Sample records for copper complexes bridged

  1. Dianionic Carbon-Bridged Scandium-Copper/Silver Heterobimetallic Complexes: Synthesis, Bonding, and Reactivity.

    PubMed

    Wang, Chen; Xiang, Li; Yang, Yan; Fang, Jian; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng

    2018-04-11

    Alkylidene-bridged scandium-copper/silver heterobimetallic complexes were synthesized and structurally characterized. The complexes contain different Sc-C and M-C (M=Cu I , Ag I ) bonds. The reactivity of the scandium-copper heterobimetallic complex was also studied, which reveals that the heterobimetallic complex is a reaction intermediate for the transmetalation of akylidene group from Sc III to Cu I . The scandium-copper heterobimetallic complex also undergoes an addition reaction with CO, resulting in the formation of a new C=C double bond. DFT calculations were used to study the bonding and the subsequent reactivity with CO of the scandium-copper heterobimetallic complex. It clearly demonstrates a cooperative effect between the two metal centers through the formation of a direct Sc⋅⋅⋅Cu interaction that drives the reactivity with CO. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis, crystal structure and spectroscopic and electrochemical properties of bridged trisbenzoato copper-zinc heterobinuclear complex of 2,2‧-bipyridine

    NASA Astrophysics Data System (ADS)

    Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey

    2015-03-01

    The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.

  3. Isolation of a new two-dimensional honeycomb carbonato-bridged copper(II) complex exhibiting long-range ferromagnetic ordering.

    PubMed

    Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan

    2005-04-28

    Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.

  4. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  5. Synthesis, characterization and properties of copper(I) complexes with bis(diphenylphosphino)-ferrocene ancillary ligand

    NASA Astrophysics Data System (ADS)

    Liu, Xinfang; Zhang, Songlin; Ding, Yuqiang

    2012-06-01

    Three copper(I) complexes (2-4) containing dppf ancillary ligand (dppf = bis(diphenylphosphino)-ferrocene) were synthesized when chloride-bridged copper(I) complex 1 reacted with acetanilide and characterized by IR, element analysis and NMR spectrum. And the crystal structures of complexes 2 and 4 have been determined by X-ray diffraction method. Complex 2, an acetate-bridged copper(I) complex, was obtained under N2 atmosphere in un-dried solvent; the acetate ion came from the hydrolysis reaction of acetanilide due to residual water in solvent. Acetanilide was deprotonated and coordinated with the copper(I) centre to form a copper(I) amidate complex 3 when reacted in pre-dried solvent. In addition, a known complex 4, the oxidation product of dppf, was isolated from the same reaction system when reacted in air atmosphere. CV and TG experiments were carried out to check the electron transfer properties and thermal stabilities of complexes 2-3. Finally, the arylation reaction of complex 3 with iodobenzene was performed to study the reaction mechanism of copper(I) catalyzed Goldberg reaction.

  6. XAFS Study of the Ferro- and Antiferromagnetic Binuclear Copper(II) Complexes of Azomethine Based Tridentate Ligands

    NASA Astrophysics Data System (ADS)

    Vlasenko, Valery G.; Vasilchenko, Igor S.; Pirog, Irina V.; Shestakova, Tatiana E.; Uraev, Ali I.; Burlov, Anatolii S.; Garnovskii, Alexander D.

    2007-02-01

    Binuclear copper complexes are known to be models for metalloenzymes containing copper active sites, and some of them are of considerable interest due to their magnetic and charge transfer properties. The reactions of the complex formation of bibasic tridentate heterocyclic imines with copper acetate leads to two types of chelates with mono deprotonated ligands and with totally deprotonated ligands. Cu K-edge EXAFS has been applied to determine the local structure around the metal center in copper(II) azomethine complexes with five tridentate ligands: 1-(salycilideneimino)- or 1-(2-tosylaminobenzilideneimino)-2-amino(oxo, thio)benzimidazoles. It has been found that some of the chelates studied are bridged binuclear copper complexes, and others are mononuclear complexes. The copper-copper interatomic distances in the bridged binuclear copper complexes were found to be 2.85-3.01 Å. Variable temperature magnetic susceptibility data indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former is dominating at low temperatures and the latter at high temperatures.

  7. Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N4-methyl-3-thiosemicarbazone: Crystal structure of a novel sulfur bridged copper(II) box-dimer

    NASA Astrophysics Data System (ADS)

    Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra

    2015-03-01

    Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.

  8. Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N⁴-methyl-3-thiosemicarbazone: crystal structure of a novel sulfur bridged copper(II) box-dimer.

    PubMed

    Jayakumar, K; Sithambaresan, M; Aiswarya, N; Kurup, M R Prathapachandra

    2015-03-15

    Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N(4)-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ=0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g||>g⊥>2.0023 and the g values in frozen DMF are consistent with the d(x2-y2) ground state. The thermal stabilities of some of the complexes were also determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, {sup 57}Fe Moessbauer spectroscopy and thermal studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travnicek, Zdenek, E-mail: zdenek.travnicek@upol.c; Herchel, Radovan; Mikulik, Jiri

    2010-05-15

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN){sub 5}NO].H{sub 2}O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN){sub 5}NO].2H{sub 2}O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]octadecane and [Cu(nme){sub 2}Fe(CN){sub 5}NO].H{sub 2}O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, {sup 57}Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, {sup 57}Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe{sub 2}O{sub 4} and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN){sub 5}NO].xH{sub 2}O, wheremore » L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and {sup 57}Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.« less

  10. Streamflow and streambed scour in 2010 at bridge 339, Copper River, Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Brabets, Timothy P.

