Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.
Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M
2017-08-01
Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The fracture toughness of borides formed on boronized cold work tool steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ugur; Sen, Saduman
2003-06-15
In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less
Kinetics of electrochemical boriding of low carbon steel
NASA Astrophysics Data System (ADS)
Kartal, G.; Eryilmaz, O. L.; Krumdick, G.; Erdemir, A.; Timur, S.
2011-05-01
In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.
Method for ultra-fast boriding
Erdemir, Ali; Sista, Vivekanand; Kahvecioglu, Ozgenur; Eryilmaz, Osman Levent
2017-01-31
An article of manufacture and method of forming a borided material. An electrochemical cell is used to process a substrate to deposit a plurality of borided layers on the substrate. The plurality of layers are co-deposited such that a refractory metal boride layer is disposed on a substrate and a rare earth metal boride conforming layer is disposed on the refractory metal boride layer.
Gradient boride layers formed by diffusion carburizing and laser boriding
NASA Astrophysics Data System (ADS)
Kulka, M.; Makuch, N.; Dziarski, P.; Mikołajczak, D.; Przestacki, D.
2015-04-01
Laser boriding, instead of diffusion boriding, was proposed to formation of gradient borocarburized layers. The microstructure and properties of these layers were compared to those-obtained after typical diffusion borocarburizing. First method of treatment consists in diffusion carburizing and laser boriding only. In microstructure three zones are present: laser borided zone, hardened carburized zone and carburized layer without heat treatment. However, the violent decrease in the microhardness was observed below the laser borided zone. Additionally, these layers were characterized by a changeable value of mass wear intensity factor thus by a changeable abrasive wear resistance. Although at the beginning of friction the very low values of mass wear intensity factor Imw were obtained, these values increased during the next stages of friction. It can be caused by the fluctuations in the microhardness of the hardened carburized zone (HAZ). The use of through hardening after carburizing and laser boriding eliminated these fluctuations. Two zones characterized the microstructure of this layer: laser borided zone and hardened carburized zone. Mass wear intensity factor obtained a constant value for this layer and was comparable to that-obtained in case of diffusion borocarburizing and through hardening. Therefore, the diffusion boriding could be replaced by the laser boriding, when the high abrasive wear resistance is required. However, the possibilities of application of laser boriding instead of diffusion process were limited. In case of elements, which needed high fatigue strength, the substitution of diffusion boriding by laser boriding was not advisable. The surface cracks formed during laser re-melting were the reason for relatively quickly first fatigue crack. The preheating of the laser treated surface before laser beam action would prevent the surface cracks and cause the improved fatigue strength. Although the cohesion of laser borided carburized layer was sufficient, the diffusion borocarburized layer showed a better cohesion.
Investigation of the fracture mechanics of boride composites
NASA Technical Reports Server (NTRS)
Kaufman, L.; Clougherty, E. V.; Nesor, H.
1971-01-01
Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.
Yao, Quantong; Sun, Jian; Fu, Yuzhu; Tong, Weiping; Zhang, Hui
2016-01-01
In this paper, a nanocrystalline surface layer without impurities was fabricated on Ti-6Al-4V alloy by means of surface mechanical attrition treatment (SMAT). The grain size in the nanocrystalline layer is about 10 nm and grain morphology displays a random crystallographic orientation distribution. Subsequently, the low-temperature boriding behaviors (at 600 °C) of the SMAT sample, including the phase composition, microstructure, micro-hardness, and brittleness, were investigated in comparison with those of coarse-grained sample borided at 1100 °C. The results showed that the boriding kinetics could be significantly enhanced by SMAT, resulting in the formation of a nano-structured boride layers on Ti-6Al-4V alloy at lower temperature. Compared to the coarse-grained boriding sample, the SMAT boriding sample exhibits a similar hardness value, but improved surface toughness. The satisfactory surface toughness may be attributed to the boriding treatment that was carried out at lower temperature. PMID:28774115
Morphology and structure of borides in as-cast titanium and gamma-titanium aluminide-based alloys
NASA Astrophysics Data System (ADS)
Kitkamthorn, Usanee
In this study, the morphology and structure of the borides in boron-modified Ti- and gamma-TiAl-based alloys have been investigated using SEM, TEM, and HRTEM. A variety of different boride morphologies was observed including plates, needles, and ribbons. For the plate and needle borides, the major boride phase is B27 TiB. The needle borides have their major axis parallel to [010], and are bounded by (100) and {101} type-facets. The plate borides develop the same types of facets as the needles and have habit planes parallel to the (100). There are high densities of intrinsic stacking faults on (100) in these borides and these correspond to thin embedded layers of the Bf structure. The plate borides do not exhibit well-defined ORs with respect to the surrounding phases, suggesting that they develop in the liquid melt and were then trapped by the growing solid. Needle borides are observed mostly at boundaries between lamellar colonies: these needles tend to occur in groups lying nearly parallel to one another and, in some cases, to adopt well-defined ORs with respect to the surrounding phases. Cored borides with metallic phases such as beta, alpha, o and alpha 2+gamma in the center are frequently observed, especially in the Ti-based alloy. These core phases usually adopt well-defined ORs with respect to the surrounding boride which enable low-energy coherent interfaces to form between the phases. The ribbon borides are comprised of thin boride flakes interspersed with thin metallic layers. The major boride phase in these flakes is Bf TiB. The habit plane of the flakes is (010) and there are high densities of faults on this plane corresponding to intergrowths of the Ti3B 4 and TiB2 phases, together with thin layers or occluded pockets of metallic B2 phase. Occasional faults are observed on {110} corresponding to embedded slabs of B27 TiB. There is a well-defined OR between the boride flakes and the B2 phase within the ribbons, but not with the surrounding matrix. The characteristics of these various borides are consistent with them forming as eutectic reaction products, with the exception of the finest needles and plates observed in Ti-based alloy.
Ultra-fast boriding of metal surfaces for improved properties
Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali
2015-02-10
A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.
2013-07-01
The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.
NASA Astrophysics Data System (ADS)
Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.
2012-08-01
Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.
Boriding of high carbon high chromium cold work tool steel
NASA Astrophysics Data System (ADS)
Muhammad, W.
2014-06-01
High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.
2015-02-19
boride composites *Volodymyr Borysovych Filipov SCIENCE AND TECHNOLOGY CENTER IN UKRAINE METALISTIV 7A, KYIV, UKRAINE *FRANTSEVICH...microstructure and interface boundary formation in directionally solidified ceramic boride composites 5a. CONTRACT NUMBER STCU P-512 5b. GRANT NUMBER...BOUNDARY FORMATION IN DIRECTIONALLY SOLIDIFIED CERAMIC BORIDE COMPOSITES Project manager: Filipov Volodymyr Borysovych Phone: (+380.44) 424-13-67
Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties
2014-10-31
UHTCs charge (zirconium and hafnium borides , SiC) with additives (chromium carbide, nickel, chromium, etc.), which activate sintering process, is...temperature phases in a form of carboborides of zirconium and bi borides of zirconium or chromium. Elevation of densification rate of sintered borides is...superplasticity under the slip mechanism of zirconium boride and silica carbide grains on grain boundary interlayers with nanocrystalline grains of carbon
Designing superhard metals: The case of low borides
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Qin, Ping; Jiang, Haitao; Zhang, Lizhen; Zhang, Jing; Tang, Chun
2018-04-01
The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities.
Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.
2012-11-15
In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Catledge, Shane A.
2016-02-01
Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.
Characterization of AISI 4140 borided steels
NASA Astrophysics Data System (ADS)
Campos-Silva, I.; Ortiz-Domínguez, M.; López-Perrusquia, N.; Meneses-Amador, A.; Escobar-Galindo, R.; Martínez-Trinidad, J.
2010-02-01
The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe 2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe 2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC( π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.
2015-09-16
AFRL-AFOSR-VA-TR-2015-0314 Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C...Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C 5a. CONTRACT NUMBER 5b. GRANT...with a packed bed of B4C to form boride - carbide precipitates. Although the ultimate goal of the research endeavor is to enhance significantly the
Field free, directly heated lanthanum boride cathode
Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.
1987-02-02
A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
NASA Astrophysics Data System (ADS)
Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-08-01
The three-jet direct-flow plasma reactor with a channel diameter of 0.054 m was studied in terms of service life, thermal, technical, and functional capabilities. It was established that the near-optimal combination of thermal efficiency, required specific enthalpy of the plasma-forming gas and its mass flow rate is achieved at a reactor power of 150 kW. The bulk temperature of plasma flow over the rector of 12 gauges long varies within 5500÷3200 K and the wall temperature within 1900÷850 K, when a cylinder from zirconium dioxide of 0.005 m thick is used to thermally insulate the reactor. The specific electric power reaches a high of 1214 MW/m3. The rated service life of electrodes is 4700 hours for a copper anode and 111 hours for a tungsten cathode. The projected contamination of carbides and borides with elec-trode-erosion products doesn't exceed 0.0001% of copper and 0.00002% of tungsten.
NASA Astrophysics Data System (ADS)
Keddam, Mourad; Taktak, Sukru
2017-03-01
The present study is focused on the estimation of activation energy of boron in the plasma paste borided Ti6Al4V alloy, which is extensively used in technological applications, using an analytical diffusion model. Titanium boride layers were successfully produced by plasma paste boriding method on the Ti6Al4V alloy in the temperature range of 973-1073 K for a treatment time ranging from 3 to 7 h. The presence of both TiB2 top-layer and TiB whiskers sub-layer was confirmed by the XRD analysis and SEM observations. The surface hardness of the borided alloy was evaluated using Micro-Knoop indenter. The formation rates of the TiB2 and TiB layers were found to have a parabolic character at all applied process temperatures. A diffusion model was suggested to estimate the boron diffusivities in TiB2 and TiB layers under certain assumptions, by considering the effect of boride incubation times. Basing on own experimental data on boriding kinetics, the activation energies of boron in TiB2 and TiB phases were estimated as 136.24 ± 0.5 and 63.76 ± 0.5 kJ mol-1, respectively. Finally, the obtained values of boron activation energies for Ti6Al4V alloy were compared with the data available in the literature.
Properties of boride-added powder metallurgy magnesium alloys
NASA Astrophysics Data System (ADS)
Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi
2009-06-01
Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.
NASA Astrophysics Data System (ADS)
Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.
2015-12-01
Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in comparison with untreated Nimonic 80A-alloy.
In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis.
Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David
2017-08-07
Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H 2 ), and a mixture of H 2 and carbon dioxide (CO 2 ) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H 2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H 2 activates CoB for the catalysis of CO 2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.
NASA Astrophysics Data System (ADS)
Ballinger, Jared
Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase. Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels to promote diamond film surface modification. The future direction for continued research of nanostructured diamond coatings on microwave plasma CVD borided stainless steel should further investigate the adhesion of both borided interlayers and subsequent NSD films in addition to short, interrupted diamond depositions to study the interlayer/diamond film interface.
Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.
2015-02-01
Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.
2012-08-01
interior, and carbides and borides at the grain boundaries. Blocky carbide particles can also be seen in the grain interior (Figure 1b). The borides ...can be seen distributed (b) higher magnification image of a typical grain boundary decorated with carbide and boride particles. Bi-modal distribution
Future Directions for Selected Topics in Physics and Materials Science
2012-07-12
referred to as lightides (e.g. borides , nitrides, phosphides) • Materials for energy conversion, energy storage, energy transport and energy production...Distributed nanosystems and sensors • Strategy for multilayered combinatorics • lightides ( borides , nitrides, phosphides, • New applications for...Strategy for multilayered combinatorics Lightides ( borides , nitrides, phosphides) • Energy conversion, .storage and production • Precision control
Plasma metallurgical production of nanocrystalline borides and carbides
NASA Astrophysics Data System (ADS)
Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.
2016-09-01
he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.
The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium
NASA Astrophysics Data System (ADS)
Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie
2016-07-01
In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.
Kinetic Investigation and Wear Properties of Fe2B Layers on AISI 12L14 Steel
NASA Astrophysics Data System (ADS)
Keddam, M.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Arenas-Flores, A.; Zuno-Silva, J.; Zamarripa-Zepeda, D.; Gomez-Vargas, O. A.
2018-03-01
In the current study, the powder-pack boriding was applied to the AISI 12L14 steel in the temperature range 1123 K to 1273 K for an exposure time between 2 and 8 hours. The produced boride layer was composed of Fe2B with a sawtooth morphology. A diffusion model based on the integral method was applied to investigate the growth kinetics of Fe2B layers. As a main result, the boron diffusion coefficients in Fe2B were estimated by considering the principle of mass balance at the (Fe2B/substrate) interface with an inclusion of boride incubation times. The value of activation energy for boron diffusion in AISI 12L14 steel was estimated as 165 kJ mol-1 and compared with other values of activation energy found in the literature. An experimental validation of the present model was made by using four different boriding conditions. Furthermore, the Rockwell-C adhesion test was employed to assess the cohesion of boride layers to the base metal. The scratch and pin-on-disc tests were also carried out to analyze the effect of boriding on wear behavior of AISI 12L14 steel.
NASA Astrophysics Data System (ADS)
Steuer, Susanne; Singer, Robert F.
2014-07-01
Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).
2012-02-01
the presence of somewhat randomly-distributed carbides and borides (white particles in BSE images), this grain size was comparable to that observed...pinned by carbide/ boride particles (imaging white in Figure 8c). The very fine gamma-prime precipitates likely produced during magnetron sputtering...sputtered material. First, the carbide/ boride particles were nucleated and hence located preferentially at the grain boundaries in the sputtered
Novel Routes to Tune Thermal Conductivities and Thermoelectric Properties of Materials
2012-11-15
expand the possibilities of borides as functional compou nds. A series of indium-free novel TCO compounds with novel crystal structures, has...powerful methods for modification were demonstrated in the borides , silicides and oxides. Introduction: The goal of this project is to...the possibility to modify the crystal structures can expand the possibilities of borides as functional compounds. A series of indium-free novel TCO
Alloying-Element Loss during High-Temperature Processing of a Nickel-Base Superalloy (Preprint)
2013-01-01
precipitates, and the fine white/gray particles are carbides and borides . ............................................. 23 Figure 2. Aluminum...comparable size, and submicron carbides and borides . A fifteen-minute heat treatment at the subsolvus temperature used in the present work (i.e...precipitates, and ~0.3 volume pct. of carbides and borides with an average diameter of ~0.3 m (Figure 1) [5, 6]. B. Procedures To establish the
Amorphous Iron Borides: Preparation, Structure and Magnetic Properties.
1982-09-28
temperature. External magnetic field experiments were performed in a superconducting solenoid with both source and absor- ber at 4.2 K. The observed...D-Ai20 919 AMORPHOUS IRON BORIDES: PREPARATION STRUCTURE AND i/i MAGNETIC PROPERTIES(U) JOHNS HOPKINS UNIV LAUREL NO APPLIED PHYSICS LRB K MOORJRNI...NATIONAL BUREAU OF STANOANOS-93-A 10 AMORPHOUS IRON BORIDES: PREPARATION, STRUCTURE ~AND MAGNETIC PROPERTIES FINAL REPORT Kishin Moorjani September 1982 U
NASA Astrophysics Data System (ADS)
Zhang, H.; Tang, H.; He, Y. Z.; Zhang, J. L.; Li, W. H.; Guo, S.
2017-11-01
Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.
Certain physical properties of cobalt and nickel borides
NASA Technical Reports Server (NTRS)
Kostetskiy, I. I.; Lvov, S. N.
1981-01-01
The temperature dependence of the electrical resistivity, the thermal conductivity, and the thermal emf of cobalt and nickel borides were studied. In the case of the nickel borides the magnetic susceptibility and the Hall coefficient were determined at room temperature. The results are discussed with allowance for the current carrier concentration, the effect of various mechanisms of current-carrier scattering and the location of the Fermi level in relation to the 3d band.
A study on the formation of solid state nanoscale materials using polyhedral borane compounds
NASA Astrophysics Data System (ADS)
Romero, Jennifer V.
The formation of boron containing materials using a variety of methods was explored. The pyrolysis of a metal boride precursor solution can be accomplished using a one-source method by combining TiCl4, B10H 14 and CH3CN in one reaction vessel and pyrolyzing it at temperatures above 900 °C. Amorphous dark blue colored films were obtained after the pyrolysis reactions. Well-defined spherical shaped grains or particles were observed by SEM. The amorphous films generated contained titanium, however, the determination of the boron content of the films was inconclusive. This one pot method making metal boride thin films has the advantage of being able to dictate the stoichiometry of the reactants. Another part of this work represents the first report of both the use of metal boride materials and the use of a titanium-based compound for the formation of nanotubes. This method provides a facile method for generating well-formed boron-containing carbon nanotubes in a "one-pot" process through an efficient aerosol process. The formation of metal boride corrosion resistant layers was also explored. It was shown that metallic substrates can be effectively boronized using paste mixtures containing boron carbide and borax. The formation of a Fe4B 2 iron boride phase was achieved, however, this iron boride phase does not give enough corrosion protection. The formation of a corrosion resistant metal boride coating with strong adhesion was accomplished by boronization of a thermal sprayed nickel layer on the surface of steel. Surfactants were explored as possible nanoreactors in which metal boride nanoparticles could be formed to use as nanotube growth catalyst via room temperature reaction. Different surfactants were used, but none of them successfully generated very well dispersed metal boride nanoparticles. Nanoparticles with varying shapes and sizes were generated which were highly amorphous. The carboxylic acid derivative of closo-C2B 10 cages was explored as a ligand in the hydrothermal preparation of coordination polymers with zinc salts. It was found that the stability of the cage is apparently insufficient under these conditions and cage degradation was observed. Consequently, a preliminary investigation of the preparation of dipyridyl derivatives of both the closo-C2B 10 and the closo-B12 cages was performed.
Synthesis and Characterization of YB4 Ceramics
2011-06-24
capa bility at temperatures above 2000°C1 with adequate mechani cal properties and oxidation resistance. Refractory metal borides based on HfB2 and ZrB2...increase in the oxidation resistance was accomplished by the addition of the Group IV VI transition metal borides , which was the result of phase...metal borides for use as materials for ultra high temper ature (UHT) applications. However, for instance, yttrium tet raboride, YB4, appears promising as
Finding the Stable Structures of WxN1-x with an ab-initio High-Throughput Approach
2014-03-13
cubic boron nitride[4], carbonitrides,[5] and transition metal borides .[6, 7] Over the past several years there has been considerable theoretical...include ionic and covalent structures which seem chemically similar to W-N. These include borides , carbides, oxides, and other nitrides. In this paper we...metallic alloys, [23–27] we extended it to include over fifty new structures. These include nitrides, oxides, borides , and carbides. The important
Magnesium Aluminum Borides as Explosive Materials
2011-12-20
Metal Silicides , and Metal Borides by Chemical Vapour Deposition Using Single Organometallic Precursors,” Trans. Inst. Met. Finishing, 72, 127-129...391 (2003). 62. X. Xiaojing, D. Bohua, Q. Zuanhui, and L. Yuanhui, “ Preparation and Synthesis Mechanism of Li-B Alloy,” Rare Metal Materials and...SUPPLEMENTARY NOTES 14. ABSTRACT Metal boride.; and boroo carbide Witted l’"irh Al ’I\\· ere compared co B. Mg. Al Mg:-AJ and Si a.s poteotia! fuel ad.diti
Development of high temperature stable Ohmic and Schottky contacts on n-gallium nitride
NASA Astrophysics Data System (ADS)
Khanna, Rohit
In this work the effort was made to towards develop and investigate high temperature stable Ohmic and Schottky contacts for n type GaN. Various borides and refractory materials were incorporated in metallization scheme to best attain the desired effect of minimal degradation of contacts when placed at high temperatures. This work focuses on achieving a contact scheme using different borides which include two Tungsten Borides (namely W2B, W2B 5), Titanium Boride (TiB2), Chromium Boride (CrB2) and Zirconium Boride (ZrB2). Further a high temperature metal namely Iridium (Ir) was evaluated as a potential contact to n-GaN, as part of continuing improved device technology development. The main goal of this project was to investigate the most promising boride-based contact metallurgies on GaN, and finally to fabricate a High Electron Mobility Transistor (HEMT) and compare its reliability to a HEMT using present technology contact. Ohmic contacts were fabricated on n GaN using borides in the metallization scheme of Ti/Al/boride/Ti/Au. The characterization of the contacts was done using current-voltage measurements, scanning electron microscopy (SEM) and Auger Electron Spectroscopy (AES) measurements. The contacts formed gave specific contact resistance of the order of 10-5 to 10-6 Ohm-cm2. A minimum contact resistance of 1.5x10-6 O.cm 2 was achieved for the TiB2 based scheme at an annealing temperature of 850-900°C, which was comparable to a regular ohmic contact of Ti/Al/Ni/Au on n GaN. When some of borides contacts were placed on a hot plate or in hot oven for temperature ranging from 200°C to 350°C, the regular metallization contacts degraded before than borides ones. Even with a certain amount of intermixing of the metallization scheme the boride contacts showed minimal roughening and smoother morphology, which, in terms of edge acuity, is crucial for very small gate devices. Schottky contacts were also fabricated and characterized using all the five boride compounds. The barrier height obtained on n GaN was ˜0-5-0.6 eV which was low compared to those obtained by Pt or Ni. This barrier height is too low for use as a gate contact and they can only have limited use, perhaps, in gas sensors where large leakage current can be tolerated in exchange for better thermal reliability. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/TiB2/Ti/Au source/drain ohmic contacts and a variety of gate metal schemes (Pt/Au, Ni/Au, Pt/TiB2/Au or Ni/TiB 2/Au) and were subjected to long-term annealing at 350°C. By comparison with companion devices with conventional Ti/Al/Pt/Au ohmic contacts and Pt/Au gate contacts, the HEMTs with boride-based ohmic metal and either Pt/Au, Ni/Au or Ni/TiB2/Au gate metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The need for sputter deposition of the borides causes' problem in achieving significantly lower specific contact resistance than with conventional schemes deposited using e-beam evaporation. The borides also seem to be, in general, good getters for oxygen leading to sheet resistivity issues. Ir/Au Schottky contacts and Ti/Al/Ir/Au ohmic contacts on n-type GaN were investigated as a function of annealing temperature and compared to their more common Ni-based counterparts. The Ir/Au ohmic contacts on n-type GaN with n˜1017 cm-3 exhibited barrier heights of 0.55 eV after annealing at 700°C and displayed less intermixing of the contact metals compared to Ni/Au. A minimum specific contact resistance of 1.6 x 10-6 O.cm2 was obtained for the ohmic contacts on n-type GaN with n˜1018 cm-3 after annealing at 900°C. The measurement temperature dependence of contact resistance was similar for both Ti/Al/Ir/Au and Ti/Al/Ni/Au, suggesting the same transport mechanism was present in both types of contacts. The Ir-based ohmic contacts displayed superior thermal aging characteristics at 350°C. Auger Electron Spectroscopy showed that Ir is a superior diffusion barrier at these moderate temperatures than Ni.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Jie; Jin, Xiaoyue; Wu, Xiaoling; Wu, Zhenglong; Xue, Wenbin
The influence of applied voltage on the plasma electrolytic borocarburizing (PEB/C) layer of Q235 low-carbon steel in high-concentration borax solution was investigated. XRD and XPS spectra of PEB/C layer confirmed that the modified boride layer mainly consisted of Fe2B phase, and the FeB phase only exists in the loose top layer. The applied voltage on Q235 steel played a key role in determining the properties of hardened layers. The thickness and microhardness of boride layers increased with the increase of the applied voltage, which led to superior corrosion and wear resistances of Q235 low-carbon steel. The diffusion coefficient (D) of boride layer at 280, 300 and 330V increased with borocarburizing temperature and ranged from 0.062×10-12m2/s to 0.462×10-12m2/s. The activation energy (Q) of boride layer growth during PEB/C treatment was only 52.83kJṡmol-1, which was much lower than that of the conventional boriding process.
Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kon, O., E-mail: okon42@htotmail.com; Pazarlioglu, S.; Sen, S.
