depth mechanistic understanding could be employed to design more active Al catalysts themselves, which would be beneficial given the wide availability of this metal. Polymerization data (% CO3 linkages, M(n), M(w)/M(n) and TON) for these complexes are presented and mechanisms discussed. In most cases, especially those employing square-based pyramidal Al complexes, co-catalysts are required to obtain high levels of carbon dioxide incorporation. However, in some cases, the use of co-catalysts inhibits the copolymerization reaction. Lewis acidic Al phenolate complexes have been used as activators in CHO-carbon dioxide copolymerizations to increase TOF and this has recently led to the development of asymmetric copolymerization reactions. Given the ready availability of Al, the robustness of many complexes (e.g. use in immortal polymerizations) and opportunity to prepare block copolymers and other designer materials, Al complexes for copolymerization of carbon dioxide are surely worth a second look.

  5. Two-dimensional Raman correlation spectroscopy study of an emulsion copolymerization reaction process.

    PubMed

    Noda, Isao; Allen, William M; Lindberg, Seth E

    2009-02-01

    The emulsion copolymerization of styrene and 1,3-butadiene using an oligomeric nonionic surfactant as an emulsifier to make a styrene-butadiene rubber (SBR) copolymer latex was monitored by real-time in situ Raman spectroscopy. Time-resolved Raman spectra collected during the early stage of the polymerization reaction were subjected to a series of data analysis techniques, including two-dimensional (2D) correlation spectroscopy, multivariate self-modeling curve resolution (SMCR), and kernel analysis, to elucidate the fine details of the complex reaction process. Generalized 2D correlation analysis of time-resolved Raman spectra readily identified the characteristic Raman scattering bands for the monomers and copolymer. Cross-peaks appearing in 2D Raman correlation spectra showed that the decrease in the spectral intensity of Raman bands assignable to 1,3-butadiene occurs before the band intensity changes for styrene or SBR copolymer. The positions of asynchronous cross-peaks were used to identify a spectral region with the most distinct pattern of intensity variations, which in turn could be used as the starting point for the alternating least squares iteration of the SMCR analysis. SMCR analysis of the time-resolved Raman spectra generated a set of estimated pure component spectra and concentration profiles of styrene, 1,3-butadiene, and SBR copolymer without requiring independently measured calibration data. The estimated concentration profiles of monomers and copolymer indicated that the reaction of 1,3-butadiene started before the consumption of styrene and production of SBR copolymer. Kernel analysis of the estimated concentration profiles provided a succinct measure of the similarity and dissimilarity of the concentration changes of monomers and copolymer.

  6. Mechanistic Insights into the Carbon Dioxide/Cyclohexene Oxide Copolymerization Reaction: Is One Metal Center Enough?

    PubMed

    González-Fabra, Joan; Castro-Gómez, Fernando; Kleij, Arjan W; Bo, Carles

    2017-03-22

    A detailed study on the mechanism for the alternating copolymerization of cyclohexene oxide (CHO) and CO2 mediated by an [Al{amino-tri(phenolate)}]/NBu4 I binary catalyst system was performed by using DFT-based methods. Four potential mechanisms (one monometallic and three bimetallic) were considered for the first propagation cycle of the CHO/CO2 copolymerization. The obtained Gibbs free energies provided a rationale for the relative high activity of a non-covalent dimeric structure formed in situ and thus for the feasibility of a bimetallic mechanism to obtain polycarbonates quantitatively. Gibbs free energies also indicated that the alternating copolymerization was favored over the cyclic carbonate formation.

  7. Octadecyl maleamic acid salt as a microreactor for its copolymerization reaction with butyl acrylate in aqueous medium.

    PubMed

    Milton Gaspar, L J; Baskar, Geetha

    2006-03-14

    The hydrogelator, octadecyl maleamic acid salt (ODMAS), has been shown to perform as a microreactor in copolymerization reaction with butyl acrylate in aqueous medium thereby providing functionalized latex. The evidence for occurrence of controlled polymerization reaction inside the microreactor is drawn from the composition and the polydispersity index of the copolymers. The copolymers generated under microreactor conditions or in other words, from emulsion phase provided by the hydrogelator exhibit significant incorporation of ODMAS with narrow polydispersity index. For example, a copolymer with ODMAS as high as 0.62 m and polydispersity index at 1.39 could be achieved. On the contrary, the solution copolymerization reactions in THF resulted in low yield of polymers with molecular weight at 10(3) order and polydispersity index in range of 2.53-2.91. The particle size distribution of the latexes remains almost invariant at 74 +/- 4 nm, over the concentration range of 0.12-0.62m with standard deviation (sigma) of 0.12-0.22. The surface area/molecule of ODMAS on the latex particle has been estimated to be 0.21 nm(2)/molecule. The polymerized latexes exhibit zeta potential at 64 +/- 3 mV and surface tension in range of 42.8-47.9 mN m(-)(1) respectively. This is indicative of coverage of latex with ODMAS.

  8. Effects of heat pretreatment of starch on graft copolymerization reaction and performance of resulting starch-based wood adhesive.

    PubMed

    Zheng, Xianyu; Cheng, Li; Gu, Zhengbiao; Hong, Yan; Li, Zhaofeng; Li, Caiming

    2017-03-01

    In this study, effects of starch heat pretreatment at 70, 80 and 90°C on graft copolymerization reaction with vinyl acetate (VAc) and the performance of the resulting starch-based wood adhesive (SWA) were investigated. It was shown that SWA pretreated at 90°C achieved the best performance. At this temperature, the bonding capacity improved by 17.84% compared to the adhesive synthesized without heat pretreatment and the viscosity increased by 18.16% after 7 free-thaw cycles, much better than other samples. Scanning electron microscopy (SEM) and polarizing microscopy demonstrated that structures of starch granules were fully damaged after heat pretreatment at 90°C. The reaction took place not only on the surface of starch granules, but also internally, leading to improvement in the grafting amounts and grafting efficiency by 42.86% and 39.03%, respectively. This was further confirmed by Fourier transform infrared spectroscopy (FT-IR), Confocal Raman microscopy (CRM) and X-ray photoelectron spectroscopy (XPS), which also showed better reaction homogeneity both between different starch granules and from granule surface to its internal structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions.

    PubMed

    Klosin, Jerzy; Fontaine, Philip P; Figueroa, Ruth

    2015-07-21

    This Account describes our research related to the development of molecular catalysts for solution phase olefin polymerization. Specifically, a series of constrained geometry and nonmetallocene (imino-amido-type) complexes were developed for high temperature olefin polymerization reactions. We have discovered many highly active catalysts that are capable of operating at temperatures above 120 °C and producing copolymers with a useful range of molecular weights (from medium to ultrahigh depending on precatalyst identity and polymerization conditions) and α-olefin incorporation capability. Constrained geometry catalysts (CGCs) exhibit very high activities and are capable of producing a variety of copolymers including ethylene-propylene and ethylene-1-octene copolymers at high reactor temperatures. Importantly, CGCs have much higher reactivity toward α-olefins than classical Ziegler-Natta catalysts, thus allowing for the production of copolymers with any desired level of comonomer. In search of catalysts with improved performance, we discovered 3-amino-substituted indenyl-based CGCs that exhibit the highest activity and produce copolymers with the highest molecular weight within this family of catalysts. Phenanthrenyl-based CGCs were found to be outstanding catalysts for the effective production of high styrene content ethylene-styrene copolymers under industrially relevant conditions. In contrast to CGC ligands, imino-amido-type ligands are bidentate and monoionic, leading to the use of trialkyl group IV precatalysts. The thermal instability of imino-amido complexes was addressed by the development of imino-enamido and amidoquinoline complexes, which are not only thermally very robust, but also produce copolymers with higher molecular weights, and exhibit improved α-olefin incorporation. Imido-amido and imino-enamido catalysts undergo facile chain transfer reactions with metal alkyls, as evidenced by a sharp decrease in polymer molecular weight when the

  10. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst.

    PubMed

    Darensbourg, Donald J; Yarbrough, Jason C

    2002-06-05

    The air-stable, chiral (salen)Cr(III)Cl complex (3), where H(2)salen = N,N'-bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexene diamine, has been shown to be an effective catalyst for the coupling of cyclohexene oxide and carbon dioxide to afford poly(cyclohexenylene carbonate), along with a small quantity of its trans-cyclic carbonate. The thus produced polycarbonate contained >99% carbonate linkages and had a M(n) value of 8900 g/mol with a polydispersity index of 1.2 as determined by gel permeation chromatography. The turnover number (TON) and turnover frequency (TOF) values of 683 g of polym/g of Cr and 28.5 g of polym/g of Cr/h, respectively for reactions carried out at 80 degrees C and 58.5 bar pressure increased by over 3-fold upon addition of 5 equiv of the Lewis base cocatalyst, N-methyl imidazole. Although this chiral catalyst is well documented for the asymmetric ring-opening (ARO) of epoxides, in this instance the copolymer produced was completely atactic as illustrated by (13)C NMR spectroscopy. Whereas the mechanism for the (salen)Cr(III)-catalyzed ARO of epoxides displays a squared dependence on [catalyst], which presumably is true for the initiation step of the copolymerization reaction, the rate of carbonate chain growth leading to copolymer or cyclic carbonate formation is linearly dependent on [catalyst]. This was demonstrated herein by way of in situ measurements at 80 degrees C and 58.5 bar pressure. Hence, an alternative mechanism for copolymer production is operative, which is suggested to involve a concerted attack of epoxide at the axial site of the chromium(III) complex where the growing polymer chain for epoxide ring-opening resides. Preliminary investigations of this (salen)Cr(III)-catalyzed system for the coupling of propylene oxide and carbon dioxide reveal that although cyclic carbonate is the main product provided at elevated temperatures, at ambient temperature polycarbonate formation is dominant. A common reaction pathway for

  11. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  12. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  13. Experimental Study of Serpentinization Reactions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  14. EXFOR Library of Experimental Nuclear Reaction Data

    DOE Data Explorer

    The EXFOR library contains an extensive compilation of experimental nuclear reaction data up to 1 GeV. Neutron reactions have been compiled systematically since the discovery of the neutron, while charged particle(up to carbon) and photon reactions have been covered less extensively. Files contain nuclear reaction data such as cross sections, spectra, angular distributions, polarizations, etc, along with information on experimental technique, error analysis, and applied standards. Numerous search parameters include: target, beam, product, experimental method, and even author and publication names. The library contains data from more than 20,000 experiments. (Specialized Interface)

  15. Experimental studies of quasi-fission reactions

    SciTech Connect

    Back, B.B.

    1988-01-01

    A large number of recent experimental studies have shown that a substantial fraction of the total reaction cross section in heavy-ion reactions is found in fission-like processes, which do not result from the fission decay of a completely fused system. Following the suggestion of Swiatecki such processes, which represents a complete relaxation of the relative kinetic energy and a substantial amount of net mass transfer between the two fragments, are denoted quasi-fission reactions. They are distinct from compound fission reactions by bypassing the stage of a completely fused-system. This typically means that they are associated with short reaction times, which results in several measurable characteristics such as broken forward-backward symmetries, large anisotropies of the angular distributions and increased widths of the fragment mass distributions. The distinction between quasi-fission and deep inelastic reactions is less stringent and has the character of a gradual evolution from one reaction type to the other, as found also as quasi-elastic reaction evolves into deeply inelastic processes as a function of the total kinetic energy loss. In the present paper some of the experimental data characterizing quasi-fission reactions are reviewed and discussed. 22 refs., 6 figs.

  16. Recent Experimental Progress on Surrogate Reactions

    NASA Astrophysics Data System (ADS)

    Beausang, Cornelius

    2014-09-01

    Reactions on unstable nuclei are important in a wide variety of nuclear physics scenarios. Cross sections for neutron (or light charged particle) induced reactions on target nuclei spanning the chart of the nuclei are important for nuclear astrophysics (r-process, s-process rp- and p-processes etc.), for nuclear energy generation and for national security applications. Many such reactions occur on short-lived unstable nuclei. Even with the present generation of radioactive beam facilities, many such reactions are difficult, if not impossible, to measure directly. For these reactions, often the surrogate reaction technique provides the only option to provide some experimental guidance for the calculations. The experimental and theoretical techniques required are described in some detail in the recent review article by Escher et al.. Originally introduced in the 1970's the last decade has seen a resurgence of interest in the surrogate technique. Various ratio techniques, external, internal and hybrid, have been developed to minimize the effect of target contamination. In the actinide region, a large number of surrogate (n,f) cross sections have been measured. In general, these show agreement to within 5--10%, with directly measured (n,f) data where these data exist (benchmarking), for equivalent neutron energies ranging from ~100 keV up to tens of MeV. For (n, γ) reactions, measurements have been attempted for select nuclei in various mass regions (A ~ 90, 150 and 235) and for these the agreement with directly measured data is less good. The various experimental techniques employed will be described as well as the current state of the experimental data. Some future directions will be described. Reactions on unstable nuclei are important in a wide variety of nuclear physics scenarios. Cross sections for neutron (or light charged particle) induced reactions on target nuclei spanning the chart of the nuclei are important for nuclear astrophysics (r-process, s

  17. Experimental nuclear reaction data collection EXFOR

    SciTech Connect

    Semkova, V.; Otuka, N.; Simakov, S. P.; Zerkin, V.

    2011-07-01

    The International Network of Nuclear Reaction Data Centres (NRDC) constitutes a worldwide cooperation of 14 nuclear data centres. The main activity of the NRDC Network is collection and compilation of experimental nuclear reaction cross section data and the related bibliographic information in the EXFOR and CINDA databases as well as dissemination of nuclear reaction data and associated documentation to users. The database contains information and numerical data from more than about 19000 experiments consisting of more than 140000 datasets. EXFOR is kept up to date by constantly adding newly published experimental information. Tools developed for data dissemination utilise modern database technologies with fast online capabilities over the Internet. Users are provided with sophisticated search options, a user-friendly retrieval interface for downloading data in different formats, and additional output options such as improved data plotting capabilities. The present status of the EXFOR database will be presented together with the latest development for data access and retrieval. (authors)

  18. Fuel-rich, catalytic reaction experimental results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  19. Experimental studies of gas-aerosol reactions

    NASA Astrophysics Data System (ADS)

    Gupta, Anand

    1991-05-01

    The aqueous phase oxidation of SO2 by H2O2 is believed to the principle mechanism for atmospheric sulfate formation in cloud droplets. However, no studies in noncloud aerosol systems have been reported. The objective is to quantify the importance of the noncloud liquid phase reactions of SO2 by H2O2 in the atmosphere. Growth rates of submicron droplets exposed to SO2 and H2O2 were measured using the tandem differential mobility analyzer (TDMA) technique (Rader and McMurry, 1986). The technique uses differential mobility analyzers (DMA's) to generate monodisperse particles and to measure particle size after the reaction. To facilitate submicron monodisperse droplet production with the DMA, a low-ion-concentration charter capable of generating singly charged particles up to 1.0 microns was developed and experimentally evaluated. The experiments were performed using dry and deliquesced (NH4)2SO4 particles with SO2 and H2O2 concentrations from 0-860 ppb and 0-150 ppb, respectively. No growth was observed for dry particles. For droplets greater than or equal to 0.3 microns, the fractional diameter growth was independent of particle size and for droplets less than or equal to 0.2 microns, it decreased as particle size decreased. The observed decrease is due to NH3 evaporation. As ammonia evaporates, droplet pH decreases causing the oxidation rate to decrease, leading to a lower growth rate. To predict the size-dependent growth rates, a theoretical model was developed using solution thermodynamics, gas/particle equilibrium, and chemical kinetics. The experimental and theoretical results are in reasonable agreement. For dry (NH4)2SO4 particles exposed to SO2, H2O2, NH3, and H2O vapor, surface reaction-controlled growth was observed. Particle growth was very sensitive to particle composition. No growth was observed for Polystyrene latex particles, whereas (NH4)2SO4 particles doped with catalysts (Fe(2+), Fe(3+), Mn(2+) and Cu(2+)) in a molar ratio of 1:500 grew slower than

  20. Experimental Studies of Gas-Aerosol Reactions

    NASA Astrophysics Data System (ADS)

    Gupta, Anand

    1991-02-01

    The aqueous phase oxidation of SO_2 by H_2O_2 is believed to be the principle mechanism for atmospheric sulfate formation in cloud droplets. However, no studies in noncloud aerosol systems have been reported. The objective of this thesis is to quantify the importance of the noncloud liquid phase reactions of SO_2 by H_2O_2 in the atmosphere. In this thesis growth rates of submicron droplets exposed to SO_2 and H_2 O_2 were measured using the tandem differential mobility analyzer (TDMA) technique (Rader and McMurry, 1986). The technique uses differential mobility analyzers (DMAs) to generate monodisperse particles and to measure particle size after the reaction. To facilitate submicron monodisperse droplet production with the DMA, a low-ion-concentration charger capable of generating singly charged particles up to 1.0 μm was developed and experimentally evaluated. The experiments were performed using dry and deliquesced (NH_4)_2SO _4 particles with SO_2 and H_2O_2 concentrations from 0-860 ppb and 0-150 ppb, respectively. No growth was observed for dry particles. For droplets >=0.3 mum, the fractional diameter growth was independent of particle size and for droplets <=0.2 mum, it decreased as particle size decreased. The observed decrease is due to NH_3 evaporation. As ammonia evaporates, droplet pH decreases causing the oxidation rate to decrease, leading to a lower growth rate. To predict the size-dependent growth rates, a theoretical model was developed using solution thermodynamics, gas/particle equilibrium and chemical kinetics. The experimental and theoretical results are in reasonable agreement. For dry (NH_4) _2SO_4 particles exposed to SO_2, H_2O _2, NH_3 and H_2O vapor, surface reaction-controlled growth was observed. Particle growth was very sensitive to particle composition. No growth was observed for Polystyrene latex particles, whereas (NH_4) _2SO_4 particles doped with catalysts (Fe^{2+} , Fe^{3+}, Mn ^{2+}, Cu^{2+ }) in a molar ratio of 1:500 grew

  1. Preparation of dendritic and non-dendritic styryl-substituted Salens for cross-linking suspension copolymerization with styrene and multiple use of the corresponding Mn and Cr complexes in enantioselective epoxidations and hetero-Diels-Alder reactions.

    PubMed

    Sellner, H; Karjalainen, J K; Seebach, D

    2001-07-02

    Following work with TADDOLs and BINOLs, we have now prepared Salen derivatives (2, 3, 14, 15, 18, 19, 20, 21) carrying two to eight styryl groups for cross-linking copolymerization with styrene. The Salen cores are either derived from (R,R)-diphenyl ethylene diamine (3, 15, 19, 21) or from (R,R)-cyclohexane diamine (2, 14, 18, 20). The styryl groups are attached to the salicylic aldehyde moieties, using Suzuki (cf. 1) or Sonogashira cross-coupling (cf. 11), and/or phenolic etherification (cf. 5, 7) with dendritic styryl-substituted Fréchet-type benzylic branch bromides. Subsequent condensation with the diamines provides the chiral Salens. Corresponding Salens lacking the peripheral vinyl groups (cf. 12, 13, 16, 17) were also prepared for comparison of catalytic activities in homogeneous solution with those in polystyrene. Cross-linking radical suspension copolymerization of styrene and the styryl Salens, following a procedure by Itsuno and Fréchet, gave beads (ca. 400 microm diameter) which were loaded with Mn or Cr (ca. 0.2 mmol of complex per g of polymer), with more than 95% of the Salen incorporated being actually accessible for complexation (by elemental analysis). The polymer-bound Mn and Cr complexes were used as catalysts for epoxidations of six phenyl-substituted olefins (m-CPBA/NMO; products 22a-f), and for dihydropyranone formation from the Danishefsky diene and aldehydes (PhCHO, C5H11CHO, C6H11CHO, products 23a-c). There are several remarkable features of the novel immobilized Salens: i) The dendritic branches do not slow down the catalytic activity of the complexes in solution; ii) the reactions with Salen catalysts incorporated in polystyrene give products of essentially the same enantiopurity as those observed in homogeneous solution with the dendritically substituted or with the original Jacobsen - Katsuki complexes; iii) some Mn-loaded beads have been stored for a year, without loss of activity; iv) especially the biphenyl- and the acetylene

  2. Tuning the critical solution temperature of polymers by copolymerization

    SciTech Connect

    Schulz, Bernhard; Chudoba, Richard; Dzubiella, Joachim; Heyda, Jan

    2015-12-28

    We study statistical copolymerization effects on the upper critical solution temperature (CST) of generic homopolymers by means of coarse-grained Langevin dynamics computer simulations and mean-field theory. Our systematic investigation reveals that the CST can change monotonically or non-monotonically with copolymerization, as observed in experimental studies, depending on the degree of non-additivity of the monomer (A-B) cross-interactions. The simulation findings are confirmed and qualitatively explained by a combination of a two-component Flory-de Gennes model for polymer collapse and a simple thermodynamic expansion approach. Our findings provide some rationale behind the effects of copolymerization and may be helpful for tuning CST behavior of polymers in soft material design.

  3. Direct Copolymerization of CO2 and Diols

    PubMed Central

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-01-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification. PMID:27075987

  4. Direct Copolymerization of CO2 and Diols

    NASA Astrophysics Data System (ADS)

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-04-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification.

  5. Porating anion-responsive copolymeric gels.

    PubMed

    England, Dustin; Yan, Feng; Texter, John

    2013-09-24

    A polymerizable ionic liquid surfactant, 1-(11-acryloyloxyundecyl)-3-methylimidiazolium bromide (ILBr), was copolymerized with methyl methacrylate (MMA) in aqueous microemulsions at 30% (ILBr w/w) and various water to MMA ratios. The ternary phase diagram of the ILBr/MMA/water system was constructed at 25 and 60 °C. Homopolymers and copolymers of ILBr and MMA were produced by thermally initiated chain radical microemulsion polymerization at various compositions in bicontinuous and reverse microemulsion subdomains. Microemulsion polymerization reaction products varied from being gel-like to solid, and these materials were analyzed by thermal and scanning electron microscopy methods. Microemulsion polymerized materials were insoluble in all solvents tested, consistent with light cross-linking. Ion exchange between Br(-) and PF6(-) in these copolymeric materials resulted in the formation of open-cell porous structures in some of these materials, as was confirmed by scanning electron microscopy (SEM). Several compositions illustrate the capture of prepolymerization nanoscale structure by thermally initiated polymerization, expanding the domain of compositions exhibiting this feat and yet to be demonstrated in any other system. Regular cylindrical pores in interpenetrating ILBr-co-MMA and PMMA networks are produced by anion exchange in the absence of templates. A percolating cluster/bicontinuous transition is "captured" by SEM after using anion exchange to visualize the mixed cluster/pore morphology. Some design principles for achieving this capture and for obtaining stimuli responsive solvogels are articulated, and the importance of producing solvogels in capturing the nanoscale is highlighted.

  6. Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers**

    PubMed Central

    Lukach, Ariella; Sugikawa, Kota; Chung, Siyon; Vickery, Jemma; Therien-Aubin, Heloise; Yang, Bai; Rubinstein, Michael

    2014-01-01

    The resemblance between colloidal and molecular polymerization reactions has been recognized as a powerful tool for the fundamental studies of polymerization reactions, as well as a platform for the development of new nanoscale systems with desired properties. Future applications of colloidal polymers will require nanoparticle (NP) ensembles with a high degree of complexity that can be realized by hetero-assembly of NPs with different dimensions, shapes and compositions. In the present work, we have developed a method to apply strategies from molecular copolymerization to the co-assembly of gold nanorods with different dimensions into random and block copolymer structures (plasmonic copolymers). The approach was extended to the co-assembly of random copolymers of gold and palladium nanorods. A kinetic model validated and further expanded the kinetic theories developed for molecular copolymerization reactions. PMID:24520012

  7. Copolymerization of carbon dioxide and butadiene via a lactone intermediate.

    PubMed

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  8. Copolymerization of carbon dioxide and butadiene via a lactone intermediate

    NASA Astrophysics Data System (ADS)

    Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2014-04-01

    Although carbon dioxide has attracted broad interest as a renewable carbon feedstock, its use as a monomer in copolymerization with olefins has long been an elusive endeavour. A major obstacle for this process is that the propagation step involving carbon dioxide is endothermic; typically, attempted reactions between carbon dioxide and an olefin preferentially yield olefin homopolymerization. Here we report a strategy to circumvent the thermodynamic and kinetic barriers for copolymerizations of carbon dioxide and olefins by using a metastable lactone intermediate, 3-ethylidene-6-vinyltetrahydro-2H-pyran-2-one, which is formed by the palladium-catalysed condensation of carbon dioxide and 1,3-butadiene. Subsequent free-radical polymerization of the lactone intermediate afforded polymers of high molecular weight with a carbon dioxide content of 33 mol% (29 wt%). Furthermore, the protocol was applied successfully to a one-pot copolymerization of carbon dioxide and 1,3-butadiene, and one-pot terpolymerizations of carbon dioxide, butadiene and another 1,3-diene. This copolymerization technique provides access to a new class of polymeric materials made from carbon dioxide.

  9. Unique syndio-selectivity in CO/styrene copolymerization reaction catalyzed by palladium complexes with 2-(2'-oxazolinyl)-1,10-phenanthrolines.

    PubMed

    Meduri, Angelo; Cozzula, Daniela; D'Amora, Angela; Zangrando, Ennio; Gladiali, Serafino; Milani, Barbara

    2012-07-07

    The reaction of the neutral Pd complex [Pd(CH(3))Cl(cod)] with the potentially terdentate 2-oxazolinyl phenanthroline ligands 1-3 affords the corresponding cationic dinuclear Pd-complexes 1a-3a, which can be isolated in the solid state in good yields. By treatment with AgPF(6) the complexes 1a-3a were converted into the corresponding hexafluorophosphate derivatives 1b-3b, where both the ligand units feature a terdentate coordination around the two Pd-centres with the phenanthroline fragment of each unit displaying a chelate coordination to one Pd-centre, while the corresponding oxazolinyl pendant acts as a bridging ligand towards the second Pd-centre. The persistence of this dimeric structure of 1b-3b in CD(2)Cl(2) solution was confirmed by (15)N-NMR experiments at natural abundance, which clearly show the binding to the metal of all of the nitrogen donors, as well as the overall C(2) symmetry of the compound. In consequence of the different strengths of the relevant ion-pair, the dimeric structure of the complex undergoes partial fragmentation in the case of the chloride derivatives 1a-3a, as evidenced from the (15)N-NMR spectra. Complexes 1b-3b are active catalysts in styrene alternate carbonylation, where, under very mild conditions (30 °C and 1 atm of CO), they provide oligomers with 3-5 repetitive units as the exclusive or prevailing product. When traces of the CO/styrene polyketones are also formed, their (13)C-NMR characterization shows that they are stereochemically homogeneous with a unique syndio-tacticity. This result implies that Pd-complexes able to induce a complete enantioface discrimination in the insertion step of the alkene during the catalytic cycle of the styrene alternate carbonylation have been produced for the first time.

  10. P-chiral phosphine-sulfonate/palladium-catalyzed asymmetric copolymerization of vinyl acetate with carbon monoxide.

    PubMed

    Nakamura, Akifumi; Kageyama, Takeharu; Goto, Hiroki; Carrow, Brad P; Ito, Shingo; Nozaki, Kyoko

    2012-08-01

    Utilization of palladium catalysts bearing a P-chiral phosphine-sulfonate ligand enabled asymmetric copolymerization of vinyl acetate with carbon monoxide. The obtained γ-polyketones have head-to-tail and isotactic polymer structures. The origin of the regio- and stereoregularities was elucidated by stoichiometric reactions of acylpalladium complexes with vinyl acetate. The present report for the first time demonstrates successful asymmetric coordination-insertion (co)polymerization of vinyl acetate.

  11. UV-initiated template copolymerization of AM and MAPTAC: Microblock structure, copolymerization mechanism, and flocculation performance.

    PubMed

    Li, Xiang; Zheng, Huaili; Gao, Baoyu; Sun, Yongjun; Liu, Bingzhi; Zhao, Chuanliang

    2017-01-01

    Flocculation as the core technology of sludge pretreatment can improve the dewatering performance of sludge that enables to reduce the cost of sludge transportation and the subsequent disposal costs. Therefore, synthesis of high-efficiency and economic flocculant is remarkably desired in this field. This study presents a cationic polyacrylamide (CPAM) flocculant with microblock structure synthesized through ultraviolet (UV)-initiated template copolymerization by using acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as monomers, sodium polyacrylate (PAAS) as template, and 2,2'-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (VA-044) as photoinitiator. The microblock structure of the CPAM was observed through nuclear magnetic resonance ((1)H NMR and (13)C NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) analyses. Furthermore, thermogravimetric/differential scanning calorimetry (TG/DSC) analysis was used to evaluate its thermal decomposition property. The copolymerization mechanism was investigated through the determination of the binding constant MK and study on polymerization kinetics. Results showed that the copolymerization was conducted in accordance with the I (ZIP) template polymerization mechanism, and revealed the coexistence of bimolecular termination free-radical reaction and mono-radical termination in the polymerization process. Results of sludge dewatering tests indicated the superior flocculation performance of microblock flocculant than random distributed CPAM. The residual turbidity, filter cake moisture content, and specific resistance to filtration reached 9.37 NTU, 68.01%, and 6.24 (10(12) m kg(-1)), respectively, at 40 mg L(-1) of template poly(AM-MAPTAC) and pH 6.0. Furthermore, all flocculant except commercial CPAM showed a wide scope of pH application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    NASA Astrophysics Data System (ADS)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  13. Microgel formation in the free radical crosslinking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethcrylate (EGDMA)

    SciTech Connect

    Xiudong Sung; Yuen-Yuen Chiu; Lee, L.J.

    1996-12-31

    The formation of heterogeneous structure through intramolecular reaction is an important feature in the free radical crosslinking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA). Such structure formation affects not only the curing behavior but also the rheological changes of the resin. In this work, the effect of co-monomer composition on the reaction kinetics, rheological changes and microgel formation of MMA-EGDMA copolymerization was studied. A percolation model was adopted to simulate such monovinyl-divinyl reactions.

  14. Experimental Overview of Compound Nuclear Resonance Reactions

    SciTech Connect

    Mitchell, G. E.

    2008-04-17

    The major issues of compound nuclear resonance reactions are briefly summarized: A--How to measure the resonances, B--How to categorize the resonances (spin, parity, resonance energy and strength), C--How to describe the distribution of resonance strengths and spacings, D--How to assess data quality.

  15. Characteristics of vestibulosensory reactions studied by experimental caloric test

    NASA Technical Reports Server (NTRS)

    Kapranov, V. Z.

    1980-01-01

    Vestibulo-sensory reactions were studied in 135 workers who were in contact with nitroethers, by the method of an experimental caloric test. The response vestibulo-sensory reactions were recorded by means of an electroencephalograph. The changes in the sensory reaction depended on the duration of the workers' contact with toxic agents. A study of illusion reactions by the labyrinth calorization widens diagnostic possibilities in the examination of functional condition of the vestibular analyser considerably.

  16. Experimental Study of Stellar Reactions at CNS

    SciTech Connect

    Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Amadio, G.; Hayakawa, S.; He, J. J.; Saito, A.; Teranishi, T.; Nishimura, S.; Fukunishi, N.; Iwasa, N.; Inafuku, K.; Kato, S.; Tanaka, M. H.; Fuchi, Y.; Moon, J. Y.; Kwon, K.; Lee, C. S.; Khiem, Le Hong; Chen, A.

    2006-11-02

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O({alpha},p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched.

  17. Experimental studies of reactions relevant for γ-process nucleosynthesis

    SciTech Connect

    Scholz, P.; Endres, J.; Hennig, A.; Mayer, J.; Netterdon, L.; Zilges, A.; Sauerwein, A.

    2014-05-09

    We report on our recent experimental studies of reactions relevant for the γ process nucleosynthesis. Applying the activation method using the Cologne Clover Counting Setup total cross sections of the reactions {sup 168}Yb(α,γ), {sup 168}Yb(α,n), and {sup 187}Re(α,n) could be obtained. Furthermore, the reaction {sup 89}Y(p,γ) was investigated via the in-beam technique with HPGe detectors at the high-efficiency g-ray spectrometer HORUS in Cologne in order to determine partial and total cross sections.

  18. Experimental oral foreign body reactions. Commonly employed dental materials.

    PubMed

    Stewart, C M; Watson, R E

    1990-06-01

    Foreign bodies and tissue reactions to foreign materials are commonly encountered in the oral cavity. The more common lesions include apical deposition of endodontic materials, mucosal amalgam and graphite tattoos, myospherulosis, oil granulomas, and traumatically introduced dental materials and instruments. Since many foreign materials are unidentifiable histologically, commonly used dental materials were experimentally implanted subcutaneously in rats to assess local host responses and characterize the nature of these materials microscopically. The histologic characteristics of these foreign body reactions are detailed herein. The implanted materials corresponded to reactions seen in human subjects.

  19. Poly(monothiocarbonate)s from the Alternating and Regioselective Copolymerization of Carbonyl Sulfide with Epoxides.

    PubMed

    Luo, Ming; Zhang, Xing-Hong; Darensbourg, Donald J

    2016-10-18

    Carbonyl sulfide (COS) is an air pollutant that causes acid rain, ozonosphere damage, and carbon dioxide (CO2) generation. It is a heterocumulene and structural analogue of CO2. Relevant to organic synthesis, it is a source of C═O or C═S groups and thus an ideal one-carbon (C1) building block for synthesizing sulfur-containing polymers through the similar route of CO2 copolymerization. In contrast, traditional synthesis of sulfur-containing polymers often involves the condensation of thiols with phosgene and ring-opening polymerization of cyclic thiocarbonates that are generally derived from thiols and phosgene; thus, COS/epoxide copolymerization is a "greener" route to supplement or supplant current processes for the production of sulfur-containing polymers. This Accounts highlights our efforts on the discovery of the selective formation of poly(monothiocarbonate)s from COS with epoxides via heterogeneous zinc-cobalt double metal cyanide complex (Zn-Co(III) DMCC) and homogeneous (salen)CrX complexes. The catalytic activity and selectivity of Zn-Co(III) DMCC for COS/epoxide copolymerization are similar to those for CO2/epoxide copolymerization. (salen)CrX complexes accompanied by onium salts exhibited high activity and selectivity for COS/epoxide copolymerization under mild conditions, affording copolymers with >99% monothiocarbonate units and high tail-to-head content up to 99%. By way of contrast, these catalysts often show moderate or low activity for CO2/epoxide copolymerization. Of note, a specialty of COS/epoxide copolymerization is the occurrence of an oxygen-sulfur exchange reaction (O/S ER), which may produce carbonate and dithiocarbonate units. O/S ER, which are induced by the metal-OH bond regenerated by chain transfer reactions, can be kinetically inhibited by changing the reaction conditions. We provide a thorough mechanistic understanding of the electronic/steric effect of the catalysts on the regioselectivity of COS copolymerization. The

  20. Novel palladium(II)-catalyzed copolymerization of carbon monoxide with olefins

    SciTech Connect

    Sen, A.; Lai, T.W.

    1982-01-01

    The catalyst, (Pd(CH/sub 3/CN)/sub 4/)(BF/sub 4/)/sub 2/.n-triphenylphosphine n = (1-3), demonstrated the capacity to mediate the copolymerization of CO with ethylene and other alkenes under very mild conditions. The reaction of ethylene (350 psi), dissolved in acetonitrile, and CO(350 psi) was performed at 25/sup 0/C for 1 d. The copolymerizations of CO(800 psi) with norbornadiene and norbornylene were performed at 60/sup 0/C. The structures of the copolymers were studied by NMR. 9 references, 1 figure.

  1. [Value of the Ouchterlony reaction in experimental trichinelliasis in swine].

    PubMed

    Lilkova, N

    1977-01-01

    The double diffusion method after Ouchterlony was employed for the diagnosis of swine trichinellosis. Studied were sera of 12 experimentally infected pigs from the 15th to the 365th day after their treatment with moderate and massive doses of Trichinella spiralis. The antigen used was an extract of freeze-dried decapsulated muscular trichinellae, obtained by Tanner and Gregory's method modified according to the institute's laboratory conditions. Results showed that Ouchterlony's double diffusion reaction is specific and can used for the diagnosis of trichinellosis in pigs within the period cited above. The reaction has proved to be most strongly expressed when used between the 30th and 120th day.

  2. Multifragment emission and the experimental characterization of breakup reactions

    SciTech Connect

    Martinez Heimann, D.; Pacheco, A. J.; Arazi, A.; Fernandez Niello, J. O.; Figueira, J. M.; Negri, A.; Capurro, O. A.; Carnelli, P.; Cardona, M. A.; Barbara, E. de; Fimiani, L.; Hojman, D. L.; Marti, G. V.

    2010-08-04

    The production of three or more particles in nuclear reactions is discussed in terms of physically meaningful variables for the description of the asymptotic exit-channel configuration. The emphasis is placed in a direct comparison between these basic variables obtained in a purely experimental way and the corresponding results of generic model calculations. Applications of this approach to a few examples of recent inclusive and exclusive measurements of breakup reactions in the {sup 6,7}Li+{sup 144}Sm systems are presented.

  3. Implementation of high throughput experimentation techniques for kinetic reaction testing.

    PubMed

    Nagy, Anton J

    2012-02-01

    Successful implementation of High throughput Experimentation (EE) tools has resulted in their increased acceptance as essential tools in chemical, petrochemical and polymer R&D laboratories. This article provides a number of concrete examples of EE systems, which have been designed and successfully implemented in studies, which focus on deriving reaction kinetic data. The implementation of high throughput EE tools for performing kinetic studies of both catalytic and non-catalytic systems results in a significantly faster acquisition of high-quality kinetic modeling data, required to quantitatively predict the behavior of complex, multistep reactions.

  4. Reactivity ratios, and mechanistic insight for anionic ring-opening copolymerization of epoxides

    PubMed Central

    Lee, Bongjae F.; Wolffs, Martin; Delaney, Kris T.; Sprafke, Johannes K.; Leibfarth, Frank A.; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    Reactivity ratios were evaluated for anionic ring-opening copolymerizations of ethylene oxide (EO) with either allyl glycidyl ether (AGE) or ethylene glycol vinyl glycidyl ether (EGVGE) using a benzyl alkoxide initiator. The chemical shift for the benzylic protons of the initiator, as measured by 1H NMR spectroscopy, were observed to be sensitive to the sequence of the first two monomers added to the initiator during polymer growth. Using a simple kinetic model for initiation and the first propagation step, reactivity ratios for the copolymerization of AGE and EGVGE with EO could be determined by analysis of the 1H NMR spectroscopy for the resulting copolymer. For the copolymerization between EO and AGE, the reactivity ratios were determined to be rAGE = 1.31 ± 0.26 and rEO = 0.54 ± 0.03, while for EO and EGVGE, the reactivity ratios were rEGVGE = 3.50 ± 0.90 and rEO = 0.32 ± 0.10. These ratios were consistent with the compositional drift observed in the copolymerization between EO and EGVGE, with EGVGE being consumed early in the copolymerization. These experimental results, combined with density functional calculations, allowed a mechanism for oxyanionic ring-opening polymerization that begins with coordination of the Lewis-basic epoxide to the cation to be proposed. The calculated transition-state energies agree qualitatively with the observed relative rates for polymerization. PMID:23226879

  5. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    SciTech Connect

    Hirdt, J.A.; Brown, D.A.

    2016-01-15

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  6. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    NASA Astrophysics Data System (ADS)

    Hirdt, J. A.; Brown, D. A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  7. Influence of diosgenin structure on the polymerization kinetics of acrylamide: An experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Odio, Oscar F.; Martínez, Ariel; Martínez, Ricardo; Crespo-Otero, Rachel; Montero-Cabrera, Luis A.

    2011-01-01

    The acrylamide polymerization in presence of diosgenin has been investigated by experimental and theoretical methods. NMR spectroscopy shows the absence of copolymerization. Viscosimetric and dilatometric experiments support the occurrence of transfer reactions that retard the polymerization. The mechanism was studied at the MPWB1K/6-31G(d,p)//B3LYP/6-31G(d,p) level of theory. Transfer, homopropagation, copolymerization and reinitiation reactions were considered either in gas or solution phase. According to results, the retardation seems to be originated by the formation of an allylic radical in the ring B of diosgenin that reinitiates acrylamide polymerization at slow rate.

  8. Controlled excitations of the Belousov-Zhabotinsky reaction: Experimental procedures.

    PubMed

    Peralta, Catalina; Frank, Claudia; Zaharakis, Alex; Cammalleri, Carolyn; Testa, Matthew; Chaterpaul, Stephen; Hilaire, Christian; Lang, Daniel; Ravinovitch, Daniel; Sobel, Sabrina G; Hastings, Harold M

    2006-11-09

    The purpose of this research was to explore the unstirred, ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction as an experimental model for the response of excitable media to small perturbations (slightly larger than the threshold for excitations). Following Showalter et al. (Showalter, K.; Noyes, R. M.; Turner, H. J.Am. Chem. Soc. 1979, 101, 7463-69), we used a positively biased silver electrode to release silver ions into a BZ reaction mixture, removing bromide ions and causing an excitation if sufficient bromide was removed. We found (1) a scaling region in which the delay before activation increased linearly as the size of the perturbation decreased, qualitatively consistent with but not fully explained by the Oregonator of Field et al. (Field, R. J.; Körõs, E.; Noyes, R. M. J. Am. Chem. Soc. 1972, 94, 8649-64); (2) evidence for a 10 s oligomerization time scale; and (3) that activations were always delayed until after the end of a pulse of current, with the delay essentially constant for sufficiently long pulses, an effect not seen in simple ODE models but consistent with the anomalously large current apparently required for activation (Showalter, K.; Noyes, R. M. J. Am. Chem. Soc. 1976, 98, 3730-31) and explainable by bromide transport. Overall, the BZ system appeared to be well-suited as an experimental prototype, despite its complexity.

  9. Experimental fission study using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-09-01

    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.

  10. Chain Transfer of Vegetable Oil Macromonomers in Acrylic Solution Copolymerization

    SciTech Connect

    Black, Micah; Messman, Jamie M; Rawlins, James

    2011-01-01

    Use of vegetable oil macromonomers (VOMMs) as comonomers in emulsion polymerization enables good film coalescence without the addition of solvents that constitute volatile organic compounds (VOCs). VOMMs are derived from renewable resources and offer the potential of post-application crosslinking via auto-oxidation. However, chain transfer reactions of VOMMs with initiator and/or polymer radicals during emulsion polymerization reduce the amount of allylic hydrogen atoms available for primary auto-oxidation during drying. Vegetable oils and derivatives were reacted in combination with butyl acrylate and methyl methacrylate via solution polymerization. The copolymerization was monitored using in situ infrared spectroscopy to determine the extent of chain transfer. 1H NMR spectroscopy was used to determine the loci of chain transfer and the molecular weight characteristics of the polymers were characterized by SEC. Solution polymerization was utilized to minimize temperature fluctuations and maintain polymer solubility during the initial characterization.

  11. Kinetics and thermodynamics of first-order Markov chain copolymerization

    NASA Astrophysics Data System (ADS)

    Gaspard, P.; Andrieux, D.

    2014-07-01

    We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer.

  12. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  13. Experimental techniques for in-ring reaction experiments

    NASA Astrophysics Data System (ADS)

    Mutterer, M.; Egelhof, P.; Eremin, V.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kröll, T.; Kuilman, M.; Chung, L. X.; Najafi, M. A.; Popp, U.; Rigollet, C.; Roy, S.; von Schmid, M.; Streicher, B.; Träger, M.; Yue, K.; Zamora, J. C.; the EXL Collaboration

    2015-11-01

    As a first step of the EXL project scheduled for the New Experimental Storage Ring at FAIR a precursor experiment (E105) was performed at the ESR at GSI. For this experiment, an innovative differential pumping concept, originally proposed for the EXL recoil detector ESPA, was successfully applied. The implementation and essential features of this novel technical concept will be discussed, as well as details on the detectors and the infrastructure around the internal gas-jet target. With 56Ni(p, p)56Ni elastic scattering at 400 MeV u-1, a nuclear reaction experiment with stored radioactive beams was realized for the first time. Finally, perspectives for a next-generation EXL-type setup are briefly discussed.

  14. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism.

    PubMed

    Coates, Geoffrey W; Moore, David R

    2004-12-10

    Most synthetic polymers are made from petroleum feedstocks. Given the non-renewable nature of these materials, there is increasing interest in developing routes to polymeric materials from renewable resources. In addition, there is a growing demand for biodegradable polymeric materials. Polycarbonates made from CO(2) and epoxides have the potential to meet these goals. Since the discovery of catalysts for the copolymerization of CO(2) and epoxides in the late 1960's by Inoue, a significant amount of research has been directed toward the development of catalysts of improved activity and selectivity. Reviewed here are well-defined catalysts for epoxide-CO(2) copolymerization and related reactions.

  15. RAFT copolymerization of itaconic anhydride and 2-methoxyethyl acrylate: a multifunctional scaffold for preparation of "clickable" gold nanoparticles.

    PubMed

    Javakhishvili, Irakli; Kasama, Takeshi; Jankova, Katja; Hvilsted, Søren

    2013-05-25

    RAFT copolymerization of 2-methoxyethyl acrylate and itaconic anhydride - a monomer derived from renewable resources - is carried out in a controlled fashion. The copolymer allows preparation of gold nanoparticles with abundant surficial carboxyl and alkyne functional groups that are dendronized via Cu(I)-mediated "click" reaction.

  16. Copper mediated controlled radical copolymerization of styrene and 2-ethylhexyl acrylate and determination of their reactivity ratios.

    NASA Astrophysics Data System (ADS)

    Koiry, Bishnu; Singha, Nikhil

    2014-10-01

    Copolymerization is an important synthetic tool to prepare polymers with desirable combination of properties which are difficult to achieve from the different homopolymers concerned. This investigation reports the copolymerization of 2-ethylhexyl acrylate (EHA) and styrene using copper bromide (CuBr) as catalyst in combination with N,N,N’,N”,N”- pentamethyldiethylenetriamine (PMDETA) as ligand and 1-phenylethyl bromide (PEBr) as initiator. Linear kinetic plot and linear increase in molecular weights versus conversion indicate that copolymerization reactions were controlled. The copolymer composition was calculated using 1H NMR studies. The reactivity ratio of styrene and EHA (r1 and r2) were determined using the Finemann-Ross (FR), inverted Finemann-Ross (FR) and Kelen-Tudos (KT) methods. Thermal properties of the copolymers were also studied by using TGA and DSC analysis.

  17. Experimental Guidance of ISB Corrections via Direct Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Kriicken, R.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Towner, I. S.; Triambak, S.; Wirth, H.-F.; Wong, J.

    2011-09-01

    The most recent isospin-symmetry-breaking corrections, δc, of Towner and Hardy for superallowed Fermi β-decay transitions, have included the opening of specific core orbitals. This change has resulted in significant deviations in some of the δc factors from their previous calculations, and an improved agreement of the individual corrected Script Ft values with the overall world average of the 13 most precise cases. While this is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for the improvement of calculations for the upper-pf shell nuclei. Using the (d,t) reaction mechanism to probe the single neutron wavefunction overlap, information regarding the relevant shell-model configurations needed in the calculation can be determined. An experiment was therefore performed with a 22 MeV polarized deuterium beam from the MP tandem Van de Graaff accelerator in Munich, Germany. Using the Q3D magnetic spectrograph, and a cathode-strip focal-plane detector, outgoing tritons were analyzed at 9 angles between 10° and 60°, up to an excitation energy of 4.8 MeV. This proceeding reports the motivational and experimental details for the 64Zn(d,t)63Zn transfer work presented.

  18. Experimental Astrochemistry: Molecular Formation via Grain-Surface Reactions

    NASA Astrophysics Data System (ADS)

    Congiu, E.

    2007-03-01

    Central to this thesis is the chemistry occurring on dust grain surfaces leading to the formation of molecules in the ISM, and, in particular, the laboratory simulation of formation mechanisms and formation rates. Surface chemistry plays a crucial role in the ISM because it produces key species that are not formed in gas-phase reactions at an efficient rate. Among them, molecular hydrogen (H_2) is by far the most important. In this work (Chapter 3), I shall address the experimental investigation of H_2 formation on diverse samples of amorphous silicates. The experimental work was conducted in the Physics Department laboratories at Syracuse University, New York, as part of the most successful programme of experiments so far to study the processes involved in the formation of molecular hydrogen on a variety of dust analogue materials, also including poly-crystalline olivine, amorphous carbon, and ices. The experiments were carried out through mass spectrometry and TPD techniques and under conditions that come as close as technically feasible to the ones in the most relevant ISM environments, namely, under ultra high vacuum pressures (low 10e-10 torr) and at surface temperatures between 6 and 30 K. Experimental studies of H_2 formation on amorphous olivines are of major concern in grain-surface chemistry because amorphous silicates are believed, together with carbonaceous materials, to be the most realistic analogues of bare cosmic dust surfaces in diffuse clouds. In my doctorate work I carried out numerous experiments on a set of several samples of amorphous olivines of the type (Mg_x,Fe_1-x)_2SiO_4, namely, samples made up of diverse amounts of Mg and Fe. Besides, in Chapter 4, I shall address the project and the construction of a FT-RAIRS facility that is to integrate the existent research apparatus in the laboratory at Syracuse University. I shall first discuss the FT-IR spectroscopy, then I shall focus on a particular technique used in surface science called

  19. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    SciTech Connect

    Maeda, Kiminori; Liddell, Paul; Gust, Devens; Hore, P. J.

    2013-12-21

    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  20. Experimental Observation of Nuclear Reactions in Palladium and Uranium

    SciTech Connect

    J. Dufour; D. Murat; X. Dufour; J. Foos

    2001-11-12

    By submitting various metals (Pd, U) containing hydrogen (from 2000 to 700 000 atoms of hydrogen for 1 000 000 atoms of the host metal) to the combined action of electrical currents and magnetic fields, we have observed a sizeable exothermal effect (from 0.1 to 8 W for 500 mg of metal used). This effect is beyond experimental errors, the energy output being typically 130 to 250{percent} of the energy input and not of chemical origin (exothermal effect in the range of 7000 MJ/mol of metal in the case of palladium and of 60 MJ/mol in the case of uranium). New chemical species also appear in the processes metals. It has been shown by a QED calculation that resonances of long lifetime (s), nuclear dimensions (fm), and low energy of formation (eV) could exist. This concept seems to look like the 'shrunken hydrogen atoms' proposed by various authors. It is indeed very different in two ways (a) being a metastable state, it needs energy to be formed (a few eV) and reverts to normal hydrogen after a few seconds, liberating back its energy of formation (it is thus not the source of the energy observed); (b) its formation can be described as the electron spin/proton nuclear spin interaction becoming first order in the lattice environment (whereas it is third order in a normal hydrogen atom). Moreover, we consider that the hydrex cannot yield a neutron because this reaction is strongly endothermic. To explain our results, we put forward the following working hypothesis: In a metal lattice and under proper conditions, the formation of such resonances (metastable state) could be favored. We propose to call them HYDREX, and we assume that they are actually formed in cold fusion (CF) and low-energy nuclear reaction (LENR) experiments. Once formed, a number of HYDREX could gather around a nucleus of the lattice to form a cluster of nuclear size and of very long life time compared to nuclear time (10{sup -22} s). In this cluster, nuclear rearrangements could take place, yielding

  1. Free-radical copolymerization of fullerenes with styrene

    SciTech Connect

    Cao, T.; Webber, S.E.

    1995-05-08

    Various methods to chemically modify the fullerenes have been reported in the last few years since the production of large-scale amounts of fullerene soot that contains primarily C{sub 60}, a lesser amount of C{sub 70}, and traces of higher fullerenes. Fortunately, these components can be separated from each other by standard chromatographic methods, permitting convenient experimentation on relatively pure components. The authors have found that C{sub 60} and C{sub 70} copolymerize with styrene in a standard free-radical polymerization, either in the bulk or codissolved in an aromatic solvent. The resulting polymers are soluble in common solvents that dissolve polystyrene and possess a dark brown color. The absorption spectrum of the copolymer is strongly modified from that of the parent fullerene, and the fluorescence is blue-shifted and much stronger. The present paper describes a very simple method for direct incorporation of C{sub 60} or C{sub 70} into polystyrene by direct free-radical copolymerization under routine conditions. While a great deal remains to be done to characterize fullerenes as comonomers in free-radical polymerization, this method is so direct and simple that it may be of interest to a wide range of researchers working in the area of fullerene chemistry. The authors note a report by Gong et al. in which a polymerization of styrene and {alpha}-methylstyrene was carried out in the presence of C{sub 60} using benzoyl peroxide as an initiator. These authors explicitly state that the C{sub 60} retains its normal absorption spectrum and is dispersed within the resulting solid polymer matrix. No other characterization is presented to demonstrate if chemical attachment of the C{sub 60} to the polymer occurred.

  2. Experimental measurements of the energetics of surface reactions

    NASA Astrophysics Data System (ADS)

    Campbell, Charles T.; Lytken, Ole

    2009-06-01

    Microcalorimetric measurements of the adsorption energies of well-defined surface species are reviewed, using selected examples mainly from our own group to demonstrate the types of information that can be achieved with this technique. The adsorption energies of molecules on single crystal transition metal surfaces to produce well-characterized molecular or dissociated adsorbates allow determination of the standard enthalpies of formation of key catalytic reaction intermediates. The adsorption energies for metal atoms during metal thin-film growth allow quantitative estimates of metal-substrate bond energies, metal film/substrate adhesion energies and the energetic costs associated with lattice mismatch during thin film growth. Results for several metals on MgO(1 0 0) reveal that they bind weakly to terrace sites. Metals from the right side of the periodic table also bind weakly to step and kink sites (although more strongly than on terraces), whereas alkali and alkaline earth metals bind very strongly to these defects. At 300 K, metals tend to form 2D or 3D clusters nucleated on MgO(1 0 0) defects, via a transiently adsorbed precursor (mobile adatoms on terraces). Calorimetric measurement of the energy of metal atoms in supported 3D metal nanoparticles as a function of particle size reveals a very strong size dependence below 6 nm diameter. Metal atoms also adsorb weakly on polymer surfaces and nucleate 3D metal particles, sometimes in kinetic competition with migration to and strong reaction with the more reactive, subsurface organic functional groups. Measurements of the energies for adsorbed proteins on calcium phosphate crystals, which have been structurally characterized by NMR, reveal extremely weak binding dominated by the entropy gained from release of organized water. These experimental measurements of the energies of well-defined adsorbates serve as benchmarks against which to compare theoretical computations for accuracy, thus enabling improvement upon

  3. Inflammatory reaction in experimental hepatic amebiasis. An ultrastructural study.

    PubMed Central

    Tsutsumi, V.; Martinez-Palomo, A.

    1988-01-01

    One of the hallmarks of tissue necrosis produced by the human protozoan parasite Entamoeba histolytica, the causative agent of human amebiasis, appeared to be the lack of inflammatory reaction to the invading trophozoites. Recent evidence suggests, however, that inflammatory cells do appear during early stages of amebic destructive lesions and that they contribute to the establishment of foci of tissue necrosis in intestinal and liver lesions. The present analysis of the fine-structural changes that take place during early stages of amebic liver abscesses induced in hamsters after the intraportal inoculation of axenic amebas has shown that large numbers of polymorphonuclear leukocytes (PMNs) are recruited around invading amebas. These leukocytes lyse as a consequence of contact-mediated damage induced by the trophozoites. Amebas were also capable of ingesting apparently intact PMNs. Macrophages and eosinophils were also recruited at the foci of inflammation. At all times examined, trophozoites of Entamoeba histolytica survived in spite of being in close contact with PMNs or degranulating eosinophils. The ultrastructural observations have also shown the lack of direct contact between amebas and liver parenchymal cells during the initial stages of the focal liver necrosis induced by the parasite, therefore supporting the view that hepatic damage may be effected indirectly through lysis of inflammatory cells. The results also provide a basis for the understanding of the induction of experimental protective immunity against invasive amebiasis, a process which seems to be mostly dependent on cellular mechanisms. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:3337207

  4. Experimental Study of Iron Reaction with Oxides: Implications for Core-Mantle Reaction

    NASA Astrophysics Data System (ADS)

    Saxena, S.; Rekhi, S.; Wang, Z.; Pischedda, V.; Liermann, P.; Shen, G.

    2001-05-01

    Whether the iron core reacts with the silicate mantle is an important question in geophysics. If a significant reaction occurs, it may also provide a mechanism of introducing a mantle component in the outer core as required by seismic density profiling of the core. We have studied several reactions at high pressure and high temperature over the last five years. The study covers the species enstatite (MgSiO3), FeO, MgO and Al2O3. Our experimental techniques employ the use of diamond-anvil cells. The samples in the cells were heated either externally to 1800 K or by stabilized YLF laser. Pressure was measured mostly from cell constants of the sample material with XRD. All samples were in fine powder form to ensure reactivity. Our conclusions are that enstatite and MgO did not react with iron at any pressure to iron melting temperatures in this study. We also used water to wet the samples thoroughly. At pressures in excess of 60 GPa, again no reaction was noted (1). In contrast to these results, corundum (Al2O3) did react strongly with iron at 36 Gpa. The laser-heated spots showed iron to rise as plumes through corundum and in all cases resulted in Fe-Al alloys of various compositions. It was not possible to determine the compositions quantitatively. The result confirms the study by Annersten et al. (2) who used Mossbauer spectroscopy to determine the composition of Fe-Al alloy. Compositionally Al2O3 could only be a minor component of the lower mantle occurring in perovskite. Elsewhere (3), we have discussed a possible dissociation of ferropericlase to an oxide mixture. FeO or FeO component in wustite does react with Fe as shown by Boehler (4) without lowering the iron melting temperature significantly (a point that requires confirmation). In conclusion, FeO from ferropericlase and Al2O3 from perovskite are the only two components that could be extracted from the mantle and incorporated in to the outer core. 1. Saxena, S.K., Wang, Z., Pischedda, V. and Durovinsky, L

  5. Kinetics and thermodynamics of living copolymerization processes.

    PubMed

    Gaspard, Pierre

    2016-11-13

    Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  6. Thermodynamics meets information in copolymerization processes

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2014-03-01

    Copolymers are natural supports of information. This latter is contained in the sequence of monomeric units composing every copolymer. A well-known example is DNA in biology. At the molecular scale, the growth of a single copolymer is stochastic and proceeds by successive random attachments or detachments of monomers continuously supplied by the surrounding solution. The thermodynamics of copolymerization with or without a template shows that fundamental links exist between entropy production and the information content of the copolymer sequence. During depolymerization, this information is erased in a way compatible with Landauer's principle. These advances open new perspectives to understand information transmission during DNA replication and, more generally, information processing at the molecular scale in biology and polymer science.

  7. Kinetics and thermodynamics of living copolymerization processes

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-11-01

    Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  8. Theoretical models of nonlinear effects in two-component cooperative supramolecular copolymerizations

    PubMed Central

    Markvoort, Albert J.; ten Eikelder, Huub M.M.; Hilbers, Peter A.J.; de Greef, Tom F.A.; Meijer, E.W.

    2011-01-01

    The understanding of multi-component mixtures of self-assembling molecules under thermodynamic equilibrium can only be advanced by a combined experimental and theoretical approach. In such systems, small differences in association energy between the various components can be significantly amplified at the supramolecular level via intricate nonlinear effects. Here we report a theoretical investigation of two-component, self-assembling systems in order to rationalize chiral amplification in cooperative supramolecular copolymerizations. Unlike previous models based on theories developed for covalent polymers, the models presented here take into account the equilibrium between the monomer pool and supramolecular polymers, and the cooperative growth of the latter. Using two distinct methodologies, that is, solving mass-balance equations and stochastic simulation, we show that monomer exchange accounts for numerous unexplained observations in chiral amplification in supramolecular copolymerization. In analogy with asymmetric catalysis, amplification of chirality in supramolecular polymers results in an asymmetric depletion of the enantiomerically related monomer pool. PMID:22027589

  9. EPR investigation on radiation-induced graft copolymerization of styrene onto polyethylene: Energy transfer effects

    NASA Astrophysics Data System (ADS)

    Salih, M. A.; Buttafava, A.; Ravasio, U.; Mariani, M.; Faucitano, A.

    2007-08-01

    In this paper, energy transfer phenomena concerning the in-source graft copolymerization of styrene onto LDPE were investigated through the EPR analysis of the radical intermediates. The model solution experiments have shown a substantial deviation of the experimental G (radicals) values with respect to the additivity law, which reflect the negative effect of the styrene monomer concentration on the initiation rate of the graft copolymerization. The EPR measurements performed on polyethylene- co-styrene graft copolymers of various composition following low-temperature vacuum gamma irradiation have confirmed the decrease of the total radical yields with increasing the styrene concentration. The effect was partly attributed to the heterogeneity of the graft copolymer matrix and to the lack of molecular mobility in the solid state at low temperature, which prevents the attainment of the favourable geometrical configurations in intermolecular energy and charge transfer events.

  10. Copolymerization of ethylene with polar monomer by α - diimine nickel complex

    NASA Astrophysics Data System (ADS)

    Han, Yiqin; Zhang, Danfeng

    2017-09-01

    Copolymerization of ethylene and ethyl acrylate was carried out by α-diimine nickel catalyst [ArN=CH-CH=NAr]NiBr2 (Ar = 2,6-C6H3(CH3)2) in the presence of methylaluminoxane (MAO). The effects of experimental conditions in which mole ratio of Al/Ni, concentration of polar monomer, polymerization temperature, ethylene pressure and polymerization time varied on ethylene-ethyl acrylate copolymerization were investigated. The structures of the obtained copolymers were characterized by high-temperature NMR and FT-IR. It was found that Al/Ni mole ratio was 1000, the concentration of ethyl acrylate was 10 mmol/L, the polymerization temperature was 30 °C, the ethylene pressure was 10 atm, the polymerization time was 4 h, the molecular weight of the polymer and the incorporation of ethyl acrylate in the copolymer reached the good result.

  11. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    DOE PAGES

    Jones, K. L.; Ahn, S.; Allmond, J. M.; ...

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn-106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less

  12. Recent Direct Reaction Experimental Studies with Radioactive Tin Beams

    SciTech Connect

    Jones, K. L.; Ahn, S.; Allmond, J. M.; Ayres, A.; Bardayan, D. W.; Baugher, T.; Bazin, D.; Berryman, J. S.; Bey, A.; Bingham, C.; Cartegni, L.; Cerizza, G.; Chae, K. Y.; Cizewski, J. A.; Gade, A.; Galindo-Uribarri, A.; Garcia-Ruiz, R. F.; Grzywacz, R.; Howard, M. E.; Kozub, R. L.; Liang, J. F.; Manning, B.; Matoš, M.; McDaniel, S.; Miller, D.; Nesaraja, C. D.; O'Malley, P. D.; Padgett, S.; Padilla-Rodal, E.; Pain, S. D.; Pittman, S. T.; Radford, D. C.; Ratkiewicz, A.; Schmitt, K. T.; Shore, A.; Smith, M. S.; Stracener, D. W.; Stroberg, S. R.; Tostevin, J.; Varner, R. L.; Weisshaar, D.; Wimmer, K.; Winkler, R.

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn-106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.

  13. Tailored synthesis of amine N-halamine copolymerized polystyrene with capability of killing bacteria.

    PubMed

    Cai, Qian; Bao, Sarina; Zhao, Yue; Zhao, Tianyi; Xiao, Linghan; Gao, Ge; Chokto, Harnoode; Dong, Alideertu

    2015-04-15

    Novel amine N-halamine copolymerized polystyrene (ANHCPS) nanostructures were controllably fabricated as potent antibiotics by using the surfactant-free emulsion copolymerization for killing pathogenic bacteria. The morphology and size of the ANHCPS were well tailored by tuning reaction conditions such as monomer molar ratio, temperature, and copolymerization time. Effect of chlorination aging time on the oxidative chlorine content in the ANHCPS was established, and the oxidative chlorine content was determined by the modified iodometric/thiosulfate technique. Antibacterial behavior of the ANHCPS on bacterial strain was evaluated using Staphylococcus aureus and Escherichia coli as model pathogenic bacteria via the plate counting technique, inhibition zone study, and time-kill assay. Antimicrobial results illustrated that the ANHCPS possessed superior antibacterial capability of killing pathogenic bacteria. The destruction induced by the ANHCPS on bacterial surface structure was proven by using SEM technique. The effect of the oxidative chlorine content and morphology/size on the antimicrobial capability was constructed as well. This study provides us a novel approach for controllably synthesizing amine N-halamine polymers, and making them the potent candidates for killing bacteria or even the control of microorganism contamination.