    2011-01-01

    The distribution of the Copper River's discharge through the bridges was relatively stable until sometime between 1969-70 and 1982-85. The majority of the total Copper River discharge in 1969-70 passed through three bridges on the western side of the delta, but by 1982-1985, 25 to 62 percent of the flow passed through bridge 342 on the eastern side of the Copper River Delta. In 2004, only 8 percent of the flow passed through the western bridges, while 90 percent of the discharge flowed through two bridges on the eastern side of the delta. Migration of the river across the delta and redistribution of discharge has resulted in streambed scour at some bridges, overtopping of the road during high flows, prolonged highway closures, and formation of new channels through forests. Scour monitoring at the eastern bridges has recorded as much as 44 feet of fill at one pier and 33 feet of scour at another. In 2009, flow distribution began to shift from the larger bridge 342 to bridge 339. In 2010, flow in excess of four times the design discharge scoured the streambed at bridge 339 to a level such that constant on-site monitoring was required to evaluate the potential need for bridge closure. In 2010, instantaneous flow through bridge 339 was never less than 30 percent and was as high as 49 percent of the total Copper River discharge. The percentage of flow through bridge 339 decreased when the overall Copper River discharge increased. The increased discharge through bridge 339 is attributed to a shift in the approach channel 3,500 feet upstream. Bridge channel alignment and analysis of flow distribution as of October 2010 indicate these hydrologic hazards will persist in 2011.

  11. Crystal structures and vibrational spectroscopy of copper(I) thiourea complexes.

    PubMed

    Bowmaker, Graham A; Hanna, John V; Pakawatchai, Chaveng; Skelton, Brian W; Thanyasirikul, Yupa; White, Allan H

    2009-01-05

    Several synthetic strategies using copper(I) starting materials or copper(II) compounds and an in situ sulfite reductant have been used to systematically explore the chemistry of copper(I) complexes with thiourea and substituted thiourea ligands. This has resulted in the discovery of several new complexes and methods for the bulk synthesis of some previously reported complexes that had been prepared adventitiously in small quantity. The new complexes are (tu = thiourea, dmtu = N,N'-dimethylthiourea, etu = ethylenethiourea): [I(4)Cu(4)(tu)(6)].H(2)O, [Cu(4)(tu)(10)](NO(3)).tu.3H(2)O, [BrCu(dmtu)(3)], [ICu(dmtu)(3)](2), [BrCu(etu)(2)](2), [ICu(etu)(2)], [ICu(etu)(2)](3). [I(4)Cu(4)(tu)(6)].H(2)O has an adamantanoid structure, with four terminal iodide ligands and six doubly bridging tu ligands. In contrast to this, [Cu(4)(tu)(10)](NO(3)).tu.3H(2)O contains a tetranuclear cluster in which four of the tu ligands are terminal and the other six are doubly bridging. [BrCu(dmtu)(3)] is a mononuclear complex with tetrahedral coordination of copper by one bromide and three dmtu ligands, whereas [Cu(dmtu)(3)](2)I(2) has a centrosymmetric dimeric cation with two uncoordinated iodides, four terminal dmtu and two doubly bridging dmtu ligands, [(dmtu)(2)Cu(mu-S-dmtu)(2)Cu(dmtu)(2)]I(2). A reversal of this monomer to dimer trend from bromide to iodide is seen for the etu counterparts: [BrCu(etu)(2)](2) is a centrosymmetric dimer with two doubly bridging etu ligands, [(etu)BrCu(mu-S-etu)(2)CuBr(etu)], whereas [ICu(etu)(2)] is a trigonal planar monomer, although the novel [I(3)Cu(3)(etu)(6)] is also defined. Infrared and Raman spectra of the synthesized complexes were recorded and the metal-ligand vibrational frequencies have been assigned in many cases. The results confirm previously observed correlations between the vibrational frequencies and the corresponding bond lengths for complexes of the unsubstituted tu ligand. A mechanochemical/infrared method was used to synthesize [I(3

  12. Tetranuclear copper(II) complexes bridged by alpha-D-glucose-1-phosphate and incorporation of sugar acids through the Cu4 core structural changes.

    PubMed

    Kato, Merii; Sah, Ajay Kumar; Tanase, Tomoaki; Mikuriya, Masahiro

    2006-08-21

    Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta

  13. Syntheses, crystal structures, magnetic properties, and EPR spectra of tetranuclear copper(II) complexes featuring pairs of "roof-shaped" Cu2X2 dimers with hydroxide, methoxide, and azide bridges.

    PubMed

    Graham, B; Hearn, M T; Junk, P C; Kepert, C M; Mabbs, F E; Moubaraki, B; Murray, K S; Spiccia, L

    2001-03-26

    Hydroxo- and methoxo-bridged tetranuclear copper(II) complexes of the tetramacrocyclic ligand 1,2,4,5-tetrakis(1,4,7-triazacyclonon-1-ylmethyl)benzene (Ldur), have been prepared from [Cu4Ldur(H2O)8](ClO4)8.9H2O (1). Addition of base to an aqueous solution of 1 gave [Cu4Ldur(mu2-OH)4](ClO4)4 (2). Diffusion of MeOH into a DMF solution of 2 produces [Cu4Ldur(mu2-OMe)4](ClO4)4.HClO4.2/3MeOH (3), a complex which hydrolyzes on exposure to moisture regenerating 2. The structurally related azido-bridged complex, [Cu4Ldur(mu2-N3)4](PF6)4.4H2O.6CH3CN (4), was produced by reaction of Ldur with 4 molar equiv of Cu(OAc)2.H2O and NaN3 in the presence of excess KPF6. Compounds 2-4 crystallize in the triclinic space group P1 (No. 2) with a = 10.248(1) A, b = 12.130(2) A, c = 14.353(2) A, alpha = 82.23(1) degrees, beta = 80.79(1) degrees, gamma = 65.71(1) degrees, and Z = 1 for 2, a = 10.2985(4) A, b = 12.1182(4) A, c = 13.9705(3) A, alpha = 89.978(2) degrees, beta = 82.038(2) degrees, gamma = 65.095(2) degrees, and Z = 1 for 3, and a = 12.059(2) A, b = 12.554(2) A, c = 14.051(2) A, alpha = 91.85(1) degrees, beta = 98.22(1) degrees, gamma = 105.62(1) degrees, and Z = 1 for 4. The complexes feature pairs of isolated dibridged copper(II) dimers with "roof-shaped" Cu2(mu2-X)2 cores (X = OH-, OMe-, N3-), as indicated by the dihedral angle between the two CuX2 planes (159 degrees for 2, 161 degrees for 3, and 153 degrees for 4). This leads to Cu.Cu distances of 2.940(4) A for 2, 2.962(1) A for 3, and 3.006(5) A for 4. Variable-temperature magnetic susceptibility measurements indicate weak antiferromagnetic coupling (J = -27 cm(-1)) for the hydroxo-bridged copper(II) centers in 2 and very strong antiferromagnetic coupling (J = -269 cm(-1)) for the methoxo-bridged copper(II) centers in 3. Pairs of copper(II) centers in 4 display the strongest ferromagnetic interaction (J = 94 cm(-1)) reported thus far for bis(mu2-1,1-azido)-bridged dicopper units. Spectral measurements on a neat powdered