2015-03-30
In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurementsmore » were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV{sub 0.005}.« less
Crystal structure and phase stability of tungsten borides
NASA Astrophysics Data System (ADS)
Li, Quan; Zhou, Dan; Ma, Yanming; Chen, Changfeng
2013-03-01
We address the longstanding and controversial issue of ground-state structures of technically important tungsten borides using a first-principles structural search method via a particle-swarm optimization (PSO) algorithm. We have explored a large set of stable chemical compositions (convex hull) and clarified the ground-state structures for a wide range of boron concentrations, including W2B, W3B2,WB,W2B3, WB2,W2B5, WB3, and WB4. We further assessed relative stability of various tungsten borides and compared the calculated results with previously reported experimental data. The phase diagram predicted by the presented calculations may serve as a useful guide for synthesis of a variety of tungsten borides. This work was supported by DOE Grant No. DE-FC52-06NA26274.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salamakha, Leonid P.; Sologub, Oksana, E-mail: oksana.sologub@univie.ac.at; Stöger, Berthold
New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt{sub 1−x}Cu{sub x}){sub 3}Cu{sub 2}B (x=0.33) forms a B-filled β-Mn-type structure (space group P4{sub 1}32; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt{sub 9}Cu{sub 3}B{sub 5} (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt{sub 9}Zn{submore » 3}B{sub 5–δ}-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt{sub 6}] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt{sub 6}] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt{sub 6}] and [Pt{sub 6}] trigonal prisms, rotated perpendicularly to the central one. There is no B–B contact as well as Cu–B contact in the structure. The relationships of Pt{sub 9}Cu{sub 3}B{sub 5} structure with the structure of Ti{sub 1+x}Os{sub 2−x}RuB{sub 2} as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt{sub 1–x}Cu{sub x}){sub 3}Cu{sub 2}B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ{sub 0}H{sub C2}(0){sup WHH} of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt{sub 9}Cu{sub 3}B{sub 5} (Pt{sub 9}Zn{sub 3}B{sub 5–δ}-type structure) from electrical resistivity measurements. - Highlights: • First two copper platinum borides, (Pt{sub 0.67}Cu{sub 0.33}){sub 3}Cu{sub 2}B and Pt{sub 9}Cu{sub 3}B{sub 5} were obtained. • (Pt{sub 0.67}Cu{sub 0.33}){sub 3}Cu{sub 2}B forms a B-filled β-Mn-type structure. • Pt{sub 9}Cu{sub 3}B{sub 5} adopts a Pt{sub 9}Zn{sub 3}B{sub 5–δ}-type structure. • Boron atoms exhibit octahedral and trigonal prismatic coordination. • (Pt{sub 1–x}Cu{sub x})3Cu{sub 2}B (x=0.3) is a bulk superconductor with T{sub c} 2.06 K.« less
High Energy Advanced Thermal Storage for Spacecraft Solar Thermal Power and Propulsion Systems
2011-10-12
Vol. 108, No. 6, June 1961, pp. 568-572. 38. Storms, E. and Mueller, B., "Phase Relations and Thermodynamic Properties of Transition Metal Borides ...T., and Naka, S., "Formation Process of Tungsten Borides by Solid State Reaction Between Tungsten and Amorphous Boron," Journal of Materials...Molybdenum- Borides ," Journal of Metals, September 1952, pp. 983-988. 41. Ellis, R.C., “Various Preparations of Elemental Boron,” Proceedings of the 1st
Finding the Stable Structures of N1-xWx with an Ab Initio High-Throughput Approach
2015-05-26
W. These include borides , carbides, oxides, and other nitrides. We also invented many structures to mimic the random pattern of vacancies on both the...structures. These include nitrides, oxides, borides , and carbides, as well as supercells of standard structures with atoms removed to mimic the random patter...1930). [15] R. Kiessling and Y. H. Liu, Thermal stability of the chromium, iron, and tungsten borides in streaming ammonia and the existence of a new
Molten Boron Phase-Change Thermal Energy Storage to Augment Solar Thermal Propulsion Systems
2011-07-13
Thermodynamic Properties of Transition Metal Borides . I. The Molybdenum-boron system and Elemental Boron," Journal of Physical Chemistry, Vol. 81...February 1977, pp. 318-324. 38Itoh, H., Matsudaira, T., and Naka, S., "Formation Process of Tungsten Borides by Solid State Reaction Between Tungsten...Molybdenum-Boron and Some Properties of The Molybdenum- Borides ," Journal of Metals, September 1952, pp. 983-988. 40Stout, N. D., Mar, R. W., and Boo, W. O
Fokwa, Boniface P T; Hermus, Martin
2011-04-18
Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.
Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi
2017-01-01
The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759
Non-Contact Tabletop Mechanical Testing of Ultra-High Temperature Ceramics
2012-05-01
class of refractory materials including transition metal borides , carbides and nitrides e.g. ZrB2l HfB2) ZrC, HfC, TaC, HfN and ZrN. They recently...ike oxidizing atmospheres, at very high temperatures Refractory borides like ZrB2 and HfB2 have extremely high melting temperatures (over 3000°C...But borides are very poor in oxidation resistance, due to the nature of thär oxides Non-protective ZrCfe or Hf02 and volatile liquid B203. Addition
2011-11-01
Deformation is highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i...highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i matrix-type...phase at different thicknesses. 7328 R.R. Unocic et al. / Acta Materialia 59 (2011) 7325–7339 the image. A number of carbide and/or boride phases are
Beta cell device using icosahedral boride compounds
Aselage, Terrence L.; Emin, David
2002-01-01
A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15
NASA Astrophysics Data System (ADS)
Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-04-01
The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.
The effect of boriding on wear resistance of cold work tool steel
NASA Astrophysics Data System (ADS)
Anzawa, Y.; Koyama, S.; Shohji, I.
2017-05-01
Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ~ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement.
Kinetics and Tribological Characterization of Pack-Borided AISI 1025 Steel
NASA Astrophysics Data System (ADS)
Gómez-Vargas, O. A.; Keddam, M.; Ortiz-Domínguez, M.
2017-03-01
In this present study, the AISI 1025 steel was pack-borided in the temperature range of 1,123-1,273 K for different treatment times ranging from 2 to 8 h. A diffusion model was suggested to estimate the boron diffusion coefficients in the Fe2B layers. As a result, the boron activation energy for the AISI 1025 steel was estimated as 174.36 kJ/mol. This value of energy was compared with the literature data. To extend the validity of the present model, other additional boriding conditions were considered. The boride layers formed on the AISI 1025 steel were characterized by the following experimental techniques: scanning electron microscopy, X-ray diffraction analysis and the Daimler-Benz Rockwell-C indentation technique. Finally, the scratch and pin-on-disc tests for wear resistance were achieved using an LG Motion Ltd and a CSM tribometer, respectively, under dry sliding conditions.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert
2015-11-16
On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xuan
To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2,more » respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.« less
2012-01-01
submitted to Metallurgical Transactions. This document contains color. 14. ABSTRACT While the role of borides on the microstructure of titanium...Ohio, U.S.A. Abstract While the role of borides on the microstructure of titanium alloys has been discussed in many previous reports, this paper...morphology of precipitates nucleating from boride precipitates present in the matrix of a titanium alloy; and (b) to investigate the role of presence or
NASA Astrophysics Data System (ADS)
Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.
2017-01-01
Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.
Effect of mechanical activation on jell boronizing treatment of the AISI 4140
NASA Astrophysics Data System (ADS)
Yılmaz, S. O.; Karataş, S.
2013-06-01
The article presents the effect of mechanical activation on the growth kinetics of boride layer of boronized AISI 4140 steel. The samples were boronized by ferroboron + (SiO2-Na2O) powders for 873-1173 K temperature and 2, 4, 6 and 8 h times, respectively. The morphology and types of borides formed on the surface of AISI 4140 steel substrate were analyzed. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe2B sublayers as function of treatment time and temperature in the range of 873-1173 K. High diffusivity was obtained by creating a large number of defects through mechanical activation in the form of nanometer sized crystalline particles through the repeated fracturing and cold-welding of the powder particles, and a depth of 100 μm was found in the specimen borided by the 2 h MA powders, for 4 h and 1073 K, where 2000-2350 HV were measured. Consequently, the application conditions of boronizing were improved by usage of mechanical activation. The preferred Fe2B boride without FeB could be formed in the boride layer under 973 K boronizing temperature by mechanically activated by ferroboron + sodium silicate powder mixture due to the decrease of the activation energy.
Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium
2011-09-01
nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3
Growth kinetics of borided layers: Artificial neural network and least square approaches
NASA Astrophysics Data System (ADS)
Campos, I.; Islas, M.; Ramírez, G.; VillaVelázquez, C.; Mota, C.
2007-05-01
The present study evaluates the growth kinetics of the boride layer Fe 2B in AISI 1045 steel, by means of neural networks and the least square techniques. The Fe 2B phase was formed at the material surface using the paste boriding process. The surface boron potential was modified considering different boron paste thicknesses, with exposure times of 2, 4 and 6 h, and treatment temperatures of 1193, 1223 and 1273 K. The neural network and the least square models were set by the layer thickness of Fe 2B phase, and assuming that the growth of the boride layer follows a parabolic law. The reliability of the techniques used is compared with a set of experiments at a temperature of 1223 K with 5 h of treatment time and boron potentials of 2, 3, 4 and 5 mm. The results of the Fe 2B layer thicknesses show a mean error of 5.31% for the neural network and 3.42% for the least square method.
Selection of peptides binding to metallic borides by screening M13 phage display libraries.
Ploss, Martin; Facey, Sandra J; Bruhn, Carina; Zemel, Limor; Hofmann, Kathrin; Stark, Robert W; Albert, Barbara; Hauer, Bernhard
2014-02-10
Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. This study is, to our knowledge, the first to identify peptides that bind specifically to amorphous and to crystalline Ni3B nanoparticles. We think that the identified strong binding sequences described here could potentially serve for the utilisation of M13 phage as a viable alternative to other methods to create tailor-made boride composite materials or new catalytic surfaces by a biologically driven nano-assembly synthesis and structuring.
Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren
2011-01-01
Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2013-01-01
eutectic materials development through a new initiative entitled Boride Eutectic Project. These results first time organize and populate materials...property databases, and utilize an iterative feedback routine to constantly improve the design process of the boride eutectics LaB6-MeB2 (Me = Zr, Hf, Ti
Superabrasive boride and a method of preparing the same by mechanical alloying and hot pressing
Cook, Bruce A.; Harringa, Joel L.; Russell, Alan M.
2002-08-13
A ceramic material which is an orthorhombic boride of the general formula: AlMgB.sub.14 :X, with X being a doping agent. The ceramic is a superabrasive, and in most instances provides a hardness of 40 GPa or greater.
2012-08-01
Properties. Abyss Books, Washington, D.C., 2002. 2. G. Montel, A. Lebugle and H. Pastor. "Manufacture of Materials Containing Refractory Borides ...and ZrO2," International Journal of Refractory Metals and Hard Materials, 17, 235-43 (1999). 10. A.W. Weimer, Carbide, nitride and boride
Adhesive and Cohesive Strength in FeB/Fe2B Systems
NASA Astrophysics Data System (ADS)
Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.
2018-05-01
In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.
The Effects of Borides on the Mechanical Properties of TLPB Repaired Inconel 738 Superalloy
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Zou, G.; Bai, H.; Wu, A.; Liu, L.
2017-10-01
The transient liquid phase diffusion bonding (TLPB) method was used to repair an artificial crack in Inconel 738, which was notched by a femtosecond laser. Mixed ratios of BNi-1a:DF-4B were investigated at the bonding temperature of 1373 K (1100 °C) for 2 to 36 hours. The effect of borides on the mechanical properties of TLPB repaired joints was studied through analysis of the microstructure, fracture path, and morphology observations. The borides formation, morphology, distribution, and joints strength were studied in detail. The results showed that the diffusion of B can either increase or decrease the joint strength, depending on its distribution and morphology. The amount of large blocky Ni-B compounds in the precipitate zone were reduced with increasing holding time, which resulted in an increase in joint strength. Nevertheless, further increasing the holding time led to a decrease in joint strength because of the formation of continuous acicular borides in the diffusion-affected zone. The fracture modes of TLPB joints were also discussed on the basis of the microstructure and fractography.
Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel
NASA Astrophysics Data System (ADS)
Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.
2017-11-01
The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menaka,; Kumar, Bharat; Kumar, Sandeep
The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetatemore » (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.« less
NASA Astrophysics Data System (ADS)
Rai, Arun Kumar; Vijayashanthi, N.; Tripathy, H.; Hajra, R. N.; Raju, S.; Murugesan, S.; Saroja, S.
2017-11-01
In the present study, the feasibility of employing the indigenously developed ferroboron alloy (Fe-15 wt.%B) as an alternate neutron shield material in combination with 9Cr-based ferritic steel (P91) clad in future Indian fast breeder reactors (FBR), has been investigated from a metallurgical perspective. Towards this goal, a series of diffusion couple experiments have been conducted at three different temperatures namely, 600, 700 and 800 °C for time durations up to 5000 h. The thickness of interaction layer has been monitored using standard metallographic procedures. The experiments revealed that ferroboron/P91 combination exhibited a tendency to form complex intermetallic borides at the interface. The structural and microstructural characterization of the interface confirmed that the reaction layer consists predominantly of borides of Fe and Cr of type FeB, Fe2B, (Fe,Cr)2B and (Fe,Cr)B. The measured variation of interaction layer thickness as a function of time and temperature have been modelled in terms of diffusion mediated interaction. The growth kinetics of borided layer has followed the parabolic law at each temperature, and the apparent activation energy for boride layer formation is found to be of the order of 115 kJ mol-1. This indicates that the kinetics of boriding could be governed by diffusion of B into the P91 matrix. Based on the findings of present study, an extrapolative estimate of the clad attack thickness at 550 °C for 60 years of operating time has been made and it turns out to be 210 ± 15 μm, which is less than the clad thickness of FBR shielding subassembly (4 mm) [1]. Thus, this study confirms that at testing temperatures from 550 to 600 °C, the ferroboron/P91 steel combination can be safely employed for shielding subassembly applications in fast reactors.
NASA Astrophysics Data System (ADS)
Salamakha, Leonid P.; Sologub, Oksana; Stöger, Berthold; Michor, Herwig; Bauer, Ernst; Rogl, Peter F.
2015-09-01
New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt1-xCux)3Cu2B (x=0.33) forms a B-filled β-Mn-type structure (space group P4132; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt9Cu3B5 (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt9Zn3B5-δ-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt6] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt6] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt6] and [Pt6] trigonal prisms, rotated perpendicularly to the central one. There is no B-B contact as well as Cu-B contact in the structure. The relationships of Pt9Cu3B5 structure with the structure of Ti1+xOs2-xRuB2 as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt1-xCux)3Cu2B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ0HC2(0)WHH of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt9Cu3B5 (Pt9Zn3B5-δ-type structure) from electrical resistivity measurements.
NASA Astrophysics Data System (ADS)
Goerens, Christian; Fokwa, Boniface P. T.
2012-08-01
Polycrystalline samples and single crystals of the new complex boride Ti1+xRh2-x+yIr3-yB3 (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B4 fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) Å, b=14.995(2) Å and c=3.234(1) Å. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B4 fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior.
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Filatov, E. S.
2017-08-01
The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.
Search for New Superconductors for Energy and Power Applications
2014-10-21
superconductors, borides , carbides, silicides, and chalcogenides. In addition, a number of thin film systems have been explored: A15s, superlattices, arrays of...YBa2Cu3O7 Bi2Se3 Eu-Si-C ErRh4B4 Bi2Sr2CaCu2O8 (UD, OD) Sb2Se3 V-Si-C (Ga,Mn)As CuO ZrSe2 Sm-Si-C Hf(FeCo)P Y1-xCaxCrO3 Fe-Te-Se BORIDES Hf-Fe-C-P...Physics, Warsaw, Poland Table III New superconductors, discovered by UCSD MURI team. BORIDES Tc (K) Nb0.9Zr0.1B 11.2 ZrNbxB 9.0 ZrVxB 9.0
NASA Technical Reports Server (NTRS)
Tanaka, Hidehiko
1987-01-01
A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi
1983-01-01
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.
Subminiature eddy current transducers for studying boride coatings
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.
2016-07-01
Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.
2012-09-01
of a di-tungsten boride (W2B) phase was not detected in the nW-B sample, but the low concentration of boron may have made this phase undetectable by...Split Hopkinson Bar UFG ultrafine grained W2B di-tungsten boride XRD x-ray diffraction NO. OF NO. OF COPIES ORGANIZATION COPIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghaus, Jens; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.d; Miller, Gordon J.
2009-10-15
First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions inmore » this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.« less
Superplastic behavior of two ultrahigh boron steels
NASA Astrophysics Data System (ADS)
Jiménez, J. A.; González-Doncel, G.; Acosta, P.; Ruano, O. A.
1994-06-01
The high-temperature deformation behavior of two ultrahigh boron steels containing 2.2 pct and 4.9 pct B was investigated. Both alloys were processed via powder metallurgy involving gas atomization and hot isostatic pressing (hipping) at various temperatures. After hipping at 700 °C, the Fe-2.2 pct B alloy showed a fine microstructure consisting of l- µm grains and small elongated borides (less than 1 µm) . At 1100 °C, a coarser microstructure with rounded borides was formed. This alloy was superplastic at 850 °C with stress exponents of about two and tensile elongations as high as 435 pct. The microstructure of the Fe-4.9 pct B alloy was similar to that of the Fe-2.2 pct B alloy showing, in addition, coarse borides. This alloy also showed low stress exponent values but lacked high tensile elongation (less than 65 pct), which was attributed to the presence of stress accumulation at the interface between the matrix and the large borides. A change in the activation energy value at the α-γ transformation temperature was seen in the Fe-2.2 pct B alloy. The plastic flow data were in agreement with grain boundary sliding and slip creep models.
Friction and wear of radiofrequency-sputtered borides, silicides, and carbides
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.
Low temperature InP /Si wafer bonding using boride treated surface
NASA Astrophysics Data System (ADS)
Huang, Hui; Ren, Xiaomin; Wang, Wenjuan; Song, Hailan; Wang, Qi; Cai, Shiwei; Huang, Yongqing
2007-04-01
An approach for InP /Si wafer bonding based on boride-solution treatment was presented. The bonding energy is higher than the InP fracture energy by annealing at 280°C. An In0.53Ga0.47As/InP multiple-quantum-well (MQW) structure grown on InP was transferred onto Si substrate via the bonding process. X-ray diffraction and photoluminescence reveal that crystal quality of the bonded MQW was preserved. A thin B2O3-POx-SiO2 oxide layer of about 28nm thick at the bonding interface was detected. X-ray photoelectron spectroscopy and Raman analyses indicate that the formation of oxygen bridging bonds by boride treatment is responsible for the strong fusion obtained at such low temperature.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi.
1983-08-16
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.
2011-11-01
30 kN pressure and heating rate of 100 K/min. Introduction Boride , carbides and nitrides of the group IVB and VB transition metals are considered...10. Sciti D., Silvestroni L., Nygren M. Spark plasma sintering of Zr- and Hf- borides with decreasing amounts of MoSi2 as sintering aid Journal of
Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang
2016-03-15
Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less
Multifunctional Ceramic Nanostructured Coatings
2010-12-01
silicon carbide composites // J. Europ. Cer. Soc. − 2004. − Vol. 24. − P. 2169−2179. 22. Yu. P. Udalov, E. E. Valova, S. S. Ordanian. Fabrication and...by the titanium and tungsten borides and carbides . The analysis was done using the X-ray and electron-optical methods. This information expands our...coating compositions should be based on limited solubility materials. Such systems include carbides , nitrides, borides and silicides based on
Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides
Lech, Andrew T.; Turner, Christopher L.; Mohammadi, Reza; Tolbert, Sarah H.; Kaner, Richard B.
2015-01-01
Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten—often referred to as WB4 and sometimes as W1–xB3—is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961—a fact that severely limits our understanding of its structure–property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray–only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedra—slightly distorted boron cuboctahedra—appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals. PMID:25733870
Analysis of boron carbides' electronic structure
NASA Technical Reports Server (NTRS)
Howard, Iris A.; Beckel, Charles L.
1986-01-01
The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.
Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Nogueira, Ricardo P.; Kiminami, Claudio S.; Botta, Walter J.; Bolfarini, Claudemiro
2017-04-01
Spray-formed boron-modified supermartensitic stainless steel (SMSS) grades are alloys developed to withstand severe wear conditions. The addition of boron to the conventional chemical composition of SMSS, combined with the solidification features promoted by the spray forming process, leads to a microstructure composed of low carbon martensitic matrix reinforced by an eutectic network of M2B-type borides, which considerably increases the wear resistance of the stainless steel. Although the presence of borides in the microstructure has a very beneficial effect on the wear properties of the alloy, their effect on the corrosion resistance of the stainless steel was not comprehensively evaluated. The present work presents a study of the effect of boron addition on the corrosion resistance of the spray-formed boron-modified SMSS grades by means of electrochemical techniques. The borides fraction seems to have some influence on the repassivation kinetics of the spray-formed boron-modified SMSS. It was shown that the Cr content of the martensitic matrix is the microstructural feature deciding the corrosion resistance of this sort of alloys. Therefore, if the Cr content in the alloy is increased to around 14 wt pct to compensate for the boron consumed by the borides formation, the corrosion resistance of the alloy is kept at the same level of the alloy without boron addition.
A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides
NASA Astrophysics Data System (ADS)
Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng
2016-09-01
Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less
Thermodynamical and thermoelectric properties of boron doped YPd{sub 3} and YRh{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com; Sharma, Ramesh
2016-05-23
The structural, electronic, thermal, and optical properties of borides of cubic non-magnetic YX{sub 3} (X=Rh, Pd) compounds and their borides which crystallize in the AuCu{sub 3} structure have been studied using the density functional theory (DFT). The flat bands in the vicinity of E{sub F} which are associated with superconductivity appear in YPd{sub 3} and YRh{sub 3} band structures. However, the B s-states enhance the flat band only in YRh{sub 3}B. The optical properties clearly show that boron insertion modifies the absorption and transmittance. The YX{sub 3} alloys and their borides exhibit valuable changes in the thermopower and ZT. Itmore » is observed that the properties of the Y-X intermetallics change significantly for the Y-Rh and Y-Pd alloys and the presence of single boron atom modifies the properties to a great extent.« less
Magnetization Analysis of Magnesium Boride Wires
NASA Astrophysics Data System (ADS)
Cave, J. R.; Zhu, W.
2006-03-01
Cycled applied field magnetization curves contain a wealth of information on critical current density and flux pinning that is not commonly exploited. Detailed magnetization data for magnesium boride wire cores have been analyzed for critical state model consistency. The iron-sheathed silicon nitride doped magnesium boride wires were prepared from pure magnesium and boron powders with nano-scale silicon nitride additions (MgB2-x(Si3N4)x/7 with x = 0 - 0.4). A subsequent short annealing heat treatment, 800 degrees C and of 1 hour duration in Argon, was applied to create the desired phase. Magnetization critical current densities were up to ˜340 kA/cm2 at 5K and 1T. Major and minor loop analysis will be described, for field sweeps up to 3 tesla at fixed temperatures and for temperature sweeps from 5K to 45K in fixed fields, with respect to parameters describing the critical state model.
NASA Astrophysics Data System (ADS)
Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.
2015-10-01
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykova, E., E-mail: elena.bykova@uni-bayreuth.de; Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth; Gou, H.
2015-10-15
We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for highmore » bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.« less
The effect of melt refining upon inclusions in aluminum
NASA Astrophysics Data System (ADS)
Simensen, C. J.
1982-03-01
A series of aluminum melts has been refined with respect to inclusions by use of ALCOA 469, FILD, or SNIF. The content and size distribution of inclusions in the original-and the refined melts-have been measured by use of neutron activation (oxygen content), gas chromatography (carbide content), sedimentation analysis, and dissolution of metal in hydrochloric acid and subsequent analysis of oxides by means of a Coulter Counter. All the units tested have a beneficial effect and decrease the inclusion content, but the number of analyses are too few to make general conclusions. However, for melts cleaned by use of SNIF, it was found that oxides larger than 50 μm in cross section and borides larger than 20 μm in diameter were removed, while the smaller borides were agglomerated only. The effect of FILD and ALCOA 469 upon the melt tested was removal of borides larger than 5-10 μ m and oxides larger than 15μm in diameter, respectively.
Interfacial reactions in borsic/Ti-3Al-2-1/2V composite
NASA Technical Reports Server (NTRS)
Rao, V. B.; Houska, C. R.; Unnam, J.; Brewer, W. D.; Tenney, D. R.
1979-01-01
The paper provides a detailed X-ray characterization of a borsic/Ti-3Al-2-1/2V composite, and to correlate the relative intensities of the reaction products with the mechanical properties. Based on X-ray integrated intensity data two stages of interface reactions were identified: during the first stage there is a simultaneous interdiffusion of Si, C, and Ti atoms at the filament/matrix interface resulting in the formation of Ti5Si3, TiSi and small amounts of TiSi2 and TiC. The second stage is associated with considerable TiSi2 and boride formation. It appears that the alpha-phase of Ti is more reactive in forming silicides and borides than the beta-phase. The silicide intensities and the reaction zone thicknesses are shown to be directly related to the reduction of the ultimate tensile strength by thermal degradation, and the results indicate that silicide reaction products are as detrimental to strength as the borides.
NASA Astrophysics Data System (ADS)
Flores-Rentería, M. A.; Ortiz-Domínguez, M.; Keddam, M.; Damián-Mejía, O.; Elias-Espinosa, M.; Flores-González, M. A.; Medina-Moreno, S. A.; Cruz-Avilés, A.; Villanueva-Ibañez, M.
2015-02-01
This work focused on the determination of boron diffusion coefficient through the Fe2B layers on AISI 1026 steel using a mathematical model. The suggested model solves the mass balance equation at the (Fe2B/substrate) interface. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for a treatment time ranging from 2 to 8 h. The generated boride layers were characterized by different experimental techniques such as light optical microscopy, scanning electron microscopy, XRD analysis and the Daimler-Benz Rockwell-C indentation technique. As a result, the boron activation energy for AISI 1026 steel was estimated as 178.4 kJ/mol. Furthermore, this kinetic model was validated by comparing the experimental Fe2B layer thickness with the predicted one at a temperature of 1253 K for 5 h of treatment. A contour diagram relating the layer thickness to the boriding parameters was proposed to be used in practical applications.
He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong
2016-08-09
The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterle, W.; Krause, S.; Moelders, T.
2008-11-15
Turbine components from conventionally cast nickel-base alloy Rene 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the {gamma}-{gamma}'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary {gamma}'-particles in matrix channels between the coarse cuboidalmore » {gamma}'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments.« less
Method of making an icosahedral boride structure
Hersee, Stephen D.; Wang, Ronghua; Zubia, David; Aselage, Terrance L.; Emin, David
2005-01-11
A method for fabricating thin films of an icosahedral boride on a silicon carbide (SiC) substrate is provided. Preferably the icosahedral boride layer is comprised of either boron phosphide (B.sub.12 P.sub.2) or boron arsenide (B.sub.12 As.sub.2). The provided method achieves improved film crystallinity and lowered impurity concentrations. In one aspect, an epitaxially grown layer of B.sub.12 P.sub.2 with a base layer or substrate of SiC is provided. In another aspect, an epitaxially grown layer of B.sub.12 As.sub.2 with a base layer or substrate of SiC is provided. In yet another aspect, thin films of B.sub.12 P.sub.2 or B.sub.12 As.sub.2 are formed on SiC using CVD or other vapor deposition means. If CVD techniques are employed, preferably the deposition temperature is above 1050.degree. C., more preferably in the range of 1100.degree. C. to 1400.degree. C., and still more preferably approximately 1150.degree. C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C.S.; Park, H.G.; Hoagland, R.G.
This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less
Magnetic properties and magnetic hardening mechansim of Pt-Co-B alloys
NASA Technical Reports Server (NTRS)
Qiu, Ning; Flanagan, F.; Wittig, James E.