  14. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    PubMed Central

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  15. The Experimental Reduction of Stress Reaction by Cognitive Manipulation.

    ERIC Educational Resources Information Center

    Buck, John L.; And Others

    A cognitive appraisal of threat is believed to intervene between the appearance of a stressful stimulus and a stress reaction to the stimulus. The effect of a "rational" treatment on the appraisal of threat is investigated. Five groups of 13 college students each heard one of five treatment orientations before viewing slides showing the victims of…

  16. Direct reaction experimental studies with beams of radioactive tin ions

    SciTech Connect

    Jones, K. L. Ayres, A.; Bey, A.; Burcher, S.; Cartegni, L.; Cerizza, G.; Ahn, S.; Allmond, J. M.; Beene, J. R.; Galindo-Uribarri, A.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Radford, D. C.; Schmitt, K. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; Baugher, T.; and others

    2015-10-15

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at {sup 100}Sn, through 10 stable isotopes and the N = 82 shell closure at {sup 132}Sn out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich {sup 130}Sn. Both techniques rely on selective particle identification and the measurement of γ rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  17. Toxoplasma polymerase chain reaction on experimental blood samples.

    PubMed

    Joss, A W; Chatterton, J M; Evans, R; Ho-Yen, D O

    1993-01-01

    A two-stage polymerase chain reaction (PCR) assay employing oligonucleotide primers from the B1 gene of Toxoplasma gondii was developed and assessed for sensitivity and specificity. It was able to detect T. gondii DNA from as little as one parasite/sample in mock-infected rat or mouse leucocyte preparations. Parasitaemia was also identified in animals at five stages between 16 and 66 h after infection with the virulent RH strain, and at 12 stages between 2 and 38 days after infection with the cyst-forming Beverley strain. In the latter case, PCR was more sensitive than animal culture. No cross-reactions were observed in samples containing various opportunist pathogens which may also be found in the blood of immunocompromised patients.

  18. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    SciTech Connect

    Jones, K. L.; Ahn, S.H.; Allmond, James M; Ayres, A.; Bardayan, Daniel W; Baugher, T.; Bazin, D.; Beene, James R; Berryman, J. S.; Bey, A.; Bingham, C. R.; Cartegni, L.; Chae, K. Y.; Gade, A.; Galindo-Uribarri, Alfredo {nmn}; Garcia-Ruiz, R.F.; Grzywacz, Robert Kazimierz; Howard, Meredith E; Kozub, R. L.; Liang, J Felix; Manning, Brett M; Matos, M.; McDaniel, S.; Miller, D.; Nesaraja, Caroline D; O'Malley, Patrick; Padgett, S; Padilla-Rodal, Elizabeth; Pain, Steven D; Pittman, S. T.; Radford, David C; Ratkiewicz, Andrew J; Schmitt, Kyle; Smith, Michael Scott; Stracener, Daniel W; Stroberg, S.; Tostevin, Jeffrey A; Varner Jr, Robert L; Weisshaar, D.; Wimmer, K.

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  19. Histidine residues in the peptide D-Lys(6)-GnRH: potential for copolymerization in polymeric nanoparticles.

    PubMed

    Kafka, Alexandra P; Kleffmann, Torsten; Rades, Thomas; McDowell, Arlene

    2009-01-01

    Poly(ethylcyanoacrylate) (PECA) nanoparticles containing the bioactive d-Lys(6)-GnRH were manufactured by an in situ interfacial polymerization process using a w/o-microemulsion template containing the peptide in the dispersed aqueous pseudophase of the microemulsion. Polymeric nanoparticles were characterized using PCS, RP-HPLC (bulk level) and MALDI TOF mass spectrometry (molecular level). The peptide d-Lys(6)-GnRH was reactive with the alkylcyanoacrylate monomer, resulting in some of the peptide copolymerizing with the monomer. MALDI TOF/TOF (tandem) analysis revealed that the histidine residue in position 2 of d-Lys(6)-GnRH interacts covalently in the polymerization process. A reaction mechanism for this nucleophilic interference is suggested. The copolymerization reaction appeared to occur within seconds after the addition of the monomer to the microemulsion. The surface charge of resulting nanoparticles was less negative (-3 mV) compared with the zeta potential of empty nanoparticles (-27.5 mV). The copolymerization yielded high entrapment rates of 95 +/- 4% of peptide, but showed limited release ( approximately 11%) of free peptide over 5 days. A separate experiment demonstrated that the addition of d-Lys(6)-GnRH to preformed empty PECA nanoparticles (ex situ) also yielded fractions of copolymerized peptide suggesting a certain proportion of polymer remains available for copolymerization possibly through an unzipping depolymerization/repolymerization process. Therefore, the reactivity of histidine residues in bioactives needs to be considered whenever using the bioactive in situ or ex situ with polymeric PECA nanoparticles.

  20. Effects of agitation in emulsion polymerization of n-butyl methacrylate and its copolymerization with N-methylol acrylamide

    NASA Astrophysics Data System (ADS)

    Krishnan, Sitaraman

    Effects of agitation in emulsion polymerization were investigated using a 2 dm3 stirred reactor and Rushton turbine agitators and a semi-batch mode of reaction. High-solids recipes giving monodisperse polymer particles with core-shell morphology were developed for monomer-starved, semi-batch emulsion copolymerization of n-butyl methacrylate (BMA) and N-methylol acrylamide (NMA). A larger agitator, or a higher agitation speed, resulted in higher particle concentration, more viscous latex, less water-soluble polymer, and higher mass of coagulum. Better incorporation of NMA in the polymer particles was because of greater particle-water interfacial area and more efficient macromixing in the reactor. A mechanism where the surface of the polymer particles is the most favorable site for copolymerization, is proposed for the incorporation of NMA. Nucleation of a greater number of particles at higher agitation intensity was a general observation for recipes with surfactant concentrations below the critical micelle concentration (cmc). Effects of agitation on the kinetics of emulsion polymerization of BMA were studied using reaction calorimetry. At a reaction temperature of 70°C, the molecular weight was higher at higher agitation speed, while at 50°C, the converse was true. The order of dependence of the mass of coagulum on the agitation speed depended on the surfactant coverage of the polymer particles: the variation was almost two-fold (1.2 to 2.3). The coagulum mass was related to surfactant coverage using results from the DLVO theory. The volume-surface average diameter of the monomer droplets in the emulsion scaled to the 1.6 power of agitation speed, and the droplet size distribution was log-normal. Thermal crosslinking of the copolymer particles and films was investigated, and the effect of carbon tetrabromide on the gel content of the copolymer films was studied experimentally and theoretically. The increase in the gel content as a function of time during thermal

  1. Effects of stereochemistry and copolymerization on the LCST of PNIPAm

    NASA Astrophysics Data System (ADS)

    de Oliveira, Tiago E.; Mukherji, Debashish; Kremer, Kurt; Netz, Paulo A.

    2017-01-01

    Poly(N-isopropylacrylamide) (PNIPAm) is a smart polymer that presents a lower critical transition temperature (LCST) of 305 K. Interestingly, this transition point falls within the range of the human body temperature, making PNIPAm a highly suitable candidate for bio-medical applications. However, it is sometimes desirable to have a rather flexible tuning of the LCST of these polymers to further increase their range of applications. In this work, we use all-atom molecular dynamics simulations to study the LCST of PNIPAm-based (co-)polymers. We study different molecular architectures where the polymer sequences are tuned either by modifying its stereochemistry or by the co-polymerization of PNIPAm with acrylamide (Am) units. Our analysis connects global polymer conformations with the microscopic intermolecular interactions. These findings suggest that the collapse of a PNIPAm chain upon heating is dependent on the hydration structure around the monomers, which is strongly dependent on the tacticity and the presence of more hydrophilic acrylamide monomers. Our results are found to be in good agreement with the existing experimental data.

  2. Effects of stereochemistry and copolymerization on the LCST of PNIPAm.

    PubMed

    de Oliveira, Tiago E; Mukherji, Debashish; Kremer, Kurt; Netz, Paulo A

    2017-01-21

    Poly(N-isopropylacrylamide) (PNIPAm) is a smart polymer that presents a lower critical transition temperature (LCST) of 305 K. Interestingly, this transition point falls within the range of the human body temperature, making PNIPAm a highly suitable candidate for bio-medical applications. However, it is sometimes desirable to have a rather flexible tuning of the LCST of these polymers to further increase their range of applications. In this work, we use all-atom molecular dynamics simulations to study the LCST of PNIPAm-based (co-)polymers. We study different molecular architectures where the polymer sequences are tuned either by modifying its stereochemistry or by the co-polymerization of PNIPAm with acrylamide (Am) units. Our analysis connects global polymer conformations with the microscopic intermolecular interactions. These findings suggest that the collapse of a PNIPAm chain upon heating is dependent on the hydration structure around the monomers, which is strongly dependent on the tacticity and the presence of more hydrophilic acrylamide monomers. Our results are found to be in good agreement with the existing experimental data.

  3. Experimental Study of Level Density and {gamma}-strength Functions from Compound Nuclear Reactions

    SciTech Connect

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Massey, T. N.; Schiller, A.; Guttormsen, M.; Siem, S.

    2008-04-17

    The current status of experimental study of level density and {gamma}-strength functions is reviewed. Three experimental techniques are used. These are measurements of particle evaporation spectra from compound nuclear reactions, the measurements of particle-{gamma} coincidences from inelastic scattering and pick-up reactions and the method of two-step {gamma}-cascades following neutron/proton radiative capture. Recent experimental data on level densities from neutron evaporation spectra are shown. The first results on the cascade {gamma}-spectrum from the {sup 59}Co(p,2{gamma}){sup 60}Ni reaction are presented.

  4. Reaction associated with a silicone rubber gel: an experimental study.

    PubMed

    Rigdon, R H; Dricks, A

    1975-11-01

    A blend of Silastic 382 (Room Temperature Vulcanizing, RTV) Medical Grade silicone oil and a catalyst was prepared in vitro, in both the catalyzed and noncatalyzed state, and injected subcutaneously in mice, rats, and rabbits. When properly blended, this catalyzed material, referred to as "silicone gel," formed a soft rubbery mass that remained at the site of injection. Properly catalyzed silicone rubber gel produces no macroscopic inflammatory reaction, attracts few polymorphonuclear leucocytes, and after 5-6 days a thin fibrous capsule begins to form aroung the gel. No degeneration of the silicone gel was observed during the 62 days of this experiment. Additional rats with this silicone gel have been under observation for 8 months and clinically have shown no changes in the local mass of silicone. If the catalyst is partly oxidized when added to the silicone fluid, the degree of gelling is much less. A local mass usually forms at the site of injection with some of the fluid diffusing into the tissue, forming minute cysts. The inflammatory reaciton is characterized by polymorphonuclear leucocytes, associated with many macrophages and giant cells phagocytizing oil droplets and particles of the diatomaceous earth. The pathogenesis of the inflammatory reaction is discussed, referring to the ionic change and the emigration of polymorphonuclear leucocytes to particles of plastics embedded in tissue.

  5. Experimental review of exclusive processes in two photon reactions

    SciTech Connect

    Ronan, M.T.

    1986-07-01

    Recent experimental results on exclusive final stated produced in photon-photon interactions are reviewed. Comparisons between experiments and with perturbative QCD calculations are made for meson and baryon pair production. New results on vector meson pair (rho/sup 0/rho/sup 0/,rho/sup 0/omega,rho/sup 0/phi,...) production and production of multiparticle (KK..pi pi..,K*K..pi..,...) final states are summarized. 34 refs.

  6. Experimental evidence of reaction-induced fracturing during olivine carbonation

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlu; Fusseis, Florian; Lisabeth, Harrison; Xing, Tiange; Xiao, Xianghui; De Andrade, Vincent; Karato, Shun-ichiro

    2016-09-01

    Mineral carbonation, a process that binds CO2 in the form of carbonates by silicate weathering, is widespread on the Earth's surface. Because of the abundance of silicate rocks and the permanence of the carbonated solids, sequestering CO2 via mineral carbonation has generated lots of interests. However, it is unclear how the fluid-rock reaction proceeds to completion in spite of an increasing solid volume. We conducted a mineral carbonation experiment in which a sintered olivine aggregate reacted with a sodium bicarbonate solution at reservoir conditions. Time-resolved synchrotron X-ray microtomographic images show cracks in polygonal patterns arising in the surface layers and propagating into the interior of the olivine aggregate. The nanotomography data reveal that the incipient cracks intersect at right angles. We infer that stretching due to nonuniform volume expansion generates polygonal cracking of the surfaces. Our data shed new lights on the processes that control hydration and carbonation of peridotite.

  7. Conducting polymer films fabricated by oxidative graft copolymerization of aniline on poly(acrylic acid) grafted poly(ethylene terephthalate) surfaces.

    PubMed

    Wang, Jiku; Liu, Xuyan; Choi, Ho-Suk; Kim, Jong-Hoon

    2008-11-27

    A conductive polyaniline/poly(ethylene terephthalate) (PANI/PET) composite film was fabricated via the oxidative graft copolymerization of aniline (ANI) onto the plasma-induced poly(acrylic acid) (PAAc) grafted PET surface. The attenuated total reflectance Fourier transform infrared spectroscopy spectra (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) results confirmed that PANI was successfully grafted onto the surface of the PAAc-g-PET films. The effects of the experimental conditions on the percentage of PANI grafted onto the PAAc-g-PET films were extensively investigated. A very high grafting percentage of ANI can be obtained through the acid-base reaction between the aniline monomer and PAAc on the PAAc-g-PET surface at high temperature. As a result, the grafting percentage of PANI can be increased to as high as 12.18 wt %, which causes the surface resistance of the PANI-g-PAAc-g-PET film to be reduced to about 1000 Omega/sq. We predicted that this is because of the high flexibility of the PAAc molecular chains and high solubility of aniline, both of which facilitate the binding of aniline to PAAc during this high temperature acid-base reaction. It was observed by atomic force microscopy (AFM) that the PANI-modified PET surface exhibits higher size irregularity and surface roughness, which further indicated that a much greater number of aniline molecules can be reactively bonded to and distributed along the grafted AAc chains and that the PANI-g-PAAc-g-PET surface resulting from the sequential oxidative graft copolymerization can possess higher electrical conductivity.

  8. Experimental results from CERN on reaction mechanisms in high energy heavy ion collisions

    SciTech Connect

    Sorensen, S.P. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1990-01-01

    Three main experimental results from CERN concerning reaction mechanisms in high energy heavy ion collisions are discussed: (1) the striking validity of the single particle picture, (2) the nuclear stopping power and (3) the attained energy densities.

  9. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    PubMed

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20.

  10. Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures.

    PubMed

    Pei, Cuiying; Ben, Teng; Li, Yanqiang; Qiu, Shilun

    2014-06-11

    A series of copolymerized porous organic frameworks (C-POFs) were synthesized with monomers of tetrakis(4-bromophenyl)methane and tris(4-bromophenyl)amine in different ratios by a Yamamoto-type Ullmann cross-coupling reaction. These C-POFs exhibit high physicochemical stability, large surface areas and excellent H2, CH4 and CO2 adsorption properties both at low and high pressures.

  11. Tissue reactions to abutment shift: an experimental study in dogs.

    PubMed

    Abrahamsson, Ingemar; Berglundh, Tord; Sekino, Satoshi; Lindhe, Jan

    2003-01-01

    Standard protocols for the clinical use of dental implants often include the placement of healing abutments prior to standard or custom-made abutments. The tissue response to a single shift from a healing abutment to a permanent abutment has not been studied. The aim of the present experiment was to study tissue reactions that may occur following the removal of a healing abutment and the placement of a permanent abutment. In six beagle dogs, all mandibular premolars were extracted. Three months later three fixtures of the Astra Tech Implants Dental System (Astra Tech AB, Mölndal, Sweden) were installed in each edentulous premolar region. An additional 3 months later, the first abutment connection was performed. In two sites on each side of the mandible, healing abutments were placed; in the remaining site, a Uni-abutment (Astra Tech AB) was used. The two healing abutments were removed 2 weeks later, and one Uni-abutment and one prepable abutment were placed. A plaque-control period was initiated, and 6 months later block biopsies were obtained. The biopsies were prepared for histometric and morphometric examination. Radiographs were obtained at fixture placement, 2 weeks after the first abutment connection, and 6 months later. The length of the barrier epithelium, the height of the connective tissue attachment, and the level of the marginal bone did not differ between the three abutment groups. The major part of the radiographic bone loss during the experiment took place prior to or immediately after abutment connection; only small bone level alterations occurred during the subsequent 6-month period. The shift from a healing abutment to a permanent abutment resulted in the establishment of a transmucosal attachment, the dimension and quality of which did not differ from those of the mucosal barrier formed to a permanent abutment placed during a second-stage surgery.

  12. A DFT Study on the Co-polymerization of CO2 and Ethylene: Feasibility Analysis for the Direct Synthesis of Polyethylene Esters.

    PubMed

    Moha, Verena; Cozzula, Daniela; Hölscher, Markus; Leitner, Walter; Müller, Thomas E

    2016-07-07

    The co-polymerization of CO2 with the non-polar monomer ethylene, though highly desirable, still presents a challenge whereas the palladium-catalyzed CO/C2 H4 co-polymerization is well understood. Building on this analogy, the goal of this study was to elucidate the feasibility of developing suitable catalysts for co-polymerizing CO2 with ethylene to polyethylene esters. Computational methods based on density functional theory were hereby employed. In the search for new catalyst lead structures, a closed catalytic cycle was identified for the palladium-catalyzed CO2 /C2 H4 co-polymerization reaction. The computational study on palladium complexes with a substituted anionic 2-[bis(2,4-dimethoxyphenyl)-phosphine]-benzene-2-hydroxo ligand revealed key aspects that need to be considered when designing ligand sets for potential catalysts for the non-alternating co-polymerization of CO2 and ethylene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cross-checking of Large Evaluated and Experimental Nuclear Reaction Databases

    SciTech Connect

    Zeydina, O.; Koning, A.J.; Soppera, N.; Raffanel, D.; Bossant, M.; Dupont, E.; Beauzamy, B.

    2014-06-15

    Automated methods are presented for the verification of large experimental and evaluated nuclear reaction databases (e.g. EXFOR, JEFF, TENDL). These methods allow an assessment of the overall consistency of the data and detect aberrant values in both evaluated and experimental databases.

  14. Catalysts for CO2/epoxide ring-opening copolymerization

    PubMed Central

    Trott, G.; Saini, P. K.; Williams, C. K.

    2016-01-01

    This article summarizes and reviews recent progress in the development of catalysts for the ring-opening copolymerization of carbon dioxide and epoxides. The copolymerization is an interesting method to add value to carbon dioxide, including from waste sources, and to reduce pollution associated with commodity polymer manufacture. The selection of the catalyst is of critical importance to control the composition, properties and applications of the resultant polymers. This review highlights and exemplifies some key recent findings and hypotheses, in particular using examples drawn from our own research. PMID:26755758

  15. Experimental studies in vortex pair motion coincident with a liquid reaction

    NASA Technical Reports Server (NTRS)

    Karagozian, A. R.; Suganuma, Y.; Strom, B. D.

    1988-01-01

    An experimental examination of the coincidence of a liquid reaction (acid/base) with the formation of a vortex pair structure is described in which emphasis is placed on the evolution of the strained diffusion layer and reacted core structures. Flow visualization of the reaction process is achieved via the technique of chemically sensitive LIF. The observed growth of reacted core structures associated with each vortex is compared with theoretically predicted behavior (Marble, 1983; Karagozian and Marble, 1986). Vortex pair separation is also compared with theoretical correlations, and the relevance of the analogy between a fast liquid reaction and a gaseous reaction is discussed.

  16. Graft copolymerization onto polybutadiene: Cross-linking and thermal degradation of vinyl polymers and copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Dayue (David)

    This work consists of three parts. In Part I, the graft copolymerization of methyl methacrylate, methyl acrylate, methacylic acid and acrylic acid onto polybutadiene and its copolymers by benzoyl peroxide, BPO, or 2, 2'azobis(2-methylpropionitrile), AIBN, initiation were explored. The results show that these monomers can be grafted onto butadiene region of butadiene-containing polymers. The extent of both graft copolymerization and homopolymerization are dependent on the time and temperature of the reaction and the concentration of all of the reactants. One must specify the monomer, initiator and solvent for the efficient graft copolymerization. The methyl methacrylate adds directly to the radical sites which are formed on the backbone by the interaction of the polymer and the primary radical form the initiator, while for the other three monomers, the graft copolymerization occurs by addition of macro-radical to the double bonds. In Part II, the cross-linking of polybutadiene, butadiene-styrene copolymers, and polystyrene by irradiation, thermal and chemical processes, and Friedel-Crafts chemistry and the effect of cross-linking on the thermal stability were investigated. The proof of cross-linking of the polymer comes from the insolubility of the product after the cross-linking reaction and is characterized by gel content and swelling ratio. The results show that the thermal stability of the polymer can be improved by cross-linking. In Part III, the thermal degradation of three vinyl polymers, poly(vinylsulfonic acid) and its sodium salt and poly(vinylphosphonic acid) were studied by combination technique: TGA/FTIR. The results show that TGA/FTIR combined with analysis of residues provides an excellent opportunity to understand the degradation pathway of the compounds. The observation of foaming indicates that the char which is formed contains carbon as well as the inorganic salts which have been observed. The carbon is in a partially graphitized form. The salts

  17. Synthesis of Vol. I. Improvers by copolymerization of decyl methacrylate with styrene

    SciTech Connect

    Akhmedov, A.I.; Levshina, A.M.

    1984-07-01

    This article demonstrates how copolymerization can be used to improve the quality of polyalkyl methacrylates. Benzoyl peroxide was used as an initiator for copolymerization performed in toluene solution. The influences of the concentrations of initiator and monomer mixture in toluene, the temperature, the length of the reaction period, and the quantity of styrene were investigated. The results indicate that as the reaction temperature was raised from 70/sup 0/ to 90/sup 0/C, the molecular weight of the copolymer decreased from 20,000 to 12,000 and the yield remained unchanged. An increase in the content of styrene from 10% to 40% led to an increase in the molecular weight of the copolymer from 10,000 to 17,000. When the volume ratio of toluene to monomer mixture was increased, the molecular weight of the copolymer decreased while the yield remained constant. It is determined that by varying the quantities of stryene and toluene, the molecular weight of the copolymer can be regulated without changing the temperature or the initiator concentration.

  18. Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin.

    PubMed

    Feng, Runliang; Zhu, Wenxia; Chu, Wei; Teng, Fangfang; Meng, Ning; Deng, Peizong; Song, Zhimei

    2017-01-01

    Curcumin is a natural hydrophobic product showing anticancer activity. Many studies show its potential use in the field of cancer treatment due to its safety and efficiency. However, its application is limited due to its low water-solubility and poor selective delivery to cancer. A Y-shaped folic acid-modified poly (ethylene glycol)-b-poly (ε-caprolactone)2 copolymer was prepared to improve curcumin solubility and realize its selective delivery to cancer. The copolymer was synthesized through selective acylation reaction of folic acid with α- monoamino poly(ethylene glycol)-b-poly(ε-caprolactone)2. Curcumin was encapsulated into the copolymeric micelles with 93.71% of encapsulation efficiency and 11.94 % of loading capacity. The results from confocal microscopy and cellular uptake tests showed that folic acid-modified copolymeric micelles could improve cellular uptake of curcumin in Hela and HepG2 cells compared with folic acid-unmodified micelles. In vitro cytotoxicity assay showed that folic acid-modified micelles improved anticancer activity against Hela and HepG2 cells in comparison to folic acidunmodified micelles. Meanwhile, both drug-loaded micelles demonstrated higher activity against Hela cell lines than HepG2. The research results suggested that the folic acid-modified Y-shaped copolymeric micelles should be used to enhance hydrophobic anticancer drugs' solubility and their specific delivery to folic acid receptors-overexpressed cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models.

    PubMed

    Rókusz, András; Veres, Dániel; Szücs, Armanda; Bugyik, Edina; Mózes, Miklós; Paku, Sándor; Nagy, Péter; Dezső, Katalin

    2017-01-01

    Ductular reaction is a standard component of fibrotic liver tissue but its function is largely unknown. It is supposed to interact with the matrix producing myofibroblasts and compensate the declining regenerative capacity of hepatocytes. The relationship between the extent of fibrosis-ductular reaction, proliferative activity of hepatocytes and ductular reaction were studied sequentially in experimental hepatic fibrosis models. Liver fibrosis/cirrhosis was induced in wild type and TGFβ overproducing transgenic mice by carbon tetrachloride and thioacetamide administration. The effect of thioacetamide was modulated by treatment with imatinib and erlotinib. The extent of ductular reaction and fibrosis was measured by morphometry following cytokeratin 19 immunofluorescent labeling and Picro Sirius staining respectively. The proliferative activity of hepatocytes and ductular reaction was evaluated by BrdU incorporation. The temporal distribution of the parameters was followed and compared within and between different experimental groups. There was a strong significant correlation between the extent of fibrosis and ductular reaction in each experimental group. Although imatinib and erlotinib temporarily decreased fibrosis this effect later disappeared. We could not observe negative correlation between the proliferation of hepatocytes and ductular reaction in any of the investigated models. The stringent connection between ductular reaction and fibrosis, which cannot be influenced by any of our treatment regimens, suggests that there is a close mutual interaction between them instead of a unidirectional causal relationship. Our results confirm a close connection between DR and fibrogenesis. However, since the two parameters changed together we could not establish a causal relationship and were unable to reveal which was the primary event. The lack of inverse correlation between the proliferation of hepatocytes and ductular reaction questions that ductular reaction can

  20. Experimental and computational studies of the gas-phase reaction of halon 1211 with hydrogen.

    PubMed

    Yu, Hai; Kennedy, Eric M; Uddin, Md Azhar; Sullivan, Simon P; Dlugogorski, Bogdan Z

    2005-05-01

    The gas-phase reaction of halon 1211 (CBrClF2) with hydrogen has been studied experimentally at atmospheric pressure in a plug flow, isothermal reactor over the temperature range of 673 to 973 K, at residence times ranging from 0.5 to 2.5 s with an input ratio of N2:H2:halon 1211 of 19:10:1. The major carbon containing products include CHClF2, CHBrF2, CH2F2, and CH4. Gas-phase reactions of CHClF2, CCl2F2, and CH2F2 with hydrogen are also investigated under the conditions similar to those for halon 1211 hydrodehalogenation, and the results are used to assist in understanding the mechanism of the reaction of halon 1211 with hydrogen. A kinetic reaction scheme involving 90 species and 430 reaction steps is developed and used to model the halon 1211 hydrodehalogenation reaction. Generally, satisfactory agreement between experimental and computational results is obtained for the production of major species. Using the software package AURORA, the reaction pathways leading to the formation of major products are elucidated. It has been found that the reaction steps involving CF2 are responsible for the formation of CH4.

  1. EXFOR - a global experimental nuclear reaction data repository: Status and new developments

    NASA Astrophysics Data System (ADS)

    Semkova, Valentina; Otuka, Naohiko; Mikhailiukova, Marina; Pritychenko, Boris; Cabellos, Oscar

    2017-09-01

    Members of the International Network of Nuclear Reaction Data Centres (NRDC) have collaborated since the 1960s on the worldwide collection, compilation and dissemination of experimental nuclear reaction data. New publications are systematically complied, and all agreed data assembled and incorporated within the EXFOR database. Recent upgrades to achieve greater completeness of the contents are described, along with reviews and adjustments of the compilation rules for specific types of data.

  2. Experimental Evidence of Localized Oscillations in the Photosensitive Chlorine Dioxide-Iodine-Malonic Acid Reaction

    NASA Astrophysics Data System (ADS)

    Míguez, David G.; Alonso, Sergio; Muñuzuri, Alberto P.; Sagués, Francesc

    2006-10-01

    The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results.

  3. Summary Report of the Workshop on The Experimental Nuclear Reaction Data Database

    SciTech Connect

    Semkova, V.; Pritychenko, B.

    2014-12-01

    The Workshop on the Experimental Nuclear Reaction Data Database (EXFOR) was held at IAEA Headquarters in Vienna from 6 to 10 October 2014. The workshop was organized to discuss various aspects of the EXFOR compilation process including compilation rules, different techniques for nuclear reaction data measurements, software developments, etc. A summary of the presentations and discussions that took place during the workshop is reported here.

  4. The Role of the Nuclear Reaction Data Centres in Experimental Nuclear Data Knowledge Sharing

    SciTech Connect

    Otuka, N.; Schwerer, O.; Otuka,N.; Dunaeva,S.; Dupont,e.; Schwerer,O.; Blokhin,A.

    2011-08-01

    The International Network of Nuclear Reaction Data Centres (NRDC) consists of 14 data centers from 10 countries and 2 international organizations, and is collaborating for compilation, exchange and dissemination of various types of nuclear reaction data information. The nuclear data centers common data collection, the EXFOR library today contains experimental information and numerical data from more than 18,000 experiments consisting of more than 134,000 data sets mainly of nuclear reaction data for incident neutrons, charged-particles and photons with incident energy lower than 1 GeV. A brief history and the current status of NRDC collaboration are presented for EXFOR as well as CINDA and ENDF.

  5. Copolymerization of Glycolide and ɛ-Caprolactone Using 12-Aminolauric Acid Modified Montmorillonite

    NASA Astrophysics Data System (ADS)

    Gallos, HAV; Reyes, LQ

    2017-09-01

    Poly(glycolide-co-ɛ-caprolactone) (PGLYCL) nanocomposites were prepared by copolymerization glycolide (GLY) and ɛ-caprolactone (ɛ-CL) in the presence of varying loadings 12-aminolauric acid (12-ALA)-modified montmorillonite. Copolymerization was successfully achieved based on the increase in polymer molecular weight after the reaction determined by gel permeation chromatography (GPC). The amount of the poly(glycolide) block and poly(ɛ-caprolactone) block units in the copolymer, identified by proton nuclear magnetic resonance (1H-NMR) spectroscopy, suggested that the increase in organo-clay loading cause a reduction GLYL: ɛ-CLL ratio. The arrangement of the monomers in the polymer products was elucidated to have an ABA triblock structure, where PCL block is the central block and the PGLY is found at both end of the copolymer. The presence of intercalated and exfoliated silicates in the nanocomposites were observed by x-ray diffraction (XRD) analysis. The biocompatibility of the nanocomposites with NCTC 292 mouse normal fibroblast was high relative to untreated cell cultures using tetrazolium bromide (MTT)-dye reduction assay.

  6. Experimental study to explore the 8Be-induced nuclear reaction via the Trojan horse method

    NASA Astrophysics Data System (ADS)

    Wen, Qun-Gang; Li, Cheng-Bo; Zhou, Shu-Hua; Irgaziev, Bakhadir; Fu, Yuan-Yong; Spitaleri, Claudio; La Cognata, Marco; Zhou, Jing; Meng, Qiu-Ying; Lamia, Livio; Lattuada, Marcello

    2016-03-01

    To explore a possible indirect method for 8Be induced astrophysical reactions, the 8Be=(8Be+n ) cluster structure has been studied via the Trojan horse method. For the first time a 8Be nucleus having an ultrashort lifetime is studied by the Trojan horse method and a 9Be nucleus in the ground state is used for this purpose. The 9Be nucleus is assumed to have a (8Be+n ) cluster structure and used as a Trojan horse nucleus. The 8Be nucleus acts as a participant, while the neutron is a spectator to the virtual 8Be+d →α +6Li reaction via the 3-body reaction 8Be+d →α +6Li+n . The experimental neutron momentum distribution inside 9Be has been reconstructed. The agreement between the experimental momentum distribution and the theoretical one indicates that a (8Be+n ) cluster structure inside 9Be is very likely. Therefore, the experimental study of 8Be induced reactions, for example, the measurement of the 8Be+α →12C reaction proceeding through the Hoyle state, is possible.

  7. An experimental and kinetic modeling study of the reaction of CHF3 with methane.

    PubMed

    Yu, Hai; Kennedy, Eric M; Mackie, John C; Dlugogorski, Bogdan Z

    2006-09-15

    The gas-phase reaction of CHF3 with CH4 has been studied experimentally and computationally. The motivation behind the study is that reaction of CHF3 with CH4 provides a possible route for synthesis of CH2=CF2 (C2H2F2). Experiments are carried out in a plug flow, isothermal alpha-alumina reactor at atmospheric pressure over the temperature range of 973-1173 K. To assist in understanding the reaction mechanism and the role of the reactor material involved in the reaction of CHF3 with CH4, the reaction of CHF3 with CH4, pyrolysis of CH4, and pyrolysis of CHCIF2 have been studied in the presence of alpha-alumina or alpha-AIF3 particles under various conditions. Under all conditions studied for the reaction of CHF3 and CH4, the major products are C2F4, C2H2F2, and HF. Minor products include C2H2, C2H4, C2H3F, C2HF3, C3F6, CO2, and H2. C2H6, CH2F2, and CHF2CHF2 are detected in trace amounts. The initial step is the gas-phase unimolecular decomposition of CHF3, producing CF2 and HF. It is proposed that CF2 decomposes on the surface of alpha-alumina, producing F radicals that are responsible for the activation of CH4. A reaction scheme developed on the basis of the existing NIST HFC and GRI-Mech 3.0 mechanisms is used to model the reaction of CHF3 with CH4. Generally satisfactory agreement between experimental and modeling results is obtained on the conversion levels of CHF3 and CH4 and rates of formation of major products. Using the software package AURORA, the reaction pathways leading to the formation of major products are elucidated.

  8. Observing Proton Transfer Reactions Inside the MALDI Plume: Experimental and Theoretical Insight into MALDI Gas-Phase Reactions

    NASA Astrophysics Data System (ADS)

    Mirabelli, Mario F.; Zenobi, Renato

    2017-08-01

    We evaluated the contribution of gas-phase in-plume proton transfer reactions to the formation of protonated and deprotonated molecules in the MALDI process. A split sample holder was used to separately deposit two different samples, which avoids any mixing during sample preparation. The two samples were brought very close to each other and desorbed/ionized by the same laser pulse. By using a combination of deuterated and non-deuterated matrices, it was possible to observe exclusively in-plume proton transfer processes. The hydrogen/deuterium exchange (HDX) kinetics were evaluated by varying the delayed extraction (DE) time, allowing the desorbed ions and neutrals to interact inside the plume for a variable period of time before being extracted and detected. Quantum mechanical calculations showed that the HDX energy barriers are relatively low for such reactions, corroborating the importance of gas-phase proton transfer in the MALDI plume. The experimental results, supported by theoretical simulations, confirm that the plume is a very reactive environment, where HDX reactions could be observed from 0 ns up to 400 ns after the laser pulse. These results could be used to evaluate the relevance of previously proposed (and partially conflicting) ionization models for MALDI.

  9. Matching of experimental and statistical-model thermonuclear reaction rates at high temperatures

    NASA Astrophysics Data System (ADS)

    Newton, J. R.; Longland, R.; Iliadis, C.

    2008-08-01

    We address the problem of extrapolating experimental thermonuclear reaction rates toward high stellar temperatures (T>1 GK) by using statistical model (Hauser-Feshbach) results. Reliable reaction rates at such temperatures are required for studies of advanced stellar burning stages, supernovae, and x-ray bursts. Generally accepted methods are based on the concept of a Gamow peak. We follow recent ideas that emphasized the fundamental shortcomings of the Gamow peak concept for narrow resonances at high stellar temperatures. Our new method defines the effective thermonuclear energy range (ETER) by using the 8th, 50th, and 92nd percentiles of the cumulative distribution of fractional resonant reaction rate contributions. This definition is unambiguous and has a straightforward probability interpretation. The ETER is used to define a temperature at which Hauser-Feshbach rates can be matched to experimental rates. This matching temperature is usually much higher compared to previous estimates that employed the Gamow peak concept. We suggest that an increased matching temperature provides more reliable extrapolated reaction rates since Hauser-Feshbach results are more trustwhorthy the higher the temperature. Our ideas are applied to 21 (p,γ), (p,α), and (α,γ) reactions on A=20-40 target nuclei. For many of the cases studied here, our extrapolated reaction rates at high temperatures differ significantly from those obtained using the Gamow peak concept.

  10. Experimental studies of coherent structures in an advection-reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Gowen, Savannah; Solomon, Tom

    2015-08-01

    We present experimental studies of reaction front propagation in a single vortex flow with an imposed external wind. The fronts are produced by the excitable, ferroin-catalyzed Belousov-Zhabotinsky chemical reaction. The flow is generated using an electromagnetic forcing technique: an almost-radial electrical current interacts with a magnetic field from a magnet below the fluid layer to produce the vortex. The magnet is mounted on crossed translation stages allowing for movement of the vortex through the flow. Reaction fronts triggered in or in front of the moving vortex form persistent structures that are seen experimentally for time-independent (constant motion), time-periodic, and time-aperiodic flows. These results are examined with the use of burning invariant manifolds that act as one-way barriers to front motion in the flows. We also explore the usefulness of finite-time Lyapunov exponent fields as an instrument for analyzing front propagation behavior in a fluid flow.

  11. Experimental studies of coherent structures in an advection-reaction-diffusion system.

    PubMed

    Gowen, Savannah; Solomon, Tom

    2015-08-01

    We present experimental studies of reaction front propagation in a single vortex flow with an imposed external wind. The fronts are produced by the excitable, ferroin-catalyzed Belousov-Zhabotinsky chemical reaction. The flow is generated using an electromagnetic forcing technique: an almost-radial electrical current interacts with a magnetic field from a magnet below the fluid layer to produce the vortex. The magnet is mounted on crossed translation stages allowing for movement of the vortex through the flow. Reaction fronts triggered in or in front of the moving vortex form persistent structures that are seen experimentally for time-independent (constant motion), time-periodic, and time-aperiodic flows. These results are examined with the use of burning invariant manifolds that act as one-way barriers to front motion in the flows. We also explore the usefulness of finite-time Lyapunov exponent fields as an instrument for analyzing front propagation behavior in a fluid flow.

  12. Experimental Studies of Light-Ion Nuclear Reactions Using Low-Energy RI Beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Abe, K.; Shimuzu, H.; Wakabayashi, Y.; Hashimoto, T.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Romano, S.; Kubono, S.; Iwasa, N.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.; Kato, S.; Komatsubara, T.; Coc, A.; de Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.

    CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. A striking method to study astrophyiscal reactions involving radioactive nuclei is the thick-target method in inverse kinematics. Several astrophysical alpha-induced reactions have been be studied with that method at CRIB. A recent example is on the α resonant scattering with a radioactive 7Be beam. This study is related to the astrophysical 7Be(α , γ ) reactions, important at hot p-p chain and ν p-process in supernovae. There have been measurements based on several indirect methods, such as the asymptotic normalization coefficient (ANC) and Trojan horse method (THM). The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α )15O reaction at astrophysical energies via the three body reaction 2H(18F, α 15O)n. The 18F(p, α )15O reaction rate is crucial to understand the 511-keV γ -ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  13. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    DTIC Science & Technology

    2008-09-21

    description of our copolymerization results. The polyisobutylene (b- PIB ) that is produced by homopolymerization of IB in an inert solvent such as 1,2...the linear polyisobutylene (l- PIB ) produced under the usual cationic initiation. The difference is clear in spectral (NMR) and physical (DSC, TGA...HPLC) properties. A detailed 2D-NMR examination of b- PIB obtained from ordinary IB and several isotopically labeled versions of IB revealed that its

  14. Recent advances in photoinduced donor/acceptor copolymerization

    NASA Astrophysics Data System (ADS)

    Jönsson, S.; Viswanathan, K.; Hoyle, C. E.; Clark, S. C.; Miller, C.; Morel, F.; Decker, C.

    1999-05-01

    Photoinitiated free radical polymerization of donor (D)/acceptor (A) type monomers has gained considerable interest due to the possibility to efficiently photopolymerize non-acrylate based systems. Furthermore, this photoinduced alternating copolymerization can be accomplished without the presence of a conventional free radical generating photoinitiator. In the past, we have shown that the structural influences in the direct photolysis of N-Alkyl and N-Arylmaleimides as well as their corresponding ground state charge transfer complexes (CTC) with suitable donors have carefully been investigated. For certain combinations of A and D type monomers, a direct photolysis of the ground state complex or the excitation of the acceptor, followed by the formation of an exciplex, has been shown to initiate the copolymerization. Herein, we show that the main route of initiation is based on inter or intra molecular H-abstraction from an excited state maleimide, whereby no exciplex formation takes place. H-abstraction will predominantly take place in systems where easily abstractable hydrogens are present. Our laser flash photolysis investigation, ESR [1] (A. Hiroshi, I. Takasi, T. Nosi, Macromol. Chem. 190 (1989) 2821) and phosphorescence emissions [2,3] (K.S. Chen, T. Foster, J.K.S. Wan, J. Phys. Chem. 84 (1980) 2473; C.J. Seliskar, S.P. McGlynn, J. Chem. Phys. 55 (1971) 4337) studies show that triplet excited states of N-alkyl substituted maleimides (RMI), which are well known strong precursors for direct H-abstractions from aliphatic ethers and secondary alcohols, are formed upon excitation. Rates of copolymerization and degrees of conversion for copolymerization of maleimide/vinyl ether pairs in air and nitrogen have been measured as a function of hydrogen abstractability of the excited triplet state MI as well as the influence of concentration and hydrogen donating effect of the hydrogen donor.

  15. Experimental and theoretical studies of ammonia generation: Reactions of H2 with neutral cobalt nitride clusters.

    PubMed

    Yin, Shi; Xie, Yan; Bernstein, Elliot R

    2012-09-28

    Ammonia generation through reaction of H(2) with neutral cobalt nitride clusters in a fast flow reactor is investigated both experimentally and theoretically. Single photon ionization at 193 nm is used to detect neutral cluster distributions through time-of-flight mass spectrometry. Co(m)N(n) clusters are generated through laser ablation of Co foil into N(2)/He expansion gas. Mass peaks Co(m)NH(2) (m = 6, 10) and Co(m)NH(3) (m = 7, 8, 9) are observed for reactions of H(2) with the Co(m)N(n) clusters. Observation of these products indicates that clusters Co(m)N (m = 7, 8, 9) have high reactivity with H(2) for ammonia generation. Density functional theory (DFT) calculations are performed to explore the potential energy surface for the reaction Co(7)N + 3∕2H(2) → Co(7)NH(3), and a barrierless, thermodynamically favorable pathway is obtained. An odd number of hydrogen atoms in Co(m)NH(3) (m = 7, 8, 9) probably come from the hydrogen molecule dissociation on two active cobalt nitride clusters based on the DFT calculations. Both experimental observations and theoretical calculations suggest that hydrogen dissociation on two active cobalt nitride clusters is the key step to form NH(3) in a gas phase reaction. A catalytic cycle for ammonia generation from N(2) and H(2) on a cobalt metal catalyst surface is proposed based on our experimental and theoretical investigations.

  16. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    SciTech Connect

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-12-28

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.

  17. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    PubMed Central

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-01-01

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences. PMID:26723608

  18. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences

    NASA Astrophysics Data System (ADS)

    Ruff, Kiersten M.; Harmon, Tyler S.; Pappu, Rohit V.

    2015-12-01

    We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.

  19. EXPERIMENTAL AND THEORETICAL STUDIES OF REACTIONS BETWEEN H ATOMS AND CARBANIONS OF INTERSTELLAR RELEVANCE

    SciTech Connect

    Yang Zhibo; Eichelberger, Brian; Carpenter, Marshall Y.; Martinez, Oscar; Bierbaum, Veronica M.; Snow, Theodore P. E-mail: BEichelberger@jbu.ed E-mail: Oscar.Martinez@colorado.ed E-mail: Theodore.Snow@colorado.ed

    2010-11-10

    The recent detection of molecular anions in the interstellar medium (ISM) has highlighted the need for laboratory studies of negative ion chemistry. Hydrogen atoms are the most abundant atomic species in the ISM, and the chemistry of H atoms with anions may contribute to molecular synthesis in interstellar clouds. This work is a combined experimental and computational study of a series of anions reacting with H atoms by associative detachment (A{sup -} + H {yields} AH + e {sup -}). The anions include deprotonated nitriles (CH{sub 2}CN{sup -}, CH{sub 3}CHCN{sup -}, and (CH{sub 3}){sub 2}CCN{sup -}), acetaldehyde (HC(O)CH{sub 2} {sup -}), acetone (CH{sub 3}C(O)CH{sub 2} {sup -}), ethyl acetate (CH{sub 3}CH{sub 2}OC(O)CH{sub 2} {sup -}), methanol (CH{sub 3}O{sup -}), and acetic acid (CH{sub 3}CO{sub 2} {sup -}). Experimental measurements of the reaction rate constants were made with the flowing afterglow-selected ion flow tube technique. Ab initio theoretical calculations were carried out to explore the reaction mechanism and investigate the factors influencing reaction efficiencies, which are largely proportional to reaction exothermicities. Other factors influencing reaction efficiencies include the charge density on the reactive site of the anion, the characteristics of the potential energy surfaces along the approach of the reactants, and angular momentum conservation of the anion-H atom collision.

  20. Ethylene Copolymerization with 1-Octene Using a 2-Methylbenz

    PubMed

    Xu; Ruckenstein

    1998-07-28

    A new effective constrained geometry catalyst precursor for the ethylene/1-octene copolymerization, namely 2-methylbenz[e]indenylamido complex [eta5:eta1-(2-MeBenzInd)SiMe2NtBu]TiCl2 (4), was synthesized. Activated with methylaluminoxane (MAO), the complex 4 showed (a) an improved copolymerization activity and stability, (b) an enhanced comonomer incorporation in the copolymer, and (c) most importantly, an increased copolymer molecular weight, when compared with the previously employed catalysts. The polymerization conditions were found to have a significant effect on the catalyst activity, 1-octene incorporation, molecular weight, and even copolymer microstructure. For the copolymerization parameters, the values rE approximately 2.20 for ethylene and rO approximately 0.55 for 1-octene with rE.rO approximately 1.21 were obtained, reflecting a pronounced tendency for the random distribution of the comonomers in the copolymer chain. The 13C NMR analysis revealed that the E-O copolymer generated by the MAO-activated complex 4 has a regioirregular arrangement of the 1-octene repeat units as a result of some tail-to-tail incorporation of the 1-octene comonomer.

  1. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms.

  2. Experimental Study of the Cross Sections of {alpha}-Particle Induced Reactions on 209Bi

    SciTech Connect

    Hermanne, A.; Tarkanyi, F.; Takacs, S.; Szucs, Z.

    2005-05-24

    Alpha particle induced reactions for generation of 211At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to E{alpha}=39 MeV. Excitation functions for the reactions 209Bi({alpha},2n)211At, 209Bi({alpha},3n)210At, 209Bi({alpha},x) 210Po obtained from direct alpha emission measurements and gamma spectra from decay products are compared with earlier literature values. Thick target yields have been deduced from the experimental cross sections.

  3. Experimental Study of the Cross Sections of α-Particle Induced Reactions on 209Bi

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Szúcs, Z.

    2005-05-01

    Alpha particle induced reactions for generation of 211At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to Eα=39 MeV. Excitation functions for the reactions 209Bi(α,2n)211At, 209Bi(α,3n)210At, 209Bi(α,x) 210Po obtained from direct alpha emission measurements and gamma spectra from decay products are compared with earlier literature values. Thick target yields have been deduced from the experimental cross sections.

  4. Diels-Alder reactions of 4-halo masked o-benzoquinones. Experimental and theoretical investigations.

    PubMed

    Surasani, Seshi Reddy; Parumala, Santosh Kumar Reddy; Peddinti, Rama Krishna

    2014-08-14

    The studies on [4 + 2] cycloaddition of 4-halo derivatives of 6,6-dimethoxycyclohexa-2,4-dienones known as orthoquinone monoketals/masked o-benzoquinones are described. The 4-fluoro, 4-chloro- and 4-iodo-masked o-benzoquinones were stable enough for their isolation and characterization. These conjugated dienones cycloadded with several electron-deficient and electron-rich dienophiles in a highly regio- and stereo-selective manner to afford the corresponding halo bicyclo[2.2.2]octenone derivatives in high to excellent chemical yields. The halo masked o-benzoquinones did not undergo dimerization under the reaction conditions. To evaluate the observed selectivities of these Diels-Alder reactions, we have performed quantum mechanical calculations for the reactions between halo masked o-benzoquinones and methyl vinyl ketone and ethyl vinyl ether at the B3LYP/6-31G** theory level. The differences in HOMO and LUMO energy gaps suggest that these reactions can be classified as inverse electron-demand Diels-Alder reactions. The calculated transition state energies and global electronic indexes supported the experimentally observed selectivities of the reaction in many cases.

  5. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst.

    PubMed

    Biernesser, Ashley B; Delle Chiaie, Kayla R; Curley, Julia B; Byers, Jeffery A

    2016-04-18

    A cationic iron(III) complex was active for the polymerization of various epoxides, whereas the analogous neutral iron(II) complex was inactive. Cyclohexene oxide polymerization could be "switched off" upon in situ reduction of the iron(III) catalyst and "switched on" upon in situ oxidation, which is orthogonal to what was observed previously for lactide polymerization. Conducting copolymerization reactions in the presence of both monomers resulted in block copolymers whose identity can be controlled by the oxidation state of the catalyst: selective lactide polymerization was observed in the iron(II) oxidation state and selective epoxide polymerization was observed in the iron(III) oxidation state. Evidence for the formation of block copolymers was obtained from solubility differences, GPC, and DOSY-NMR studies.

  6. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-04-01

    Graft copolymerization of acrylonitrile (AN)/acrylic acid (AA), acrylonitrile (AN)/methacrylic acid (MA), and acrylonitrile (AN)/glycidyl methacrylate (GMA) onto pre-irradiated polyethylene (PE) films were studied. The effect of reaction conditions such as solvents, additives, and monomer composition on the grafting yields was investigated. The extent of grafting was found to increase with increasing sulfuric acid concentration when sulfuric acid as an additive was added to the grafting solution. In AN/AA mixture, the proportion of acrylonitrile in the copolymer increased with an increasing AN component in feed monomers. On the other hand, in AN/MA mixture, acrylonitrile component in copolymer was very slight in spite of the increase AN component in feed monomers. In the AN/GMA mixture, the proportion of acrylonitrile in the copolymer increased with increasing acrylonitrile component in AN/GMA feed monomer.

  7. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction.

    PubMed

    Garsany, Yannick; Baturina, Olga A; Swider-Lyons, Karen E; Kocha, Shyam S

    2010-08-01

    A tutorial is provided for methods to accurately and reproducibly determine the activity of Pt-based electrocatalysts for the oxygen reduction reaction in proton exchange membrane fuel cells and other applications. The impact of various experimental parameters on electrocatalyst activity is demonstrated, and explicit experimental procedures and measurement protocols are given for comparison of electrocatalyst activity to fuel cell standards. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  8. Formation of orthopyroxenite by reaction between peridotite and hydrous basaltic melt: an experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Chunguang; Liang, Yan; Dygert, Nick; Xu, Wenliang

    2016-09-01

    The consequences of hydrous basaltic melts and peridotite interaction were examined experimentally in Au-Pd, Pt, and graphite capsules using the reaction couple method. Reactions between a hydrous basaltic andesite (4 wt% H2O) and dunite or lherzolite in an Au-Pd capsule at 1 GPa and 1200 °C produce a melt-bearing orthopyroxenite-dunite sequence. Reactions between a hydrous ferro-basalt and lherzolite in Pt or Au-Pd capsules at 0.8-2 GPa and 1250-1385 °C produce a melt-bearing orthopyroxenite-harzburgite sequence. Reactions between the ferro-basalt and lherzolite in graphite capsules (not designed to retain water) result in a melt-bearing dunite-harzburgite sequence at 1 GPa and a melt-bearing harzburgite-lherzolite sequence at 2 GPa. The orthopyroxenite from the hydrous reaction experiments has a high porosity, and it is separated by a sharp lithological interface from the dunite or harzburgite. Orthopyroxenes in the orthopyroxenite are large in size with resorbed olivine inclusions. Formation of the high-porosity orthopyroxenite in the hydrous melt-rock reaction experiments is determined by the liquidus phase relation of the interface reacting melt and reaction kinetics. Reaction between orthopyroxene-saturated hydrous melt and olivine at melt-rock interface produces orthopyroxenite. Water infiltration induces hydrous melting of the lherzolite, producing a dunite or an orthopyroxene-depleted harzburgite. Efficient diffusive exchange between the partial melt and the hydrous reacting melt promotes orthopyroxene-oversaturation around the melt-rock interfacial region. The simplified experiments reveal end-member processes for understanding the formation of orthopyroxenite in the upper mantle. The presence of orthopyroxenites in mantle samples is a strong indication of hydrous melt and peridotite interaction.

  9. Gadolinium cation (Gd+) reaction with O2: Potential energy surface mapped experimentally and with theory

    NASA Astrophysics Data System (ADS)

    Demireva, Maria; Armentrout, P. B.

    2017-05-01

    Guided ion beam tandem mass spectrometry is used to measure the kinetic energy dependent cross sections for reactions of the lanthanide metal gadolinium cation (Gd+) and GdO+ with O2 and for collision-induced dissociation (CID) of GdO2+ with Xe. Gd+ reacts with O2 in an exothermic and barrierless reaction to form GdO+ and O. GdO2+ is also formed in this reaction, but this product ion is formed in a sequential reaction, as verified by pressure dependent measurements and comparison with the results for the reaction of GdO+ with O2. The CID experiments of GdO2+ indicate the presence of two GdO2+ precursor ion populations, assigned to a weakly bound oxygen molecule adduct (Gd+-O2) and an inserted cyclic Gd+ dioxide species (O-Gd+-O). Analysis of the resulting product ion cross sections yields bond dissociation energies (BDEs, D0) for Gd+-O2 and OGd+-O, where the latter BDE is also independently measured in an exchange reaction between GdO+ and O2. The CID experiments also provide the energy of the barrier for the rearrangement of the Gd+-O2 adduct to the inserted O-Gd+-O structure (as identified by loss of a single oxygen atom). The thermochemistry measured here yields D0(OGd+-O) = 2.86 ± 0.08 eV, D0(Gd+-O2) = 0.75 ± 0.11 eV, and a barrier height relative to Gd+-O2 of 0.31 ± 0.07 eV. These data are sufficient to characterize in some detail the potential energy surface of the Gd+ reaction with O2 entirely from experiment. Theoretical calculations are performed for comparison with the experimental energetics and for further insight into the reaction mechanisms.

  10. Gadolinium cation (Gd(+)) reaction with O2: Potential energy surface mapped experimentally and with theory.

    PubMed

    Demireva, Maria; Armentrout, P B

    2017-05-07

    Guided ion beam tandem mass spectrometry is used to measure the kinetic energy dependent cross sections for reactions of the lanthanide metal gadolinium cation (Gd(+)) and GdO(+) with O2 and for collision-induced dissociation (CID) of GdO2(+) with Xe. Gd(+) reacts with O2 in an exothermic and barrierless reaction to form GdO(+) and O. GdO2(+) is also formed in this reaction, but this product ion is formed in a sequential reaction, as verified by pressure dependent measurements and comparison with the results for the reaction of GdO(+) with O2. The CID experiments of GdO2(+) indicate the presence of two GdO2(+) precursor ion populations, assigned to a weakly bound oxygen molecule adduct (Gd(+)-O2) and an inserted cyclic Gd(+) dioxide species (O-Gd(+)-O). Analysis of the resulting product ion cross sections yields bond dissociation energies (BDEs, D0) for Gd(+)-O2 and OGd(+)-O, where the latter BDE is also independently measured in an exchange reaction between GdO(+) and O2. The CID experiments also provide the energy of the barrier for the rearrangement of the Gd(+)-O2 adduct to the inserted O-Gd(+)-O structure (as identified by loss of a single oxygen atom). The thermochemistry measured here yields D0(OGd(+)-O) = 2.86 ± 0.08 eV, D0(Gd(+)-O2) = 0.75 ± 0.11 eV, and a barrier height relative to Gd(+)-O2 of 0.31 ± 0.07 eV. These data are sufficient to characterize in some detail the potential energy surface of the Gd(+) reaction with O2 entirely from experiment. Theoretical calculations are performed for comparison with the experimental energetics and for further insight into the reaction mechanisms.

  11. Development and Closed-Loop Experimental Results of a Reaction Sphere Elegant Breadboard

    NASA Astrophysics Data System (ADS)

    Rossini, L.; Onillon, E.; Boletis, A.; Mingard, S.; Wawrzaszek, R.; Serin, J.; Ortega, C.

    2015-09-01

    Attitude and orbit control systems (AOCS) are responsible for the orbital behavior and pointing precision of stabilized satellites. As an alternative to a traditional reaction wheels (RW) assembly, the use of a single reaction sphere (RS) was proposed. This article presents the design and closed-loop experimental results of a novel elegant breadboard (EBB) of a RS actuator. The proposed RS consists of a spherical rotor with permanent magnets (PM) that can be accelerated about any axis thanks to a multi-coil stator that also fulfils the function of magnetic bearing. The design of the EBB is based on Proba-3 requirements. Functional closed-loop experimental results are presented showing the ability of simultaneously levitating the rotor while rotating it about any desired axis up to 300 rpm.

  12. On adduct formation and reactivity in the OCS + OH reaction: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Schmidt, Johan A.; Kyte, Mildrid; Østerstrøm, Freja F.; Joelsson, Lars M. T.; Knap, Hasse C.; Jørgensen, Solvejg; Nielsen, Ole John; Murakami, Tatsuhiro; Johnson, Matthew S.

    2017-05-01

    The OCS + OH reaction occurs either via adduct formation or direct S-abstraction. We investigate OH-oxidation of OCS using quantum chemical methods and find that the OC(OH)S adduct reacts rapidly with O2 forming SOOH + CO2. SOOH rapidly dissociates under atmospheric conditions regenerating OH. We interpret earlier experimental results based on monitoring OH-loss, and find that OH-regeneration in presence of O2 may explain the insensitivity of the reaction rate to pressure and O2. We calculate a rate constant of 3.52 ×10-16 cm3 s-1 at 10 Torr increasing to 7.20 ×10-16 cm3 s-1 at 700 Torr. In addition we present a new experimental determination of the OCS + OH rate constant of (5.3 ± 3.6) ×10-15 cm3 s-1 at 296 K and 700 Torr using relative-rate technique.

  13. Reactions to Ingroup and Outgroup Deviants: An Experimental Group Paradigm for Black Sheep Effect

    PubMed Central

    2015-01-01

    In the classic black sheep effect (BSE) an ingroup deviant member is usually evaluated more negatively than the corresponding outgroup deviant. This effect is usually obtained by using scenarios and asking people to imagine the situation as vividly as possible. The present study proposes a new method to investigate the BSE by considering the behavioral and physiological reactions to unfair behavior (aggressive game behavior) in a realistic experimental group-setting. The study involved 52 university students in a minimal group setting who performed a modified version of the competitive reaction time (CRT) task adapted to be played in groups of four people. The classic BSE was replicated for evaluation but not for the behavioral reactions (retaliate to aggression) to deviants. More interestingly, a negative relationship emerged in the ingroup deviant condition between the level of behavioral derogation and the systolic blood pressure level. PMID:25946148

  14. Reactions to ingroup and outgroup deviants: an experimental group paradigm for black sheep effect.

    PubMed

    Rullo, Marika; Presaghi, Fabio; Livi, Stefano

    2015-01-01

    In the classic black sheep effect (BSE) an ingroup deviant member is usually evaluated more negatively than the corresponding outgroup deviant. This effect is usually obtained by using scenarios and asking people to imagine the situation as vividly as possible. The present study proposes a new method to investigate the BSE by considering the behavioral and physiological reactions to unfair behavior (aggressive game behavior) in a realistic experimental group-setting. The study involved 52 university students in a minimal group setting who performed a modified version of the competitive reaction time (CRT) task adapted to be played in groups of four people. The classic BSE was replicated for evaluation but not for the behavioral reactions (retaliate to aggression) to deviants. More interestingly, a negative relationship emerged in the ingroup deviant condition between the level of behavioral derogation and the systolic blood pressure level.

  15. Experimental and Theoretical Investigation of the Reaction NO + OH + O2 → HO2 + NO2.

    PubMed

    Fittschen, Christa; Assaf, Emmanuel; Vereecken, Luc

    2017-06-22

    Photolysis of NO2 is the only major pathway for O3 formation as products from the reaction of OH and NO under atmospheric conditions in competition to the formation of HONO has been investigated experimentally and theoretically. Experiments have been carried out by directly measuring the formation of HO2 radicals using laser photolysis coupled to cw-CRDS. OH radicals have been generated from the reaction of F atoms with H2O, and absolute HO2 and OH profiles have been recorded at different NO concentrations. The potential energy surface has been calculated and the rate constant has been obtained from RRKM master equation modeling. Both experiment and theory show that the OH + NO reaction in the presence of O2 bath gas is not a competitive source of HO2 + NO2.

  16. Experimental study of the astrophysical γ -process reaction 124Xe(α ,γ )128Ba

    NASA Astrophysics Data System (ADS)

    Halász, Z.; Somorjai, E.; Gyürky, Gy.; Elekes, Z.; Fülöp, Zs.; Szücs, T.; Kiss, G. G.; Szegedi, N. T.; Rauscher, T.; Görres, J.; Wiescher, M.

    2016-10-01

    Background: The synthesis of heavy, proton rich isotopes in the astrophysical γ process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128Ba(γ ,α )124Xe was found to affect the abundance of the p nucleus 124Xe in previous rate variation studies. Purpose: Since the stellar rate for this reaction cannot be determined by a measurement directly, the aim of the present work was to measure the cross section of the inverse 124Xe(α ,γ )128Ba reaction and to compare the results with statistical model predictions used in astrophysical networks. Modified nuclear input can then be used to provide an improved stellar reaction rate. Of great importance is the fact that data below the (α ,n ) threshold was obtained. Studying simultaneously the 124Xe(α ,n )127Ba reaction channel at higher energy allowed to further identify the source of a discrepancy between data and prediction. Method: The 124Xe(α ,γ )128Ba and 124Xe(α ,n )127Ba cross sections were measured with the activation method using a thin window 124Xe gas cell and an α beam from a cyclotron accelerator. The studied energy range was between Eα=11 and 15 MeV close above the astrophysically relevant energy range. Results: The obtained cross sections are compared with Hauser-Feshbach statistical model calculations. The experimental cross sections are smaller than standard predictions previously used in astrophysical calculations. As a dominating source of the difference, the theoretical α width was identified. The experimental data suggest an α width lower by at least a factor of 0.125 in the astrophysically important energy range. Conclusions: An upper limit for the 128Ba(γ ,α )124Xe stellar rate was inferred from our measurement. The impact of this rate and lower rates was studied in two different models for core-collapse supernova explosions of 25 M⊙ stars. A significant contribution to

  17. cine-Substitution reactions of metallabenzenes: an experimental and computational study.