  14. Synthesis, characterization and biological activities of semicarbazones and their copper complexes.

    PubMed

    Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C

    2016-09-01

    Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A combination of experimental and computational studies on a new oxamido bridged dinuclear copper(II) complex

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Arnab; Saha, Pinki; Saha, Baptu; Maiti, Debasish; Mitra, Partha; Naskar, Jnan Prakash; Chowdhury, Shubhamoy

    2017-10-01

    Reaction of N,N‧-bis(2-pyridylmethyl)oxamide (H2L), and copper(II)nitrate trihydrate in 1:2 M proportion in methanol generates oxamido bridged dimeric copper(II) compound, [Cu2L(H2O)2(NO3)2]H2O (1a.H2O) in good yield. 1a.H2O has been characterized by C, H and N microanalyses, copper estimation, FT-IR, UV-Vis and room temperature magnetic susceptibility measurements. The X-ray crystal structure of 1a.H2O has been determined. Bond Valence Sum (BVS) analysis was undertaken to assign the oxidation state of each copper center in 1a. Thermal behavior of 1a.H2O has been studied by TGA. Electrochemical studies on 1a.H2O shows single electron two step sequential reductions of Cu(II) to Cu(I) in dimethyl sulphoxide. Our optimized geometry of 1a as obtained through conceptual Density Functional Theory (DFT) corroborates well with that obtained from single crystal X-ray diffraction. TD-DFT method was also adopted to delve into the electronic properties of 1a. We have taken recourse to employ our optimized structure of 1a to investigate systematically the relative stabilities of various dimeric Cu(II) complexes obtained through variation of ligands bearing uni-donor anion through substitution of nitrate in 1a. The in vitro antibacterial potentiality of 1a.H2O was also tested against some bacterial cell lines, pathogenic to mankind.

  16. Aspartate aminotransferase is potently inhibited by copper complexes: Exploring copper complex-binding proteome.

    PubMed

    Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli

    2017-05-01

    Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl 2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC 50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10 6 and 3.73×10 6 M -1 , respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A serials of sandwich-like trinuclear and one-dimensional chain cyanide-bridged iron(III)-copper(II) complexes: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Shi, Jingwen; Lan, Wenlong; Ren, Yanjie; Liu, Qingyun; Liu, Hui; Dong, Yunhui; Zhang, Daopeng

    2018-04-01

    Four pyridinecarboxamide trans-dicyanideiron(III) building blocks and one macrocyclic copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a serials of cyanide-bridged FeIII-CuII complexes with different structure types. The series of complexes can be formulated as: {[Cu(Cyclam)][Fe(bpb)(CN)2]2}·4H2O (1), {{[Cu(Cyclam)][Fe(bpb)(CN)2]}ClO4}n·nH2O (2), and {[Cu(Cyclam)][Fe(bpmb)(CN)2]2}·4H2O (3), {[Cu(Cyclam)][Fe(bpClb)(CN)2]2}·4H2O (4) and {{[Cu(Cyclam)][Fe(bpdmb)(CN)2]}ClO4}n·2nCH3OH (5) (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2- = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate, bpdmb2- = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, Cyclam = 1,4,8,11-tetraazacyclotetradecane). All the complexes have been characterized by elemental analysis, IR spectra and structural determination. Single X-ray diffraction analysis shows the similar neutral sandwich-like structures for complexes 1, 3 and 4, in which the two cyano precursors acting as monodentate ligand through one of their two cyanide groups were coordinated face to face to central Cu(II) ion. The complexes 2 and 5 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(Cyclam)]2+ and [Fe(bpb/bpdmb)(CN)2]- with free ClO4- as balanced anion. Investigation over magnetic properties of the whole serials of complexes reveals the antiferromagnetic magnetic coupling between the neighboring cyanide-bridged Fe(III) and Cu(II) ions in complexes 3 and 4 and the ferromagnetic interaction in complexes 1, 2 and 5, respectively.

  18. Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Niu, Jiao; Li, Jun; Ma, Xiaoxun

    2017-05-01

    Three copper complexes constructed with sulfur-containing dibutyldithiocarbamate ligand (DDTC), [(Et2NCS2)4Cu2] (1), [(Et2NCS2)(EtO)Cu]2 (2) and [(Et2NCS2)6Cu13I10]n (3) have been synthesized through the reaction of CuI with different mole ratios of DDTC under solution-diffusion conditions. The single crystal X-ray diffraction revealed that divalent Cu cations in complexes 1 and 2 imply that the reactant, Cu(I), was involved in the redox process. They formed binuclear complexes according to bridging S from DDTC ligands and O atoms from ethanol molecules respectively. The mixed valence Cu cations had two types of coordination environments in complex 3 and formed a two-dimensional layered coordination polymer by bridging the five-core Cu(I) clusters and Cu(II). The powder X-ray diffraction, luminescent, thermogravimetric analysis, etc. were also studied in this paper.

  19. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...

  20. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...

  1. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...

  2. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chloropyhllin....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by...