1994-01-01
The intrinsic coercivity is found to be maximized in the Pt42Co45B13 ternary alloy which is undercooled and rapidly solidified (quenched using a 70 m/s wheel speed after undercooling), and then annealed (800 C for 2400 min). The same alloy, processed at slower cooling rates and annealed in the same way, has a much larger scale microstructure and a much lower resulting magnetic coercivity. The microstructure which would optimize the coercitvity of this coercivity of this ternary alloy is a completely ordered L1(sub zero) Pt-Co matrix with a submicron magnetic single-domion Co-boride precipitate. The L1(sub zero) phase is highly anistropic magnetically while the Co-boride precipate is somewhat less so. Annealing treatments designed to produced single-domain Co-boride precipitates enhance the coercivity. This suggests that the refined microstructures is responsible for the high coercivities found in the rapidly solidified and annealed alloy. The magnetic domain wall thickness for a Co-boride precipitate is determined from both experimental observation and theoretical calculation in order to evaluate its influence on the coercivity of the alloy. The effects of the pinning of domain walls and the barrier to the nucleation of reverse domains on the coercivity are discussed. Both microstrucutral analysis and theoretical calculation indicate that the high coercivities in the Pt42Co45B13 alloy are due to the difficult nucleation of reverse magnetic domains.
Electroplating of the superconductive boride MgB2 from molten salts
NASA Astrophysics Data System (ADS)
Abe, Hideki; Yoshii, Kenji; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki
2005-02-01
An electroplating technique of the superconductive boride MgB2 onto graphite substrates is reported. Films of MgB2 with a thickness of tens micrometer were fabricated on the planar and curved surfaces of graphite substrates by means of electrolysis on a mixture of magnesium chloride, potassium chloride, sodium chloride, and magnesium borate fused at 600 °C under an Ar atmosphere. The electrical resistivity and magnetization measurements revealed that the electroplated MgB2 films undergo a superconducting transition with the critical temperature (Tc) of 36 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainshtein, �. E.; Zhurakovskii, E. A.
1959-08-01
X-ray spectral analyses confirmed the hypothesis on the metal-like state of hydrogen in tithnium hydrides. Experiments with titunium borides and silicides indicate the special character and degree of the 3d--level participation in the metallic'' bond between the atoms of various complexes. The structure of metalloid elements becomes more complicated with an increase in the specific number of boron and silicon atoms and the bond between the atoms tends to become covalent. (R.V.J.)
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Synthesis and Characterization of Low-Cost Superhard Transition-Metal Borides
NASA Astrophysics Data System (ADS)
Kaner, Richard
2013-06-01
The increasing demand for high-performance cutting and forming tools, along with the shortcomings of traditional tool materials such as diamond (unable to cut ferrous materials), cubic boron nitride (expensive) and tungsten carbide (relatively-low hardness), has motivated the search for new superhard materials for these applications. This has led us to a new class of superhard materials, dense refractory transition-metal borides, which promise to address some of the existing problems of conventional superhard materials. For example, we have synthesized rhenium diboride (ReB2) using arc melting at ambient pressure. This superhard material has demonstrated an excellent electrical conductivity and superior mechanical properties, including a Vickers hardness of 48.0 GPa (under an applied load of 0.49 N). To further increase the hardness and lower the materials costs, we have begun exploring high boron content metal borides including tungsten tetraboride (WB4) . We have synthesized WB4 by arc melting and studied its hardness and high-pressure behavior. With a similar Vickers hardness (43.3 GPa under a load of 0.49 N) and bulk modulus (326-339 GPa) to ReB2, WB4 offers a lower cost alternative and has the potential to be used in cutting tools. To further enhance the hardness of this superhard metal, we have created the binary and ternary solid solutions of WB4 with Cr, Mn and Ta, the results of which show a hardness increase of up to 20 percent. As with other metals, these metallic borides can be readily cut and shaped using electric discharge machining (EDM).
NASA Astrophysics Data System (ADS)
Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan
2013-06-01
Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.
NASA Astrophysics Data System (ADS)
Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik
2018-03-01
This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.
Electrically conductive containment vessel for molten aluminum
Holcombe, C.E.; Scott, D.G.
1984-06-25
The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.
Electrically conductive containment vessel for molten aluminum
Holcombe, Cressie E.; Scott, Donald G.
1985-01-01
The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.
NASA Astrophysics Data System (ADS)
Smirnyagina, N. N.; Khaltanova, V. M.; Dasheev, D. E.; Lapina, A. E.
2017-05-01
Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VТ-1 are generated at diffused saturation by electron beam treatment in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.
Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang; Shiue, Ren-Kae
2012-07-01
For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.
Synthesis, Structure, and Properties of Refractory Hard-Metal Borides
NASA Astrophysics Data System (ADS)
Lech, Andrew Thomas
As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".
Tribological properties of alumina-boria-silicate fabric from 25 to 850 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1988-01-01
Demanding tribological properties are required of the materials used for the sliding seal between the sidewalls and the lower wall of the variable area hypersonic engine. Temperatures range from room temperature and below to operating temperatures of 1000 C in an environment of air, hydrogen, and water vapor. Candidate sealing materials for this application are an alumina-boria-silicate, ceramic, fabric rope sliding against the engine walls which may be made from copper- or nickel-based alloys. Using a pin-on-disk tribometer, the friction and wear properties of some of these potential materials and possible lubrication methods are evaluated. The ceramic fabric rope displayed unacceptably high friction coefficients (0.6 to 1.3) and, thus, requires lubrication. Sputtered thin films of gold, silver, and CaF2 reduced the friction by a factor of two. Sprayed coatings of boride nitride did not effectively lubricate the fabric. Static heat treatment tests at 950 C indicate that the fabric is chemically attacked by large quantities of silver, CaF2, and boron nitride. Sputtered films or powder impregnation of the fabric with gold may provide adequate lubrication up to 1000 C without showing any chemical attack.
Structural, electronic and thermal properties of super hard ternary boride, WAlB
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.
2018-04-01
A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.
Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
Halverson, Danny C.; Landingham, Richard L.
1988-01-01
A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.
The Quantitative Significance of Nondestructive Evaluation of Graphite and Ceramic Materials.
NONDESTRUCTIVE TESTING), (* GRAPHITE , (*BORIDES, NONDESTRUCTIVE TESTING), (*REFRACTORY MATERIALS, NONDESTRUCTIVE TESTING), DEFECTS(MATERIALS), TENSILE PROPERTIES, RADIOGRAPHY, ULTRASONIC PROPERTIES, DENSITY.
High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.
SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .
B Layers and Adhesion on Armco Iron Substrate
NASA Astrophysics Data System (ADS)
Elias-Espinosa, M.; Ortiz-Domínguez, M.; Keddam, M.; Flores-Rentería, M. A.; Damián-Mejía, O.; Zuno-Silva, J.; Hernández-Ávila, J.; Cardoso-Legorreta, E.; Arenas-Flores, A.
2014-08-01
In this work, a kinetic model was suggested to evaluate the boron diffusion coefficient in the Fe2B layers grown on the Armco iron substrate by the powder-pack boriding. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for treatment times ranging from 2 to 8 h. The boron diffusion coefficient in the Fe2B layers was estimated by solving the mass balance equation at the (Fe2B/substrate) interface with an inclusion of boride incubation time. To validate the present model, the simulated value of Fe2B layer thickness was compared with the experimental value obtained at 1253 K for a treatment time of 5 h. The morphology of Fe2B layers was observed by SEM and optical microscopy. Metallographic studies showed that the boride layer has a saw-tooth morphology in all the samples. The layer thickness measurements were done with the help of MSQ PLUS software. The Fe2B phase was identified by x-ray diffraction method. Finally, the adherence of Fe2B layers on the Armco iron substrate was qualitatively evaluated by using the Daimler-Benz Rockwell-C indentation technique. In addition, the estimated value of boron activation energy was compared to the literature data.
A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.
Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T
2018-04-01
Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corrosion and wear behaviors of boronized AISI 316L stainless steel
NASA Astrophysics Data System (ADS)
Kayali, Yusuf; Büyüksaǧiş, Aysel; Yalçin, Yılmaz
2013-09-01
In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.
Design of cemented tungsten carbide and boride-containing shields for a fusion power plant
NASA Astrophysics Data System (ADS)
Windsor, C. G.; Marshall, J. M.; Morgan, J. G.; Fair, J.; Smith, G. D. W.; Rajczyk-Wryk, A.; Tarragó, J. M.
2018-07-01
Results are reported on cemented tungsten carbide (cWC) and boride-containing composite materials for the task of shielding the centre column of a superconducting tokamak power plant. The shield is based on five concentric annular shells consisting of cWC and water layers of which the innermost cWC shield can be replaced with boride composites. Sample materials have been fabricated changing the parameters of porosity P, binder alloy fraction f binder and boron weight fraction f boron. For the fabricated materials, and other hypothetical samples with chosen parameters, Monte Carlo studies are made of: (i) the power deposition into the superconducting core, (ii) the fast neutron and gamma fluxes and (iii) the attenuation coefficients through the shield for the deposited power and neutron and gamma fluxes. It is shown that conventional Co-based cWC binder alloy can be replaced with a Fe–Cr alloy (92 wt.% Fe, 8 wt.% Cr), which has lower activation than cobalt with minor changes in shield performance. Boride-based composite materials have been prepared and shown to give a significant reduction in power deposition and flux, when placed close to the superconducting core. A typical shield of cemented tungsten carbide with 10 wt.% of Fe–8Cr binder and 0.1% porosity has a power reduction half-length of 0.06 m. It is shown that the power deposition increases by 4.3% for every 1% additional porosity, and 1.7% for every 1 wt.% additional binder. Power deposition decreased by 26% for an initial 1 wt.% boron addition, but further increases in f boron showed only a marginal decrease. The dependences of power deposited in the core, the maximum neutron and gamma fluxes on the core surface, and the half attenuation distances through the shield have been fitted to within a fractional percentage error by analytic functions of the porosity, metallic binder alloy and boron weight fractions.
NASA Astrophysics Data System (ADS)
Ruiz-Vargas, Jose
This thesis reports theoretical and experimental investigations carried out to understand the mechanisms of microstructure formation during isothermal brazing, produced by brazing Inconel 625 and MC2 nickel-based superalloys with filler metal BNi-2. Firstly, studies were made on pure Ni to interpret microstructure's formation with simplified alloy chemistry. Microstructure formation have been studied when varying time at constant temperature (isothermal kinetics), but also when varying temperature for constant hold time (isochronal kinetics). The chemical composition and crystallography of the present phases have been identified, with the following results : (i) the fraction of dissolved base metal has been found proportional to the initial thickness of the brazing alloy, so that the composition of the liquid remains homogeneous with a precise initial equilibrium composition during the whole brazing process, (ii) the melting of the joint occurs in two steps : at lower temperature, it involves only partially melting, and boron diffusion in pure Ni leads to the precipitation of fine Ni3B borides at the interface ; in a second stage, at higher temperature, melting is complete and thermodynamic equilibrium requires significant dissolution of nickel, which also involves the dissolution of part of borides already formed. Secondly, nickel plating technique was used on Inconel 625 nickel-based superalloy. A thin layer of Ni with varying thickness, has been electrodeposited to observe the gradual dissolution of Inconel and microstructural features formation due to the presence of superalloy alloying elements. It has been observed that the nickel coating does not prevent precipitation in the base metal as boron diffuse rapidly through the coating width. In the intermediate nickel plating width, fragile precipitates of nickel borides have been observed, because the contribution of Inconel alloying elements to the melt was very limited. In absence of nickel plating on the superalloy, the formation of Nb and Cr-Mo borides phase has been observed. Efforts have been made to evaluate the accuracy of Boron measurement by energy dispersion X-ray spectroscopy (EDS) in the MC2 superalloy and BNi-2 filler metal. The most accurate method to quantify Boron using EDS is by composition difference. A precision of 5 at.% has been reached when using optimized data acquisition and post processing schemes. Ultimately, Electron Backscatter Diffraction (EBSD) combined with localized EDS analysis has been proven invaluable in conclusively identifying micrometer sized boride precipitates ; thus further improving the characterization of brazed Ni-based superalloys.
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.
This work is a compilation of theory, finite element modeling and experimental research related to the use of microwave plasma enhanced chemical vapor deposition (MPECVD) of diborane to create metal-boride surface coatings on CoCrMo and WC-Co, including the subsequent growth of nanostructured diamond (NSD). Motivation for this research stems from the need for wear resistant coatings on industrial materials, which require improved wear resistance and product lifetime to remain competitive and satisfy growing demand. Nanostructured diamond coatings are a promising solution to material wear but cannot be directly applied to cobalt containing substrates due to graphite nucleation. Unfortunately, conventional pre-treatment methods, such as acid etching, render the substrate too brittle. Thus, the use of boron in a MPECVD process is explored to create robust interlayers which inhibit carbon-cobalt interaction. Furthermore, modeling of the MPECVD process, through the COMSOL MultiphysicsRTM platform, is performed to provide insight into plasma-surface interactions using the simulation of a real-world apparatus. Experimental investigation of MPECVD boriding and NSD deposition was conducted at surface temperatures from 700 to 1100 °C. Several well-adhered metal-boride surface layers were formed: consisting of CoB, CrB, WCoB, CoB and/or W2CoB2. Many of the interlayers were shown to be effective diffusion barriers against elemental cobalt for improving nucleation and adhesion of NSD coatings; diamond on W2CoB2 was well adhered. However, predominantly WCoB and CoB phase interlayers suffered from diamond film delamination. Metal-boride and NSD surfaces were evaluated using glancing-angle x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), micro-Raman spectroscopy, nanoindentation, scratch testing and epoxy pull testing. COMSOL MultiphysicsRTM was used to construct a representation of the MPECVD chamber. Relevant material properties, boundary conditions and adjustable parameters were applied to match the actual experimental set-up. Despite approximations, simulations for the surface temperature and surface accumulation matched well with experimental data. The combination of data from CoCrMo, WC-Co and modeling of the MPECVD process confirms that the use of boron to create metal-boride interlayers is applicable for subsequent nanostructured diamond coatings and that the surface temperature and deposition thickness can be predicted using finite element modeling.
Deposition and characterization of aluminum magnesium boride thin film coatings
NASA Astrophysics Data System (ADS)
Tian, Yun
Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (< 3 x 10-6 Torr), accompanied by strong texture formation. Low vacuum level-as deposited AlMgB14 films have low hardness (10 GPa), but high vacuum level-as deposited AlMgB14 films exhibit an extremely high hardness (45 GPa - 51 GPa), and the higher deposition temperature results in still higher hardness. Furthermore, a very low friction coefficient (0.04 - 0.05) has been observed for high vacuum level-as deposited AlMgB14 films, which could be ascribed to the in situ formation of a surface self-lubricating layer. Unlike most boron-rich boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14 films are discussed in detail in this thesis.
Direct synthesis of magnesium borohydride
Ronnebro, Ewa Carin Ellinor [Kennewick, WA; Severa, Godwin [Honolulu, HI; Jensen, Craig M [Kailua, HI
2012-04-03
A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.
The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)
NASA Astrophysics Data System (ADS)
Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.
2018-04-01
The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.
NASA Astrophysics Data System (ADS)
Chun, Eun-Joon; Park, Changkyoo; Nishikawa, Hiroshi; Kim, Min-Su
2018-06-01
The microstructural characterization of thermal-sprayed Ni-based self-fluxing alloy (Metco-16C®) after laser-assisted homogenization treatment was performed. To this end, a high-power diode laser system was used. This supported the real-time control of the target homogenization temperature at the substrate surface. Non-homogeneities of the macrosegregation of certain elements (C and Cu) and the local concentration of Cr-based carbides and borides in certain regions in the as-sprayed state could be enhanced with the application of homogenization. After homogenization at 1423 K, the hardness of the thermal-sprayed layer was found to have increased by 1280 HV from the as-sprayed state (750 HV). At this homogenization temperature, the microstructure of the thermal-sprayed layer consisted of a lamellar structuring of the matrix phase (austenite and Ni3Si) with fine (<5 μm) carbides and borides (the rod-like phase of Cr5B3, the lumpy phase of M23C6, and the extra-fine phase of M7C3). Despite the formation of several kinds of carbides and borides during homogenization at 1473 K, the lowest hardness level was found to be less than that of the as-sprayed state, because of the liquid-state homogenization treatment without formation of lamellar structuring between austenite and Ni3Si.
NASA research on refractory compounds.
NASA Technical Reports Server (NTRS)
Gangler, J. J.
1971-01-01
The behavior and properties of the refractory carbides, nitrides, and borides are being investigated by NASA as part of its research aimed at developing superior heat resistant materials for aerospace applications. Studies of the zirconium-carbon-oxygen system show that zirconium oxycarbides of different compositions and lattice parameters can be formed between 1500 C and 1900 C and are stable below 1500 C. More applied studies show that hot working generally improves the microstructure and therefore the strength of TiC and NbC. Sintering studies on UN indicate that very high densities can be achieved. Hot pressing of cermets of HfN and HfC produces good mechanical properties for high temperature bearing applications. Attempts to improve the impact resistance of boride composites by the addition of a nickel or carbon yarn were not overly successful.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
Scanlon, Micheál D; Bian, Xiaojun; Vrubel, Heron; Amstutz, Véronique; Schenk, Kurt; Hu, Xile; Liu, BaoHong; Girault, Hubert H
2013-02-28
Rarely reported low-cost molybdenum boride and carbide microparticles, both of which are available in abundant quantities due to their widespread use in industry, adsorb at aqueous acid-1,2-dichloroethane interfaces and efficiently catalyse the hydrogen evolution reaction in the presence of the organic electron donor - decamethylferrocene. Kinetic studies monitoring biphasic reactions by UV/vis spectroscopy, and further evidence provided by gas chromatography, highlight (a) their superior rates of catalysis relative to other industrially significant transition metal carbides and silicides, as well as a main group refractory compound, and (b) their highly comparable rates of catalysis to Pt microparticles of similar dimensions. Insight into the catalytic processes occurring for each adsorbed microparticle was obtained by voltammetry at the liquid-liquid interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.
The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less
Design of Wear-Resistant Austenitic Steels for Selective Laser Melting
NASA Astrophysics Data System (ADS)
Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.
2018-03-01
Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.
Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases
NASA Astrophysics Data System (ADS)
Simonson, Jack William
Half-Heusler alloys MNiSn and MCoSb (M = Ti, Zr, Hf) and layered boride intermetallics with structure types YCrB4 and Er 3CrB7 were designed, synthesized, and characterized. The thermoelectric properties of these two classes of alloys were measured from room temperature to 1100 K with the intent of indirectly studying their electronic structure properties and gauging not only their suitability but that of related alloys for high temperature thermoelectric power generation. In the case of the half-Heusler alloys, transition metals were substituted to both the M and Ni/Co sites to study the resultant modifications of the d-orbital-rich portion of the electronic structure near the Fermi energy. This modification and subsequent pinning of the Fermi energy within the gap is discussed herein in terms of first principles electronic structure calculations from the literature. In the half-Heusler alloys, it was found that substitution of transition metals invariably led to a decrease in the thermopower, while the resistivity typically maintained its semiconducting trend. On the other hand, Sn doping in MCoSb type alloys -- a dopant that has been known for some time to be efficient -- was shown to result in high ZT at temperatures in excess of 1000 K. Moreover, the band gaps of the transition metal-doped alloys measured in this work offer insight into the discrepancy between the predicted and measured band gaps in the undoped parent compositions. In the case of the layered boride alloys, on the other hand, few electronic calculations have been published, thus prompting the generalization of a well-known electron counting rule -- which is typically used to study molecular organometallics, boranes, and metallocenes -- to predict the trends in the densities of states of crystalline solids that possess the requisite deltahedral bonding geometry. In accordance with these generalized electronic counting rules, alloys of the form RMB4 (R = Y, Gd, Ho; M = Cr, Mo, W) were measured to be n-type semiconductors with band gaps ranging from 0.15 eV to 0.25 eV. These alloys exhibited thermoelectric power factors comparable with those of other potential boride thermoelectric materials reported in the literature. Furthermore, as a result of the procedure developed for precision synthesis of boron-rich intermetallics and the improved understanding of bonding trends, layered borides of several previously overlooked structure-types were synthesized and screened for superconductivity. Consequently, alloys of the MoB4 phase were discovered to be superconducting when doped with Nb or Ti. Electrical resistivity measurements of superconducting transitions between 6 and 8 K in these materials were confirmed via magnetic susceptibility measurements and x-ray diffraction. Structural measurements indicated opposite trends in lattice modification than those reported for the superconducting transition metal diborides.
NEUTRONIC REACTOR FUEL COMPOSITION
Thurber, W.C.
1961-01-10
Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.
Anomalous stress response of ultrahard WB n compounds
Li, Quan; Zhou, Dan; Zheng, Weitao; ...
2015-10-29
Boron-rich tungsten borides are premier prototypes of a new class of ultrahard compounds. Here, we show by first-principles calculations that their stress-strain relations display surprisingly diverse and anomalous behavior under a variety of loading conditions. Most remarkable is the dramatically changing bonding configurations and deformation modes with rising boron concentration in WB n (n=2, 3, 4), resulting in significantly different stress responses and unexpected indentation strength variations. This novel phenomenon stems from the peculiar structural arrangements in tungsten borides driven by boron’s ability to form unusually versatile bonding states. Our results elucidate the intriguing deformation mechanisms that define a distinctmore » type of ultrahard material. Here, these new insights underscore the need to explore unconventional structure-property relations in a broad range of transition-metal light-element compounds.« less
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1977-01-01
Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.
NASA Astrophysics Data System (ADS)
Touzani, Rachid St.; Fokwa, Boniface P. T.
2014-03-01
The Nb2FeB2 phase (U3Si2-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb2OsB2 (space group P4/mnc, no. 128, a twofold superstructure of U3Si2-type) with distorted Nb-layers and Os2-dumbbells was recently achieved, "Nb2RuB2" is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb2FeB2 and Nb2OsB2, but also predict "Nb2RuB2" to crystalize with the Nb2OsB2 structure type. According to chemical bonding analysis, the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic M-B, B-Nb and M-Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb2FeB2, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them.
Specific features of thermal and magnetic properties of Yb B50 at low temperatures
NASA Astrophysics Data System (ADS)
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Popova, E. A.; Tolstosheev, A. K.; Malkin, B. Z.; Bud'ko, S. L.
2018-05-01
Heat capacity, thermal expansion, and magnetization of ytterbium boride Yb B50 were studied at temperatures 0.6-300 K, 5-300 K, and 2-300 K, respectively. We revealed two smooth peaks at about 4.0 and 60 K in the temperature dependence of the heat capacity. A comparison with the heat capacity of the diamagnetic isostructural boride Lu B50 shows that these anomalies can be attributed to excitations in the ytterbium sublattice (Schottky anomalies). A scheme for splitting of the ground
Fusion welding of a modern borated stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robino, C.V.; Cieslak, M.J.
1997-01-01
Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendriticmore » eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.« less
The physical and mechanical metallurgy of advanced O+BCC titanium alloys
NASA Astrophysics Data System (ADS)
Cowen, Christopher John
This thesis comprises a systematic study of the microstructural evolution, phase transformation behavior, elevated-temperature creep behavior, room-temperature and elevated-temperature tensile behavior, and room-temperature fatigue behavior of advanced titanium-aluminum-niobium (Ti-Al-Nb) alloys with and without boron additions. The specific alloys studied were: Ti-5A1-45Nb (at%), Ti-15Al-33Nb (at%), Ti-15Al-33Nb-0.5B (at%), Ti-15Al-33Nb-5B (at%), Ti-21Al-29Nb (at%), Ti-22Al-26Nb (at%), and Ti-22Al-26Nb-5B (at%). The only alloy composition that had been previously studied before this thesis work began was Ti-22Al-26Nb (at%). Publication in peer-reviewed material science journals of the work performed in this thesis has made data available in the scientific literature that was previously non-existent. The knowledge gap for Ti-Al-Nb phase equilibria over the compositional range of Ti-23Al-27Nb (at%) to Ti-12Al-38Nb (at%) that existed before this work began was successfully filled. The addition of 5 at% boron to the Ti-15Al-33Nb alloy produced 5-9 volume percent boride phase needles within the microstructure. The chemical composition of the boride phase measured by electron microprobe was determined to be approximately B 2TiNb. The lattice parameters of the boride phase were simulated through density functional theory calculations by collaborators at the Air Force Research Laboratory based on the measured composition. Using the simulated lattice parameters, electron backscatter diffraction kikuchi patterns and selected area electron diffraction patterns obtained from the boride phase were successfully indexed according to the space group and site occupancies of the B27 orthorhombic crystal structure. This suggests that half the Ti (c) Wyckoff positions are occupied by Ti atoms and the other half are occupied by Nb atoms in the boride phase lattice. Creep deformation behavior is the main focus of this thesis and in particular understanding the dominant creep deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.
Magnetism and structural chemistry of ternary borides RE2MB 6 ( RE = rare earth, M = Ru, Os)
NASA Astrophysics Data System (ADS)
Hiebl, K.; Rogl, P.; Nowotny, H.
1984-10-01
The magnetic behavior of the ternary borides RE2RuB 6 and RE2OsB 6 ( RE = Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) was studied in the temperature range 1.5 K < T < 1100 K. All compounds crystallize with the Y 2ReB 6-type structure and are characterized by direct RE- RE contacts and the formation of planar infinite two-dimensional rigid boron nets. The magnetic properties reveal a typical Van Vleck paramagnetism of free RE3+-ions at temperatures higher than 200 K with ferromagnetic interaction in the low-temperature range T < 55 K. The ferromagnetic ordering temperatures vary with the De Gennes factor. There is no indication for a magnetic contribution from the Ru(Os)-sublattice. Above 1.8 K none of the samples were found to be superconducting.
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Zhao, Jianzhi; Zhang, Bin
2008-06-01
The stabilities, mechanical properties and electronic structures of osmium boride (OsB), carbide (OsC) and nitride (OsN), in the tungsten carbide (WC), rocksalt (NaCl), cesium chloride (CsCl) and zinc blende (ZnS) structures respectively, are systematically predicted by calculations from first-principles. Only four phases, namely, OsB(WC), OsB(CsCl), OsC(WC), and OsC(ZnS), are mechanically stable, and none is a superhard compound, contrary to previous speculation. Most importantly, we find that the changing trends of bulk modulus and shear modulus are completely different for OsB, OsC and OsN in same hexagonal WC structure, which indicates that the underlying sources of hardness and incompressibility are fundamentally different: the former is determined by bonding nature while the latter is closely associated with valence electron density.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cave, J.