    PubMed

    Wang, Tongdao; Zhang, Hong; Han, Feifei; Long, Lipeng; Lin, Zhenyang; Xia, Haiping

    2013-08-12

    Alkali-resistant osmabenzene [(SCN)2(PPh3)2Os{CHC(PPh3)CHCICH}] (2) can undergo nucleophilic aromatic substitution with MeOH or EtOH to give cine-substitution products [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHCR}] (R=OMe (3), OEt(4)) in the presence of strong alkali. However, the reactions of compound 2 with various amines, such as n-butylamine and aniline, afford five-membered ring species, [(SCN)2(PPh3)2Os{CH=C(PPh3)CH=C(CH=NHR')}] (R'=nBu(8), Ph(9)), in addition to the desired cine-substitution products, [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHC(NHR')}] (R'=nBu(6), Ph(7)), under similar reaction conditions. The mechanisms of these reactions have been investigated in detail with the aid of isotopic labeling experiments and density functional theory (DFT) calculations. The results reveal that the cine-substitution reactions occur through nucleophilic addition, dissociation of the leaving group, protonation, and deprotonation steps, which resemble the classical "addition-of-nucleophile, ring-opening, ring-closure" (ANRORC) mechanism. DFT calculations suggest that, in the reaction with MeOH, the formation of a five-membered metallacycle species is both kinetically and thermodynamically less favorable, which is consistent with the experimental results that only the cine-substitution product is observed. For the analogous reaction with n-butylamine, the pathway for the formation of the cine-substitution product is kinetically less favorable than the pathway for the formation of a five-membered ring species, but is much more thermodynamically favorable, again consistent with the experimental conversion of compound 8 into compound 6, which is observed in an in situ NMR experiment with an isolated pure sample of 8.

  18. Matching of experimental and statistical-model thermonuclear reaction rates at high temperatures

    NASA Astrophysics Data System (ADS)

    Newton, Joseph; Longland, Richard; Iliadis, Christian

    2009-05-01

    Reliable reaction rates at high stellar temperatures are necessary for the study of advanced stellar burning stages, supernovae and x-ray bursts. We suggest a new procedure for extrapolating experimental thermonuclear reaction rates to these higher temperatures (T > 1 GK) using statistical model (Hauser-Feshbach) results. Current, generally accepted, procedures involve the use of the Gamow peak, which has been shown to be unreliable for narrow resonances at high stellar temperatures [1]. Our new approach defines the effective thermonuclear energy range (ETER) by using the 8^th, 50^th and 92^nd percentiles of the cumulative distribution of fractional resonant reaction contributions. The ETER is then used to define a reliable temperature for matching experimental rates to Hauser-Feshbach rates. The resulting matching temperature is often well above the previous result using the Gamow peak concept. Our new method should provide more accurate extrapolated rates since Hauser-Feshbach rates are more reliable at higher temperatures. These ideas are applied to 21 (p,γ), (p,α) and (α,γ) reactions on a range of A = 20-40 target nuclei and results will be presented. [0pt] [1] J. R. Newton, C. Iliadis, A. E. Champagne, A. Coc, Y. Parpottas and R. Ugalde, Phys. Rev. C 75, 045801 (2007).

  19. Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions

    SciTech Connect

    Gold, T.; Gordon, B.E.; Streett, W.; Bilson, E.; Patnaik, P.

    1986-11-01

    In order to assess the possible role of methane in petroleum formation, they studied the reaction of methane with liquid hydrocarbons representing the three main classes of compounds dominant in crude oil. The experimental reaction conditions simulated those of a geological setting for petroleum formations, at 1000 atm and 150-250/sup 0/C in the presence of montmorillonite, a natural clay catalyst. Since they expected very slow reaction rates and thus low yields, we used /sup 14/C labeled methane to trace the reaction products. They report here the detection of ethylbenzene and ethyltoluene formed by the interaction of methane with benzene and toluene, respectively. Instead of methylation of benzene, predominantly C/sub 2/ addition occurred, although very small amounts of products corresponding to C/sub 1/ addition were also detected. They propose that catalytic dissociation of methane occurred, forming ethylene which participated in a Friedel-Crafts type alkylation process of the aromatic ring on the catalyst surface. In addition to ring alkylation, side reactions such as polymerization of unsaturates (ethylene, acetylene) appeared to have occurred on the catalyst surface. The nature of these polymers is yet to be determined.

  20. Experimental studies of reaction front barriers in a three-dimensional nested vortex flow

    NASA Astrophysics Data System (ADS)

    Doan, Minh; Lilienthal, Katie; Solomon, Tom

    2015-11-01

    We present experiments that study the behavior of reaction fronts propagating in three-dimensional, laminar fluid flows. The primary flow is a chain of nested horizontal and vertical vortices, a flow that has been shown to produce chaotic mixing even if time-independent. The fronts are produced by the excitable, Ruthenium-catalyzed Belousov-Zhabotinsky chemical reaction. When illuminated with a near-UV laser beam, the Ru indicator fluoresces everywhere except where there is a reaction front. By scanning the laser beam and imaging from above, we are able to do a full 3D-visualization of the reaction front propagating through the flow. The fronts are observed to encounter tube- and sheet-like barriers, whose properties we measure experimentally. We interpret the results by generalizing a recent theory of ``burning invariant manifolds'' which have been shown previously to act as one-way barriers for reaction fronts propagating in two-dimensional fluid flows. Supported by NSF Grants DMR-1361881, DUE-1317446 and PHY-1156964.

  1. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    PubMed Central

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-01-01

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056

  2. Experimental and numerical investigation of coupled microvibration dynamics for satellite reaction wheels

    NASA Astrophysics Data System (ADS)

    Addari, D.; Aglietti, G. S.; Remedia, M.

    2017-01-01

    Microvibrations of a satellite reaction wheel assembly are commonly analysed in either hard-mounted or coupled boundary conditions, though coupled wheel-to-structure disturbance models are more representative of the real environment in which the wheel operates. This article investigates the coupled microvibration dynamics of a cantilever configured reaction wheel assembly mounted on either a stiff or flexible platform. Here a method is presented to cope with modern project necessities: (i) need of a model which gives accurate estimates covering a wide frequency range; (ii) reduce the personnel and time costs derived from the test campaign, (iii) reduce the computational effort without affecting the quality of the results. The method involves measurements of the disturbances induced by the reaction wheel assembly in a hard-mounted configuration and of the frequency and speed dependent dynamic mass of the reaction wheel. In addition, it corrects the approximation due to missing speed dependent dynamic mass in conventional reaction wheel assembly microvibration analysis. The former was evaluated experimentally using a previously designed and validated platform. The latter, on the other hand, was estimated analytically using a finite element model of the wheel assembly. Finally, the validation of the coupled wheel-structure disturbance model is presented, giving indication of the level of accuracy that can be achieved with this type of analyses.

  3. Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions

    NASA Astrophysics Data System (ADS)

    Gold, Thomas; Gordon, Benjamin E.; Streett, William; Bilson, Elizabeth; Patnaik, Pradyot

    1986-11-01

    In order to assess the possible role of methane in petroleum formation, we studied the reaction of methane with liquid hydrocarbons representing the three main classes of compounds dominant in crude oil. The experimental reaction conditions simulated those of a geological setting for petroleum formations, at 1000 atm and 150-250°C in the presence of montmorillonite, a natural clay catalyst. Since we expected very slow reaction rates and thus low yields, we used 14C labeled methane to trace the reaction products. We report here the detection of ethylbenzene and ethyltoluene formed by the interaction of methane with benzene and toluene, respectively. Instead of methylation of benzene, predominantly C 2 addition occurred, although very small amounts of products corresponding to C 1 addition were also detected. We propose that catalytic dissociation of methane occurred, forming ethylene which participated in a Friedel-Crafts type alkylation process of the aromatic ring on the catalyst surface. In addition to ring alkylation, side reactions such as polymerization of unsaturates (ethylene, acetylene) appeared to have occurred on the catalyst surface. The nature of these polymers is yet to be determined.

  4. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading.

    PubMed

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-11-18

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature.

  5. Experimental and Computational Studies of the Reactions of N and O Atoms with Small Heterocyclic Anions.

    PubMed

    Wang, Zhe-Chen; Bierbaum, Veronica M

    2017-05-18

    The existence of heterocyclic aromatic anions in extraterrestrial environments, such as the upper atmosphere of Titan, has been recently confirmed by data from the Cassini spacecraft. Nitrogen and oxygen atoms are also common species in the ionospheres of planets and moons and in the interstellar medium. In the current work, we extend previous studies to explore the reactivity of five-membered ring aromatic anions that contain nitrogen, oxygen, or sulfur (deprotonated pyrrole, furan, and thiophene) with N and O atoms both experimentally and computationally. Furanide and thiophenide anions react with the N atom by associative electron detachment (AED). All three anions react with the O atom both by AED and by processes that form ionic products. The reaction of pyrrolide anion with the O atom generates only one ionic product C4H3NO(-), corresponding to an O addition and H loss process. The corresponding process is observed as the major channel for the reaction of furanide anion with the O atom while other ionic products HCOO(-) and C2H(-) are also formed. The reaction of thiophenide with the O atom is more complex, and four ionic products are generated, of which three are sulfur-containing ions. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions, which are relevant to ionospheric and interstellar chemistry.

  6. Copolymerizations of epsilon-caprolactone and glycolide-a comparison of tin(II)octanoate and bismuth(III)subsalicylate as initiators.

    PubMed

    Kricheldorf, Hans R; Rost, Simon

    2005-01-01

    Copolymerizations of epsilon-caprolactone (epsilonCL) and glycolide (GL) were conducted in bulk at 120 degrees C with variation of the reaction time. Either Sn(II) 2-ethylhexanoate (SnOct(2)) or bismuth(III)subsalicylate (BiSS) were used as initiators combined with tetra(ethylene glycol) as co-initiator. The resulting copolyesters were analyzed by (1)H and (13)C NMR spectroscopy with regard to the total molar composition and to the sequence of the comonomers. Furthermore, two series of copolymerizations (either Sn- or Bi-initiated) were performed at constant time with variation of the temperature. It was found that BiSS favors alternating sequences more than SnOct(2). Time-conversion curves and MALDI-TOF mass spectrometry of homopolymerization suggest that SnOct(2) is the more efficient transesterification catalyst. A hypothetical reaction mechanism is discussed.

  7. Enhanced electromagnetic loss of polybenzoxazole copolymerized with etched multiwalled carbon nanotube via direct Friedel-Crafts acylation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Qian, Jun; Teng, Xin; Zhang, Kan; Zhuang, Qixin; Han, Zhewen

    2014-04-01

    Etched multiwalled carbon nanotube (EMCNT) was prepared via an in situ reaction between Si and MCNT induced by the reaction between Na and I2. Subsequently, EMCNTs was subjected to a copolymerization reaction with 4,6-diaminoresorcinol salt (DAR·2HCl) and terephthalic acid (TA) in polyphosphoric acid (PPA) by Friedel-Crafts acylation reaction without any acid treatment or modification. The structure and morphology of the as-prepared poly(p-phenylene benzobisoxazole) (PBO)/EMCNT nanocomposites were characterized by x-ray diffraction (XRD), Raman spectra, and transmission electron microscopy (TEM). The scanning electronic microscope (SEM) images indicated that the EMCNTs can disperse in PBO matrix uniformly without agglomeration. And the electromagnetic properties of the obtained PBO/EMCNT nanocomposites characterized by vector network analyzer (VNA) showed that the introduced PBO/EMCNT composites exhibited a greater enhancement in dielectric loss and magnetic loss than PBO.

  8. Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach

    NASA Astrophysics Data System (ADS)

    Fuchs, G. W.; Cuppen, H. M.; Ioppolo, S.; Romanzin, C.; Bisschop, S. E.; Andersson, S.; van Dishoeck, E. F.; Linnartz, H.

    2009-10-01

    Context: Hydrogenation reactions of CO in inter- and circumstellar ices are regarded as an important starting point in the formation of more complex species. Previous laboratory measurements by two groups of the hydrogenation of CO ices provided controversial results about the formation rate of methanol. Aims: Our aim is to resolve this controversy by an independent investigation of the reaction scheme for a range of H-atom fluxes and different ice temperatures and thicknesses. To fully understand the laboratory data, the results are interpreted theoretically by means of continuous-time, random-walk Monte Carlo simulations. Methods: Reaction rates are determined by using a state-of-the-art ultra high vacuum experimental setup to bombard an interstellar CO ice analog with H atoms at room temperature. The reaction of CO + H into H2CO and subsequently CH3OH is monitored by a Fourier transform infrared spectrometer in a reflection absorption mode. In addition, after each completed measurement, a temperature programmed desorption experiment is performed to identify the produced species according to their mass spectra and to determine their abundance. Different H-atom fluxes, morphologies, and ice thicknesses are tested. The experimental results are interpreted using Monte Carlo simulations. This technique takes into account the layered structure of CO ice. Results: The formation of both formaldehyde and methanol via CO hydrogenation is confirmed at low temperature (T = 12{-}20 K). We confirm that the discrepancy between the two Japanese studies is caused mainly by a difference in the applied hydrogen atom flux, as proposed by Hidaka and coworkers. The production rate of formaldehyde is found to decrease and the penetration column to increase with temperature. Temperature-dependent reaction barriers and diffusion rates are inferred using a Monte Carlo physical chemical model. The model is extended to interstellar conditions to compare with observational H2CO/CH3OH data.

  9. Concerning the deactivation of cobalt(III)-based porphyrin and salen catalysts in epoxide/CO2 copolymerization.

    PubMed

    Xia, Wei; Salmeia, Khalifah A; Vagin, Sergei I; Rieger, Bernhard

    2015-03-09

    Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP = tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides.

  10. Reaction Mechanism of 4-Chlorobiphenyl and the NO3 Radical: An Experimental and Theoretical Study.

    PubMed

    Shi, Jin; Bi, Wenlong; Li, Shenmin; Dong, Wenbo; Chen, Jianmin

    2017-05-11

    Experiment and theoretical chemistry calculations were conducted to elucidate the mechanism of the reaction between 4-chlorobiphenyl (4-CB) and the NO3 radical. The degradation of PCBs was investigated mechanistically through transient absorption spectroscopy technology and high-accuracy theoretical calculation by using 4-CB as the model. Laser flash photolysis (LFP) experiments were performed at 355 nm. The main intermediate was analyzed through transient absorption spectroscopy and identified to be a charge transfer complex (CTC). The final products were identified through GC-MS analysis. The ground states and excited states of the reactants were calculated through density functional theory (DFT) method. The absorption bands at 400 and 700 nm show good agreement with the experimental results. The ratio of absorbance at 400 and 700 nm is 1.6, and the experimental value is 1.8. Analysis of the charge population indicated that one unit charge transfer from 4-CB to NO3. The entire reaction process was divided into two phases. In the first phase, the CTC intermediate was formed by electrostatic attraction between 4-CB and the NO3 radical. In the second phase, the most important channel of subsequent reactions is the σ-complex as an intermediate formed by N-C coupling. The final product 4-chloro,2-nitrobiphenyl was generated with the breakage of BC-H and BN-O, and benzene derivatives were formed by other channels.

  11. Chemical morphogenesis: recent experimental advances in reaction-diffusion system design and control.

    PubMed

    Szalai, István; Cuiñas, Daniel; Takács, Nándor; Horváth, Judit; De Kepper, Patrick

    2012-08-06

    In his seminal 1952 paper, Alan Turing predicted that diffusion could spontaneously drive an initially uniform solution of reacting chemicals to develop stable spatially periodic concentration patterns. It took nearly 40 years before the first two unquestionable experimental demonstrations of such reaction-diffusion patterns could be made in isothermal single phase reaction systems. The number of these examples stagnated for nearly 20 years. We recently proposed a design method that made their number increase to six in less than 3 years. In this report, we formally justify our original semi-empirical method and support the approach with numerical simulations based on a simple but realistic kinetic model. To retain a number of basic properties of real spatial reactors but keep calculations to a minimal complexity, we introduce a new way to collapse the confined spatial direction of these reactors. Contrary to similar reduced descriptions, we take into account the effect of the geometric size in the confinement direction and the influence of the differences in the diffusion coefficient on exchange rates of species with their feed environment. We experimentally support the method by the observation of stationary patterns in red-ox reactions not based on oxihalogen chemistry. Emphasis is also brought on how one of these new systems can process different initial conditions and memorize them in the form of localized patterns of different geometries.

  12. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach

    NASA Astrophysics Data System (ADS)

    De Angelis, S. H.; Larsen, J.; Coombs, M.; Dunn, A.; Hayden, L.

    2015-09-01

    Magmatic minerals record the pre-eruptive timescales of magma ascent and mixing in crustal reservoirs and conduits. Investigations of the mineral records of magmatic processes are fundamental to our understanding of what controls eruption style, as ascent rates and magma mixing processes are well known to control and/or trigger potentially hazardous explosive eruptions. Thus, amphibole reaction rims are often used to infer pre-eruptive magma dynamics, and in particular to estimate magma ascent rates. However, while several experimental studies have investigated amphibole destabilization during decompression, only two investigated thermal destabilization relevant to magma mixing processes. This study examines amphibole decomposition experimentally through isobaric heating of magnesio-hornblende phenocrysts within a natural high-silica andesite glass. The experiments first equilibrated for 24 h at 870 °C and 140 MPa at H2O-saturated conditions and ƒO2 ∼ Re-ReO prior to rapid heating to 880, 900, or 920 °C and hold times of 3-48 h. At 920 °C, rim thicknesses increased from 17 μm after 3 h, to 55 μm after 12 h, and became pseudomorphs after longer durations. At 900 °C, rim thicknesses increased from 7 μm after 3 h, to 80 μm after 24 h, to pseudomorphs after longer durations. At 880 °C, rim thicknesses increased from 7 μm after 3 h, to 18 μm after 36 h, to pseudomorphs after 48 h. Reaction rim microlites vary from 5-16 μm in size, with no systematic relationship between crystal size and the duration or magnitude of heating. Time-averaged rim microlite growth rates decrease steadily with increasing experimental duration (from 3.97 ×10-7 mms-1 to 3.1 to 3.5 ×10-8 mms-1). Time-averaged microlite nucleation rates also decrease with increasing experimental duration (from 1.2 ×103mm-3s-1 to 5.3 mm-3 s-1). There is no systematic relationship between time-averaged growth or nucleation rates and the magnitude of the heating step. Ortho- and clinopyroxene

  13. Amphibole reaction rims as a record of pre-eruptive magmatic heating: An experimental approach

    USGS Publications Warehouse

    De Angelis, S. H.; Larsen, J.; Coombs, Michelle L.; Dunn, A.; Hayden, Leslie A.

    2015-01-01

    Magmatic minerals record the pre-eruptive timescales of magma ascent and mixing in crustal reservoirs and conduits. Investigations of the mineral records of magmatic processes are fundamental to our understanding of what controls eruption style, as ascent rates and magma mixing processes are well known to control and/or trigger potentially hazardous explosive eruptions. Thus, amphibole reaction rims are often used to infer pre-eruptive magma dynamics, and in particular to estimate magma ascent rates. However, while several experimental studies have investigated amphibole destabilization during decompression, only two investigated thermal destabilization relevant to magma mixing processes. This study examines amphibole decomposition experimentally through isobaric heating of magnesio-hornblende phenocrysts within a natural high-silica andesite glass. The experiments first equilibrated for 24 h at 870 °C and 140 MPa at H2O-saturated conditions and ƒO2 ∼ Re–ReO prior to rapid heating to 880, 900, or 920 °C and hold times of 3–48 h. At 920 °C, rim thicknesses increased from 17 μm after 3 h, to 55 μm after 12 h, and became pseudomorphs after longer durations. At 900 °C, rim thicknesses increased from 7 μm after 3 h, to 80 μm after 24 h, to pseudomorphs after longer durations. At 880 °C, rim thicknesses increased from 7 μm after 3 h, to 18 μm after 36 h, to pseudomorphs after 48 h. Reaction rim microlites vary from 5–16 μm in size, with no systematic relationship between crystal size and the duration or magnitude of heating. Time-averaged rim microlite growth rates decrease steadily with increasing experimental duration (from  to 3.1 to ). Time-averaged microlite nucleation rates also decrease with increasing experimental duration (from  to 5.3 mm−3 s−1). There is no systematic relationship between time-averaged growth or nucleation rates and the magnitude of the heating step. Ortho- and clinopyroxene together constitute 57–90

  14. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    PubMed

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N(t)Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N(t)Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  15. An experimental and theoretical study of reaction mechanisms between nitriles and hydroxylamine.

    PubMed

    Vörös, Attila; Mucsi, Zoltán; Baán, Zoltán; Timári, Géza; Hermecz, István; Mizsey, Péter; Finta, Zoltán

    2014-10-28

    The industrially relevant reaction between nitriles and hydroxylamine yielding amidoximes was studied in different molecular solvents and in ionic liquids. In industry, this procedure is carried out on the ton scale in alcohol solutions and the above transformation produces a significant amount of unexpected amide by-product, depending on the nature of the nitrile, which can cause further analytical and purification issues. Although there were earlier attempts to propose mechanisms for this transformation, the real reaction pathway is still under discussion. A new detailed reaction mechanistic explanation, based on theoretical and experimental proof, is given to augment the former mechanisms, which allowed us to find a more efficient, side-product free procedure. Interpreting the theoretical results obtained, it was shown that the application of specific imidazolium, phosphonium and quaternary ammonium based ionic liquids could decrease simultaneously the reaction time while eliminating the amide side-product, leading to the targeted product selectively. This robust and economic procedure now affords a fast, selective amide free synthesis of amidoximes.

  16. Single particle refuse-derived fuel devolatilization: Experimental measurements of reaction products

    SciTech Connect

    Lai, Weichuan; Krieger-Brockett, B. . Dept. of Chemical Engineering)

    1993-11-01

    The authors present experimentally measured devolatilization product yields from single particles of refuse-derived fuel (RDF), a more uniform, transportable municipal solid waste. Disposal costs and environmental concerns have stimulated interest in thermochemical conversion of this material to chemicals and fuels. The composition, reaction conditions, and particle properties were systematically varied over the range found in practice to develop quantitative measures that rank the process controllables' influence on altering the product slate. Specialized regression methods and experimental designs enhanced the accuracy in view of the feed heterogeneity and offer a general method to extract real effects from experimental and sample noise''. The results have been verified successfully using actual commercial RDF and fabricated compositions that surpass those normally found in municipal waste to anticipate the influence of trends in recycling. The results show that the reaction conditions have a greater influence on altering fuel utilization and the relative yields of char, condensibles, and gases than does the composition over the range found in MSW and RDF.

  17. Experimental study and nuclear model calculations of 3He-induced nuclear reactions on zinc

    NASA Astrophysics Data System (ADS)

    Al-Abyad, M.; Mohamed, Gehan Y.; Ditrói, F.; Takács, S.; Tárkányi, F.

    2017-05-01

    Excitation functions of 3He -induced nuclear reactions on natural zinc were measured using the standard stacked-foil technique and high-resolution gamma-ray spectrometry. From their threshold energies up to 27MeV, the cross-sections for natZn (3He, xn) 69Ge, natZn(3He, xnp) 66,67,68Ga, and natZn(3He, x)62,65Zn reactions were measured. The nuclear model codes TALYS-1.6, EMPIRE-3.2 and ALICE-IPPE were used to describe the formation of these products. The present data were compared with the theoretical results and with the available experimental data. Integral yields for some important radioisotopes were determined.

  18. Analytical and experimental investigation of the propagation and attenuation of sound in extended reaction lined ducts

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Dong, S. B.; Walker, B.

    1981-01-01

    Results are presented of an analytical and experimental study of the attenuation and propagation of harmonically excited sound waves in an extended reaction lined cylindrical duct. The duct geometry considered consisted of an annular outer region of bulk material surrounding an inner cylinder of air. The coupled wave equations governing the motion of the sound in both the inner and annular regions were solved numerically. The numerically predicted attenuation and propagation constants were in excellent agreement with measured values using Kevlar as the liner material for plane-wave mode (0,0) excitation over the frequency from 100 to 7,000 Hz. Although the numerical model was verified using Kevlar, it can be used with any fibrous constructed bulk liner. The results of this study demonstrate that a good start has been made on the numerical modelling of the acoustic performance of extended reaction liners.

  19. Experimental investigation of dp → ppn reaction at intermediate energies at Nuclotron

    NASA Astrophysics Data System (ADS)

    Janek, M.; Ladygin, V. P.; Piyadin, S. M.; Gurchin, Yu. V.; Isupov, A. Yu.; Karachuk, J.-T.; Khrenov, A. N.; Kurilkin, A. K.; Kurilkin, P. K.; Livanov, A. N.; Martinska, G.; Reznikov, S. G.; Tarjanyiova, G.; Terekhin, A. A.; Vnukov, I. E.

    2016-11-01

    There are still discrepancies between theory and experimental data in the polarisation observables of dp → ppn reaction in the low and intermediate energies, despite of significant process in the development of theoretical models which include three and more nucleon forces and relativistic effects. The data of dp → ppn reaction have been accumulated at 300, 400 and 500 MeV in the Nuclotron (Dubna, Russia) and partially processed for some kinematic configurations including few in which possible relativistic effects can appear. Kinematic simulation in the framework of ROOT and GEANT4 package have been performed before data processing. Part of the preliminary results are obtained in the form of energy deposit correlations of the two arms working in coincidence and few in the form of kinematic S curve.

  20. Femtochemistry of Norrish type-I reactions: IV. Highly excited ketones--experimental.

    PubMed

    Sølling, Theis I; Diau, Eric W G; Kötting, Carsten; De Feyter, Steven; Zewail, Ahmed H

    2002-01-18

    Femtosecond dynamics of Norrish type-I reactions of cyclic and acyclic ketones have been investigated in real time for a series of 13 compounds using femtosecond-resolved time-of-flight mass spectrometry. A general physical description of the ultrafast processes of ketones excited into a high-lying Rydberg state is presented. It accounts not only for the results that are presented herein but also for the results of previously reported studies. For highly excited ketones, we show that the Norrish type-I reaction is nonconcerted, and that the first bond breakage occurs along the effectively repulsive S2 surface involving the C-C bond in a manner which is similar to that of ketones in the S1 state (E. W.-G. Diau et al. ChemPhysChem 2001, 2, 273-293). The experimental results show that the wave packet motion out of the initial Franck-Condon region and down to the S2 state can be resolved. This femtosecond (fs) internal conversion from the highly excited Rydberg state to the S2 state proceeds through conical intersections (Rydberg-valence) that are accessed through the C=O stretching motion. In one of these conical intersections, the internal energy is guided into an asymmetric stretching mode. This explains the previously reported pronounced nonstatistical nature of the reaction. The second bond breakage involves an excited-state acyl radical and occurs on a time scale that is up to one order of magnitude longer than the first. We discuss the details regarding the ion chemistry, which determines the appearance of the mass spectra that arise from ionization on the fs time scale. The experimental results presented here, aided by the theoretical work reported in paper III, provide a unified picture of Norrish reactions on excited states and on the ground-state potential energy surfaces.

  1. An experimental and computational study of the ions formed by the reaction of cyclopentanone with O-

    NASA Astrophysics Data System (ADS)

    Hoenigman, Rebecca L.; Kato, Shuji; Borden, Weston Thatcher; Bierbaum, Veronica M.

    2005-03-01

    The structures and reactivities of the ions formed by the reaction of cyclopentanone with O- have been studied using flowing afterglow-selected ion flow tube (FA-SIFT) experiments in conjunction with density functional theory (DFT) calculations. Three C5H6O- isomers were found to be generated - cyclopentanone-2,5-diyl radical anion (4-), 2-carbenacyclopentanone radical anion (5-), and cyclopentanone-2,4-diyl radical anion (6-). The large amount of signal loss observed in this reaction is attributed to formation of 2-cyclopentenone radical anion (10-), in which the electron is predicted to be unbound. DFT calculations predict 4- to be the most stable of the bound C5H6O- ions, and FA-SIFT experiments confirm 4- is the major ion formed in this reaction. Bracketing experiments found the proton affinity (PA) of 4- to be 362 +/- 5 kcal/mol and the electron binding energy (EBE) to be ca. 0.5 eV. Although the PA of this species predicted by DFT calculations (363.2 kcal/mol) is consistent with the experimental value, both DFT and ab initio calculations predict an EBE of ca. 1.6 eV for this radical anion. The apparent conflict between the calculated and experimental EBE is resolved by proposing that, in the gas phase bracketing experiments, the electron transfer process leads adiabatically, not to cyclopentanone-2,5-diyl (4), but, by a retro-Nazarov reaction, to the more stable 1,4-pentadien-3-one (18). DFT calculations show that the difference between the computed and measured EBEs of 4- can be accounted for by the calculated difference between the energies of 18 and 4.

  2. Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction.

    PubMed

    Hsieh, Cheng-Chih; Jiang, Chang-Ming; Chou, Pi-Tai

    2010-10-19

    Proton-coupled electron transfer reactions form the basis of many important chemical processes including much of the energy conversion that occurs within living cells. However, much of the physical chemistry that underlies these reaction mechanisms remains poorly understood. In this Account, we report on recent progress in the understanding of excited-state intramolecular proton-coupled electron transfer (PCET) reactions. The strategic design and synthesis of various types of PCET molecules, along with steady-state and femtosecond time-resolved spectroscopy, have uncovered the mechanisms of several excited-state PCET reactions in solution. These experimental advancements correlate well with current theoretical models, in which the proton has quantum motion with a high probability of tunneling. In addition, the rate of proton transfer is commonly incorporated within the rate of rearrangement of solvent molecules. As a result, the reaction activation free energy is essentially governed by the solvent reorganization because the charge redistribution is considered based on a solvent polarity-induced barrier instead of the height of the proton migration barrier. In accord with this theoretical basis, we can rationalize the observation that the proton transfer for many excited-state PCET systems occurs during the solvent relaxation time scale of 1-10 ps: the highly exergonic reaction takes place before the system reaches its equilibrium polarization. Also, we have used various derivatives of proton transfer molecules, especially those of 3-hydroxyflavone to clearly demonstrate how researchers can tune the dynamics of excited-state PCET through changes in the magnitude or direction of the dipole vector within the reaction. Subsequently, using 2-(2'-hydroxyphenyl)benzoxazole as the parent model, we then report on methods for the development of an ideal system for probing PCET reaction. Because future biomedical applications of such systems will likely occur in aqueous

  3. Method of experimental determination of the kinetic constants in fast polymerization reactions in nonisothermal diffusion conditions

    SciTech Connect

    Prochukhan, Yu.A.; Berlin, A.A.; Enikolopyan, N.S.

    1986-09-01

    A new method for the experimental determination of the kinetic constants k/sub p/ and k/sub t/ in fast polymerization reactions on the example of cationic (under the effect of AlCl/sub 3/, BF/sub 3/, and other catalysts) liquid phase polymerization of isobutylene in a flow was suggested. The study of the macrokinetic features of low-temperature polymerization of isobutylene revealed the specific conditions of the occurrence of the process (quasi-ideal displacement) which are characterized by the relative constancy and uniformity of the distribution of the concentrations of the reacting substances along the flow section.

  4. Reaction cross-section calculations using new experimental and theoretical level structure data for deformed nuclei

    SciTech Connect

    Hoff, R.W.; Gardner, D.G.; Gardner, M.A.

    1985-05-01

    A technique for modeling level structures of odd-odd nuclei has been used to construct sets of discrete states with energies in the range 0 to 1.5 MeV for several nuclei in the rare-earth and actinide regions. The accuracy of the modeling technique was determined by comparison with experimental data. Examination was made of what effect the use of these new, more complete sets of discrete states has on the calculation of level densities, total reaction cross sections, and isomer ratios. 9 refs.

  5. Metabolism of environmental chemicals by plants - copolymerization into lignin

    SciTech Connect

    Sandermann, H. Jr.; Scheel, D.; Trenck, T.v.d.

    1983-01-01

    Plants have frequently been found to incorporate xenobiotics into ill-defined ''insoluble'' metabolite fractions. Evidence for the lignin nature of such fractions and for the formation of ''insoluble'' metabolite fractions in sterile plant cell cultures is summarized. In several cases, total ''insoluble'' plant metabolite fractions of pesticides were found to be excreted undigested by rats and sheep. Conclusive evidence for covalent incorporation of chemicals into lignin has only recently been obtained. In the case of herbicide 2,4-dichlorophenoxyacetic acid and of the fungicide pentachlorophenol, the derived pesticide/lignin copolymers were characterized by gel permeation chromatography in dimethylformamide, spectral methods, and chemical degradation. In independent studies, artificial lignin was prepared from coniferyl alcohol with the aid of peroxidase/H/sub 2/O/sub 2/. Benzo(..cap alpha..)pyrene quinones and chlorinated anilines could be copolymerized, and the resulting copolymer species were characterized with regard to size distribution and spectral properties. Detailed /sup 1/H- and /sup 13/C-NMR spectroscopic studies showed that a major mechanism of copolymerization of the anilines consisted of a nucleophilic addition to the benzylic ..cap alpha..-carbon of lignol quinone-methide intermediates. In addition, covalent linkages involving the aromatic rings were also formed. 61 references, 3 figures, 4 tables.

  6. Graft copolymerization of acrylic acid onto polyamide fibers

    NASA Astrophysics Data System (ADS)

    Makhlouf, Chahira; Marais, Stéphane; Roudesli, Sadok

    2007-04-01

    The grafting of acrylic acid (AA) monomer (CH 2dbnd CH sbnd COOH) on polyamide 6.6 monofilaments (PA 6.6) using benzoyl peroxide (BPO) as initiator was carried out in order to enhance the hydrophilic nature of fibers. The grafting rate depends on the AA concentration, the BPO concentration, the time and the temperature of reaction. The best conditions for optimum rate of grafting were obtained with a AA concentration of 0.5 M, a BPO concentration of 0.03 M, a reaction temperature of T = 85 °C and a reaction time of 120 mn. The fiber surface has been investigated by many experimental techniques of characterization such as Fourier transform infrared spectroscopy (FTIR), calorimetric analysis (DSC), scanning electron microscopy (SEM), and contact angle measurements. The effect of grafting of acrylic acid onto PA 6.6 fibers on their moisture and mechanical resistances was analyzed from water sorption and elongation at break measurements. The analysis of the experimental data shows clearly the efficiency of the grafting reaction used, leading to a significant increase of the hydrophilic character of the PA 6.6 surface.

  7. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  8. Dissociation of experimental allergic encephalomyelitis protective effect and allergic side reactions in tolerization with neuroantigen.

    PubMed

    Lichtenegger, Felix S; Kuerten, Stefanie; Faas, Susan; Boehm, Bernhard O; Tary-Lehmann, Magdalena; Lehmann, Paul V

    2007-04-15

    Administration of autoantigens under conditions that induce type 2 immunity frequently leads to protection from T cell-mediated autoimmune diseases. Such treatments, however, are inherently linked to the induction of IgG1 Abs and to the risk of triggering anaphylactic reactions. We studied the therapeutic benefit vs risk of immune deviation in experimental allergic encephalomyelitis of SJL mice induced by MP4, a myelin basic protein-proteolipid protein (PLP) fusion protein. MP4 administration in IFA induced type 2 T cell immunity, IgG1 Abs, and experimental allergic encephalomyelitis protection, and all three were enhanced by repeat injections. Despite high Ab titers, anaphylactic side reactions were not observed when MP4 was repeatedly injected in IFA or as soluble Ag s.c. In contrast, lethal anaphylaxis was seen after s.c. injection of soluble PLP:139-151 peptide, but not when the peptide was reinjected in IFA. Therefore, the Ab response accompanying the immune therapy constituted an anaphylactic risk factor only when the autoantigen was not retained in an adjuvant and when it was small enough to be readily disseminated within the body. Taken together, our data show that treatment regimens can be designed to boost the protective type 2 T cell response while avoiding the risk of Ab-mediated allergic side effects.

  9. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  10. Recent experimental results in sub- and near-barrier heavy-ion fusion reactions

    NASA Astrophysics Data System (ADS)

    Montagnoli, Giovanna; Stefanini, Alberto M.

    2017-08-01

    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus is mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations overpredict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.

  11. Reaction time effects in lab- versus Web-based research: Experimental evidence.

    PubMed

    Hilbig, Benjamin E

    2016-12-01

    Although Web-based research is now commonplace, it continues to spur skepticism from reviewers and editors, especially whenever reaction times are of primary interest. Such persistent preconceptions are based on arguments referring to increased variation, the limits of certain software and technologies, and a noteworthy lack of comparisons (between Web and lab) in fully randomized experiments. To provide a critical test, participants were randomly assigned to complete a lexical decision task either (a) in the lab using standard experimental software (E-Prime), (b) in the lab using a browser-based version (written in HTML and JavaScript), or (c) via the Web using the same browser-based version. The classical word frequency effect was typical in size and corresponded to a very large effect in all three conditions. There was no indication that the Web- or browser-based data collection was in any way inferior. In fact, if anything, a larger effect was obtained in the browser-based conditions than in the condition relying on standard experimental software. No differences between Web and lab (within the browser-based conditions) could be observed, thus disconfirming any substantial influence of increased technical or situational variation. In summary, the present experiment contradicts the still common preconception that reaction time effects of only a few hundred milliseconds cannot be detected in Web experiments.

  12. 30S(α , p) Thermonuclear Reaction Rate from Experimental Level Structure of 34Ar

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Chen, A. A.; Kubono, S.; Yamaguchi, H.; Binh, D. N.; Chen, J.; Cherubini, S.; Duy, N. N.; Hashimoto, T.; Hayakawa, S.; Iwasa, N.; Jung, H. S.; Kato, S.; Kwon, Y. K.; Nishimura, S.; Ota, S.; Setoodehnia, K.; Teranishi, T.; Tokieda, H.; Yamada, T.; Yun, C. C.; Zhang, L. Y.

    Type I X-ray bursts are the most frequent thermonuclear explosions in the galaxy. Owing to their recurrence from known astronomical objects, burst morphology is extensively documented, and they are modeled very successfully as neutron-deficient, thermonuclear runaway on the surface of accreting neutron stars. While reaction networks include hundreds of isotopes and thousands of nuclear processes, only a small subset appear to play a pivotal role. One such reaction is the 30S(α , p) reaction, which is believed to be a crucial link in the explosive helium burning which is responsible for the large energy flux. However, very little experimental information is available concerning the cross section itself, nor the 34Ar compound nucleus at the relevant energies. We performed the first study of the entrance channel via 30S alpha resonant elastic scattering using a state-of-the-art, low-energy, 30S radioactive ion beam. The measurement was performed in inverse kinematics using a newly-developed active target. An R-matrix analysis of the excitation function reveals previously unknown resonances, including their quantum properties of spin, parity, width, and energy.

  13. Kinetic Studies on the Reaction of Chlorosulfonyl Isocyanate with Monofluoralkenes: Experimental Evidence for Both Stepwise and Concerted Mechanisms, and a Pre-equilibrium Complex on the Reaction Pathway

    DTIC Science & Technology

    2012-12-14

    lactams that are readily reduced to β-lactams. Substitution of a vinyl hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so...hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so that a concerted pathway is favored. Rate constants were measured for...step pathway has not been demonstrated experimentally.3c In a recent paper, we found that substituting a hydrogen for a fluorine on the π-bond of an

  14. Reactivity ratios and sequence structures of the copolymers prepared using photo-induced copolymerization of MMA with MTMP.

    PubMed

    Liu, Xiaoxuan; Zhang, Yongtao; Cui, Yanyan; Dong, Zhixian

    2012-05-01

    4-Methacryloyl-2,2,6,6-tetramethyl-piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo-induced copolymerization of methyl methacrylate (MMA, M(1)) with MTMP (M(2)) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using (1)H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r(1)= 0.37 and r(2)= 1.14 from extended Kelen-Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using (1)H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr', and lr' in the syndiotactic configuration are found. The sequence-length distribution in the MMA/MTMP copolymers is also obtained. For f(1)= 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f(1)= 0.6, the alternating tendency prevails and a large number of mono-sequences are formed; further up to f(1)= 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA.

  15. Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material.

    PubMed

    Tankhiwale, Rasika; Bajpai, S K

    2009-03-01

    The present work describes ceric ammonium nitrate (CAN) initiated graft copolymerization of acrylamide onto cellulose-based filter paper followed by entrapment of silver nanoparticles. The copolymerization was carried out in aqueous solution, containing 2M acrylamide monomer and 16mM N,N'-methylene bisacrylamide (MB) crosslinker. The optimum initiation time and grafting reaction temperature were found to be 15min and 30 degrees C, respectively. The silver nanoparticles were loaded into grafted filter paper by equilibration in silver nitrate solution followed by citrate reduction. The formation of silver nanoparticles has been confirmed by TEM and SAED analysis. The novel nano silver loaded filter paper has been investigated for its antimicrobial properties against E.coli. This newly developed material shows strong antibacterial property and thus offers its candidature for possible use as antibacterial food-packaging material.

  16. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures.

    PubMed

    Van Zee, Nathan J; Coates, Geoffrey W

    2015-02-23

    The alternating copolymerization of propylene oxide with terpene-based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels-Alder adduct of α-terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg ) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities.

  17. Copolymerization as a Strategy to Combine Epoxidized Linseed Oil and Furfuryl Alcohol: The Design of a Fully Bio-Based Thermoset.

    PubMed

    Pin, Jean-Mathieu; Guigo, Nathanaël; Vincent, Luc; Sbirrazzuoli, Nicolas; Mija, Alice

    2015-12-21

    Epoxidized linseed oil and furfuryl alcohol are bio-sourced monomers known for their high-potential applications in materials science. In this work, we propose the association of these monomers through copolymerization reactions with the target to design fully bio-based thermosets. Herein, investigations on cationic polymerization reactivity have been explored using differential scanning calorimetry. The obtained structures have been confirmed by IR spectroscopy and 2 D NMR spectroscopy, which revealed the principal chain connections. In spite of the multiple capabilities of chemical connections, which include copolymerization and cross-linking, the obtained networks are homogeneous as confirmed by dynamic mechanical analysis and SEM. Furthermore, the copolymer demonstrates a semiductile behavior if subjected to tensile measurements (tensile strain at break ≈40 %), which is a significant advance in terms of its applications as a furanic bio-based thermoset material.

  18. Anaphylactoid reaction caused by sodium ceftriaxone in two horses experimentally infected by Borrelia burgdorferi.

    PubMed

    Basile, Roberta Carvalho; Rivera, Gabriela Gomes; Del Rio, Lara Antoniassi; de Bonis, Talissa Camargo Mantovani; do Amaral, Gabriel Paiva Domingues; Giangrecco, Edson; Ferraz, Guilherme; Yoshinari, Natalino Hajime; Canola, Paulo Aléscio; Queiroz Neto, Antonio

    2015-08-12

    Lyme borreliosis is a disease transmitted by ticks to mammals, especially in horses and humans. Caused by a spirochete Borrelia burgdorferi, it can result in lameness, arthritis, carditis, dermatitis and neurological signs. Anaphylactoid reactions are severe responses caused by direct action of substances (drugs, toxins), which can pose risks to life. Still poorly documented in horses, these reactions are caused by the effects of inflammatory mediators such as histamine, kinins and arachidonic acid metabolites. The last two are the most clinically relevant for the species. The simultaneous occurrence of anaphylactoid reaction in two horses experimentally infected by Borrelia burgdorferi undergoing intravenous treatment with ceftriaxone sodium is reported. It was administered 4.7 × 10(8) spirochetes intradermal and subcutaneous applications in both horses to evaluate clinical aspects of the Lyme disease, 95 days before the application of sodium ceftriaxone. During the administration, one horse (a gelding) showed immediate and severe anaphylactoid symptoms such as urticaria, dyspnea, tachycardia, and eyelid edema, which were controlled by injecting dexamethasone. After 1 day, it expressed signs of abdominal discomfort, caused by severe bloat, which was treated surgically via celiotomy. Subsequently, this gelding had piroplasmosis and severe anemia, requiring treatment with an antimicrobial and blood transfusion. Second horse (a mare) showed signs of hypotension during the application of the antibiotic, which disappeared only when the application was interrupted. Days after the event, the mare developed moderate large colon bloat, which was treated with medication only. Subsequently the mare was evolved into the prodromal phase of laminitis in one of the forelimbs, which was treated for 10 days with non-steroidal anti-inflammatory and rheology modifying drugs and cryotherapy. From the two cases presented here, it does appear that sodium ceftriaxone can induce

  19. Dynamics of the reaction O(/sup 3/P) + HBr: experimental investigation and theoretical modeling

    SciTech Connect

    McKendrick, K.G.; Rakestraw, D.J.; Zhang, R.; Zare, R.N.

    1988-09-22

    The reaction O(/sup 3/P) + HBr ..-->.. OH(X/sup 2/II) + Br has been investigated experimentally. Two distinct approaches were pursued, differing primarily in the method of O(/sup 3/P) atom production. The first involved crossing a pulsed, supersonic free jet of HBr with an effusive jet of O(/sup 3/P) atoms produced by microwave discharge in O/sub 2/, and the second employed laser photolysis of NO/sub 2/ in a bulk mixture with HBr. The two methods gave rather similar OH product state distributions with a strong vibrational inversion (v'' = 0, 1, 2 in the ratio 0:9:1) and substantial rotational excitation extending to the limit of available energy. The dynamics appear consistent with expectations for the kinematically constrained reaction heavy + light-heavy ..-->.. heavy-light + heavy. Evidence was found for a contribution from reaction of (HBr)/sub n/ van der Waals clusters in the crossed-beam experiments, and more authentic detailed distributions are believed to be obtained via the laser photolysis approach. Nonstatistical populations of the OH fine structure states were observed. A minor channel (/approximately/ 6%) producing spin-orbit excited Br(/sup 2/P/sub 1/2/) is proposed as an explanation for an apparent anomaly in the OH(v''=1) rotational distribution. The O(/sup 3/P) + HBr system is contrasted with previously studied reactions of O(/sup 3/P) with organic molecules, in which the OH product exhibits little rotational excitation. The disparate behavior of the two systems is rationalized by consideration of the different angular dependence of model potential surfaces which satisfactorily reproduce the observed dynamics in each case.

  20. Experimental verification of a computational technique for determining ground reactions in human bipedal stance.

    PubMed

    Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2007-01-01

    We have developed a three-dimensional (3D) biomechanical model of human standing that enables us to study the mechanisms of posture and balance simultaneously in various directions in space. Since the two feet are on the ground, the system defines a kinematically closed-chain which has redundancy problems that cannot be resolved using the laws of mechanics alone. We have developed a computational (optimization) technique that avoids the problems with the closed-chain formulation thus giving users of such models the ability to make predictions of joint moments, and potentially, muscle activations using more sophisticated musculoskeletal models. This paper describes the experimental verification of the computational technique that is used to estimate the ground reaction vector acting on an unconstrained foot while the other foot is attached to the ground, thus allowing human bipedal standing to be analyzed as an open-chain system. The computational approach was verified in terms of its ability to predict lower extremity joint moments derived from inverse dynamic simulations performed on data acquired from four able-bodied volunteers standing in various postures on force platforms. Sensitivity analyses performed with model simulations indicated which ground reaction force (GRF) and center of pressure (COP) components were most critical for providing better estimates of the joint moments. Overall, the joint moments predicted by the optimization approach are strongly correlated with the joint moments computed using the experimentally measured GRF and COP (0.78 < or = r(2) < or = 0.99,median,0.96) with a best-fit that was not statistically different from a straight line with unity slope (experimental=computational results) for postures of the four subjects examined. These results indicate that this model-based technique can be relied upon to predict reasonable and consistent estimates of the joint moments using the predicted GRF and COP for most standing postures.

  1. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.

    PubMed

    Müller, Benno M; Loth, Rudi; Hoffmeister, Peter-Georg; Zühl, Friederike; Kalbitzer, Liv; Hacker, Michael C; Schulz-Siegmund, Michaela

    2017-03-15

    The concept of macromers allows for a broad adjustment of biomaterial properties by macromer chemistry or copolymerization. Copolymerization strategies can also be used to introduce reactive sites for subsequent surface modification. Control over surface features enables adjustment of cellular reactions with regard to site and object of implantation. We designed macromer-derived polymer films which function as non-implantable analytical substrates for the investigation of surface properties of equally composed scaffolds for bone tissue engineering. To this end, a toolbox of nine different biodegradable, three-armed macromers was thermally cross-copolymerized with poly(ethylene glycol)-methacrylate (PEG-MA) to films. Subsequent activation of PEG-hydroxyl groups with succinic anhydride and N-hydroxysuccinimid allowed for covalent surface modification. We quantified the capacity to immobilize analytes of low (amino-functionalized fluorescent dye, Fcad, and RGD-peptides) and high (alkaline phosphatase, ALP) molecular weight. Fcad grafting level was controlled by macromer chemistry, content and molecular weight of PEG-MA, but also the solvent used for film synthesis. Fcad molar amount per surface area was twentyfive times higher on high-swelling compared to low-swelling films, but differences became smaller when large ALP (appr. 2:1) were employed. Similarly, small differences were observed on RGD peptide functionalized films that were investigated by cell adhesion studies. Presentation of PEG-derivatives on surfaces was visualized by atomic force microscopy (AFM) which unraveled composition-dependent domain formation influencing fluorescent dye immobilization. Surface wetting characteristics were investigated via static water contact angle. We conclude that macromer ethoxylation and lactic acid content determined film swelling, PEG domain formation and eventually efficiency of surface decoration. Surfaces of implantable biomaterials are the site of interaction with a

  2. Modification of flax fibres by radiation induced emulsion graft copolymerization of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Moawia, Rihab Musaad; Nasef, Mohamed Mahmoud; Mohamed, Nor Hasimah; Ripin, Adnan

    2016-05-01

    Flax fibres were modified by radiation induced graft copolymerization of glycidyl methacrylate (GMA) by pre-irradiation method in an emulsion medium. The effect of reaction parameters on the degree of grafting (DOG) such as concentration of bleaching agent, absorbed dose, monomer concentration, temperature and reaction time were investigated. The DOG was found to be dependent on the investigated parameters. The incorporation of poly(GMA) grafts in the bleached flax fibres was confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The structural and mechanical changes were evaluated by X-ray diffraction (XRD) and mechanical tester, respectively. The results revealed that reacting bleached flax fibres irradiated with 20 kGy with 5% GMA emulsion containing 0.5% polyoxyethylene-sorbitan monolaurate (Tween 20) surfactant at 40 °C for 1 h led to a maximum DOG of 148%. The grafted fibres showed sufficient mechanical strength and hydrophobicity which make them promising precursors for development of adsorbents after appropriate chemical treatments.

  3. Controlled graft copolymerization of lactic acid onto starch in a supercritical carbon dioxide medium.

    PubMed

    Salimi, Kouroush; Yilmaz, Mehmet; Rzayev, Zakir M O; Piskin, Erhan

    2014-12-19

    This work presents a new approach for the synthesis of a starch-g-poly L-lactic acid (St-g-PLA) copolymer via the graft copolymerization of LA onto starch using stannous 2-ethyl hexanoate (Sn(Oct)2) as a catalyst in a supercritical carbon dioxide (scCO2) medium. The effects of several process parameters, including the pressure, temperature, scCO2 flow rate and reaction time, on the polymerization yield and grafting degree were studied. Amorphous graft St-g-PLA copolymers with increased thermal stability and processability were produced with a high efficiency. The maximum grafting degree (i.e., 52% PLA) was achieved with the following reaction conditions: 6h, 100°C, 200 bar and a 1:3 (w/w) ratio of St/LA. It was concluded that these low cost biobased graft biopolymers are potential candidates for several environment-friendly applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Studies on graft copolymerization of gellan gum with N,N-dimethylacrylamide by the redox system.

    PubMed

    Pandey, Vijay Shankar; Verma, Shiv Kumar; Yadav, Mithilesh; Behari, Kunj

    2014-09-01

    The present paper reports the graft copolymerization of N,N-dimethylacrylamide onto gellan gumby free radical polymerization using potassium peroxymonosulphate/sarbose redox system in an inert atmosphere. The reaction conditions for maximum grafting have been optimized by varying the reaction variables, including the concentration of N,N-dimethylacrylamide(4.0×10(-2)-20×10(-2) mol dm(-3)), potassium peroxymonosulphate (0.6×10(-2)-1.4×10(-2)mol dm(-3)), sarbose (0.4×10(-3)-3.6×10(-3) mol dm(-3)), sulphuric acid (2.0×10(-3)-10×10(-3) mol dm(-3)), gellan gum (0.6-1.4 g dm(-3)) along with time duration (60-180 min) and temperature (25-45°C).Water-swelling capacity, metal ion sorption and flocculation studies of synthesized graft copolymer have been performed with respect to the parent polymer. The graft copolymer has been characterized by FTIR spectroscopy and thermogravimetric analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Direct Synthesis of Imidazolium-Functional Polyethylene by Insertion Copolymerization.

    PubMed

    Jian, Zhongbao; Leicht, Hannes; Mecking, Stefan

    2016-06-01

    Cationic imidazolium-functionalized polyethylene is accessible by insertion copolymerization of ethylene and allyl imidazolium tetrafluoroborate (AIm-BF4 ) with phosphinesulfonato palladium(II) catalyst precursors. Imidazolium-substituted repeat units are incorporated into the main chain and the initiating saturated chain end of the linear polymers, rather than the terminating unsaturated chain end. The counterion of the allyl imidazolium monomer is decisive, with the chloride analogue (AIm-Cl) no polymerization is observed. Stoichiometric studies reveal the formation of an inactive chloride complex from the catalyst precursor. An effect of moderate densities (0.5 mol%) of ionic groups on the copolymers' physical properties is exemplified by an enhanced wetting by water.

  6. Kinetic theory and thermodynamics of template-directed copolymerization

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2017-02-01

    Template-directed copolymerization is the fundamental process for the replication, transcription, and translation of genetic information. The copy of the template sequence is grown by the attachment of monomers with a molecular machine. The long-time kinetics of such processes is exactly solvable in terms of iterated function systems. This method determines the effects of sequence heterogeneity and replication errors on the growth of the copy and the statistical properties of its sequence. In particular, a transition can occur between linear and sublinear growth in time of the copy. In the linear regime, the local growth velocity along the template may have a fractal distribution. Furthermore, the growth can be driven around equilibrium by the entropic effect of replication errors in an adverse free-energy landscape.

  7. Deuteron induced reactions on Ho and La: Experimental excitation functions and comparison with code results

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Adam-Rebeles, R.; Tarkanyi, F.; Takacs, S.; Csikai, J.; Takacs, M. P.; Ignatyuk, A.

    2013-09-01

    Activation products of rare earth elements are gaining importance in medical and technical applications. In stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross-sections for production of 161,165Er, 166gHo on 165Ho and 135,137m,137g,139Ce, 140La, 133m,133g,cumBa and 136Cs on natLa targets were measured up to 50 MeV. Reduced uncertainty is obtained by simultaneous remeasurement of the 27Al(d,x)24,22Na monitor reactions over the whole energy range. A comparison with experimental literature values and results from updated theoretical codes (ALICE-D, EMPIRE-D and the TENDL2012 online library) is discussed.

  8. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose.

  9. Experimental cross-sections for proton-induced nuclear reactions on natMo

    NASA Astrophysics Data System (ADS)

    Červenák, Jaroslav; Lebeda, Ondřej

    2016-08-01

    In the framework of the Co-ordinated Research Project of the IAEA, we measured in detail cross-sections of the nuclear reactions natMo(p,x)93gTc, 93mTc, 93m+gTc, 94gTc, 94mTc, 95gTc, 95mTc, 96m+gTc, 97mTc, 99mTc, 90Mo, 93mMo, 99Mo, 88gNb, 88mNb, 89gNb, 89mNb, 90m+gNb, 90m+gNbcum, 91mNb, 92mNb, 95gNb, 95mNb, 95m+gNb, 96Nb, 97m+gNb, 88m+gZrcum and 89m+gZrcum in the energy range of 6.9-35.8 MeV. The data for formation of 97mTc, 88gNb, 88mNb and 89mNb are reported for the first time. The obtained results were compared to the prediction of the nuclear reaction model code TALYS adopted from the TENDL-2015 library and to the previously published cross-sections. The thick target yields for all the radionuclides were calculated from the measured data. We suggest recommended cross-sections and thick target yields for the 100Mo(p,2n)99mTc, 100Mo(p,x)99Mo and natMo(p,x)96m+gTc nuclear reactions deduced from the selected experimental data.

  10. Principles of rapid polymerase chain reactions: mathematical modeling and experimental verification.

    PubMed

    Whitney, Scott E; Sudhir, Alugupally; Nelson, R Michael; Viljoen, Hendrik J

    2004-07-01

    Polymerase chain reaction (PCR) is an important diagnostic tool for the amplification of DNA. The PCR process can be treated as a problem in biochemical engineering. This study focuses on the development of a mathematical model of the polymerase chain reaction. The PCR process consists of three steps: denaturation of target DNA, annealing of sequence-specific oligonucleotide primers and the enzyme-catalyzed elongation of the annealed complex (primer:DNA:polymerase). The denaturation step separates the double strands of DNA; this model assumes denaturation is complete. The annealing step describes the formation of a primer-fragment complex followed by the attachment of the polymerase to form a ternary complex. This step is complicated by competitive annealing between primers and incomplete fragments including primer-primer reactions. The elongation step is modeled by a stochastic method. Species that compete during the elongation step are deoxynucleotide triphosphates dCTP, dATP, dTTP, dGTP, dUTP, and pyrophosphate. Thermal deamination of dCTP to form dUTP is included in the model. The probability for a species to arrive at the active site is based on its molar fraction. The number of random insertion events depends on the average processing speed of the polymerase and the elongation time of the simulation. The numerical stochastic experiment is repeated a sufficient number of times to construct a probability density distribution (PDF). The moment of the PDF and the annealing step products provide the product distribution at the end of the elongation step. The overall yield is compared to six experimental values of the yield. In all cases the comparisons are very good.

  11. Experimental and theoretical investigation of the product channels of the O + CH{sub 3} reaction

    SciTech Connect

    Slagle, I.R.; Kalinovski, I.J.; Gutman, D.; Harding, L.B.

    1994-05-01

    The product channels of the O({sup 3}P)+CH{sub 3} reaction was investigated. In the experimental part, the branching fraction for formaldehyde production (O+CH{sub 3}{r_arrow}H{sub 2}CO+H) was measured at room temperature in a tubular flow reactor coupled to a photoionization mass spectrometer. The reactants (CH{sub 3} and O) were generated homogeneously in the reactor by simultaneous {ital in}{ital situ} 193-nm photolysis of acetone and SO{sub 2}. Formaldehyde yield relative to the methyl radicals consumed (branching fraction) was determined to be 1.0{+-}0.15. In the theoretical part, calculations of the energetics of possible decomposition pathways of the energy-rich methoxy radical initially formed in the O+CH{sub 3} reaction indicate that the dominant channel for decomposition is C-H bond cleavage leading to atomic hydrogen and formaldehyde. A possible, minor, secondary channel is hydrogen migration, followed by O-H bond cleavage, leading to the same final products. No energetically competitive pathways leading to H{sub 2}, HCO, HOC, or CO could be found.

  12. Experimental and theoretical differential cross sections for the N(2D) + H2 reaction.

    PubMed

    Balucani, Nadia; Casavecchia, Piergiorgio; Bañares, Luis; Aoiz, F Javier; Gonzalez-Lezana, Tomás; Honvault, Pascal; Launay, Jean-Michel

    2006-01-19

    In this paper, we report a combined experimental and theoretical study on the dynamics of the N(2D) + H2 insertion reaction at a collision energy of 15.9 kJ mol(-1). Product angular and velocity distributions have been obtained in crossed beam experiments and simulated by using the results of quantum mechanical (QM) scattering calculations on the accurate ab initio potential energy surface (PES) of Pederson et al. (J. Chem. Phys. 1999, 110, 9091). Since the QM calculations indicate that there is a significant coupling between the product angular and translational energy distributions, such a coupling has been explicitly included in the simulation of the experimental results. The very good agreement between experiment and QM calculations sustains the accuracy of the NH2 ab initio ground state PES. We also take the opportunity to compare the accurate QM differential cross sections with those obtained by two approximate methods, namely, the widely used quasiclassical trajectory calculations and a rigorous statistical method based on the coupled-channel theory.

  13. Experimental study of the reaction kinetics between CO2-bearing solution and picrite cubes

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, Z.; Qiu, L.; Karato, S.; Johnson, K. T.; Ague, J. J.; Oristaglio, M. L.; Bolton, E. W.; Bercovici, D. A.

    2013-12-01

    Shuang Zhang1*, Zhengrong Wang1, Lin Qiu1, Shun-ichiro Karato1, Kevin Johnson2, Jay Ague1, Michael Oristaglio1, Edward Bolton1, and David Bercovici1 1Department of Geology and Geophysics and Energy Science Institute, Yale University, New Haven, CT 06520, USA 2Department of Geology and Geophysics, University of Hawai';i at Mānoa, Honolulu, HI 96822, USA *presenting author: shuang.zhang@yale.edu Picrites are potential repositories for permanent storage of anthropogenic CO2 because they contain large amounts of olivine which dissolves faster than other coexisting minerals (e.g., clinopyroxene or plagioclase), and they have relatively higher porosity and permeability than ultramafic rocks. In order to understand the kinetics of reacting CO2-bearing fluid with picrites and its carbonation potential, this study investigated the reactions between CO2-bearing solution and picrite cubes under various experimental conditions, including temperature, the concentration of DIC, reaction time and water/rock ratio. Hawaiian picrite cubes (~ 4 mm × 4 mm) and different concentrations of NaHCO3 solution (0.5 M, 1 M, and 3 M) were sealed in gold capsules and placed in an autoclave at 100-200 oC for 5-10 days. After each run, the solids were dried and characterized by Scanning Electron Microprobe (SEM) and Electron Probe Micro Analyzer (EPMA). The coexisting solutions were titrated to quantify the consumption of dissolved inorganic carbon (DIC) during the carbonation process. Several phenomena have been observed from these experiments. First, high concentrations of DIC can significantly raise the carbonation fraction ((Mg+Fe+Ca (consumed by carbonate))/(Mg+Fe+Ca (in picrite before reaction))×100%) in these experiments. For example, the carbonation fraction (~ 0.5%) is negligible using the 0.5 or 1 M NaHCO3 even in experiments conducted at 200 oC for 10 days, but is significantly higher (~ 10%) than the detection limit of our titration method (0.5%) for 3 M NaHCO3. Second, most

  14. Experimental constraints on the origin of olivine-rich troctolites by melt-rock reactions

    NASA Astrophysics Data System (ADS)

    Francomme, Justine; Fumagalli, Patrizia; Borghini, Giulio

    2017-04-01

    Studies on oceanic lithosphere suggest that melt-rock reactions play a key role in the origin of olivine-rich troctolites. To provide experimental constraints on these processes, we performed reactive dissolution and crystallization high pressure experiments in a piston-cylinder apparatus. Experimental charges consist of three layers: (1) basalt glass powder, (2) fine powder of San Carlos olivine (Fo90) mixed with 9% of basalt, and (3) carbon spheres used as a melt trap. We used three synthetic MORB-type glasses with composition spanning from primitive to evolved tholeiite, (Mg/(Mg+Fe) = 0.74, 0.62 and 0.58. Experiments have been conducted at 0.5 GPa and 0.7 GPa, following an isobaric step-cooled temperature path (from 1300˚ C to 1150˚ C), to induce reactive dissolution of olivine and in-situ crystallization of interstial phases from the reacted melt. Therefore, melt compositions and pressure effects can be investigated by evaluating the development of textures, and variations in resulting phases abundance and mineral chemistry. Experiments are layered with a lithological sequence ranging from basal olivine-gabbro to troctolite, olivine-rich troctolite and dunite. Troctolites are the result of crystallization of reacted melts and show poikilitic textures, with plagioclase and clinopyroxene including both small rounded and euhedral olivines. Evidence of disequilibrium relations are testified by occurrence of resorbed embayed olivines consistent with dissolution processes. In the troctolites and dunite layers greater abundance of interstitial phases are observed at lower pressure suggesting greater extent of melt-olivine reaction favoured by higher dissolution of olivine. On the other hand, higher pressure expands the stability of clinopyroxene at higher temperatures, therefore inhibiting melt-rock interactions by early crystallization of interstitial reacted melts. Melt composition affects the abundance of interstitial phases with most primitive MORB leading to

  15. Infrared thermoimages display of body surface temperature reaction in experimental cholecystitis

    PubMed Central

    Zhang, Dong; Zhu, Yuan-Gen; Wang, Shu-You; Ma, Hui-Min; Ye, Yan-Yan; Fu, Wei-Xing; Hu, Wei-Guo

    2002-01-01

    AIM: To display the thermoimages of the body surface in experimental cholecystitis, to observe the body surface temperature reaction in visceral disorders, and to study if the theory of body surface-viscera correlation is true and the mechanism of temperature changes along the meridians. METHODS: By injecting bacteria suspension into the stricture bile duct and gallbladder, 21 rabbits were prepared as acute pyogenic cholangiocholecystitis models, with another 8 rabbits prepared by the same process except without injection of bacteria suspension as control. The body surface infrared thermoimages were continuously observed on the hair shaven rabbit skin with AGA-782 thermovision 24 h before, 1-11 d after and (2, 3 wk) 4 wk after the operation with a total of over 10 records of thermoimages. RESULTS: Twelve cases out of 21 rabbits with cholecystitis revealed bi-lateral longitudinal high temperature lines in its trunk; with negative findings in the control group. The high-temperature line appeared on d1-d2, first in the right trunk, after the preparation of the model, about 7 d after the model preparation, the lines appeared at the left side too, persisting for 4 wk. The hyper-temperature line revealed 1.1-2.7 °C higher than before the model preparation, 0.7-2.5 °C higher than the surrounding skin. The length of the high temperature line might reach a half length of the body trunk, or as long as the whole body itself. CONCLUSION: The appearance of the longitudinal high temperature lines at the lateral aspects of the trunk in the experimental group is directly bound up with the experimental animals pyogenic cholecystitis, with its running course quite similar to that of the Gallbladder Channel of Foot Shaoyang, but different to the zones of hyperalgesia and site of referred pain in cholecystitis. PMID:11925617

  16. Experimental and Guided Theoretical Investigation of Complex Reaction Mechanisms in a Prins Reaction of Glyoxylic Acid and Isobutene

    ERIC Educational Resources Information Center

    Angelici, Gaetano; Nicolet, Stefan; Uda, Narasimha R.; Creus, Marc

    2014-01-01

    A laboratory experiment was designed for undergraduate students, in which the outcome of an easy single-step organic synthesis with well-defined conditions was not elucidated until the end of the exercise. In class, students predict and discuss the possible products using their knowledge of reaction mechanisms. In the laboratory, they learn how to…

  17. Experimental and Guided Theoretical Investigation of Complex Reaction Mechanisms in a Prins Reaction of Glyoxylic Acid and Isobutene

    ERIC Educational Resources Information Center

    Angelici, Gaetano; Nicolet, Stefan; Uda, Narasimha R.; Creus, Marc

    2014-01-01

    A laboratory experiment was designed for undergraduate students, in which the outcome of an easy single-step organic synthesis with well-defined conditions was not elucidated until the end of the exercise. In class, students predict and discuss the possible products using their knowledge of reaction mechanisms. In the laboratory, they learn how to…

  18. Synthesis evaluation and adsorption studies of anionic copolymeric surfactants based on fatty acrylate ester

    NASA Astrophysics Data System (ADS)

    El-Dougdoug, W. I. A.; El-Mossalamy, E. H.