  3. A Paramagnetic Copper(III) Complex Containing an Octahedral CuIII S6 Coordination Polyhedron.

    PubMed

    Krebs, Carsten; Glaser, Thorsten; Bill, Eckhard; Weyhermüller, Thomas; Meyer-Klaucke, Wolfram; Wieghardt, Karl

    1999-02-01

    Only the second octahedral, paramagnetic copper(III) complex (S=1) has now been synthesized and characterized. Six thiolato bridging ligands in the heterotrinuclear species [LCo III Cu III Co III L](ClO 4 ) 3 ⋅2 Me 2 CO (L=1,4,7-tris(4-tert-butyl-2-sulfidobenzyl)-1,4,7-triazacyclononane) stabilize this rare electron configuration. A section of the structure of the reduced form (Cu II , S=½) is shown. XAS, EXAFS, and EPR spectroscopy prove unambiguously that the one-electron oxidation to the copper(III) is metal- rather than ligand-centered. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  4. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, 57Fe Mössbauer spectroscopy and thermal studies

    NASA Astrophysics Data System (ADS)

    Trávníček, Zdeněk; Herchel, Radovan; Mikulík, Jiří; Zbořil, Radek

    2010-05-01

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN) 5NO]·H 2O ( 1), where tet= N,N' -bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN) 5NO]·2H 2O ( 2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9]octadecane and [Cu(nme) 2Fe(CN) 5NO]·H 2O ( 3), where nme= N-methylethylenediamine, were synthesized and characterized by elemental analyses, 57Fe Mössbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, 57Fe Mössbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe 2O 4 and CuO.

  5. Structure and spectroscopic properties of the dimeric copper(I) N-heterocyclic carbene complex [Cu₂(CNC(t-Bu))₂](PF₆)₂.

    PubMed

    Riener, Korbinian; Pöthig, Alexander; Cokoja, Mirza; Herrmann, Wolfgang A; Kühn, Fritz E

    2015-08-01

    In recent years, the use of copper N-heterocyclic carbene (NHC) complexes has expanded to fields besides catalysis, namely medicinal chemistry and luminescence applications. In the latter case, multinuclear copper NHC compounds have attracted interest, however, the number of these complexes in the literature is still quite limited. Bis[μ-1,3-bis(3-tert-butylimidazolin-2-yliden-1-yl)pyridine]-1κ(4)C(2),N:N,C(2');2κ(4)C(2),N:N,C(2')-dicopper(I) bis(hexafluoridophosphate), [Cu2(C19H25N5)2](PF6)2, is a dimeric copper(I) complex bridged by two CNC, i.e. bis(N-heterocyclic carbene)pyridine, ligands. Each Cu(I) atom is almost linearly coordinated by two NHC ligands and interactions are observed between the pyridine N atoms and the metal centres, while no cuprophilic interactions were observed. Very strong absorption bands are evident in the UV-Vis spectrum at 236 and 274 nm, and an emission band is observed at 450 nm. The reported complex is a new example of a multinuclear copper NHC complex and a member of a compound class which has only rarely been reported.

  6. CNC Machining Of The Complex Copper Electrodes

    NASA Astrophysics Data System (ADS)

    Popan, Ioan Alexandru; Balc, Nicolae; Popan, Alina

    2015-07-01

    This paper presents the machining process of the complex copper electrodes. Machining of the complex shapes in copper is difficult because this material is soft and sticky. This research presents the main steps for processing those copper electrodes at a high dimensional accuracy and a good surface quality. Special tooling solutions are required for this machining process and optimal process parameters have been found for the accurate CNC equipment, using smart CAD/CAM software.

  7. Ferromagnetic interaction in an asymmetric end-to-end azido double-bridged copper(II) dinuclear complex: a combined structure, magnetic, polarized neutron diffraction and theoretical study.

    PubMed

    Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent

    2007-01-01

    A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

  8. Spontaneous resolution of binary copper(II) complexes with racemic dipeptides: crystal structures of glycyl-L-alpha-amino-n-butyrato copper(II) monohydrate, glycyl-D-valinato copper(II) hemihydrate, and glycyl-L-valinato copper(II) hemihydrate.

    PubMed

    Inomata, Yoshie; Yamaguchi, Takeshi; Tomita, Airi; Yamada, Dai; Howell, F Scott

    2005-08-01

    Copper(II) complexes with glycyl-DL-alpha-amino-n-butyric acid (H2gly-DL-but), glycyl-DL-valine (H2gly-DL-val), glycyl-DL-norleucine (H2gly-DL-norleu), glycyl-DL-threonine (H2gly-DL-thr), glycyl-DL-serine (H2gly-DL-ser), glycyl-DL-phenylalanine (H2gly-DL-phe), and glycyl-L-valine (H2gly-L-val), have been prepared and characterized by IR, powder diffuse reflection, CD and ORD spectra, and magnetic susceptibility measurements, and by single-crystal X-ray diffraction. The crystal structures of the copper complex with H2gly-DL-but, the copper complex with H2gly-DL-val, and [Cu(gly-L-val)]n.0.5nH2O have been determined by a single-crystal X-ray diffraction method. As for the structure of the copper complex with H2gly-DL-but, the configuration around the asymmetric carbon atom is similar to that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-DL-but is [Cu(gly-L-but)]n.nH2O. On the contrary, as for the structure of the copper complex with H2gly-DL-val, the configuration around the asymmetric carbon atom is different from that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-dl-val is [Cu(gly-D-val)]n.0.5nH2O. So during the crystallization of the copper(II) complexes with H2gly-DL-but and H2gly-DL-val, spontaneous resolution has been observed; the four complexes have separated as [Cu(gly-D-but)]n.nH2O, [Cu(gly-L-but)]n.nH2O, [Cu(gly-D-val)]n.0.5nH2O, and [Cu(gly-L-val)]n.0.5nH2O, respectively. [Cu(gly-L-but)]n.nH2O is orthorhombic with the space group P2(1)2(1)2(1). [Cu(gly-D-val)]n.0.5nH2O and [Cu(gly-L-val)]n.0.5nH2O are monoclinic with the space group C2. In these complexes, the copper atom is in a square-pyramidal geometry, ligated by a peptide nitrogen atom, an amino nitrogen atom, a carboxyl oxygen atom, and a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. So these complexes consist of a two-dimensional polymer chain bridged by a carboxyl oxygen atom and a

  9. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    PubMed

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  10. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  11. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics...