2006-03-01
The enhancement of flux line pinning in magnesium boride wires is a critical issue for their future applications in devices and machines. It is well known that small size dopants can significantly influence the current densities of these materials. Here, the influence of nanometric (<30nm) silicon nitride on physical properties and current density is presented. The iron-sheathed powder in tube wires were prepared using pure magnesium and boron powders with silicon nitride additions. The wires were rolled flat and treated at up to 900 degrees C in flowing argon. SEM and XRD were used to identify phases and microstructures. Magnetization critical currents, up to several 100 of thousands A/cm2, at various temperatures and fields (5K - 20K and up to 3 tesla) show that there are competing mechanisms from chemical and flux pinning effects.
Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles
NASA Astrophysics Data System (ADS)
Hamayun, M. Asif; Abramchuk, Mykola; Alnasir, Hisham; Khan, Mohsin; Pak, Chongin; Lenhert, Steven; Ghazanfari, Lida; Shatruk, Michael; Manzoor, Sadia
2018-04-01
We report magnetic and magnetothermal properties of iron boride (FeB) nanoparticles prepared by surfactant-assisted ball milling of arc-melted bulk ingots of this binary alloy. Size-dependent magnetic properties were used to identify the transition to the single domain limit and calculate the anisotropy and exchange stiffness constants for this system. Extended milling is seen to produce coercivity enhancement and exchange bias of up to 270 Ôe at room temperature. The magnetothermal properties were investigated by measuring the response of single domain FeB nanoparticles to externally applied ac magnetic fields. All investigated particle sizes show a significant heating response, demonstrating their potential as candidates for magnetically induced hyperthermia. FeB nanoparticles were encapsulated into lipophilic domains of liposomes as evidenced by TEM. Exposure of HeLa cells to these liposomes did not affect cell viability, suggesting the biocompatibility of these new magnetic nanomaterials.
Identification of delamination failure of boride layer on common Cr-based steels
NASA Astrophysics Data System (ADS)
Taktak, Sukru; Tasgetiren, Suleyman
2006-10-01
Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.
Effect of Discharge Time on Plasma Electrolytic Borocarbonitriding of Pure Iron
NASA Astrophysics Data System (ADS)
Jin, Xiaoyue; Wu, Jie; Wang, Bin; Yang, Xuan; Chen, Lin; Qu, Yao; Xue, Wenbin
The plasma electrolytic borocarbonitriding (PEB/C/N) process on pure iron was carried out in 25% borax solution with glycerine and carbamide additives under different discharge time at 360V. The morphology and structure of PEB/C/N hardened layers were analyzed by SEM and XRD. The hardness profiles of hardened layers were measured by microhardness test. Corrosion behavior of PEB/C/N layers was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Their wear performance was carried out using a pin-disc friction and wear tester under dry sliding test. The PEB/C/N samples mainly consisted of α-Fe, Fe2B, Fe3C, FeN, FeB, Fe2O3 and Fe4N phases, and the Fe2B phase was the dominant phase in the boride layer. It was found that the thickness of boride layer increased with the discharge time and reached 14μm after 60min treatment. The microhardness of the boride layer was up to 2100HV, which was much higher than that of the bare pure iron (about 150HV). After PEB/C/N treatment, the corrosion resistance of pure iron was slightly improved. The friction coefficient of PEB/C/N treated pure iron decreased to 0.129 from 0.556 of pure iron substrate. The wear rate of the PEB/C/N layer after 60min under dry sliding against ZrO2 ball was only 1/10 of that of the bare pure iron. The PEB/C/N treatment is an effective way to improve the wear behavior of pure iron.
Cai, Weitong; Yang, Yuanzheng; Tao, Pingjun; Ouyang, Liuzhang; Wang, Hui
2018-04-03
Nanosized metal borides MBx (M = Mg, Ti, Fe, Si) are found to play an important role in enhancing the hydrogen storage performance of LiBH4 in this work. The hydrogen storage behavior and mechanism of these modified systems are investigated through TPD-MS, XRD, FTIR and SEM characterization methods. By introducing these metal borides into LiBH4 through ball milling, the systems display three dehydrogenation stages disclosing their similarity and distinction. The 1st stage starts at 190 °C, the 2nd stage ranges from 280 °C to 400 °C and the 3rd stage ends at 550 °C with a peak at round 440 °C similar to that of pristine LiBH4. Distinguishing features exist at the 2nd stage revealing the effectiveness of MBx in an order of MgB2 < TiB2 < FeB < SiB4. Significantly, reversibility up to 9.7 wt% is achieved from LiBH4 with assistance of SiB4. The catalytic effect of MBx is influenced by the Pauling electronegativity of M in MBx and the interfacial contact characteristic between LiBH4 and MBx. The larger electronegativity leads to an enhanced catalytic effect and consequently lower temperature at the major stage. In contrast to the components in the solid state, the molten LiBH4 promotes a catalytic effect due to a superior interfacial contact. These results provide an insight into designing high-performance catalysts applied to LiBH4 as a hydrogen storage material.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
Gordon, Roy G.; Kurtz, Sarah
1984-11-27
In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.
DFT investigations of hydrogen storage materials
NASA Astrophysics Data System (ADS)
Wang, Gang
Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation. Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around 100 °C with proper catalyst. Sodium hydride is a product of the decomposition of NaAlH4 that may affect the dynamics of NaAlH4. The two materials with oxygen contamination such as OH- may influence the kinetics of the dehydriding/rehydriding processes. Thus the solid solubility of OH - groups (NaOH) in NaAlH4 and NaH is studied theoretically by DFT calculations. Magnesium boride [Mg(BH4)2] is has higher hydrogen capacity about 14.9 wt. % and the decomposition temparture of around 250 °C. However one flaw restraining its application is that some polyboron compounds like MgB12H12 preventing from further release of hydrogen. Adding some transition metals that form magnesium transition metal ternary borohydride [MgaTMb(BH4)c] may simply the decomposition process to release hydrogen with ternary borides (MgaTMbBc). The search for the probable ternary borides and the corresponding pseudo phase diagrams as well as the decomposition thermodynamics are performed using DFT calculations and GCLP method to present some possible candidates.
Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young
We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less
Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding
Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young; ...
2016-01-26
We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
2016-09-23
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
Thermal properties of zirconium diboride -- transition metal boride solid solutions
NASA Astrophysics Data System (ADS)
McClane, Devon Lee
This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.
Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels
NASA Astrophysics Data System (ADS)
Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa
2009-03-01
The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).
Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory
2003-09-23
Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.
Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared
NASA Technical Reports Server (NTRS)
Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel
2009-01-01
Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.
A superconducting battery material: Lithium gold boride (LiAu3B)
NASA Astrophysics Data System (ADS)
Aydin, Sezgin; Şimşek, Mehmet
2018-04-01
The superconducting and potential cathode material properties of ternary boride of LiAu3B have been investigated by density functional first principles. The Li-concentration effects on the actual electronic and structural properties, namely the properties of LixAu9B3 (x = 0, 1, 2) sub-systems are studied. It is remarkably shown that the existence of Li-atoms has no considerable effect on the structural properties of Au-B skeleton in LiAu3B. Then, it can be offered as a potential cathode material for Li-ion batteries with the very small volume deviation of 0.42%, and the suitable average open circuit voltage of ∼1.30 V. Furthermore, the vibrational and superconducting properties such as electron-phonon coupling constant (λ) and critical temperature (Tc) of LiAu3B are studied. The calculated results suggest that LiAu3B should be a superconductor with Tc ∼5.8 K, also.
2011-05-01
failure resistance, which results from their different microplasticity (microbrittleness) and relaxation ability. In order to evaluate the... microplasticity (microbrittleness) in the series of isomorphic hexaborides produced by zone melting we have plotted a number of statistical curves that show
Ultracapacitor current collector
Jerabek, Elihu Calfin; Mikkor, Mati
2001-10-16
An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.
NASA Technical Reports Server (NTRS)
Wolski, W.
1985-01-01
Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.
1977-02-01
oxides and their mixtures, arsenides, borides, bromides , carbides , chlorides , fluoride s, nitride s, phosphides, silicides , sulfides , tellurides...ivity of alkali elements (lithium , sodium , potassium , rubi- dium , ces ium , and francium) and contains recomme nded reference values generated
Molecular Modeling of High-Temperature Oxidation of Refractory Borides
2008-02-01
generate the classical potential, we adopt the van Beest , Kramer and van Santen (BKS) parameterization for Si-O interactions, but fit B-O and Si-B...seminar at Department of Aerospace and Mechanical Engineering, University of Notre Dame, March 20, 2007. 6 Los Alamos National Lab Physics & Theoretical
Lithium Borides - High Energy Materials
2000-02-28
1993. 99, 7983. (32) Pulay P.; Hamilton. T. P. J. Chem. Phys. 1988, 88. 4926 . (33) Frisch. M. J.: Trucks. G. W.; Schlegel. H. B.: Gill, P. M. W...25] P.V. Sudhakar, K. Lammertsma, J. Chem. Phys. 99 (1993) 7929. [26] M.J. van der Woerd, K. Lammertsma, B.J. Duke, H.F. Schaefer , III, J
Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys
NASA Astrophysics Data System (ADS)
Hecht, Ulrike; Witusiewicz, Victor T.
2017-12-01
Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
Radio frequency sputtering was used to deposit refractory carbide, silicide, and boride coatings on 440-C steel substrates. Both sputter etched and pre-oxidized substrates were used and the films were deposited with and without a substrate bias. The composition of the coatings was determined as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. Friction and wear tests were conducted to evaluate coating adherence. In the interfacial region there was evidence that bias may produce a graded interface for some compounds. Biasing, while generally improving bulk film stoichiometry, can adversely affect adherence by removing interfacial oxide layers. Oxides of all film constituents except carbon and iron were present in all cases but the iron oxide coverage was only complete on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 films. In the case of mixed oxides, preoxidation enhanced film adherence. In the layered case it did not.
Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys
Matsushita, Masafumi
2011-01-01
Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride. PMID:28824144
PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)
NASA Astrophysics Data System (ADS)
Tanaka, Takaho
2009-07-01
This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions, 'Boron chemistry' and 'Superconductivity', were also held at the symposium. The session on Boron chemistry was planned to honor the scientific work in boron chemistry of Professor J Bauer on the occasion of his retirement. Many recent results were discussed in the session, and Professor Bauer himself introduced novel rare-earth-boron-carbon compounds RE10B7C10 (RE = Gd - Er) in his lecture. In the latter session, on the basis of recent discoveries of superconductivity in MgB2 and in β-boron under high pressure, the superconductivity of boron and related materials was discussed and the superconductivity of boron-doped diamond was also addressed. More than 120 participants from 16 countries attended the ISBB 2008, and active presentations (22 invited, 33 oral and 68 posters) and discussions suggest that research on boron and borides is entering a new phase of development. This volume contains 46 articles from 52 submitted manuscripts. The reviewers were invited not only from symposium participants but also from specialists worldwide, and they did a great job of evaluating and commenting on the submitted manuscripts to maintain the highest quality standard of this volume. Recent discoveries of superconductivity in boron under high pressure, synthesis of a new allotrope of boron and of various boron and boride nanostructures will lead this highly interdisciplinary field of science, which will further grow and gain attention in terms of both basic and applied research. In this context, we are very much looking forward to the next symposium, which will be held in Istanbul, Turkey, in 2011, organized by Professor Onuralp Yucel, Istanbul Technical University. Turkey currently has the world highest share of borate production and is expected to be involved more in boron-related research. Acknowledgements We gratefully acknowledge the style improvement by Dr K Iakoubovskii, and sincerely thank Shimane Prefecture and Matsue City for their financial support. The symposium was also supported by Tokyo University of Science, Suwa and foundations including, the Kajima Foundation, Foundation for Promotion of Material Science and Technology of Japan and Nippon Sheet Glass Foundation for Materials Science and Engineering, as well as companies including JFE Steel Corporation, Shincron Co, Ltd, Toyo Kohan Co, Ltd, Fukuda Metal Foil and Powder Co, Ltd, Japan New Metals Co, Ltd, H C Starck Ltd and Fritsch Japan Co, Ltd. Editors Chair Takaho Tanaka (National Institute for Materials Science, Japan) Vice chairs Koun Shirai (Osaka University, Japan) Kaoru Kimura (The University of Tokyo, Japan) Ken-ichi Takagi (Tokyo City University, Japan) Touetsu Shishido (Tohoku University, Japan) Shigeru Okada (Kokushikan University) Hideaki Itoh (Nagoya University,Japan) Katsumitsu Nakamura (Nihon University, Japan) Organizing committee of ISBB 2008 K Takagi Chairman (Tokyo City University) T Tanaka Program Committee Chairman (National Institute for Materials Science) K Kimura Secretary (The University of Tokyo) J Akimitsu (Aoyama University)K Shirai (Osaka University) H Itoh (Nagoya University)T Shishido (Tohoku University) K Nakamura (Nihon University)K Soga (Tokyo University of Science) K Nishiyama (Tokyo University of Science, Suwa)M Takeda (Nagaoka University of Technology) S Okada (Kokushikan University)Y Yamazaki (Toyo Kohan Co, Ltd) International Scientific Committee 0f ISBB (2008-2011) K Takagi Chairman (Japan) B Albert (Germany) J-F Halet (France) M Takeda (Japan) M Antadze (Georgia) H Hillebrecht (Germany) T Tanaka (Japan) J Bauer (France) W Jung (Germany) R Telle (Germany) I Boustani (Germany) K Kimura (Japan) M Trenary (USA) D Emin (USA) T Mori (Japan) O Tsagareishvili (Georgia) M Engler (Germany) P D Ownby (USA) H Werheit (Germany) N Frage (Israel) P Rogl (Austria) G Will (Germany) Yu Grin (Germany) S Shalamberidze (Georgia) O Yucel (Turkey) V N Gurin (Russia) N Shitsevalova (Ukraine) G Zhang (China)
Thermal emission property of solid solution Gd{sub 1-x}Nd{sub x}B{sub 6} (x=0, 0.6, 0.8)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing Zhang, Jiu; Hong Bao, Li; Lin Zhou, Shen, E-mail: zjiuxing@bjut.edu.cn, E-mail: Baolihong_10@yahoo.com.cn, E-mail: zhoushenlin@emails.bjut.edu.cn
2011-07-01
In this paper, to further explore the excellent emission properties of rare earth boride cathode, herein we present the synthesis, characterization and properties of polycrystalline Nd{sub 1-x}Gd{sub x}B{sub 6} (x = 0, 0.6, 0.8) bulk via arc plasma and reactive SPS. (author)
NASA Astrophysics Data System (ADS)
Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.
2017-09-01
The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.
The use of surface layer with boron in friction pairs lubricated by engine oils
NASA Astrophysics Data System (ADS)
Szczypiński-Sala, W.; Lubas, J.
2016-09-01
The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.
On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.
Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri
2015-12-01
Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.
NASA Technical Reports Server (NTRS)
Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.
1985-01-01
The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
LINER FOR EXTRUSION BILLET CONTAINERS
Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn
NASA Astrophysics Data System (ADS)
Nakamori, Yuko; Miwa, Kazutoshi; Ninomiya, Akihito; Li, Haiwen; Ohba, Nobuko; Towata, Shin-Ichi; Züttel, Andreas; Orimo, Shin-Ichi
2006-07-01
The thermodynamical stabilities for the series of metal borohydrides M(BH4)n ( M=Li , Na, K, Cu, Mg, Zn, Sc, Zr, and Hf; n=1-4 ) have been systematically investigated by first-principles calculations. The results indicated that an ionic bonding between Mn+ cations and [BH4]- anions exists in M(BH4)n , and the charge transfer from Mn+ cations to [BH4]- anions is a key feature for the stability of M(BH4)n . A good correlation between the heat of formation ΔHboro of M(BH4)n and the Pauling electronegativity of the cation χP can be found, which is represented by the linear relation, ΔHboro=248.7χP-390.8 in the unit of kJ/mol BH4 . In order to confirm the predicted correlation experimentally, the hydrogen desorption reactions were studied for M(BH4)n ( M=Li , Na, K, Mg, Zn, Sc, Zr, and Hf), where the samples of the later five borohydrides were mechanochemically synthesized. The thermal desorption analyses indicate that LiBH4 , NaBH4 , and KBH4 desorb hydrogen to hydride phases. Mg(BH4)2 , Sc(BH4)3 , and Zr(BH4)4 show multistep desorption reactions through the intermediate phases of hydrides and/or borides. On the other hand, Zn(BH4)2 desorbs hydrogen and borane to elemental Zn due to instabilities of Zn hydride and boride. A correlation between the desorption temperature Td and the Pauling electronegativity χP is observed experimentally and so χP is an indicator to approximately estimate the stability of M(BH4)n . The enthalpy change for the desorption reaction, ΔHdes , is estimated using the predicted ΔHboro and the reported data for decomposed product, ΔHhyd/boride . The estimated ΔHdes show a good correlation with the observed Td , indicating that the predicted stability of borohydride is experimentally supported. These results are useful for exploring M(BH4)n with appropriate stability as hydrogen storage materials.
Ternary boride product and process
NASA Technical Reports Server (NTRS)
Clougherty, Edward V. (Inventor)
1976-01-01
A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.
Mechanical, Electronic and Optical Properties of Two Phases of NbB4: First-Principles Calculations
NASA Astrophysics Data System (ADS)
Yang, Ruike; Ma, Shaowei; Wei, Qun; Zhang, Dongyun
2018-05-01
As transition metal borides have been successfully synthesised, the study of the combination of transition metal and boron is another effective way to investigate the properties of boride. We have predicted the novel phase Amm2-NbB4. Using the Cambridge Serial Total Energy Package (CASTEP) code, we further researched on the mechanical, electronic and optical properties of C2/c- and Amm2-NbB4. It is found that both the phases of NbB4 are dynamically and mechanically stable at 0 and 100 GPa. Their Vickers hardness values are both 34 GPa, which indicate that they are hard materials. The band gap of C2/c-NbB4 is 0.145 eV, which indicates that it is a semiconductor (or metalloid) at 0 GPa. For the Amm2-NbB4, the band structure without band gap indicates it is a metal at 0 GPa. The optical properties of these two structures are similar. At 0 eV, the real part of dielectric function is 28.8 for C2/c-NbB4, and the real part value for Amm2-NbB4 is 43. We hope our work will provide some help to the experimental work about the technology of the material.
NASA Technical Reports Server (NTRS)
Speck, J. S.
1986-01-01
The microstructures of melt-spun superalloy ribbons with variable boron levels have been studied by transmission electron microscopy. The base alloy was of approximate composition Ni-11% Cr-5%Mo-5%Al-4%Ti with boron levels of 0.06, 0.12, and 0.60 percent (all by weight). Thirty micron thick ribbons display an equiaxed chill zone near the wheel contact side which develops into primary dendrite arms in the ribbon center. Secondary dendrite arms are observed near the ribbon free surface. In the higher boron bearing alloys, boride precipitates are observed along grain boundaries. A concerted effort has been made to elucidate true grain shapes by the use of bright field/dark field microscopy. In the low boron alloy, grain shapes are often convex, and grain faces are flat. Boundary faces frequently have large curvature, and grain shapes form concave polygons in the higher boron level alloys. It is proposed that just after solidification, in all of the alloys studied, grain shapes were initially concave and boundaries were wavy. Boundary straightening is presumed to occur on cooling in the low boron alloy. Boundary migration is precluded in the higher boron alloys by fast precipitation of borides at internal interfaces.
NASA Astrophysics Data System (ADS)
Hermus, Martin; Fokwa, Boniface P. T.
2010-04-01
Single phase powder samples and single crystals of Zr 2Ir 6B were successfully synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. Superstructure reflections were observed both on powder and on single crystal diffraction data, leading to an eightfold superstructure of ZrIr 3B x phase. The new phase, which has a metallic luster, crystallizes in space group Fm3¯m (no. 225) with the lattice parameters a=7.9903(4) Å, V=510.14(4) Å 3. Its crystal structure was refined on the basis of powder as well as single crystal data. The single crystal refinement converged to R1=0.0239 and w R2=0.0624 for all 88 unique reflections and 6 parameters. Zr 2Ir 6B is isotypic to Ti 2Rh 6B and its structure can be described as a defect double perovskite, A2BB' O6, where the A site is occupied by zirconium, the B site by boron, the O site by iridium but the B' site is vacant, leading to the formation of empty and boron-filled octahedral Ir 6 clusters. According to the result of tight-binding electronic structure calculations, Ir-B and Ir-Zr interactions are mainly responsible for the structural stability of the phase. According to COHP bonding analysis, the strongest bonding occurs for the Ir-B contacts, and the Ir-Ir bonding within the empty clusters is two times stronger than that in the BIr 6 octahedra.
Method to produce catalytically active nanocomposite coatings
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat
2016-02-09
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
High-Temperature Ceramic Matrix Composite with High Corrosion Resistance
2010-06-02
ceramics with silicide additives may be explained in the following ways: 1) metal oxide, for example Ta2O5, formed at oxidation of TaSi2, in the...practically monophase ones, possibly, the additives of corresponding metals in silicide powders were present in insignificant amounts. For...boride with zirconium silicide we prepared the mixtures with 20 vol. % of silicide , the latter being hot pressed in the temperature range of 1600
Computer Modeling of Ceramic Boride Composites
2014-11-01
the reinforcer deform elastically, for the theoretical strength of the composite it can be written [46] BBBAAABBAAK EE δεδεσδσδσ +=+= (51) where...coefficients of thermal expansion. Approximately linear expansion coefficient of the composite is determined by the relation [52] EEE BBBAAAk...1 δαδαα ⋅+⋅= , (58) where AE and BE are Young moduli of components, and E – average modulus for composition BBAA EEE δδ
Ground State Structures of Boron-Rich Rhodium Boride: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Chu, Bin-Hua; Zhao, Yuan; Yan, Jin-Liang; Li, Da
2018-01-01
Not Available Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2016AP02, ZR2016FM38 and ZR2016EMP01, the Innovation Project of Ludong University under Grant No LB2016013, the Open Project of State Key Laboratory of Superhard Materials of Jilin University under Grant No 201605, and the National Natural Science Foundation of China under Grant Nos 11704170 and 61705097.
NASA Technical Reports Server (NTRS)
Bolgar, A. S.; Gordiyenko, S. P.; Guseva, Y. A.; Turchanin, A. G.; Fenochka, B. V.; Fesenko, V. V.
1984-01-01
The evaporation rate, vapor pressure, heats of evaporation reaction (sublimation, dissociation), enthalpy, electrical resistance, heat capacity, emissivity, and heat conductivity of various carbides, borides, sulfides, nitrides, selenides, and phosphides were investigated. A set of high temperature high vacuum devices, calorimeters (designed for operation at 400 to 1300 K and from 1200 K), and mass spectrometers, most of which were specially developed for these studies, is described.
Feasibility study of the welding of SiC
NASA Technical Reports Server (NTRS)
Moore, T. J.
1985-01-01
In a brief study of the feasibility of welding sintered alpha-SiC, solid-state welding and brazing were investigated. Joint quality was determined solely by microstructural examination. Hot-pressure welding was shown to be feasible at 1950 C. Diffusion welding and brazing were also successful under hot isostatic pressure at 1950 C when boride, carbide, and silicide interlayers were used. Furnace brazing was accomplished at 1750 C when a TiSi2 interlayer was introduced.
Titanium Diboride Electrodeposited Coatings
1977-06-01
4 Ti02. This material was deposited in the form of a porous mass or loose particles which must be leached in water and acid to remove adherent...poudres metallique par electrolyse ignee. Revue de Metallurgie, v. 45, 1948, p. 49-59. 7. POWELL, C. F. Borides in High Temperature Materials and... water solution of thallium formate-thallium malonate 50-50 mole percent mixture with a density ranging from about 5 g/cm^ at the bottom to about 2 g/cm
METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM
Feder, H.M.; Chellew, N.R.
1960-08-16
Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.
Alumina-based ceramic composite
Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.
1996-01-01
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.
Preliminary investigation of zirconium boride ceramals for gas-turbine blade applications
NASA Technical Reports Server (NTRS)
Hoffman, Charles A
1953-01-01
Zirconium boride ZrB2 ceramals were investigated for possible gas-turbine-blade application. Included in the study were thermal shock evaluations of disks, preliminary turbine-blade operation, and observations of oxidation resistance. Thermal shock disks of the following three compositions were studied: (a) 97.5 percent ZrB2 plus 2.5 percent B by weight; (b) 92.5 percent ZrB2 plus 7.5 percent B by weight; and (c) 100 percent ZrB2. Thermal shock disks were quenched from temperatures of 1800 degrees, 2000 degrees, 2200 degrees, and 2400 degrees F. The life of turbine blades containing 93 percent ZrB2 plus 7 percent B by weight was determined in gas-turbine tests. The blades were run at approximately 1600 degrees F and 15,000 to 26,000 rpm. The thermal shock resistance of the 97.5 percent ZrB2 plus 2.5 percent boron ceramals compares favorably with that of TiC plus Co and TiC plus Ni ceramals. Oxidation of the disks during the thermal shock evaluation was slight for the comparatively short time (8.3 hr) up through 2000 degrees F. Oxidation of a specimen was severe, however, after 100 hours at 2000 degrees F. The turbine blade performance evaluation of the 93 percent ZrB2 plus 7 percent B composition was preliminary in scope ; no conclusions can be drawn.
NASA Astrophysics Data System (ADS)
Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.
2018-03-01
The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.
Method of making a light weight battery plaque
NASA Technical Reports Server (NTRS)
Reid, M. A.; Post, R. E.; Soltis, D. G. (Inventor)
1984-01-01
A nickel plaque which may be coated with a suitable metal or compound to make an electrode for a fuel cell or battery is fabricated by directing nickel sensitizer, catalyst and plating solutions through a porous plastic substrate in the order named and at prescribed temperatures and flow rates. A boride compound dissolved in the plating solution decreases the electrical resistance of the plaque. Certain substrates may require treatment in an alkali solution to dissolve filler materials thereby increasing porosity to a required 65%.
NASA Technical Reports Server (NTRS)
Divecha, A. P.