    2006-12-01

    A series of anionic copolymeric surfactants based on n-dodecylacrylate ester (M 1) as hydrophobe, and oxypropylated acrylate ester (MA 4,6) as hydrophiles, were prepared by copolymerization of n-dodecylacrylate (M 1) and oxypropylated acrylate ester (MA 4,6) with molar ratio's (0.3:0.7, 0.4:0.6 and 0.5:0.5, respectively) in presence of benzoyl peroxide as initiator followed by sulfation and neutralization to afforded [(PAS 4), and (PAS 6)] a-c, as anionic copolymeric surfactant in suitable yield. These derivatives were purified and characterized by IR and 1H NMR spectral studies. Surface activity, and biodegradability were evaluated. Adsorption of some copolymeric surfactant on salary sand was investigated to assess possibility of treating waste water streams for removal of Pb 2+ and Hg 2+ toxic minerals. The effect of several factors governing the adsorption such as initial concentration, temperature, pH, have been studied.

  19. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR). International Collaboration Between Nuclear Reaction Data Centres (NRDC)

    SciTech Connect

    Otuka, N.; Pritychenko, B.; Otuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A. I.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; Forrest, R. A.; Fukahori, T.; Furutachi, N.; Ganesan, S.; Ge, Z.; Gritzay, O. O.; Herman, M.; Hlavac, S.; Kato, K.; Lalremruata, B.; Lee, Y. O.; Makinaga, A.; Matsumoto, K.; Mikhaylyukova, M.; Pikulina, G.; Pronyaev, V. G.; Saxena, A.; Schwerer, O.; Simakov, S. P.; Soppera, N.; Suzuki, R.; Takacs, S.; Tao, X.; Taova, S.; Tarkanyi, F.; Varlamov, V. V.; Wang, J.; Yang, S. C.; Zerkin, V.; Zhuang, Y.

    2014-06-01

    The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by the IAEA Nuclear Data Section (NDS) successfully collaborates in the maintenance and development of the EXFOR library. Likewise, as the scope of published data expands (e.g. to higher energy, to heavier projectile) to meet the needs of research and applications, it has become a challenging task to maintain both the completeness and accuracy of the EXFOR library. Evolution of the library highlighting recent developments is described.

  20. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC)

    SciTech Connect

    Otuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A.I.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; Forrest, R.A.; Fukahori, T.; Furutachi, N.; Ganesan, S.; Ge, Z.; Gritzay, O.O.; Herman, M.; Hlavač, S.; and others

    2014-06-15

    The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by the IAEA Nuclear Data Section (NDS) successfully collaborates in the maintenance and development of the EXFOR library. As the scope of published data expands (e.g. to higher energy, to heavier projectile) to meet the needs of research and applications, it has become a challenging task to maintain both the completeness and accuracy of the EXFOR library. Evolution of the library highlighting recent developments is described.

  1. Growth of polyphenyls via ion-molecule reactions: an experimental and theoretical mechanistic study.

    PubMed

    Aysina, Julia; Maranzana, Andrea; Tonachini, Glauco; Tosi, Paolo; Ascenzi, Daniela

    2013-05-28

    The reactivity of biphenylium cations C12H9(+) with benzene C6H6 is investigated in a joint experimental and theoretical approach. Experiments are performed by using a triple quadruple mass spectrometer equipped with an atmospheric pressure chemical ion source to generate C12H9(+) via dissociative ionization of various isomers of the neutral precursor hydroxybiphenyl (C12H10O). C-C coupling reactions leading to hydrocarbon growth are observed. The most abundant ionic products are C18H15(+), C18H13(+), C17H12(+), and C8H7(+). The dependence of product ion yields on the kinetic energy of reagent ions, as well as further experiments performed using partial isotopic labelling of reagents, support the idea that the reaction proceeds via a long lived association product, presumably the covalently bound protonated terphenyl C18H15(+). Its formation is found to be exothermic and barrierless and, therefore, might occur under the low pressure and temperature conditions typical of planetary atmospheres and the interstellar medium. Theoretical calculations have focussed on the channel leading to C8H7(+) plus C10H8, identifying, as the most probable fragments, the phenylethen-1-ylium cation and naphthalene, thus suggesting that the pathway leading to them might be of particular interest for the synthesis of polycyclic aromatic hydrocarbons. Both experiments and theory agree in finding this channel exoergic but hampered by small barriers of 2.7 and 3.7 kcal mol(-1) on the singlet potential energy surface.

  2. Theoretical and experimental cross sections for neutron reactions on /sup 64/Zinc

    SciTech Connect

    Rutherford, D.A.

    1988-03-01

    Accurate measurements of the /sup 64/Zn (n,2n)/sup 63/Zn and /sup 64/Zn (n,p)/sup 64/Cu cross sections at 14.8 MeV have been made using a Texas Nuclear Neutron Generator and the activation technique. A NaI(Tl) spectrometer (using two 6'' x 6'' NaI detectors/crystals) was ued to measure the gamma radiation emitted in coincidence from the positron-emitting decay products. The measurements were made relative to /sup 65/Cu (n,2n)/sup 64/Cu and /sup 63/Cu (n,2n)/sup 62/Cu cross sections, which have similar half-lives, radiation emission, and were previously measured to high accuracy (2%). The value obtained for the (n,2n) measurement was 199 +- 6 millibarns, and a value of 176 +- 4.5 millibarns was obtained for the (n,p) measurement. In concert, a theoretical analysis of neutron induced reactions on /sup 64/Zn was performed at Los Alamos National Laboratory using the Hauser-Feshbach statistical theory in the GNASH code over an energy range of 100 keV to 20 MeV. Calculations included width fluctuation corrections, direct reaction contributions, and preequilibrium corrections above 6 MeV. Neutron optical model potentials were determined for zinc. The theoretical values agree with the new 14.8 MeV measurements approximately within experimental error, with calculations of 201 millibarns for the (n,2n) cross section and 170 millibarns for the (n,p) cross section. Results from the analysis will be made available in National Evaluated Nuclear Data Format (ENDF/B) for fusion energy applications. 50 refs., 34 figs., 10 tabs.

  3. Growth of polyphenyls via ion-molecule reactions: An experimental and theoretical mechanistic study

    SciTech Connect

    Aysina, Julia; Tosi, Paolo; Ascenzi, Daniela; Maranzana, Andrea; Tonachini, Glauco

    2013-05-28

    The reactivity of biphenylium cations C{sub 12}H{sub 9}{sup +} with benzene C{sub 6}H{sub 6} is investigated in a joint experimental and theoretical approach. Experiments are performed by using a triple quadruple mass spectrometer equipped with an atmospheric pressure chemical ion source to generate C{sub 12}H{sub 9}{sup +} via dissociative ionization of various isomers of the neutral precursor hydroxybiphenyl (C{sub 12}H{sub 10}O). C-C coupling reactions leading to hydrocarbon growth are observed. The most abundant ionic products are C{sub 18}H{sub 15}{sup +}, C{sub 18}H{sub 13}{sup +}, C{sub 17}H{sub 12}{sup +}, and C{sub 8}H{sub 7}{sup +}. The dependence of product ion yields on the kinetic energy of reagent ions, as well as further experiments performed using partial isotopic labelling of reagents, support the idea that the reaction proceeds via a long lived association product, presumably the covalently bound protonated terphenyl C{sub 18}H{sub 15}{sup +}. Its formation is found to be exothermic and barrierless and, therefore, might occur under the low pressure and temperature conditions typical of planetary atmospheres and the interstellar medium. Theoretical calculations have focussed on the channel leading to C{sub 8}H{sub 7}{sup +} plus C{sub 10}H{sub 8}, identifying, as the most probable fragments, the phenylethen-1-ylium cation and naphthalene, thus suggesting that the pathway leading to them might be of particular interest for the synthesis of polycyclic aromatic hydrocarbons. Both experiments and theory agree in finding this channel exoergic but hampered by small barriers of 2.7 and 3.7 kcal mol{sup -1} on the singlet potential energy surface.

  4. A Combined Experimental and Theoretical Study of the Reaction OH + 2-Butene in the 400-800 K Temperature Range.

    PubMed

    Antonov, Ivan O; Kwok, Justin; Zádor, Judit; Sheps, Leonid

    2015-07-16

    We report a combined experimental and theoretical study of the OH + cis-2-butene and OH + trans-2-butene reactions at combustion-relevant conditions: pressures of 1-20 bar and temperatures of 400-800 K. We probe the OH radical time histories by laser-induced fluorescence and analyze these experimental measurements with aid from time-dependent master-equation calculations. Importantly, our investigation covers a temperature range where experimental data on OH + alkene chemistry in general are lacking, and interpretation of such data is challenging due to the complexity of the competing reaction pathways. Guided by theory, we unravel this complex behavior and determine the temperature- and pressure-dependent rate coefficients for the three most important OH + 2-butene reaction channels at our conditions: H abstraction, OH addition to the double bond, and back-dissociation of the OH-butene adduct.

  5. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water.

    PubMed

    McCollom, Thomas M; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose

  6. Evidence of alkali rich melt reactions with mantle peridotite : Natural observations and experimental analogues

    NASA Astrophysics Data System (ADS)

    Grant, T. B.; Milke, R.; Wunder, B.

    2012-04-01

    The Heldburg Phonolite, (Thuringia, Germany) is peculiar in its nature due to its absence of a Eu anomaly, and hence lack of feldspar fractionation, as well as the presence of spinel lherzolite xenocrysts. These observations suggest a higher than normal (mantle) pressure of origin, and its potential as a metasomatic agent at depth is explored in this work. Disequilibrium between the phonolite and its entrained upper mantle xenocrysts resulted in the development of secondary reaction rim assemblages of; (1) phlogopite + minor diopside around olivine, (2) pargasitic amphibole, phlogopite and minor diopside around orthopyroxene. We document both the natural rims and the attempts to reproduce them under experimental conditions, in order to elucidate the likely origin of the phonolite and its efficacy for metasomatising the upper mantle. Platinum capsules were loaded with mixtures of crushed mineral separates, (of pure synthetic forsterite, San Carlos olivine, synthetic enstatite or a natural enstatite from Kilosa, Tanzania) with a synthetic Fe-free phonolite melt in a 16:84% weight ratio, respectively. Experiments were run in a piston cylinder apparatus with CaF2 as the pressure medium. In addition to varying PT conditions, a wide range of water contents were tested (0-14wt%). It was found that pressures of 10-14 kbar, and temperatures of 900-1000°C, satisfy the conditions at which the reactions can form, thus, it is likely that the phonolite existed at upper mantle conditions. Water must be present to stabilize the desired hydrous phases, with >6wt% required at 900°C and 10 kbar. The destabilization of feldspar is also essential to the process, hence higher water contents are needed at the lowest PT conditions compared to 4-5 wt. % H2O at greater PT. The formation of amphibole around enstatite appears to be affected by sluggish reaction kinetics and the orientation of the host pyroxene, sometimes leading to diopside single rims. Furthermore we note some of the

  7. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    NASA Astrophysics Data System (ADS)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  8. Cycloaddition Reaction of Vinylphenylfurans and Dimethyl Acetylenedicarboxylate to [8 + 2] Isomers via Tandem [4 + 2]/Diradical Alkene-Alkene Coupling/[1,3]-H Shift Reactions: Experimental Exploration and DFT Understanding of Reaction Mechanisms.

    PubMed

    Chen, Kai; Wu, Feng; Ye, Lijuan; Tian, Zi-You; Yu, Zhi-Xiang; Zhu, Shifa

    2016-09-16

    An experimental test of designed [8 + 2] reaction of vinylphenylfuran and dimethyl acetylenedicarboxylate (DMAD) has been carried out, showing that the reaction gave unexpected addition products under different conditions. When the reaction was conducted under thermal conditions in toluene, expoxyphenanthrene, which was named as a [8 + 2] isomer, was generated. The scope of this reaction has been investigated in the present study. In addition, experiments and DFT calculations have been conducted to investigate how the reaction between vinylphenylfuran and DMAD took place. Surprisingly, the reaction did not involve the expected [8 + 2] intermediate, o-quinodimethane. Instead, the reaction starts from intermolecular Diels-Alder reactions between DMAD and the furan moiety of vinylphenylfuran, followed by unexpected intramolecular alkene-alkene coupling. This step generates a diradical species, which then undergoes [1,3]-H shift to give the experimentally observed expoxyphenanthrene. DFT calculations revealed that, the [8 + 2] cycloadduct cannot be obtained because the [1,5]-H shift process from the [1,5]-vinyl shift intermediate is disfavored kinetically compared to the [1,3]-H shift to the [8 + 2] isomer.

  9. A Curtin-Hammett mechanism for the copolymerization of ethylene and methyl acrylate monomer using a PymNox nickel catalyst as revealed by DFT computational studies.

    PubMed

    Ramos, Javier; Martínez, Sonia; Cruz, Víctor L; Martínez-Salazar, Javier

    2012-02-01

    In this work, the copolymerization of ethylene and methyl acrylate (MA) as catalyzed by a new Ni-based PymNox organometallic compound was studied computationally. We recently tested the behavior of this type of catalyst in ethylene homopolymerization. Experimental results show that the unsubstituted catalyst Ni2 (aldimino PymNox catalyst) is unable to incorporate the MA monomer, whereas methyl-substituted Ni1 (acetaldimino PymNox catalyst) is able to achieve copolymerization. The reactivities of both catalysts were examined using density functional theory (DFT) models. Based on energy profiles calculated at the BP86 level, a Curtin-Hammett mechanism was proposed to explain the different reactivities of the catalysts in ethylene/MA copolymerization. Our results indicate that the methyl substituent Ni1 introduces additional steric hindrance that results in a catalyst conformation that is better suited to polar monomer incorporation. This model provides insights into the design of new catalysts to produce polar functionalized copolymers based on ethylene.

  10. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Allamandola, L. J.; Sandford, S. A.

    1993-01-01

    Results of an experimental study tracing thermal formaldehyde reactions in astrophysically relevant ices in dense molecular clouds are reported. The formaldehyde chemistry during warm-up of ices containing H2CO and one or more of the molecules H2O, CH3OH, CO, O2, and NH3 were monitored using IR spectroscopy. Conversion of H2CO into residues was observed to start at about 40 K for NH3:H2CO ices and at about 80 K in H2O-rich ices. A total of five different organic products of these reactions were distinguished: POM and reaction products of H2CO and H2O, CH3OH, and NH3. Given the measured reaction paths and efficiencies, it is estimated that on the order of 1 percent of the organics found in the coma of Comet P/Halley could have been produced by thermal formaldehyde reactions taking place in the nucleus.

  11. Experimental and Theoretical Study of Thermodynamics of the Reaction of Titania and Water at High Temperatures

    NASA Technical Reports Server (NTRS)

    Nguyen, Quynhgiao N.; Myers, Dwight L.; Jacobson, Nathan S.; Opila, Elizabeth J.

    2014-01-01

    The transpiration method was used to determine the volatility of titanium dioxide (TiO2) in water vapor-containing environments at temperatures between 1473 and 1673 K. Water contents ranged from 0 to 76 mole % in oxygen or argon carrier gases for 20 to 250 hr exposure times. Results indicate that oxygen is not a key contributor to volatilization and the primary reaction for volatilization in this temperature range is: TiO2(s) + H2O(g) = TiO(OH)2(g). Data were analyzed with both the second and third law methods to extract an enthalpy and entropy of formation. The geometry and vibrational frequencies of TiO(OH)2(g) were computed using B3LYP density functional theory, and the enthalpy of formation was computed using the coupled-cluster singles and doubles method with a perturbative correction for connected triple substitutions [CCSD(T)]. Thermal functions are calculated using both a structure with bent and linear hydroxyl groups. Calculated second and third heats show closer agreement with the linear hydroxyl group, suggesting more experimental and computational spectroscopic and structural work is needed on this system.

  12. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  13. Enhancing biosensor properties of conducting polymers via copolymerization: Synthesis of EDOT-substituted bis(2-pyridylimino)isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film.

    PubMed

    Tekbaşoğlu, Tuğçe Yazıcı; Soganci, Tugba; Ak, Metin; Koca, Atıf; Şener, M Kasım

    2017-01-15

    1,3-Bis(2-pyridylimino)isoindoline derivative bearing 3,4-ethylenedioxythiophene (EDOT-BPI) and its palladium complex (EDOT-PdBPI) were synthesized and characterized by FT-IR, (1)H NMR, (13)C NMR, UV-Vis spectroscopies and via mass spectrometric analysis. Polymerization of EDOT-PdBPI and copolymerization with 4-amino-N-(2,5-di(thiophene-2-yl)-1H-pyrrol-1-yl)benzamide (HKCN) were carried out by an electrochemical method. In addition, P(EDOT-PdBPI-co-HKCN) modified graphite rod electrode was improved for amperometric glucose sensor based on glucose oxidase (GOx). In this novel biosensor matrix, amino groups in HKCN were used for the enzyme immobilization. On the other hand, EDOT-PdBPI used to mediate the bioelectrocatalytic reaction. Amperometric detection was carried out following oxygen consumption at -0.7V vs. the Ag reference electrode in phosphate buffer (50mM, pH 6.0). The novel biosensor showed a linear amperometric response for glucose within a concentration range of 0.25mM to 2.5mM (LOD: 0.176mM). Amperometric signals at 1mM of glucose were 17.9μA under anaerobic conditions. Amperometric response of the P(EDOT-PdBPI-co-HKCN)/GOx electrode decreased only by 13% within eight weeks. The P(EDOT-PdBPI-co-HKCN)/GOx electrode showed good selectivity in the presence of ethanol and phenol. This result shows that, modification of the proposed biosensor by copolymerization of amine functionalized monomer, which is indispensable to the enzyme immobilization, with palladium complex bearing monomer, which is mediate the bioelectrocatalytic reaction, have provided to give perfect response to different glucose concentrations.

  14. Experimental study on controls on fluid chemistry and permeability evolution during serpentinization reactions

    NASA Astrophysics Data System (ADS)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2013-12-01

    Serpentinization plays a key role in hydrothermal processes and structural deformation at slow and ultraslow mid-ocean ridges, where it is commonly associated with the formation of oceanic core complexes and detachment faults. Many details of how serpentinization reactions progress at small scales and the links between the reactions and changes in permeability and stresses are poorly understood. To advance our understanding of the evolution of permeability and fluid chemistry accompanying serpentinization reactions and provide a framework for developing more realistic models at a larger scale, we performed a series of high-temperature permeability experiments on fractured solid ultramafic rock samples that reasonably simulate serpentinization in natural settings. Experimental conditions were 260°C, 50 MPa confining pressure, and 20×2 MPa pore pressure. Ultramafic rock types containing different proportions of olivine and pyroxene were tested, to investigate the effect of mineral assemblage on fluid-rock interaction and permeability. Samples were cylindrical cores of 18 mm diameter and 23 mm length that were split axially to form a well-mated tensile fracture, jacketed in a 0.5 mm thick teflon liner and inserted into a 0.4 mm thick annealed silver jacket. A 7.5 mm thick layer of the same rock, crushed and sieved (0.18-1.0 mm size range) was placed on the inlet side of the sample to produce a coarse-grained gouge. The gouge layer provided a heated fluid reservoir with which the deionized water, used as pore fluid, could equilibrate before entering the fracture. Routinely, about 1 cm3 of water was pumped through the sample each day and collected (without dropping sample pore pressure) for chemical analysis. Pore fluid flow was in one direction and the pore pressure change and flow rate were recorded to determine permeability. In most samples, the initial fracture permeability at 260°C was between 10-15 and 10-18 m2, and decreased by about 3 orders of magnitude in

  15. Temperature-responsive copolymeric hydrogel systems synthetized by ionizing radiation

    NASA Astrophysics Data System (ADS)

    López-Barriguete, Jesús Eduardo; Bucio, Emilio

    2017-06-01

    Eight different systems of hydrogel copolymers with diverse temperature responsiveness were prepared to elaborate membranes for their biomedical application. The hydrogels were synthesized using poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-vinylcaprolactam) (PNVCL), which have a low critical solution temperature (LCST) close to that of the human body temperature. The networks were synthesized using gamma radiation at a dose rate of 11.2 kGy h-1, and dose of 50 kGy. The LCST of each system was measured by differential scanning calorimetry (DSC). The effect of using hydrophilic monomers of acrylic acid (AAc), methacrylic acid (MAAc), dimethyl acrylamide (DMAAm), and hydroxyethyl methacrylate (HEMA) for the copolymerization on the critical point was evaluated. Five viable systems were obtained, with the best hydrogel being that of poly(NIPAAm-co-DMAAm), which an LCST at 39.8 °C. All the samples were characterized by FTIR-ATR, DSC, TGA, X-Ray Diffraction, and SEM. The proportion of monomers during the formation of the copolymers was decisive in the displacement of the LCST.

  16. Probes of spin conservation in heavy metal reactions: Experimental and theoretical studies of the reactions of Re+ with H2, D2, and HD

    NASA Astrophysics Data System (ADS)

    Armentrout, P. B.; Li, Feng-Xia

    2004-07-01

    A guided ion beam tandem mass spectrometer is used to examine the kinetic energy dependence of reactions of the third-row transition metal cation, Re+, with molecular hydrogen and its isotopologues. A flow tube ion source produces Re+ in its 7S3 electronic ground state. Reaction with H2, D2, and HD forms Re H+(Re D+) in endothermic processes. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energy of D0(Re+-H)=2.29±0.07 eV (221±6 kJ/mol). The experimental thermochemistry is consistent with ab initio calculations, performed here and in the literature. Theory also provides the electronic structures of these species and is used to examine the reactive potential energy surfaces. Results from reactions with HD provide insight into the reaction mechanisms and indicate that the late metal ion, Re+, reacts largely via a statistical mechanism. This is consistent with the potential energy surfaces which locate a stable Re H2+(5B2) complex. Results for this third-row transition metal system are compared with the first-row congener (Mn+) and found to have much higher reactivity towards dihydrogen and stronger M+-H bonds. These differences can be attributed to efficient coupling among surfaces of different spin along with lanthanide contraction and relativistic effects.

  17. Precise synthesis of thermoreversible block copolymers containing reactive furfuryl groups via living anionic polymerization: the countercation effect on block copolymerization behavior

    SciTech Connect

    Kang, Beom-Goo; Pramanik, Nabendu B.; Singha, Nikhil K.; Lee, Jae-Suk; Mays, Jimmy

    2015-08-07

    The anionic block copolymerization of 4,4' -vinylphenyl-N,N-bis(4-tert-butylphenyl)benzenamine (A) with furfuryl isocyanate (B) was carried out using potassium naphthalenide (K-Naph) in tetrahydrofuran at -78 and -98 °C to prepare well-defined block copolymers containing furan groups for the formation of thermoreversible networks via a Diels Alder (DA) reaction. While no block copolymerization was observed in the absence of sodium tetraphenylborate (NaBPh4) due to side reactions, well-defined poly-(B-b-A-b-B) (PBAB) copolymers with controlled molecular weights (Mn = 18 700 19 500 g mol -1) and narrow molecular weight distributions (Mw/Mn = 1.08 -1.17) were successfully synthesized in the presence of excess NaBPh4. We prevented the occurrence of the undesirable side reactions during polymerization of B of NaBPh4, which results in the change in the countercation from K+ to Na+ for further polymerization of B. Moreover, the cross-linking via the DA reaction between the furan groups of PBAB and bismaleimide was proved by FT-IR and differential scanning calorimetry (DSC), and the thermoreversible properties of the cross-linked polymer were subsequently investigated using DSC and solubility testing.

  18. Uncovering the Role of Metal Catalysis in Tetrazole Formation by an In Situ Cycloaddition Reaction: An Experimental Approach.

    PubMed

    Zhong, Di-Chang; Wen, Ya-Qiong; Deng, Ji-Hua; Luo, Xu-Zhong; Gong, Yun-Nan; Lu, Tong-Bu

    2015-09-28

    Using an experimental approach, the role of metal catalysis has been investigated in the in situ cycloaddition reaction of nitrile with azide to form tetrazoles. It has been shown that metal catalysis serves to activate the cyano group in the nitrile reagent by a coordinative interaction.

  19. Growth of polyaromatic molecules via ion-molecule reactions: An experimental and theoretical mechanistic study

    NASA Astrophysics Data System (ADS)

    Ascenzi, Daniela; Aysina, Julia; Tosi, Paolo; Maranzana, Andrea; Tonachini, Glauco

    2010-11-01

    The reactivity of naphthyl cations with benzene is investigated in a joint experimental and theoretical approach. Experiments are performed by using guided ion beam tandem mass spectrometers equipped with electron impact or atmospheric pressure chemical ion sources to generate C10H7+ with different amounts of internal excitation. Under single collision conditions, C-C coupling reactions leading to hydrocarbon growth are observed. The most abundant ionic products are C16H13+, C16Hn+ (with n =10-12), and C15H10+. From pressure-dependent measurements, absolute cross sections of 1.0±0.3 and 2±0.6 Å2 (at a collision energy of about 0.2 eV in the center of mass frame) are derived for channels leading to the formation of C16H12+ and C15H10+ ions, respectively. From cross section values a phenomenological total rate constant k =(5.8±1.9)×10-11 cm3 s-1 at an average collision energy of about 0.27 eV can be estimated for the process C10H7++C6H6→all products. The energy behavior of the reactive cross sections, as well as further experiments performed using partial isotopic labeling of reagents, support the idea that the reaction proceeds via a long lived association product, presumably the covalently bound protonated phenylnaphthalene, from which lighter species are generated by elimination of neutral fragments (H, H2, CH3). A major signal relevant to the fragmentation of the initial adduct C16H13+ belongs to C15H10+. Since it is not obvious how CH3 loss from C16H13+ can take place to form the C15H10+ radical cation, a theoretical investigation focuses on possible unimolecular transformations apt to produce it. Naphthylium can act as an electrophile and add to the π system of benzene, leading to a barrierless formation of the ionic adduct with an exothermicity of about 53 kcal mol-1. From this structure, an intramolecular electrophilic addition followed by H shifts and ring opening steps leads to an overall exothermic loss (-7.1 kcal mol-1 with respect to reagents) of

  20. Clickable degradable aliphatic polyesters via copolymerization with alkyne epoxy esters: synthesis and postfunctionalization with organic dyes.

    PubMed

    Teske, Nele S; Voigt, Julia; Shastri, V Prasad

    2014-07-23

    Degradable aliphatic polyesters are the cornerstones of nanoparticle (NP)-based therapeutics. In this paradigm, covalent modification of the NP with cell-targeting motifs and dyes can aid in guiding the NP to its destination and gaining visual confirmation. Therefore, strategies to impart chemistries along the polymer backbone that are amenable to easy modification, such as 1,3-dipolar cycloaddition of an azide to an alkyne (the "click reaction"), could be significant. Here we present a simple and efficient way to introduce alkyne groups at high density in aliphatic polyesters without compromising their crystallinity via the copolymerization of cyclic lactones with propargyl 3-methylpentenoate oxide (PMPO). Copolymers of lactic acid and ε-caprolactone with PMPO were synthesized with up to 9 mol % alkyne content, and accessibility of the alkyne groups to the click reaction was demonstrated using several dyes commonly employed in fluorescence microscopy and imaging (Cy3, ATTO-740, and coumarin 343). In order to establish the suitability of these copolymers as nanocarriers, copolymers were formulated into NPs, and cytocompatibility, cellular uptake, and visualization studies undertaken in HeLa cells. Dye-modified NPs exhibited no quenching, remained stable in solution for at least 10 days, showed no cytotoxicity, and were readily taken up by HeLa cells. Furthermore, in addition to enabling the incorporation of multiple fluorophores within the same NP through blending of individual dye-modified copolymers, dye-modified polyesters offer advantages over physical entrapment of dye, including improved signal to noise ratio and localization of the fluorescence signal within cells, and possess the necessary prerequisites for drug delivery and imaging.

  1. A Strategy for Control of “Random” Copolymerization of Lactide and Glycolide: Application to Synthesis of PEG-b-PLGA Block Polymers Having Narrow Dispersity

    PubMed Central

    Qian, Haitao; Wohl, Adam R.; Crow, Jordan T.; Macosko, Christopher W.; Hoye, Thomas R.

    2011-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable copolymer that is also acceptable for use in a variety of biomedical applications. Typically, a random PLGA polymer is synthesized in a bulk batch polymerization using a tin-based catalyst at high temperatures. This methodology results in relatively broad polydispersity indexes (PDIs) due to transesterification, and the polymer product is often discolored. We report here the use of 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU), a known, effective, and convenient organocatalyst for the ring-opening polymerization of cyclic esters, to synthesize random copolymers of lactide and glycolide. The polymerization kinetics of the homo- and copolymerizations of lactide and glycolide were explored via NMR spectroscopy. A novel strategy that employs a controlled addition of the more reactive glycolide monomer to a solution containing the lactide monomer, the poly(ethylene glycol) (PEG) macroinitiator, and DBU catalyst was developed. Using this tactic (semi-batch polymerization), we synthesized a series of block copolymers that exhibited excellent correlation of the expected and observed molecular weights and possessed narrow PDIs. We also measured the thermal properties of these block copolymers and observed trends based on the composition of the block copolymer. We also explored the need for experimental rigor in several aspects of the preparations and have identified a set of convenient reaction conditions that provide polymer products that retain the aforementioned desirable characteristics. These polymerizations proceed rapidly at room temperature and without the need for tin-based catalysts to provide PEG-b-PLGAs suitable for use in biomedical investigations. PMID:22287809

  2. Experimental studies of pinned and unpinned reaction fronts in two-dimensional, vortex-dominated flows

    NASA Astrophysics Data System (ADS)

    Skinner, Laura; Simons, Joseph-John; Solomon, Tom

    2015-11-01

    We present experiments that study the propagation and pinning of reaction fronts in laminar, two-dimensional fluid flows. The flows are forced using magnetohydrodynamic techniques and are composed of vortex chains and arrays with or without an imposed wind. The reaction fronts are produced by the excitable, ferroin-catalyzed Belousov-Zhabotinsky chemical reaction. We consider how the addition of time-periodic oscillations of the flow can affect the pinning of reaction fronts. Furthermore, we measure the speed at which reaction fronts propagate in the flow, looking for scaling of the measured front propagation speed with the non-dimensional reaction-diffusion (no flow) speed. We analyze all of these results by considering the role of one-way barriers produced by ``burning invariant manifolds''. Supported by NSF Grants DMR-1361881, DUE-1317446 and PHY-1156964.

  3. Experimental and computational studies on interrupted Nazarov reactions: exploration of umpolung reactivity at the α-carbon of cyclopentanones.

    PubMed

    Wu, Yen-Ku; Dunbar, Christine R; McDonald, Robert; Ferguson, Michael J; West, F G

    2014-10-22

    A set of densely substituted, α-functionalized cyclopentanones can be generated by a two-component, domino reaction sequence entailing the Nazarov electrocyclization of divinyl ketones and nucleophilic addition of the resulting 2-oxidocyclopentenyl cations by selected trapping modalities. Bypassing the typical eliminative termination, Nazarov oxyallyl species can react with carbon π-nucleophiles through cycloadditions (or formal cycloadditions), in which bridged bicyclic systems are established, or nucleophilic trappings whereby one terminal carbon of the oxyallyl intermediate is subjected to carbon-carbon bond formation. A detailed investigation of reaction parameters to explicitly control the course of the "interrupted" Nazarov reactions is described. This methodology allows for facile installation of α-quaternary centers bearing allyl, alkynyl, and heteroaryl groups in an umpolung fashion. In addition, the trapping event of a Nazarov intermediate with furan was studied by DFT computations, in conjunction with experimental data, offering a rationale for the observed reaction pattern and diastereoselectivity.

  4. Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Klein, Frieder; Robbins, Mark; Moskowitz, Bruce; Berquó, Thelma S.; Jöns, Niels; Bach, Wolfgang; Templeton, Alexis

    2016-05-01

    A series of laboratory experiments were conducted to examine how partitioning of Fe among solid reaction products and rates of H2 generation vary as a function of temperature during serpentinization of olivine. Individual experiments were conducted at temperatures ranging from 200 to 320 °C, with reaction times spanning a few days to over a year. The extent of reaction ranged from <1% to ∼23%. Inferred rates for serpentinization of olivine during the experiments were 50-80 times slower than older studies had reported but are consistent with more recent results, indicating that serpentinization may proceed more slowly than previously thought. Reaction products were dominated by chrysotile, brucite, and magnetite, with minor amounts of magnesite, dolomite, and iowaite. The chrysotile contained only small amounts of Fe (XFe = 0.03-0.05, with ∼25% present as ferric Fe in octahedral sites), and displayed little variation in composition with reaction temperature. Conversely, the Fe contents of brucite (XFe = 0.01-0.09) increased steadily with decreasing reaction temperature. Analysis of the reaction products indicated that the stoichiometry of the serpentinization reactions varied with temperature, but remained constant with increasing reaction progress at a given temperature. The observed distribution of Fe among the reaction products does not appear to be entirely consistent with existing equilibrium models of Fe partitioning during serpentinization, suggesting improved models that include kinetic factors or multiple reaction steps need to be developed. Rates of H2 generation increased steeply from 200 to 300 °C, but dropped off at higher temperatures. This trend in H2 generation rates is attributable to a combination of the overall rate of serpentinization reactions and increased partitioning of Fe into brucite rather than magnetite at lower temperatures. The results suggest that millimolal concentration of H2 could be attained in moderately hot hydrothermal

  5. Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption.

    PubMed

    Lawniczak, Michał; Hul, Oleh; Bauch, Szymon; Seba, Petr; Sirko, Leszek

    2008-05-01

    We present the results of an experimental and numerical study of the distribution of the reflection coefficient P(R) and the distributions of the imaginary P(v) and the real P(u) parts of the Wigner reaction K matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modeled by optical potentials. The distribution of the reflection coefficient P(R) and the distributions of the reaction K matrix were obtained from measurements and numerical calculations of the scattering matrix S of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory.

  6. Population of high spin states in very heavy ion transfer reactions. The experimental evidence

    SciTech Connect

    Guidry, M.W.

    1985-01-01

    Transfer reactions have been studied for some time with light heavy ions such as oxygen. Although states of spin I approx.10 h are sometimes populated in such reactions, it is assumed that collective excitation is small, and the transferred particles are responsible for the angular momentum transfer. In this paper we will discuss a qualitatively different kind of transfer reaction using very heavy ions (A greater than or equal to 40). In these reactions the collective excitation in both the entrance and exit channels is strong, and there may be appreciable angular momentum transfer associated with inelastic excitation. 12 refs., 13 figs.

  7. [Are there pseudophototropic reactions in biology? Part 4: On the reversibility of biologic/synthetic polymere systems (author's transl)].

    PubMed

    Patschorke, J

    1979-01-01

    In further research on pseudophototropic behaviour in cellular membranes of halobacteria the reversibility of vinylmethylethermaleic anhydride-copolymeres with biological liquids is tested and the basic principles of different colour generating reactions are studied.

  8. REACTION WHEEL ATTITUDE CONTROL FOR SPACE VEHICLES. PART II. EXPERIMENTAL. SECTION 1,

    DTIC Science & Technology

    A laboratory model simulating, insofar as practical, a single axis of a space vehicle with a reaction wheel control system was constructed from off...activiated, generating sufficient impulse to reduce the wheel speed to zero. The system then returns to the reaction wheel mode of control. Several

  9. Experimental study of exclusive $^2$H$(e,e^\\prime p)n$ reaction mechanisms at high $Q^2$

    SciTech Connect

    Kim Egiyan; Gegham Asryan; Nerses Gevorgyan; Keith Griffioen; Jean Laget; Sebastian Kuhn; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Gerard Audit; Harutyun AVAKIAN; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Steve Barrow; Vitaly Baturin; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Lukasz Blaszczyk; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Antoine Cazes; Shifeng Chen; Philip Cole; Patrick Collins; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Volker Crede; John Cummings; Natalya Dashyan; Rita De Masi; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; Robert Fersch; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Michel Guidal; Matthieu Guillo; Hayko Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; Charles Hanretty; John Hardie; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mikhail Kossov; Zebulun Krahn; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sergey Kuleshov; Jeff Lachniet; Jorn Langheinrich; David Lawrence; Ji Li; Kenneth Livingston; Haiyun Lu; Marion MacCormick; Claude Marchand; Nikolai Markov; Paul Mattione; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Surik Mehrabyan; Joseph Melone; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Maryam Moteabbed; James Mueller; Edwin Munevar Espitia; Gordon Mutchler; Pawel Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Sergio Pereira; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; David Tedeschi; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-06-01

    The reaction {sup 2}H(e,e{prime} p)n has been studied with full kinematic coverage for photon virtuality 1.75 < 5.5 {approx} GeV{sup 2}. Comparisons of experimental data with theory indicate that for very low values of neutron recoil momentum (p{sub n} < 100 MeV/c) the neutron is primarily a spectator and the reaction can be described by the plane-wave impulse approximation. For 100 < 750 MeV/c proton-neutron rescattering dominates the cross section, while {Delta} production followed by the N{Delta} {yields} NN transition is the primary contribution at higher momenta.

  10. Experimental study of exclusive 2H(e,e'p)n reaction mechanisms at high Q2.

    PubMed

    Egiyan, K S; Asryan, G; Gevorgyan, N; Griffioen, K A; Laget, J M; Kuhn, S E; Adams, G; Amaryan, M J; Ambrozewicz, P; Anghinolfi, M; Audit, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Cazes, A; Chen, S; Cole, P L; Collins, P; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crede, V; Cummings, J P; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dickson, R; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fatemi, R; Fedotov, G; Feldman, G; Feuerbach, R J; Fersch, R; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gonenc, A; Gordon, C I O; Gothe, R W; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hanretty, C; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Juengst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Krahn, Z; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuleshov, S V; Lachniet, J; Langheinrich, J; Lawrence, D; Li, Ji; Livingston, K; Lu, H Y; Maccormick, M; Marchand, C; Markov, N; Mattione, P; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Moriya, K; Morrow, S A; Moteabbed, M; Mueller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatié, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B; Zhao, Z W

    2007-06-29

    The reaction 2H(e,e'p)n has been studied with full kinematic coverage for photon virtuality 1.75experimental data with theory indicate that for very low values of neutron recoil momentum (p(n)<100 MeV/c) the neutron is primarily a spectator and the reaction can be described by the plane-wave impulse approximation. For 100NN transition is the primary contribution at higher momenta.

  11. A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals.

    PubMed

    Khaled, Fethi; Giri, Binod Raj; Szőri, Milán; Mai, Tam V-T; Huynh, Lam K; Farooq, Aamir

    2017-03-08

    The reaction kinetics of dimethyl carbonate (DMC) and OH radicals were investigated behind reflected shock waves over the temperature range of 872-1295 K and at pressures near 1.5 atm. Reaction progress was monitored by detecting OH radicals at 306.69 nm using a UV laser absorption technique. The rate coefficients for the reaction of DMC with OH radicals were extracted using a detailed kinetic model developed by Glaude et al. (Proc. Combust. Inst. 2005, 30(1), 1111-1118). The experimental rate coefficients can be expressed in Arrhenius form as: kexpt'l = 5.15 × 10(13) exp(-2710.2/T) cm(3) mol(-1) s(-1). To explore the detailed chemistry of the DMC + OH reaction system, theoretical kinetic analyses were performed using high-level ab initio and master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) calculations. Geometry optimization and frequency calculations were carried out at the second-order Møller-Plesset (MP2) perturbation level of theory using Dunning's augmented correlation consistent-polarized valence double-ζ basis set (aug-cc-pVDZ). The energy was extrapolated to the complete basis set using single point calculations performed at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory. For comparison purposes, additional ab initio calculations were also carried out using composite methods such as CBS-QB3, CBS-APNO, G3 and G4. Our calculations revealed that the H-abstraction reaction of DMC by OH radicals proceeds via an addition elimination mechanism in an overall exothermic process, eventually forming dimethyl carbonate radicals and H2O. Theoretical rate coefficients were found to be in excellent agreement with those determined experimentally. Rate coefficients for the DMC + OH reaction were combined with literature rate coefficients of four straight chain methyl ester + OH reactions to extract site-specific rates of H-abstraction from methyl esters by OH radicals.

  12. Experimental investigations of mechanical and reaction responses for drop-weight impacted energetic particles

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-Wei; Wu, Yan-Qing; Wang, Ming-Yang; Huang, Feng-Lei

    2017-02-01

    Low-velocity drop-weight impact experiments on individual and multiple Cyclotetramethylene tetranitramine (HMX) energetic particles were performed using a modified drop-weight machine equipped with high-speed photography components. Multiple particles experienced more severe burning reactions than an individual particle. Comparisons between impacted salt and HMX particle show that jetting in HMX is mainly due to the motion of fragmented particles driven by gaseous reaction products. Velocity of jetting, flame propagation, and area expansion were measured via image processing, making it possible to quantify the chemical reaction or mechanical deformation violence at different stages.

  13. Experimental excitation functions of deuteron induced reactions on natural thallium up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Adam Rebeles, R.; Van den Winkel, P.; Hermanne, A.; Tárkányi, F.; Takács, S.

    2012-10-01

    Excitation functions of deuteron induced reactions on natural thallium leading to the formation of 204m,203m2+m1+g,202m,201m+g,200Pb and 202,201m+g,200m+gTl isotopes were determined up to 50 MeV. The cross sections were measured by an activation technique using stacked foil irradiation. The excitation functions of the investigated reactions are compared with data reported in literature and also with the theoretical results of TALYS nuclear reaction code. From the measured cross section data, the thick target yield for the medical interesting 203Pb isotope is calculated.

  14. Water vapor effect on the HNO3 yield in the HO2 + NO reaction: experimental and theoretical evidence.

    PubMed

    Butkovskaya, Nadezhda; Rayez, Marie-Thérèse; Rayez, Jean-Claude; Kukui, Alexandre; Le Bras, Georges

    2009-10-22

    The influence of water vapor on the production of nitric acid in the gas-phase HO(2) + NO reaction was determined at 298 K and 200 Torr using a high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer. The yield of HNO(3) was found to increase linearly with the increase of water concentration reaching an enhancement factor of about 8 at [H(2)O] = 4 x 10(17) molecules cm(-3) ( approximately 50% relative humidity). A rate constant value k(1bw) = 6 x 10(-13) cm(3) molecule(-1) s(-1) was derived for the reaction involving the HO(2)xH(2)O complex: HO(2)xH(2)O + NO --> HNO(3) (1bw), assuming that the water enhancement is due to this reaction. k(1bw) is approximately 40 times higher than the rate constant of the reaction HO(2) + NO --> HNO(3) (1b), at the same temperature and pressure. The experimental findings are corroborated by density functional theory (DFT) calculations performed on the H(2)O/HO(2)/NO system. The significance of this result for atmospheric chemistry and chemical amplifier instruments is briefly discussed. An appendix containing a detailed consideration of the possible contribution from the surface reactions in our previous studies of the title reaction and in the present one is included.

  15. Polar Diels-Alder reactions using electrophilic nitrobenzothiophenes. A combined experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Della Rosa, Claudia D.; Mancini, Pedro M. E.; Kneeteman, Maria N.; Lopez Baena, Anna F.; Suligoy, Melisa A.; Domingo, Luis R.

    2015-01-01

    The reactions between 2- and 3-nitrobenzothiophenes with three dienes of different nucleophilicity, 1-methoxy-3-trimethylsilyloxy-1,3-butadiene, 1-trimethylsilyloxy-1,3-butadiene and isoprene developed in anhydrous benzene and alternative under microwave irradiation with molecular solvents or in free solvent conditions, respectively, for produce dibenzothiophenes permit to conclude that both nitroheterocycles act as electrophile with the cited dienes. In the cases of the dienes 1-methoxy-3-trimethylsilyloxy-1,3-butadiene and 1-trimethylsilyloxy-1,3-butadiene which posses major nucleophilicity the observed product is the normal cycloaddition one. However when the diene is isoprene the product with both electrophiles follow the hetero Diels-Alder way. These reactions are considered polar cycloaddition reactions and the yields are reasonables. Moreover the polar Diels-Alder reactions of nitrobenzothiophenes with electron rich dienes 1-trimethylsilyloxy-1,3-butadiene have been theoretically studied using DFT methods.

  16. Applications of a superconducting solenoidal separator in the experimental investigation of nuclear reactions

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Carter, I. P.; Dasgupta, M.; Simpson, E. C.; Cook, K. J.; Kalkal, Sunil; Luong, D. H.; Williams, E.

    2017-01-01

    This paper describes applications of a novel superconducting solenoidal separator, with magnetic fields up to 8 Tesla, for studies of nuclear reactions using the Heavy Ion Accelerator Facility at the Australian National University.

  17. A convenient method for experimental determination of yields and isomeric ratios in photonuclear reactions measured by the activation technique

    NASA Astrophysics Data System (ADS)

    Kolev, D.; Dobreva, E.; Nenov, N.; Todorov, V.

    1995-02-01

    A generalized exact formula is derived for a determination of the experimental isomeric ratio in any incident particle activation. For the particular case, when the activity of the ground state results from the simultaneous decay of both states and can be conveniently measured, the appropriate modification of this formula is evaluated and applied to six photonuclear reactions induced by 43 MeV bremsstrahlung. The experimental isomeric yield ratios of (γ, 3n) 110m,gIn; (γ, p) (γ, pn), (γ, 2n2p) 117m,gIn; (γ, n) 164m,gHo and (γ, 3n) 162m,gHo are deduced.

  18. Novel rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization.

    PubMed

    Andjelkovic, Dejan D; Larock, Richard C

    2006-03-01

    Novel thermosetting copolymers, ranging from tough and ductile to very soft rubbers, have been prepared by the cationic copolymerization of regular (SOY) and 100% conjugated soybean oils (C(100)SOY) with dicyclopentadiene (DCP) catalyzed by Norway fish oil (NFO)-modified and SOY- and C(100)SOY-diluted boron trifluoride diethyl etherate (BFE). The gelation time of the reactions varies from 4 to 991 min at 110 degrees C. The yields of the bulk copolymers are essentially quantitative, while the yields of the cross-linked copolymers remaining after Soxhlet extraction with methylene chloride range from 69% to 88%, depending on the monomer stoichiometry and the catalyst used. (1)H NMR spectroscopy and Soxhlet extraction data indicate that these copolymers consist of a cross-linked soybean oil-DCP network plasticized by certain amounts of methylene chloride-soluble linear or less cross-linked soybean oil-DCP copolymers, unreacted oil, and some low molecular weight hydrolyzed oil. The molecular weights of these soluble fractions are in the range from 400 to 10,000 g/mol based on polystyrene standards. The bulk copolymers have glass transition temperatures ranging from -22.6 to 56.6 degrees C, while their tan delta peak values range from 0.7 to 1.2. Thermogravimetric analysis (TGA) indicates that these soybean oil-DCP copolymers are thermally stable below 200 degrees C, with 10% and 50% weight loss temperatures ranging from 280 to 372 degrees C and 470-554 degrees C, respectively. These properties suggest that these biobased thermosets may prove useful alternatives to current petroleum-based plastics and find widespread utility.

  19. Mechanical properties of products of thermocatalytic and radiolytic styrene - acrylonitrile copolymerization

    SciTech Connect

    Gadalla, A.M.; Derini, M.A.E.

    1983-12-01

    The mechanical properties of styrene (S)-acrylonitrile (AN) mixtures, ranging from 20 to 80 wt % S, polymerized by thermocatalytic and radiolytic techniques were studied. Maximum compressive and tensile strength was obtained for the mixture containing 60 wt % styrene. The hardness increased with styrene concentration up to 40 wt % and then remained nearly constant. Radiolytic copolymerization gave stronger copolymers than thermal copolymerization since irradiation enhances crosslinking. For the same composition, as the dose increases, the strength increases to a maximum and then decreases due to competing rates of crosslinking and degradation. 5 figures.

  20. Experimental setup and procedure for the measurement of the 7Be(n,α)α reaction at n_TOF

    NASA Astrophysics Data System (ADS)

    Cosentino, L.; Musumarra, A.; Barbagallo, M.; Pappalardo, A.; Colonna, N.; Damone, L.; Piscopo, M.; Finocchiaro, P.; Maugeri, E.; Heinitz, S.; Schumann, D.; Dressler, R.; Kivel, N.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Ayranov, M.; Bacak, M.; Barros, S.; Balibrea-Correa, J.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Duran, I.; Fernandez-Dominguez, B.; Ferrari, A.; Ferreira, P.; Furman, W.; Ganesan, S.; García-Rios, A.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Göbel, K.; Gonc̗alves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Katabuchi, T.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lerendegui, J.; Lederer, C.; Leeb, H.; Meo, S. Lo; Lonsdale, S.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Praena, J.; Quesada, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J.; Sabate-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vollaire, J.; Wallner, A.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Woods, P. J.; Wright, T.; Z̆ugec, P.

    2016-09-01

    The newly built second experimental area EAR2 of the n_TOF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experimental procedure for the determination of the cross-section of the 7Be(n,α)α reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge 7Be γ-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.

  1. Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode

    SciTech Connect

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J

    2001-07-15

    Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis.

  2. Fusion reactions and experimental approaches to the synthesis of superheavy nuclei

    SciTech Connect

    Yeremin, A. V.; Utyonkov, V. K.; Oganessian, Yu. Ts.

    1998-02-15

    The question whether the asymmetric actinide based heavy ion reactions could be used for the synthesis of heavy (Z{>=}106) nuclides is essential from the point of view of the study of limitation on fusion, it is also important in such reactions new nuclides close to the magic number N=162 can be produced. Thus as the problem of a hindrance to fusion still remains unsolved the high excitation energy of the compound nucleus looks to be an obvious obstacle to using these reactions. Using the gas-filled recoil separator and electrostatic recoil separator VAS-SILISSA installed at the beam lines of the U-400 heavy ion cyclotron of the FLNR JINR we investigated the fusion reactions leading to 102, 103, 104, 105 and heaviest isotopes of the 106, 108 and 110 elements. The analysis of the measured cross-sections did not reveal any evidence of a hindrance to fusion at the ion bombarding energy close to the Coulomb barrier. {sup 48}Ca+{sup 232}Th{yields}{sup 280}110*, {sup 48}Ca+{sup 238}U{yields}{sup 286}112*, {sup 48}Ca+{sup 244}Pu{yields}{sup 292}114* appear to be the best reactions from the point of view of their cross-sections.

  3. Electronic Effects of Aluminum Complexes in the Copolymerization of Propylene Oxide with Tricyclic Anhydrides: Access to Well-Defined, Functionalizable Aliphatic Polyesters.

    PubMed

    Van Zee, Nathan J; Sanford, Maria J; Coates, Geoffrey W

    2016-03-02

    The synthesis of well-defined and functionalizable aliphatic polyesters remains a key challenge in the advancement of emerging drug delivery and self-assembly technologies. Herein, we investigate the factors that influence the rates of undesirable transesterification and epimerization side reactions at high conversion in the copolymerization of tricyclic anhydrides with excess propylene oxide using aluminum salen catalysts. The structure of the tricyclic anhydride, the molar ratio of the aluminum catalyst to the nucleophilic cocatalyst, and the Lewis acidity of the aluminum catalyst all influence the rates of these side reactions. Optimal catalytic activity and selectivity against these side reactions requires a careful balance of all these factors. Effective suppression of undesirable transesterification and epimerization was achieved even with sterically unhindered monomers using a fluorinated aluminum salph complex with a substoichiometric amount of a nucleophilic cocatalyst. This process can be used to synthesize well-defined block copolymers via a sequential addition strategy.

  4. Experimental Study of p-11B Reaction Related to the Clean Fusion Fuel

    NASA Astrophysics Data System (ADS)

    Lin, Erh-kang; Wang, Chang-wan; Yuan, Jian; Liu, Xiao-dong; Li, Cheng-bo; Sun, Zu-xun; Zhang, Pei-hua; Chen, Jin-xiang; Yang, Qi-xiang; Wang, Jian-yong; Ling-hua, Gong

    1998-11-01

    Whole continuous α spectra of the p-11B three-body sequential decay reaction have been measured by using a charge particle time-of-flight (TOF) spectrometer with the high-resolution passivated implanted planar silicon detector. A characteristic shape of the saddle-type distribution was obtained. The Monte Carlo calculations show that observed α spectra can be interpreted by anisotropy sequential decay process of the intermediate nucleus 8Be (1) for the p-11B reaction. In the measurement, angular distributions were obtained for proton energies at 667 and 1370 keV, respectively. Total cross-sections for the 11B(p,α)8Be(2α) reaction related to the clean fusion fuel were also reported at two bombarding energies.

  5. An experimental estimate of the electron-tunneling distance for some outer-sphere electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Hupp, J. T.; Weaver, M. J.

    1983-11-01

    Estimates of the reaction zone thickness over which electron tunneling can effectively occur for the outer-sphere electrochemical reduction of some Cr(III) complexes are obtained by comparing the observed work-corrected rate constants with unimolecular rate constants for the electroreduction of structurally similar surface-bound Cr(III) reactants. Effective reaction zone thicknesses of ca. 0.1-0.3 A and ca. 5 A are obtained for outer-sphere electron transfer with Cr(III) reactants containing predominantly aquo or ammine ligands, respectively. This indicates that the former reactions are marginally nonadiabatic whereas the latter are decidedly adiabatic at their respective places of closest approach. These findings are compatible with the greater reactant-electrode separation distances previously noted for Cr(III) aquo relative to ammine complexes resulting from the more extensive hydration sheath surrounding the former reactants.

  6. Experimental and computational investigation on the gas phase reaction of p-cymene with Cl atoms.

    PubMed

    Dash, Manas Ranjan; Srinivasulu, G; Rajakumar, B

    2015-01-29

    The rate coefficient for the gas-phase reaction of Cl atoms with p-cymene was determined as a function of temperature (288-350 K) and pressure (700-800 Torr) using the relative rate technique, with 1,3-butadiene and ethylene as reference compounds. Cl atoms were generated by UV photolysis of oxalyl chloride ((COCl)2) at 254 nm, and nitrogen was used as the diluent gas. The rate coefficient for the reaction of Cl atoms with p-cymene at 298 K was measured to be (2.58 ± 1.55) × 10(-10) cm(3) molecule(-1) s(-1). The kinetic data obtained over the temperature range 288-350 K were used to derive an Arrhenius expression: k(T) = (9.36 ± 2.90) × 10(-10) exp[-(488 ± 98)/T] cm(3) molecule(-1) s(-1). Theoretical kinetic calculations were also performed for the title reaction using canonical variational transition state theory (CVT) with small curvature tunneling (SCT) between 250 and 400 K. The calculated rate coefficients obtained over the temperature range 250-400 K were used to derive an Arrhenius expression: k(T) = 5.41 × 10(-13) exp[1837/T] cm(3) molecule(-1) s(-1). Theoretical study indicated that addition channels contribute maximum to the total reaction and H-abstraction channels can be neglected. The atmospheric lifetime (τ) of p-cymene due to its reactions with various tropospheric oxidants was estimated, and it was concluded that the reactions of p-cymene with Cl atoms may compete with OH radicals in the marine boundary layer and in coastal urban areas where the concentration of Cl atoms is high.

  7. Lipase-catalyzed copolymerization of dialkyl carbonate with 1,4-butanediol and ω-pentadecalactone: synthesis of poly(ω-pentadecalactone-co-butylene-co-carbonate).

    PubMed

    Jiang, Zhaozhong

    2011-05-09

    Candida antarctica lipase B (CALB) was successfully used to promote synthesis of aliphatic poly(carbonate-co-ester) copolymers from dialkyl carbonate, diol, and lactone monomers. The polymerization reactions were carried out in two stages: first-stage oligomerization under low vacuum, followed by second-stage polymerization under high vacuum. Therefore, copolymerization of ω-pentadecalactone (PDL), diethyl carbonate (DEC), and 1,4-butanediol (BD) yielded PDL-DEC-BD copolymers with a M(w) of whole product (nonfractionated) up to 33 000 and M(w)/M(n) between 1.2 and 2.3. Desirable reaction temperature for the copolymerization was found to be ∼80 °C. The copolymer compositions, in the range from 10 to 80 mol % PDL unit content versus total (PDL + carbonate) units, were effectively controlled by adjusting the monomer feed ratio. Reprecipitation in chloroform/methanol mixture allowed isolation of the purified copolymers in up to 92% yield. (1)H and (13)C NMR analyses, including statistical analysis on repeat unit sequence distribution, were used to determine the polymer microstructures. The synthesized PDL-DEC-BD copolymers possessed near random structures with all possible combinations of PDL, carbonate, and butylene units via either ester or carbonate linkages in the polymer chains and are more appropriately named as poly(PDL-co-butylene-co-carbonate).

  8. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts

    SciTech Connect

    Not Available

    1993-01-01

    The research has involved the characterization of catalyst acidity, [sup 2]D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  9. Experimental Studies of Hydrogenation and Other Reactions on Surfaces Under Astrophysically Relevant Conditions

    NASA Technical Reports Server (NTRS)

    Vidali, Gianfranco

    1998-01-01

    The goal of our project is to study hydrogen recombination reactions on solid surfaces under conditions that are relevant in astrophysics. Laboratory experiments were conducted using low-flux, cold atomic H and D beams impinging on a sample kept under ultra high vacuum conditions. Realistic analogues of interstellar dust grains were used. Our results show that current models for hydrogen recombination reactions have to be modified to take into account the role of activated diffusion of H on surfaces even at low temperature.

  10. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH 2 OO and isoprene

    DOE PAGES

    Decker, Z. C. J.; Au, K.; Vereecken, L.; ...

    2017-01-01

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15–100more » Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10–15 cm3 molecule–1 s–1 at room temperature to (23 ± 2) × 10–15 cm3 molecule–1 s–1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.« less

  11. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH2OO and isoprene

    DOE PAGES

    Decker, Z. C. J.; Au, K.; Vereecken, L.; ...

    2017-03-07

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15–100more » Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10–15 cm3 molecule–1 s–1 at room temperature to (23 ± 2) × 10–15 cm3 molecule–1 s–1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.« less

  12. A case study of the mechanism of alcohol-mediated Morita Baylis-Hillman reactions. The importance of experimental observations.

    PubMed

    Plata, R Erik; Singleton, Daniel A

    2015-03-25

    The mechanism of the Morita Baylis-Hillman reaction has been heavily studied in the literature, and a long series of computational studies have defined complete theoretical energy profiles in these reactions. We employ here a combination of mechanistic probes, including the observation of intermediates, the independent generation and partitioning of intermediates, thermodynamic and kinetic measurements on the main reaction and side reactions, isotopic incorporation from solvent, and kinetic isotope effects, to define the mechanism and an experimental mechanistic free-energy profile for a prototypical Morita Baylis-Hillman reaction in methanol. The results are then used to critically evaluate the ability of computations to predict the mechanism. The most notable prediction of the many computational studies, that of a proton-shuttle pathway, is refuted in favor of a simple but computationally intractable acid-base mechanism. Computational predictions vary vastly, and it is not clear that any significant accurate information that was not already apparent from experiment could have been garnered from computations. With care, entropy calculations are only a minor contributor to the larger computational error, while literature entropy-correction processes lead to absurd free-energy predictions. The computations aid in interpreting observations but fail utterly as a replacement for experiment.

  13. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH2OO and isoprene.

    PubMed

    Decker, Z C J; Au, K; Vereecken, L; Sheps, L

    2017-03-13

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15-100 Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10(-15) cm(3) molecule(-1) s(-1) at room temperature to (23 ± 2) × 10(-15) cm(3) molecule(-1) s(-1) at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. This reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.

  14. A Case Study of the Mechanism of Alcohol-Mediated Morita Baylis–Hillman Reactions. The Importance of Experimental Observations

    PubMed Central

    2016-01-01

    The mechanism of the Morita Baylis–Hillman reaction has been heavily studied in the literature, and a long series of computational studies have defined complete theoretical energy profiles in these reactions. We employ here a combination of mechanistic probes, including the observation of intermediates, the independent generation and partitioning of intermediates, thermodynamic and kinetic measurements on the main reaction and side reactions, isotopic incorporation from solvent, and kinetic isotope effects, to define the mechanism and an experimental mechanistic free-energy profile for a prototypical Morita Baylis–Hillman reaction in methanol. The results are then used to critically evaluate the ability of computations to predict the mechanism. The most notable prediction of the many computational studies, that of a proton-shuttle pathway, is refuted in favor of a simple but computationally intractable acid–base mechanism. Computational predictions vary vastly, and it is not clear that any significant accurate information that was not already apparent from experiment could have been garnered from computations. With care, entropy calculations are only a minor contributor to the larger computational error, while literature entropy-correction processes lead to absurd free-energy predictions. The computations aid in interpreting observations but fail utterly as a replacement for experiment. PMID:25714789

  15. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: overcoming the difficulty in experimental determination.