  12. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics...

  13. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...

  14. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...

  15. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...

  16. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73...

  17. Synthesis, crystal structure and DFT studies of a novel dinuclear copper(I) complex with triphenylphosphine and 2-mercaptonicotinic acid

    NASA Astrophysics Data System (ADS)

    Ahmad, Tayyaba; Mahmood, Rashid; Georgieva, Ivelina; Zahariev, Tsvetan; Tahir, Muhammad Nawaz; Shaheen, Muhammad Ashraf; Gilani, Mazhar Amjad; Ahmad, Saeed

    2018-02-01

    A novel dinuclear copper(I) complex, {[Cu2(Mnt)2(PPh3)2Cl2].2H2O.CH3CN}2 (1) (Mnt = Mercaptonicotinic acid, PPh3 = triphenylphosphine) was prepared and its structure was determined by X-ray crystallography. The complex 1 consists of two dinuclear molecules and in each molecule, the two copper atoms are bridged by S atoms of N-protonated mercaptonicotinic acid forming a four-membered ring. The planar Cu2S2 core is characterized by significant cuprophilic interactions (Cusbnd Cu distance = 2.7671(8), 2.8471(8) Å). Each copper atom in 1 is coordinated by two sulfur atoms of Mnt, one phosphorus atom of PPh3 and a chloride ion adopting a tetrahedral geometry. The calculated Gibbs energies for reaction in CH3CN supported the experimental structure and predicted more favorable formation of dinuclear Cu(I) complex as compared to the mononuclear Cu(I) complex. The dinuclear complex is stabilized by 65.98 kJ mol-1 by coupling of two mononuclear Cu(I) complexes. The IR spectra of 1 and Mnt ligand were reliably interpreted and the Mnt vibrations, which are sensitive to the ligand coordination to Cu(I) ion in 1 were selected with the help of DFT/ωB97XD calculations.

  18. Supramolecular architecture of metal-organic frameworks involving dinuclear copper paddle-wheel complexes.

    PubMed

    Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas

    2013-12-15

    The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.

  19. Assessment of the environmental effects associated with wooden bridges preserved with creosote, pentachlorophenol, or chromated copper arsenate

    Treesearch

    Kenneth M. Brooks

    Timber bridges provide an economical alternative to concrete and steel structures, particularly in rural areas with light to moderate vehicle traffic. Wooden components of these bridges are treated with chromated copper arsenate type C (CCA), pentachlorophenol, or creosote to prolong the life of the structure from a few years to many decades. This results in reduced...

  20. Polymeric networks of copper(II) phenylmalonate with heteroaromatic n-donor ligands: synthesis, crystal structure, and magnetic properties.

    PubMed

    Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel

    2005-10-31

    Two new phenylmalonate-bridged copper(II) complexes with the formulas [Cu(4,4'-bpy)(Phmal)](n).2nH(2)O (1) and [Cu(2,4'-bpy)(Phmal)(H(2)O)](n)() (2) (Phmal = phenylmalonate dianion, 4,4'-bpy = 4,4'-bipyridine, 2,4'-bpy = 2,4'-bipyridine) have been synthesized and characterized by X-ray diffraction. Complex 1 crystallizes in monoclinic space group P2(1), Z = 4, with unit cell parameters of a = 9.0837(6) Angstroms, b = 9.3514(4) Angstroms, c = 11.0831(8) Angstroms, and beta = 107.807(6) degrees , whereas complex 2 crystallizes in orthorhombic space group C2cb, Z = 8, with unit cell parameters of a = 10.1579(7) Angstroms, b = 10.3640(8) Angstroms, and c = 33.313(4) Angstroms. The structures of 1 and 2 consist of layers of copper(II) ions with bridging bis-monodentate phenylmalonate (1 and 2) and 4,4'-bpy (1) ligands and terminal monodentate 2,4'-bpy (2) groups. Each layer in 1 contains rectangles with dimensions of 11.08 x 4.99 Angstroms(2), the edges being defined by the Phmal and 4,4'-bpy ligands. The intralayer copper-copper separations in 1 through the anti-syn equatorial-apical carboxylate-bridge and the 4,4'-bpy molecule are 4.9922(4) and 11.083(1) Angstroms, respectively. The anti-syn equatorial-equatorial carboxylate bridge links the copper(II) atoms in complex 2 within each layer with a mean copper-copper separation of 5.3709(8) Angstroms. The presence of 2,4'-bpy as a terminal ligand accounts for the large interlayer separation of 15.22 Angstroms. The copper(II) environment presents a static pseudo-Jahn-Teller disorder which has been studied by EPR and low-temperature X-ray diffraction. Magnetic susceptibility measurements of both compounds in the temperature range 2-290 K show the occurrence of weak antiferromagnetic [J = -0.59(1) cm(-1) (1)] and ferromagnetic [J = +0.77(1) cm(-1) (2)] interactions between the copper(II) ions. The conformation of the phenylmalonate-carboxylate bridge and other structural factors, such as the planarity of the exchange

  1. Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.

    PubMed

    Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung

    2003-08-01

    Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.

  2. Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity

    NASA Astrophysics Data System (ADS)

    Naik, Krishna; Nevrekar, Anupama; Kokare, Dhoolesh Gangaram; Kotian, Avinash; Kamat, Vinayak; Revankar, Vidyanand K.