1974-01-01
Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1990-01-01
Aluminide-base intermetallic matrix composites are currently being considered as potential high-temperature materials. One of the key factors in the selection of a reinforcement material is its chemical stability in the matrix. In this study, chemical interactions between iron aluminides and several potential reinforcement materials, which include carbides, oxides, borides, and nitrides, are analyzed from thermodynamic considerations. Several chemically compatible reinforcement materials are identified for the iron aluminides with Al concentrations ranging from 40 to 50 at. pct.
The Physics and Chemistry of carbides, Nitrides and Borides. Volume 185
1990-01-01
and C-B-C chains [15,17]. Clearly, the use of boron-rich solids as electronic materials will place new demands on the quality of materials. In this...first heated in a pyrolytic boron nitride (PBN) crucible ( Union Carbide Corp.) under high vacuum (< 50 mTorr) to 1900°C. This removed surface...contamination of the sample. The powders were loaded into a graphite die with a high-purity BN die liner ( Union Carbide Grade HBC) with inner diameter of 3/8
Alumina-based ceramic composite
Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.
1996-07-23
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.
Anti-scratch AlMgB14 Gorilla® Glass coating
NASA Astrophysics Data System (ADS)
Putrolaynen, V. V.; Grishin, A. M.; Rigoev, I. V.
2017-10-01
Hard aluminum-magnesium boride (BAM) films were fabricated onto Corning® Gorilla® Glass by radio-frequency magnetron sputtering of a single stoichiometric AlMgB14 target. BAM films exhibit a Vickers hardness from 10 to 30 GPa and a Young's modulus from 80 to 160 GPa depending on applied loading forces. Deposited hard coating increases the critical load at which glass substrate cracks. The adhesion energy of BAM films on Gorilla® Glass is 6.4 J/m2.
Synthesis and properties of nickel cobalt boron nanoparticles
NASA Astrophysics Data System (ADS)
Patel, J.; Pankhurst, Q. A.; Parkin, I. P.
2005-01-01
Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.
Features of surface phase formation during case-hardening of iron- and titanium-based alloys
NASA Astrophysics Data System (ADS)
Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.
2017-11-01
The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.
Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems
NASA Astrophysics Data System (ADS)
Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.
1985-11-01
Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.
Chemical precursors to non-oxide ceramics: Macro to nanoscale materials
NASA Astrophysics Data System (ADS)
Forsthoefel, Kersten M.
Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a molecular precursor and porous alumina templating routes paired with solution-based methodologies are shown to generate non-oxide ceramic nanotubules of boron carbide, boron nitride and silicon carbide compositions. In the final phase of this work, a new metal-catalyzed route to poly(1-alkenyl- o-carborane) homopolymers and related copolymers was developed. Both homopolymers of 1-alkenyl-o-carboranes (1-vinyl-, 1-butenyl-, 1-hexenyl-) and copolymers of 1-hexenyl-o-carborane and allyltrimethylsilane or 1-hexenyl-o-carborane and 6-hexenyldecaborane were synthesized via the Cp2ZrMe2/B(C6F5) 3 catalyst system. A copolymer containing 1-hexenyl-o-carborane and the cross-linking agent, 6-hexenyldecaborane, was synthetically designed which exhibits initial cross-linking at ˜250°C and then converts in 75% yields to boron carbide at 1250°C.
Method For Synthesizing Extremely High-Temperature Melting Materials
Saboungi, Marie-Louise; Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
NASA Astrophysics Data System (ADS)
Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.
2000-07-01
Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.
Corrosion of Ceramic Materials
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Jacobson, Nathan S.
1999-01-01
Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.
Reactive multilayer synthesis of hard ceramic foils and films
Makowiecki, Daniel M.; Holt, Joseph B.
1996-01-01
A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.
High temperature solar energy absorbing surfaces
Schreyer, J.M.; Schmitt, C.R.; Abbatiello, L.A.
A solar collector having an improved coating is provided. The coating is a plasma-sprayed coating comprising a material having a melting point above 500/sup 0/C at which it is stable and selected from the group of boron carbide, boron nitride, metals and metal oxides, nitrides, carbides, borides, and silicates. The coatings preferably have a porosity of about 15 to 25% and a thickness of less than 200 micrometers. The coatings can be provided by plasma-spraying particles having a mean diameter of about 10 to 200 micrometers.
Fundamental Thermal and Mechanical Properties of Boride Ceramics
2014-02-28
Zr ,Y)B2 ( Zr ,Hf)B2 ( Zr ,Ti)B2 ZrB2 El ec tri ca l R es is tiv ity (µ Ω -c m ) Temperature (°C) Figure 17. Electrical resistivity as a function...family as Zr , namely Ti and Hf, had minimal effect on thermal conductivity, while others such as Nb , Ta, and W had an increasing impact based on their...diffusivity (α), heat capacity (Cp) from the NIST-JANAF tables, and bulk density (ρ) using Equation 6. (5) (6) Electrical resistivity
Method for Synthesizing Extremeley High Temperature Melting Materials
Saboungi, Marie-Louise and Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1989-01-01
Chemical compatibility of several reinforcement materials with three niobium aluminides, Nb3Al, Nb2Al, and NbAl3, were examined from thermodynamic considerations. The reinforcement materials considered in this study include carbides, borides, nitrides, oxides, silicides, and Engel-Brewer compounds. Thermodynamics of the Nb-Al system were reviewed and activities of Nb and Al were derived at desired calculation temperatures. Criteria for chemical compatibility between the reinforcement material and Nb-Al compounds have been defined and several chemically compatible reinforcement materials have been identified.
Ultra-hard AlMgB14 coatings fabricated by RF magnetron sputtering from a stoichiometric target
NASA Astrophysics Data System (ADS)
Grishin, A. M.; Khartsev, S. I.; Böhlmark, J.; Ahlgren, M.
2015-01-01
For the first time hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric ceramic AlMgB14 target. Optimized processing conditions (substrate temperature, target sputtering power and target-to-substrate distance) enable fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young's modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 and 275 GPa at 200 nm depth in 2 μm thick film.
NASA Astrophysics Data System (ADS)
Manghnani, Murli H.
2015-09-01
The 18th International Symposium on Boron, Borides and Related Materials was held in Hawaii Prince Hotel Waikiki, Honolulu, Hawaii, USA on August 31 to September 5, 2014 (ISBB 2014). A booklet of the Program and Abstracts prepared for the Symposium served as an important record of the scientific papers presented as oral paper (68) and as posters (53). The wide range of contributions in various areas of inter-disciplinary research in boron-related materials, and the discussions during the sessions, demonstrated impressive advancements and offer many future opportunities for individual as well as collaborative endeavors globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, M. Anwar; Center for Crystal Science and Technology, University of Yamanashi, Miyamae 7-32, Kofu, Yamanashi 400-8511; Tanaka, Isao
We studied thermoelectric properties of YB{sub 41}Si{sub 1.3} single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers,more » with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also. - Graphical abstract: The growth direction ([510]) was determined for the first time in YB{sub 41}Si{sub 1.3} single crystals and revealed an interesting layered feature of boron clusters and metal atoms, along which the electrical conductivity and thermoelectric power factor was strongly enhanced. - Highlights: • We have grown YB{sub 41}Si{sub 1.3} single crystals by the floating zone method. • Growth direction of [510] determined for first time in REB{sub 41}Si{sub 1.2}. • Electrical resistivity was strongly anisotropic with possible enhancement along metal layers. • The obtained power factor along [510] is 3.6 times higher than that along [052].« less
NASA Astrophysics Data System (ADS)
Xie, Ying Peng; Liu, Gang; Lu, Gao Qing (Max); Cheng, Hui-Ming
2012-02-01
Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers.Here we show that B2O3-xNx nanoclusters can be formed on the surface of WO3 particles by a combination of thermal oxidation of tungsten boride (WB) in air and the subsequent nitriding process in gaseous ammonia. The resultant nanoclusters are found to play an apparent role in improving the photocatalytic oxygen evolution of WO3 by promoting the surface separation of photoexcited charge-carriers. Electronic supplementary information (ESI) available: (1) Experimental section. (2) XRD patterns, FT-IR and Raman spectra of B2O3@WO3 and B2O3-xNx@WO3. (3) Time course of O2 evolution from water splitting using B2O3@WO3 and B2O3-xNx@WO3. (4) XRD pattern and SEM image of pure WO3, UV-visible absorption spectra of pure WO3 and N-WO3. (5) UV-visible absorption spectra of bulk B2O3 and schematic of band edges of WO3, bulk B2O3, and B2O3-xNx nanocluster. See DOI: 10.1039/c2nr11846g
NASA Astrophysics Data System (ADS)
Gaballa, Osama Gaballa Bahig
Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering temperature, and hot-pressing pressure. Also, WC additions to Ta4HfC5 were found to improve densification and increase microhardness. The ability to process these materials at relatively low temperature would save energy and reduce cost. Boron-based hard materials are used in numerous applications such as industrial machining, armor plating, and wear-resistant coatings. It was often thought that in addition to strong bonding, super-hard materials must also possess simple crystallographic unit cells with high symmetry and a minimum number of crystal defects (e.g., diamond and cubic boron nitride (cBN)). However, one ternary boride, AlMgB14, deviates from this paradigm; AlMgB 14 has a large, orthorhombic unit cell (oI64) with multiple icosahedral boron units. TiB2 has been shown to be an effective reinforcing phase in AlMgB 14, raising hardness, wear resistance, and corrosion resistance. Thus, it was thought that adding other, similar phases (i.e., ZrB2 and HfB2) to AlMgB14 could lead to useful improvements in properties vis-à-vis pure AlMgB14. Group IV metal diborides (XB2, where X = Ti, Zr, or Hf) are hard, ultra-high temperature ceramics. These compounds have a primitive hexagonal crystal structure (hP3) with planes of graphite-like boride rings above and below planes of metal atoms. Unlike graphite, there is strong bonding between the planes, resulting in high hardness. For this study two-phase composites of 60 vol. % metal diborides with 40 vol. % AlMgB14 were produced and characterized.
How to estimate hardness of crystals on a pocket calculator
NASA Astrophysics Data System (ADS)
Šimůnek, Antonín
2007-05-01
A generalization of the semiempirical microscopic model of hardness is presented and applied to currently studied borides, carbides, and nitrides of heavy transition metals. The hardness of OsB, OsC, OsN, PtN, RuC, RuB2 , ReB2 , OsB2 , IrN2 , PtN2 , and OsN2 crystals in various structural phases is predicted. It is found that none of the transition metal crystals is superhard, i.e., with hardness greater than 40GPa . The presented method provides materials researchers with a practical tool in the search for new hard materials.
First-principles modeling of hardness in transition-metal diborides
NASA Astrophysics Data System (ADS)
Lazar, Petr; Chen, Xing-Qiu; Podloucky, Raimund
2009-07-01
Based on recent experiments, the diborides OsB2 and ReB2 were proposed to be ultraincompressible and superhard materials. By application of an ab initio density-functional theory approach we investigate the elastic and cleavage fracture properties of the borides MB2 ( M=Hf , Ta, W, Re, Os, and Ir). We derive a direct correlation between the lowest calculated critical cleavage stress and the experimental (micro)hardness. By calculating the critical shear stress and estimating the possibility of dislocation emission we can justify the prediction that ReB2 is indeed a superhard material.
Reactive multilayer synthesis of hard ceramic foils and films
Makowiecki, D.M.; Holt, J.B.
1996-02-13
A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.
Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1993-01-01
Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.
Lightweight porous plastic plaque. [nickel cadmium batteries
NASA Technical Reports Server (NTRS)
Reid, M.
1978-01-01
The porosity and platability of various materials were investigated to determine a suitable substrate for nickel-plated electrodes. Immersion, ultrasonics, and flow-through plating techniques were tried using nonproprietary formulations, and proprietary phosphide and boride baths. Modifications to the selected material include variations in formulation and treatment, carbon loading to increase conductivity, and the incorporation of a grid. Problems to be solved relate to determining conductivities and porosities as a function of amount of nickel plated on the plastics; loading; charge and discharge curves of electrodes at different current densities; cell performance; and long-term degradation of electrodes.
In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)
2013-01-01
A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W.G.
The new ternary transition metal-rich borides Ta{sub 2}OsB{sub 2} and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta{sub 2}OsB{sub 2} and TaRuB crystallize in the tetragonal Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bondingmore » characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B{sub 2}-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta{sub 2}OsB{sub 2} through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B{sub 4}- or B{sub 2}-units are predicted, the former being the most thermodynamically stable modification. - Graphical abstract: The two new ternary tantalum borides, Ta{sub 2}OsB{sub 2} and TaRuB, have been discovered. Their crystal structures contain boron dumbbells, which are the strongest bonds. Peirls distortion is found responsible for Os{sub 2}-dumbbells formation in Ta{sub 2}OsB{sub 2}. Ta{sub 2}OsB{sub 2} and TaRuB are Pauli paramagnet and potential superconductors. - Highlights: • Two new ternary tantalum borides, Ta{sub 2}OsB{sub 2} and TaRuB, discovered. • Boron dumbbells are the strongest bonds in Ta{sub 2}OsB{sub 2} and TaRuB. • Peierls distortion responsible for Os{sub 2}-dumbbells formation in Ta{sub 2}OsB{sub 2.} • Ta{sub 2}OsB{sub 2} and TaRuB are Pauli paramagnet. • Ta{sub 2}OsB{sub 2} and TaRuB contain pseudogaps and are potential superconductors.« less
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.
2016-10-01
The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.
Design for low-cost gas metal arc weld-based aluminum 3-D printing
NASA Astrophysics Data System (ADS)
Haselhuhn, Amberlee S.
Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.
NASA Astrophysics Data System (ADS)
Gerstl, Stephan S. A.
Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1988-01-01
Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klausner, James F.; Momen, Ayyoub Mehdizadeh; Al-Raqom, Fotouh A.
Disclosed herein is a composite particle comprising a first non-metallic particle in which is dispersed a second non-metallic particle, where the first non-metallic particle and the second non-metallic particle are inorganic; and where a chemical composition of the first non-metallic particle is different from a chemical composition of the second non-metallic particle; and where the first non-metallic particle and the second non-metallic particle are metal oxides, metal carbides, metal nitrides, metal borides, metal silicides, metal oxycarbides, metal oxynitrides, metal boronitrides, metal carbonitrides, metal borocarbides, or a combination thereof.
Plasma-induced damage of tungsten coatings on graphite limiters
NASA Astrophysics Data System (ADS)
Fortuna, E.; Rubel, M. J.; Psoda, M.; Andrzejczuk, M.; Kurzydowski, K. J.; Miskiewicz, M.; Philipps, V.; Pospieszczyk, A.; Sergienko, G.; Spychalski, M.; Zielinski, W.
2007-03-01
Vaccum plasma sprayed tungsten coatings with an evaporated sandwich Re-W interlayer on graphite limiter blocks were studied after the experimental campaign in the TEXTOR tokamak. The coating morphology was modified by high-heat loads and co-deposition of species from the plasma. Co-deposits contained fuel species, carbon, boron and silicon. X-ray diffractometer phase analysis indicated the coexistence of metallic tungsten and its carbides (WC and W2C) and boride (W2B). In the Re-W layer the presence of carbon was detected in a several micrometres thick zone. In the overheated part of the limiter, the Re-W layer was transformed into a sigma phase.
First principle study of UHTC ternary diboride, Cr2AlB2
NASA Astrophysics Data System (ADS)
Rastogi, Anugya; Rajpoot, Priyanka; Verma, U. P.
2018-04-01
In this paper ab-initio study of the structural, electronic and optical properties of ternary metal boride Cr2AlB2 using full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The study of structural properties shows that Cr2AlB2 is metallic in nature and have orthorhombic crystal structure. The optical properties show that it possess anisotropic behavior, which have wide applications in electricity production through concentration of solar power (CSP) technology. To the best of our knowledge, theoretical study of the optical properties of Cr2AlB2 is reported for the first time.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.
A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.
Materials for high-temperature thermoelectric conversion
NASA Technical Reports Server (NTRS)
Feigelson, R. S.; Elwell, D.
1983-01-01
High boron materials of high efficiency for thermoelectric power generation and capable of prolonged operation at temperatures over 1200 C are discussed. Background theoretical studies indicated that the low carrier mobility of materials with beta boron and related structures is probably associated with the high density of traps. Experimental work was mainly concerned with silicon borides in view of promising data from European laboratories. A systematic study using structure determination and lattice constant measurements failed to confirm the existence of an SiBn phase. Only SiB6 and a solid solution of silicon in beta boron with a maximum solid solubility of 5.5-6 at % at 1650 C were found.
Numerical and experimental study of electron-beam coatings with modifying particles FeB and FeTi
NASA Astrophysics Data System (ADS)
Kryukova, Olga; Kolesnikova, Kseniya; Gal'chenko, Nina
2016-07-01
An experimental study of wear-resistant composite coatings based on titanium borides synthesized in the process of electron-beam welding of components thermo-reacting powders are composed of boron-containing mixture. A model of the process of electron beam coating with modifying particles of boron and titanium based on physical-chemical transformations is supposed. The dissolution process is described on the basis of formal kinetic approach. The result of numerical solution is the phase and chemical composition of the coating under nonequilibrium conditions, which is one of the important characteristics of the coating forming during electron beam processing. Qualitative agreement numerical calculations with experimental data was shown.
A new superhard material: Osmium diboride OsB 2
NASA Astrophysics Data System (ADS)
Hebbache, M.; Stuparević, L.; Živković, D.
2006-08-01
Superhard materials have many industrial applications, wherever resistance to abrasion and wear are important. The synthesis of new superhard materials is one of the great challenges to scientists. We re-examined the phase diagram of the binary osmium-boron system and confirmed the existence of two hexagonal phases, OsB 1.1, Os 2B 3, and an orthorhombic phase, OsB 2. Almost nothing is known about the physical properties of osmium borides. Microhardness measurements show that OsB 2 is extremely hard. Ab initio calculations show that this is due to formation of covalent bonds between boron atoms. OsB 2 is also a low compressibility material. It can be used as hard coating.
First-principles study of low compressibility osmium borides
NASA Astrophysics Data System (ADS)
Gou, Huiyang; Hou, Li; Zhang, Jingwu; Li, Hui; Sun, Guifang; Gao, Faming
2006-05-01
Using first-principles total energy calculations we investigate the structural, elastic, and electronic properties of OsB2 and OsB, respectively. The calculated equilibrium structural parameters of OsB2 are in agreement with the available experimental results. The calculations indicate that OsB in tungsten carbide is more energetically stable under the ambient condition than the metastable cesium chloride phase of OsB. Results of bulk modulus show that they are potential low compressible materials. The hardness of OsB2 is estimated by employing a semiempirical theory. The results indicate that OsB2 is an ultraincompressible material, but not a superhard material. The method designing superhard materials is different from one creating ultraincompressible materials.
The friction and wear properties of sputtered hard refractory compounds
NASA Technical Reports Server (NTRS)
Brainard, W. A.
1978-01-01
Several refractory silicide, boride, and carbide coatings were examined. The coatings were applied to type 440C steel surfaces by radio-frequency sputtering. The friction and wear properties of the coatings were found to be related to stoichiometry and impurity content of the bulk coating as well as the degree of interfacial adherence between coating and substrate. Bulk coating stoichiometry could to a large extent be controlled by the application of a negative bias voltage during deposition. Adherence was promoted by the formation of an oxidized layer at the interface. Deliberate preoxidizing of the 440C produced enhanced adherence for many compounds which are related to the formation of a mixed oxide transition region.
Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography
Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.
1999-01-01
A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.
Assessment of the State of the Art of Ultra High Temperature Ceramics
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead
2009-01-01
Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.
NASA Astrophysics Data System (ADS)
Sinninghe Damsté, Jaap S.; Schouten, Stefan; de Leeuw, Jan W.; van Duin, Adri C. T.; Geenevasen, Jan A. J.
1999-01-01
A novel sulfur-containing sterane, 4α,7α-epithio-5β-cholestane, has been identified in a sediment extract from the Miocene Northern Apennines marl (Italy) after its isolation by column chromatography and high pressure liquid chromatography. The compound has been characterised by GC-MS and mild Nickel boride desulfurisation and one and two-dimensional 1H NMR techniques. C 27-C 29 homologs have been detected in sediment extracts of three different formations and in one petroleum sample. These sulfur-containing steroids are probably formed by an intramolecular reaction of inorganic sulfides with early diagenetic products of Δ 5,7-sterols.
40 CFR 415.360 - Applicability; description of the copper salts production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper salts production subcategory. 415.360 Section 415.360 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Copper Salts Production Subcategory § 415.360 Applicability; description of the copper... copper salts, including (a) copper sulfate, copper chloride, copper iodide, and copper nitrate, and (b...
Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.
Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L
2018-02-01
Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.
Brewer, George J
2015-12-02
It has become clear that copper toxicity is playing a major role in Alzheimer's disease; but why is the brain copper toxicity with cognition loss in Alzheimer's disease so much different clinically than brain copper toxicity in Wilson's disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer's is at least in part, a copper-2 toxicity disease, while Wilson's is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer's epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure.
Brewer, George J.
2015-01-01
It has become clear that copper toxicity is playing a major role in Alzheimer’s disease; but why is the brain copper toxicity with cognition loss in Alzheimer’s disease so much different clinically than brain copper toxicity in Wilson’s disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer’s is at least in part, a copper-2 toxicity disease, while Wilson’s is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer’s epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure. PMID:26633489
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper alloy hot rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot... for monthly average Metric units—mg/off-kg of copper or copper alloy cold rolled English units—pounds... copper or copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy...
Harwood, V J; Gordon, A S
1994-01-01
Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076
West, Elizabeth C; Prohaska, Joseph R
2004-09-01
Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
40 CFR 415.364 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruckeberg, A.L.; Wu, L.
1992-06-01
Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population,more » and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.
1989-01-01
We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles wasmore » confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowrie, R.
1963-10-31
The development and properties of refractory materials are described. Corrosion of zirconium carbide, niobium carbide, and niobium carbide-zirconium carbide systems by carbon dioxide and hydrochloric acid at 2250 deg C is reported. Corrosion of silver-tungsten alloys by carbon dioxide and oxygen at 2150 to 2440 deg K is summarized. Measurements of pyrolytic and ZTA graphite corrosion by carbon dioxide and oxygen at 2100 to 2800 deg K are shown. At 2300 deg C the rate of formation of methane from graphite and hydrogen is greatly reduced by the addition of helium, at constant hydrogen pressure. Up to 2000 deg Cmore » the effect of helium is small. The pyrolysis of methane on graphite at 2000 deg C is tabulated. Oxidation of tungsten to form WO/sub 2/ and WO/sub 3/ is reported. Vaporization of hafnium borides at 2297 to 2538 deg K is analyzed. The lattice parameters of ZrB/sub 2/ at of TiN/sub 0.6/ and TiN/sub 0.75/ are discussed. Powder metallurgical techniques are used to prepare TiB/sub 2/, ZrB/sub 2/, HfB/ sub 2/, NbB/sub 2/, a nd TaB/sub 2/ for detailed x-ray characterization. The electric conductivity of NbC-ZrC systems is reported. General descriptions are given of analytical techniques for free carbon in carbides and spectrographic methods for metallic impurities in carbides and borides. Preliminary roomtemperature measurements are reported of the elastic properties of polycrystalline ZrB/sub 2/. Titanium carbide is brazed to tungsten with a platinum-boron system. A largegrained polycrystalline specimen of ZrC is plastically deformed in creep at 2134 deg C. Metallographic and x-ray examinations of polycrystalline TiC specimens deformed in creep reveal an increasing development with deformation of subgrains having preferred orientation. (N.W.R.)« less
Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO
2011-11-15
Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).
Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S
2014-11-04
Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.
Lu, Hua; Ding, Tingting; Yao, Tianping; Sun, Jiao
2014-05-01
To study the Cupric ion release characteristics of different copper raw materials in intrauterine device in vitro by ICP. Reveal the relationship between purity and shape of Cu-IUD copper and copper ion release. According to a certain proportion, the copper raw materials were 100 times diluted into the simulated uterine solution at 37 +/- 0.5 degrees C. Replaced medium at certain time points and collected soaking liquid. Using ICP analyzed the concentration of copper ion released. The largest daily release of copper ions was in the first 7 days. There was no statistically significant difference between the copper ion release amount of 99.99% and 99.95% purity copper wire (P > 0.05). The release of copper ion of the copper wire was far greater than that of the copper pipe in early stage (P < 0.01). The release amount decreased and stabilized at 56 day. Release characteristics of copper ion could effectively analysis by ICP. And in the same area, the release amount of copper ions of copper wire was greater than that of copper pipe.
Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun
2017-01-01
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans. Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. PMID:27881675
Advantages and challenges of increased antimicrobial copper use and copper mining.
Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher
2011-07-01
Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.
Characteristics and antimicrobial activity of copper-based materials
NASA Astrophysics Data System (ADS)
Li, Bowen
In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger antibacterial activity than copper vermiculite against E. coli. With 200 ppm exfoliated copper vermiculite in bacteria suspension (4.68 ppm of metal copper), the reduction of viable bacteria are 99.8% at 1 hour, and >99.9% at 2 hours. With 10 ppm exfoliated copper vermiculite in bacteria dilution (0.234 ppm of copper atoms), the reduction of viable E. coli reached 98.7% at 1 hour, and >95.6% at 2 hours. Molds have the potential to cause health problems, such as allergic reactions, irritations, and mycotoxins, and damage to buildings, historic relics, properties, etc. Since copper has better antifungal property, an initial antifungal activity of copper vermiculite was evaluated in this study. Fat-free milk was used to develop molds in the test samples by saturated samples. Incubated at 36°C for 48 hours, all of the surfaces of untreated control samples, including micron-sized vermiculite, exfoliated vermiculite, bentonite, and kaolin, have been covered by thick mold layers. However, there were no mold showed on copper vermiculite and exfoliated copper vermiculite. Even after the incubation was lasted for 10 days, copper vermiculite and exfoliated copper vermiculite did not show any mold on the surface. These results exhibited copper vermiculite has excellent antifungal activities against mold. Stability of copper ions in copper vermiculite was measured by aqueous leaching process. Copper vermiculite and exfoliated copper vermiculite were put into distilled water in a ratio of 2.0g/100ml, and then implemented leaching processes by continuously shaking (leaching) and statically storing (soaking) for desired periods of time, respectively. According to the analytic result by inductively coupled plasma spectroscopy (ICP), the major metals released were copper, magnesium, iron, silicon, and aluminum. The release rate of copper depends on the environmental conditions. Under the dynamic leaching condition, all the major elements had shown linear leaching rates, and slowly increases along with the leaching time. Copper concentration in 1 hour leached solutions had sufficient concentration to inhibit E. coli in aqueous solution. Lasting for 1 month, 1 gram of copper vermiculite only released 185mug of copper. At this velocity, 11.5 years are required to completely exhaust the copper atoms from copper vermiculite. A soaking process provided a lower release rate than leaching process. Comparably, exfoliated copper vermiculite had lower copper concentration, stronger antimicrobial effect, but faster release rate than copper vermiculite, due to their different structure characteristics. (Abstract shortened by UMI.)