    PubMed

    Li, Chao; Xie, Hong-Bin; Chen, Jingwen; Yang, Xianhai; Zhang, Yifei; Qiao, Xianliang

    2014-12-02

    Short chain chlorinated paraffins (SCCPs) are under evaluation for inclusion in the Stockholm Convention on persistent organic pollutants. However, information on their reaction rate constants with gaseous ·OH (kOH) is unavailable, limiting the evaluation of their persistence in the atmosphere. Experimental determination of kOH is confined by the unavailability of authentic chemical standards for some SCCP congeners. In this study, we evaluated and selected density functional theory (DFT) methods to predict kOH of SCCPs, by comparing the experimental kOH values of six polychlorinated alkanes (PCAs) with those calculated by the different theoretical methods. We found that the M06-2X/6-311+G(3df,2pd)//B3LYP/6-311 +G(d,p) method is time-effective and can be used to predict kOH of PCAs. Moreover, based on the calculated kOH of nine SCCPs and available experimental kOH values of 22 PCAs with low carbon chain, a quantitative structure-activity relationship (QSAR) model was developed. The molecular structural characteristics determining the ·OH reaction rate were discussed. logkOH was found to negatively correlate with the percentage of chlorine substitutions (Cl%). The DFT calculation method and the QSAR model are important alternatives to the conventional experimental determination of kOH for SCCPs, and are prospective in predicting their persistence in the atmosphere.

  16. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  17. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  18. Experimental test of Bell's inequality via the 1H(d,2He)n reaction

    SciTech Connect

    Saito, T.; Sakai, H.; Kuboki, H.; Sasano, M.; Yako, K.; Ikeda, T.; Itoh, K.; Kawabata, T.; Maeda, Y.; Suda, K.; Uesaka, T.; Matsui, N.; Satou, Y.; Sekiguchi, K.; Tamii, A.

    2005-05-06

    To test Bell's inequality, measurements of spin correlations between two protons in the spin singlet state have been performed. Proton pairs in the singlet state were produced by the 1H(d,2He)n reaction at Ed = 270 MeV.

  19. Modeling and Experimental Investigations of Mixing-Controlled Geochemical and Biological Reactions at the Pore Scale

    NASA Astrophysics Data System (ADS)

    Valocchi, A. J.; Werth, C. J.; Yoon, H.; Tang, Y.

    2012-12-01

    Several studies have demonstrated the important role played by mixing-controlled reactions in porous media. For example, transverse mixing of nutrients along the fringes of a contaminant plume is often the limiting step that controls overall degradation rate during natural or engineered in situ bioremediation. Similar mixing processes can promote precipitation/dissolution reactions during geological sequestration of carbon dioxide. Field and laboratory investigations have demonstrated that the length scale of transverse mixing zones can be very small, often on the order of centimeters or less. To study dispersion, mixing and reaction at this scale, we use pore-scale numerical simulation models and micro-fluidics laboratory experiments. An overview of our methods and findings, including comparisons between direct numerical simulations and laboratory experiments will be presented. The presentation will emphasize recent results including: (a) coupling of precipitation/dissolution with porosity reduction under different geochemical conditions, and (b) impact of pore structure on biodegradation and biofilm growth patterns. Our work has improved understanding of coupled flow, transport and reaction processes; however, there remain significant challenges in extending the results to larger field scales.

  20. Experimental studies on the reaction kinetics of 1,1-dimethylhydrazine and oxygen

    NASA Technical Reports Server (NTRS)

    Just, T.

    1985-01-01

    Measurements behind shock waves in highly diluted 1,1 dimethylhydrazine-O2-Ar mixtures clearly showed a two-stage reaction. In the first stage, UDMH decomposes via a unimolecular step; in the second stage, clearly separated from the first one, the decay products react further with O2. Values for the rate constant of unimolecular decomposition were obtained.

  1. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  2. Experimental evidence of the relevance of orientational correlations in photoinduced bimolecular reactions in solution.

    PubMed

    Angulo, Gonzalo; Cuetos, Alejandro; Rosspeintner, Arnulf; Vauthey, Eric

    2013-09-12

    A major problem in the extraction of the reaction probability in bimolecular processes is the disentanglement from the influence of molecular diffusion. One of the strategies to overcome it makes use of reactive solvents in which the reactants do not need to diffuse to encounter each other. However, most of our quantitative understanding of chemical reactions in solution between free partners is based on the assumption that they can be approximated by spheres because rotation averages their mutual orientations. This condition may not be fulfilled when the reaction takes place on time scales faster than that of molecular reorientation. In this work, the fluorescence quenching of two very similar polyaromatic hydrocarbons with different electric dipole moments is measured. The concentration of a liquid electron-donating quencher is varied from very dilute solutions to pure quencher solutions. In both cases, the thermodynamics of the reactions are very similar and, according to the Marcus expression, the kinetics are expected to proceed at similar rates. However, one of them is 10 times faster in the pure quencher solution. This difference starts at relatively low quencher concentrations. An explanation based on the fluorophore-solvent dipole-dipole interaction and the consequent orientational solvent structure is provided. The orientational correlation between fluorophore and quencher is calculated by means of computer simulations. Important differences depending on the fluorophore dipole moment are found. The kinetics can be explained quantitatively with a reaction-diffusion model that incorporates the effects of the presence of the dipole moment and the rotational diffusion, only in the highest quencher concentration case, but not in dilute solutions, most likely due to fundamental limitations of the kinetic theory.

  3. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst.

    PubMed

    Ren, Wei-Min; Liu, Zhong-Wen; Wen, Ye-Qian; Zhang, Rong; Lu, Xiao-Bing

    2009-08-19

    The mechanism of the copolymerization of CO(2) and epoxides to afford the corresponding polycarbonates catalyzed by a highly active and thermally stable cobalt(III) complex with 1,5,7-triabicyclo[4,4,0] dec-5-ene (designated as TBD, a sterically hindered organic base) anchored on the ligand framework has been studied by means of electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared spectroscopy (FTIR). The single-site, cobalt-based catalyst exhibited excellent activity and selectivity for polymer formation during CO(2)/propylene oxide (PO) copolymerization even at temperatures up to 100 degrees C and high [epoxide]/[catalyst] ratios, and/or low CO(2) pressures. The anchored TBD on the ligand framework plays an important role in maintaining thermal stability and high activity of the catalyst. ESI-MS and FTIR studies, in combination with some control experiments, confirmed the formation of the carboxylate intermediate with regard to the anchored TBD on the catalyst ligand framework. This analysis demonstrated that the formed carboxylate intermediate helped to stabilize the active Co(III) species against decomposition to inactive Co(II) by reversibly intramolecular Co-O bond formation and dissociation. Previous studies of binary catalyst systems based on Co(III)-Salen complexes did not address the role of these nucleophilic cocatalysts in stabilizing active Co(III) species during the copolymerization. The present study provides a new mechanistic understanding of these binary catalyst systems in which alternating chain-growth and dissociation of propagating carboxylate species derived from the nucleophilic axial anion and the nucleophilic cocatalyst take turns at both sides of the Co(III)-Salen center. This significantly increases the reaction rate and also helps to stabilize the active SalenCo(III) against decomposition to inactive SalenCo(II) even at low CO(2) pressures and/or relatively high temperatures.

  4. Experimental Constraints on Fluid-Rock Reactions during Incipient Serpentinization of Harzburgite

    NASA Astrophysics Data System (ADS)

    Klein, F.; Grozeva, N. G.; Seewald, J.; McCollom, T. M.; Humphris, S. E.; Moskowitz, B. M.; Berquo, T. S.; Kahl, W. A.

    2014-12-01

    The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions - a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization and the release of H2 under well-constrained conditions, we reacted uncrushed harzburgite with chemically modified seawater at 300°C and 35 MPa for ca. 1.5 years (13441 hours), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol % of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~3.8 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. However, the H2 release rate was not uniform, slowing from ~2 nmol H2(aq) gperidotite-1 s-1 at the beginning of the experiment to ~0.2 nmol H2(aq) gperidotite-1 s-1 at its termination. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed a

  5. Reaction kinetics of Cl atoms with limonene: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Dash, Manas Ranjan; Rajakumar, B.

    2014-12-01

    Rate coefficients for the reaction of Cl atoms with limonene (C10H16) were measured between 278-350 K and 800 Torr of N2, using the relative rate technique, with 1,3-butadiene (C4H6), n-nonane (C9H20), and 1-pentene (C5H10) as reference compounds. Cl atoms were generated by UV photolysis of oxalyl chloride ((COCl)2) at 254 nm. A gas chromatograph equipped with a flame ionization detector (GC-FID) was used for quantitative analysis of the organics. The rate coefficient for the reaction of Cl atoms with limonene at 298 K was measured to be (8.65 ± 2.44) × 10-10 cm3 molecule-1 s-1. The rate coefficient is an average value of the measurements, with two standard deviations as the quoted error, including uncertainties in the reference rate coefficients. The kinetic data obtained over the temperature range of 278-350 K were used to derive the following Arrhenius expression: k(T) = (9.75 ± 4.1) × 10-11 exp[(655 ± 133)/T] cm3 molecule-1 s-1. Theoretical kinetic calculations were also performed for the title reaction using conventional transition state theory (CTST) in combination with G3(MP2) theory between 275 and 400 K. The kinetic data obtained over the temperature range of 275-400 K were used to derive an Arrhenius expression: k(T) = (7.92 ± 0.82) × 10-13 exp[(2310 ± 34)/T] cm3 molecule-1 s-1. The addition channels contributes maximum to the total reaction and H-abstraction channels can be neglected in the range of studied pressures. The Atmospheric lifetime (τ) of limonene due to its reaction with Cl atoms was estimated and concluded that the reaction with chlorine atoms can be an effective tropospheric loss pathway in the marine boundary layer and in coastal urban areas.

  6. A combined experimental and theoretical study of reactions between the hydroxyl radical and oxygenated hydrocarbons relevant to astrochemical environments.

    PubMed

    Shannon, R J; Caravan, R L; Blitz, M A; Heard, D E

    2014-02-28

    The kinetics of the reactions of the hydroxyl radical (OH) with acetone and dimethyl ether (DME) have been studied between 63-148 K and at a range of pressures using laser-flash photolysis coupled with laser induced fluorescence detection of OH in a pulsed Laval nozzle apparatus. For acetone, a large negative temperature dependence was observed, with the rate coefficient increasing from k1 = (1.6 ± 0.8) × 10(-12) cm(3) molecule(-1) s(-1) at 148 K to (1.0 ± 0.1) × 10(-10) cm(3) molecule(-1) s(-1) at 79 K, and also increasing with pressure. For DME, a similar behaviour was found, with the rate coefficient increasing from k2 = (3.1 ± 0.5) × 10(-12) cm(3) molecule(-1) s(-1) at 138 K to (1.7 ± 0.1) × 10(-11) cm(3) molecule(-1) s(-1) at 63 K, and also increasing with pressure. The temperature and pressure dependence of the experimental rate coefficients are rationalised for both reactions by the formation and subsequent stabilisation of a hydrogen bonded complex, with a non-zero rate coefficient extrapolated to zero pressure supportive of quantum mechanical tunnelling on the timescale of the experiments leading to products. In the case of DME, experiments performed in the presence of O2 provide additional evidence that the yield of the CH3OCH2 abstraction product, which can recycle OH in the presence of O2, is ≥50%. The experimental data are modelled using the MESMER (Master Equation Solver for Multi Energy Well Reactions) code which includes a treatment of quantum mechanical tunnelling, and uses energies and structures of transition states and complexes calculated by ab initio methods. Good agreement is seen between experiment and theory, with MESMER being able to reproduce for both reactions the temperature behaviour between ~70-800 K and the pressure dependence observed at ~80 K. At the limit of zero pressure, the model predicts a rate coefficient of ~10(-11) cm(3) molecule(-1) s(-1) for the reaction of OH with acetone at 20 K, providing evidence that the

  7. Proton and deuteron induced reactions on natGa: Experimental and calculated excitation functions

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Adam-Rebeles, R.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2015-09-01

    Cross-sections for reactions on natGa, induced by protons (up to 65 MeV) and deuterons (up to 50 MeV), producing γ-emitting radionuclides with half-lives longer than 1 h were measured in a stacked-foil irradiation using thin Ga-Ni alloy (70-30%) targets electroplated on Cu or Au backings. Excitation functions for generation of 68,69Ge, 66,67,68,72Ga and 65,69mZn on natGa are discussed, relative to the monitor reactions natAl(d,x)24,22Na, natAl(p,x)24,22Na, natCu(p,x)62Zn and natNi(p,x)57Ni. The results are compared to our earlier measurements, the scarce literature values and to the results of the code TALYS 1.6 (online database TENDL-2014).

  8. Effect of M-711 on experimental skin reactions induced by chemical mediators in rats.

    PubMed

    Shichinohe, K; Shimizu, M; Kurokawa, K

    1996-05-01

    We investigated the mechanism of anti-allergic action of Moku-boi-to (M-711) and effects on the skin reactions induced by chemical mediators as the model of allergic dermatitis. More than 20 mg/kg BW of M-711 significantly suppressed the enhancement of capillary permeability induced by histamine, LTC4, and anti-serum in the rat skin. Anti-histaminic effect of 40 mg/kg BW of M-711 was equipotent to same as the optimal doses of azelastine and diphenhydramine, respectively. As to anti-LTC4 action, 20 mg of M-711 was compared to the optimal dose of diphenhydramine. Those data showed that M-711 has the suppressive effects on the chemical mediators such as histamine and LTC4 and reduced the skin reaction induced by antigen-antibody response.

  9. Theoretical and experimental studies of spatial bistability in the chlorine-dioxide-iodide reaction

    NASA Astrophysics Data System (ADS)

    Blanchedeau, P.; Boissonade, J.; De Kepper, P.

    2000-12-01

    The phenomenon of spatial bistability has recently been proposed to understand a number of paradoxical results obtained in experiments on nonequilibrium chemical patterns performed in open reactors made of a thin film of gel fed from one side. On the basis of a realistic kinetic model, we predict that the chlorine-dioxide-iodide reaction, taken as a prototypic example of a large class of reactions, should exhibit spatial bistability. The theoretical and numerical results are supported by experiments performed in specially designed reactors. This spatial bistability introduces an additional geometric dimension in the system which is generally overlooked. We elaborate on the role that this additional complexity can play in the observation of patterns associated to fronts in such reactors.

  10. Ab initio Quantum Chemical and Experimental Reaction Kinetics Studies in the Combustion of Bipropellants

    DTIC Science & Technology

    2017-03-24

    ignition Chemistry  Occurs at Low Temperature- Pressure Conditions CH3NHNH2/N2O4  Understand Fuel Pyrolysis  Competes With Oxidation  Understand...Fuel Oxidation  Competes With Pyrolysis  Construct Comprehensive Reaction Kinetics Models  Discover Other Auto-igniting Bipropellant Systems Improve...With Rigid-rotor Harmonic-oscillator Assumption Including Tunneling Corrections Used to Calculate High- pressure Limit  Good Agreement With Experiment

  11. Experimental and Theoretical Study of the Reaction of POCl3- With O2

    DTIC Science & Technology

    2010-01-01

    NUMBER 1010 5e. TASK NUMBER BM 5f. WORK UNIT NUMBER Al H>ERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) o Air Force Research Laboratory 2 9...good agreement with the small overall barrier found by experiment. The final step is responsible for the large exothermicity of the reaction. © 2010...Chemistry, Georgia Southwestern State University, Americus. Georgia 31709, USA Space Vehicles Directorate, Air Force Research Laboratory, Hanscom Air Force

  12. Proposed experimental probes of chemical reaction molecular dynamics in solution: ICN photodissociation

    NASA Astrophysics Data System (ADS)

    Benjamin, I.; Wilson, Kent R.

    1989-04-01

    Knowledge of how translational and rotational motions are influenced by the solvent during the course of a photodissociation ``half-collision'' reaction in solution is of interest in itself and can also help our understanding of how thermally activated reactions take place in solution by means of fluctuations in translational and rotational motion. With this goal, the molecular dynamics of the photodissociation of the triatomic molecule ICN are compared in the gas phase and in Xe solution. The time evolution of the trajectories (particularly with respect to interfragment distance and CN orientation) and of the energy partitioning (particularly into fragment translational recoil and into rotation of the CN) are displayed. Two types of solution experiments are proposed and simulated, both closely related to recent gas phase studies by Dantus, Rosker, and Zewail. These experiments are designed to probe the detailed dynamics of chemical reactions in solution during the time period the reaction is in progress, in particular to reveal the dramatic effects of the solvent on translational motions and energies. Both are pump-probe experiments in which the first photon dissociates the ICN and the second induces fluorescence in the CN fragment. In the first type of experiment, which is particularly sensitive to fragment translational motion, the fluorescence intensity is measured as a function of photon energy and of time delay. In the second type of experiment, which is particularly sensitive to fragment rotation, in addition the angle between the polarizations of the pump and probe photons is varied. In the calculations presented here, the effect of the absorption of the photodissociation photon is treated using the classical Frank-Condon principle. The coupling between the assumed two upper electronic surfaces is taken into account semiclassically using a generalization to the condensed phase of the classical electron model of Miller and Meyer, which was applied to ICN

  13. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

    PubMed

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Rocca, Jorge J; Bernstein, Elliot R; Wang, Zhe-Chen; Deng, Ke; He, Sheng-Gui

    2008-02-13

    Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.

  14. Experimental studies of mixing barriers and reaction fronts in a steady, three-dimensional flow

    NASA Astrophysics Data System (ADS)

    Mills, Harrison; Solomon, Tom

    2013-11-01

    We present experiments studying chaotic mixing and front propagation in a steady, three-dimensional (3D) flow composed of nested vortices. Passive mixing is characterized by tracking almost-neutral, fluorescent tracer particles in the flow. A fluorescent dye is also used, and the spreading of this dye is monitored with a scanning laser system and a camera that images a stack of cross-sectional images. Using both methods, we find evidence of both ordered and chaotic regions of mixing in the flow. We also present preliminary results of studies of behavior of the Ruthenium-catalyzed, excitable Belousov-Zhabotinsky chemical reaction in this flow. Propagating fronts of this reaction are characterized in 3D by the same laser-scanning system. The goal of these experiments is to determine barriers to front propagation and to compare these reaction barriers to the barriers observed for passive mixing in the same flow. Ultimately, a generalization of the burning invariant manifold theory to 3D will be used to explain these barriers. Supported by NSF Grants DMR-1004744 and PHY-1156964.

  15. Hypersensitivity reactions in small intestine. I Thymus dependence of experimental 'partial villous atrophy'.

    PubMed Central

    Ferguson, A; Jarrett, E E

    1975-01-01

    Rats infected with the intestinal nematode Nippostrongylus brasiliensis have crypt hyperplasia with villous atrophy in affected areas of the small intestine. In thymus-deprived (B) rats the course of infection is prolonged but, despite the presence of many worms in the intestinal lumen, villi and crypts appear largely normal. This suggests that the tissue damaged associated with N. brasilliensis infection is caused, not by the worms, but by a local thymus-dependent immune reaction. There is some evidence to implicate lymphocytes rather than antibodies in this reaction. It is already know that T-cell-associated damage to the small intestine, such as occurs in allograft rejection, produces subtotal villous atrophy. The present findings suggest that when T cell react locally with helminth antigens a similar type of damage occurs. The presence of a local cell-mediated immune reaction may be the common factor which causes villous atrophy and crypt hyperplasia in many small intestinal diseases, eg, viral enteritis, giardiasis, cow's milk allergy, and coeliac disease. Images Fig 1 Fig 2 PMID:1079195

  16. Nuclear spin dependence of the reaction of H(3)+ with H2. II. Experimental measurements.

    PubMed

    Crabtree, Kyle N; Kauffman, Carrie A; Tom, Brian A; Beçka, Eftalda; McGuire, Brett A; McCall, Benjamin J

    2011-05-21

    The nuclear spin dependence of the chemical reaction H(3)(+)+ H(2) → H(2) + H(3)(+) has been studied in a hollow cathode plasma cell. Multipass infrared direct absorption spectroscopy has been employed to monitor the populations of several low-energy rotational levels of ortho- and para-H(3)(+) (o-H(3)(+) and p-H(3)(+)) in hydrogenic plasmas of varying para-H(2) (p-H(2)) enrichment. The ratio of the rates of the proton hop (k(H)) and hydrogen exchange (k(E)) reactions α ≡ k(H)/k(E) is inferred from the observed p-H(3)(+) fraction as a function of p-H(2) fraction using steady-state chemical models. Measurements have been performed both in uncooled (T(kin) ∼ 350 K) and in liquid-nitrogen-cooled (T(kin) ∼ 135 K) plasmas, marking the first time this reaction has been studied at low temperature. The value of α has been found to decrease from 1.6 ± 0.1 at 350 K to 0.5 ± 0.1 at 135 K. © 2011 American Institute of Physics.

  17. Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results

    NASA Astrophysics Data System (ADS)

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-07-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  18. Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-01-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  19. Experimental and theoretical investigation about reaction moments in misaligned splined couplings

    NASA Astrophysics Data System (ADS)

    Curà, Francesca; Mura, Andrea

    2014-04-01

    This paper deals with the uneven loads generated when splined couplings work in misaligned conditions. These loads are balanced by the shafts bearings and they have to be taken into account by designers during the calculation of splined transmission systems. In particular an experimental investigation about tilting moment has been carried on by means of a dedicated test rig, in order to better understand this phenomenon. Experimental tests have been conducted in order to investigate the effect of misalignment angle, transmitted torque and tooth stiffness on the tilting moment. Also a numerical model has been developed in order to obtain a preliminary quick estimation of tilting moment values.

  20. Experimental U.S. Census Bureau Race and Hispanic Origin Survey Questions: Reactions from Spanish Speakers

    ERIC Educational Resources Information Center

    Terry, Rodney L.; Fond, Marissa

    2013-01-01

    People of Hispanic origin, including monolingual Spanish speakers, have experienced difficulty identifying with a race category on U.S. demographic surveys. As part of a larger research effort by the U.S. Census Bureau to improve race and Hispanic origin questions for the 2020 Census, we tested experimental versions of race and Hispanic origin…

  1. Interpretation and normalization of experimental data for total, scattering, and reaction cross sections

    SciTech Connect

    Guenther, P.T.; Poenitz, W.P.; Smith, A.B.

    1980-01-01

    Problem areas in the interpretation of fast-neutron data are discussed. Their impact on experimental uncertainties and hence the evaluation process are reviewed in the context of user needs. Contributions of supplementary information such as nuclear models and applications tests are explored. Specific means for resolving difficulties cited are proposed and illustrated.

  2. Experimental U.S. Census Bureau Race and Hispanic Origin Survey Questions: Reactions from Spanish Speakers

    ERIC Educational Resources Information Center

    Terry, Rodney L.; Fond, Marissa

    2013-01-01

    People of Hispanic origin, including monolingual Spanish speakers, have experienced difficulty identifying with a race category on U.S. demographic surveys. As part of a larger research effort by the U.S. Census Bureau to improve race and Hispanic origin questions for the 2020 Census, we tested experimental versions of race and Hispanic origin…

  3. Origin of chemoselectivity in N-heterocyclic carbene catalyzed cross-benzoin reactions: DFT and experimental insights.

    PubMed

    Langdon, Steven M; Legault, Claude Y; Gravel, Michel

    2015-04-03

    An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.

  4. Experimental study of the p d (d p )→3Heπ π reactions close to threshold

    NASA Astrophysics Data System (ADS)

    Bellemann, F.; Berg, A.; Bisplinghoff, J.; Bohlscheid, G.; Ernst, J.; Henrich, C.; Hinterberger, F.; Ibald, R.; Jahn, R.; Joosten, R.; Kilian, K.; Kozela, A.; Machner, H.; Magiera, A.; Munkel, J.; von Neumann-Cosel, P.; von Rossen, P.; Schnitker, H.; Scho, K.; Smyrski, J.; Tölle, R.; Wilkin, C.; COSY-MOMO Collaboration

    2016-09-01

    New experimental data on the p d → 3Heπ+π- reaction obtained with the COSY-MOMO detector below the three-pion threshold are presented. The reaction was also studied in inverse kinematics with a deuteron beam and the higher counting rates achieved were especially important at low excess energies. The comparison of these data with inclusive p d → 3HeX0 rates allowed estimates also to be made of π0π0 production. The results confirm our earlier findings that, close to threshold, there is no enhancement at low excitation energies in the π+π- system, where the data seem largely suppressed compared with phase space. Possible explanations for this behavior, such as strong p waves in the π+π- system or the influence of two-step processes, are explored.

  5. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    DOE PAGES

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; ...

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore,more » excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less

  6. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    NASA Astrophysics Data System (ADS)

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.

    2013-11-01

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys.0008-420410.1139/p65-139 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  7. Mechanism of alkoxy groups substitution by Grignard reagents on aromatic rings and experimental verification of theoretical predictions of anomalous reactions.

    PubMed

    Jiménez-Osés, Gonzalo; Brockway, Anthony J; Shaw, Jared T; Houk, K N

    2013-05-01

    The mechanism of direct displacement of alkoxy groups in vinylogous and aromatic esters by Grignard reagents, a reaction that is not observed with expectedly better tosyloxy leaving groups, is elucidated computationally. The mechanism of this reaction has been determined to proceed through the inner-sphere attack of nucleophilic alkyl groups from magnesium to the reacting carbons via a metalaoxetane transition state. The formation of a strong magnesium chelate with the reacting alkoxy and carbonyl groups dictates the observed reactivity and selectivity. The influence of ester, ketone, and aldehyde substituents was investigated. In some cases, the calculations predicted the formation of products different than those previously reported; these predictions were then verified experimentally. The importance of studying the actual system, and not simplified models as computational systems, is demonstrated.

  8. Mechanism of the alternating copolymerization of epoxides and CO2 using beta-diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment.

    PubMed

    Moore, David R; Cheng, Ming; Lobkovsky, Emil B; Coates, Geoffrey W

    2003-10-01

    A series of zinc beta-diiminate (BDI) complexes and their solid-state structures, solution dynamics, and copolymerization behavior with CO(2) and cyclohexene oxide (CHO) are reported. Stoichiometric reactions of the copolymerization initiation steps show that zinc alkoxide and bis(trimethylsilyl)amido complexes insert CO(2), whereas zinc acetates react with CHO. [(BDI-2)ZnOMe](2) [(BDI-2) = 2-((2,6-diethylphenyl)amido)-4-((2,6-diethylphenyl)imino)-2-pentene] and (BDI-1)ZnO(i)Pr [(BDI-1) = 2-((2,6-diisopropylphenyl)amido)-4-((2,6-diisopropylphenyl)imino)-2-pentene] react with CO(2) to form [(BDI-2)Zn(mu-OMe)(mu,eta(2)-O(2)COMe)Zn(BDI-2)] and [(BDI-1)Zn(mu,eta(2)-O(2)CO(i)Pr)](2), respectively. (BDI-2)ZnN(SiMe(3))(2) inserts CO(2) and eliminates trimethylsilyl isocyanate to give [(BDI-2)Zn(mu-OSiMe(3))](2). [(BDI-7)Zn(mu-OAc)](2) [(BDI-7) = 3-cyano-2-((2,6-diethylphenyl)amido)-4-((2,6-diethylphenyl)imino)-2-pentene] reacts with 1.0 equiv of CHO to yield [(BDI-7)Zn(mu,eta(2)-OAc)(mu,eta(1)-OCyOAc)Zn(BDI-7)]. Under typical polymerization conditions, rate studies on the copolymerization exhibit no dependence in [CO(2)], a first-order dependence in [CHO], and orders in [Zn](tot) ranging from 1.0 to 1.8 for [(BDI)ZnOAc] complexes. The copolymerizations of CHO (1.98 M in toluene) and 300 psi CO(2) at 50 degrees C using [(BDI-1)ZnOAc] and [(BDI-2)ZnOAc] show orders in [Zn](tot) of 1.73 +/- 0.06 and 1.02 +/- 0.03, respectively. We propose that two zinc complexes are involved in the transition state of the epoxide ring-opening event.

  9. Evolution of fracture permeability of ultramafic rocks at hydrothermal conditions: An experimental study on serpentinization reactions

    NASA Astrophysics Data System (ADS)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2014-12-01

    Serpentinization of ultramafic rocks, during which olivine and pyroxene minerals are replaced by serpentine, magnetite, brucite and talc, is associated with hydrothermal activity at slow and ultraslow mid-ocean ridges. Serpentinization reactions affect hydrothermal fluid circulation by changing permeability of the oceanic crust. To advance our understanding of the evolution of permeability accompanying serpentinization reactions, we performed a series of flow-through experiments at a temperature of 260˚C, a confining pressure of 50 MPa, and a pore pressure of 20±2 MPa on cylindrical cores of ultramafic rocks (18 mm in diameter and 23 mm length) containing a single through-going tensile fracture. Pore fluid flow was in one direction and was collected routinely for chemical analysis. A 7.5 mm thick layer of the same rock, crushed and sieved (0.18-1.0 mm) was placed on the inlet end of the sample to produce a reactive heated reservoir for the pore fluid before entering the fracture. Multiple peridotite samples were tested, to investigate the effect of mineral assemblage on fluid-rock interaction and permeability. The initial effective permeability of the samples varied between 10-(15-18)m2, and it decreased by about 2 orders of magnitude in 7-10 days, showing that serpentinization reactions result in an initially rapid decrease in permeability. The best fit equation for the observed rate of change in permeability (k) is in the form of dk/dt=Ae-0.01t, where A is a constant and t is time. This result suggests that the rate of serpentine formation is largely controlled by the initial permeability rather than the properties of the reacting rock. Assuming flow between parallel plates, we find the effective crack width decreases by approximately 2 orders of magnitude during the experiments. The fluid chemistry and mineralogy data support the occurrence of serpentinization reactions. The early peak and monotonic decrease in the concentration of Mg, and Si in pore fluid

  10. Ergonomic office design and aging: a quasi-experimental field study of employee reactions to an ergonomics intervention program.

    PubMed

    May, Douglas R; Reed, Kendra; Schwoerer, Catherine E; Potter, Paul

    2004-04-01

    A naturally occurring quasi-experimental longitudinal field study of 87 municipal employees using pretest and posttest measures investigated the effects of an office workstation ergonomics intervention program on employees' perceptions of their workstation characteristics, levels of persistent pain, eyestrain, and workstation satisfaction. The study examined whether reactions differed between younger and older employees. Results revealed that workstation improvements were associated with enhanced perceptions of the workstation's ergonomic qualities, less upper back pain, and greater workstation satisfaction. Among those experiencing an improvement, the perceptions of workstation ergonomic qualities increased more for younger than older employees, supporting the "impressionable years" framework in the psychological literature on aging. Implications for human resources managers are discussed.

  11. Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms.

    PubMed

    Berger, D; Walters, R J; Blanckenhorn, W U

    2014-09-01

    Theory predicts the emergence of generalists in variable environments and antagonistic pleiotropy to favour specialists in constant environments, but empirical data seldom support such generalist-specialist trade-offs. We selected for generalists and specialists in the dung fly Sepsis punctum (Diptera: Sepsidae) under conditions that we predicted would reveal antagonistic pleiotropy and multivariate trade-offs underlying thermal reaction norms for juvenile development. We performed replicated laboratory evolution using four treatments: adaptation at a hot (31 °C) or a cold (15 °C) temperature, or under regimes fluctuating between these temperatures, either within or between generations. After 20 generations, we assessed parental effects and genetic responses of thermal reaction norms for three correlated life-history traits: size at maturity, juvenile growth rate and juvenile survival. We find evidence for antagonistic pleiotropy for performance at hot and cold temperatures, and a temperature-mediated trade-off between juvenile survival and size at maturity, suggesting that trade-offs associated with environmental tolerance can arise via intensified evolutionary compromises between genetically correlated traits. However, despite this antagonistic pleiotropy, we found no support for the evolution of increased thermal tolerance breadth at the expense of reduced maximal performance, suggesting low genetic variance in the generalist-specialist dimension.

  12. Experimental and theoretical study of hydrogen thiocarbonate for heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong

    2009-04-09

    In situ diffuse reflectance infrared Fourier transform spectroscopy combined with derivative spectroscopy analysis, two-dimensional correlation spectroscopy analysis, and quantum chemical calculations were used to investigate the infrared absorbance assignment and the molecular structure of hydrogen thiocarbonate on magnesium oxide. The bands at 1283 and 1257 cm(-1), which had the typical characteristic of intermediate, were observed in experiments for the heterogeneous reaction of COS on MgO. On the basis of two-dimensional correlation spectroscopy analysis and quantum chemical calculations, the band at 1283 cm(-1) was assigned to the v(s) band of bridged thiocarbonate which formed on the two neighboring Mg atoms in the (100) face of MgO crystal, and the band at 1257 cm(-1) was the v(s) band of monodentate thiocarbonate on MgO. The v(as)(OCO) band of thiocarbonates was invisible in the experiment due to their weak absorbance and the interruption of surface carbonate. The formation mechanism of thiocarbonates is proposed, which occurred through a nucleophilic attack of preadsorbed COS by surface -OH groups followed by hydrogen atom transfer from the -OH group to the sulfur atom of preadsorbed COS. The activation energy for the intramolecular proton-transfer reaction of bridged thiocarbonate was calculated to be 18.52 kcal x mol(-1) at the B3LYP/6-31+G(d,p) level of theory.

  13. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel; Decaris, Lionel

    2009-12-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the von Neumann spike and early part of the reaction zone make these measurements difficult. Here, we report results obtained from detonation experiments using VISAR (velocity interferometer system for any reflector) and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating nitromethane/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments. The experiments had either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation methods and the velocimetry systems were somewhat different. Some differences were observed in the peak particle velocity because of the ˜2 ns time resolution of the techniques—in all cases the peak was lower than the expected von Neumann spike. This is thought to be because the measurements were not high enough time resolution to resolve the spike.

  14. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.

    PubMed

    Montes-H, G; Fritz, B; Clement, A; Michau, N

    2005-10-01

    Bentonites are widely used for waste repository systems because of their hydrodynamic, surface and chemical-retention properties. MX 80 bentonite (bentonite of Wyoming) contains approximately 85% Na/Ca-montmorillonite and 15% accessory minerals. The dominant presence of Na/Ca-montmorillonite in this clay mineral could cause it to perform exceptionally well as an engineered barrier for a radioactive waste repository because this buffer material is expected to fill up by swelling the void between canisters containing waste and the surrounding ground. However, the Na/Ca-montmorillonite could be transformed to other clay minerals as a function of time under repository conditions. Previous modelling studies based on the hydrolysis reactions have shown that the Na/Ca-montmorillonite-to-Ca-montmorillonite conversion is the most significant chemical transformation. In fact, this chemical process appears to be a simple cation exchange into the engineered barrier. The purpose of the present study was two-fold. Firstly, it was hoped to predict the newly formed products of bentonite-fluid reactions under repository conditions by applying a thermokinetic hydrochemical code (KIRMAT: Kinetic Reactions and Mass Transport). The system modelled herein was considered to consist of a 1-m thick zone of water-saturated engineered barrier. This non-equilibrated system was placed in contact with a geological fluid on one side, which was then allowed to diffuse into the barrier, while the other side was kept in contact with iron-charged water. Reducing initial conditions ( [P(O)2 approximately equals 0] ; Eh=-200 mV) and a constant reaction temperature (100 degrees C) were considered. Secondly, it was hoped to estimate the influence of inter-layer cations (Ca and Na) on the swelling behaviour of the MX 80 bentonite by using an isothermal system of water vapour adsorption and an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program. Here, the

  15. Chiral Brønsted Acid-Catalyzed Enantioselective α-Amidoalkylation Reactions: A Joint Experimental and Predictive Study.

    PubMed

    Aranzamendi, Eider; Arrasate, Sonia; Sotomayor, Nuria; González-Díaz, Humberto; Lete, Esther

    2016-12-01

    Enamides with a free NH group have been evaluated as nucleophiles in chiral Brønsted acid-catalyzed enantioselective α-amidoalkylation reactions of bicyclic hydroxylactams for the generation of quaternary stereocenters. A quantitative structure-reactivity relationship (QSRR) method has been developed to find a useful tool to rationalize the enantioselectivity in this and related processes and to orient the catalyst choice. This correlative perturbation theory (PT)-QSRR approach has been used to predict the effect of the structure of the substrate, nucleophile, and catalyst, as well as the experimental conditions, on the enantioselectivity. In this way, trends to improve the experimental results could be found without engaging in a long-term empirical investigation.

  16. Chiral Brønsted Acid‐Catalyzed Enantioselective α‐Amidoalkylation Reactions: A Joint Experimental and Predictive Study

    PubMed Central

    Aranzamendi, Eider; Arrasate, Sonia; Sotomayor, Nuria

    2016-01-01

    Abstract Enamides with a free NH group have been evaluated as nucleophiles in chiral Brønsted acid‐catalyzed enantioselective α‐amidoalkylation reactions of bicyclic hydroxylactams for the generation of quaternary stereocenters. A quantitative structure–reactivity relationship (QSRR) method has been developed to find a useful tool to rationalize the enantioselectivity in this and related processes and to orient the catalyst choice. This correlative perturbation theory (PT)‐QSRR approach has been used to predict the effect of the structure of the substrate, nucleophile, and catalyst, as well as the experimental conditions, on the enantioselectivity. In this way, trends to improve the experimental results could be found without engaging in a long‐term empirical investigation. PMID:28032023

  17. Preparation of Thermo-Responsive Poly(ionic liquid)s-Based Nanogels via One-Step Cross-Linking Copolymerization.

    PubMed

    Zhang, Jing; Liu, Jingjiang; Zuo, Yong; Wang, Rongmin; Xiong, Yubing

    2015-09-18

    In this study, thermo-responsive polymeric nanogels were facilely prepared via one-step cross-linking copolymerization of ethylene glycol dimethacrylate/divinylbenzene and ionic liquid (IL)-based monomers, 1,n-dialkyl-3,3'-bis-1-vinyl imidazolium bromides ([CnVIm]Br; n = 6, 8, 12) in selective solvents. The results revealed that stable and blue opalescent biimidazolium (BIm)-based nanogel solutions could be obtained without any precipitation when the copolymerizations were conducted in methanol. Most importantly, these novel nanogels were thermo-response, and could reversibly transform to precipitation in methanol with temperature changes. Turbidity analysis and dynamic light scatting (DLS) measurement illustrated that PIL-based nanogel solutions presented the phase transform with upper critical solution temperature (UCST) in the range of 5-25 °C. The nanogels were characterized using Fourier transform infrared (FTIR), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). In addition, BIm-based nanogels could also be used as highly active catalysts in the cycloaddition reaction of CO₂ and epoxides. As a result, our attributes build a robust platform suitable for the preparation of polymeric nanomaterials, as well as CO₂ conversion.

  18. Novel star-type methoxy-poly(ethylene glycol) (PEG)-poly(ɛ-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin

    NASA Astrophysics Data System (ADS)

    Feng, Runliang; Zhu, Wenxia; Song, Zhimei; Zhao, Liyan; Zhai, Guangxi

    2013-06-01

    To improve curcumin's (CURs) water solubility and release property, a novel star methoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) copolymer was synthesized through O-alkylation, basic hydrolysis and ring-opening polymerization reaction with MPEG, epichlorohydrin, and ɛ-caprolactone as raw materials. The structure of the novel copolymer was characterized by 1H NMR, FT-IR, and GPC. The results of FT-IR and differential scanning calorimeter of CUR-loaded nanoparticles (NPs) prepared by dialysis method showed that CUR was successfully encapsulated into the SMP12 copolymeric NPs with 98.2 % of entrapment efficiency, 10.91 % of drug loading, and 88.4 ± 11.2 nm of mean particle diameter in amorphous forms. The dissolubility of nanoparticulate CUR was increased by 1.38 × 105 times over CUR in water. The obtained blank copolymer showed no hemolysis. A sustained CUR release to a total of approximately 56.13 % was discovered from CUR-NPs in 40 % of ethanol saline solution within 72 h on the use of dialysis method. The release behavior fitted the ambiexponent and biphasic kinetics equation. In conclusion, the copolymeric NPs loading CUR might serve as a potential nanocarrier to improve the solubility and release property of CUR.

  19. Collision-induced thermochemistry of reactions of dissociation of glycyl-homopeptides-An experimental and theoretical analysis.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2017-02-01

    The research draws on experimental and theoretical data about energetics and kinetics of mass spectrometric (MS) reactions of glycyl homopenta- (G5) and glycyl homohexapeptides (G6). It shows the great applicability of the methods of quantum chemistry to predict MS profile of peptides using energetics of collision induced dissociation (CID) fragment species. Mass spectrometry is among irreplaceable methods, providing unambiguous qualitative, quantitative and structural information about analytes, applicable to many scientific areas like environmental chemistry; food chemistry; medicinal chemistry; and more. Our study could be considered of substantial interdisciplinary significance, where MS proteomics is widely used. The experimental design involves electrospray ionization (ESI) and CID MS/MS. Theoretical design is based on ab initio and density functional theory (DFT) methods. Experimental MS and theoretical free Gibbs energies as well as rate constants of fragment reactions are compared. The thermodynamic encompasses gas-phase and polar continuum analysis, including polar protic and aprotic solvents within temperature T = 10-500 K; dielectric constant ε = 0-78, pH, and ionic strengths μ = 0.001-1.0 mol dm(-1) . There are computed and discussed 39 protonated forms of peptides at amide N- and -(NHC)=O centers; corresponding fragment ions studying their thermodynamic stability depending on experimental conditions. A correlation analysis between molecular conformations of parent ions and fragment species; their proton accepting ability and internal energy distribution is carried out. Data about ionization potentials (IPs) and electron affinities (EAs) are discussed, as well. © 2016 Wiley Periodicals, Inc.

  20. Adobe Flash as a medium for online experimentation: a test of reaction time measurement capabilities.

    PubMed

    Reimers, Stian; Stewart, Neil

    2007-08-01

    Adobe Flash can be used to run complex psychological experiments over the Web. We examined the reliability of using Flash to measure reaction times (RTs) using a simple binary-choice task implemented both in Flash and in a Linux-based system known to record RTs with millisecond accuracy. Twenty-four participants were tested in the laboratory using both implementations; they also completed the Flash version on computers of their own choice outside the lab. RTs from the trials run on Flash outside the lab were approximately 20 msec slower than those from trials run on Flash in the lab, which in turn were approximately 10 msec slower than RTs from the trials run on the Linux-based system (baseline condition). RT SDs were similar in all conditions, suggesting that although Flash may overestimate RTs slightly, it does not appear to add significant noise to the data recorded.

  1. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

    NASA Astrophysics Data System (ADS)

    Yarrington, C. D.; Abere, M. J.; Adams, D. P.; Hobbs, M. L.

    2017-04-01

    Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm were irradiated with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm2 and 1189 W/cm2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. Videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse, while the shorter pulse shows uniform brightness. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model the progress from reactants to products at both pulse widths. The model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.

  2. Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

    DOE PAGES

    Yarrington, C. D.; Abere, M. J.; Adams, D. P.; ...

    2017-04-03

    We irradiated Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm2 and 1189 W/cm2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. While the shorter pulse shows uniform brightness, videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model the progress frommore » reactants to products at both pulse widths. Finally, the model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.« less

  3. Combined Experimental and Computational Approach to Predict the Glass-Water Reaction

    SciTech Connect

    Pierce, Eric M; Bacon, Diana

    2011-01-01

    The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic time-scales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models are validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)], thereby reducing the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases code. Results show that parameterization of the computer model by combining direct bench-scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year long test duration, the rate decreased from 0.2 to 0.01 g/(m2 d) base on B release. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by 4 orders of magnitude) and suggest the gel-layer properties are less protective under these dynamic conditions.

  4. Combined Experimental and Computational Approach to Predict the Glass-Water Reaction

    SciTech Connect

    Pierce, Eric M.; Bacon, Diana H.

    2011-10-01

    The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic timescales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models be validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test B, and pressurized unsaturated flow (PUF)], thereby reducing the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year-long PUF experiment was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code. Results show that parameterization of the computer model by combining direct bench scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year-long test duration, the rate decreased from 0.2 to 0.01 g/(m2 day) based on B release for low-activity waste glass LAWA44. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by four orders of magnitude) and suggests that the gel-layer properties are less protective under these dynamic

  5. Experimental results from the reaction of bromate ion with synthetic and real gastric juices.

    PubMed

    Keith, Jason D; Pacey, Gilbert E; Cotruvo, Joseph A; Gordon, Gilbert

    2006-04-17

    This study was designed to identify and quantify the effects of reducing agents on the rate of bromate ion reduction in real and synthetic gastric juice. This could be the first element in the sequence of a pharmacokinetic description of the fate of bromate ion entering the organism, being metabolized, and subsequently being tracked through the system to the target cell or eliminated. Synthetic gastric juice containing H+ and Cl- did exhibit reduced bromate ion levels, but at a rate that was too slow for a significant amount of bromate to be reduced under typical stomach retention time conditions. The reaction orders for Cl- and H+ were 1.50 and 2.0, respectively. Addition of the reducing agents hydrogen sulfide (which was shown to be present and quantified in real gastric juice), glutathione, and/or cysteine increased the rate of bromate ion loss. All of the reactions showed significant pH effects. Half-lives as short as 2 min were measured for bromate ion reduction in 0.17 M H+ and Cl- and 10(-4) M H2S. Therefore, the lifetime of bromate ion in solutions containing typical gastric juice concentrations of H+, Cl-, and H2S is 20-30 min. This rate should result in as much as a 99% reduction of bromate ion during its residence in the stomach. Bromate ion reduction in real gastric juice occurred at a rapid rate. A comparison of real and synthetic gastric juice containing H+, Cl-, cysteine, glutathione, and hydrogen sulfide showed that the component most responsible for the considerable decrease of the concentration of bromate ion in the stomach is hydrogen sulfide.

  6. Role of CCL7 in Type I Hypersensitivity Reactions in Murine Experimental Allergic Conjunctivitis

    PubMed Central

    Kuo, Chuan-Hui; Collins, Andrea M.; Boettner, Douglas R.; Yang, YanFen

    2017-01-01

    Molecules that are necessary for ocular hypersensitivity reactions include the receptors CCR1 and CCR3; CCL7 is a ligand for these receptors. Therefore, we explored the role of CCL7 in mast cell activity and motility in vitro and investigated the requirement for CCL7 in a murine model of IgE-mediated allergic conjunctivitis. For mast cells treated with IgE and Ag, the presence of CCL7 synergistically enhanced degranulation and calcium influx. CCL7 also induced chemotaxis in mast cells. CCL7-deficient bone marrow–derived mast cells showed decreased degranulation following IgE and Ag treatment compared with wild-type bone marrow–derived mast cells, but there was no difference in degranulation when cells were activated via an IgE-independent pathway. In vivo, CCL7 was upregulated in conjunctival tissue during an OVA-induced allergic response. Notably, the early-phase clinical symptoms in the conjunctiva after OVA challenge were significantly higher in OVA-sensitized wild-type mice than in control challenged wild-type mice; the increase was suppressed in CCL7-deficient mice. In the OVA-induced allergic response, the numbers of conjunctival mast cells were lower in CCL7-deficient mice than in wild-type mice. Our results demonstrate that CCL7 is required for maximal OVA-induced ocular anaphylaxis, mast cell recruitment in vivo, and maximal FcεRI-mediated mast cell activation in vitro. A better understanding of the role of CCL7 in mediating ocular hypersensitivity reactions will provide insights into mast cell function and novel treatments for allergic ocular diseases. PMID:27956527

  7. On the Way to Experimental Test of the Time Reversal Invariance in the Nuclear Reactions

    PubMed Central

    Skoy, Vadim R.; Ino, Takashi; Masuda, Yasuhiro; Muto, Suguru; Kim, Guinyun

    2005-01-01

    Time (T) violation can be related with charge-parity (CP) violation through the CPT theorem. The CP violation was discovered experimentally in the K0-meson decays about 35 years ago. The T violating interaction related with the CP violation violates parity as well. However, an extension of the theory beyond the locality of the interactions might violate the CPT theorem. The result of the CPLEAR experiment [1], which has given direct evidence of T violation in the elementary-particle phenomena, could be considered under assumption of the CPT invariance. PMID:27308170

  8. Experimental and Computational Induced Aerodynamics from Missile Jet Reaction Controls at Angles of Attack to 75 Degrees

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Ashbury, Scott C.; Deere, Karen A.

    1996-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine induced aerodynamic effects from jet reaction controls of an advanced air-to-air missile concept. The 75-percent scale model featured independently controlled reaction jets located near the nose and tail of the model. Aerodynamic control was provided by four fins located near the tail of the model. This investigation was conducted at Mach numbers of 0.35 and 0.60, at angles of attack up to 75 deg and at nozzle pressure ratios up to 90. Jet-reaction thrust forces were not measured by the force balance but jet-induced forces were. In addition, a multiblock three-dimensional Navier-Stokes method was used to calculate the flowfield of the missile at angles of attack up to 40 deg. Results indicate that large interference effects on pitching moment were induced from operating the nose jets with the the off. Excellent correlation between experimental and computational pressure distributions and pitching moment were obtained a a Mach number of 0.35 and at angles of attack up to 40 deg.

  9. Spectrophotometric-dual-enzyme-simultaneous assay in one reaction solution: chemometrics and experimental models.

    PubMed

    Liu, Hongbo; Yang, Xiaolan; Liu, Lin; Dang, Jizheng; Xie, Yanling; Zhang, Yi; Pu, Jun; Long, Gaobo; Li, Yuanli; Yuan, Yonghua; Liao, Juan; Liao, Fei

    2013-02-19

    Spectrophotometric-dual-enzyme-simultaneous assay in one reaction solution (SDESA) is proposed. SDESA requires the following: (a) Enzyme A acts on Substrate A to release Product A bearing the longest difference absorbance peak (λ(A)) much larger than that of Product B (λ(B)) formed by Enzyme B action on Substrate B; λ(B) is close to the longest isoabsorbance wavelength of Product A and Substrate A (λ(0)); (b) absorbance at λ(A) and λ(0) is quantified via swift alternation of detection wavelengths and corrected on the basis of absorbance additivity; (c) inhibition/activation on either enzyme by any substance is eliminated; (d) Enzyme A is quantified via an integration strategy if levels of Substrate A are lower than the Michaelis constant. Chemometrics of SDESA was tested with γ-glutamyltransferase and lactate-dehydrogenase of complicated kinetics. γ-Glutamyltransferase releases p-nitroaniline from γ-glutamyl-p-nitroaniline with λ(0) at 344 nm and λ(A) close to 405 nm, lactate-dehydrogenase consumes reduced nicotinamide dinucleotide bearing λ(B) at 340 nm. Kinetic analysis of reaction curve yielded lactate-dehydrogenase activity free from inhibition by p-nitroaniline; the linear range of initial rates of γ-glutamyltransferase via the integration strategy, and that of lactate-dehydrogenase after interference elimination, was comparable to those by separate assays, respectively; the quantification limit of either enzyme by SDESA at 25-fold higher activity of the other enzyme remained comparable to that by a separate assay. To test potential application, SDESA of alkaline phosphatase (ALP) and β-D-galactosidase as enzyme-linked-immunoabsorbent assay (ELISA) labels were examined. ALP releases 4-nitro-1-naphthol from 4-nitronaphthyl-1-phosphate with λ(0) at 405 nm and λ(A) at 458 nm, β-D-galactosidase releases 4-nitrophenol from β-D-(4-nitrophenyl)-galactoside with λ(B) at 405 nm. No interference from substrates/products made SDESA of

  10. o-Phenylene-bridged Cp/sulfonamido titanium complexes for ethylene/1-octene copolymerization.

    PubMed

    Joe, Dae June; Wu, Chun Ji; Bok, Taekki; Lee, Eun Jung; Lee, Choong Hoon; Han, Won-Sik; Kang, Sang Ook; Lee, Bun Yeoul

    2006-09-07

    The Suzuki-coupling reaction of 2-(dihydroxyboryl)-3,4-dimethyl-2-cyclopenten-1-one and 2-(dihydroxyboryl)-3-methyl-2-cyclopenten-1-one with 2-bromoaniline derivatives affords cyclopentenone compounds from which cyclopentadiene compounds, 4,6-R'(2)-2-(2,5-Me2C5H3)C6H2NH2 and 4,6-R'(2)-2-(2,3,5-Me3C5H2)C6H2NH2 are prepared. After sulfonation of the -NH2 group with p-TsCl, metallation is carried out by successive addition of Ti(NMe2)4 and Me2SiCl2 affording o-phenylene-bridged Cp/sulfonamido titanium dichloride complexes, [4,6-R'(2)-2-(2,5-Me2C5H2)C6H2NSO2C6H4CH3)]TiCl2 (R'=H, ; R'=Me, ; R'=F, ) and [4,6-R'(2)-2-(2,3,5-Me3C5H)C6H2NSO2C6H4CH3)]TiCl2 (R'=H, ; R'=Me, ; R'=F, ). The molecular structures of and [2-(2,5-Me2C5H2)C6H4NSO2C6H4CH3)]Ti(NMe2)2 are determined by X-ray crystallography. The Cp(centroid)-Ti-N angle in is smaller (100.90 degrees) than that observed for the CGC (constrained-geometry catalyst), [Me2Si(eta5-Me4Cp)(NtBu)]TiCl2 (107.6 degrees) indicating a more "constrained feature" in than in the CGC. Complex shows the highest activity among the newly prepared complexes in ethylene/1-octene copolymerization but it is slightly inferior to the CGC in terms of activity, comonomer-incorporation ability, and molecular weight of the obtained polymers.

  11. Experimental and theoretical investigations of the kinetics and mechanism of the Cl + 4-hydroxy-4-methyl-2-pentanone reaction

    NASA Astrophysics Data System (ADS)

    Aslan, L.; Priya, A. Mano; Sleiman, C.; Zeineddine, M. N.; Coddeville, P.; Fittschen, C.; Ballesteros, B.; Canosa, A.; Senthilkumar, L.; El Dib, G.; Tomas, A.

    2017-10-01

    The reaction of 4-hydroxy-4-methyl-2-pentanone (4H4M2P) with Cl atoms was studied for the first time experimentally and theoretically. Relative kinetic measurements were carried out at room temperature and 1 bar of synthetic air/N2 in two different environmental chambers: a 300 L Teflon bag and a 16 L borosilicate glass cell. Reactants, reference compounds and products were monitored either by IR absorption or by GC-FID. Theoretical calculations were performed using the density functional theory method at BH&HLYP level of theory for twelve hydrogen abstraction pathways. The individual rate coefficients for the most favorable H-abstraction pathways were calculated by canonical variational theory using small curvature tunneling method at 298 K. An average experimental rate coefficient of (7.4 ± 0.6) × 10-11 cm3 molecule-1 s-1 was obtained at 298 K, in good agreement with the theoretical rate coefficient. The branching ratios for each reaction channel were evaluated theoretically from the individual rate coefficients of the identified channels. The H-atom abstracted on the -CH2 group appeared to be the dominant channel with a small barrier height. Formaldehyde, acetic acid, HCl, CO2 and CO were identified by IR as the major primary products. The obtained results are presented and discussed in terms of structure-reactivity relationships. A mechanism is suggested for the formation of the observed products. The atmospheric implications of the studied reaction are presented and more particularly, the lifetime of 4H4M2P towards Cl atoms is evaluated to be about 3 days.

  12. Copolymerized and bonded silica nanoparticles as labels and pseudostationary phase in bioanalytical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged M.; Abdelwahab, Walid; Chapman, Gala

    2017-02-01

    Silica nanoparticles have been increasingly used in developing bioanalytical, biomedical and in many other applications. Silica nanoparticles can easily be synthesized and with the advent of wide availability of modified TEOS reactive analogues only the researcher imagination is the limit of preparing silica nanoparticles that contain different molecules that are either copolymerized inside of the silica nanoparticle or chemically attached (bonded) to the silica nanoparticle surface. Relatively non-porous silica nanoparticles can contain copolymerized dyes for the creation of bright fluorescence labels while the surface of these silica nanoparticles can be bonded with reactive moieties that are suitable for covalently labeling the molecule of interest. Also the surface bonded moieties can serve other purposes, e.g., molecular recognition either on a non-fluorescent or fluorescent silica nanoparticle. As far as the fluorescent nanoparticles development concerns near-infrared (NIR) absorbing carbocyanine dyes have been increasingly used as they can be useful for developing bioanalytical, biomedical methods and in many other applications. Carbocyanines are preferred as they are relatively easy to synthesize and can be designed to achieve particular spectroscopic properties. For example either copolymerized or surface bound dyes can contain appropriate functional moieties absorption and fluorescence properties change when it is complexed to metal ions, to detect pH changes, bind to biological molecules, etc. Fluorescence intensity of carbocyanines significantly increases by enclosing several dye molecules in a single silica nanoparticle due to shielding however self quenching may become a problem at high dye concentrations in confined spaces. Large Stokes' shift dyes can significantly decrease this problem. This can be achieved by substituting meso position halogens in the NIR fluorescent carbocyanines with a linker containing amino moiety which can also serve as

  13. Temperature dependence of the OH(-) + CH3I reaction kinetics. experimental and simulation studies and atomic-level dynamics.

    PubMed

    Xie, Jing; Kohale, Swapnil C; Hase, William L; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A

    2013-12-27

    Direct dynamics simulations and selected ion flow tube (SIFT) experiments were performed to study the kinetics and dynamics of the OH(-) + CH3I reaction versus temperature. This work complements previous direct dynamics simulation and molecular beam ion imaging experiments of this reaction versus reaction collision energy (Xie et al. J. Phys. Chem. A 2013, 117, 7162). The simulations and experiments are in quite good agreement. Both identify the SN2, OH(-) + CH3I → CH3OH + I(-), and proton transfer, OH(-) + CH3I → CH2I(-) + H2O, reactions as having nearly equal importance. In the experiments, the SN2 pathway constitutes 0.64 ± 0.05, 0.56 ± 0.05, 0.51 ± 0.05, and 0.46 ± 0.05 of the total reaction at 210, 300, 400, and 500 K, respectively. For the simulations this fraction is 0.56 ± 0.06, 0.55 ± 0.04, and 0.50 ± 0.05 at 300, 400, and 500 K, respectively. The experimental total reaction rate constant is (2.3 ± 0.6) × 10(-9), (1.7 ± 0.4) × 10(-9), (1.9 ± 0.5) × 10(-9), and (1.8 ± 0.5) × 10(-9) cm(3) s(-1) at 210, 300, 400, and 500 K, respectively, which is approximately 25% smaller than the collision capture value. The simulation values for this rate constant are (1.7 ± 0.2) × 10(-9), (1.8 ± 0.1) × 10(-9), and (1.6 ± 0.1) × 10(-9) cm(3)s(-1) at 300, 400, and 500 K. From the simulations, direct rebound and stripping mechanisms as well as multiple indirect mechanisms are identified as the atomic-level reaction mechanisms for both the SN2 and proton-transfer pathways. For the SN2 reaction the direct and indirect mechanisms have nearly equal probabilities; the direct mechanisms are slightly more probable, and direct rebound is more important than direct stripping. For the proton-transfer pathway the indirect mechanisms are more important than the direct mechanisms, and stripping is significantly more important than rebound for the latter. Calculations were performed with the OH(-) quantum number J equal to 0, 3, and 6 to investigate the effect of

  14. Peri-implant bone reactions to immediately loaded implants. An experimental study in monkeys.

    PubMed

    Romanos, G; Toh, C G; Siar, C H; Swaminathan, D; Ong, A H; Donath, K; Yaacob, H; Nentwig, G H

    2001-04-01

    There are reports which demonstrate that immediately loaded splinted implants can be osseointegrated when they are placed in the anterior part of the lower jaw. The concept of immediate loading has not been well investigated in the posterior mandible. The aim of this study was to evaluate the bone reactions around immediately loaded implants placed in the posterior region of the lower jaw in the monkey model. Six adult Macaca fascicularis monkeys were used in this study. A total of 36 implants were placed after extraction of the second premolars, first and second molars, and complete healing of the sockets. Three control (C) group implants were placed in one quadrant of the lower jaw of each monkey. After a delay of 3 months to allow osseointegration to take place, the implants were loaded for 1 month using temporary resin bridges and later for 2 months using metal splinted crowns. In the contralateral region of the lower jaw, 3 test (T) group implants were placed and loaded immediately with the same sequence as carried out for the C implants. Specimens were examined and evaluated histologically after sacrifice. All of the implants were osseointegrated. Compact, cortical bone in contact with the implant surface without any gaps or connective tissue formation was observed. It was concluded that immediately loaded, splinted implants can be osseointegrated with a similar hard and soft tissue peri-implant response as delayed-loaded implants in the posterior mandible.

  15. The Experimental Study of Nuclear Astrophysics Reaction Rate of 93Zr(n,γ)94Zr

    NASA Astrophysics Data System (ADS)

    Gan, L.; Li, Z. H.; Su, J.; Yan, S. Q.; Guo, B.; Du, X. C.; Wu, Z. D.; Zeng, S.; Jin, S. J.; Wang, Y. B.; Bai, X. X.; Zhang, W. J.; Sun, H. B.; Li, E. T.

    The slow neutron capture (s-) process plays a very important role in the nucleosynthesis, which produces about half of the elements heavier than iron. 94Zr is mainly from 93Zr(n,γ)94Zr in the s-process, and the direct component of the 93Zr(n,γ)94Zr capture reaction can be derived from the neutron spectroscopic factor of 94Zr. As the existing neutron spectroscopic factors of 94Zr vary from each other up to 60%, a new work should be adopted to measure it exactly. In the present work, the angular distributions of 94Zr(13C,13C)94Zr, 94Zr(12C,12C)94Zr and 94Zr(12C,13C)93Zr were obtained using the highprecision Q3D magnetic spectrograph. In addition, distorted-wave Born approximation (DWBA) calculations of the transfer differential cross sections were performed. The calculated result displays a good agreement with the experiment data, and a value of 2.60±0.20 for the neutron spectroscopic factor of 94Zr was extracted, and the direct capture cross section versus neutron energy of 93Zr(n,γ)94Zr for the ground state of 94Zr was obtained too.

  16. Experimental exploration of the Mulliken-Hush relationship for intramolecular electron transfer reactions.

    PubMed

    Mukherjee, Tamal; Ito, Naoki; Gould, Ian R

    2011-03-17

    The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.

  17. Experimental Guidance for Isospin Symmetry Breaking Calculations via Single Neutron Pickup Reactions

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Bangay, J. C.; Bianco, L.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.; Towner, I. S.

    2013-03-01

    Recent activity in superallowed isospin-symmetry-breaking correction calculations has prompted interest in experimental confirmation of these calculation techniques. The shellmodel set of Towner and Hardy (2008) include the opening of specific core orbitals that were previously frozen. This has resulted in significant shifts in some of the δC values, and an improved agreement of the individual corrected {F}t values with the adopted world average of the 13 cases currently included in the high-precision evaluation of Vud. While the nucleus-to-nucleus variation of {F}t is consistent with the conserved-vector-current (CVC) hypothesis of the Standard Model, these new calculations must be thoroughly tested, and guidance must be given for their improvement. Presented here are details of a 64Zn(ěcd, t)63Zn experiment, undertaken to provide such guidance.

  18. Methylene Blue to Treat Protamine-induced Anaphylaxis Reactions. An Experimental Study in Pigs.

    PubMed

    Albuquerque, Agnes Afrodite S; Margarido, Edson A; Menardi, Antonio Carlos; Scorzoni, Adilson; Celotto, Andrea Carla; Rodrigues, Alfredo J; Vicente, Walter Vilella A; Evora, Paulo Roberto B

    2016-01-01

    To examine if methylene blue (MB) can counteract or prevent protamine (P) cardiovascular effects. The protocol included five heparinized pig groups: Group Sham -without any drug; Group MB - MB 3 mg/kg infusion; Group P - protamine; Group P/MB - MB after protamine; Group MB/P - MB before protamine. Nitric oxide levels were obtained by the nitric oxide/ozone chemiluminescence method, performed using the Nitric Oxide Analizer 280i (Sievers, Boulder, CO, USA). Malondialdehyde plasma levels were estimated using the thiobarbiturate technique. 1) Groups Sham and MB presented unchanged parameters; 2) Group P - a) Intravenous protamine infusion caused mean arterial pressure decrease and recovery trend after 25-30 minutes, b) Cardiac output decreased and remained stable until the end of protamine injection, and c) Sustained systemic vascular resistance increased until the end of protamine injection; 3) Methylene blue infusion after protamine (Group P/MB) - a) Marked mean arterial pressure decreased after protamine, but recovery after methylene blue injection, b) Cardiac output decreased after protamine infusion, recovering after methylene blue infusion, and c) Sustained systemic vascular resistance increased after protamine infusion and methylene blue injections; 4) Methylene blue infusion before protamine (Group MB/P) - a) Mean arterial pressure decrease was less severe with rapid recovery, b) After methylene blue, there was a progressive cardiac output increase up to protamine injection, when cardiac output decreased, and c) Sustained systemic vascular resistance decreased after protamine, followed by immediate Sustained systemic vascular resistance increase; 5) Plasma nitrite/nitrate and malondialdehyde values did not differ among the experimental groups. Reviewing these experimental results and our clinical experience, we suggest methylene blue safely prevents and treats hemodynamic protamine complications, from the endothelium function point of view.