    2016-12-01

    Present work describes synthesis of dibridged dinuclear [Cu2L2(μ2-NN pyr)(NO3)2(H2O)2] and [Zn2L(μ-OH)(μ-NNpyr)(H2O)2] complexes derived from a pyrazole based ligand bis(2-hydroxy-3-methoxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide. The ligand shows dimeric chelate behaviour towards copper against monomeric for zinc counterpart. Spectroscopic evidences affirm octahedral environment around the metal ions in solution state and non-electrolytic nature of the complexes. Both the complexes are active catalysts towards phosphomonoester hydrolysis with first order kcat values in the range of 2 × 10-3s-1. Zinc complex exhibited promising catalytic efficiency for the hydrolysis. The dinuclear complexes hydrolyse via Lewis acid activation, whereby the phosphate esters are preferentially bound in a bidentate bridging fashion and subsequent nucleophilic attack to release phosphate group.

  3. Application of the multi-dimensional surface water modeling system at Bridge 339, Copper River Highway, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    The Copper River Basin, the sixth largest watershed in Alaska, drains an area of 24,200 square miles. This large, glacier-fed river flows across a wide alluvial fan before it enters the Gulf of Alaska. Bridges along the Copper River Highway, which traverses the alluvial fan, have been impacted by channel migration. Due to a major channel change in 2001, Bridge 339 at Mile 36 of the highway has undergone excessive scour, resulting in damage to its abutments and approaches. During the snow- and ice-melt runoff season, which typically extends from mid-May to September, the design discharge for the bridge often is exceeded. The approach channel shifts continuously, and during our study it has shifted back and forth from the left bank to a course along the right bank nearly parallel to the road.Maintenance at Bridge 339 has been costly and will continue to be so if no action is taken. Possible solutions to the scour and erosion problem include (1) constructing a guide bank to redirect flow, (2) dredging approximately 1,000 feet of channel above the bridge to align flow perpendicular to the bridge, and (3) extending the bridge. The USGS Multi-Dimensional Surface Water Modeling System (MD_SWMS) was used to assess these possible solutions. The major limitation of modeling these scenarios was the inability to predict ongoing channel migration. We used a hybrid dataset of surveyed and synthetic bathymetry in the approach channel, which provided the best approximation of this dynamic system. Under existing conditions and at the highest measured discharge and stage of 32,500 ft3/s and 51.08 ft, respectively, the velocities and shear stresses simulated by MD_SWMS indicate scour and erosion will continue. Construction of a 250-foot-long guide bank would not improve conditions because it is not long enough. Dredging a channel upstream of Bridge 339 would help align the flow perpendicular to Bridge 339, but because of the mobility of the channel bed, the dredged channel would

  4. Copper-complexing ligands produced by an intact estuarine microbial community in response to copper stress.

    NASA Astrophysics Data System (ADS)

    Bingham, J.; Dryden, C.; Gordon, A.

    2002-12-01

    Copper is both an important nutrient and a pollutant in the marine environment. By studying the interactions between microorganisms and copper in the Elizabeth River (VA), home to a major Naval Base, we field tested the hypothesis that picoplankton and/or bacterioplankton produce strong, copper-complexing ligands in response to elevated copper concentrations. A simple light/ dark test was used to distinguish between heterotrophic and phototrophic ligand production. Samples were bottled and moored, submerged one meter, for a week. Direct counts using DAPI stain and epiflourescence were conducted to find concentrations of picoplankton and bacterioplankton. Using cathodic stripping voltammetry, we found the total copper concentrations, and then from a titration of the ligands by copper, the ligand concentrations and conditional stability constants were obtained. The Elizabeth River naturally had between 10-20 nM total dissolved copper concentrations. However when copper complexation was considered we found that the levels of bio-available Cu(II) ions were much lower. In fact in the natural samples the levels were not high enough to affect the relative reproductive rates of several microorganisms. Naturally there was a 50 nM "buffer zone" of ligand to total dissolved copper concentration. Furthermore, when stressed with excess copper, healthy picoplankton produced enough ligand to alleviate toxicity, and rebuild the buffer zone. However bacterioplankton only produced enough ligand so that they were no longer affected. Therefore, intact estuarine communities regulate copper bioavailability and toxicity with ligand production.

  5. Crystal Structure and Magnetic Behavior of Two New Dinuclear Carbonato-Bridged Copper(II) Compounds. Superexchange Pathway for the Different Coordination Modes of the Carbonato Bridge in Polynuclear Copper(II) Compounds.

    PubMed

    Escuer, Albert; Mautner, Franz A.; Peñalba, Evaristo; Vicente, Ramon

    1998-08-24

    Four new &mgr;-CO(3)(2-) copper(II) complexes with different coordination modes for the carbonato bridge have been obtained by fixation of atmospheric CO(2): {(&mgr;(3)-CO(3))[Cu(3)(ClO(4))(3)(Et(3)dien)(3)]}(ClO(4)) (1), Et(3)dien = N,N',N"-triethylbis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(Et(4)dien)(2)]}(ClO(4))(2).H(2)O (2), Et(4)dien = N,N,N",N"-tetraethyl-bis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(2)(EtMe(4)dien)(2)]} (ClO(4))(2).2H(2)O (3), EtMe(4)dien = N'-ethyl-N,N,N",N"-tetramethylbis(2-aminoethane)amine; and {(&mgr;-CO(3))[Cu(2)(H(2)O)(Me(5)dien)(2)]}(ClO(4))(2).H(2)O (4), Me(5)dien = N,N,N',N",N"-pentamethylbis(2-aminoethane)amine. The crystal structures have been solved for 2, monoclinic system, space group P2(1)/n, formula [C(25)H(62)Cl(2)Cu(2)N(6)O(13)] with a = 12.763(6) Å, b = 25.125(8) Å, c = 13.261(4) Å, beta = 111.85(3) degrees, Z = 4, and for 3, triclinic system, space group P&onemacr;, formula [C(21)H(58)Cl(2)Cu(2)N(6)O(15)] with a = 8.412(3) Å, b = 14.667(4) Å, c = 16.555(5) Å, alpha = 99.66(2) degrees, beta = 102.14(2) degrees, gamma = 104.72(2) degrees, Z = 2. Susceptibility measurements show ferromagnetic behavior (J = +6.7(6) cm(-)(1)) for the trinuclear compound 1 whereas 2-4 are antiferromagnetically coupled with J = -17.8(8), -125.5(9), and -21.2(3) cm(-)(1) respectively. Certain synthetic aspects that may be related to the nuclearity of the copper(II) &mgr;-CO(3)(2-) compounds and the superexchange pathway for the different coordination modes of the carbonato bridge are discussed.