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
... for monthly average Metric units—mg/off-kg of copper or copper alloy hot rolled English units—pounds... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166... copper or copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy...
NASA Technical Reports Server (NTRS)
Conway, J. B.; Stentz, R. H.; Berling, J. T.
1973-01-01
Short-term tensile evaluations at room temperature and 538 C and low-cycle fatigue evaluations at 538 C are presented for the following materials: Zirconium copper-annealed, Zirconium copper-1/4 hard, Zirconium copper-1/2 hard, Tellurium copper-1/2 hard, Chromium copper-SA and aged, OFHC copper-hard, OFHC copper-1/4 hard, OFHC copper-annealed, Silver-as drawn, Zr-Cr-Mg copper-SA, CW and aged, Electroformed copper-30-35 ksi, and Co-Be-Zr- copper-SA, aged. A total of 50 tensile tests and 76 low-cycle fatigue tests were performed using a strain rate of 0.2 percent per second.
Thiol-based copper handling by the copper chaperone Atox1.
Hatori, Yuta; Inouye, Sachiye; Akagi, Reiko
2017-04-01
Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Intracellular Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli▿
Macomber, Lee; Rensing, Christopher; Imlay, James A.
2007-01-01
Because copper catalyzes the conversion of H2O2 to hydroxyl radicals in vitro, it has been proposed that oxidative DNA damage may be an important component of copper toxicity. Elimination of the copper export genes, copA, cueO, and cusCFBA, rendered Escherichia coli sensitive to growth inhibition by copper and provided forcing circumstances in which this hypothesis could be tested. When the cells were grown in medium supplemented with copper, the intracellular copper content increased 20-fold. However, the copper-loaded mutants were actually less sensitive to killing by H2O2 than cells grown without copper supplementation. The kinetics of cell death showed that excessive intracellular copper eliminated iron-mediated oxidative killing without contributing a copper-mediated component. Measurements of mutagenesis and quantitative PCR analysis confirmed that copper decreased the rate at which H2O2 damaged DNA. Electron paramagnetic resonance (EPR) spin trapping showed that the copper-dependent H2O2 resistance was not caused by inhibition of the Fenton reaction, for copper-supplemented cells exhibited substantial hydroxyl radical formation. However, copper EPR spectroscopy suggested that the majority of H2O2-oxidizable copper is located in the periplasm; therefore, most of the copper-mediated hydroxyl radical formation occurs in this compartment and away from the DNA. Indeed, while E. coli responds to H2O2 stress by inducing iron sequestration proteins, H2O2-stressed cells do not induce proteins that control copper levels. These observations do not explain how copper suppresses iron-mediated damage. However, it is clear that copper does not catalyze significant oxidative DNA damage in vivo; therefore, copper toxicity must occur by a different mechanism. PMID:17189367
Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun
2017-01-06
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
40 CFR 421.60 - Applicability: Description of the secondary copper subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondary copper subcategory. 421.60 Section 421.60 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Copper Subcategory § 421.60 Applicability: Description of the secondary copper..., processing, and remelting of new and used copper scrap and residues to produce copper metal and copper alloys...
40 CFR 421.60 - Applicability: Description of the secondary copper subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary copper subcategory. 421.60 Section 421.60 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Copper Subcategory § 421.60 Applicability: Description of the secondary copper..., processing, and remelting of new and used copper scrap and residues to produce copper metal and copper alloys...
40 CFR 468.15 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
...-pounds of copper or copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092... English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140 0.056... copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium...
A Plasmodium falciparum copper-binding membrane protein with copper transport motifs
2012-01-01
Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769
Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis.
Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La
2013-01-01
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis
Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La
2013-01-01
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration. PMID:23986700
The effect of anti-phase domain size on the ductility of a rapidly solidified Ni3Al-Cr alloy
NASA Technical Reports Server (NTRS)
Carro, G.; Bertero, G. A.; Wittig, J. E.; Flanagan, W. F.
1989-01-01
Tensile tests on splat-quenched Ni3Al-Cr alloys showed a sharp decrease in ductility with long-time annealing. The growth of the initially very-fine-size anti-phase domains showed a tenuous correlation with ductility up to a critical size, where ductility was lost. The grain size was relatively unaffected by these annealing treatments, but the grain-boundary curvature decreased, implying less toughness. An important observation was that, for the longest annealing time, a chromium-rich precipitate formed, which the data indicate could be a boride. Miniaturized tensile tests were performed on samples which were all obtained from the same splat-quenched foil, and the various domain sizes were controlled by subsequent annealing treatments.
Two phase titanium aluminide alloy
Deevi, Seetharama C.; Liu, C. T.
2001-01-01
A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.
Combustion synthesis of boride and other composites
Halverson, Danny C.; Lum, Beverly Y.; Munir, Zuhair A.
1989-01-01
A self-sustaining combustion synthesis process for producing hard, tough, lightweight B.sub.4 C/TiB.sub.2 composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B.sub.4 C and TiB.sub.2 reactants. For lightweight products the composition must be relatively rich in the B.sub.4 C component. B.sub.4 C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.
Oxidation-induced contraction and strengthening of boron fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Wagner, T. C.
1981-01-01
An investigation was conducted to measure and understand the physical and mechanical effects that occur in boron fibers during and after thermal treatment in a controlled oxygen argon gaseous mixture. Of principal concern was the optimization of this treatment as a secondary processing method for significantly improving fiber tensile strength. Strengthening was accomplished by an oxidation induced axial contraction of the fiber and a resulting axial compression of strength limiting flaws within the fiber's tungsten boride core. Various physical observations were used to develop mechanistic models for oxidation, contraction, and flow formation. Processing guidelines are discussed for possibly exceeding the 5.5 GN/sq m strength limit and also for achieving fiber strengthening during application of boron containing diffusion barrier coatings.
Characterization and Computational Modeling of Minor Phases in Alloy LSHR
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng; Olson, Gregory; Gabb, Timothy; Garg, Anita; Miller, Derek
2012-01-01
The minor phases of powder metallurgy disk superalloy LSHR were studied. Samples were consistently heat treated at three different temperatures for long times to approach equilibrium. Additional heat treatments were also performed for shorter times, to assess minor phase kinetics in non-equilibrium conditions. Minor phases including MC carbides, M23C6 carbides, M3B2 borides, and sigma were identified. Their average sizes and total area fractions were determined. CALPHAD thermodynamics databases and PrecipiCalc(TradeMark), a computational precipitation modeling tool, were employed with Ni-base thermodynamics and diffusion databases to model and simulate the phase microstructural evolution observed in the experiments with an objective to identify the model limitations and the directions of model enhancement.
Gallagher, D L; Johnston, K M; Dietrich, A M
2001-08-01
The fate and distribution of copper-based crop protectants, applied to plasticulture tomato fields to protect against disease, were investigated in a greenhouse-scale simulation of farming conditions in a coastal environment. Following rainfall, 99% of the applied copper was found to remain on the fields sorbed to the soil and plants; most of the soil-bound copper was found sorbed to the top 2.5 cm of soil between the plasticulture rows. Of the copper leaving the agricultural fields, 82% was found in the runoff with the majority, 74%. sorbed to the suspended solids. The remaining copper, 18%, leached through the soil and entered the groundwater with 10% in the dissolved phase and 8% sorbed to suspended solids. Although only 1% copper was found to leave the field, this was sufficient to cause high copper concentrations (average 2102+/-433 microg/L total copper and 189+/-139 microg/L dissolved copper) in the runoff. Copper concentrations in groundwater samples were also high (average 312+/-198 microg/L total copper and 216+/-99 microg/L dissolved copper). Sedimentation, a best management practice for reducing copper loadings. was found to reduce the total copper concentrations in runoff by 90% to a concentration of 245+/-127 microg/L; however, dissolved copper concentrations remained stable, averaging 139+/-55 microg/L. Total copper concentrations were significantly reduced by the effective removal of suspended solids with sorbed copper.
Carol A. Clausen; Frederick Green
2003-01-01
Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Metric units—mg/off-kg of copper or copper alloy hot rolled English units—pounds per 1,000,000 off-pounds... copper or copper alloy cold rolled English units—pounds per 1,000,000 off-pounds of copper or copper... drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium 0.037 0.015...
Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma
Wachsmann, Jason; Peng, Fangyu
2016-01-01
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872
Porins Increase Copper Susceptibility of Mycobacterium tuberculosis
Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael
2013-01-01
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632
Essentiality of copper in humans.
Uauy, R; Olivares, M; Gonzalez, M
1998-05-01
The biochemical basis for the essentiality of copper, the adequacy of the dietary copper supply, factors that condition deficiency, and the special conditions of copper nutriture in early infancy are reviewed. New biochemical and crystallographic evidence define copper as being necessary for structural and catalytic properties of cuproenzymes. Mechanisms responsible for the control of cuproprotein gene expression are not known in mammals; however, studies using yeast as a eukaryote model support the existence of a copper-dependent gene regulatory element. Diets in Western countries provide copper below or in the low range of the estimated safe and adequate daily dietary intake. Copper deficiency is usually the consequence of decreased copper stores at birth, inadequate dietary copper intake, poor absorption, elevated requirements induced by rapid growth, or increased copper losses. The most frequent clinical manifestations of copper deficiency are anemia, neutropenia, and bone abnormalities. Recommendations for dietary copper intake and total copper exposure, including that from potable water, should consider that copper is an essential nutrient with potential toxicity if the load exceeds tolerance. A range of safe intakes should be defined for the general population, including a lower safe intake and an upper safe intake, to prevent deficiency as well as toxicity for most of the population.
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1989-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Dispersion strengthened copper
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1990-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
The copper rush of the nineties.
Solioz, Marc
2016-09-01
The nineties witnessed the discovery of the copper ATPases, enzymes which transport copper across the cytoplasmic membranes of bacteria and eukaryotes. In the same decade, several other key components of copper homeostasis have also been discovered, like copper chaperones and plasma membrane copper transporters. This has finally led to a molecular understanding of two inherited human diseases related to copper: Menkes disease, manifested by systemic copper deficiency, and Wilson disease, caused by defective secretion of excess copper. A historic perspective and untold stories of the events leading up to these discoveries are presented here.
Surface structure influences contact killing of bacteria by copper
Zeiger, Marco; Solioz, Marc; Edongué, Hervais; Arzt, Eduard; Schneider, Andreas S
2014-01-01
Copper kills bacteria rapidly by a mechanism that is not yet fully resolved. The antibacterial property of copper has raised interest in its use in hospitals, in place of plastic or stainless steel. On the latter surfaces, bacteria can survive for days or even weeks. Copper surfaces could thus provide a powerful accessory measure to curb nosocomial infections. We here investigated the effect of the copper surface structure on the efficiency of contact killing of Escherichia coli, an aspect which so far has received very little attention. It was shown that electroplated copper surfaces killed bacteria more rapidly than either polished copper or native rolled copper. The release of ionic copper was also more rapid from electroplated copper compared to the other materials. Scanning electron microscopy revealed that the bacteria nudged into the grooves between the copper grains of deposited copper. The findings suggest that, in terms of contact killing, more efficient copper surfaces can be engineered. PMID:24740976
Gray, Lawrence W.; Peng, Fangyu; Molloy, Shannon A.; Pendyala, Venkata S.; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H.; Lutsenko, Svetlana
2012-01-01
Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b−/− mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b−/− livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1 −/− knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD. PMID:22802922
The copper metallome in eukaryotic cells.
Vest, Katherine E; Hashemi, Hayaa F; Cobine, Paul A
2013-01-01
Copper is an element that is both essential and toxic. It is a required micronutrient for energy production in aerobic eukaryotes, from unicellular yeast to plants and mammals. Copper is also required for the acquisition and systemic distribution of the essential metal iron, and so copper deficiency results in iron deficiency. Copper enzymes have been identified that explain the wide variety of symptoms suffered by copper deficient subjects. The cloning of the genes encoding transport proteins responsible for copper-related Menkes and Wilson diseases inspired and coincided with the discovery of copper chaperones that stimulated the copper homeostasis field. Copper continues to be implicated in new array of proteins, notably those involved in a variety of neurodegenerative diseases. Here we will describe the cadre of important historical copper proteins and survey the major metallochaperones and transporters responsible for mobilization and sequestration of copper in yeast, mammals and plants.
Copper Recycling in the United States in 2004
Goonan, Thomas G.
2009-01-01
As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).
Isolation of copper-binding proteins from activated sludge culture.
Fukushi, K; Kato, S; Antsuki, T; Omura, T
2001-01-01
Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).
ERIC Educational Resources Information Center
Rodriguez, Emilio; Vicente, Miguel Angel
2002-01-01
Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)
Copper Resistance of the Emerging Pathogen Acinetobacter baumannii
Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.
2016-01-01
ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria. PMID:27520808
Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho
2006-01-01
Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.
Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O
2011-12-01
This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.
Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.
2015-01-01
Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490
United States copper metal and scrap use and trade patterns, 1995‒2014
Goonan, Thomas G.
2016-06-17
This report considers changes to the copper and copper scrap industries of the United States. For the study period, 1995 through 2014, U.S. refined copper production from all sources (primary and secondary materials) decreased from 2.28 million metric tons (Mt) of copper to 1.05 Mt (a 54 percent decrease). During the same period, U.S. copper scrap net exports increased from 0.203 Mt to 0.737 Mt (a 263 percent increase and a compound annual growth rate of about 7.0 percent per year). Copper and copper scrap prices (in constant 2014 dollars) rose such that 2014 prices were about 48 percent greater than 1995 prices. From 1995 through 2014, Chinese imports of copper scrap from the United States grew from 0.061 Mt to 0.569 Mt (an increase of about 830 percent and a compound annual growth rate of about 12.5 percent per year). In 2011, Chinese imports of U.S. copper scrap peaked at 0.745 Mt of contained copper. In 1995, Chinese imports of U.S. copper scrap accounted for 17 percent of U.S. copper scrap exports. By 2014, Chinese imports accounted for 69 percent of U.S. copper scrap exports (by weight), and Chinese imports of U.S. copper scrap were valued at $1.45 billion.
Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.
Brewer, George J
2015-01-01
Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.
40 CFR 468.15 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... average Metric units—mg/off-kg of copper or copper alloy hot rolled English units—pounds per 1,000,000 off... English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140 0.056... copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or copper alloy drawn Chromium...
Bioaccessibility and Solubility of Copper in Copper-Treated Lumber
Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...
DeAlba-Montero, I; Guajardo-Pacheco, Jesús; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene; Loredo-Becerra, G M; Martínez-Castañón, Gabriel-Alejandro; Ruiz, Facundo; Compeán Jasso, M E
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli , Staphylococcus aureus , and Enterococcus faecalis . These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis . Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.
DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene
2017-01-01
This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459
Tear copper and its association with liver copper concentrations in six adult ewes.
Schoster, J V; Stuhr, C; Kiorpes, A
1995-01-01
Tear and liver copper concentrations from 6 clinically healthy adult mixed-breed ewes were measured by Atomic Absorption Electrothermal Atomization (graphite furnace) Spectrometry and Flame Absorption Spectrometry, respectively, 7 times over 227 d to determine if their tears contained copper and if so, whether tear copper concentrations could reliably predict liver copper concentrations. To produce changes in liver copper concentration, the diet was supplemented with copper at concentrations that increased from 23 mg to 45 mg Cu/kg feed/day/sheep during the study. This regimen raised liver copper for all sheep to potentially toxic hepatic tissue concentration of greater than 500 mg/kg dry (DM) matter (tissue). The results of the study showed that copper was present in the tears of all sheep. The mean tear copper concentration showed a positive correlation with liver copper concentration (P = 0.003), increasing from 0.07 mg/kg DM at the start to 0.44 mg/kg DM at the end of the study, but could not reliably predict liver copper concentration (R2 = 0.222). PMID:7648525
Cinar, Miyase; Yildirim, Ebru; Yigit, A Arzu; Yalcinkaya, Ilkay; Duru, Ozkan; Kisa, Uçler; Atmaca, Nurgul
2014-05-01
This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg + 250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.
Zanon, Tyler; Kappell, Anthony D.; Petrella, Lisa N.; Andersen, Erik C.; Hristova, Krassimira R.
2016-01-01
Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress). PMID:27911941
2012-01-01
The application of porous silicon as a template for the fabrication of nanosized copper objects is reported. Three different types of nanostructures were formed by displacement deposition of copper on porous silicon from hydrofluoric acid-based solutions of copper sulphate: (1) copper nanoparticles, (2) quasi-continuous copper films, and (3) free porous copper membranes. Managing the parameters of porous silicon (pore sizes, porosity), deposition time, and wettability of the copper sulphate solution has allowed to achieve such variety of the copper structures. Elemental and structural analyses of the obtained structures are presented. Young modulus measurements of the porous copper membrane have been carried out and its modest activity in surface enhanced Raman spectroscopy is declared. PMID:22916840
Wang, Yu-Chun; Hu, Chao-Wei; Liu, Ming-Yu; Jiang, Hong-Chao; Huo, Rong; Dong, De-Li
2013-01-01
Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA) and high K(+) induced vasoconstriction. The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME). Copper did not blunt high K(+)-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K(+)-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC) antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv) significantly decreased blood pressure of rabbits and NA or DTC injection (iv) did not rescue the copper-induced hypotension and animal death. Copper blunted NA but not high K(+)-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO), but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms. © 2013 S. Karger AG, Basel.
Spinazzi, Marco; Sghirlanzoni, Angelo; Salviati, Leonardo; Angelini, Corrado
2014-12-01
Severe copper deficiency leads in humans to a treatable multisystem disease characterized by anaemia and degeneration of spinal cord and nerves, but its mechanisms have not been investigated. We tested whether copper deficit leads to alterations in fundamental copper-dependent proteins and in iron metabolism in blood and muscles of patients affected by copper deficiency myeloneuropathy, and if these metabolic abnormalities are associated with compensatory mechanisms for copper maintenance. We evaluated the expression of critical copper enzymes, of iron-related proteins, and copper chaperones and transporters in blood and muscles from five copper-deficient patients presenting with subacute sensory ataxia, muscle paralysis, liver steatosis and variable anaemia. Severe copper deficiency was caused by chronic zinc intoxication in all of the patients, with an additional history of gastrectomy in two cases. The antioxidant enzyme SOD1 and subunit 2 of cytochrome c oxidase were significantly decreased in blood cells and in muscles of copper-deficient patients compared with controls. In muscle, the iron storage protein ferritin was dramatically reduced despite normal serum ferritin, and the expression of the haem-proteins cytochrome c and myoglobin was impaired. Muscle expression of the copper transporter CTR1 and of the copper chaperone CCS, was strikingly increased, while antioxidant protein 1 was diminished. copper-dependent enzymes with critical functions in antioxidant defences, in mitochondrial energy production, and in iron metabolism are affected in blood and muscles of patients with profound copper deficiency leading to myeloneuropathy. Homeostatic mechanisms are strongly activated to increase intracellular copper retention. © 2013 British Neuropathological Society.
40 CFR 415.365 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Copper Salts Production... producing copper sulfate, copper chloride, copper iodide, or copper nitrate must achieve the following new source performance standards (NSPS): The limitations for pH, TSS, copper (T), nickel (T), and selenium (T...
40 CFR 415.365 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Copper Salts Production... producing copper sulfate, copper chloride, copper iodide, or copper nitrate must achieve the following new source performance standards (NSPS): The limitations for pH, TSS, copper (T), nickel (T), and selenium (T...
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...
21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...
Atox1 Contains Positive Residues That Mediate Membrane Association and Aid Subsequent Copper Loading
Flores, Adrian G.; Unger, Vinzenz M.
2013-01-01
Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution. PMID:24036897
Flores, Adrian G; Unger, Vinzenz M
2013-12-01
Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.
Influence of Copper on the Hot Ductility of 20CrMnTi Steel
NASA Astrophysics Data System (ADS)
Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong
2015-02-01
The hot ductility of 20CrMnTi steel with x% copper (x = 0, 0.34) was investigated. Results show that copper can reduce its hot ductility, but there is no significant copper-segregation at the boundary tested by EPMA. The average copper content at grain boundaries and substrate is 0.352% and 0.318% respectively in steel containing 0.34% copper tensile-tested at 950 °C. The fracture morphology was examined with SEM and many small and shallow dimples were found on the fracture of steel with copper, and fine copper sulfide was found from carbon extraction replicas using TEM. Additionally, adding 0.34% copper caused an increase in the dynamic recrystallization temperature from 950 °C to 1000 °C, which indicates that copper can retard the dynamic recrystallization (DRX) of austenite. The detrimental influence of copper on hot ductility of 20CrMnTi steel is due mainly to the fine copper sulfide in the steel and its retarding the DRX.
Removal of copper from ferrous scrap
Blander, M.; Sinha, S.N.
1987-07-30
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
Removal of copper from ferrous scrap
Blander, M.; Sinha, S.N.
1990-05-15
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
Removal of copper from ferrous scrap
Blander, Milton; Sinha, Shome N.
1990-01-01
A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.
The Features of Copper Metabolism in the Rat Liver during Development
2015-01-01
Strong interest in copper homeostasis is due to the fact that copper is simultaneously a catalytic co-factor of the vital enzymes, a participant in signaling, and a toxic agent provoking oxidative stress. In mammals, during development copper metabolism is conformed to two types. In embryonic type copper metabolism (ETCM), newborns accumulate copper to high level in the liver because its excretion via bile is blocked; and serum copper concentration is low because ceruloplasmin (the main copper-containing protein of plasma) gene expression is repressed. In the late weaning, the ETCM switches to the adult type copper metabolism (ATCM), which is manifested by the unlocking of copper excretion and the induction of ceruloplasmin gene activity. The considerable progress has been made in the understanding of the molecular basis of copper metabolic turnover in the ATCM, but many aspects of the copper homeostasis in the ETCM remain unclear. The aim of this study was to investigate the copper metabolism during transition from the ETCM (up to 12-days-old) to the ATCM in the rats. It was shown that in the liver, copper was accumulated in the nuclei during the first 5 days of life, and then it was re-located to the mitochondria. In parallel with the mitochondria, copper bulk bound with cytosolic metallothionein was increased. All compartments of the liver cells rapidly lost most of their copper on the 13th day of life. In newborns, serum copper concentration was low, and its major fraction was associated with holo-Cp, however, a small portion of copper was bound to extracellular metallothionein and a substance that was slowly eluted during gel-filtration. In adults, serum copper concentration increased by about a factor of 3, while metallothionein-bound copper level decreased by a factor of 2. During development, the expression level of Cp, Sod1, Cox4i1, Atp7b, Ctr1, Ctr2, Cox17, and Ccs genes was significantly increased, and metallothionein was decreased. Atp7a gene’s activity was fully repressed. The copper routes in newborns are discussed. PMID:26474410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Berg, G.J.; de Goeij, J.J.; Bock, I.
1991-08-01
Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaoliang; Yan, Zhengguang, E-mail: yanzg2004@gmail.com; Han, Xiaodong, E-mail: xdhan@bjut.edu.cn
2014-02-01
Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: Inmore » situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.« less
Synthesis of Commercial Products from Copper Wire-Drawing Waste
NASA Astrophysics Data System (ADS)
Ayala, J.; Fernández, B.
2014-06-01
Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.
NASA Astrophysics Data System (ADS)
Yong, Yingqiong; Nguyen, Mai Thanh; Tsukamoto, Hiroki; Matsubara, Masaki; Liao, Ying-Chih; Yonezawa, Tetsu
2017-03-01
Mixtures of a copper complex and copper fine particles as copper-based metal-organic decomposition (MOD) dispersions have been demonstrated to be effective for low-temperature sintering of conductive copper film. However, the copper particle size effect on decomposition process of the dispersion during heating and the effect of organic residues on the resistivity have not been studied. In this study, the decomposition process of dispersions containing mixtures of a copper complex and copper particles with various sizes was studied. The effect of organic residues on the resistivity was also studied using thermogravimetric analysis. In addition, the choice of copper salts in the copper complex was also discussed. In this work, a low-resistivity sintered copper film (7 × 10-6 Ω·m) at a temperature as low as 100 °C was achieved without using any reductive gas.
Copper import in Escherichia coli by the yersiniabactin metallophore system
Koh, Eun-Ik; Robinson, Anne E.; Bandara, Nilantha; Rogers, Buck E.; Henderson, Jeffrey P.
2017-01-01
Copper plays a dual role as nutrient and toxin during bacterial infections. While uropathogenic Escherichia coli (UPEC) strains can use the copper-binding metallophore yersiniabactin (Ybt) to resist copper toxicity, Ybt also converts bioavailable copper to Cu(II)-Ybt in low copper conditions. Although E. coli have long been considered to lack a copper import pathway, we observed Ybt-mediated copper import in UPEC using canonical Fe(III)-Ybt transport proteins. UPEC removed copper from Cu(II)-Ybt with subsequent re-export of metal-free Ybt to the extracellular space. Copper released through this process became available to an E. coli cuproenzyme (the amine oxidase TynA), linking this import pathway to a nutrient acquisition function. Ybt-expressing E. coli thus engage in nutritional passivation, a strategy of minimizing a metal ion's toxicity while preserving its nutritional availability. Copper acquisition through this process may contribute to the marked virulence defect of Ybt transport-deficient UPEC. PMID:28759019
Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N
2017-08-01
The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chloropyhllin....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by...