  19. Sequential elution of multiply and singly phosphorylated peptides with polar-copolymerized mixed-mode RP18/SCX material.

    PubMed

    Li, Xiuling; Guo, Zhimou; Sheng, Qianying; Xue, Xingya; Liang, Xinmiao

    2012-06-21

    Novel polar-copolymerized mixed-mode RP18/SCX material was developed for feasible phosphopeptide enrichment, in which multiply and singly phosphorylated peptides could be sequentially eluted and separated with high selectivity.

  20. Periodontal tissue reactions to orthodontic extrusion. An experimental study in the dog.

    PubMed

    Berglundh, T; Marinello, C P; Lindhe, J; Thilander, B; Liljenberg, B

    1991-05-01

    Orthodontic tooth extrusion is used at crown lengthening procedures or in conjunction with periodontal therapy aimed at eliminating or reducing angular bone defects. A technique for orthodontic extrusion combined with resection of the supracrestal attachment fibers (fiberotomy) was recently proposed as an adjunct to certain restorative procedures. The aim of the present investigation was to analyze reactions of the periodontal tissues to orthodontic extrusion when combined with fiberotomy. In 5 beagle dogs, the mesial roots of the 2nd, 3rd and 4th hemisected mandibular premolar were used as target roots while the distal roots served as reference units. After a baseline examination, an orthodontic extrusion device (stent) was installed and reactivated at 2-week intervals during an 8-week period of active tooth movement. Immediately following the installation of the stent and once every 2nd week, the target roots were exposed to fiberotomy. After the active period, the teeth were retained in their new position for a period of 8 weeks. Clinical, radiographical and histological measurements were performed. The results from the investigation demonstrated that orthodontic extrusion combined with supracrestal fiberotomy resulted in a coronal displacement of the tooth and was associated with pronounced recession of the gingival margin and extensive loss of connective tissue attachment. The degree of gingival recession and the amount of loss of connective tissue attachment were, however, less extensive than the amount of tooth extrusion. Thus, repeated fiberotomy obviously failed to entirely prevent coronal migration of the attachment apparatus. It was also observed that undesired attachment loss had occurred at the reference roots.

  1. Simulation and Experimental Study on the Efficiency of Traveling Wave Direct Energy Conversion for Application to Aneutronic Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso; Chap, Andrew; Miley, George; Scott, John

    2013-10-01

    A study based on both Particle-in-cell (PIC) simulation and experiments is being developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC,) with the perspective of application to aneutronic fusion reaction products and space propulsion. The PIC model is investigating in detail the key TWDEC physics process by simulating the time-dependent transfer of energy from the ion beam to an electric load connected to ring-type electrodes in cylindrical symmetry. An experimental effort is in progress on a TWDEC test article at NASA, Johnson Space Center with the purpose of studying the conditions for improving the efficiency of the direct energy conversion process. Using a scaled-down ion energy source, the experiment is primarily focused on the effect of the (bunched) beam density on the efficiency and on the optimization of the electrode design. The simulation model is guiding the development of the experimental configuration and will provide details of the beam dynamics for direct comparison with experimental diagnostics. Work supported by NASA, Johnson Space Center.

  2. The reaction mechanism of allene oxide synthase: Interplay of theoretical QM/MM calculations and experimental investigations.

    PubMed

    Cho, Kyung-Bin; Lai, Wenzhen; Hamberg, Mats; Raman, C S; Shaik, Sason

    2011-03-01

    A combined theoretical and experimental study highlights the reaction mechanism of allene oxide synthase (AOS) and its possible link to hydroperoxide lyase (HPL) pathway. A previously published study (Lee et al., Nature 455 (2008) 363) has shown that the F137 residue is of central importance in differentiating between the AOS and HPL pathways after initial identical steps. In the experimental part of this study, we show that wild-type AOS from Arabidopsis or rice in fact produces both AOS and HPL products in a ratio of about 80:15, something that was found only in trace amounts before. Theoretical calculations successfully map the whole AOS pathway with 13(S)-hydroperoxy linolenic and linoleic acid as substrates. Subsequent calculations investigated the effects of in silico F137L mutation at the suggested diverging point of the two pathways. The results show that QM/MM calculations can reasonably reproduce three out of four experimentally available cases, and confirm that the pathways are energetically very close to each other, thus making a switch from one path to other plausible under different circumstances. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. [Action-oriented versus state-oriented reactions to experimenter-induced failures].

    PubMed

    Brunstein, J C

    1989-01-01

    The present study assessed different effects of action-oriented versus state-oriented styles of coping with failure on achievement-related performance and cognition. In a learned helplessness experiment, students were exposed to an academic failure situation and were then tested on a series of problem-solving tasks, either immediately after the pretreatment or after a delay of 24 hours. Performance and cognitive concomitants were measured during both experimental periods. Results demonstrated that action orientation was associated with self-immunizing cognitions during helplessness training. Action-oriented participants improved their performance level even after repeated failure feedbacks. Moreover, action-oriented students assigned to the delayed test condition responded with increased striving for success and showed performance increments, even in comparison with control subjects. In contrast, state-oriented participants developed symptoms of helplessness and showed impaired performance during failure inductions. In later tests on problem-solving tasks, state-oriented groups responded with increased fear of failure. Independent of immediate or delayed test conditions, they soon lapsed into new performance decrements.

  4. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury.

    PubMed

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (P<0.05), while MPO activity was also significantly reduced. Proinflammatory cytokine level was also reduced in treated group as compared to both other groups. On the basis of this study we concluded that the use of 20 mg/kg Angelica Sinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats.

  5. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury

    PubMed Central

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (P<0.05), while MPO activity was also significantly reduced. Proinflammatory cytokine level was also reduced in treated group as compared to both other groups. On the basis of this study we concluded that the use of 20 mg/kg Angelica Sinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats. PMID:26261562

  6. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis.

    PubMed

    Zhang, Z Y; Zhang, Z; Schluesener, H J

    2010-08-11

    Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system and serves as the animal model of human inflammatory demyelinating polyradiculoneuropathies. MS-275, a potent histone deacetylase inhibitor currently undergoing clinical investigations for various malignancies, has been reported to demonstrate promising anti-inflammatory activities. In our present study, MS-275 administration (3.5 mg/kg i.p.) to EAN rats once daily from the appearance of first neurological signs greatly reduced the severity and duration of EAN and attenuated local accumulation of macrophages, T cells and B cells, and demyelination of sciatic nerves. Further, significant reduction of mRNA levels of pro-inflammatory interleukin-1beta, interferon-gamma, interleukine-17, inducible nitric oxide synthase and matrix metalloproteinase-9 was observed in sciatic nerves of MS-275 treated EAN rats. In lymph nodes, MS-275 depressed pro-inflammatory cytokines as well, but increased expression of anti-inflammatory cytokine interleukine-10 and of foxhead box protein3 (Foxp3), a unique transcription factor of regulatory T cells. In addition, MS-275 treatment increased proportion of infiltrated Foxp3(+) cells and anti-inflammatory M2 macrophages in sciatic nerves of EAN rats. In summary, our data demonstrated that MS-275 could effectively suppress inflammation in EAN, through suppressing inflammatory T cells, macrophages and cytokines, and inducing anti-inflammatory immune cells and molecules, suggesting MS-275 as a potent candidate for treatment of autoimmune neuropathies.

  7. Theoretical and experimental investigation of carnosine and its oxygenated adducts. The reaction with the nickel ion

    NASA Astrophysics Data System (ADS)

    Pavlos, Dimitrios; Petropouleas, Panayiotis; Hatzipanayioti, Despina

    2015-11-01

    DFT theoretical calculations at B3LYP/TZVP or LANL2DZ level of theory, for neutral, zwitterions, protonated and anionic carnosine, were performed. Energies, the structural and spectroscopic parameters were calculated in the gas phase and aqueous medium. Additional H-bonds stabilize the ionized forms of carnosine, creating ;nests; into which metal ions or bio-molecules may be sheltered. Based on Fukui functions, the reactivity of the abovementioned forms of carnosine, with 1O2, may lead to oxygenated species. The theoretical spectroscopic parameters have been correlated to our experimental results. The effect of H2O2 and the electrochemistry of aqueous carnosine solutions were examined. Theoretical models containing Ni(II), carnosine and water were constructed. In the isolated mauve solid, formulated [Ni(carn)2(H2O)5], the COOsbnd , Nπ and/or NH2 were bonded. When H2O2 was added, the imidazole NMR signals disappeared. A redox couple clearly indicates one electron process, the electron coming from either the oxidation of imidazole ring or the nickel(II)/Ni(III) couple.

  8. Electric Field-Enhanced Catalytic Conversion of Methane: AN Experimental Study on the Effects of Corona Discharge on Methane Reactions

    NASA Astrophysics Data System (ADS)

    Marafee, Abdulathim M. J.

    The oxidative coupling of methane (OCM) is currently being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrates on the oxidative conversion of methane in a high-pressure (one atmosphere), nonthermal plasma formed by corona discharge. Here, methyl radicals are formed by the reaction of methane with negatively-charged oxygen species created in the corona discharge. The results of methane conversion in the presence of both AC and DC corona discharges revealed that ethane and ethylene product selectivity is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C_2 yields were obtained with the AC corona. All of the AC corona discharges specified here were initiated at room temperature (i.e., no oven or other heat source used), with temperature increases from 300 to 500^circC due to the exothermic gas discharge and exothermic reaction. A reaction mechanism is presented to explain the observed phenomena. The results suggest that AC and/or DC gas discharge techniques should be further studied for improved economics of methane conversion. The oxidative dehydrogenation of ethane in DC corona discharges was investigated. The atomic oxygen radicals initiated by corona discharges are thought to be active for the OXD of ethane. The selectivity to ethylene is affected by the reaction temperature, the DC applied voltage, voltage polarity, and the C_2H _6/O_2 ratio. The results of this study suggest the corona discharge process to be very efficient and selective in the oxidative dehydrogenation of ethane. The effects of DC corona discharge were examined in the presence of a typical OCM catalyst, Sr/La _2O_3. Experimental investigations have correspondingly been conducted, in which all reactive gases passed through a catalyst bed situated within the corona-induced plasma zone. The methane conversion and C_2 yield increased (with O_2 partial pressure) during the corona-enhanced catalytic

  9. Antimicrobial cotton containing N-halamine and quaternary ammonium groups by grafting copolymerization

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Yin; Ren, Xuehong; Huang, T. S.

    2014-03-01

    The monomer (3-acrylamidopropyl)trimethylammonium chloride (APTMAC) was used to treat cotton fibers by grafting copolymerization. The grafted cotton fabrics were characterized by SEM image and FTIR spectra. The treated samples with quaternary ammonium groups could decrease 96.08% of Staphylococcus aureus and 48.74% of Escherichia coli O157:H7 within 30 min. After chlorination with dilute sodium hypochlorite, the treated cotton fabrics containing both N-halamine and quaternary ammonium groups effectively inactivated 100% (log reduction 5.82) of S. aureus and 100% (log reduction 6.26) of E. coli O157:H7 within 5 min of contact time. The grafting process of cotton fabric has small effect on the thermal stability and tensile strength, which favors the practical application. Compared to the traditional pad-dry-cure method to produce antibacterial materials, the radical grafting copolymerization method occurred in water without any organic solvents involved in the whole treatment.

  10. Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization.

    SciTech Connect

    Vasiliskov, A. V.; Timofeev, E. N.; Surzhikov, S. A.; Drobyshev, A. L.; Shick, V. V.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Moscow Inst. of Physics and Technology

    1999-09-01

    The manufacturing of microchips containing oligonucleotides and proteins immobilized within gel pads, ranging in size from 10 x 10 to 100 x 100 {mu}m, is described. The microchips are produced by photo- or persulfate-induced copolymerization of unsaturated derivatives of biomolecules with acrylamide-bisacrylamide mixture. Oligonucleotides containing 5'-allyl or 5'-butenediol units were synthesized using standard phosphoramidite chemistry. Acryloyl residues were attached to a protein by a twostep procedure. Photopolymerization was induced by illumination of the monomer solution containing initiator with UV light through the mask. The mask was applied directly over the monomer solution or projected through a microscope. Alternatively, copolymerization was carried out in drops of aqueous solution of monomers containing ammonium persulfate. Drops with different allyl-oligonucleotides were distributed on a glass slide, and the polymerization was induced by diffusion of N,N,N',N'-tetramethylethylenediamine (TEMED) from a hexane solution that covered the aqueous drops.

  11. Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization

    NASA Astrophysics Data System (ADS)

    Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2017-09-01

    The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

  12. Equilibrium polymerization of acenaphthylene and its copolymerizations with electron-accepting vinyl monomers

    SciTech Connect

    Iwatsuki, Shouji; Kubo, Masataka; Iwayama, Hiroaki

    1993-12-20

    Radical polymerization kinetics of acenaphthylene in toluene using 2,2{prime}-azobis (isobutyronitrile) (AIBN) as an initiator was investigated revealing an equilibrium polymerization. The values of monomer concentration at equilibrium were determined to be between 1.3 and 3.3 mol/L for a temperature range of 50--70 C. The thermodynamics parameters were determined and showed an enthalpy change of {delta}H = {minus}43 kJ/mol and an entropy change of {delta}S ={minus}98J/K {center_dot} mol. Furthermore, copolymerization of acenaphthylene with electron-accepting vinyl monomers such as methyl methacrylate (MMA) and acrylonitrile (AN) were carried out and showed a change from random to alternating copolymerization as the acenaphthylene concentration decreased. This change in mechanism is rationally explained in terms of the equilibrium polymerization of acenaphthylene.

  13. Copolymerization of glycidyl ethers with CO/sub 2/ on a homogeneous catalyst

    SciTech Connect

    Kudashev, R.K.; Glukhov, E.A.; Kuramshina, E.A.; Monakov, Y.B.; Gailyunas, I.A.; Rafikov, S.R.

    1987-08-01

    The authors have investigated the relative reactivity of glycidyl ethers in copolymerization with CO/sub 2/ in the presence of the catalytic system Al(i-C/sub 4/H/sub 9/)/sub 3/-H/sub 2/O-epichlorohydrin. Solid CO/sub 2/ was introduced into the chilled autoclave, which contained toluene (the solvent), the epoxy compound, and epichlorohydrin. A relative reactivity series for glycidyl ethers in copolymerization with CO/sub 2/ in the presence of the system Al(i-C/sub 4/H/sub 9/)/sub 3/-H/sub 2/O-EPC has been established, which is connected with a dual type of the active centers present in the system. The viscous flow properties of the copolymers depend on the content of the CO/sub 2/-groups.

  14. Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization.

    PubMed

    Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael

    2017-09-08

    The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.

  15. Zwitterionic monomer graft copolymerization onto polyurethane surface through a PEG spacer

    NASA Astrophysics Data System (ADS)

    Huang, Jingjing; Xu, Weilin

    2010-04-01

    A new zwitterionic surface was obtained by a novel three-step grafting procedure. The zwitterionic monomer was introduced by cerium-induced graft copolymerization in the presence of N,N'-methylene bisacrylamide (MBAA) as cross-linking agent. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the MBAA could stimulate zwitterionic monomer grafting onto the membrane surface. Surface properties were also determined by atomic force microscope (AFM) and water contact angle. The hemocompatibility of the modified PU membranes was evaluated by the activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT). The TT and APTT of PU were significantly prolonged by the zwitterion of sulfobetaine monomer grafting copolymerization. The new polyurethane membrane could have a great potential in biomedical applications.

  16. A facile approach toward multifunctional polyethersulfone membranes via in situ cross-linked copolymerization.

    PubMed

    Sun, Chuangchao; Ji, Haifeng; Qin, Hui; Nie, Shengqiang; Zhao, Weifeng; Zhao, Changsheng

    2015-01-01

    In this study, multifunctional polyethersulfone (PES) membranes are prepared via in situ cross-linked copolymerization coupled with a liquid-liquid phase separation technique. Acrylic acid (AA) and N-vinylpyrrolidone (VP) are copolymerized in PES solution, and the solution is then directly used to prepare PES membranes. The infrared and X-ray photoelectron spectroscopy testing, scanning electron microscopy, and water contact angle measurements confirm the successful modification of pristine PES membrane. Protein adsorption, platelet adhesion, plasma recalcification time, and activated partial thromboplastin time assays convince that the modified PES membranes have a better biocompatibility than pristine PES membrane. In addition, the modified membranes showed good protein antifouling property and significant adsorption property of cationic dye. The loading of Ag nanoparticles into the modified membranes endows the composite membranes with antibacterial activity.

  17. Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization.

    PubMed

    Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo

    2015-12-01

    A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%.

  18. Monodispersepoly[BMA-co-(COPS-I)] Particles by Soap-Free Emulsion Copolymerization and Its Optical Properties as Photonic Crystals.

    PubMed

    Lee, Ki Chang; Choo, Hun Seung

    2015-10-01

    In order to study the surfactant-free emulsion copolymerization of benzyl methacrylate (BMA) with sodium 1-allyloxy-2-hydroxypropane sulfonate (COPS-I) and the resulting optical properties, a series of experiments was carried out at various reaction conditions such as the changes of BMA concentration, COPS-I concentration, BMA concentration under a fixed COPS-I amount, initiator and divinyl benzene (DVB) concentration. All the latices showed highly monodispersed spherical particles in the size range of 144~435 nm and the respective shiny structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices. The increase of number of particles led to the increased rate of polymerization and zeta-potential of the latices, on the other hand, to the decreased molecular weight. Refractive indices and the reflectivity increased with COPS-I concentration, on the other hand, and decreased with DVB concentration. Especially, refractive indices of the resulting poly[BMA-co-(COPS-I)] colloidal photonic crystals showed much higher values of 1.65~2.21 than that of polystyrene, due to the formation of core-shell shaped morphology. Monodisperse and high refractive index of poly[BMA-co-(COPS-I)] particles prepared in this work could be used for the study in photonic crystals and electrophoretic display.

  19. Homo-polymerization of alpha-olefins and co-polymerization of higher alpha-olefins with ethylene in the presence of CpTiCl2(OC6H4X-p)/MAO catalysts (X = CH3, Cl).

    PubMed

    Skupinski, W; Nicinski, K; Jamanek, D; Wieczorek, Z

    2005-07-04

    Cyclopentadienyl-titanium complexes containing -OC6H4X ligands (X = Cl,CH3) activated with methylaluminoxane (MAO) were used in the homo-polymerization of ethylene, propylene, 1-butene, 1-pentene, 1-butene, and 1-hexene, and also in co-polymerization of ethylene with the alpha-olefins mentioned. The -X substituents exhibit different electron donor-acceptor properties, which is described by Hammett's factor (sigma). The chlorine atom is electron acceptor, while the methyl group is electron donor. These catalysts allow the preparation of polyethylene in a good yield. Propylene in the presence of the catalysts mentioned dimerizes and oligomerizes to trimers and tetramers at 25 degrees C under normal pressure. If the propylene pressure was increased to 7 atmospheres,CpTiCl2(OC6H4CH3)/MAO catalyst at 25 degrees gave mixtures with different contents of propylene dimers, trimers and tetramers. At 70 degrees C we obtained only propylene trimer. Using the catalysts with a -OC(6)H(4)Cl ligand we obtained atactic polymers with M(w) 182,000 g/mol (at 25 degrees C) and 100,000 g/mol (at 70 degrees C). The superior activity of the CpTiCl2(OC6H4Cl)/MAO catalyst used in polymerization of propylene prompted us to check its activity in polymerization of higher alpha-olefins (1-butene, 1-pentene, 1-hexene)and in co-polymerization of these olefins with ethylene. However, when homo-polymerization was carried out in the presence of this catalyst no polymers were obtained. Gas chromatography analysis revealed the presence of dimers. The activity of the CpTiCl2(OC6H4Cl)/MAO catalyst in the co-polymerization of ethylene with higher alpha-olefins is limited by the length of the co-monomer carbon chain. Hence, the highest catalyst activities were observed in co-polymerization of ethylene with propylene (here a lower pressure of the reagents and shorter reaction time were applied to obtain catalytic activity similar to that for other co-monomers). For other co-monomers the activity of the

  20. Tailored Living Block Copolymerization: Multiblock Poly(cyclohexene carbonate)s with Sequence Control

    SciTech Connect

    Kim, Jeung Gon; Cowman, Christina D.; LaPointe, Anne M.; Wiesner, Ulrich; Coates, Geoffrey W.

    2011-03-08

    In this Communication, the living block copolymerization of functionalized cyclohexene oxides and CO{sub 2} is described, yielding multiblock poly(cyclohexene carbonate)s [p(CHC)s] with a diverse range of functionality on the side chains and good control of block sequence and length. Unlike prior systems that contain stable vinyl backbones, the carbonate backbones of polymers reported herein are degradable, allowing possible applications where removable templates are required.

  1. Hydrogen-atom transfer reactions from ortho-alkoxy-substituted phenols: an experimental approach.

    PubMed

    Amorati, Riccardo; Menichetti, Stefano; Mileo, Elisabetta; Pedulli, Gian Franco; Viglianisi, Caterina

    2009-01-01

    The role of intramolecular hydrogen bonding (HB) on the bond-dissociation enthalpy (BDE) of the phenolic O-H and on the kinetics of H-atom transfer to peroxyl radicals (k(inh)) of several 2-alkoxyphenols was experimentally quantified by the EPR equilibration technique and by inhibited autoxidation studies. These compounds can be regarded as useful models for studying the H-atom abstraction from 2-OR phenols, such as many lignans, reduced coenzyme Q and curcumin. The effects of the various substituents on the BDE(O-H) of 2-methoxy, 2-methoxy-4-methyl, 2,4-dimethoxyphenols versus phenol were measured in benzene solution as -1.8; -3.7; -5.4 kcal mol(-1), respectively. In the case of polymethoxyphenols, significant deviations from the BDE(O-H) values predicted by the additive effects of the substituents were found. The logarithms of the k(inh) constants in cumene were inversely related to the BDE(O-H) values, obeying a linear Evans-Polanyi plot with the same slope of other substituted phenols and a y-axis intercept slightly smaller than that of 2,6-dimethyl phenols. In the cases of phenols having the 2-OR substituent included in a five-membered condensed ring (i.e, compounds 9-11), both conformational isomers in which the OH group points toward or away from the oxygen in position 2 were detected by FTIR spectroscopy and the intramolecular HB strength was thus estimated. The contribution to the BDE(O-H) of the ortho-OR substituent in 9, corrected for intramolecular HB formation, was calculated as -5.6 kcal mol(-1). The similar behaviour of cyclic and non-cyclic ortho-alkoxy derivatives clearly showed that the preferred conformation of the OMe group in ortho-methoxyphenoxyl radicals is that in which the methyl group points away from the phenoxyl oxygen, in contrast to the geometries predicted by DFT calculations.

  2. Computational analysis of experimental results on spatial distributions of fission reaction rates in the annular core of a modular HTGR, obtained at the ASTRA critical facility

    SciTech Connect

    Boyarinov, V. F.; Glushkov, E. S.; Fomichenko, P. A.; Kompaniets, G. V.; Krutov, A. M.; Marova, E. V.; Nevinitsa, V. A.; Polyakov, D. N.; Smirnov, O. N.; Sukharev, Y. P.; Zimin, A. A.

    2006-07-01

    The paper presents computational analysis of some experimental results on spatial distribution of {sup 235}U fission reaction rates in a critical assembly with the annular core and different configurations of safety rods, placed into the inner reflector, made of graphite. Presented computational analysis of experimental data was performed with the set of codes used in HTGR design calculations. (authors)

  3. Nickel(0)-catalyzed cycloaddition copolymerization involving two diynes and carbon dioxide to poly(2-pyrone)

    SciTech Connect

    Tsuda, Tetsuo; Ooi, Osamu; Maruta, Ken-ichi )

    1993-08-01

    A copolymerizability order of five diynes, i.e., 3,11-tetradecadiyne (A), 2,6-octadiyne (B), 1,4-di(2-hexynyl)benzene (C), 1,3-di(2-hexynyl)benzene (D), and 1,7-cyclotridecadiyne (E), in the nickel(0)-catalyzed 1:1 cycloaddition copolymerization of the diyne with CO[sub 2] to the poly(2-pyrone) was determined by the nickel(0)-catalyzed copolymerization involving two diynes and CO[sub 2]. The copolymerizability order obtained by analyzing the copolymer composition using [sup 1]H NMR spectroscopy was A [gt] E [gt] B [gt] C [gt] D. This order was explained in terms of the steric hindrance exerted by the substituent on the terminal C[triple bond]C bond of the cooligomer or the copolymer to its cycloaddition along with mobility of its terminal C[triple bond]C bond moiety for the cycloaddition. An order of cycloaddition reactivity of the diyne, which is related to formation of the cooligomer, was determined by measuring the unreacted diyne in the copolymerization involving five diynes and CO[sub 2] using gas chromatography. The result was E [gt] B [gt] C [gt] D [gt] A. Thus high copolymerizability of diyne A is noteworthy.

  4. Acid and base catalyzed Davis-Beirut reaction: experimental and theoretical mechanistic studies and synthesis of novel 3-amino-2H-indazoles.

    PubMed

    Avila, Belem; El-Dakdouki, Mohammad H; Nazer, Musa Z; Harrison, Jason G; Tantillo, Dean J; Haddadin, Makhluf J; Kurth, Mark J

    2012-11-28

    The Davis-Beirut reaction, which provides an efficient synthesis of 2H-indazoles and, subsequently, indazolones, is shown to proceed rapidly from o-nitrosobenzaldehyde and primary amines under both acid or base catalysis. Experimental and theoretical evidence in support of a reaction mechanism is provided in which o-nitrosobenzylidine imine is a pivotal intermediate in this N,N-bond forming heterocyclization reaction. The Davis-Beirut reaction is also shown to effectively synthesize a number of novel 3-amino-2H-indazole derivatives.

  5. A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting

    NASA Astrophysics Data System (ADS)

    Frenznick, Sascha; Stratmann, Martin; Rohwerder, Michael

    2008-04-01

    Reactive wetting plays a crucial role in many technical processes, from soldering in microelectronics, production of metal/ceramic composites, to hot dip galvanizing in mass production of zinc coated steel sheet. In all these cases the wetting behavior of metal melts on different surfaces plays a crucial role in material joining and coating. In all these processes the formation of the interfacial reaction layer has to occur within as short a time as possible in order to ensure a fast overall production speed. As the interfacial layer determines the stability of the formed composites, detailed knowledge of its growth mechanisms is required for a directed process optimization. However, the investigation of the processes occurring at the buried interface between substrate and wetting phase is difficult, especially for the case of liquid metal wetting metallic or ceramic solid substrates at high temperatures. Here, a novel advanced technique for the investigation of high temperature wetting processes up to a temperature of 1100K is presented. It is based on the sessile drop technique but, in addition, allows spinning off the droplet at any chosen wetting time, thus providing direct access to the interfacial reaction layer. Since the experimental setup is integrated into a UHV compatible reaction chamber, not only excellent control of the composition of the atmosphere is ensured, but also direct transfer to surface analytical tools such as scanning electron microscope or electron spectroscopy for chemical analysis without intermediate exposure to air is realized. As will be shown for the case of hot dip galvanising of steel, this is an outstanding advance compared to existing methods.

  6. A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting

    SciTech Connect

    Frenznick, Sascha; Stratmann, Martin; Rohwerder, Michael

    2008-04-15

    Reactive wetting plays a crucial role in many technical processes, from soldering in microelectronics, production of metal/ceramic composites, to hot dip galvanizing in mass production of zinc coated steel sheet. In all these cases the wetting behavior of metal melts on different surfaces plays a crucial role in material joining and coating. In all these processes the formation of the interfacial reaction layer has to occur within as short a time as possible in order to ensure a fast overall production speed. As the interfacial layer determines the stability of the formed composites, detailed knowledge of its growth mechanisms is required for a directed process optimization. However, the investigation of the processes occurring at the buried interface between substrate and wetting phase is difficult, especially for the case of liquid metal wetting metallic or ceramic solid substrates at high temperatures. Here, a novel advanced technique for the investigation of high temperature wetting processes up to a temperature of 1100 K is presented. It is based on the sessile drop technique but, in addition, allows spinning off the droplet at any chosen wetting time, thus providing direct access to the interfacial reaction layer. Since the experimental setup is integrated into a UHV compatible reaction chamber, not only excellent control of the composition of the atmosphere is ensured, but also direct transfer to surface analytical tools such as scanning electron microscope or electron spectroscopy for chemical analysis without intermediate exposure to air is realized. As will be shown for the case of hot dip galvanising of steel, this is an outstanding advance compared to existing methods.

  7. A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting.

    PubMed

    Frenznick, Sascha; Stratmann, Martin; Rohwerder, Michael

    2008-04-01

    Reactive wetting plays a crucial role in many technical processes, from soldering in microelectronics, production of metal/ceramic composites, to hot dip galvanizing in mass production of zinc coated steel sheet. In all these cases the wetting behavior of metal melts on different surfaces plays a crucial role in material joining and coating. In all these processes the formation of the interfacial reaction layer has to occur within as short a time as possible in order to ensure a fast overall production speed. As the interfacial layer determines the stability of the formed composites, detailed knowledge of its growth mechanisms is required for a directed process optimization. However, the investigation of the processes occurring at the buried interface between substrate and wetting phase is difficult, especially for the case of liquid metal wetting metallic or ceramic solid substrates at high temperatures. Here, a novel advanced technique for the investigation of high temperature wetting processes up to a temperature of 1100 K is presented. It is based on the sessile drop technique but, in addition, allows spinning off the droplet at any chosen wetting time, thus providing direct access to the interfacial reaction layer. Since the experimental setup is integrated into a UHV compatible reaction chamber, not only excellent control of the composition of the atmosphere is ensured, but also direct transfer to surface analytical tools such as scanning electron microscope or electron spectroscopy for chemical analysis without intermediate exposure to air is realized. As will be shown for the case of hot dip galvanising of steel, this is an outstanding advance compared to existing methods.

  8. Experimental and theoretical study on the reaction of N3-phenyl-(pyridin-2-yl)carbohydrazonamide with itaconic anhydride

    NASA Astrophysics Data System (ADS)

    Modzelewska-Banachiewicz, Bożena; Paprocka, Renata; Mazur, Liliana; Saczewski, Jarosław; Kutkowska, Jolanta; Stępień, Dorota K.; Cyrański, Michał

    2012-08-01

    Two new 1,2,4-triazole-containing alkenoic acid derivatives were obtained from the reaction of N-phenyl-(pyridin-2-yl)carbohydrazonamide with itaconic anhydride, depending on the reaction conditions. The structures of 2-((4-phenyl-5-(pyridin-2-yl)-4H-1,2,4-triazol-3-yl)methyl)acrylic acid or (E)-2-methyl-3(4-phenyl-5-(pyridine-2-yl)-4H-1,2,4-triazol-3-yl)acrylic acid were confirmed by means of 1D and 2D NMR spectroscopic data as well as by single-crystal X-ray diffraction analysis. The experiential 1H and 13C chemical shifts were compared with those calculated with B3LYP, EDF1, and EDF2 density functional theories. The theoretical study of the observed terminal-to-internal alkene isomerization was performed with density functional (DFT) B3LYP/6-31+G∗ method using SM8 water and DMF solvation models. Antimicrobial activities of the newly prepared alkenoic acid derivatives were verified experimentally by a broth microdilution method.

  9. [An experimental study of the tissue reactions in rats induced by different concentrations of benzathine penicillin G].

    PubMed

    Massad, M R; Massad, E; Arcuri, E A

    1990-04-01

    The search of scientific answers to problems due to procedures involving professional actions is a permanent challenge to the nurses committed with the improving of nursing care. In face of the intensive muscle soreness provoked by penicillin G benzatin shots, an experimental evaluation of this procedure was carried out in order to observe the influences of concentration and volumes used. This evaluation could give some insights to improve the nursing care, particularly those linked to the manipulation of the penicillin injection. The study was performed in the Faculty of Medicine of the University of São Paulo, in 27 Male Wistar rats. After the injection of the drug or saline solution in the right and left limb, respectively, the animals were sacrificed and the muscles in which the solution were injected were histologically examined. The use of penicillin provoked intensive inflammatory reaction, the peak intensity being attained after 48 hours. A remaining effect lasted about thirty days. The inflammatory reaction was similar for the three concentrations of penicillin. Nevertheless, the present research does not bring data that should modify the current injection procedures.

  10. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes

    SciTech Connect

    Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann -Cecilie; Massey, Thomas N.; Siem, Sunniva

    2013-11-08

    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  11. Using Central Composite Experimental Design to Optimize the Degradation of Tylosin from Aqueous Solution by Photo-Fenton Reaction

    PubMed Central

    Sarrai, Abd Elaziz; Hanini, Salah; Merzouk, Nachida Kasbadji; Tassalit, Djilali; Szabó, Tibor; Hernádi, Klára; Nagy, László

    2016-01-01

    The feasibility of the application of the Photo-Fenton process in the treatment of aqueous solution contaminated by Tylosin antibiotic was evaluated. The Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimize the effect of hydrogen peroxide, ferrous ion concentration and initial pH as independent variables on the total organic carbon (TOC) removal as the response function. The interaction effects and optimal parameters were obtained by using MODDE software. The significance of the independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results show that the concentration of the ferrous ion and pH were the main parameters affecting TOC removal, while peroxide concentration had a slight effect on the reaction. The optimum operating conditions to achieve maximum TOC removal were determined. The model prediction for maximum TOC removal was compared to the experimental result at optimal operating conditions. A good agreement between the model prediction and experimental results confirms the soundness of the developed model. PMID:28773551

  12. A Combined Experimental/Computational Study of the Mechanism of a Palladium-Catalyzed Bora-Negishi Reaction.

    PubMed

    Campos, Jesús; Nova, Ainara; Kolychev, Eugene L; Aldridge, Simon

    2017-09-12

    Experimental and computational efforts are reported which illuminate the mechanism of a novel boron version of the widespread Negishi coupling reaction that offers a new protocol for the formation of aryl/acyl C-B bonds using a bulky boryl fragment. The role of nucleophilic borylzinc reagents in the reduction of the Pd(II) pre-catalysts to Pd(0) active species has been demonstrated. The non-innocent behavior of the PPh3 ligands of the [Pd(PPh3 )2 Cl2 ] pre-catalyst under activation conditions has been probed both experimentally and computationally, revealing the formation of a trimetallic Pd species bearing bridging phosphide (PPh2(-) ) ligands. Our studies also reveal the monoligated formulation of the Pd(0) active species, which led us to synthesize related (η(3) -indenyl)Pd-monophosphine catalysts which show improved catalytic performances under mild conditions. A complete mechanistic proposal to aid future catalyst developments is provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The chemical modification and characterization of polypropylene membrane with environment response by in-situ chlorinating graft copolymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Liu, Jiankai; Hu, Wenjie; Feng, Ying; Zhao, Jiruo

    2017-08-01

    In this study, a novel chemical surface modification method of polyolefin membranes is applied following the in-situ chlorinating graft copolymerization (ISCGC). Polypropylene (PP)/methyl methacrylate (MMA) system was used as an example. A unique structure was formed by the modification process on the original membrane surface and the product exhibited an environmental response. Chlorine free radicals were generated using ultraviolet and heat and were used to capture the hydrogen in the polymer chains on the substrate surface. The formed macromolecular radicals could react with MMA over 2 h to achieve a high coverage ratio polymer on the PP membrane surface. The graft copolymers were characterized using FTIR, 1H-NMR, DSC, and XPS, which all proved the feasibility of chemically modifying the PP membrane surface by ISCGC. The surface morphology of the grafted PP membrane was characterized using SEM and AFM. The results showed that the grafted product presents a uniform, neat, and dense mastoid structure with an average thickness of 4.44 μm, which was expected to be similar to the brush-like surface structure. The contact angle and AFM tests indicated that the product surface is responsive to solvent and pH. The experimental results showed that the PP membrane surface structure can be reconstructed using ISCGC, a method that can be used for environment-responsive polymer materials. Moreover, the product has the characteristics of polymer interfacial brush.

  14. Kinetic Study of the Gas-Phase Reactions of Nitrate Radicals with Methoxyphenol Compounds: Experimental and Theoretical Approaches.

    PubMed

    Lauraguais, Amélie; El Zein, Atallah; Coeur, Cécile; Obeid, Emil; Cassez, Andy; Rayez, Marie-Thérèse; Rayez, Jean-Claude

    2016-05-05

    The gas-phase reactions of five methoxyphenols (three disubstituted and two trisubstituted) with nitrate radicals were studied in an 8000 L atmospheric simulation chamber at atmospheric pressure and 294 ± 2 K. The NO3 rate constants were investigated with the relative kinetic method using PTR-ToF-MS and GC-FID to measure the concentrations of the organic compounds. The rate constants (in units of cm(3) molecule(-1) s(-1)) determined were: 2-methoxyphenol (guaiacol; 2-MP), k(2-MP) = (2.69 ± 0.57 × 10(-11); 3-methoxyphenol (3-MP), k(3-MP) = (1.15 ± 0.21) × 10(-11); 4-methoxyphenol (4-MP), k(4-MP) = (13.75 ± 7.97) × 10(-11); 2-methoxy-4-methylphenol, k(2-M-4-MeP) = (8.41 ± 5.58) × 10(-11) and 2,6-dimethoxyphenol (syringol; 2,6-DMP), k(2,6-DMP) = (15.84 ± 8.10) × 10(-11). The NO3 rate constants of the studied methoxyphenols are compared with those of other substituted aromatics, and the differences in the reactivity are construed regarding the substituents (type, number and position) on the aromatic ring. This study was also supplemented by a theoretical approach of the methoxyphenol reactions with nitrate radicals. The upper limits of the NO3 overall rate constants calculated were in the same order of magnitude than those experimentally determined. Theoretical calculations of the minimum energies of the adducts formed from the reaction of NO3 radicals with the methoxyphenols were also performed using a DFT approach (M06-2X/6-31G(d,p)). The results indicate that the NO3 addition reactions on the aromatic ring of the methoxyphenols are exothermic, with energy values ranging between -13 and -21 kcal mol(-1), depending on the environment of the carbon on which the oxygen atom of NO3 is attached. These energy values allowed identifying the most suitable carbon sites for the NO3 addition on the aromatic ring of the methoxyphenols: at the exception of the 3-MP, the NO3 ipso-addition to the hydroxyl group is one of the favored sites for all the studies compounds.

  15. An experimental study of catalytic and non-catalytic reaction in heat recirculating reactors and applications to power generation

    NASA Astrophysics Data System (ADS)

    Ahn, Jeongmin

    An experimental study of the performance of a Swiss roll heat exchanger and reactor was conducted, with emphasis on the extinction limits and comparison of results with and without Pt catalyst. At Re<40, the catalyst was required to sustain reaction; with the catalyst self-sustaining reaction could be obtained at Re less than 1. Both lean and rich extinction limits were extended with the catalyst, though rich limits were extended much further. At low Re, the lean extinction limit was rich of stoichiometric and rich limit had equivalence ratios 80 in some cases. Non-catalytic reaction generally occurred in a flameless mode near the center of the reactor. With or without catalyst, for sufficiently robust conditions, a visible flame would propagate out of the center, but this flame could only be re-centered with catalyst. Gas chromatography indicated that at low Re, CO and non-C3 H8 hydrocarbons did not form. For higher Re, catalytic limits were slightly broader but had much lower limit temperatures. At sufficiently high Re, catalytic and gas-phase limits merged. Experiments with titanium Swiss rolls have demonstrated reducing wall thermal conductivity and thickness leads to lower heat losses and therefore increases operating temperatures and extends flammability limits. By use of Pt catalysts, reaction of propane-air mixtures at temperatures 54°C was sustained. Such low temperatures suggest that polymers may be employed as a reactor material. A polyimide reactor was built and survived prolonged testing at temperatures up to 500°C. Polymer reactors may prove more practical for microscale devices due to their lower thermal conductivity and ease of manufacturing. Since the ultimate goal of current efforts is to develop combustion driven power generation devices at MEMS like scales, a thermally self-sustaining miniature power generation device was developed utilizing a single-chamber solid-oxide-fuel-cell (SOFC) placed in a Swiss roll. With the single-chamber design

  16. Development of Highly Active and Regioselective Catalysts for the Copolymerization of Epoxides with Cyclic Anhydrides: An Unanticipated Effect of Electronic Variation.

    PubMed

    DiCiccio, Angela M; Longo, Julie M; Rodríguez-Calero, Gabriel G; Coates, Geoffrey W

    2016-06-08

    Recent developments in polyester synthesis have established several systems based on zinc, chromium, cobalt, and aluminum catalysts for the ring-opening alternating copolymerization of epoxides with cyclic anhydrides. However, to date, regioselective processes for this copolymerization have remained relatively unexplored. Herein we report the development of a highly active, regioselective system for the copolymerization of a variety of terminal epoxides and cyclic anhydrides. Unexpectedly, electron withdrawing substituents on the salen framework resulted in a more redox stable Co(III) species and longer catalyst lifetime. Using enantiopure propylene oxide, we synthesized semicrystalline polyesters via the copolymerization of a range of epoxide/anhydride monomer pairs.

  17. Experimental and theoretical study of the ion-ion mutual neutralization reactions Ar++SFn- (n=6, 5, and 4)

    NASA Astrophysics Data System (ADS)

    Bopp, Joseph C.; Miller, Thomas M.; Viggiano, Albert A.; Troe, Jürgen

    2008-08-01

    The ion-ion mutual neutralization reactions Ar++SFn--->Ar+SFn (n=6, 5, and 4) have been studied in a flowing afterglow-Langmuir probe (FALP) apparatus at 300 K and 1 Torr of He buffer gas. Electron concentrations and product ion fractions were measured, and neutralization rate constants of 4.0×10-8, 3.8×10-8, and 4×10-8 cm3 s-1 for SF6-, SF5-, and SF4-, respectively, were derived, with uncertainties of +/-25% (+/-35% for SF4-). During the neutralization process, excited neutrals are generated that are able to dissociate to neutral fragments. In the case of SF6, the formation of SF5 and SF4, and similarly in the case of SF5, the formation of SF4 and SF3 were observed and quantified. The mechanism of primary and secondary reaction was analyzed in detail, and rate constants for the dissociative electron attachments e-+SF5-->F-+SF4 (k=3×10-9 cm3 s-1,+/-40%) and e-+SF3-->F-+SF2 (k=2×10-8 cm3 s-1,+400%,-75%) were also derived. The experimental ion-ion neutralization rate constants were found to be in good agreement with estimates from an optimum two-state double-passage Landau-Zener model. It was also found that energy partitioning in the neutralization is related to the extent of electronic excitation of Ar generated by the electron transfer processes.

  18. Experimental and theoretical studies of the products of addition-elimination reactions between benzil dihydrazone and three isomeric chlorobenzaldehydes.

    PubMed

    Liu, Yun-Na; Cheng, Shuang-Shuang; Wang, Chao; Xing, Dian-Xiang; Liu, Yun; Tan, Xue-Jie

    2015-07-01

    A series of mono- and di-Schiff bases formed between benzil dihydrazone {BDH; systematic name: (1Z)-[(2E)-2-hydrazinylidene-1,2-diphenylethylidene]hydrazine} and three isomeric chlorobenzaldehydes were designed and synthesized to be used as model compounds to help to explain the reaction mechanisms for the formation of Schiff bases. These compounds are 1-(2-chlorobenzylidene)-2-{2-[2-(2-chlorobenzylidene)hydrazin-1-ylidene]-1,2-diphenylethylidene}hydrazine (BDHOCB), and the 3-chloro (BDHMCB) and 4-chloro (BDHPCB) analogues, all having the formula C28H20Cl2N4. Surprisingly, only di-Schiff bases were obtained; our attempts to push the reaction in favour of the mono-Schiff bases all failed. Density functional theory (DFT) calculations were performed to explain the trend in the experimental results. In the case of the systems studied, the type of Schiff base produced exhibits a clear dependence on the HOMO-LUMO energy gaps (ΔE(HOMO-LUMO)), i.e. the product is mainly governed by its stability. The compounds were characterized by single-crystal X-ray diffractometry, elemental analysis, melting point, (1)H NMR and (13)C NMR spectroscopy. The structural features of the three new Schiff bases are similar. For instance, they have the same chemical formula, all the molecules have a symmetrical double helix structure, with each Ph-C=N-N=C-Ph arm exhibiting an anti conformation, and their supramolecular interactions include intermolecular π-π and weak C-H...π stacking interactions. The crystal systems are different, however, viz. triclinic (space group P1¯) for BDHPCB, monoclinic (space group P2(1)/n) for BDHOCB and orthorhombic (space group Pnna) for BDHMCB.

  19. Understanding reactivity and regioselectivity in Diels-Alder reactions of a sugar-derived dienophile bearing two competing EWGs. An experimental and computational study.

    PubMed

    Giri, Germán F; Sarotti, Ariel M; Spanevello, Rolando A

    2015-10-13

    The effect of an extra EWG in the reactivity and regioselectivity in Diels-Alder reactions of β-cyanolevoglucosenone and 4 different dienes was studied by a joint computational and experimental study. Conceptual DFT analysis successfully predicted an important enhancement in the reactivity, and correctly anticipated the regioselectivity in the reactions with isoprene. However, this static treatment failed when dealing the regiochemical preference of the reactions involving a substituted anthracene as diene. MPW1K/6-31G* calculations correctly reproduced the experimental observations. Based on the collected data, we found that when dealing with dienes and dienophiles with no clear electronically activated position, the ease of pyramidalization of the interacting atoms dictates the regioselectivity of the DA reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Coupled transport, mixing and biogeochemical reactions in fractured media: experimental observations and modelling at the Ploemeur fractured rock observatory

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bochet, O.; Klepikova, M.; Kang, P. K.; Shakas, A.; Aquilina, L.; Dufresne, A.; Linde, N.; Dentz, M.; Bour, O.

    2016-12-01

    Transport processes in fractured media and associated reactions are governed by multiscale heterogeneity ranging from fracture wall roughness at small scale to broadly distributed fracture lengths at network scale. This strong disorder induces a variety of emerging phenomena, including flow channeling, anomalous transport and heat transfer, enhanced mixing and reactive hotspot development. These processes are generally difficult to isolate and monitor in the field because of the high degree of complexity and coupling between them. We report in situ experimental observations from the Ploemeur fractured rock observatory (http://hplus.ore.fr/en/ploemeur) that provide new insights on the dynamics of transport and reaction processes in fractured media. These include dipole and push pull tracer tests that allow understanding and modelling anomalous transport processes characterized by heavy-tailed residence time distributions (Kang et al. 2015), thermal push pull tests that show the existence of highly channeled flow with a strong control on fracture matrix exchanges (Klepikova et al. 2016) and time lapse hydrogeophysical monitoring of saline tracer tests that allow quantifying the distribution of transport length scales governing dispersion processes (Shakas et al. 2016). These transport processes are then shown to induce rapid oxygen delivery and mixing at depth leading to massive biofilm development (Bochet et al., in prep.). Hence, this presentation will attempt to link these observations made at different scales to quantify and model the coupling between flow channeling, non-Fickian transport, mixing and chemical reactions in fractured media. References: Bochet et al. Biofilm blooms driven by enhanced mixing in fractured rock, in prep. Klepikova et al. 2016, Heat as a tracer for understanding transport processes in fractured media: theory and field assessment from multi-scale thermal push-pull tracer tests, Water Resour. Res. 52Shakas et al. 2016, Hydrogeophysical

  1. Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: reactions of the CN radical.

    PubMed

    Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R

    2010-01-01

    The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere.

  2. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    SciTech Connect

    Liu, Cong; Evans, Tabitha J.; Cheng, Lei; Nimlos, Mark R.; Mukarakate, Calvin; Robichaud, David J.; Assary, Rajeev S.; Curtiss, Larry A.

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  3. Theoretical and Experimental Investigation of Thermodynamics and Kinetics of Thiol-Michael Addition Reactions: A Case Study of Reversible Fluorescent Probes for Glutathione Imaging in Single Cells.

    PubMed

    Chen, Jianwei; Jiang, Xiqian; Carroll, Shaina L; Huang, Jia; Wang, Jin

    2015-12-18

    Density functional theory (DFT) was applied to study the thermodynamics and kinetics of reversible thiol-Michael addition reactions. M06-2X/6-31G(d) with the SMD solvation model can reliably predict the Gibbs free energy changes (ΔG) of thiol-Michael addition reactions with an error of less than 1 kcal·mol(-1) compared with the experimental benchmarks. Taking advantage of this computational model, the first reversible reaction-based fluorescent probe was developed that can monitor the changes in glutathione levels in single living cells.

  4. Synthesis of cationic flocculant by radiation-induced copolymerization of methyl chloride salt of N,N-dimethylaminoethyl methacrylate with acrylamide in aqueous solution. II. Copolymerization at higher monomer concentration

    SciTech Connect

    Ishigaki, I.; Fukuzaki, H.; Okada, T.; Okada, T.; Okamoto, J.; Machi, S.

    1981-05-01

    The radiation-induced copolymerization of methyl chloride salt of N,N-dimethylaminoethyl methacrylate with acrylamide was studied to prepare a polymer flocculant that can be handled as a solid. The product obtained in the presence of 5 to 20% water was a solid and could be ground to a powder without drying. In order to obtain a water-soluble polymer at a higher concentration, the effect of various additives on the copolymerization was investigated and found that alcohols bearing a hydrogen atom attached to the tertiary carbon atom effectively inhibit intermolecular crosslinking to give water-soluble polymer. It is suggested that the formation of water-insoluble polymer is predominantly attributable to the crosslinking of polymer chains rather than to the imidation of amide groups. Copolymerization in the presence of isopropyl alcohol as inhibitor of the crosslinking was also studied and compared with that reported previously, which was carried out at a lower monomer concentration without additives.

  5. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  6. Face-selective Diels-Alder reactions between unsymmetrical cyclohexadienes and symmetric trans-dienophile: an experimental and computational investigation.

    PubMed

    Lahiri, Saswati; Yadav, Somnath; Banerjee, Srirupa; Patil, Mahendra P; Sunoj, Raghavan B

    2008-01-18

    A combined experimental and theoretical study of the Diels-Alder reactions between 2-trimethylsiloxy-1,3-cyclohexadienes (2-11) and (E)-1,4-diphenylbut-2-ene-1,4-dione (1) is reported. Two diastereomeric products, 5-endo-6-exo- (nx) and 5-exo-6-endo- (xn) dibenzoyl derivatives, are possible with symmetric trans-dienophile (1). While in many cases 5-endo-6-exo product is preferred over the corresponding 5-exo-6-endo product, the product ratio nx:xn is found to vary with the position of substituents on the diene. The density functional theory studies with the mPW1PW91/6-31G* as well as the B3LYP/6-31G* levels reveal that the electrostatic repulsion between the oxygen lone pairs on the diene and the dienophile is critical to the observed product selectivities. The optimized transition state geometries though appeared to involve secondary orbital interactions, careful examination of the frontier Kohn-Sham orbitals as well as calculations with the natural bond orbital (NBO) analyses confirm the absence of SOI in these transition states. In the case of methyl-substituted dienes, a cumulative effect of steric and electrostatic interactions between the diene and the dienophile is found to be the controlling element toward the observed selectivity.

  7. Specific detection of Neospora caninum oocysts in fecal samples from experimentally-infected dogs using the polymerase chain reaction.

    PubMed

    Hill, D E; Liddell, S; Jenkins, M C; Dubey, J P

    2001-04-01

    Neospora caninum oocysts, passed in the feces of a definitive host (dog), were isolated, and genomic DNA was extracted. A polymerase cahin reaction (PCR) targeting the N. caninum-specific Nc 5 genomic sequence was performed using the isolated DNA. A synthesized competitor molecule containing part of the Nc 5 sequence was included in the assay as a check against false-negative PCR results and to quantify N. caninum oocyst DNA in fecal samples. A standard curve of the ratio of fluorescence intensity of PCR-amplified competitor to that of oocyst DNA was constructed to compare oocyst equivalents from fecal samples containing unknown numbers of N. caninum oocysts and to assess the sensitivity of the assay. The specificity of the assay was determined using the Nc 5-specific primers in PCR assays against other parasites likely to be found in canine feces. Genomic DNA sequences from the canine coccidians Hammondia heydorni, Cryptosporidium parvum, Sarcocystis cruzi, S. tenella, and Isospora ohioensis and the canine helminth parasites Strongyloides stercoralis, Toxocara canis, Dipylidium caninum, and Ancylostoma caninum were not amplified. In addition, genomic DNA sequences from oocysts of coccidian parasites that might contaminate dog feces, such as Hammondia hammondi, Toxoplasma gondii, or Eimeria tenella, were not amplified in the PCR assay. The assay should be useful in epidemiological surveys of both domestic and wild canine hosts and in investigations of oocyst biology in experimental infections.

  8. Thermodynamic Properties of CO{sub 2} Capture Reaction by Solid Sorbents: Theoretical Predictions and Experimental Validations

    SciTech Connect

    Duan, Yuhua; Luebke, David; Pennline, Henry; Li, Liyu; King, David; Zhang,; Keling,; Zhao,; Lifeng,; Xiao, Yunhan

    2012-01-01

    It is generally accepted that current technologies for capturing CO{sub 2} are still too energy intensive. Hence, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. These CO{sub 2} sorbent candidates were further considered for experimental validations. In this presentation, we first introduce our screening methodology with validating by solid dataset of alkali and alkaline metal oxides, hydroxides and bicarbonates which thermodynamic properties are available. Then, by studying a series of lithium silicates, we found that by increasing the Li{sub 2}O/SiO{sub 2} ratio in the lithium silicates their corresponding turnover temperatures for CO{sub 2} capture reactions can be increased. Compared to anhydrous K{sub 2}CO{sub 3}, the dehydrated K{sub 2}CO{sub 3}1.5H{sub 2}O can only be applied for post-combustion CO{sub 2} capture technology at temperatures lower than its phase transition (to

  9. Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization.

    PubMed

    Lin, Tzu-Pin; Chang, Alice B; Chen, Hsiang-Yun; Liberman-Martin, Allegra L; Bates, Christopher M; Voegtle, Matthew J; Bauer, Christina A; Grubbs, Robert H

    2017-03-15

    Control over polymer sequence and architecture is crucial to both understanding structure-property relationships and designing functional materials. In pursuit of these goals, we developed a new synthetic approach that enables facile manipulation of the density and distribution of grafts in polymers via living ring-opening metathesis polymerization (ROMP). Discrete endo,exo-norbornenyl dialkylesters (dimethyl DME, diethyl DEE, di-n-butyl DBE) were strategically designed to copolymerize with a norbornene-functionalized polystyrene (PS), polylactide (PLA), or polydimethylsiloxane (PDMS) macromonomer mediated by the third-generation metathesis catalyst (G3). The small-molecule diesters act as diluents that increase the average distance between grafted side chains, generating polymers with variable grafting density. The grafting density (number of side chains/number of norbornene backbone repeats) could be straightforwardly controlled by the macromonomer/diluent feed ratio. To gain insight into the copolymer sequence and architecture, self-propagation and cross-propagation rate constants were determined according to a terminal copolymerization model. These kinetic analyses suggest that copolymerizing a macromonomer/diluent pair with evenly matched self-propagation rate constants favors randomly distributed side chains. As the disparity between macromonomer and diluent homopolymerization rates increases, the reactivity ratios depart from unity, leading to an increase in gradient tendency. To demonstrate the effectiveness of our method, an array of monodisperse polymers (PLA(x)-ran-DME(1-x))n bearing variable grafting densities (x = 1.0, 0.75, 0.5, 0.25) and total backbone degrees of polymerization (n = 167, 133, 100, 67, 33) were synthesized. The approach disclosed in this work therefore constitutes a powerful strategy for the synthesis of polymers spanning the linear-to-bottlebrush regimes with controlled grafting density and side chain distribution, molecular

  10. Perfectly alternating copolymerization of CO2 and epichlorohydrin using cobalt(III)-based catalyst systems.

    PubMed

    Wu, Guang-Peng; Wei, Sheng-Hsuan; Ren, Wei-Min; Lu, Xiao-Bing; Xu, Tie-Qi; Darensbourg, Donald J

    2011-09-28

    Selective transformations of carbon dioxide and epoxides into biodegradable polycarbonates by the alternating copolymerization of the two monomers represent some of the most well-studied and innovative technologies for potential large-scale utilization of carbon dioxide in chemical synthesis. For the most part, previous studies of these processes have focused on the use of aliphatic terminal epoxides or cyclohexene oxide derivatives, with only rare reports concerning the synthesis of CO(2) copolymers from epoxides containing electron-withdrawing groups such as styrene oxide. Herein we report the production of the CO(2) copolymer with more than 99% carbonate linkages from the coupling of CO(2) with epichlorohydrin, employing binary and bifunctional (salen)cobalt(III)-based catalyst systems. Comparative kinetic studies were performed via in situ infrared measurements as a function of temperature to assess the activation barriers for the production of cyclic carbonate versus copolymer involving two electronically different epoxides: epichlorohydrin and propylene oxide. The relative small activation energy difference between copolymer versus cyclic carbonate formation for the epichlorohydrin/CO(2) process (45.4 kJ/mol) accounts in part for the selective synthesis of copolymer to be more difficult in comparison with the propylene oxide/CO(2) case (53.5 kJ/mol). Direct observation of the propagating polymer-chain species from the binary (salen)CoX/MTBD (X = 2,4-dinitrophenoxide and MTBD = 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) catalyst system by means of electrospray ionization mass spectrometry confirmed the perfectly alternating nature of the copolymerization process. This observation in combination with control experiments suggests possible intermediates involving MTBD in the CO(2)/epichlorohydrin copolymerization process.

  11. Relative rates for plasma homo- and copolymerizations of olefins in a homologous series of fluorinated ethylenes

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Wydeven, T.

    1997-01-01

    It is well known that the rate of plasma polymerization, or deposition rate, of a given monomer depends on various plasma process parameters, e.g., monomer flow rate, pressure, power, frequency (DC, rf or microwave), location of the substrate in the reactor, reactor geometry or configuration, and temperature. In contrast, little work has been done to relate deposition rates to monomer structures for a homologous series of monomers where the rates are obtained under identical plasma process parameters. For the particular series of fluorinated ethylenes (C2HxF4-x; x = 0-4), deposition rates were reported for ethylene (ET), vinyl fluoride, vinylidene fluoride and tetrafluoroethylene (TFE), but for plasma polymerizations carried out under different discharge conditions, e.g., pressure, current density, and electrode temperature. Apparently, relative deposition rates were reported for only two members of that series (ET, x = 4, and TFE, x = 0) for which the plasma polymerizations were conducted under identical conditions. We now present relative deposition rates for both homopolymerizations and copolymerizations of the entire series of fluorinated ethylenes (x = 0-4). Our interest in such rates stems from prior work on the plasma copolymerization of ET and TFE in which it was found that the deposition rates for the plasma copolymers, when plotted versus mol % TFE in the ET/TFE feed stock, followed a concave-downward curve situated above the straight line joining the deposition rates for the plasma homopolymers. This type of plot (observed also for an argon-ET/TFE plasma copolymerization) indicated a positive interaction between ET and TFE such that each monomer apparently "sensitized" the plasma copolymerization of the other. Since the shape of that plot is not altered if mol % TFE is replaced by F/C, the fluorine-to-carbon ratio, this paper aims (1) to show how the relative deposition rates for plasma copolymers drawn from all pairs of monomers in the C2HxF4-x series

  12. Near-infrared luminescent copolymerized hybrid materials built from tin nanoclusters and PMMA.

    PubMed

    Fan, Weiqiang; Feng, Jing; Song, Shuyan; Lei, Yongqian; Zhou, Liang; Zheng, Guoli; Dang, Song; Wang, Song; Zhang, Hongjie

    2010-10-01

    Novel near-infrared (NIR) luminescent copolymerized hybrid materials were prepared by covalently grafting and physically doping Ln complexes (Ln = Er, Sm, Yb, and Nd) into a copolymer matrix built from nanobuilding blocks. The structures of the obtained hybrid materials were investigated by Fourier transform infrared (FTIR) spectra, nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). In the photoluminescence studies, the hybrid materials showed characteristic NIR luminescence of corresponding Ln(3+) ions through intramolecular energy transfer from ligands to Ln(3+) ions. Transparent films of these materials can be easily prepared through spin-coating on indium tin oxide (ITO) glasses taking advantage of the matrix nature.

  13. Mechanistic aspects of the alternating copolymerization of carbon monoxide with olefins catalyzed by cationic palladium complexes

    SciTech Connect

    Batistini, A.; Consiglio, G.

    1992-05-01

    The copolymerization of propylene with carbon monoxide using a catalytic system based on palladium acetate, modified with the atropisomeric chiral ligand (S)-(6,6{prime}-dimethylbiphenyl-2,2{prime}-diyl)bis(dicyclohexylphosphine), gives poly[spiro-2,5-(3-methyltetrahydrofuran)]. This material is transformed into the isomeric poly(1-oxo-2-methyltrimethylene) by dissolution in hexafluoro-2-propanol and precipitation with methanol. A mechanism based on a carbene intermediate is proposed in order to account for the formation of the polyketone material in the spiroketal form. 22 refs., 1 fig.

  14. Relative rates for plasma homo- and copolymerizations of olefins in a homologous series of fluorinated ethylenes

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Wydeven, T.

    1997-01-01

    It is well known that the rate of plasma polymerization, or deposition rate, of a given monomer depends on various plasma process parameters, e.g., monomer flow rate, pressure, power, frequency (DC, rf or microwave), location of the substrate in the reactor, reactor geometry or configuration, and temperature. In contrast, little work has been done to relate deposition rates to monomer structures for a homologous series of monomers where the rates are obtained under identical plasma process parameters. For the particular series of fluorinated ethylenes (C2HxF4-x; x = 0-4), deposition rates were reported for ethylene (ET), vinyl fluoride, vinylidene fluoride and tetrafluoroethylene (TFE), but for plasma polymerizations carried out under different discharge conditions, e.g., pressure, current density, and electrode temperature. Apparently, relative deposition rates were reported for only two members of that series (ET, x = 4, and TFE, x = 0) for which the plasma polymerizations were conducted under identical conditions. We now present relative deposition rates for both homopolymerizations and copolymerizations of the entire series of fluorinated ethylenes (x = 0-4). Our interest in such rates stems from prior work on the plasma copolymerization of ET and TFE in which it was found that the deposition rates for the plasma copolymers, when plotted versus mol % TFE in the ET/TFE feed stock, followed a concave-downward curve situated above the straight line joining the deposition rates for the plasma homopolymers. This type of plot (observed also for an argon-ET/TFE plasma copolymerization) indicated a positive interaction between ET and TFE such that each monomer apparently "sensitized" the plasma copolymerization of the other. Since the shape of that plot is not altered if mol % TFE is replaced by F/C, the fluorine-to-carbon ratio, this paper aims (1) to show how the relative deposition rates for plasma copolymers drawn from all pairs of monomers in the C2HxF4-x series

  15. Experimental Assessment of Dynamic Structural Parameters for Homogeneous and Interfacial Charge-Transfer Reactions: Case Studies Based on Time-Dependent Raman Scattering Methods

    DTIC Science & Technology

    1991-04-19

    Assessment of Dynamic Structural Para- meters for Homogeneous and Interfacial Charge-.. L Ag OS) S. K. Doorn, R. L. Blackbourn, C. S. Johnson and J. T. Hupp... dynamic structural problems involving charge transfer reactions is described. We show experimentally that a time-dependent analysis of resonance...REPORT (1991) FOR Contract N00014-88K-0369 Technical Report No. 9 Experimental A .- sessment of Dynamic Structural Parameters for Homogeneous and

  16. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.