  6. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    NASA Astrophysics Data System (ADS)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  7. E.S.R., magnetic, electronic and superoxide dismutase studies of imidazolate-bridged Cu(II)-Cu(II) complexes with ethylenediamine as capping ligand.

    PubMed

    Patel, R N; Singh, Nripendra; Shukla, K K; Gundla, V L N

    2005-06-01

    X-band E.S.R., magnetic and electronic spectra of some imidazolate-bridged homometallic complexes [(en)2Cu-R-Im-Cu(en)2](ClO4)3 where en, ethylenediamine; R-ImH, R = H imidazole (ImH); if R = CH3, 2-methylimidazole (M-ImH) and if R = C2H5, 2-ethylimidazole (E-ImH), and mononuclear complexes [(en)Cu-dien](ClO4)2 and [(en)Cu-PMDT](ClO4)2 where dien, diethylenetriamine; PMDT, pentamethyldiethylenetriamine have been described. Superoxide dismutase (SOD) activity has also been measured and compared with earlier reported complexes. In frozen solution at 77 K, the spectra show axial symmetry with a d(x2-y2) ground state. Difference in lambda(max) between mononuclear and binuclear complexes was found to be approximately 65-75 nm. Magnetic susceptibility and E.S.R. spectral measurements for all these binuclear complexes revealed that the copper(II) ions are involved in antiferromagnetic exchange interactions propagated by the imidazolate bridge.

  8. Reactivity of dinuclear copper(II) complexes towards melanoma cells: Correlation with its stability, tyrosinase mimicking and nuclease activity.

    PubMed

    Nunes, Cléia Justino; Borges, Beatriz Essenfelder; Nakao, Lia Sumie; Peyroux, Eugénie; Hardré, Renaud; Faure, Bruno; Réglier, Marius; Giorgi, Michel; Prieto, Marcela Bach; Oliveira, Carla Columbano; Da Costa Ferreira, Ana M

    2015-08-01

    In this work, the influence of two new dinuclear copper(II) complexes in the viability of melanoma cells (B16F10 and TM1MNG3) was investigated, with the aim of verifying possible correlations between their cytotoxicity and their structure. One of the complexes had a polydentate dinucleating amine-imine ligand (complex 2), and the other a tridentate imine and a diamine-bridging ligand (complex 4). The analogous mononuclear copper(II) species (complexes 1 and 3, respectively) were also prepared for comparative studies. Crystal structure determination of complex 2 indicated a square-based pyramidal geometry around each copper, coordinated to three N atoms from the ligand and the remaining sites being occupied by either solvent molecules or counter-ions. Complex 4 has a tetragonal geometry. Interactions of these complexes with human albumin protein (HSA) allowed an estimation of their relative stabilities. Complementary studies of their reactivity towards DNA indicated that all of them are able of causing significant oxidative damage, with single and double strand cleavages, in the presence of hydrogen peroxide. However, nuclease activity of the dinuclear species was very similar and much higher than that of the corresponding mononuclear compounds. Although complex 2, with a more flexible structure, exhibits a much higher tyrosinase activity than complex 4, having a more rigid environment around the metal ion, both complexes showed comparable cytotoxicity towards melanoma cells. Corresponding mononuclear complexes showed to be remarkably less reactive as tyrosinase mimics as well as cytotoxic agents. Moreover, the dinuclear complexes showed higher cytotoxicity towards more melanogenic cells. The obtained results indicated that the structure of these species is decisive for its activity towards the malignant tumor cells tested. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Assessment of the Environmental Effects Associated With Wooden Bridges Preserved With Creosote, Pentachlorophenol, or Chromated Copper Arsenate

    DOT National Transportation Integrated Search

    2000-09-01

    Timber bridge components are treated with chromated copper arsenate type C (CCA), pentachlorophenol or creosote to preserve the life of the structure from a few years to many decades, resulting in reduced transportation infrastructure costs and incre...

  10. In vitro inhibition of hyaluronidase by sodium copper chlorophyllin complex and chlorophyllin analogs

    PubMed Central

    McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R

    2015-01-01

    Background Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. Materials and methods For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. Results The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested

  11. In vitro inhibition of hyaluronidase by sodium copper chlorophyllin complex and chlorophyllin analogs.

    PubMed

    McCook, John P; Dorogi, Peter L; Vasily, David B; Cefalo, Dustin R

    2015-01-01

    Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of sodium copper chlorophyllin. Copper isochlorin e4 analogs were always the dominant components of the small molecule content of the commercial lots tested; oxidized copper isochlorin e4 was found in increased concentrations in older compared to newer lots tested. These results support the concept of using the

  12. The coordination structure of the extracted copper(II) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi

    2017-09-01

    In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing

  13. Development of Novel DNA Cleavage Systems Based on Copper Complexes. Synthesis and Characterisation of Cu(II) Complexes of Hydroxyflavones

    PubMed Central

    el Amrani, F. Ben-Allal; Perelló, L.; Torres, L.

    2000-01-01

    Copper(II) complexes of several hydroxyflavones were prepared and characterised through their physico-chemical properties. The nuclease activity of three synthesised complexes is reported. These copper(II) complexes present more nuclease activity than the ligands and the copper(II) ion. PMID:18475969

  14. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T < 10 K. For this complex, the structure is identified and the distance between the copper ions is determined. It is shown that the nitrate counterion plays the role of a bridge between the hexaaqua copper(II) complex and the dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  15. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  16. DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur

    2013-05-01

    Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.