An Expanding Range of Functions for the Copper Chaperone/Antioxidant Protein Atox1
Hatori, Yuta
2013-01-01
Abstract Significance: Antioxidant protein 1 (Atox1 in human cells) is a copper chaperone for the copper export pathway with an essential role in cellular copper distribution. In vitro, Atox1 binds and transfers copper to the copper-transporting ATPases, stimulating their catalytic activity. Inactivation of Atox1 in cells inhibits maturation of secreted cuproenzymes as well as copper export from cells. Recent Advances: Accumulating data suggest that cellular functions of Atox1 are not limited to its copper-trafficking role and may include storage of labile copper, modulation of transcription, and antioxidant defense. The conserved metal binding site of Atox1, CxGC, differs from the metal-binding sites of copper-transporting ATPases and has a physiologically relevant redox potential that equilibrates with the GSH:GSSG pair. Critical Issues: Tight relationship appears to exist between intracellular copper levels and glutathione (GSH) homeostasis. The biochemical properties of Atox1 place it at the intersection of cellular networks that regulate copper distribution and cellular redox balance. Mechanisms through which Atox1 facilitates copper export and contributes to oxidative defense are not fully understood. Future Directions: The current picture of cellular redox homeostasis and copper physiology will be enhanced by further mechanistic studies of functional interactions between the GSH:GSSG pair and copper-trafficking machinery. Antioxid. Redox Signal. 19, 945–957. PMID:23249252
Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher
2013-01-01
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951
Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R
2018-01-24
Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.
Gastrointestinal effects associated with soluble and insoluble copper in drinking water.
Pizarro, F; Olivares, M; Araya, M; Gidi, V; Uauy, R
2001-01-01
The aim of this study was to determine whether total copper or soluble copper concentration is associated with gastrointestinal signs and symptoms. Forty-five healthy adult women (18-55 years of age), living in Santiago, Chile, ingested tap water with 5 mg/L of copper containing different ratios of soluble copper (copper sulfate) and insoluble copper (copper oxide) over a 9-week period. Three randomized sequences of the different copper ratios (0:5, 1:4, 2:3, 3:2, and 5:0 mg/L) were followed. Subjects recorded their water consumption and gastrointestinal symptoms daily on a special form. Mean water consumption was similar among groups. Serum copper levels, ceruloplasmin, and activities of liver enzymes were within normal limits. No differences were detected between the means of biochemical parameters at the beginning and at the end of the study. Twenty subjects presented gastrointestinal disturbances at least once during the study, 9 suffered diarrhea (with or without abdominal pain and vomiting), and the other 11 subjects reported abdominal pain, nausea, or vomiting. No differences were found in incidence of abdominal pain, nausea, vomiting, and diarrhea regardless of the ratio of copper sulfate to copper oxide. In conclusion, both copper sulfate (a soluble compound) and copper oxide (an insoluble compound) have comparable effects on the induction of gastrointestinal manifestations, implying that similar levels of ionic copper were present in the stomach. PMID:11673125
Release of Micronized Copper Particles from Pressure ...
Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the particles. Two common pathways of exposure, leaching during contact with water and transfer during physical contact, were investigated to gage potential human and environmental risk during intended use of the product. Characterization, leaching tests, and wipe tests were conducted on two representative formulations of micronized copper PTL (micronized copper azole or MCA) to quantify the levels of copper present in the treated material and the amount of copper released during use as well as to determine the form (particle or ion) of the copper after it was released. Additionally, an ionized copper pressure treated wood (alkaline copper azole or ACA) was tested for comparison. The characterization showed that copper carbonate is the primary particle form in the MCA treated wood, but other forms are also present, particularly in the MCA-1 formulation, which contained a large amount of organically complexed copper. Microscopy showed that MCA-1 contained particles roughly half the size of MCA-2. The leaching results indicate that mostly (> ~95%) ionic copper is released from the MCA wood and that the particulate copper that was released is attached to cellulose and not free in solution. A sma
Estimating Dermal Transfer of Copper Particles from the ...
Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1 year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5 mg m-2) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1 month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Copper Salts Production Subcategory § 415.367 Effluent limitations guidelines representing the... this subpart and producing copper sulfate, copper chloride, copper iodide, or copper nitrate must... existing point source subject to this subpart and producing copper carbonate must achieve the following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Copper Salts Production Subcategory § 415.367 Effluent limitations guidelines representing the... this subpart and producing copper sulfate, copper chloride, copper iodide, or copper nitrate must... existing point source subject to this subpart and producing copper carbonate must achieve the following...
Code of Federal Regulations, 2010 CFR
2010-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018... monthly average Metric units—mg/off-kg of copper or copper alloy cold rolled English units—pounds per 1.../off-kg of copper or copper alloy drawn English units—pounds per 1,000,000 off-pounds of copper or...
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092 Nickel 0.056 0.038 Zinc... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140... copper or copper alloy drawn Chromium 0.031 0.012 Copper 0.108 0.051 Lead 0.0085 0.0076 Nickel 0.046 0...
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092 Nickel 0.056 0.038 Zinc... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140... copper or copper alloy drawn Chromium 0.031 0.012 Copper 0.108 0.051 Lead 0.0085 0.0076 Nickel 0.046 0...
40 CFR 468.13 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... copper alloy hot rolled Chromium 0.038 0.015 Copper 0.131 0.062 Lead 0.010 0.0092 Nickel 0.056 0.038 Zinc... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.140... copper or copper alloy drawn Chromium 0.031 0.012 Copper 0.108 0.051 Lead 0.0085 0.0076 Nickel 0.046 0...
Method for providing uranium with a protective copper coating
Waldrop, Forrest B.; Jones, Edward
1981-01-01
The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.
Copper tolerance in clones of Agrostis gigantea from a mine waste site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, G.D.; Courtin, G.M.; Rauser, W.E.
1977-04-15
A mine waste site from Sudbury, Ontario, contaminated with heavy metals is described. The dominant vegetative cover was formed by two grasses: Agrostis gigantea Roth. and Agrostis scabra Willd. Testing of 10 clones of A. gigantea from the roast bed and an adjoining area for copper tolerance showed that two clones collected from the roast bed were tolerant to increased copper levels. Copper tolerance was found in clones growing on soils with high copper contents and low pHs. The combination of high copper content and low pH brought about a high level of extractable copper within the soil. Soils withmore » equally high copper levels but higher pHs and therefore low extractable-copper levels did not support copper-tolerant clones.« less
Copper transport into the secretory pathway is regulated by oxygen in macrophages
White, Carine; Kambe, Taiho; Fulcher, Yan G.; Sachdev, Sherri W.; Bush, Ashley I.; Fritsche, Kevin; Lee, Jaekwon; Quinn, Thomas P.; Petris, Michael J.
2009-01-01
Summary Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A. PMID:19351718
c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm
Durand, Anne; Azzouzi, Asma; Bourbon, Marie-Line; Steunou, Anne-Soisig; Liotenberg, Sylviane; Maeshima, Akinori; Astier, Chantal; Argentini, Manuela; Saito, Shingo
2015-01-01
ABSTRACT In the absence of a tight control of copper entrance into cells, bacteria have evolved different systems to control copper concentration within the cytoplasm and the periplasm. Central to these systems, the Cu+ ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The fate of copper in the periplasm varies among species. Copper can be sequestered, oxidized, or released outside the cells. Here we describe the identification of CopI, a periplasmic protein present in many proteobacteria, and show its requirement for copper tolerance in Rubrivivax gelatinosus. The ΔcopI mutant is more susceptible to copper than the Cu+ ATPase copA mutant. CopI is induced by copper, localized in the periplasm and could bind copper. Interestingly, copper affects cytochrome c membrane complexes (cbb3 oxidase and photosystem) in both ΔcopI and copA-null mutants, but the causes are different. In the copA mutant, heme and chlorophyll synthesis are affected, whereas in ΔcopI mutant, the decrease is a consequence of impaired cytochrome c assembly. This impact on c-type cytochromes would contribute also to the copper toxicity in the periplasm of the wild-type cells when they are exposed to high copper concentrations. PMID:26396241
Crowe, Andrew; Jackaman, Connie; Beddoes, Katie M.; Ricciardo, Belinda; Nelson, Delia J.
2013-01-01
Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF). Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression) and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes. PMID:24013775
ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.
Cater, Michael A; La Fontaine, Sharon; Shield, Kristy; Deal, Yolanda; Mercer, Julian F B
2006-02-01
The Wilson protein (ATP7B) regulates levels of systemic copper by excreting excess copper into bile. It is not clear whether ATP7B translocates excess intrahepatic copper directly across the canalicular membrane or sequesters this copper into exocytic vesicles, which subsequently fuse with canalicular membrane to expel their contents into bile. The aim of this study was to clarify the mechanism underlying ATP7B-mediated copper detoxification by investigating endogenous ATP7B localization in the HepG2 hepatoma cell line and its ability to mediate vesicular sequestration of excess intracellular copper. Immunofluorescence microscopy was used to investigate the effect of copper concentration on the localization of endogenous ATP7B in HepG2 cells. Copper accumulation studies to determine whether ATP7B can mediate vesicular sequestration of excess intracellular copper were performed using Chinese hamster ovary cells that exogenously expressed wild-type and mutant ATP7B proteins. In HepG2 cells, elevated copper levels stimulated trafficking of ATP7B to pericanalicular vesicles and not to the canalicular membrane as previously reported. Mutation of an endocytic retrieval signal in ATP7B caused the protein to constitutively localize to vesicles and not to the plasma membrane, suggesting that a vesicular compartment(s) is the final trafficking destination for ATP7B. Expression of wild-type and mutant ATP7B caused Chinese hamster ovary cells to accumulate copper in vesicles, which subsequently undergo exocytosis, releasing copper across the plasma membrane. This report provides compelling evidence that the primary mechanism of biliary copper excretion involves ATP7B-mediated vesicular sequestration of copper rather than direct copper translocation across the canalicular membrane.
A Role for the ATP7A Copper-transporting ATPase in Macrophage Bactericidal Activity*
White, Carine; Lee, Jaekwon; Kambe, Taiho; Fritsche, Kevin; Petris, Michael J.
2009-01-01
Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. Interferon-γ was found to increase expression of the high affinity copper importer, CTR1, and stimulate copper uptake. This was accompanied by copper-stimulated trafficking of the ATP7A copper exporter from the Golgi to vesicles that partially overlapped with phagosomal compartments. Silencing of ATP7A expression attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of macrophages. Significantly, a copper-sensitive mutant of Escherichia coli lacking the CopA copper-transporting ATPase was hypersensitive to killing by RAW264.7 macrophages, and this phenotype was dependent on ATP7A expression. Collectively, these data suggest that copper-transporting ATPases, CopA and ATP7A, in both bacteria and macrophage are unique determinants of bacteria survival and identify an unexpected role for copper at the host-pathogen interface. PMID:19808669
Bioavailable copper modulates oxidative phosphorylation and growth of tumors
Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas
2013-01-01
Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment. PMID:24218578
Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole
2013-01-01
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, M.; Ravindranath, M.H.
1987-10-01
In the decapod crustaceans copper is distributed in various tissues. In these animals the tissue copper generally exists in four forms; ionic, bound to proteins, lipids and membrane. In the estuarine crab Scylla serrata, the haemolymph copper exists only in association with proteins, whereas in the hepatopancreas it exists in all the four forms and in gills it exists in all the forms except in combination with lipids. Although food is the major source of copper in decapod crustaceans evidence indicate that copper may be directly obtained from the environment. It was postulated earlier that in Scylla serrata the haemolymphmore » and hepatopancreas may be involved in copper regulation. In the present work the authors have studied the nature and levels of copper in different tissues after exposing the crabs to copper-rich medium. The results indicate the relative importance of various tissues in accumulation an the possible mechanisms of regulation of the environmental copper. Besides, as a pre-requisite for studies of this kind, the toxic levels for different forms of copper were estimated since the form of toxicant is known to influence the toxicity to the decapod crustaceans.« less
Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials
NASA Astrophysics Data System (ADS)
Bastos, Carlos A. P.; Faria, Nuno; Ivask, Angela; Bondarenko, Olesja M.; Kahru, Anne; Powell, Jonathan
2018-04-01
Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here, we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe, and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm and a mean zeta potential of - 40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range, but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 h. We provide a practical formulation for topical copper-based antimicrobial therapy. Further studies, especially in vivo, are merited.
Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry
2015-01-01
Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355
Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1.
Li, Wenbo; Lacey, Randy F; Ye, Yajin; Lu, Juan; Yeh, Kuo-Chen; Xiao, Youli; Li, Laigeng; Wen, Chi-Kuang; Binder, Brad M; Zhao, Yang
2017-04-01
Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human.
Copper-containing zeolite catalysts
Price, G.L.; Kanazirev, V.
1996-12-10
A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.
Copper-containing zeolite catalysts
Price, Geoffrey L.; Kanazirev, Vladislav
1996-01-01
A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.
The effects of copper proximity on oxalate production in Fibroporia radiculosa
Katie M. Jenkins; Carol A. Clausen; Frederick Green III
2014-01-01
Copper remains a key component used in wood preservatives available today. However, the observed tolerance of several critical wood rotting organisms continues to be problematic. Tolerance to copper has been linked to the production and accumulation of oxalate, which precipitates copper into insoluble copper-oxalate crystals, thus inactivating copper ions. The purpose...
Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya
2017-10-18
Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.
Roles of Copper-Binding Proteins in Breast Cancer.
Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla
2017-04-20
Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.
Carbohydrate metabolism in erythrocytes of copper deficient rats.
Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J
2003-11-01
Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.
Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption
Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O
2011-01-01
Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606
Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan
2016-02-20
Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production.
Fabricating Copper Nanotubes by Electrodeposition
NASA Technical Reports Server (NTRS)
Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel
2009-01-01
Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-01-01
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543
Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana
2016-02-16
Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.
Offpost Interim Response Action, Alternatives Assessment, Version 2.3
1988-12-01
copper resulting from the use as algicides or herbicides of basic copper carbonate (molachite), copper sulfate (see below), copper monoethandime, and...mart per million for potable water for residues of -copper resulting from the use as algicides or herbicides of basic copper sulfat. and the other...Water ARAR: 21 C.F.R. § 193.90 (TPFA) -- tolerance of 1 part per million for potable water for residues of copper resulting from the use as algicides or
Code of Federal Regulations, 2014 CFR
2014-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
Code of Federal Regulations, 2013 CFR
2013-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
Code of Federal Regulations, 2012 CFR
2012-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
Code of Federal Regulations, 2011 CFR
2011-07-01
... English Units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018...,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead... copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124...
Multiphase separation of copper nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Lan, Pui Ching; Olson, Tammy
Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.
Multiphase separation of copper nanowires
Qian, Fang; Lan, Pui Ching; Olson, Tammy; ...
2016-09-01
Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.
Getz, Jean; Lin, Dingbo; Medeiros, Denis M
2011-10-01
Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.
Assessment of the Bioaccessibility of Micronized Copper Wood on Simulated Stomach Fluid
The widespread use of copper-treated lumber has increased the potential for human exposure. Moreover, there is a lack of information on the fate and behavior of copper-treated wood particles following oral ingestion. In this study, the in vitro bioaccessibility of copper from copper-treated wood dust in simulated stomach fluid and DI water was determined. Three copper-treated wood products, liquid alkali copper quaternary and two micronized copper quarternary from different manufacturers, were incubated in the extraction media then fractionated by centrifugation and filtration through 0.45 ?m and 10 kDa filters. The copper concentrations from isolated fractions were measured using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Total amounts of copper from each wood product were also determined using microwave-assisted acid digestion of dried wood samples and quantification using ICP-OES. The percent in vitro bioaccessible copper was between 83 and 90 % for all treated wood types. However, the percent of copper released in DI water was between 14 and 25 % for all wood products. This data suggests that copper is highly bioaccessible at low pH and may pose a potential human exposure risk upon ingestion. This dataset is associated with the following publication:Santiago-Rodrigues, L., J.L. Griggs, K. Bradham , C. Nelson , T. Luxton , W. Platten , and K. Rogers. Assessment of the bioaccessibility of micronized copper wood in synthetic stomach flu
40 CFR 180.1021 - Copper; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (2) Basic copper carbonate (malachite) as an algicide or herbicide in impounded and stagnant bodies.... Basic copper carbonate (malachite) 1184-64-1 Copper ammonia complex 16828-95-8 Copper ethylenediamine...
Code of Federal Regulations, 2013 CFR
2013-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2014 CFR
2014-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
Code of Federal Regulations, 2012 CFR
2012-07-01
... copper nitrate must achieve the following effluent limitations representing the degree of effluent...). Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate Pollutant or pollutant property...
75 FR 71146 - Seamless Refined Copper Pipe and Tube From China and Mexico
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... Copper Pipe and Tube From China and Mexico Determinations On the basis of the record \\1\\ developed in the... copper pipe and tube (``SRC pipe and tube'') from China and Mexico provided for in subheadings 7411.10.10... Copper Products, LLC, Pine Hall, NC; Mueller Copper Tube Products, Inc. and Mueller Copper Tube Company...
Dispersion strengthened copper
Sheinberg, H.; Meek, T.T.; Blake, R.D.
1990-01-09
A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.
NASA Technical Reports Server (NTRS)
Wisander, D. W.
1978-01-01
Aluminum, titanium, beryllium, nickel, iron, copper, and several copper alloys were run in sliding contact with AISI 440C in liquid methane and natural gas. All of the metals run except copper and the copper alloys of tin and tin-lead showed severely galled wear scars. Friction coefficients varied from 0.2 to 1.0, the lowest being for copper, copper-17 wt. % tin, and copper-8 wt. % tin-22 wt. % lead. The wear rate for copper was two orders of magnitude lower than that of the other metals run. An additional order of magnitude of wear reduction was achieved by the addition of tin and/or lead to copper.
Effect of oxygen, methyl mercaptan, and methyl chloride on friction behavior of copper-iron contacts
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
Sliding friction experiments were conducted with an iron rider on a copper disk and a copper rider on an iron disk. The sputter cleaned iron and copper disk surfaces were saturated with oxygen, methyl mercaptan, and methyl chloride at atmospheric pressure. Auger emission spectroscopy was used to monitor the surfaces. Lower friction was obtained in all experiments with the copper rider sliding on the iron disk than when the couple was reversed. For both iron and copper disks, methyl mercaptan gave the best surface coverage and was most effective in reducing friction. For both iron and copper disks, methyl chloride was the least effective in reducing friction. With sliding, copper transferred to iron and iron to copper.
Accumulation and hyperaccumulation of copper in plants
NASA Astrophysics Data System (ADS)
Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.
2009-04-01
Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species have adapted on such stress. The aim of this study is to investigate the behaviour of copper in plants and to assess its potential effect on the surrounding environment. To detect copper in biological samples electrochemical methods were employed particularly differential pulse voltammetry (DPV). Copper gave signals at 0.02 V measured by DPV. The obtained calibration dependence was linear (R2 = 0.995). Further, this method was utilized for determination of copper in real soil samples obtained from previously mentioned heavy-metal-polluted mining area. The content varied within range from tens to hundreds of mg of copper per kg of the soil. Moreover, we focused on investigation of copper influence on seedlings of Norway spruce. The seedlings were treated with copper (0, 0.1, 10 and 100 mM) for four weeks. We observed anatomical-morphological changes and other biochemical parameters in plants. We determined that seedlings synthesized more than 48 % protective thiols (glutathione and phytochelatins) compared to control ones. We investigated copper distribution in plant tissues by diphenylcarbazide staining. We found out that copper is highly accumulated in parenchymal stalk cells. In needles, change in auto-fluorescence of parenchymal cells of mesoderm similarly to endodermis cells. Besides, we analyzed samples of plants from the polluted area (spruce, pin, birch). The data obtained well correlated with previously mentioned. Acknowledgement The work on this experiment was supported by grant: INCHEMBIOL MSM0021622412.
2014-01-01
Background Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. Methods Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. Results Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). Conclusions Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM. PMID:24927960
Winter, P; Hochsteiner, W; Chizzola, R
2004-10-01
In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.
Using XAS and SXRF to Study Copper in Wilson Disease at the Molecular and Tissue Level
NASA Astrophysics Data System (ADS)
Ralle, Martina; Blackburn, Ninian J.; Lutsenko, Svetlana
2007-02-01
Wilson disease (WD) is a genetic disorder of copper metabolism associated with severe hepatic, neurological, and psychiatric abnormalities. In WD, the billiary copper excretion is impaired and copper accumulates in tissues, particularly in the liver and the brain. The affected gene, ATP7B, encodes the copper transporting ATPase, Wilson disease protein (WNDP). WNDP has six copper binding sites in the N-terminal portion of the molecule. Each site includes the conserved amino acid sequence MXCXXC, and binds 1 Cu(I) through its 2 cysteine residues. We performed X-ray absorption studies at the Cu Kα-edge on the recombinant N-terminal domain of WNDP (N-WNDP). Copper was bound to N-WNDP either in vivo or in vitro in the presence of different reducing agents. We found that in N-WNDP copper is predominantly coordinated in a linear fashion by two cysteines, with the appearance of a Cu-Cu interaction when all metal binding sites are filled. Increasing amounts of reducing agents containing sulfide or phosphine groups led to binding of the exogenous ligands to copper thereby increasing the coordination number of copper from two to three. To better understand the role of copper in WD, we utilized livers of the 6-weeks-old Atp7b-/- mice (an animal model for WD) in which the copper concentration was 10-20-fold higher compared to that of the control mice. The distribution of copper in hepatocytes was evaluated by synchrotron based X-ray fluorescence microprobe (SXRF). We demonstrate that we can prepare liver slices that retain copper and can detect copper with subcellular resolution. On the same sections μ-XANES (spot size: 5 micron) was used to determine the oxidation state of copper.
Eriksson, Mats; Moseley, Jeffrey L.; Tottey, Stephen; del Campo, Jose A.; Quinn, Jeanette; Kim, Youngbae; Merchant, Sabeeha
2004-01-01
A genetic screen for Chlamydomonas reinhardtii mutants with copper-dependent growth or nonphotosynthetic phenotypes revealed three loci, COPPER RESPONSE REGULATOR 1 (CRR1), COPPER RESPONSE DEFECT 1 (CRD1), and COPPER RESPONSE DEFECT 2 (CRD2), distinguished as regulatory or target genes on the basis of phenotype. CRR1 was shown previously to be required for transcriptional activation of target genes like CYC6, CPX1, and CRD1, encoding, respectively, cytochrome c6 (which is a heme-containing substitute for copper-containing plastocyanin), coproporphyrinogen III oxidase, and Mg-protoporphyrin IX monomethylester cyclase. We show here that CRR1 is required also for normal accumulation of copper proteins like plastocyanin and ferroxidase in copper-replete medium and for apoplastocyanin degradation in copper-deficient medium, indicating that a single pathway controls nutritional copper homeostasis at multiple levels. CRR1 is linked to the SUPPRESSOR OF PCY1-AC208 13 (SOP13) locus, which corresponds to a gain-of-function mutation resulting in copper-independent expression of CYC6. CRR1 is required also for hypoxic growth, pointing to a physiologically meaningful regulatory connection between copper deficiency and hypoxia. The growth phenotype of crr1 strains results primarily from secondary iron deficiency owing to reduced ferroxidase abundance, suggesting a role for CRR1 in copper distribution to a multicopper ferroxidase involved in iron assimilation. Mutations at the CRD2 locus also result in copper-conditional iron deficiency, which is consistent with a function for CRD2 in a pathway for copper delivery to the ferroxidase. Taken together, the observations argue for a specialized copper-deficiency adaptation for iron uptake in Chlamydomonas. PMID:15514054
Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1
Li, Wenbo; Ye, Yajin; Lu, Juan; Yeh, Kuo-Chen; Xiao, Youli; Li, Laigeng; Binder, Brad M.
2017-01-01
Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human. PMID:28388654
Copper and Copper Proteins in Parkinson's Disease
Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo
2014-01-01
Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633
Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth
2010-01-01
Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.
Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice
Li, Xiaoxiao; Zhai, Qixiao; Wang, Gang; Zhang, Qiuxiang; Zhang, Hao; Chen, Wei
2015-01-01
Lactobacillus plantarum CCFM8246, which has a relatively strong copper binding capacity and tolerance to copper ions, was obtained by screening from 16 lactic acid bacteria in vitro. The selected strain was then applied to a mouse model to evaluate its protective function against copper intoxication in vivo. The experimental mice were divided into an intervention group and a therapy group; mice in the intervention group received co-administration of CCFM8246 and a copper ion solution by gavage, while mice in the therapy group were treated with CCFM8246 after 4 weeks of copper exposure. In both two groups, mice treated with copper alone and that treated with neither CCFM8246 nor copper served as positive and negative controls, respectively. At the end of the experimental period, the copper content in feces and tissues, the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and oxidation stress indices in liver and kidney tissue were determined. Learning and memory ability was evaluated by Morris water maze experiments. The results indicated that treatment with CCFM8246 significantly increased the copper content in feces to promote copper excretion, reduce the accumulation of copper in tissues, reverse oxidative stress induced by copper exposure, recover the ALT and AST in serum and improve the spatial memory of mice. PMID:26605944
Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik
2013-06-18
Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.
Sun, Xiangyu; Ma, Tingting; Han, Luyang; Huang, Weidong; Zhan, Jicheng
2017-05-03
The effects of copper pollution on the polyphenol content, color, and antioxidant activity of wine, as well as correlations among these factors, were investigated. Copper had clear influences on wine polyphenol content. At low copper concentrations, the concentrations of nearly all polyphenols increased, and the antioxidant activity values of the wine also increased. When the copper concentration reached the lowest level of the medium copper range (9.6~16 mg/L), most of the indices also improved. When the copper concentrations reached the latter part of the medium copper range (19.2 and 22.4 mg/L), many of the tested indices began to decrease. Furthermore, when the copper concentration reached the high ranges (32, 64, and 96 mg/L), the polyphenol content, CIELAB color parameters, and antioxidant activity of wine were substantially decreased, indicating the need to control increasing copper content in grape must.
Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.
2013-01-01
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699
Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A
2013-08-16
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.