    PubMed

    Westaway, Kenneth C; Fang, Yao-ren; MacMillar, Susanna; Matsson, Olle; Poirier, Raymond A; Islam, Shahidul M

    2008-10-16

    Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found

  17. Comparison of liver progenitor cells in human atypical ductular reactions with those seen in experimental models of liver injury.

    PubMed

    Sell, S

    1998-02-01

    The ultrastructural characteristics of liver progenitor cell types of human atypical ductular reactions seen in chronic cholestasis, in regenerating human liver after submassive necrosis, in alcoholic liver disease, and in focal nodular hyperplasia are compared with liver progenitor cell types seen during experimental cholangiocarcinogenesis in hamsters; during hepatocarcinogenesis in rats; and in response to periportal liver injury induced by allyl alcohol in rats. Three types of progenitor cells have been identified in human atypical ductular reactions: type I: primitive, has an oval shape, marginal chromatin, few cellular organelles, rare tonofilaments, and forms desmosomal junctions with adjacent liver cells; type II: bile duct-like, is located within ducts, has few organelles, and forms lateral membrane interdigitations with other duct-like cells; and type III: hepatocyte-like, is located in hepatic cords, forms a bile canaliculus, has tight junctions with other hepatocyte-like cells, prominent mitochondria and rough endoplasmic reticulum, and some have lysosomes and a poorly developed Golgi apparatus. Each type is seen during cholangiocarcinogenesis in hamsters, but the most prominent cell type is type II, duct-like. A more primitive cell type ("type 0 cell"), as well as type I cells, are seen in the intraportal zone of the liver within 1 to 2 days after carcinogen exposure or periportal injury in the rat, but both type II and type III are seen later as the progenitor cells expand into the liver lobule. After allyl alcohol injury, type 0 cells precede the appearance of type I and type III cells, but most of the cells that span the periportal necrotic zone are type III hepatocyte-like cells showing different degrees of hepatocytic differentiation. Some type II cells are also seen, but these are essentially limited to ducts. It is concluded that there is a primitive stem cell type in the liver (type 0) that may differentiate directly into type I and then into

  18. Experimental growth of åkermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Gardés, Emmanuel; Abart, Rainer; Heinrich, Wilhelm

    2011-03-01

    Growth rates of monomineralic, polycrystalline åkermanite (Ca2MgSi2O7) rims produced by solid-state reactions between monticellite (CaMgSiO4) and wollastonite (CaSiO3) single crystals were determined at 0.5 GPa dry argon pressure, 1,000-1,200°C and 5 min to 60 h, using an internally heated pressure vessel. Inert Pt-markers, initially placed at the monticellite-wollastonite interface, indicate symmetrical growth into both directions. This and mass balance considerations demonstrate that rim growth is controlled by transport of MgO. At 1,200°C and run durations between 5 min and 60 h, rim growth follows a parabolic rate law with rim widths ranging from 0.4 to 16.3 μm indicating diffusion-controlled rim growth. The effective bulk diffusion coefficient D_{{eff,MgO}}^{{Ak}} is calculated to 10-15.8±0.1 m2 s-1. Between 1,000°C and 1,200°C, the effective bulk diffusion coefficient follows an Arrhenius law with E a = 204 ± 18 kJ/mol and D 0 = 10-8.6±1.6 m2 s-1. Åkermanite grains display a palisade texture with elongation perpendicular to the reaction interface. At 1,200°C, average grain widths measured normal to elongation, increase with the square root of time and range from 0.4 to 5.4 μm leading to a successive decrease in the grain boundary area fraction, which, however, does not affect D_{{eff,MgO}}^{{Ak}} to a detectible extent. This implies that grain boundary diffusion only accounts for a minor fraction of the overall chemical mass transfer, and rim growth is essentially controlled by volume diffusion. This is corroborated by the agreement between our estimates of the effective MgO bulk diffusion coefficient and experimentally determined volume diffusion data for Mg and O in åkermanite from the literature. There is sharp contrast to the MgO-SiO2 binary system, where grain boundary diffusion controls rim growth.

  19. Theoretical and experimental study on the effects of particle size and temperature on the reaction kinetics of cubic nano-Cu2O

    NASA Astrophysics Data System (ADS)

    Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai

    2017-09-01

    The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.

  20. RAFT Dispersion Alternating Copolymerization of Styrene with N-Phenylmaleimide: Morphology Control and Application as an Aqueous Foam Stabilizer

    PubMed Central

    2016-01-01

    We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition–fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with N-phenylmaleimide using a nonionic poly(N,N-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [YangP.; Macromolecules2013, 46, 8545−8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (Tg), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high Tg of the alternating copolymer core-forming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles. PMID:27708458

  1. A joint experimental and theoretical investigation of kinetics and mechanistic study in a synthesis reaction between triphenylphosphine and dialkyl acetylenedicarboxylates in the presence of benzhydrazide.

    PubMed

    Kazemian, Mohammad Amin; Habibi-Khorassani, Sayyed Mostafa; Ebrahimi, Ali; Maghsoodlou, Malek Taher; Jahani, Peyman Mohammadzadeh; Ghahramaninezhad, Mahbobeh

    2012-12-01

    Stable crystalline phosphorus ylides were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine (TPP) and dialkyl acetylenedicarboxylates, in the presence of NH-acids, such as benzhydrazide. To determine the kinetic parameters of the reactions, they were monitored by UV spectrophotometery. The second order fits were automatically drawn and the values of the second order rate constant (k(2)) were calculated using standard equations within the program. At the temperature range studied the dependence of the second order rate constant (Ln k(2)) on reciprocal temperature was compatible with Arrhenius equation. This provided the relevant plots to calculate the activation energy of all reactions. Furthermore, useful information were obtained from studies of the effect of solvent, structure of reactants (different alkyl groups within the dialkyl acetylenedicarboxylates) and also concentration of reactants on the rate of reactions. On the basis of experimental data the proposed mechanism was confirmed according to the obtained results and a steady state approximation and the first step (k(2)) and third (k(3)) steps of the reactions were recognized as the rate determining steps, respectively. In addition, three speculative proposed mechanisms were theoretically investigated using quantum mechanical calculation. The results, arising from the second and third speculative mechanisms, were far from the experimental data. Nevertheless, there was a good agreement between the theoretical kinetic data, emerge from the first speculative mechanism, and experimental kinetic data of proposed mechanism.

  2. New Insights of the Fenton Reaction Using Glycerol as the Experimental Model. Effect of O2, Inhibition by Mg(2+), and Oxidation State of Fe.

    PubMed

    Vitale, Arturo Alberto; Bernatene, Eduardo A; Vitale, Martín Gustavo; Pomilio, Alicia Beatriz

    2016-07-21

    The use of iron ions as catalyst of oxidation with hydrogen peroxide, known as the Fenton reaction, is important for industry and biological systems. It has been widely studied since its discovery in the 19th century, but important aspects of the reaction as which is the oxidant, the role of oxygen, and the oxidation state of Fe still remain unclear. In this work new mechanistic insights of the oxidation of carbohydrates by the Fenton reaction using glycerol as experimental model are described. The reaction was studied by means of oxidation reduction potential (ORP) measures. The stoichiometry was measured, showing the important role of oxygen for lowering H2O2 consumption under aerobic conditions. Evidence is provided to demonstrate that in this system Fe(2+) generates a catalyst by reacting with a substrate to produce a complex, which gives rise to singlet oxygen after reacting with H2O2. This is the first time that the inhibitor effect of Mg(2+) is reported in this reaction, and its participation in the mechanism is described. A rational mechanism for the oxidation of glycerol using the Fenton reaction under these specific conditions is proposed. The role of oxygen, the participation of Fe(2+), and the inhibition by Mg(2+) are fully demonstrated experimentally.

  3. Copolymerization of Epichlorohydrin and CO2 Using Zinc Glutarate: An Additional Application of ZnGA in Polycarbonate Synthesis.

    PubMed

    Sudakar, Padmanaban; Sivanesan, Dharmalingam; Yoon, Sungho

    2016-05-01

    The use of zinc glutarate (ZnGA) as a heterogeneous catalyst for the copolymerization of epichlorohydrin, an epoxide with an electron-withdrawing substituent, and CO2 is reported. This catalyst shows the highest selectivity (98%) for polycarbonate over the cyclic carbonate in epichlorohydrin/CO2 copolymerization under mild conditions. The (epichlorohydrin-co-CO2 ) polymer exhibits a high glass transition temperature (Tg ), 44 °C, which is the maximum Tg value obtained for the (epichlorohydrin-co-CO2 ) polymer to date.

  4. In Situ Generation of Co(III) -Salen Complexes for Copolymerization of Propylene Oxide and CO2.

    PubMed

    Hatazawa, Masahiro; Nakabayashi, Koji; Ohkoshi, Shin-Ichi; Nozaki, Kyoko

    2016-09-12

    A simple admixture of Co(II) -salcy complexes with [Cp2 Fe(III) ]PF6 resulted in reproduction of the results with isolated Co(III) -salcy complexes in the copolymerization of epoxide and carbon dioxide. By using this in situ-generated active species with bis(triphenylphosphoranilydene)ammonium 2,4-dinitrophenolate, a para-methoxy-substituted Co-salcy complex was proven to be more active than the parent tert-butyl-substituted system. In contrast, the Co(II) -salcy complex substituted with the more strongly electron-donating NMe2 group did not show any activity for this copolymerization.

  5. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan.

    PubMed

    dos Santos, K S C R; Coelho, J F J; Ferreira, P; Pinto, I; Lorenzetti, S G; Ferreira, E I; Higa, O Z; Gil, M H

    2006-03-09

    Chitosan based membranes to be applied on wound healing as topical drug delivery systems were developed by graft copolymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) onto chitosan using cerium ammonium nitrate as chemical initiator. Evidence for graft copolymerization of the vinyl monomers onto chitosan was obtained by FTIR and DMTA. Swelling degree, cytotoxicity, thrombogenicity and haemolytic activity of these membranes were evaluated. Chitosan-graft-AA-graft-HEMA showed to be the best matrix for drug delivery systems than chitosan-graft-AA because it retains good swelling properties, but the content in HEMA has improved cytocompatibility, hemocompatibility and thrombogenic character.

  6. Experimental study of the effects of CO{sub 2} on the noncatalytic reduction reaction of NO by carbonaceous materials

    SciTech Connect

    Weidong Fan; Zhengchun Lin; Youyi Li; Jinguo Kuang

    2009-05-15

    In a fixed bed reactor with a quartz tube, the effects of the concentration of CO{sub 2} in the feed gas on the uncatalyzed reaction between soot produced in a natural gas diffusion flame and NO were investigated. They were compared with CO{sub 2} effects on reactions involving candle soot and bituminous coal char. The presence of CO{sub 2} in the feed gas exerted no influence on the reaction of NO with natural gas soot. However, it did result in a lower initial temperature in the reaction of candle soot or coal char with NO, and separated the whole initial reaction process into two stages. At higher CO{sub 2} concentrations, more NO reduction occurred in the reaction with candle soot or coal char during the initial reaction process. However, no dramatic changes in the amount of NO reduction were observed for natural gas soot. The addition of CO{sub 2} seemed to have no effect on the apparent activation energy of the NO-natural gas soot reaction, while a lowering of the apparent activation energy was observed in the reaction of NO with candle soot or coal char as the CO{sub 2} concentration increased. The abundant C(O) complexes formed during sample gasification by CO{sub 2} were assumed to play an important role in the enhancement of the reaction. 20 refs., 12 figs., 2 tabs.

  7. New experimental evidence to support roaming in the reaction Cl + isobutene (i-C4H8)

    NASA Astrophysics Data System (ADS)

    Chen, Li-Wei; Hung, Ching-Ming; Matsui, Hiroyuki; Lee, Yuan-Pern

    2017-01-01

    The reaction Cl + isobutene (i-C4H8) was reported by Suits et al. to proceed via, in addition to abstraction, an addition-elimination path following a roaming excursion of Cl; a near-zero translational energy release and an isotropic angular distribution observed at a small collision energy characterized this mechanism. We employed a new experimental method to further characterize this roaming mechanism through observation of the internal distribution of HCl (v, J) and their temporal behavior upon irradiation of a mixture of Cl2C2O2 and i-C4H8 in He or Ar buffer gas. With 1–3 Torr buffer gas added to approach the condition of small collision energy, the intensities of emission of HCl (v = 1, 2) and the HCl production rates increased significantly; Ar shows a more significant effect than He because Ar quenches Cl more efficiently to reduce the collisional energy and facilitate the roaming path. According to kinetic modeling, the rate of addition-elimination (roaming) increased from kE ≈ 2 × 105 s‑1 when little buffer gas was present to ~1.9 × 106 s‑1 when 2–3 Torr of Ar was added, and the branching ratio for formation of [HCl (v = 2)]/[HCl (v = 1)] increased from 0.02 ± 0.01 for abstraction to 0.06 ± 0.01 for roaming.

  8. New experimental evidence to support roaming in the reaction Cl + isobutene (i-C4H8)

    PubMed Central

    Chen, Li-Wei; Hung, Ching-Ming; Matsui, Hiroyuki; Lee, Yuan-Pern

    2017-01-01

    The reaction Cl + isobutene (i-C4H8) was reported by Suits et al. to proceed via, in addition to abstraction, an addition-elimination path following a roaming excursion of Cl; a near-zero translational energy release and an isotropic angular distribution observed at a small collision energy characterized this mechanism. We employed a new experimental method to further characterize this roaming mechanism through observation of the internal distribution of HCl (v, J) and their temporal behavior upon irradiation of a mixture of Cl2C2O2 and i-C4H8 in He or Ar buffer gas. With 1–3 Torr buffer gas added to approach the condition of small collision energy, the intensities of emission of HCl (v = 1, 2) and the HCl production rates increased significantly; Ar shows a more significant effect than He because Ar quenches Cl more efficiently to reduce the collisional energy and facilitate the roaming path. According to kinetic modeling, the rate of addition-elimination (roaming) increased from kE ≈ 2 × 105 s−1 when little buffer gas was present to ~1.9 × 106 s−1 when 2–3 Torr of Ar was added, and the branching ratio for formation of [HCl (v = 2)]/[HCl (v = 1)] increased from 0.02 ± 0.01 for abstraction to 0.06 ± 0.01 for roaming. PMID:28079173

  9. Relative Rates for Plasma Homo- and Copolymerizations of Olefins in a Homologous Series of Fluorinated Ethylenes

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Kliss, Mark (Technical Monitor)

    1996-01-01

    The relative rates of plasma (co)polymerizations of ethylene, vinyl fluoride, vinylidene fluoride, trifluoroethylene and tetrafluoroethylene (VF(sub x); x = 0-4, respectively) were determined in an rf, capacitively coupled, tubular reactor with external electrodes using identical plasma parameters. The averages of deposition rates obtained by both microgravimetry and ellipsometry were plotted versus the F/C ratios of the monomers or monomer blends. The deposition rates for VF(sub x)(x = 1-3) and 20 monomer blends were all located above a straight line joining the rates for VF(sub 0) and VF(sub 4), following a concave-downward plot of deposition rate versus F/C ratio similar to that reported previously for VF(sub 0)/VF(sub 4) blends. The deposition rates for VF(sub m)/VF(sub n) blends (m = 3 or 4; n = 0-2) were all greater than expected for non-interacting monomers; those for VF(sub 0)/VF(sub 2) and VF(sub 1)/VF(sub 2) blends were all lower than expected; while those for VF(sub 0)/VF(sub 1) and VF(sub 3)/VF(sub 4) blends fen on a straightline plot versus F/C ratio, indicative of apparent non-interaction between monomers. The mechanisms for plasma (co)polymerizations of VF(sub x) monomers responsible for the wide range of relative deposition rates remain to be elucidated.

  10. Relative Rates for Plasma Homo- and Copolymerizations of Olefins in a Homologous Series of Fluorinated Ethylenes

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Kliss, Mark (Technical Monitor)

    1996-01-01

    The relative rates of plasma (co)polymerizations of ethylene, vinyl fluoride, vinylidene fluoride, trifluoroethylene and tetrafluoroethylene (VF(sub x); x = 0-4, respectively) were determined in an rf, capacitively coupled, tubular reactor with external electrodes using identical plasma parameters. The averages of deposition rates obtained by both microgravimetry and ellipsometry were plotted versus the F/C ratios of the monomers or monomer blends. The deposition rates for VF(sub x)(x = 1-3) and 20 monomer blends were all located above a straight line joining the rates for VF(sub 0) and VF(sub 4), following a concave-downward plot of deposition rate versus F/C ratio similar to that reported previously for VF(sub 0)/VF(sub 4) blends. The deposition rates for VF(sub m)/VF(sub n) blends (m = 3 or 4; n = 0-2) were all greater than expected for non-interacting monomers; those for VF(sub 0)/VF(sub 2) and VF(sub 1)/VF(sub 2) blends were all lower than expected; while those for VF(sub 0)/VF(sub 1) and VF(sub 3)/VF(sub 4) blends fen on a straightline plot versus F/C ratio, indicative of apparent non-interaction between monomers. The mechanisms for plasma (co)polymerizations of VF(sub x) monomers responsible for the wide range of relative deposition rates remain to be elucidated.

  11. Experimental Investigation of the 19Ne (p ,γ )20Na Reaction Rate and Implications for Breakout from the Hot CNO Cycle

    NASA Astrophysics Data System (ADS)

    Belarge, J.; Kuvin, S. A.; Baby, L. T.; Baker, J.; Wiedenhöver, I.; Höflich, P.; Volya, A.; Blackmon, J. C.; Deibel, C. M.; Gardiner, H. E.; Lai, J.; Linhardt, L. E.; Macon, K. T.; Need, E.; Rasco, B. C.; Quails, N.; Colbert, K.; Gay, D. L.; Keeley, N.

    2016-10-01

    The 19Ne (p ,γ )20Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the 15O (α ,γ )19Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in 20Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction 19Ne(d ,n )20Na is measured with a beam of the radioactive isotope 19Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the 19Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3+, 1+, and (0+), respectively. In addition, we identify two resonances with the first excited state in 19Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in 19Ne(p ,γ )20Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

  12. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles

    PubMed Central

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-01-01

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition. PMID:28772534

  13. The Introduction of High-Throughput Experimentation Methods for Suzuki-Miyaura Coupling Reactions in University Education

    ERIC Educational Resources Information Center

    Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.

    2005-01-01

    A laboratory project permits for the discussion of the reaction mechanism of the Suzuki-Miyaura coupling reaction. The practical part of the project makes the students familiar with working under inert atmosphere but if the appropriate equipment for working under inert atmosphere is not available in a laboratory, novel catalysts that do not…

  14. The Introduction of High-Throughput Experimentation Methods for Suzuki-Miyaura Coupling Reactions in University Education

    ERIC Educational Resources Information Center

    Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.

    2005-01-01

    A laboratory project permits for the discussion of the reaction mechanism of the Suzuki-Miyaura coupling reaction. The practical part of the project makes the students familiar with working under inert atmosphere but if the appropriate equipment for working under inert atmosphere is not available in a laboratory, novel catalysts that do not…

  15. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles.

    PubMed

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-02-13

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition.

  16. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki

    2006-09-07

    In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable (12)C, (14)N, (16)O and (20)Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions R(MLE) with a difference between R(MLE) and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an

  17. Promotional Effect of Molten Carbonates on Proton Conductivity and Oxygen Reduction Reaction - an Experimental and Computational Study

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaolei

    Recent research of Solid oxide fuel cells (SOFCs) is aimed to lower the operating temperature to an intermediate temperature (IT) range of 500 to 700°C, while maintaining a proper performance. This Ph.D. research project investigates the promotional effects of alkaline carbonate eutectics on the proton conductivity of proton conducting electrolytes and cathodic ORR reactivity in SOFCs by both experimental and computational methods. The ionic conductivity of the MC-BZY composite above 500°C increases with the higher loading of MC. The sample exhibited nearly a factor of two higher conductivity in H2-containing atmosphere than in air. First-principles DFT modeling further investigated proton transfer at the interface of BaZrO 3 and molten carbonate. With the presence of carbonate ion, the energy barrier for proton migration becomes as low as 0.332 eV. The modeling indicates the reduction of energy barrier is resulted from the change of rate-determining step from proton transfer between oxygen atoms to proton rotation around oxygen atom. Infiltration of MC into porous cathode can reduce the polarization of resistance (Rp), i.e., enhance the oxygen reduction reaction (ORR) activity. The EIS analysis shows that MC has a beneficial effect on reducing Rp for different cathodes including Au, La0.8Sr 0.2MnO3-delta(LSM), La0.6Sr0.4Co 0.2Fe0.8O3-delta(LSCF) and La2NiO 4+delta (LNO). Specifically, the study on MC loading effect was carried out on LSCF cathode. It shows that a higher loading makes a greater reduction on Rp and the degree of reduction is the same from 500 to 600°C. As the loading increases to 1.4 wt%, the degree of Rp reduction tends to reach a limit. First-principles DFT modeling was further used to investigate the incorporation of oxygen into MC. The formation of CO 52- in molten carbonate was considered as a chemisorption of gas oxygen on the surface of MC infiltrated cathodes. After the formation of CO52-, it reacts with another CO3 2- to form two CO42

  18. Dynamics of alkali ions-neutral molecules reactions: Radio frequency-guided beam experimental cross-sections and direct quasiclassical trajectory studies

    SciTech Connect

    Aguilar, J.; Andres, J. de; Lucas, J. M.; Alberti, M.; Huarte-Larranaga, F.; Bassi, D.; Aguilar, A.

    2012-11-27

    Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structure information.

  19. Experimental Study of Closed System in the Chlorine Dioxide-Iodide-Sulfuric Acid Reaction by UV-Vis Spectrophotometric Method

    PubMed Central

    Li, Na; Shi, Laishun; Wang, Xiaomei; Guo, Fang; Yan, Chunying

    2011-01-01

    The mole ratio r(r = [I−]0/[ClO2]0) has great influence on ClO2-I−-H2SO4 closed reaction system. By changing the initiate concentration of potassium iodide, the curve of absorbance along with the reaction time was obtained at 350 nm and 297 nm for triiodide ion, and 460 nm for iodine. The changing point of the absorbance curve's shape locates at r = 6.00. For the reaction of ClO2-I− in the absence of H2SO4, the curve of absorbance along with the reaction time can be obtained at 350 nm for triiodide ion, 460 nm for iodine. The mole ratio r is equal to 1.00 is the changing point of the curve's shape no matter at which wavelength to determine the reaction. For the reaction of ClO2-I−-H+ in different pH buffer solution, the curve of absorbance along with the reaction time was recorded at 460 nm for iodine. When r is greater than 1.00, the transition point of the curve's shape locates at pH 2.0, which is also the point of producing chlorite or chloride for chlorine dioxide at different pH. When r is less than 1.00, the transition point locates at pH 7.0. PMID:21808646

  20. Efficient catalyst removal and recycling in copolymerization of epoxides with carbon dioxide via simple liquid-liquid phase separation.

    PubMed

    Nakano, Koji; Fujie, Ryuhei; Shintani, Ryo; Nozaki, Kyoko

    2013-10-18

    A simple and efficient catalyst removal system has been developed in the cobalt-salen-catalyzed copolymerization of propylene oxide with carbon dioxide. The present system requires no prior modification of the catalyst, and the removal is achieved by simple addition of myristic acid, followed by organic liquid-liquid phase separation.

  1. Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters.

    PubMed

    Van Zee, Nathan J; Coates, Geoffrey W

    2014-06-18

    We report the alternating ring-opening copolymerization of dihydrocoumarin with epoxides catalyzed by chromium(III) salen complexes. This process provides access to a range of perfectly alternating polyesters with high molecular weights and narrow molecular weight distributions. Atactic poly(cyclohexene dihydrocoumarate) and poly(cyclopentene dihydrocoumarate) were found to be semi-crystalline by differential scanning calorimetry.

  2. Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen.

    PubMed

    Sato, E; Yuri, M; Fujii, S; Nishiyama, T; Nakamura, Y; Horibe, H

    2015-12-18

    Liquid marbles have been shown to be a novel micro-reactor to synthesize polyperoxides by the radical alternating copolymerization of the 1,3-diene monomer with oxygen in a good yield. Oxygen gas is effectively absorbed as a comonomer by the large and permeable gas-liquid interface of the liquid marbles.

  3. Polymerization of olefins through heterogeneous catalysis: 14--The influence of temperature in the solution copolymerization of ethylene

    SciTech Connect

    Jaber, I.A.; Ray, W.H. . Chemical Engineering Dept.)

    1993-10-10

    The influence of temperature variation on the kinetics and the polymer properties in the homo- and copolymerization of ethylene in a solution reactor is discussed. The polymerization is conducted in a semibatch mode at 320 Psig total reactor pressure for 10 min polymerization time. Temperature variations in the range 145-200 C in both homo- and copolymerization of ethylene with 1-octene shows that the highest catalyst yield was obtained at temperature of 165--175 C. At the optimal temperature, a high initial maximum in the rate of ethylene consumption is attained in a few seconds followed by a relatively slow decay when compared with polymerization conducted a higher temperatures. Polymerization at temperatures [>=] 185 C resulted in a lower peak in the consumption rate of ethylene accompanied by a rapid decay with time. In the case of ethylene/1-octene copolymerization, a rather low comonomer incorporation level is obtained at the conditions employed; the 1-octene incorporated was only 0.2--0.7 mol%. Higher M[sub w] values, of about 350,000 at 145 C, are obtained in homopolymerization in comparison to M[sub w] values obtained in copolymerization, of about 195,000 at the same temperature. Over the temperature range of 145--200 C, both M[sub w] and M[sub n] values vary by about 40%.

  4. An experimental and theoretical study on the reaction of Cl with CF3CF2CH2OH

    NASA Astrophysics Data System (ADS)

    Garzón, Andrés; Antiñolo, María; Moral, Mónica; Notario, Alberto; Jiménez, Elena; Fernández-Gómez, Manuel; Albaladejo, José

    2013-03-01

    An absolute kinetic study of the reaction of Cl atoms with CF3CF2CH2OH is reported as a function of temperature (T = 268-377 K) and at a total pressure of 100 Torr by the Pulsed Laser Photolysis - Resonance Fluorescence (PLP-RF) technique. No pressure dependence of the rate coefficient for the title reaction, k, was observed between 50 and 200 Torr of He at 298 K. The derived Arrhenius expression in that T-range was k(T) = (2.18 ± 0.24) × 10-12 exp(-(333 ± 34)/T) cm3 molecule-1 s-1, where the uncertainties are ±2σ. From these results, the average tropospheric lifetime of CF3CF2CH2OH due to the reaction with Cl was estimated to be 50 years, considering a global Cl concentration of 103 atom cm-3 and an average temperature of 272 K. Additionally, a theoretical study of the Cl + CF3CF2CH2OH reaction has been carried out by ab initio Möller-Plesset second-order perturbation treatment with 6-311G** basis set to investigate the reaction mechanism. Molecular energies of the different critical points of the potential energy surface have been calculated at QCISD(T) level. The theoretical study shows that the H-atom abstraction from the -CH2- group is the most favourable reaction pathway.

  5. Experimental Measurements of the H3+ + H2 → H3+ + H2 Reaction in a Hollow Cathode

    NASA Astrophysics Data System (ADS)

    Kauffman, Carrie A.; Crabtree, Kyle N.; Tom, Brian A.; Beçka, Eftalda; McCall, Benjamin, J.

    2010-11-01

    Hydrogen is the most abundant element in the universe and as a result, molecular hydrogen and the H3+ ion play a pivotal role in interstellar chemistry. Like H2, H3+ exists in two nuclear spin configurations, ortho (I = 3/2) and para (I = 1/2), which are unique molecules that can only interconvert through a chemical reaction. The reaction between these species, H3+ + H2 → H3+ + H2, is the dominant means by which the nuclear spin of H3+ can be changed. It is also the most commonly occuring bimolecular reaction in the universe, and therefore it is important to understand how this reaction influences the ortho/para ratio of H3+ . We have studied the nuclear spin dependence of the H3+ + H2 proton-scrambling reaction by probing ν2 fundamental band of H3+ using multipass direct absorption spectroscopy. We have monitored the ortho/para ratio of H3+ in a variety of hydrogenic plasmas consisting of different ortho/para-H2 ratios. To deduce the temperature dependence of this reaction, we have performed these experiements in an uncooled hollow cathode and, for the first time at low temperature, in a liquid nitrogen cooled hollow cathode. Finally, we have also studied the pressure dependence of the chemistry in order to elucidate any three-body processes that may be occuring in our plasmas.

  6. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    SciTech Connect

    Baluev, V. V.; Bogdanova, L. N.; Bom, V. R.; Demin, D. L.; Eijk, C. W. E. van; Filchenkov, V. V.; Grafov, N. N.; Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Mikhailyukov, K. L.; Rudenko, A. I.; Vinogradov, Yu. I.; Volnykh, V. P.; Yukhimchuk, A. A.; Yukhimchuk, S. A.

    2011-07-15

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  7. Polylactide-based microspheres prepared using solid-state copolymerized chitosan and d,l-lactide.

    PubMed

    Demina, T S; Akopova, T A; Vladimirov, L V; Zelenetskii, A N; Markvicheva, E A; Grandfils, Ch

    2016-02-01

    Amphiphilic chitosan-g-poly(d,l-lactide) copolymers have been manufactured via solid-state mechanochemical copolymerization and tailored to design polyester-based microspheres for tissue engineering. A single-step solid-state reactive blending (SSRB) using low-temperature co-extrusion has been used to prepare these copolymers. These materials have been valorized to stabilize microspheres processed by an oil/water emulsion evaporation technique. Introduction of the copolymers either in water or in the oil phase of the emulsion allowed to replace a non-degradable emulsifier typically used for microparticle preparation. To enhance cell adhesion, these copolymers were also tailored to bring amino-saccharide positively charged segments to the microbead surface. Size distribution, surface morphology, and total microparticle yield have been studied and optimized as a function of the copolymer composition. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Improved detection of amylase activity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with copolymerized starch.

    PubMed

    Martínez, T F; Alarcón, F J; Díaz-López, M; Moyano, F J

    2000-08-01

    An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.

  9. Surface Modification of PET Fabric by Graft Copolymerization with Acrylic Acid and Its Antibacterial Properties

    PubMed Central

    Abdolahifard, M.; Bahrami, S. Hajir; Malek, R. M. A.

    2011-01-01

    Graft copolymerization of acrylic acid (AA) onto Poly(ethylene terephthalate) (PET) fabrics with the aid of benzoyl peroxide was carried out. The effect of polymerization parameters on the graft yield was studied. Percent grafting was enhanced significantly by increasing benzoyl peroxide (BP) concentrations up to 3.84 g/lit and then decreased upon further increase in initiator concentration. Preswelling of PET leads to changes in its sorption-diffusion properties and favors an increase in the degree of grafting. The antibiotics treated grafted fabrics showed antibacterial properties towards gram-positive and gram-negative microorganisms. FTIR and SEM were used to characterize AA-grafted polyester fabrics. PMID:24052819

  10. Experimental, Modeling, and Sensitivity Analysis Studies of Gas-Phase Reaction Mechanisms Important to the Combustion of High Energy Density Materials

    DTIC Science & Technology

    1990-09-01

    of massively parallel computer ar- chitecture and algonthms), and systematic sensitivity analysis techniques, which link ex- perimental and...28 is from Slack and Grillo (1978) who derived the rate from an analysis of the complex kinetics of H2 0/2/NO2 ignition. An uncertainty of a factor of...8217r r T AD-A242 746 Annual Report C Experimental, Modeling, and Sensitivity Analysis Studies of Gas-Phase Reaction Mechanisms Important to the

  11. Experimental Liver Embolization with Four Different Spherical Embolic Materials: Impact on Inflammatory Tissue and Foreign Body Reaction

    SciTech Connect

    Stampfl, Ulrike; Stampfl, Sibylle; Bellemann, Nadine; Sommer, Christof-Matthias; Lopez-Benitez, Ruben; Thierjung, Heidi; Radeleff, Boris; Berger, Irina; Richter, Goetz M.

    2009-03-15

    We sought to describe and compare material specific inflammatory and foreign body reactions after porcine liver embolization with spherical embolic agents. In 40 animals, superselective liver embolization was performed with four different spherical embolic agents of various sizes: 40-120 {mu}m (Embozene, Embosphere), and 100-300 {mu}m, 500-700 {mu}m, and 700-900 {mu}m (Embozene, Embosphere, Bead Block, and Contour SE, respectively). After 4 or 12 weeks, inflammatory reactions were evaluated microscopically according to the Banff 97 classification. For investigation of foreign body reactions, a newly designed giant cell score was applied. Banff 97 and giant cell scores closely correlated. At 4 weeks, small Embosphere particles (100-300 {mu}m) had a significantly higher Banff 97 score than Embozene, Bead Block, and Contour SE of the corresponding size. After 12 weeks, the calculated differences were not statistically significant. Comparison between the 4-week results and the 12-week results revealed a statistically higher Banff 97 score for Embosphere 100-300 {mu}m after 4 weeks than after 12 weeks (P = 0.02). The overall foreign body reaction was pronounced after embolization with smaller particles, especially in small Embosphere particles. Giant cell numbers with Embosphere 100-300 {mu}m were statistically higher compared with the other materials of corresponding size (P < 0.0001). Inflammatory and giant cell reactions after embolization procedures depend on the embolic material. The overall inflammatory reaction was low. However, marked inflammation was associated with small Embosphere particles at 4 weeks, a finding that might be caused by the allogeneic overcoat. Correspondingly, giant cells indicating a foreign body reaction were more frequently associated with small particle sizes, especially after embolization with small Embosphere particles.

  12. An experimental kinetic study and products research of the reactions of O3 with a series of unsaturated alcohols

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Jing; Zhao, Sanping; Tong, Shengrui; Ge, Maofa

    2016-11-01

    The gas-phase reactions of unsaturated alcohols with O3 were investigated in FEP Teflon film chamber at 298 K and 760 torr of atmosphere pressure. The rate constants of the reactions of C6-C8 alkenols with O3 were determined using both the absolute and the relative rate method, and the measured values were (5.96 ± 0.35) × 10-17 cm3 molecule-1 s-1 for (Z)-3-hexen-1-ol, (5.12 ± 0.30) × 10-17 cm3 molecule-1 s-1 for (Z)-3-hepten-1-ol, and (5.66 ± 0.52) × 10-17 cm3 molecule-1 s-1 for (Z)-3-octen-1-ol, respectively. The gas-phase products of these reactions mentioned above were detected using proton-transfer-reaction mass spectrum (PTR-MS). HOCH2CH2CHO, CH2CH2CHO, HCHO and CH3CHO were identified as the main gas products for (Z)-3-hexen-1-ol. HOCH2CH2CHO and CH3(CH2)2CHO dominated the gaseous products for (Z)-3-hepten-1-ol. And for (Z)-3-octen-1-ol, CH3(CH2)3CHO, CH3(CH2)2CHO and HOCH2CH2CHO were the main gaseous products. The SOA yields were monitored at the same time, which were 0.184 ± 0.013, 0.213 ± 0.017, 0.232 ± 0.021 for (Z)-3-hexen-1-ol, (Z)-3-hepten-1-ol and (Z)-3-octen-1-ol, respectively. The possible reaction mechanisms were proposed and discussed. The kinetic data presented here has been used to estimate their atmosphere lifetimes and the reaction reactivity. The atmosphere implication of these reactions has also been discussed.

  13. Transition state spectroscopy of the photoinduced Ca + CH3F reaction. 2. Experimental and ab initio studies of the free Ca...FCH3 complex.

    PubMed

    Mestdagh, J-M; Spiegelman, F; Gloaguen, E; Collier, M; Lepetit, F; Gaveau, M-A; Sanz, C Sanz; Soep, B

    2006-06-15

    The Ca* + CH3F --> CaF + CH3 reaction was photoinduced in 1:1 Ca...CH3F complexes formed in a supersonic expansion. The transition state of the reaction was explored by monitoring the electronically excited product, CaF, while scanning the laser that turns on the reaction. Moreover, the electronic structure of the Ca...FCH3 system was studied using ab initio methods by associating a pseudopotential description of the [Ca2+] and [F7+] cores, a core polarization operator on calcium, an extensive Gaussian basis and a treatment of the electronic problem at the CCSD(T) (ground state) and RSPT2 (excited states) level. In this contribution we present experimental results for the free complex and a comparison with the results of a previous experiment where the Ca...CH3F complexes are deposited at the surface of large argon clusters. The ab initio calculations allowed an interpretation of the experimental data in terms of two reaction mechanisms, one involving a partial charge transfer state, the other involving the excitation of the C-F stretch in the CH3F moiety prior to charge transfer.

  14. Functional copolymer/organo-MMT nanoarchitectures. VI. Synthesis and characterization of novel nanocomposites by interlamellar controlled/living radical copolymerization via preintercalated RAFT-agent/organoclay complexes.

    PubMed

    Rzayev, Zakir M O; Söylemez, A Ernur

    2011-04-01

    We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organo-montmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(alpha,alpha'-dimethyl-alpha"-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT ... O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT ... O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure-composition-property relations show that the functional copolymer-organoclay hybrids prepared with reactive RAFT ... ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine

  15. Experimental and theoretical studies of the kinetics of the OH + hydroxyacetone reaction as a function of temperature.

    PubMed

    Baasandorj, Munkhbayar; Griffith, Stephen; Dusanter, Sebastien; Stevens, Philip S

    2009-10-01

    The rate constant for the reaction of the OH radical with hydroxyacetone was measured between 2 and 5 Torr and over the temperature range of 280-350 K, using a discharge-flow system coupled with resonance fluorescence detection of the OH radical. At 298 K the rate constant was found to be (3.02 +/- 0.28) x 10(-12) cm3 molecule(-1) s(-1), in excellent agreement with several previous studies. A positive temperature dependence was measured over the temperature range 280-350 K, described by the Arrhenius expression k = (1.88 +/- 0.75) x 10(-11) exp[-(545 +/- 60)/T] cm3 molecule(-1) s(-1), in contrast to previous measurements of the temperature dependence for this reaction and suggesting that the atmospheric lifetime of hydroxyacetone may be greater than previously estimated. Theoretical calculations of the potential energy surface for this reaction suggest that the mechanism for this reaction involves hydrogen abstraction through a hydrogen-bonded prereactive complex similar to the OH + acetone reaction, with a calculated barrier height between -1 and 1 kcal mol(-1) depending on the level of theory.

  16. Experimental and Theoretical Studies of the Kinetics of the OH + Hydroxyacetone Reaction As a Function of Temperature

    NASA Astrophysics Data System (ADS)

    Baasandorj, Munkhbayar; Griffith, Stephen; Dusanter, Sebastien; Stevens, Philip S.

    2009-09-01

    The rate constant for the reaction of the OH radical with hydroxyacetone was measured between 2 and 5 Torr and over the temperature range of 280-350 K, using a discharge-flow system coupled with resonance fluorescence detection of the OH radical. At 298 K the rate constant was found to be (3.02 ± 0.28) × 10-12 cm3 molecule-1 s-1, in excellent agreement with several previous studies. A positive temperature dependence was measured over the temperature range 280-350 K, described by the Arrhenius expression k = (1.88 ± 0.75) × 10-11 exp[-(545 ± 60)/T] cm3 molecule-1 s-1, in contrast to previous measurements of the temperature dependence for this reaction and suggesting that the atmospheric lifetime of hydroxyacetone may be greater than previously estimated. Theoretical calculations of the potential energy surface for this reaction suggest that the mechanism for this reaction involves hydrogen abstraction through a hydrogen-bonded prereactive complex similar to the OH + acetone reaction, with a calculated barrier height between -1 and 1 kcal mol-1 depending on the level of theory.

  17. Experimental and theoretical investigations of the rate constant for the reaction of the hydroxyl radical with methyl ethyl ketone

    NASA Astrophysics Data System (ADS)

    Vimal, D.; Stevens, P. S.

    2007-12-01

    Methyl ethyl ketone (MEK) or 2-butanone is a high-volume industrial solvent with a production rate greater than 70 million lbs yr-1. It is also a photo-oxidation product of several volatile organic compounds (VOCs) in the atmosphere. MEK is removed from the atmosphere primarily by its reaction with hydroxyl (OH) radical. As a result, knowledge of the chemical mechanism and temperature dependence of this reaction is important as MEK may be transported to the upper troposphere and influence the chemistry of this region of the atmosphere. We present absolute measurements of the rate constant and the kinetic isotope effect for the reaction of MEK with OH radicals at low pressure and over the temperature range 263-388 K using a discharge-flow technique coupled with resonance fluorescence detection of OH radicals. Theoretical studies of the potential energy surface suggest that the reaction of MEK and OH proceeds by H-abstraction mediated by the formation of a 7- membered hydrogen-bonded complex. This mechanism is similar to that of several other atmospherically relevant oxygenated VOCs such as acetone, acetic acid and hydroxyacetone. The influence of the pre-reactive complex on the temperature dependence for this reaction will be discussed.

  18. An experimental investigation of the reaction of hydrogen chloride with lead oxide under simulated hazardous waste incineration conditions

    SciTech Connect

    Shor, J.T.; Frazier, G.C.

    1996-04-01

    To simulate the behavior of lead during hazardous waste incineration, pellets of sintered lead oxide were treated with hydrogen chloride at concentrations of 2000 and 4000 ppm in air in a laboratory tube furnace. The chemical reaction kinetics and mass transfer properties of the solid-gas and solid-liquid reactions were examined at temperatures between 260 and 680{degrees}C. Lead dichloride was found to form and became more volatile at elevated temperatures. At temperatures above 300{degrees}C, chemical reaction kinetic limitations were absent and mass transfer resistance in the developing liquid lead oxide, lead dichloride eutectic phases were controlling. Above 590{degrees}C, a curious anomaly occurred: The observed global reaction rate appeared to increase slightly while the volatilization of lead dichloride dropped during the initial stages of the reaction. A thick film of a lead oxychloride compound was found which displayed low lead dichloride activity. Below 590{degrees}C, a different lead oxychloride compound was identified by x-ray diffraction in which lead dichloride activity was high, and this compound was much more volatile than the oxychloride formed above 5900{degrees}C.

  19. The Campus as a Data Bank: College Students' Reactions to Social Scientific Experimentation; Research Implications. Final Report.

    ERIC Educational Resources Information Center

    Straits, Bruce C.; Wuebben, Paul L.

    Three separate projects related to the field of study known as the "social psychology of experimental situations" are the subject of this report. This field is based on the fact that an experiment with human subjects necessitates social interaction between experimenter and subject; thus the social nature of an experiment may have an impact on its…

  20. Quantum chemical modeling of the reaction path of chorismate mutase based on the experimental substrate/product complex.

    PubMed

    Burschowsky, Daniel; Krengel, Ute; Uggerud, Einar; Balcells, David

    2017-06-01

    Chorismate mutase is a well-known model enzyme, catalyzing the Claisen rearrangement of chorismate to prephenate. Recent high-resolution crystal structures along the reaction coordinate of this enzyme enabled computational analyses at unprecedented detail. Using quantum chemical simulations, we investigated how the catalytic reaction mechanism is affected by electrostatic and hydrogen-bond interactions. Our calculations showed that the transition state (TS) was mainly stabilized electrostatically, with Arg90 playing the leading role. The effect was augmented by selective hydrogen-bond formation to the TS in the wild-type enzyme, facilitated by a small-scale local induced fit. We further identified a previously underappreciated water molecule, which separates the negative charges during the reaction. The analysis includes the wild-type enzyme and a non-natural enzyme variant, where the catalytic arginine was replaced with an isosteric citrulline residue.

  1. Experimental evidence for a non-OH oxidant produced from the reaction of isoprene with OH radical

    NASA Astrophysics Data System (ADS)

    Huang, D.; Chen, Z.

    2013-12-01

    The OH radical initiated oxidation of alkenes is of great importance to air quality and atmospheric chemistry. Although the related mechanism is well studied over several decades, several intermediate steps, such as the recycling of OH radical, the reaction of intermediates, and the formation of peroxides, are unresolved. As we known, the traditional mechanism cannot reproduce the high measured OH radical level in the rural forests. Currently, the recycling of OH radical in the isoprene-OH reaction is considered to be a potential candidate for the explanation. Here, alternatively, we intend to know if a non-OH oxidant leads to the discrepancy between the modeled and measured OH radical in the rural forest by reacting with plenty of oxygenated products of hydrocarbon compounds, sharing the 'oxidation responsibility' of OH radical, and consequently saving the OH radical. After mixing the products produced from the isoprene-OH reaction with formaldehyde and acetaldehyde in a flow reactor in the absent of light, we found an immediate increase of the peroxy formic acid and peroxy acetic acid. Control experiment results indicated that these peroxy acids were the products of aldehyde reaction with some non-OH oxidant, which was produced from the isoprene-OH reaction. Unfortunately, we have not identified this unknown oxidant. However, based on the decrement of aldehyde during the process of mixing with isoprene products, we estimate the OH-equivalent concentration of this oxidant to be ~0.2 pptv, which is one fifth of the OH radical in the isoprene-OH reaction. This mechanism may contribute to explaining the maintenance of the oxidation capacity of the troposphere. Additionally, this mechanism might involve in the functionalization of oxygenated organic compounds and the formation of secondary organic aerosols.

  2. An experimental and theoretical investigation of the competition between chemical reaction and relaxation for the reactions of 1CH2 with acetylene and ethene: implications for the chemistry of the giant planets.

    PubMed

    Gannon, Kelly L; Blitz, Mark A; Liang, Chi-Hsiu; Pilling, Michael J; Seakins, Paul W; Glowacki, David R; Harvey, Jeremy N

    2010-01-01

    The temperature dependence of the branching ratios for H atom production from the reactions of the first excited state of methylene (a1A1 1CH2) with acetylene and ethene have been measured at approximately 1 Torr total pressure and temperatures of 195, 250 and 298 K by monitoring the production of H atoms using laser induced fluorescence, comparing the signal to that observed from a calibration reaction. For the reaction with acetylene the yield of H increases from 0.28 (195 K) to 0.53 (250 K) to 0.88 at 298 K. The H atom yield from the reaction of 1CH2 with ethene shows similar behaviour, the yields being 0.35 (195 K), 0.51 (250 K) and 0.71 (298 K). The co-products, propargyl (C3H3) and allyl (C3H5) are formed from the dissociation of chemically activated C3H4 and C3H6 intermediates respectively, and are important species in the formation of higher hydrocarbons, including benzene, in the atmospheres of the outer planets and Titan. H atom production is in competition with electronic relaxation to form ground state methylene (X3B1, 3CH2) and collisional stabilization to form C3H4 and C3H6. Master equation calculations have been carried out to demonstrate that for the reaction of 1CH2 with acetylene, collisional stabilization is insignificant under experimental conditions and hence the balance of reaction is due to electronic relaxation. Non-adiabatic transition state theory has been applied to the reaction of 1CH2 with acetylene. The calculations show reasonable agreement with experiment, generally being within the combined errors, and reproduce the negative temperature dependence for electronic relaxation. The implications of the temperature dependence of the absolute rate coefficients for 1CH2 reactions with inert gases, hydrogen, acetylene and ethene and of the branching ratios between chemical reaction and electronic relaxation are discussed.

  3. Selective oxidation of alcohols with alkali metal bromides as bromide catalysts: experimental study of the reaction mechanism.

    PubMed

    Moriyama, Katsuhiko; Takemura, Misato; Togo, Hideo

    2014-07-03

    A bromide-catalyzed oxidation of alcohols was developed which proceeded in the presence of an alkali metal bromide and an oxidant under mild conditions. The reaction involved an organic-molecule-free oxidation using KBr and Oxone and a Brønsted acid assisted oxidation using KBr and aqueous H2O2 solution to provide a broad range of carbonyl compounds in high yields. Moreover, the bromide-catalyzed oxidation of primary alcohols enabled the divergent synthesis of carboxylic acids and aldehydes under both reaction conditions in the presence of TEMPO. A possible catalytic mechanism was suggested on the basis of various mechanistic studies.

  4. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts]. Technical progress report

    SciTech Connect

    Not Available

    1993-07-01

    The research has involved the characterization of catalyst acidity, {sup 2}D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  5. Experimental Plan of the 25Mg(p, γ)26Al Resonance Capture Reaction at Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Su, J.; Li, Y. J.; Guo, B.; Yan, S. Q.; Wang, Y. B.; Lian, G.; Zeng, S.; Zhang, Q. W.; He, G. Z.; Gan, L.; Zhou, C.; Liu, W. P.; Li, K. A.; Yu, X. Q.; Tang, X. D.; He, J. J.; Qian, Y. Z.

    The observation of 26Al is an useful tool for γ-ray astronomy and in studies of galactic chemical evolution. The most likely mechanism for 26A1 nucleosynthesis is in the hydrogen burning MgAl cycle, and the 26A1 production from the 25Mg(p, γ)26Al reaction at the important temperature range below T = 0.2 is still not well known. We present a proposal to measure the resonance strength of 58 keV resonance level of the 25Mg(p, γ)26Al reaction, and the effective counting rate is estimated for the direct measurement at Jinping underground laboratory.

  6. Experimental and theoretical study of the reactions between MO2- (M = Fe, Co, Ni, Cu, and Zn) cluster anions and hydrogen sulfide.

    PubMed

    Jia, Mei-Ye; Ding, Xun-Lei; He, Sheng-Gui; Ge, Mao-Fa

    2013-09-05

    Transition metal oxide cluster anions M(m)(18)O(n)(-) (M = Fe, Co, Ni, Cu, and Zn) were prepared by laser ablation and reacted with H2S in a fast flow reactor under thermal collision conditions. A time-of-flight mass spectrometer was used to detect the cluster distributions before and after the interactions with H2S. The experiments reveal a suite of oxygen/sulfur (O/S) exchange and oxygen/sulfydryl (O/SH) exchange reactions. The O/S exchange reaction to release water was evidenced for all of the MO2(-) cluster anions: MO2(-) + H2S → MOS(-) + H2O, whereas the O/SH exchange reaction to derive MOSH(-) and OH species was only observed for reactions of NiO2(-), CuO2(-), and ZnO2(-). Density functional theory calculations were performed for reaction mechanisms of MO2(-) + H2S (M = Fe, Co, Ni, Cu, and Zn). The computational results are generally in good agreement with the experimental results. This gas-phase study provides an insight into the metal dependent reactivity in the removal of H2S over metal oxides.

  7. Combined experimental and theoretical studies of regio- and stereoselectivity in reactions of β-isoxazolyl- and β-imidazolyl enamines with nitrile oxides

    PubMed Central

    Efimov, Ilya V; Shafikov, Marsel Z; Beliaev, Nikolai A; Volkova, Natalia N; Beryozkina, Tetyana V; Dehaen, Wim; Grishko, Viktoria V; Lubec, Gert; Slepukhin, Pavel A

    2016-01-01

    Reactions of β-azolyl enamines and nitrile oxides were studied by both experimental and theoretical methods. (E)-β-(4-Nitroimidazol-5-yl), (5-nitroimidazol-4-yl) and isoxazol-5-yl enamines smoothly react regioselectively at room temperature in dioxane solution with aryl, pyridyl, and cyclohexylhydroxamoyl chlorides without a catalyst or a base to form 4-azolylisoxazoles as the only products in good yields. The intermediate 4,5-dihydroisoxazolines were isolated as trans isomers during the reaction of (E)-β-imidazol-4-yl enamines with aryl and cyclohexylhydroxamoyl chlorides. Stepwise and concerted pathways for the reaction of β-azolyl enamines with hydroxamoyl chlorides were considered and studied at the B3LYP/Def2-TZVP level of theory combined with D3BJ dispersion correction. The reactions of benzonitrile oxide with both E- and Z-imidazolyl enamines have been shown to proceed stereoselectively to form trans- and cis-isoxazolines, respectively. The preference of E-isomers over Z-isomers, driven by the higher stability of the former, apparently controls the stereoselectivity of the investigated cycloaddition reaction with benzonitrilе oxide. Based on the reactivity of azolyl enamines towards hydroxamoyl chlorides, a novel, effective catalyst-free method was elaborated to prepare 4-azolyl-5-substituted isoxazoles that are otherwise difficult to obtain. PMID:28144307

  8. Recovery Act: An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations.

    SciTech Connect

    Saar, Martin O.; Seyfried, Jr., William E.; Longmire, Ellen K.

    2016-06-24

    A total of 12 publications and 23 abstracts were produced as a result of this study. In particular, the compilation of a thermodynamic database utilizing consistent, current thermodynamic data is a major step toward accurately modeling multi-phase fluid interactions with solids. Existing databases designed for aqueous fluids did not mesh well with existing solid phase databases. Addition of a second liquid phase (CO2) magnifies the inconsistencies between aqueous and solid thermodynamic databases. Overall, the combination of high temperature and pressure lab studies (task 1), using a purpose built apparatus, and solid characterization (task 2), using XRCT and more developed technologies, allowed observation of dissolution and precipitation processes under CO2 reservoir conditions. These observations were combined with results from PIV experiments on multi-phase fluids (task 3) in typical flow path geometries. The results of the tasks 1, 2, and 3 were compiled and integrated into numerical models utilizing Lattice-Boltzmann simulations (task 4) to realistically model the physical processes and were ultimately folded into TOUGH2 code for reservoir scale modeling (task 5). Compilation of the thermodynamic database assisted comparisons to PIV experiments (Task 3) and greatly improved Lattice Boltzmann (Task 4) and TOUGH2 simulations (Task 5). PIV (Task 3) and experimental apparatus (Task 1) have identified problem areas in TOUGHREACT code. Additional lab experiments and coding work has been integrated into an improved numerical modeling code.

  9. Diphenylbutadienes Syntheses by Means of the Wittig Reaction: Experimental Introduction to the Use of Phase Transfer Catalysis.

    ERIC Educational Resources Information Center

    Gillois, J.; And Others

    1980-01-01

    The synthesis of 1,4-diphenylbutadiene by means of the Wittig reaction is presented as suitable for organic chemistry students at the end of a basic laboratory program to apply laboratory skills and display understanding of the use of phase transfer catalysis and its application in syntheses. (CS)

  10. Diphenylbutadienes Syntheses by Means of the Wittig Reaction: Experimental Introduction to the Use of Phase Transfer Catalysis.

    ERIC Educational Resources Information Center

    Gillois, J.; And Others

    1980-01-01

    The synthesis of 1,4-diphenylbutadiene by means of the Wittig reaction is presented as suitable for organic chemistry students at the end of a basic laboratory program to apply laboratory skills and display understanding of the use of phase transfer catalysis and its application in syntheses. (CS)

  11. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014.

  12. Examination and experimental constraints of the stellar reaction rate factor NA<σv> of the 18Ne(α,p)21Na reaction at temperatures of x-ray bursts

    NASA Astrophysics Data System (ADS)

    Mohr, P.; Matic, A.

    2013-03-01

    The 18Ne(α,p)21Na reaction is one key for the breakout from the hot CNO cycles to the rp-process. Recent papers have provided reaction rate factors NA<σv> which are discrepant by at least one order of magnitude. The compatibility of the latest experimental results is tested, and a partial explanation for the discrepant NA<σv> is given. A new rate factor is derived from the combined analysis of all available data. The new rate factor is located slightly below the higher rate factor found by Matic [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.80.055804 80, 055804 (2009)] at low temperatures and significantly below at higher temperatures whereas it is about a factor of 5 higher than the lower rate factor recently published by Salter [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.242701 108, 242701 (2012)].

  13. Preparation, structure, and ethylene (co)polymerization behavior of Group IV metal complexes with an [OSSO]-carborane ligand.

    PubMed

    Hu, Ping; Wang, Jian-Qiang; Wang, Fosong; Jin, Guo-Xin

    2011-07-25

    The synthesis of Group IV metal complexes that contain a tetradentate dianionic [OSSO]-carborane ligand [(HOC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2 (B(10)H(10))] (1a) is described. Reactions of TiCl(4) and Ti(OiPr)(4) with the [OSSO]-type ligand 1a afford six-coordinated titanium complex [Ti(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))Cl(2)] (2a) and four-coordinated titanium complex [Ti(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))(OiPr)(2)] (2b), respectively. ZrCl(4) and HfCl(4) were treated with 1a to give six-coordinated zirconium complex [Zr(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))Cl(2) (thf)(2)] (2c) and six-coordinated hafnium complex [Hf(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))Cl(2)] (2d). All the complexes were fully characterized by IR, NMR spectroscopy, and elemental analysis. In addition, X-ray structure analyses were performed on complexes 2a and 2b and reveal the expected different coordination geometry due to steric hindrance effects. Extended X-ray absorption fine structure (EXAFS) spectroscopy was performed on complexes 2c and 2d to describe the coordination chemistry of this ligand around Zr and Hf. Six-coordinated titanium complex 2a showed good activity toward ethylene polymerization as well as toward copolymerization of ethylene with 1-hexene in the presence of methylaluminoxane (MAO) as cocatalyst (up to 1060 kg[mol(Ti)](-1) h(-1) in the case of 10 atm of ethylene pressure).

  14. Cobalt catalysis in the gas phase: experimental characterization of cobalt(I) complexes as intermediates in regioselective Diels-Alder reactions.

    PubMed

    Fiebig, Lukas; Kuttner, Julian; Hilt, Gerhard; Schwarzer, Martin C; Frenking, Gernot; Schmalz, Hans-Günther; Schäfer, Mathias

    2013-10-18

    In situ-formed cobalt(I) complexes are proposed to act as efficient catalysts in regioselective Diels-Alder reactions of unactivated substrates such as 1,3-dienes and alkynes. We report the first experimental evidence for the in situ reduction of CoBr2(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] by Zn/ZnI2 to [Co(I)(dppe)](+) by means of electrospray MS(n) experiments. Additionally, the reactivities of Co(II) and Co(I) dppe complexes toward the Diels-Alder substrates isoprene and phenylacetylene were probed in gas-phase ion/molecule reactions (IMRs). Isoprene and phenylacetylene were introduced into the mass spectrometer via the buffer gas flow of a linear ion trap. The IMR experiments revealed a significantly higher substrate affinity of [Co(I)(dppe)](+) compared with [Co(II)Br(dppe)](+). Furthermore, the central intermediate of the solution-phase cobalt-catalyzed Diels-Alder reaction, [Co(I)(dppe)(isoprene)(phenylacetylene)](+), could be generated via IMR and examined in the gas phase. Collision activation of this complex ion delivered evidence for the gas-phase reaction of isoprene with phenylacetylene in the coordination sphere of the cobalt ion. The experimental findings are consistent with the results of quantum-chemical calculations on all of the observed Co(I) dppe complex ions. The results constitute strong analytical evidence for the formation and importance of different cobalt(I) species in regioselective Diels-Alder reactions of unactivated substrates and identify [Co(I)(dppe)](+) as the active Diels-Alder catalyst.

  15. Polar, non-coordinating ionic liquids as solvents for the alternating copolymerization of styrene and CO catalyzed by cationic palladium catalysts.

    PubMed

    Klingshirn, Marc A; Broker, Grant A; Holbrey, John D; Shaughnessy, Kevin H; Rogers, Robin D

    2002-07-07

    The palladium-catalyzed copolymerization of styrene and CO in an ionic liquid solvent, 1-hexylpyridinium bis(trifluoromethanesulfonyl)imide, gave improved yields and increased molecular weights compared to polymerizations run in methanol.

  16. A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: discovery of a new class of high temperature single-site group (IV) copolymerization catalysts.

    PubMed

    Boussie, Thomas R; Diamond, Gary M; Goh, Christopher; Hall, Keith A; LaPointe, Anne M; Leclerc, Margarete; Lund, Cheryl; Murphy, Vince; Shoemaker, James A W; Tracht, Ursula; Turner, Howard; Zhang, Jessica; Uno, Tetsuo; Rosen, Robert K; Stevens, James C

    2003-04-09

    For the first time, new catalysts for olefin polymerization have been discovered through the application of fully integrated high-throughput primary and secondary screening techniques supported by rapid polymer characterization methods. Microscale 1-octene primary screening polymerization experiments combining arrays of ligands with reactive metal complexes M(CH(2)Ph)(4) (M = Zr, Hf) and multiple activation conditions represent a new high-throughput technique for discovering novel group (IV) polymerization catalysts. The primary screening methods described here have been validated using a commercially relevant polyolefin catalyst, and implemented rapidly to discover the new amide-ether based hafnium catalyst [eta(2)-(N,O)[bond](2-MeO[bond]C(6)H(4))(2,4,6-Me(3)C(6)H(2))N]Hf(CH(2)Ph)(3) (1), which is capable of polymerizing 1-octene to high conversion. The molecular structure of 1 has been determined by X-ray diffraction. Larger scale secondary screening experiments performed on a focused 96-member amine-ether library demonstrated the versatile high temperature ethylene-1-octene copolymerization capabilities of this catalyst class, and led to significant performance improvements over the initial primary screening discovery. Conventional one gallon batch reactor copolymerizations performed using selected amide-ether hafnium compounds confirmed the performance features of this new catalyst class, serving to fully validate the experimental results from the high-throughput approaches described herein.

  17. An Experimental and Computational Approach to Defining Structure/Reactivity Relationships for Intramolecular Addition Reactions to Bicyclic Epoxonium Ions

    PubMed Central

    Wan, Shuangyi; Gunaydin, Hakan; Houk, K. N.; Floreancig, Paul E.

    2008-01-01

    In this manuscript we report that oxidative cleavage reactions can be used to form oxocarbenium ions that react with pendent epoxides to form bicyclic epoxonium ions as an entry to the formation of cyclic oligoether compounds. Bicyclic epoxonium ion structure was shown to have a dramatic impact on the ratio of exo- to endo-cyclization reactions, with bicyclo[4.1.0] intermediates showing a strong preference for endo-closures and bicyclo[3.1.0] intermediates showing a preference for exo-closures. Computational studies on the structures and energetics of the transition states using the B3LYP/6-31G(d) method provide substantial insight into the origins of this selectivity. PMID:17547399

  18. Experimental Study of the Components of the Tensor Analyzing Power of the Reaction γ d → ppπ -

    NASA Astrophysics Data System (ADS)

    Gauzshtein, V. V.; Gramolin, A. V.; Vasilishin, B. I.; Zevakov, S. A.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.; Afanas'ev, K. V.; Levchuk, M. I.; Dusaev, R. R.

    2016-10-01

    The three components of the tensor analyzing power of the exclusive π- meson photoproduction reaction on deuterons measured simultaneously in the photon energy ranges 300-900 MeV and 50-210 MeV are presented. The experiment made use of an internal tensor-polarized deuterium-gas target of the VEPP-3 electron storage ring and the two-proton coincidence recording method. The results obtained are compared with theoretical predictions.

  19. Experimental signature of medium modifications for rho and omega mesons in the 12 GeV p+A reactions.

    PubMed

    Naruki, M; Fukao, Y; Funahashi, H; Ishino, M; Kanda, H; Kitaguchi, M; Mihara, S; Miwa, K; Miyashita, T; Murakami, T; Nakura, T; Sakuma, F; Togawa, M; Yamada, S; Yoshimura, Y; En'yo, H; Muto, R; Tabaru, T; Yokkaichi, S; Chiba, J; Ieiri, M; Sasaki, O; Sekimoto, M; Tanaka, K H; Hamagaki, H; Ozawa, K

    2006-03-10

    The invariant mass spectra of e+e- pairs produced in 12 GeV proton-induced nuclear reactions are measured at the KEK Proton Synchrotron. On the low-mass side of the meson peak, a significant enhancement over the known hadronic sources has been observed. The mass spectra, including the excess, are well reproduced by a model that takes into account the density dependence of the vector meson mass modification, as theoretically predicted.