Zhang, Shuang-Yuan; Guan, Guijian; Jiang, Shan; Guo, Hongchen; Xia, Jing; Regulacio, Michelle D; Wu, Mingda; Shah, Kwok Wei; Dong, Zhili; Zhang, Jie; Han, Ming-Yong
2015-09-30
Throughout history earth-abundant copper has been incorporated into textiles and it still caters to various needs in modern society. In this paper, we present a two-step copper metallization strategy to realize sequentially nondiffusive copper(II) patterning and rapid copper deposition on various textile materials, including cotton, polyester, nylon, and their mixtures. A new, cost-effective formulation is designed to minimize the copper pattern migration on textiles and to achieve user-defined copper patterns. The metallized copper is found to be very adhesive and stable against washing and oxidation. Furthermore, the copper-metallized textile exhibits excellent electrical conductivity that is ~3 times better than that of stainless steel and also inhibits the growth of bacteria effectively. This new copper metallization approach holds great promise as a commercially viable method to metallize an insulating textile, opening up research avenues for wearable electronics and functional garments.
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.
Longitudinal residual stresses in boron fibers
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1976-01-01
A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.
High-pressure, high-temperature synthesis of superhard boron suboxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubert, H.; Garvie, L.A.J.; Leinenweber, K.
A multianvil device was used to investigate the formation of B{sub x}O phases produced in the 2 to 10 GPa pressure range with temperatures between 1,000 and 1,800 C. Amorphous and crystalline B and BP were oxidized using B{sub 2}O{sub 3} and CrO{sub 3}. Using powder X-ray diffraction and parallel electron energy-loss spectroscopy (PEELS), the authors were unable to detect graphitic or diamond-structured B{sub 2}O, reported in previous studies. The refractory boride B{sub 6}O, which has the {alpha}-rhombohedral boron structure, is the dominant suboxide in the P and T range of the investigation. PEELS with a transmission electron microscope wasmore » used to characterize the boron oxides.« less
Combustion synthesis of boride and other composites
Halverson, D.C.; Lum, B.Y.; Munir, Z.A.
1988-07-28
A self-sustaining combustion synthesis process for producing hard, tough, lightweight B/sub 4/C/TiB/sub 2/ composites is described. It is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B/sub 4/C and TiB/sub 2/ reactants. For lightweight products the composition must be relatively rich in the B/sub 4/C component. B/sub 4/C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component. 9 figs., 4 tabs.
Oxidation-induced contraction and strengthening of boron fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Wagner, T. C.
1981-01-01
An investigation of the physical and mechanical effects of thermal treatment in a controlled oxygen-argon atmosphere on boron fibers is reported, with attention to the optimization of such treatment as a secondary processing method for improvement of fiber strength. The strengthening mechanism is comprised of an oxidation-induced axial contraction of the fiber, accompanied by axial compression of strength-limiting flaws within the fiber's tungsten boride core. It was found that after an oxidation contraction of 0.3% near 900 C, and a slight surface etch near 100 C, the average tensile strength of 203-micron fibers increased from 500 to 800 ksi. Various physical observations are used to develop mechanistic models of oxidation, contraction, and the formation of new flaws in the boron sheath at contractions greater than 0.3%.
Direct synthesis of calcium borohydride
Ronnebro, Ewa Carin Ellinor [Dublin, CA; Majzoub, Eric H [Pleasanton, CA
2009-10-27
A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.
Denoyer, Delphine; Pearson, Helen B; Clatworthy, Sharnel A S; Smith, Zoe M; Francis, Paul S; Llanos, Roxana M; Volitakis, Irene; Phillips, Wayne A; Meggyesy, Peter M; Masaldan, Shashank; Cater, Michael A
2016-06-14
Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed.
Haeili, Mehri; Moore, Casey; Davis, Christopher J. C.; Cochran, James B.; Shah, Santosh; Shrestha, Tej B.; Zhang, Yaofang; Bossmann, Stefan H.; Benjamin, William H.
2014-01-01
Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. PMID:24752262
Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang
2016-05-01
Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.
2016-01-01
Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597
Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos
C. A. Clausen; Frederick Green; B. M. Woodward; J. W. Evans; R. C. DeGroot
2000-01-01
The increased interest in copper-based wood preservatives has hastened the need for understanding why some fungi are able to attack copper-treated wood. Due in part to accumulation of oxalic acid by brown-rot fungi and visualization of copper oxalate crystals in wood decayed by known copper-tolerant decay fungi, oxalic acid has been implicated in copper tolerance by...
Chalcopyrite—bearer of a precious, non-precious metal
Kimball, Bryn E.
2013-01-01
The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.
Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery
NASA Astrophysics Data System (ADS)
Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong
2018-04-01
In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.
Castruita, Madeli; Casero, David; Karpowicz, Steven J; Kropat, Janette; Vieler, Astrid; Hsieh, Scott I; Yan, Weihong; Cokus, Shawn; Loo, Joseph A; Benning, Christoph; Pellegrini, Matteo; Merchant, Sabeeha S
2011-04-01
In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O₂-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper.
Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.
Li, Bo; Wang, Xubin; Wang, Hua; Wei, Yonggang; Hu, Jianhang
2017-05-25
To improve the recovery of copper, the viscosity of copper molten slag is decreased by the reduction of magnetic iron, which, in turn, accelerates the settling and separation of copper droplets from the slag. A new technology is proposed in which waste cooking oil is used as a reductant to reduce magnetic iron in the copper smelting slag and consequently reduce carbon emissions in the copper smelting process. A kinetic model of the reduction of magnetic iron in copper slag by waste cooking oil was built using experimental data, and the accuracy of the model was verified. The results indicated that the magnetic iron content in the copper slag decreased with increasing reduction time and an increase in temperature more efficiently reduced magnetic iron in the copper slag. The magnetic iron in the copper slag gradually transformed to fayalite, and the viscosity of the copper molten slag decreased as the magnetic iron content decreased during the reduction process. The reduction of magnetic iron in the copper molten slag using waste cooking oil was a first-order reaction, and the rate-limiting step was the mass transfer of Fe 3 O 4 through the liquid boundary layer.
Navarro, Claudio A.; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A.
2015-01-01
Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599
Process for removing copper in a recoverable form from solid scrap metal
Hartman, Alan D.; Oden, Laurance L.; White, Jack C.
1995-01-01
A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.
Zinc stress induces copper depletion in Acinetobacter baumannii.
Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A
2017-03-11
The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.
Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.
Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen
2017-08-15
While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. Copyright © 2017 American Society for Microbiology.
Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli
Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin
2017-01-01
ABSTRACT While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. PMID:28576762
Colloidal and electrochemical aspects of copper-CMP
NASA Astrophysics Data System (ADS)
Sun, Yuxia
Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.
Body of Knowledge (BOK) for Copper Wire Bonds
NASA Technical Reports Server (NTRS)
Rutkowski, E.; Sampson, M. J.
2015-01-01
Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhang, Yikai; Zheng, Shanyuan
Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cellsmore » by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities of cisplatin.« less
Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei
2010-12-01
A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.
Computational Investigation of Effects of Grain Size on Ballistic Performance of Copper
NASA Astrophysics Data System (ADS)
He, Ge; Dou, Yangqing; Guo, Xiang; Liu, Yucheng
2018-01-01
Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 µm), regular copper (grain size ≈ 30 µm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance than the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive model is used to predict the plastic deformation of Cu; the JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material's failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.
Huang, Zhiyuan; Xie, Fengchun; Ma, Yang
2011-01-15
A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery. Copyright © 2010 Elsevier B.V. All rights reserved.
Transgenic Mice Expressing Yeast CUP1 Exhibit Increased Copper Utilization from Feeds
Chen, Zhenliang; Liao, Rongrong; Zhang, Xiangzhe; Wang, Qishan; Pan, Yuchun
2014-01-01
Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents. PMID:25265503
COPPER CORROSION RESEARCH UPDATE
Copper release and corrosion related issues continue to be important to many water systems. The objective of this presentation is to discuss the current state of copper research at the USEPA. Specifically, the role of aging on copper release, use of phosphates for copper corrosio...
Wang, Lin; Ge, Yan
2016-01-01
Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267
Copper transport and regulation in Schizosaccharomyces pombe
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2016-01-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4–Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis. PMID:24256274
Copper transport and regulation in Schizosaccharomyces pombe.
Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon
2013-12-01
The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.
Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae
Wang, Jing; Gammon, Micah G.; Maynard, Margaret K.; White, Olivia L.; Cobine, Jai A.; Mahone, Wilkerson K.
2016-01-01
In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix. PMID:26763345
Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2
Villafane, Aramis; Voskoboynik, Yekaterina; Cuebas, Mariola; Ruhl, Ilona; Bini, Elisabetta
2009-01-01
Copper is an essential micronutrient, but toxic in excess. Sulfolobus solfataricus cells have the ability to adapt to fluctuations of copper levels in their external environment. To better understand the molecular mechanism behind the organismal response to copper, the expression of the cluster of genes copRTA, which encodes the copper-responsive transcriptional regulator CopR, the copper-binding protein CopT, and CopA, has been investigated and the whole operon has been shown to be cotranscribed at low levels from the copR promoter under all conditions, whereas increased transcription from the copTA promoter occurs in the presence of excess copper. Furthermore, the expression of the copper-transporting ATPase CopA over a 27-hour interval has been monitored by quantitative real-time RT-PCR and compared to the pattern of cellular copper accumulation, as determined in a parallel analysis by Inductively Coupled Plasma Optical Emission spectrometry (ICP-OES). The results provide the basis for a model of the molecular mechanisms of copper homeostasis in Sulfolobus, which relies on copper efflux and sequestration. PMID:19427833
Xie, Feng; Wang, Wei
2017-08-01
The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.
The Yeast Copper Response Is Regulated by DNA Damage
Dong, Kangzhen; Addinall, Stephen G.; Lydall, David
2013-01-01
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast. PMID:23959798
1991, EPA publicized the Lead and Copper Rule (LCR),which set regulations to minimize the amount of lead copper in drinking water. The LCR set the copper action level at 1.3 mg/L in more then 10% of customer’s first-draw taps sampled. Potential health effects of copper include vo...
Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan
2016-01-01
ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy. PMID:26747866
Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O
2012-04-01
Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4) and H(2)SO(4) promoted bioleaching in the soils and can be employed ex situ to remediate copper-impacted soils.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-03-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
Zhang, Hong; Andrews, Susan A
2013-11-01
This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng
2018-06-01
A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.
40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming...
40 CFR 466.40 - Applicability; description of the copper basis material subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper basis material subcategory. 466.40 Section 466.40 Protection of Environment ENVIRONMENTAL... Copper Basis Material Subcategory § 466.40 Applicability; description of the copper basis material... into publicly owned treatment works from porcelain enameling of copper basis materials. ...
40 CFR 466.40 - Applicability; description of the copper basis material subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper basis material subcategory. 466.40 Section 466.40 Protection of Environment ENVIRONMENTAL... Copper Basis Material Subcategory § 466.40 Applicability; description of the copper basis material... into publicly owned treatment works from porcelain enameling of copper basis materials. ...
40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming...
Copper Corrosion and Biocorrosion Events in Premise Plumbing
Fischer, Diego A.; Alsina, Marco A.; Pastén, Pablo A.
2017-01-01
Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed. PMID:28872628
Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Stephen F.
This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.
Copper Corrosion and Biocorrosion Events in Premise Plumbing.
Vargas, Ignacio T; Fischer, Diego A; Alsina, Marco A; Pavissich, Juan P; Pastén, Pablo A; Pizarro, Gonzalo E
2017-09-05
Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed.
Giner-Lamia, Joaquín; López-Maury, Luis; Reyes, José C.; Florencio, Francisco J.
2012-01-01
Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the PI-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen. PMID:22715108
Haeili, Mehri; Moore, Casey; Davis, Christopher J C; Cochran, James B; Shah, Santosh; Shrestha, Tej B; Zhang, Yaofang; Bossmann, Stefan H; Benjamin, William H; Kutsch, Olaf; Wolschendorf, Frank
2014-07-01
Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Odnevall Wallinder, I; Hedberg, Y; Dromberg, P
2009-12-01
Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.
Characterizing copper flows in international trade of China, 1975-2015.
Zhang, Ling; Chen, Tianming; Yang, Jiameng; Cai, Zhijian; Sheng, Hu; Yuan, Zengwei; Wu, Huijun
2017-12-01
Since the economic reform, China has actively participated in the global market with rapid industrialization and gradually dominated the utilization and consumption of some critical materials, one of which is copper. China has reigned the global anthropogenic cycle of copper since 2004. We explore copper flows along with the international trade of China during 1975-2015, through life cycle lens, from ore to final products. Our main finding is that China has become more active in the copper-related trade, indicated by its great increase in trade volume and the number of trade partners. The physical volume of copper flows through trade increased over 119 times between 1975 and 2015, mainly because of more imported raw materials of copper and exported copper products. Generally, China is a net importer of copper, with increasing import dependence through the study period, whereas the degree of dependence slightly decreased from 2010 to 2015. The indicator of Export Support Rate took a decreasing percentage, which has fallen about 35% since 2010. It suggests China's changing position in the global resource and manufacturing market. In terms of trade price of different copper products, the price of imported copper concentrate was noticeably higher than that of exported one, revealing the poor copper resource endowment of China; while the different trend of copper semis in recent years signifies that China is in urgent need to improve its capability of producing high value-added semis. From international trade perspective, the copper resource of China presented stable supply as well as demand. The One Belt One Road strategy proposed by the state will further expand both the resource and market of copper. Copyright © 2017 Elsevier B.V. All rights reserved.
Migocka, Magdalena; Posyniak, Ewelina; Maciaszczyk-Dziubinska, Ewa; Papierniak, Anna; Kosieradzaka, Anna
2015-01-01
Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu+ (Km ∼1 or 0.5 μm, respectively) and similar affinity to Ag+ (Km ∼2.5 μm). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu+ transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess. PMID:25963145
Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.
Bishop, W M; Rodgers, J H
2012-04-01
The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.
The delivery of copper for thylakoid import observed by NMR
Banci, Lucia; Bertini, Ivano; Ciofi-Baffoni, Simone; Kandias, Nikolaos G.; Robinson, Nigel J.; Spyroulias, Georgios A.; Su, Xun-Cheng; Tottey, Stephen; Vanarotti, Murugendra
2006-01-01
The thylakoid compartments of plant chloroplasts are a vital destination for copper. Copper is needed to form holo-plastocyanin, which must shuttle electrons between photosystems to convert light into biologically useful chemical energy. Copper can bind tightly to proteins, so it has been hypothesized that copper partitions onto ligand-exchange pathways to reach intracellular locations without inflicting damage en route. The copper metallochaperone Atx1 of chloroplast-related cyanobacteria (ScAtx1) engages in bacterial two-hybrid interactions with N-terminal domains of copper-transporting ATPases CtaA (cell import) and PacS (thylakoid import). Here we visualize copper delivery. The N-terminal domain PacSN has a ferredoxin-like fold that forms copper-dependent heterodimers with ScAtx1. Removal of copper, by the addition of the cuprous-ion chelator bathocuproine disulfonate, disrupts this heterodimer, as shown from a reduction of the overall tumbling rate of the protein mixture. The NMR spectral changes of the heterodimer versus the separate proteins reveal that loops 1, 3, and 5 (the carboxyl tail) of the ScAtx1 Cu(I) site switch to an apo-like configuration in the heterodimer. NMR data (2JNH couplings in the imidazole ring of 15N ScAtx1 His-61) also show that His-61, bound to copper(I) in [Cu(I)ScAtx1]2, is not coordinated to copper in the heterodimer. A model for the PacSN/Cu(I)/ScAtx1 complex is presented. Contact with PacSN induces change to the ScAtx1 copper-coordination sphere that drives copper release for thylakoid import. These data also elaborate on the mechanism to keep copper(I) out of the ZiaAN ATPase zinc sites. PMID:16707580
Giner-Lamia, Joaquín; López-Maury, Luis; Reyes, José C; Florencio, Francisco J
2012-08-01
Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the P(I)-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.
Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿
Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor
2011-01-01
Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600
Method of fabricating a catalytic structure
Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID
2009-09-22
A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.
Mihalasky, Mark J.; Bookstrom, Arthur A.; Frost, Thomas P.; Ludington, Steve
2011-01-01
Western Canada has been thoroughly explored for porphyry copper deposits. The total estimated copper contained in known deposits is about 66.8 Mt (based on 2010 data), as compared to a 49 Mt mean of estimated copper in undiscovered deposits and a 34 Mt median of estimated copper in undiscovered deposits. The copper contained in known porphyry copper deposits represents about 58 percent of the total of known and undiscovered porphyry copper deposits (based on mean values). About 86 percent of the increase in estimated copper resources between 1993 and 2009 resulted from the discovery of extensions to known deposits. Nevertheless, exploration for undiscovered deposits continues, especially in and around significant prospects and in parts of permissive tracts that are mostly hidden beneath younger volcanic, sedimentary, or vegetated surficial cover.
40 CFR 468.10 - Applicability; description of the copper forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper forming subcategory. 468.10 Section 468.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Copper Forming Subcategory § 468.10 Applicability; description of the copper forming subcategory. This subpart applies to...
40 CFR 468.10 - Applicability; description of the copper forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper forming subcategory. 468.10 Section 468.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Copper Forming Subcategory § 468.10 Applicability; description of the copper forming subcategory. This subpart applies to...
40 CFR 415.366 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Copper Salts... CFR 403.7, any new source subject to this subpart and producing copper sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly owned treatment works must...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or...
40 CFR 464.20 - Applicability; description of the copper casting subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations as...
40 CFR 415.366 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Copper Salts... CFR 403.7, any new source subject to this subpart and producing copper sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly owned treatment works must...
40 CFR 464.20 - Applicability; description of the copper casting subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations as...
Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M
2005-09-01
Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.
Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes
NASA Technical Reports Server (NTRS)
Philipp, W. H.; May, C. E.
1983-01-01
The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.
[Copper intake and blood levels as risk factors for atheromatous disease].
Albala, C; Salazar, G; Vío, F; Araya, F; Feuerhacke, W; Olivares, S; Alvarez, G
1997-08-01
Copper is part of antioxidant enzymes and could have a cardiovascular protective effect. A higher cardiovascular risk has been associated with high as well as low plasma copper levels. To search for differences in copper intake and plasma levels between patients with coronary artery or cerebrovascular diseases and normal subjects. Zinc and copper intake, plasma levels and serum lipid levels were measured in 20 patients with cerebrovascular disease, 20 patients with an acute myocardial infarction and 40 subjects hospitalized for elective surgery, that served as controls. Copper and zinc intake was below recommended allowances in all subjects. Serum zinc and copper levels did not differ in the three study groups. In patients with myocardial infarction a weak correlation was found between serum copper and total cholesterol (r = 0.24; p < 0.05) and LDL cholesterol (r = 0.31; p < 0.05). No differences in copper levels were found in subjects with atherosclerosis and controls. The correlation between serum copper and cholesterol deserves further investigation.
Oxidation Mechanism of Copper Selenide
NASA Astrophysics Data System (ADS)
Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri
2014-09-01
The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.
Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D
2017-07-21
Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Castruita, Madeli; Casero, David; Karpowicz, Steven J.; Kropat, Janette; Vieler, Astrid; Hsieh, Scott I.; Yan, Weihong; Cokus, Shawn; Loo, Joseph A.; Benning, Christoph; Pellegrini, Matteo; Merchant, Sabeeha S.
2011-01-01
In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O2-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper. PMID:21498682
Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.
Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung
2003-08-01
Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.
NASA Astrophysics Data System (ADS)
Spencer, Todd J.; Chen, Yu-Chun; Saha, Rajarshi; Kohl, Paul A.
2011-06-01
Incorporation of copper ions into poly(propylene carbonate) (PPC) films cast from γ-butyrolactone (GBL), trichloroethylene (TCE) or methylene chloride (MeCl) solutions containing a photo-acid generator is shown to stabilize the PPC from thermal decomposition. Copper ions were introduced into the PPC mixtures by bringing the polymer mixture into contact with copper metal. The metal was oxidized and dissolved into the PPC mixture. The dissolved copper interferes with the decomposition mechanism of PPC, raising its decomposition temperature. Thermogravimetric analysis shows that copper ions make PPC more stable by up to 50°C. Spectroscopic analysis indicates that copper ions may stabilize terminal carboxylic acid groups, inhibiting PPC decomposition. The change in thermal stability based on PPC exposure to patterned copper substrates was used to provide a self-aligned patterning method for PPC on copper traces without the need for an additional photopatterning registration step. Thermal decomposition of PPC is then used to create air isolation regions around the copper traces. The spatial resolution of the self-patterning PPC process is limited by the lateral diffusion of the copper ions within the PPC. The concentration profiles of copper within the PPC, patterning resolution, and temperature effects on the PPC decomposition have been studied.
Modeling MIC copper release from drinking water pipes.
Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R
2014-06-01
Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oe, Shinji, E-mail: ooes@med.uoeh-u.ac.jp; Miyagawa, Koichiro, E-mail: koichiro@med.uoeh-u.ac.jp; Honma, Yuichi, E-mail: y-homma@med.uoeh-u.ac.jp
Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ERmore » stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.« less
Navarro, Claudio A; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A; Jerez, Carlos A
2016-02-15
Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Shoshani-Dror, Dana; Guillemin, Claire
High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy.more » Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and oxidative stress of liver.« less
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Background Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. Materials and methods For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. Results The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. Conclusion These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin. PMID:26300653
McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R
2015-01-01
Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. These results support the concept of using the hyaluronidase inhibitory activity of sodium copper chlorophyllin complex to increase the hyaluronic acid level of the dermal extracellular matrix for the improvement of the appearance of aging facial skin.
Role of copper oxides in contact killing of bacteria.
Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank
2013-12-31
The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.
40 CFR 468.01 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COPPER FORMING POINT SOURCE CATEGORY General Provisions § 468.01 Applicability. (a) The provisions of this part are applicable to discharges resulting from the manufacture of formed copper and copper alloy... copper and copper alloys is not covered by this part. (See 40 CFR part 464). (b) The discharge allowance...
Bioinorganic Chemical Modeling of Dioxygen-Activating Copper Proteins.
ERIC Educational Resources Information Center
Karlin, Kenneth D.; Gultneh, Yilma
1985-01-01
Discusses studies done in modeling the copper centers in the proteins hemocyanin (a dioxygen carrier), tyrosinase, and dopamine beta-hydroxylase. Copper proteins, model approach in copper bioinorganic chemistry, characterization of reversible oxygen carriers and dioxygen-metal complexes, a copper mono-oxygenase model reaction, and other topics are…
Micronized copper azole (MCA) and micronized copper quaternary are the latest wood preservatives to replace the liquid lkaline copper and chromated copper arsenate preservatives due to concerns over the toxicity or lack of effectiveness of the earlier formulations. Today, the use...
Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure‐tre...
One application of nanocopper is as a wood‐preserving pesticide in pressure‐treated lumber. Recent research has shown that pressure‐treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and ma...
Assessment of the bioaccessibility of micronized copper wood in synthetic stomach fluid
The widespread use of copper in treated lumber may result in a potential for human exposure. Due to a lack of information concerning the release of copper from treated wood particles following oral ingestion, the in vitro bioaccessibility of copper from copper-treated wood dust i...
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045 0.018 Copper 0.195 0.103... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy cold rolled Chromium 0.166... drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107 Zinc 0.124 0.051 TTO 0...
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... copper or copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107...
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... copper or copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107...
40 CFR 468.14 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... rolled English units—pounds per 1,000,000 off-pounds of copper or copper alloy hot rolled Chromium 0.045... alloy cold rolled Chromium 0.166 0.068 Copper 0.720 0.379 Lead 0.056 0.049 Nickel 0.727 0.481 Zinc 0.553... copper or copper alloy drawn Chromium 0.037 0.015 Copper 0.161 0.085 Lead 0.012 0.011 Nickel 0.163 0.107...
Migration of copper and some other metals from copper tableware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiwata, H.; Inoue, T.; Yoshihira, K.
Intake of heavy metals is an important problem in human health. Certain heavy metals are avoided with regard to their use for utensils or tableware coming into contact with food, although copper is widely used in food processing factories or at home. The use of copper products for the processing, cooking or serving of foods and beverages is considered to be a cause of a copper contamination. Although copper is essential element, its excess ingestion is undesirable. In this study, the migration of copper from tin-plated or non-plated copperware under several experimental conditions was investigated using food-simulating solvents.
Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.
Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi
2014-07-07
The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.
Febré, Naldy; Silva, Viviana; Báez, Andrea; Palza, Humberto; Delgado, Katherine; Aburto, Isabel; Silva, Victor
2016-12-01
The antimicrobial activity of copper (Cu+2) is recognized and used as an antimicrobial agent. To evaluate the antimicrobial activity of copper against microorganisms obtained from chronic cutaneous wound infections. Five chemical products that contained copper particles in their composition were tested (zeolite, silica, acetate, nitrate and nanoparticle of copper). The antimicrobial activity against antibiotic resistant strains usually isolated from chronic cutaneous wound infections was determined for two of the products with better performance in copper release. The minimal inhibitory and minimal bactericidal concentrations of copper acetate and nitrate were similar, fluctuating between 400-2,000 µg/ml. The studied copper salts show great potential to be used to control both gram positive and gram negative, antibiotic resistant bacteria isolated from wound infections.
SLC31 (CTR) Family of Copper Transporters in Health and Disease
Kim, Heejeong; Wu, Xiaobin; Lee, Jaekwon
2012-01-01
Copper is a vital mineral for many organisms, yet it is highly toxic as demonstrated by serious health concerns associated with its deficiency or excess accumulation. The SLC31 (CTR) family of copper transporters is a major gateway of copper acquisition in eukaryotes, ranging from yeast to humans. Characterization of the function, modes of action, and regulation of CTR and other molecular factors that functionally cooperate with CTR for copper transport, compartmentalization, incorporation into cuproproteins, and detoxification has revealed that organisms have evolved fascinating mechanisms for tight control of copper metabolism. This research progress further indicates the significance of copper in health and disease and opens avenues for therapeutic control of copper bioavailability and its metabolic pathways. PMID:23506889
A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR
NASA Astrophysics Data System (ADS)
Stanojlović, Rodoljub D.; Sokolović, Jovica M.
2014-10-01
In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.