  20. Nuclear spin dependence of the reaction of H{sub 3}{sup +} with H{sub 2}. II. Experimental measurements

    SciTech Connect

    Crabtree, Kyle N.; Kauffman, Carrie A.; Tom, Brian A.; Becka, Eftalda; McGuire, Brett A.; McCall, Benjamin J.

    2011-05-21

    The nuclear spin dependence of the chemical reaction H{sub 3}{sup +}+ H{sub 2}{yields} H{sub 2} +H{sub 3}{sup +} has been studied in a hollow cathode plasma cell. Multipass infrared direct absorption spectroscopy has been employed to monitor the populations of several low-energy rotational levels of ortho- and para-H{sub 3}{sup +} (o-H{sub 3}{sup +} and p-H{sub 3}{sup +}) in hydrogenic plasmas of varying para-H{sub 2} (p-H{sub 2}) enrichment. The ratio of the rates of the proton hop (k{sup H}) and hydrogen exchange (k{sup E}) reactions {alpha}{identical_to}k{sup H}/k{sup E} is inferred from the observed p-H{sub 3}{sup +} fraction as a function of p-H{sub 2} fraction using steady-state chemical models. Measurements have been performed both in uncooled (T{sub kin}{approx} 350 K) and in liquid-nitrogen-cooled (T{sub kin}{approx} 135 K) plasmas, marking the first time this reaction has been studied at low temperature. The value of {alpha} has been found to decrease from 1.6 {+-} 0.1 at 350 K to 0.5 {+-} 0.1 at 135 K.

  1. [Experimental study on anaphylactoid reactions induced by different components of shengmai injection (new production process) on Beagle dogs].

    PubMed

    He, Ping; Li, Fengjie; Tang, Renmao; Li, Yikui; Hao, Wei; Cong, Xudong; Yu, Xuezhao; Cao, Sumin

    2012-07-01

    To evaluate the sensitization effect of different components of Shengmai injection (new production process) on Beagle dogs. Beagle dogs were randomly divided into 7 groups, 3 in each group. Each group was respectively injected with 5% glucose injection, Ginseng Radix et Rhizoma Rubra extract, Ophiopogonis Radix extract, Schisandrae Chinensis Fructus extract, Schisandrae Chinersis Fructus distillate, Shengmaifang, 0.2% tween 80. The changes of each dog were observed from injection before until 24 hours after injection, and the response level was determined according to the severity of the symptoms. Blood samples were collected before injection and at 10 min after injection for measuring histamine content in plasma by ELISA. Sensitization of the injection was comprehensively determined by combined the response level of symptoms and the histamine level. One dog of Ginseng Radix et Rhizoma Rubra extract group showed untypical symptoms of anaphylactoid reactions, and serum histamine of two dogs increased more than doubled. The Beagle dogs administrated with 0.2% tween 80 showed typical symptoms of anaphylactoid reactions, while there was no significant increase of serum histamine. Other groups were observed with no typical anaphylactoid reactions. The sensitization effect of Shengmai injection (new production process) may be associated with Ginseng Radix et Rhizoma Rubra extract and 0.2% tween 80.

  2. First Experimental Measurement of the {sup 18}O(p,{alpha}){sup 15}N Reaction at Astrophysical Energies

    SciTech Connect

    La Cognata, M.; Sergi, M. L.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Kiss, G.; Lamia, L.; Pizzone, R. G.; Romano, S.; Mukhamedzhanov, A.; Goldberg, V.; Tribble, R.; Coc, A.; Hammache, F.; Sereville, N. de; Tumino, A.

    2010-11-24

    The {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N reactions are of primary importance in several as-trophysical scenarios, including nucleosynthesis inside Asymptotic Giant Branch stars and oxygen and nitrogen isotopic ratios in meteorite grains. They are also key reactions to understand exotic systems such as R-Coronae Borealis stars and novae. Thus, the measurement of their cross sections in the low energy region can be crucial to reduce the nuclear uncertainty on theoretical predictions, because the resonance parameters are poorly determined. The Trojan Horse Method, in its newly developed form particularly suited to investigate low-energy resonances, has been applied to the {sup 2}H({sup 18}O,{alpha}{sup 15}N)n and {sup 2}H({sup 17}O,{alpha}{sup 14}N)n reactions to deduce the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N cross sections at low energies. Resonances in the {sup 18}O(p,{alpha}){sup 15}N and {sup 17}O(p,{alpha}){sup 14}N excitation functions have been studied and the resonance parameters deduced.

  3. Optimization of a supercritical fluid extraction/reaction methodology for the analysis of castor oil using experimental design.

    PubMed

    Turner, Charlotta; Whitehand, Linda C; Nguyen, Tasha; McKeon, Thomas

    2004-01-14

    The aim of this work was to optimize a supercritical fluid extraction (SFE)/enzymatic reaction process for the determination of the fatty acid composition of castor seeds. A lipase from Candida antarctica (Novozyme 435) was used to catalyze the methanolysis reaction in supercritical carbon dioxide (SC-CO(2)). A Box-Behnken statistical design was used to evaluate effects of various values of pressure (200-400 bar), temperature (40-80 degrees C), methanol concentration (1-5 vol %), and water concentration (0.02-0.18 vol %) on the yield of methylated castor oil. Response surfaces were plotted, and these together with results from some additional experiments produced optimal extraction/reaction conditions for SC-CO(2) at 300 bar and 80 degrees C, with 7 vol % methanol and 0.02 vol % water. These conditions were used for the determination of the castor oil content expressed as fatty acid methyl esters (FAMEs) in castor seeds. The results obtained were similar to those obtained using conventional methodology based on solvent extraction followed by chemical transmethylation. It was concluded that the methodology developed could be used for the determination of castor oil content as well as composition of individual FAMEs in castor seeds.

  4. Tunable mechano-responsive organogels by ring-opening copolymerizations of N-carboxyanhydrides.

    PubMed

    Fan, Jingwei; Zou, Jiong; He, Xun; Zhang, Fuwu; Zhang, Shiyi; Raymond, Jeffery E; Wooley, Karen L

    2014-01-01

    The simple copolymerization of N-carboxyanhydride (NCA) monomers is utilized to generate copolypeptides having a combination of α-helix and β-sheet sub-structures that, when grown from a solvophilic synthetic polymer block segment, are capable of driving mechano-responsive supramolecular sol-to-gel-to-sol and sol-to-gel-to-gel transitions reversibly, which allow also for injection-based processing and self-healing behaviors. A new type of polypeptide-based organogelator, methoxy poly(ethylene glycol)-block-poly(γ-benzyl-l-glutamate-co-glycine) (mPEG-b-P(BLG-co-Gly)), is facilely synthesized by statistical ring-opening copolymerizations (ROPs) of γ-benzyl-l-glutamate (BLG) and glycine (Gly) NCAs initiated by mPEG-amine. These systems exhibit tunable secondary structures and result in sonication stimulus responsiveness of the organogels with the polypeptide segment variation, controlled by varying the ratio of BLG NCA to Gly NCA during the copolymerizations. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) studies indicate the α-helical component decreases while the β-sheet content increases systematically with a higher mole fraction of Gly in the polypeptide segment. The supramolecular assembly of β-sheet nanofibrils, having a tunable width over the range of 10.4 - 14.5 nm with varied BLG to Gly ratio, are characterized by transmission electron microscopy (TEM). The further self-assembly of these nanostructures into 3-D gel networks within N,N-dimethylformamide (DMF) occurs at low critical gelation concentrations (CGC) (lowest ca. 0.6 wt %). Increased BLG to Gly ratios lead to an increase of the α-helical component in the secondary structures of the polypeptide segments, resulting in wider and more flexible nanofibrils. The presence of α-helical component in the polymers enhances the stability of the organogels against sonication, and instantaneous gel-to-gel transitions are observed as in situ reconstruction of networks

  5. Experimental measurements of the 15O(alpha,gamma)19Ne reaction rate and the stability of thermonuclear burning on accreting neutron stars

    SciTech Connect

    Fisker, J; Tan, W; Goerres, J; Wiescher, M; Cooper, R

    2007-05-08

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the accretion rate of the fuel supply and its depletion rate by nuclear burning in the hot CNO cycle and the rp-process. For accretion rates close to stable burning the burst ignition therefore depends critically on the hot CNO breakout reaction {sup 15}O({alpha}, {gamma}){sup 19}Ne that regulates the flow between the hot CNO cycle and the rapid proton capture process. Until recently, the {sup 15}O({alpha}, {gamma}){sup 19}Ne reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we perform a parameter study of the uncertainty of this reaction rate and determine the astrophysical consequences of the first measurement of this reaction rate. Our results corroborate earlier predictions and show that theoretically burning remains unstable up to accretion rates near the Eddington limit, in contrast to astronomical observations.

  6. Quantum Chemical Calculations and Experimental Validation of the Photoclick Reaction for Fluorescent Labeling of the 5’ cap of Eukaryotic mRNAs

    PubMed Central

    Stummer, Daniela; Herrmann, Carmen; Rentmeister, Andrea

    2015-01-01

    Bioorthogonal click reactions are powerful tools to specifically label biomolecules in living cells. Considerable progress has been made in site-specific labeling of proteins and glycans in complex biological systems, but equivalent methods for mRNAs are rare. We present a chemo-enzymatic approach to label the 5’ cap of eukaryotic mRNAs using a bioorthogonal photoclick reaction. Herein, the N7-methylated guanosine of the 5’ cap is enzymatically equipped with an allyl group using a variant of the trimethylguanosine synthase 2 from Giardia lamblia (GlaTgs2). To elucidate whether the resulting N2-modified 5’ cap is a suitable dipolarophile for photoclick reactions, we used Kohn–Sham density functional theory (KS-DFT) and calculated the HOMO and LUMO energies of this molecule and nitrile imines. Our in silico studies suggested that combining enzymatic allylation of the cap with subsequent labeling in a photoclick reaction was feasible. This could be experimentally validated. Our approach generates a turn-on fluorophore site-specifically at the 5’ cap and therefore presents an important step towards labeling of eukaryotic mRNAs in a bioorthogonal manner. PMID:26246991

  7. Swelling and thermodynamic studies of temperature responsive 2-hydroxyethyl methacrylate/itaconic acid copolymeric hydrogels prepared via gamma radiation

    NASA Astrophysics Data System (ADS)

    Tomić, Simonida L. J.; Mićić, Maja M.; Filipović, Jovanka M.; Suljovrujić, Edin H.

    2007-08-01

    The copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were synthesized by gamma radiation induced radical polymerization. Swelling and thermodynamic properties of PHEMA and copolymeric P(HEMA/IA) hydrogels with different IA contents (2, 3.5 and 5 mol%) were studied in a wide pH and temperature range. Initial studies of so-prepared hydrogels show interesting pH and temperature sensitivity in swelling and drug release behavior. Special attention was devoted to temperature investigations around physiological temperature (37 °C), where small changes in temperature significantly influence swelling and drug release of these hydrogels. Due to maximum swelling of hydrogels around 40 °C, the P(HEMA/IA) hydrogel containing 5 mol% of IA without and with drug-antibiotic (gentamicin) were investigated at pH 7.40 and in the temperature range 25-42 °C, in order to evaluate their potential for medical applications.

  8. Synthesis, cyclopolymerization and cyclo-copolymerization of 9-(2-diallylaminoethyl)adenine and its hydrochloride salt.

    PubMed

    Bouhadir, Kamal H; Abramian, Lara; Ezzeddine, Alaa; Usher, Karyn; Vladimirov, Nikolay

    2012-11-08

    We report herein the synthesis and characterization of 9-(2-diallylaminoethyl) adenine. We evaluated two different synthetic routes starting with adenine where the optimal route was achieved through coupling of 9-(2-chloroethyl)adenine with diallylamine. The cyclopolymerization and cyclo-copolymerization of 9-(2-diallylaminoethyl)adenine hydrochloride salt resulted in low molecular weight oligomers in low yields. In contrast, 9-(2-diallylaminoethyl)adenine failed to cyclopolymerize, however, it formed a copolymer with SO₂ in relatively good yields. The molecular weights of the cyclopolymers were around 1,700-6,000 g/mol, as estimated by SEC. The cyclo-copolymer was stable up to 226 °C. To the best of our knowledge, this is the first example of a free-radical cyclo-copolymerization of a neutral alkyldiallylamine derivative with SO₂. These polymers represent a novel class of carbocyclic polynucleotides.

  9. Spontaneously Healable Thermoplastic Elastomers Achieved through One-Pot Living Ring-Opening Metathesis Copolymerization of Well-Designed Bulky Monomers.

    PubMed

    Yang, Ji-Xing; Long, Ying-Yun; Pan, Li; Men, Yong-Feng; Li, Yue-Sheng

    2016-05-18

    We report here a series of novel spontaneously healable thermoplastic elastomers (TPEs) with a combination of improved mechanical and good autonomic self-healing performances. Hard-soft diblock and hard-soft-hard triblock copolymers with poly[exo-1,4,4a,9,9a,10-hexahydro-9,10(1',2')-benzeno-l,4-methanoanthracene] (PHBM) as the hard block and secondary amide group containing norbornene derivative polymer as the soft block were synthesized via living ring-opening metathesis copolymerization by use of Grubbs third-generation catalyst through sequential monomer addition. The microstructure, mechanical, self-healing, and surface morphologies of the block copolymers were thoroughly studied. Both excellent mechanical performance and self-healing capability were achieved for the block copolymers because of the interplayed physical cross-link of hard block and dynamic interaction formed by soft block in the self-assembled network. Under an optimized hard block (PHBM) weight ratio of 5%, a significant recovery of tensile strength (up to 100%) and strain at break (ca. 85%) was achieved at ambient temperature without any treatment even after complete rupture. Moreover, the simple reaction operations and well-designed monomers offer versatility in tuning the architectures and properties of the resulting block copolymers.

  10. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification.

    PubMed

    Hedir, Guillaume G; Bell, Craig A; O'Reilly, Rachel K; Dove, Andrew P

    2015-07-13

    The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers' molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by (1)H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods.

  11. 2-(1-(Arylimino)propyl)quinolin-8-olate half-titanocene dichlorides: synthesis, characterization and ethylene (co-)polymerization behaviour.

    PubMed

    Huang, Wei; Sun, Wen-Hua; Redshaw, Carl

    2011-07-07

    A series of 2-(1-(arylimino)propyl)quinolin-8-olate half-titanocene dichlorides, Cp'TiCl(2)L (Cp' = η(5)-C(5)H(5) or η(5)-C(5)Me(5), L = 2-(1-(2,6-R(1)-4-R(2)-phenylimino)propyl)quinolin-8-olate), was synthesized via the stoichiometric reaction of Cp'TiCl(3) with the corresponding potassium 2-(1-(2,6-R(1)-4-R(2)-phenylimino)propyl)quinolin-8-olate salt. All titanium compounds were characterized by elemental analysis, (1)H NMR and (13)C NMR spectroscopy; the molecular structures of two representative compounds were determined by single crystal X-ray diffraction. On activation with methylaluminoxane (MAO), all half-titanocene compounds showed high activity in ethylene polymerization, and furthermore, performed with good to high activities in the co-polymerization of ethylene with either 1-hexene or 1-octene affording polyethylenes with high co-monomer incorporation. Less bulky ortho-substituents (R(1)) on the phenylimino groups were found to enhance the catalytic activities of their titanium compounds. In general, the titanium pro-catalysts containing η(5)-C(5)Me(5) (C7-C12) exhibited higher activities than did their analogues bearing η(5)-C(5)H(5) (C1-C6). Some of the resultant polyolefins were ultrahigh molecular weight polyethylene.

  12. Open Experimentation on Phenomena of Chemical Reactions via the Learning Company Approach in Early Secondary Chemistry Education

    ERIC Educational Resources Information Center

    Beck, Katharina; Witteck, Torsten; Eilks, Ingo

    2010-01-01

    Presented is a case study on the implementation of open and inquiry-type experimentation in early German secondary chemistry education. The teaching strategy discussed follows the learning company approach. Originally adopted from vocational education, the learning company method is used to redirect lab-oriented classroom practice towards a more…

  13. Open Experimentation on Phenomena of Chemical Reactions via the Learning Company Approach in Early Secondary Chemistry Education

    ERIC Educational Resources Information Center

    Beck, Katharina; Witteck, Torsten; Eilks, Ingo

    2010-01-01

    Presented is a case study on the implementation of open and inquiry-type experimentation in early German secondary chemistry education. The teaching strategy discussed follows the learning company approach. Originally adopted from vocational education, the learning company method is used to redirect lab-oriented classroom practice towards a more…

  14. Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters.

    PubMed

    DiCiccio, Angela M; Coates, Geoffrey W

    2011-07-20

    We report the ring-opening copolymerization of maleic anhydride with a variety of epoxides catalyzed by a chromium(III) salen complex. Quantitative isomerization of the cis-maleate form of all polymers affords the trans-fumarate analogues. Addition of chain transfer reagents yields low M(n), narrow PDI polymer samples. This method provides access to a range of new unsaturated polyesters with versatile functionality, as well as the first synthesis of high molecular weight poly(propylene fumarate).

  15. Parasite Manipulation of Its Host's Physiological Reaction to Acute Stress: Experimental Results from a Natural Beetle-Nematode System.

    PubMed

    Davis, Andrew K; Vasquez, David; LeFeuvre, Jake; Sims, Stuart; Craft, Meghan; Vizurraga, Anna

    All animals, whether vertebrate or invertebrate, must be capable of reacting to acute stressors, such as escaping from predators, and most do so with a suite of transient physiological changes that temporarily enhance survival. Some of these changes include mobilization of immune cells and increased cardiac output. A small but growing number of studies have begun to show that certain parasites appear capable of modifying such responses. We addressed this topic using a natural host and parasite system, that is, a nematode (Chondronema passali) that parasitizes horned passalus beetles, Odontotaenius disjunctus (family Passalidae), of the eastern United States. With a series of experiments, we sought to determine whether this parasite affects (1) the immune reaction to stress, (2) the output of stress-induced alarm calls, or (3) the increase in heart rate that occurs in response to acute stressors, with the stressors being mechanical or thermal. Results showed that hemocyte density increased after both stressors in nonparasitized beetles but did not increase in parasitized beetles. While mobilization of immune cells would enhance host immunity during stress, this would also be damaging to the nematode, so this scenario appears to benefit the parasite. We found no evidence that the nematode suppresses the overall reaction to stress (or prevents stress from occurring), since parasitized beetles did not differ from nonparasitized ones in alarm call rates or in heart beat frequency after exposure to mechanical stressors. Suppression of the host's normal immune reaction to stressful stimuli could translate to delayed or even reduced wound healing or pathogen resistance during these events. This project is a rare demonstration of parasite manipulation of host immune response to acute stress and should stimulate further investigations into the interactive nature of stress and parasites.

  16. Experimental and Quantum Mechanics Investigations of Early Reactions of Monomethylhydrazine with Mixtures of NO2 and N2O4

    DTIC Science & Technology

    2013-02-15

    red fuming nitric acid (RFNA), which is composed of nitric acid (HNO3, 85 wt%) and NO2 (8–15 wt%). Recently the impinging stream vortex engine (ISVE... nitric acid [51]. As a result, growth of the particles is favored over H-abstraction reactions at the low temperatures of our experiments. As the...followed by the proton transfer from NAH bond to NO3 to form nitric acid , as shown in Scheme 3. Although it is very easy to form nitric acid (enthalpic

  17. Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Tomić, S. Lj.; Mićić, M. M.; Filipović, J. M.; Suljovrujić, E. H.

    2007-05-01

    The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.

  18. Nanospace-confinement copolymerization strategy for encapsulating polymeric sulfur into porous carbon for lithium-sulfur batteries.

    PubMed

    Ding, Bing; Chang, Zhi; Xu, Guiyin; Nie, Ping; Wang, Jie; Pan, Jin; Dou, Hui; Zhang, Xiaogang

    2015-06-03

    Given their high theoretical energy density, lithium-sulfur (Li-S) batteries have recently attracted ever-increasing research interest. However, the dissolution of polysulfides and uncontrolled deposition of insoluble discharge product significantly hinder the cycling stability. Herein, a nanospace-confinement copolymerization strategy for encapsulating polymeric sulfur into porous carbon matrix is presented. The morphologies and sulfur contents of carbon/polymeric sulfur (C/PS) composites could be readily tailored by controlling the copolymerization time. Confining polymeric sulfur in the porous carbon with abundant interparticle pores facilitates rapid electronic/ionic transport and mitigates dissolution of polysulfides intermediates. More importantly, the organic sulfur units dispersed in the insoluble/insulating Li2S2/Li2S phase could prevent its irreversible deposition. Such nanostructure with tailored chemistry property permits the C/PS electrodes to exhibit enhanced cycling stability and high rate capability. The nanospace-confinement copolymerization strategy features general and facial advantages, which may provide new opportunities for the future development of advanced sulfur cathodes.

  19. Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process.

    PubMed

    Cernuto, Andrea; Tosi, Paolo; Martini, Luca Matteo; Pirani, Fernando; Ascenzi, Daniela

    2017-03-09

    The fate of dimethyl ether (DME, CH3OCH3) in collisions with He(+) ions is of high relevance for astrochemical models aimed at reproducing the abundances of complex organic molecules in the interstellar medium. Here we report an investigation on the reaction of He(+) ions with DME carried out using a Guided Ion Beam Mass Spectrometer (GIB-MS), which allows the measurement of reactive cross-sections and branching ratios (BRs) as a function of the collision energy. We obtain insights into the dissociative charge (electron) exchange mechanism by investigating the nature of the non-adiabatic transitions between the relevant potential energy surfaces (PESs) in an improved Landau-Zener approach. We find that the large interaction anisotropy could induce a pronounced orientation of the polar DME molecule in the electric field generated by He(+) so that at short distances the collision complex is confined within pendular states, a particular case of bending motion, which gives rise to intriguing stereodynamic effects. The positions of the intermolecular potential energy curve crossings indicate that He(+) captures an electron from an inner valence orbital of DME, thus causing its dissociation. In addition to the crossing positions, the symmetry of the electron density distribution of the involved DME orbitals turns out to be a further major point affecting the probability of electron transfer. Thus, the anisotropy of the intermolecular interaction and the electron densities of the orbitals involved in the reaction are the key "ingredients" for describing the dynamics of this dissociative charge transfer.

  20. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH 2 OO and isoprene

    SciTech Connect

    Decker, Z. C. J.; Au, K.; Vereecken, L.; Sheps, L.

    2017-01-01

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15–100 Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10–15 cm3 molecule–1 s–1 at room temperature to (23 ± 2) × 10–15 cm3 molecule–1 s–1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.

  1. Comparison of tissue reaction and osteointegration of metal implants between hydroxyapatite/Ti alloy coat: an animal experimental study.

    PubMed

    Itiravivong, Pibul; Promasa, Atichat; Laiprasert, Thada; Techapongworachai, Taweechai; Kuptniratsaikul, Somsak; Thanakit, Voranuch; Heimann, Robert B

    2003-06-01

    One important clinical application of hydroxyapatite (HA) is coating on metal implants to stimulate osteo-integration thus enhancing fixation of the implant to bone, especially plasma-sprayed HA coating applied on Ti alloy substrate. The poor bonding strength between HA and Ti alloy has been of great concern to orthopedists. The biocomptable coat such as Ti alloy (TiO2) coat is one method to improve adhesive strength. The objective of this study was to detect and analyze possible differences in bone formation, bone integration and tissue reaction between group I (uncoated Titanium), group II (Hydroxyapatite coated Titanium), and group III (Hydroxyapatite/TiO2 coated Titanium) implant specimens when embedded into bony hosts. Rectangular specimens were implanted into the femoral bone of adult dogs in randomly different sites including: proximal left, proximal right, distal left, distal right. The tailor-made implant specimens were inserted in 5 x 5 mm preprepared sockets. Radiographic evaluation was taken at 0, 1, 3 and 6 months. All animals were sacrificed at 3 and 6 months post implantation. The femoral bone containing implants were dissected and then prepared to be further investigated. The bone-implant interface was analyzed by H&E surface staining, radiography and scanning electron microscopy. Data concerning percentage of osteointegration and adhesiveness of hydroxyapatite layer from different kinds of implants along the entire length of each implants were collected and analyzed for evaluation of any significant differences. No osteo-integration was noted in Group I, but there was 25.57 per cent osteointegration in Group II and 28.63 per cent in Group III. No statistically significant differences were observed between Group II and Group III. However, the coating layer in Group II was found to have detached, in some area, from the metal substrate. Histologically, no adverse tissue reaction was found around any kind of implant. Biocompatable bond coat is one of

  2. Film Formation from Nanosized Copolymeric Latex Particles: A Photon Transmission Study.

    PubMed

    Arda; Özer; Pişkin; Pekcan

    2001-01-15

    The photon transmission technique was used to monitor the evolution of transparency during film formation from nanosized copolymeric latex particles. The latex films were prepared from poly(methyl methacrylate-co-butyl methacrylate) (P(MMA-co-BMA)) particles which were produced by microemulsion polymerization. These films were annealed at elevated temperatures in various time intervals above the glass transition temperature (T(g)) of P(MMA-co-BMA). It is observed that the transmitted photon intensity (I(tr)) from these films increased as the annealing temperature increased. There are three different film formation stages. These stages are explained by the void closure, healing, and interdiffusion processes, respectively. The activation energies for viscous flow (DeltaH approximately 16 kcal/mol), minor chains (DeltaE(H) approximately 27 kcal/mol), and backbone motion (Delta E(b) approximately 132 kcal/mol) were obtained using various models. Void closure (tau(v), T(v)) and healing points (tau(H), T(H)) were determined. Using the time-temperature pairs, void closure and healing activation energies were measured and found to be 21 and 30 kcal/mol, respectively. Copyright 2001 Academic Press.

  3. Template-Directed Copolymerization, Random Walks along Disordered Tracks, and Fractals.

    PubMed

    Gaspard, Pierre

    2016-12-02

    In biology, template-directed copolymerization is the fundamental mechanism responsible for the synthesis of DNA, RNA, and proteins. More than 50 years have passed since the discovery of DNA structure and its role in coding genetic information. Yet, the kinetics and thermodynamics of information processing in DNA replication, transcription, and translation remain poorly understood. Challenging issues are the facts that DNA or RNA sequences constitute disordered media for the motion of polymerases or ribosomes while errors occur in copying the template. Here, it is shown that these issues can be addressed and sequence heterogeneity effects can be quantitatively understood within a framework revealing universal aspects of information processing at the molecular scale. In steady growth regimes, the local velocities of polymerases or ribosomes along the template are distributed as the continuous or fractal invariant set of a so-called iterated function system, which determines the copying error probabilities. The growth may become sublinear in time with a scaling exponent that can also be deduced from the iterated function system.

  4. Fluorinated polymides for interlayer dielectric applications: Tailoring of properties via copolymerization

    SciTech Connect

    Auman, B.C.; McKerrow, A.J.; Ho, P.S.

    1996-10-01

    Over the past several years DuPont has been exploring new, rod-like fluorinated polyimides for interlayer dielectric (ILD) applications. It has been shown that copolymerization is a versatile method for tailoring properties of these rigid polyimides. Initial product offerings from DuPont showed an excellent balance of properties for ILD applications. These materials, however, due to their highly rod-like structure and very low in-plane coefficient of thermal expansion (CTE), actually yielded negative thermal stresses on silicon at the 1 {mu}m thicknesses typical of interlayer dielectrics. More flexible materials with higher CTE typically yield positive stress values which can be undesirably quite high. The dielectric constant of these highly rod-like fluorinated polyimides was also somewhat anisotropic, again due to the rod-like nature and resulting high in-plane orientation of these polyimides. Since a thermal stress on silicon near zero and a more isotropic dielectric constant are likely the most desirable states for an ILD, the highly rod-like polyimide was further optimized by incorporation of a more flexible fluorinated comonomer, 6FDA, at various levels to increase CTE and balance dielectric constant. The various properties of this series of fluorinated polyimides were investigated. The results have shown that it is indeed possible to obtain near zero stress on silicon while attaining more isotropic dielectric constant via structure optimization.

  5. Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: kinetics of an endwise process.

    PubMed

    Demont-Caulet, Nathalie; Lapierre, Catherine; Jouanin, Lise; Baumberger, Stéphanie; Méchin, Valérie

    2010-10-01

    In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H(2)O(2). This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. A methyl methacrylate-HEMA-CL(n) copolymerization investigation: from kinetics to bioapplications.

    PubMed

    Ferrari, Raffaele; Rooney, Thomas R; Lupi, Monica; Ubezio, Paolo; Hutchinson, Robin A; Moscatelli, Davide

    2013-10-01

    The radical copolymerization kinetics of methyl methacrylate (MMA) and poly-ϵ-caprolactone macromonomer functionalized with a vinyl end group (HEMA-CL(n)) is studied using a pulsed-laser technique. The reactivity ratios for this system are near unity, while a linear relationship between k(p,cop), the copolymer-averaged propagation rate coefficient, and the composition of macromonomer in the feed (0-80 wt% range) is determined. At 50 wt% macromonomer in the feed, a 1.67 ± 0.02 and 1.64 ± 0.06 increase in k(p,cop)/k(p,MMA) is determined for HEMA-CL3 and HEMA-CL2, respectively. These macromonomers are adopted to synthesize nanoparticles (NPs) in the range of 100-150 nm through batch emulsion free radical polymerization (BEP) to produce partially degradable drug delivery carriers. The produced NPs are tested in 4T1 cell line and show excellent characteristics as carriers: they do not affect cell proliferation, and a relevant number of NPs, thousands per cell, are internalized.

  7. Dinuclear Zinc Salen Catalysts for the Ring Opening Copolymerization of Epoxides and Carbon Dioxide or Anhydrides.

    PubMed

    Thevenon, Arnaud; Garden, Jennifer A; White, Andrew J P; Williams, Charlotte K

    2015-12-21

    A series of four dizinc complexes coordinated by salen or salan ligands, derived from ortho-vanillin and bearing (±)-trans-1,2-diaminocyclohexane (L1) or 2,2-dimethyl-1,3-propanediamine (L2) backbones, is reported. The complexes are characterized using a combination of X-ray crystallography, multinuclear NMR, DOSY, and MALDI-TOF spectroscopies, and elemental analysis. The stability of the dinuclear complexes depends on the ligand structure, with the most stable complexes having imine substituents. The complexes are tested as catalysts for the ring-opening copolymerization (ROCOP) of CO2/cyclohexene oxide (CHO) and phthalic anhydride (PA)/CHO. All complexes are active, and the structure/activity relationships reveal that the complex having both L2 and imine substituents displays the highest activity. In the ROCOP of CO2/CHO its activity is equivalent to other metal salen catalysts (TOF = 44 h(-1) at a catalyst loading of 0.1 mol %, 30 bar of CO2, and 80 °C), while for the ROCOP of PA/CHO, its activity is slightly higher than other metal salen catalysts (TOF = 198 h(-1) at a catalyst loading of 1 mol % and 100 °C). Poly(ester-block-carbonate) polymers are also afforded using the most active catalyst by the one-pot terpolymerization of PA/CHO/CO2.

  8. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming

    2017-04-01

    In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m2 h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the goal of long term usage without compromising flux.

  9. MinCD cell division proteins form alternating co-polymeric cytomotive filaments

    PubMed Central

    Ghosal, Debnath; Trambaiolo, Daniel; Amos, Linda A.; Löwe, Jan

    2014-01-01

    Summary During bacterial cell division, filaments of the tubulin-like protein FtsZ assemble at midcell to form the cytokinetic Z-ring. Its positioning is regulated by the oscillation of MinCDE proteins. MinC is activated by MinD through an unknown mechanism and prevents Z-ring assembly anywhere but midcell. Here, using X-ray crystallography, electron microscopy and in vivo analyses we show that MinD activates MinC by forming a new class of alternating copolymeric filaments that show similarity to eukaryotic septin filaments A non-polymerising mutation in MinD causes aberrant cell division in E. coli. MinCD copolymers bind to membrane, interact with FtsZ, and are disassembled by MinE. Imaging a functional msfGFP-MinC fusion protein in MinE deleted cells reveals filamentous structures. EM imaging of our reconstitution of the MinCD-FtsZ interaction on liposome surfaces reveals a plausible mechanism for regulation of FtsZ ring assembly by MinCD copolymers. PMID:25500731

  10. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; Zhang, Jian; Qian, Zhiyu; Liu, Fei; Chen, Xinyang; Hu, Yuzhu; Gu, Yueqing

    2008-05-01

    Assessment of hyperthermia in pathological tissue is a promising strategy for earlier diagnosis of malignant tumors. In this study, temperature-sensitive co-polymeric nanohydrogel poly(N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) was successfully synthesized by the precipitation polymerization method. The diameters of nanohydrogels were controlled to be less than 100 nm. Also the lower critical solution temperature (LCST, 40 °C) was manipulated above physiological temperature after integration of near-infrared (NIR) organic dye (heptamethine cyanine dye, HMCD) within its interior cores. NIR laser light (765 nm), together with sensitive charge coupled device (CCD) cameras, were designed to construct an NIR imaging system. The dynamic behaviors of PNIPA-co-AA-HMCD composites in denuded mice with or without local hyperthermia treatment were real-time monitored by an NIR imager. The results showed that the PNIPA-co-AA-HMCD composites accumulated in the leg treated with local heating and diffused much slower than that in the other leg without heating. The results demonstrated that the temperature-responsive PNIPA-co-AA-HMCD composites combining with an NIR imaging system could be an effective temperature mapping technique, which provides a promising prospect for earlier tumor diagnosis and thermally related therapeutic assessment.

  11. Chemically induced graft copolymerization of 2-hydroxyethyl methacrylate onto polyurethane surface for improving blood compatibility

    NASA Astrophysics Data System (ADS)

    He, Chunli; Wang, Miao; Cai, Xianmei; Huang, Xiaobo; Li, Li; Zhu, Haomiao; Shen, Jian; Yuan, Jiang

    2011-11-01

    To improve hydrophilicity and blood compatibility properties of polyurethane (PU) film, we chemically induced graft copolymerization of 2-hydroxyethyl methacrylate (HEMA) onto the surface of polyurethane film using benzoyl peroxide as an initiator. The effects of grafting temperature, grafting time, monomer and initiator concentrations on the grafting yields were studied. The maximum grafting yield value was obtained 0.0275 g/cm2 for HEMA. Characterization of the films was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements. ATR-FTIR data showed that HEMA was successfully grafted onto the PU films surface. Water contact angle measurement demonstrated the grafted films possessed a relatively hydrophilic surface. The blood compatibility of the grafted films was preliminarily evaluated by a platelet-rich plasma adhesion test and hemolysis test. The results of platelet adhesion experiment showed that polyurethane grafted polymerization with monomer of 2-hydroxyethyl methacrylate had good blood compatibility featured by the low platelet adhesion. Hemolysis rate of the PU-g-PHEMA films was dramatically decreased than the ungrafted PU films. This kind of new biomaterials grafted with HEMA monomers might have a potential usage for biomedical applications.

  12. Template-Directed Copolymerization, Random Walks along Disordered Tracks, and Fractals

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-12-01

    In biology, template-directed copolymerization is the fundamental mechanism responsible for the synthesis of DNA, RNA, and proteins. More than 50 years have passed since the discovery of DNA structure and its role in coding genetic information. Yet, the kinetics and thermodynamics of information processing in DNA replication, transcription, and translation remain poorly understood. Challenging issues are the facts that DNA or RNA sequences constitute disordered media for the motion of polymerases or ribosomes while errors occur in copying the template. Here, it is shown that these issues can be addressed and sequence heterogeneity effects can be quantitatively understood within a framework revealing universal aspects of information processing at the molecular scale. In steady growth regimes, the local velocities of polymerases or ribosomes along the template are distributed as the continuous or fractal invariant set of a so-called iterated function system, which determines the copying error probabilities. The growth may become sublinear in time with a scaling exponent that can also be deduced from the iterated function system.

  13. Experimental investigations of the sub-Coulomb 12C+12C and 12C+16O reactions

    NASA Astrophysics Data System (ADS)

    Courtin, S.; Fruet, G.; Jenkins, D. G.; Jiang, C. L.; Heine, M.; Montanari, D.; Santiago-Gonzalez, D.; Avila-Coronado, M.; Morris, L. G.; Goasduff, A.; Rehm, E.; Back, B.; Bourgin, D.; Beck, C.

    2017-06-01

    Cluster resonances in light heavy-ion systems like 12C+12C and 12C+16O may have a major impact on astrophysics stellar scenarios. Resonant radiative capture reactions have been studied for these systems at energies at and slightly below their Coulomb barriers to investigate the possible 12C-12C and 12C-16O molecular origin of the resonances. Spins have been attributed to the resonances and specificities of their γ-decay have been identified. At deep sub-barrier energies, a fusion cross section measurement using the particle-γ coincidence technique is discussed for the 12C+12C system. A new project is presented to possibly extend the 12C+12C S low-energy S factor study.

  14. Experimentally constrained (p,γ)Y89 and (n,γ)Y89 reaction rates relevant to p -process nucleosynthesis

    DOE PAGES

    Larsen, A. C.; Guttormsen, M.; Schwengner, R.; ...

    2016-04-21

    The nuclear level density and the g-ray strength function have been extracted for 89Y, using the Oslo Method on 89Y(p,p'γ)89Y coincidence data. The g-ray strength function displays a low-energy enhancement consistent with previous observations in this mass region (93-98Mo). Shell-model calculations give support that the observed enhancement is due to strong, low-energy M1 transitions at high excitation energies. The data were further used as input for calculations of the 88Sr(p,γ)89Y and 88Y(n,γ)89Y cross sections with the TALYS reaction code. Lastly, comparison with cross-section data, where available, as well as with values from the BRUSLIB library, shows a satisfying agreement.

  15. An experimental technique for measurement of emission cross sections of excited state species in ion--molecule reactions

    SciTech Connect

    Mahmood, M.F. )

    1990-11-01

    A novel technique has been described in the present studies for the measurement of emission cross sections of excited state species formed in ion--molecule reactions and has been applied to the case of collisions of N{sup +}/Ar{sup +} ions with HgI{sub 2} molecules. Emission spectra of HgI radical due to ({ital B}--{ital X}) transition from highly excited levels to lower levels have been observed and identified. Using the integrated intensity of the most intense band of the HgI ({ital B}{sup 2}{Sigma}{sup +}, {ital v}{prime}=0{endash}{ital X} {sup 2}{Sigma}{sup +}, {ital v}{double prime}=22) transition at 445 nm, emission cross sections were measured in the kinetic energy range of 100--1000 eV (laboratory frame).

  16. The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions

    NASA Astrophysics Data System (ADS)

    Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.

    2007-01-01

    For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that

  17. Experimental Determination of Clay Mineral Reactions in Clastic Reservoir Rock Resulting from the Injection of Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Mangini, S. A.; Shaw, C. A.; Skidmore, M. L.

    2013-12-01

    The Cretaceous Frontier Formation of the Powder River Basin, WY has been considered as a potential reservoir for storing anthropogenic CO2. The reservoir zones are composed of fine-grained quartz and potassium feldspar rich sandstones, cemented with clay minerals (kaolinite and interlayered illite and montmorillonite). The purpose of these experiments is to determine whether susceptible minerals such as illite, montmorillonite, and potassium feldspar undergo in-situ 'weathering' reactions when exposed to the high concentrations of carbonic acid generated by the dissolution of supercritical CO2 in formation water. The transformation of these minerals has the potential to: 1.) open up pore space through dissolution; 2.) reduce pore space and/or close pore throats by precipitating new minerals, or 3.) cause little change if the reactions take place slowly. Core samples of the Frontier Formation were obtained from the USGS Core Repository in Denver, CO and their physical and mineralogical properties analyzed. Porosity and permeability of the cores have been determined by helium porosimetry and gas permeability testing. Pore space distribution was analyzed by CT scan. Mineralogy was determined by thin section analysis, X-Ray diffraction, and Scanning Electron Microscopy. Ongoing experiments will expose the cores to CO2 saturated brine in a flow-through reactor at conditions similar to those found in the subsurface (100oC and 15MPa). Changes to the chemical composition of the brine will be determined by withdrawing samples at regular intervals during the experiment and analyzing their contents with ion chromatography and colorimetry. The physical and mineralogical properties of the cores will be analyzed after each experiment and compared to the initial conditions. We will report on the results of these experiments.

  18. Experimental and Mechanistic Understanding of Aldehyde Hydrogenation Using Au25 Nanoclusters with Lewis Acids: Unique Sites for Catalytic Reactions.

    PubMed

    Li, Gao; Abroshan, Hadi; Chen, Yuxiang; Jin, Rongchao; Kim, Hyung J

    2015-11-18

    The catalytic activity of Au25(SR)18 nanoclusters (R = C2H4Ph) for the aldehyde hydrogenation reaction in the presence of a base, e.g., ammonia or pyridine, and transition-metal ions M(z+), such as Cu(+), Cu(2+), Ni(2+) and Co(2+), as a Lewis acid is studied. The addition of a Lewis acid is found to significantly promote the catalytic activity of Au25(SR)18/CeO2 in the hydrogenation of benzaldehyde and a number of its derivatives. Matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry in conjunction with UV-vis spectroscopy confirm the generation of new species, Au25-n(SR)18-n (n = 1-4), in the presence of a Lewis acid. The pathways for the speciation of Au24(SR)17 from its parent Au25(SR)18 nanocluster as well as its structure are investigated via the density functional theory (DFT) method. The adsorption of M(z+) onto a thiolate ligand "-SR-" of Au25(SR)18, followed by a stepwise detachment of "-SR-" and a gold atom bonded to "-SR-" (thus an "Au-SR" unit) is found to be the most likely mechanism for the Au24(SR)17 generation. This in turn exposes the Au13-core of Au24(SR)17 to reactants, providing an active site for the catalytic hydrogenation. DFT calculations indicate that M(z+) is also capable of adsorbing onto the Au13-core surface, producing a possible active metal site of a different kind to catalyze the aldehyde hydrogenation reaction. This study suggests, for the first time, that species with an open metal site like adducts [nanoparticle-M]((z-1)+) or fragments Au25-n(SR)18-n function as the catalysts rather than the intact Au25(SR)18.

  19. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  20. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  1. On the importance of decarbonylation as a side-reaction in the ruthenium-catalysed dehydrogenation of alcohols: a combined experimental and density functional study.

    PubMed

    Sieffert, Nicolas; Réocreux, Romain; Lorusso, Patrizia; Cole-Hamilton, David J; Bühl, Michael

    2014-04-01

    We report a density functional study (B97-D2 level) of the mechanism(s) operating in the alcohol decarbonylation that occurs as an important side-reaction during dehydrogenation catalysed by [RuH2(H2)(PPh3)3]. By using MeOH as the substrate, three distinct pathways have been fully characterised involving either neutral tris- or bis-phosphines or anionic bis-phosphine complexes after deprotonation. α-Agostic formaldehyde and formyl complexes are key intermediates, and the computed rate-limiting barriers are similar between the various decarbonylation and dehydrogenation paths. The key steps have also been studied for reactions involving EtOH and iPrOH as substrates, rationalising the known resistance of the latter towards decarbonylation. Kinetic isotope effects (KIEs) were predicted computationally for all pathways and studied experimentally for one specific decarbonylation path designed to start from [RuH(OCH3)(PPh3)3]. From the good agreement between computed and experimental KIEs (observed kH/kD =4), the rate-limiting step for methanol decarbonylation has been ascribed to the formation of the first agostic intermediate from a transient formaldehyde complex.

  2. Prediction of experimentally unavailable product branching ratios for biofuel combustion: the role of anharmonicity in the reaction of isobutanol with OH.

    PubMed

    Zheng, Jingjing; Meana-Pañeda, Rubén; Truhlar, Donald G

    2014-04-02

    Isobutanol is a prototype biofuel, and sorting out the mechanism of its combustion is an important objective where theoretical modeling can provide information that is unavailable and not easily obtained by experiment. In the present work the rate constants and branching ratios for the hydrogen abstraction reactions from isobutanol by hydroxyl radical have been calculated using multi-path variational transition-state theory with small-curvature tunneling. We use hybrid degeneracy-corrected vibrational perturbation theory to show that it is critical to consider the anharmonicity difference of high-frequency modes between reactants and transition states. To obtain accurate rate constants, we must apply different scaling factors to the calculated harmonic vibrational frequencies at the reactants and at the transition states. The factors determining the reaction rate constants have been analyzed in detail, including variational effects, tunneling contributions, the effect of multiple reaction paths on transmission coefficients, and anharmonicities of low- and high-frequency vibrational modes. The analysis quantifies the uncertainties in the rate calculations. A key result of the paper is a prediction for the site dependence of hydrogen abstraction from isobutanol by hydroxyl radical. This is very hard to measure experimentally, although it is critical for combustion mechanism modeling. The present prediction differs considerably from previous theoretical work.

  3. Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: Experimental characterization and elementary reaction modeling

    NASA Astrophysics Data System (ADS)

    Yu, Xiankai; Shi, Yixiang; Wang, Hongjian; Cai, Ningsheng; Li, Chen; Ghoniem, Ahmed F.

    2014-04-01

    The performance of a solid oxide electrolyte direct carbon fuel cell (SO-DCFC) is limited by the slow carbon gasification kinetics at the typical operating temperatures of cell: 650-850 °C. To overcome such limitation, potassium salt is used as a catalyst to speed up the dry carbon gasification reactions, increasing the power density by five-fold at 700-850 °C. The cell performance is shown to be sensitive to the bed temperature, emphasizing the role of gasification rates and that of CO production. Given the finite bed size, the cell performance is time-dependent as the amount of CO available changes. A reduced elementary reaction mechanism for potassium-catalyzed carbon gasification was proposed using kinetic data obtained from the experimental measurements. A comprehensive model including the catalytic gasification reactions and CO electrochemistry is used to examine the impact of the catalytic carbon gasification process on the device performance. The power density is maximum around 50% of the OCV, where carbon utilization is also near maximum. Results show that bed height and porosity impact the power density; a thicker bed maintains the power almost constant for longer times while lower porosity delivers higher power density in the early stages.

  4. Iron-silicate reaction at CMB and formation of core signature in plume source region: An experimental approach

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakai, T.; Kondo, T.; Miyahara, M.; Terasaki, H.

    2006-12-01

    Recent progress of laser heating diamond anvil cell (LHDAC) techniques made it possible to achieve the conditions of pressures and temperatures exceeding the core-mantle boundary conditions, i.e., 130 GPa and 3000-3500 K, and we can now be possible to study the recovered samples from the condition of the core- mantle boundary. We used the focused ion beam (FIB) method for preparation of the recovered samples and the analytical transmission electron microscope (ATEM) for their characterization, which are the ideal tools for studying the recovered samples from mega-bar conditions. In order to clarify the structure of the bottom of the CMB region, we have conducted high pressure and temperature experiments on the reaction between metallic iron and post-perovskite which can simulate the chemical reactions at CMB. We have conducted reaction experiments between molten iron and post-perovskite at the conditions equivalent to the CMB, 139 GPa and 3000 K. Significant amounts of oxygen up to 6.3 wt. percent and silicon up to 4.0 wt. percent are dissolved in metallic iron, and the solubility of silicon and oxygen in metallic iron can readily account for 7-10 wt. percent of the core density deficit. The dissolution of silicon into molten iron in the primordial magma ocean with the depth of the deep lower mantle can account for the Mg/Si ratio of the mantle higher than that of C1-chondrite. The dihedral angle between post-perovskite and molten iron is around 67 degrees, which is larger than that of perovskite and molten iron, 51 degrees (Takafuji et al., 2004). A core signature has been reported as Re and Os isotope anomalies in the plume magmas originating from the core-mantle boundary region, and such isotopic anomalies can be easily generated by contamination of 0.5-1 wt. percent of the trapped core metal at CMB (e.g., Brandon et al., 2005). A significant disturbance is expected at CMB to form a mixing region of the mantle and core materials as was suggested by Kellogg et al

  5. Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogen‐Evolution Reaction

    PubMed Central

    Han, Yongzhen; Fang, Huayi; Jing, Huize; Sun, Huiling; Lei, Haitao

    2016-01-01

    Abstract A nickel(II) porphyrin Ni‐P (P=porphyrin) bearing four meso‐C6F5 groups to improve solubility and activity was used to explore different hydrogen‐evolution‐reaction (HER) mechanisms. Doubly reduced Ni‐P ([Ni‐P]2−) was involved in H2 production from acetic acid, whereas a singly reduced species ([Ni‐P]−) initiated HER with stronger trifluoroacetic acid (TFA). High activity and stability of Ni‐P were observed in catalysis, with a remarkable i c/i p value of 77 with TFA at a scan rate of 100 mV s−1 and 20 °C. Electrochemical, stopped‐flow, and theoretical studies indicated that a hydride species [H‐Ni‐P] is formed by oxidative protonation of [Ni‐P]−. Subsequent rapid bimetallic homolysis to give H2 and Ni‐P is probably involved in the catalytic cycle. HER cycling through this one‐electron‐reduction and homolysis mechanism has been proposed previously but rarely validated. The present results could thus have broad implications for the design of new exquisite cycles for H2 generation. PMID:27028563

  6. Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction

    SciTech Connect

    Qasim, Mohammad M.; Fredrickson, Herbert L.; Honea, P.; Furey, John; Leszczynski, Jerzy; Okovytyy, S.; Szecsody, Jim E.; Kholod, Y.

    2005-10-01

    Highest occupied and lowest unoccupied molecular orbital energies, formation energies, bond lengths and FTIR spectra all suggest competing CL-20 degradation mechanisms. This second of two studies investigates recalcitrant, toxic, aromatic CL-20 intermediates that absorb from 370 to 430 nm. Our earlier study (Struct. Chem., 15, 2004) revealed that these intermediates were formed at high OH- concentrations via the chemically preferred pathway of breaking the C-C bond between the two cyclopentanes, thereby eliminating nitro groups, forming conjugated π bonds, and resulting in a pyrazine three-ring aromatic intermediate. In attempting to find and make dominant a more benign CL-20 transformation pathway, this current research validates hydroxylation results from both studies and examines CL-20 transformations via photo-induced free radical reactions. This article discusses CL-20 competing modes of degradation revealed through: computational calculation; UV/VIS and SF spectroscopy following alkaline hydrolysis; and photochemical irradiation to degrade CL-20 and its byproducts at their respective wavelengths of maximum absorption.

  7. Important role of reaction field in photodegradation of deca-bromodiphenyl ether: theoretical and experimental investigations of solvent effects.

    PubMed

    Xie, Qing; Chen, Jingwen; Shao, Jianping; Chen, Chang'er; Zhao, Hongxia; Hao, Ce

    2009-09-01

    Photolysis of deca-bromodiphenyl ether (BDE-209) was investigated in tetrahydrofuran, dichloromethane, isopropanol, acetone, ethanol, methanol, acetonitrile and dimethylsulfoxide. Noticeable differences of the photolytic rates and quantum yields were found in the diverse solvents. Different to the previous deductions, hydrogen donating efficiency and electron donating efficiency of solvents were not the decisive factors for the photolytic rate in this study, which was proved by the fast photolysis of BDE-209 in CCl(4), a solvent without hydrogen and difficult to donate electrons. Besides hydrogen addition process, intermolecular polymerization might occur during the photolysis. Density functional theory (DFT) calculation was performed to understand the molecular properties of BDE-209 in different solvents. The lowest singlet vertical excitation energy (E(ex)) and the average formal charge on Br (q(Br)(+)) of BDE-209, reflecting the difficulty for the excitation of BDE-209 and for the departing of Br atom, respectively, were changed by the reaction fields formed by the different solvents. E(ex) and q(Br)(+) linearly correlated with the photolytic activity (logk). This study is helpful to better understand the photolytic behavior of BDE-209 in different media.

  8. An experimental and computational study of the reaction of ground-state sulfur atoms with carbon disulfide

    NASA Astrophysics Data System (ADS)

    Gao, Yide; Marshall, Paul

    2011-10-01

    The pulsed laser photolysis/resonance fluorescence technique was used to study the reaction of S(3PJ) with CS2 in an Ar bath gas. Over 290-770 K pressure-dependent kinetics were observed and low- and high-pressure limiting rate constants were derived as k0 = (11.5-0.0133 T/K) × 10-31 cm6 molecule-2 s-1 (error limits ± 20%) and k∞ = (2.2 ± 0.6) × 10-12 cm3 molecule-1 s-1. Equilibration observed at 690-770 K yields a CS2-S bond dissociation enthalpy of 131.7 ± 4.0 kJ mol-1 at 298 K. This agrees with computed thermochemistry for a spin-forbidden C2V adduct, estimated at the coupled-cluster single double triple level extrapolated to the infinite basis set limit. A pressure-independent pathway, assigned to abstraction, was observed from 690 to 1040 K and can be summarized as 1.14 × 10-10 exp(-37.0 kJ mol-1/RT) cm3 molecule-1 s-1 with error limits of ± 40%. The results are rationalized in terms of a computed potential energy surface and transition state theory and Troe's unimolecular formalism.

  9. Detection of Paragonimus heterotremus eggs in experimentally infected cats by a polymerase chain reaction-based method.

    PubMed

    Intapan, Pewpan M; Wongkham, Chaisiri; Imtawil, Kanokwan J; Pumidonming, Wilawan; Prasongdee, Thidarat K; Miwa, Masanao; Maleewong, Wanchai

    2005-02-01

    A polymerase chain reaction (PCR) procedure for the detection of Paragonimus heterotremus eggs in stool samples was developed and compared with Stoll's egg count method. The primers were designed on the basis of a previously constructed pPH-13-specific DNA probe, which produced an approximate 0.5-kb amplified product. This PCR method could detect as few as 5 eggs in 0.6 g of artificially inoculated feces of a healthy control cat or as little as 1 x 10(-4) ng of P. heterotremus genomic DNA. The assay had 100% sensitivity in all infected cats. The method did not yield an approximate 0.5-kb product with DNA from other parasites such as Gnathostoma spinigerum, Trichinella spiralis, Fasciola gigantica, Echinostoma malayanum, Opisthorchis viverrini, Dirofilaria immitis, and Taenia saginata; exceptions were Paragonimus siamensis and Paragonimus westermani. In addition, no genomic DNA from Escherichia coli, Burkholderia pseudomallei, Acinetobacter anitratus, Mycobacterium tuberculosis, Staphylococcus aureus, beta-Streptococcus grA, and Proteus mirabilis or from the vertebrate and invertebrate hosts of P. heterotremus was amplified in the PCR assay. This assay has great potential for application in clinical epidemiological studies.

  10. Diastereoselective access to polyoxygenated polycyclic spirolactones through a rhodium-catalyzed [3+2] cycloaddition reaction: experimental and theoretical studies.

    PubMed

    Rodier, Fabien; Rajzmann, Michel; Parrain, Jean-Luc; Chouraqui, Gaëlle; Commeiras, Laurent

    2013-02-11

    The synthetic utility of γ-alkylidenebutenolides is demonstrated as highly competent dipolarophile partners in both intra- and intermolecular rhodium(II)-catalyzed 1,3-dipolar cycloaddition reactions. The strength of this approach lies in the formation of spiro[6,4]lactone moieties with the concomitant construction of quaternary spiro stereocenters. Typically, the construction of spirolactones involves an esterification step, which has often been reported as a "biosynthetic pathway", and often occurs either as or near to the final step of a total synthesis. Furthermore, a convergent and versatile route is reported for the formation of the (5,7) skeleton of molecules that were isolated from the Schisandra genus. Computational studies were performed to provide an overall picture of the mechanism of the intermolecular [3+2] cycloaddition between 2-diazo-1,3-ketoester and protoanemonin and to rationalize the empirical observations. In particular, we have demonstrated for the first time that the rhodium center plays an important role during the cyclization step itself and reacts with the dipolarophile as a complex with the ylide.

  11. Psychometric properties of reaction time based experimental paradigms measuring anxiety-related information-processing biases in children.

    PubMed

    Brown, H M; Eley, T C; Broeren, S; Macleod, C; Rinck, M; Hadwin, J A; Lester, K J

    2014-01-01

    Theoretical frameworks highlight the importance of threat-related information-processing biases for understanding the emergence of anxiety in childhood. The psychometric properties of several tasks measuring these biases and their associations with anxiety were examined in an unselected sample of 9-year-old children (N=155). In each task, threat bias was assessed using bias scores reflecting task performance on threat versus non-threat conditions. Reliability was assessed using split-half and test-retest correlations of mean reaction times (RTs), accuracy and bias indices. Convergence between measures was also examined. Mean RTs showed substantial split-half and test-retest correlations. Bias score reliability coefficients were near zero and non-significant, suggesting poor reliability in children of this age. Additionally, associations between bias scores and anxiety were weak and inconsistent and performance between tasks showed little convergence. Bias scores from RT based paradigms in the current study lacked adequate psychometric properties for measuring individual differences in anxiety-related information-processing in children. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Experimental cross-sections for proton induced nuclear reactions on mercury up to 65 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.; Szücs, Z.; Brezovcsik, K.

    2016-07-01

    Cross-sections for formation of activation products induced by protons on natural mercury targets were measured. Results for 196m,196g,197g(cum), 198m,198g,199g(cum), 200g(cum), 201,202Tl, 194g(cum), 195g(cum), 196g(cum), 198m,199g(cum) Au and 195m,197m,203Hg are presented up to 65 MeV incident particle energy, many of these for the first time. The experimental data are compared with literature values and with the predictions of the TALYS 1.6 code (results taken from TENDL-2015 on-line library), thick target yields were derived and possible applications in biomedical sciences are discussed.

  13. In-vitro cell treatment with focused shockwaves-influence of the experimental setup on the sound field and biological reaction.

    PubMed

    Dietz-Laursonn, Kristin; Beckmann, Rainer; Ginter, Siegfried; Radermacher, Klaus; de la Fuente, Matías

    2016-01-01

    To improve understanding of shockwave therapy mechanisms, in vitro experiments are conducted and the correlation between cell reaction and shockwave parameters like the maximum pressure or energy density is studied. If the shockwave is not measured in the experimental setup used, it is usually assumed that the device's shockwave parameters (=manufacturer's free field measurements) are valid. But this applies only for in vitro setups which do not modify the shockwave, e.g., by reflection or refraction. We hypothesize that most setups used for in vitro shockwave experiments described in the literature influence the sound field significantly so that correlations between the physical parameters and the biological reaction are not valid. To reveal the components of common shockwave in vitro setups which mainly influence the sound field, 32 publications with 37 setups used for focused shockwave experiments were reviewed and evaluated regarding cavitation, cell container material, focal sound field size relative to cell model size, and distance between treated cells and air. For further evaluation of the severity of those influences, experiments and calculations were conducted. In 37 setups, 17 different combinations of coupling, cell container, and cell model are described. The setup used mainly is a transducer coupled via water to a tube filled with a cell suspension. As changes of the shockwaves' maximum pressure of 11 % can already induce changes of the biological reaction, the sound field and biological reactions are mainly disturbed by use of standard cell containers, use of coupling gel, air within the 5 MPa focal zone, and cell model sizes which are bigger than half the -6 dB focal dimensions. Until now, correct and sufficient information about the shockwave influencing cells in vitro is only provided in 1 of 32 publications. Based on these findings, guidelines for improved in vitro setups are proposed which help minimize the influence of the setup on the sound

  14. Eclogite-facies metamorphic reactions under stress and faulting in granulites from the Bergen Arcs, Norway: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Incel, Sarah; Hilairet, Nadège; Labrousse, Loïc; Andersen, Torgeir B.; Wang, Yanbin; Schubnel, Alexandre

    2017-04-01

    Field observations from the Bergen Arcs, Norway, demonstrate a network of pseudotachylites quenched under eclogite-facies conditions in mafic granulites. In these nominally anhydrous high-pressure high-temperature (HP/HT) rocks the formation of pseudotachylites, believed to represent fossilized earthquakes, cannot be explained by processes akin to dehydration embrittlement. On the contrary, the transition to eclogite is expected to involve hydration of the initial rock. To experimentally investigate the underlying mechanisms leading to brittle failure in HP/HT rocks, we performed deformation experiments on natural granulite samples from the Bergen Arcs. The experiments were conducted under eclogite-facies conditions (2-3 GPa, 990-1220 K) to trigger the breakdown of plagioclase - the main constituent of granulite. For these experiments, both a D-DIA and a Griggs apparatus were used. The D-DIA press is mounted on a synchrotron beamline, enabling us to monitor strain, stress, and phase changes in-situ while contemporaneously recording acoustic emissions. The Griggs experiments were performed on a new device installed at ENS Paris, in which only stress-strain were recorded, and post-mortem microstructures investigated. The initial material consisted of a fine grain size granulite powder (< 38 µm) composed of mainly plagioclase and minor amount of pyroxene. Hydrous phases are phlogopite and epidote group minerals that make up less than 1 vol. % of the total bulk rock powder plus the adhesion water on grain surfaces. Mechanical data together with XRD observations and the record of acoustic emissions demonstrate a correlation between stress drops, the growth of plagioclase breakdown products and the onset of acoustic emissions during deformation of our specimen within the eclogitic field. Microstructural analysis show remarkable similarities with that of the natural ecoligitic pseudotachylites of the Bergen arcs. The plagioclase decomposition products form narrow

  15. Determining Magma Mixing Duration Prior to the 1915 Eruption of Lassen Peak, California by Comparing Experimental Growth of Reaction Rims and Natural Olivine Crystals in Black Dacite

    NASA Astrophysics Data System (ADS)

    Graham, N. A.; Schwab, B. E.; Castro, J. M.; Clynne, M. A.

    2015-12-01

    Lassen Peak, located in northern California, last erupted in 1915 producing hybrid black dacite containing xenocrystic olivine grains with morphologically complex reaction rims of orthopyroxene. These rims are interpreted to have grown during magma mixing/mingling of admixed basaltic andesite and dacite reservoir magma prior to eruption. Reaction rim growth rates were determined from a series of hydrothermal experiments performed on starting materials consisting of powdered natural dacite pumice from the 1915 eruption and ~5 wt. % of Fo85 olivine separated from a spinel lherzolite xenolith (UM-5) from Kilbourne Hole, NM to constrain the length of time between magma recharge and eruption. Time series experiments were performed with run durations of 50, 100, 200, 400, and 600 hours at 50 and 100 MPa, 825oC and 875oC. The experiments produced a range in reaction rim growth rates where rim thickness generally increased with time. Average rim growth rate for each series is as follows: 0.031 μm²h-1 for 50 MPa at 825oC, 0.010 μm²h-1 for 50 MPa at 875oC, 0.158 μm²h-1 for 100 MPa at 825oC, and 0.088 μm²h-1 for 100 MPa at 875oC. Overall, the 100 MPa experiments resulted in faster growth rates and thicker reaction rims than the 50 MPa experiments. At a given pressure, the higher temperature (875 oC) experiments show slower average growth rates, but thicker reaction rims than the 825oC equivalents. This suggests that growth rate is not constant over time, but likely is more rapid at the early stages of the experiments/heating event, and then slows over time. Reaction rim widths on 100 olivine grains from samples of black dacite were determined by analysis of SEM BSE images and average 26.1 ± 21.7 μm. This average rim width corresponds to a range of mixing durations of 5.8 months (100 MPa, 825oC) to 93 months (50 MPa, 875oC). Average reaction duration of 10.6 months (at 100 MPa, 875oC) is most consistent with our previous experimental work on the 1915 dacite. Reaction

  16. Evaluation of the amalgamation reaction of experimental Ag-Sn-Cu alloys containing Pd using a mercury plating technique.

    PubMed

    Koike, Marie; Ferracane, Jack L; Fujii, Hiroyuki; Okabe, Toru

    2003-09-01

    A mercury plating technique was used to determine the phases forming on experimental Ag-Sn-Cu alloy powders (with and without Pd) exposed to electrolytically deposited mercury. Four series of alloy powders were made: a) 1.5% Pd with 10-14% Cu (CU series); b) 1.0% Pd with 10-14% Cu (1PD series); c) 1.5% Pd with different ratios of Ag3Sn (gamma) to Ag4Sn (beta) with 12% Cu (AGSN series); an