  17. Hybrid copper complex-derived conductive patterns printed on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho

    2012-06-01

    We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.

  18. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal.

    PubMed

    Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng

    2017-01-01

    Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.

  19. [Biohydrometallurgical technology of a complex copper concentrate process].

    PubMed

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F

    2011-01-01

    Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.

  20. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  1. Synthesis, characterization and biological studies of copper(II) complexes with 2-aminobenzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Joseph, J.; Suman, A.; Nagashri, K.; Joseyphus, R. Selwin; Balakrishnan, Nisha

    2017-06-01

    Novel series of four copper(II) complexes with 2-aminobenzimidazole derivatives (obtained from the Knoevenagel condensate of acetylacetone (obtained from acetylacetone and halogen substituted benzaldehydes) and 2-aminobenzimidazole) were synthesized. They were structurally characterized using elemental analysis, molar conductance, FAB mass, FT- IR, 1H &13C-NMR, UV-Vis., and EPR techniques. On the basis of analytical and spectral studies, the distorted square planar geometry was assigned for all the complexes. The antibacterial screening of the ligands and their copper complexes indicated that all the complexes showed higher anti microbial activities than the free ligands. Superoxide dismutase and antioxidant activities of the copper complexes have also been performed. In the electrochemical technique, the shift in ΔEp, E1/2 and Ipc values were explored for the interaction of the complexes with CT-DNA. During the electrolysis process, the present ligand system stabilizes unusual oxidation state of copper in the complexes. It is believed that the copper complexes with curcumin analogs may enhance chemotherapeutic behavior.

  2. A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming

    2017-06-01

    A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.

  3. Photochemistry of copper(II) complexes with macrocyclic amine ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidharan, S.; Ferraudi, G.

    1981-07-01

    The photochemical properties of Cu(dl-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ and Cu(rac-Me/sub 6/(14)aneN/sub 4/)/sup 2 +/ in the presence and absence of axially coordinated ligands have been investigated by continuous and flash irradiations. Flash photolysis of the complexes in deaerated aqueous solutions revealed the presence of copper-ligand radical complexes with closed- and open-cycle ligands. Flash photolysis of methanolic solutions of the complexes, in the presence of halides and pseudohalides, shows Cu(III) macrocyclic intermediates. The experimental observations can be explained in terms of two primary photoprocesses with origins in distinctive charge transfer to metal states. These states have been assigned as aminomore » to copper(II) charge-transfer state and acido to copper(II) charge-transfer state.« less

  4. Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents.

    PubMed

    Marsh, James W; Djoko, Karrera Y; McEwan, Alastair G; Huston, Wilhelmina M

    2017-09-29

    Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity against a range of bacterial pathogens. To examine the susceptibility of the intracellular human pathogen Chlamydia trachomatis to copper complexes containing bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of CuII-diacetyl- and CuII-glyoxal-bis[N(4)-methylthiosemicarbazonato] (Cu(atsm) and Cu(gtsm), respectively) on C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of infectious chlamydial progeny. Impacts on host cell viability and respiration were also observed in addition to the Chlamydia impacts. This work suggests that copper-based complexes may represent a new lead approach for future development of new therapeutics against chlamydial infections, although host cell impacts need to be fully explored. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra

    2017-10-01

    Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).

  6. Structures of nitrato-(2-hydroxybenzaldehydo) (2,2 Prime -bipyridyl)copper and nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, Yu. M.; Paladi, L. G.; Antosyak, B. Ya.

    2011-03-15

    Nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper (I) and nitrato-(2-hydroxybenzaldehydo)(2,2 Prime -bipyridyl)copper (II) were synthesized and characterized by X-ray diffraction. The coordination polyhedron of the central copper atom in complex I can be described as a distorted tetragonal pyramid whose base is formed by the phenol and carbonyl oxygen atoms of the monodeprotonated 2-hydroxy-5nitrobenzaldehyde molecule and the nitrogen atoms of the 2,2 Prime -bipyridyl ligand and whose apex is occupied by the oxygen atom of the nitrato group. In the crystal structure, complexes I are linked by the acido ligands and the NO{sub 2} groups of the aldehyde molecule into infinite chains. In complexmore » II, the central copper atom is coordinated by 2-hydroxybenzaldehyde, 2,2 Prime -bipyridyl, and the nitrato group, resulting in the formation of centrosymmetric dimers. The coordination polyhedron of the central copper atom can be described as a bipyramid (4 + 1 + 1) with the same base as in complex I. The axial vertices of the bipyramid are occupied by the oxygen atom of the nitrato group and the bridging phenol oxygen atom of the adjacent complex related to the initial complex by a center of symmetry. In the crystal structure, complexes II are hydrogen bonded into infinite chains.« less

  7. Heptacopper(II) and dicopper(II)-adenine complexes: synthesis, structural characterization, and magnetic properties

    DOE PAGES

    Leite Ferreira, B. J. M.; Brandão, Paula; Dos Santos, A. M.; ...

    2015-07-13

    The syntheses, crystal structures, and magnetic properties of two new copper(II) complexes with molecular formulas [Cu 7(μ 2-OH 2) 6(μ 3-O) 6(adenine) 6(NO 3) 26H 2O (1) and [Cu 2(μ 2-H 2O) 2(adenine) 2(H 2O) 4](NO 3) 42H 2O (2) are reported. We composed the heptanuclear compound of a central octahedral CuO 6 core sharing edges with six adjacent copper octahedra. In 2, the copper octahedra shares one equatorial edge. In both compounds, these basic copper cluster units are further linked by water bridges and bridging adenine ligands through N3 and N9 donors. All copper(II) centers exhibit Jahn-Teller distorted octahedralmore » coordination characteristic of a d 9 center. Our study of the magnetic properties of the heptacopper complex revealed a dominant ferromagnetic intra-cluster interaction, while the dicopper complex exhibits antiferromagnetic intra-dimer interactions with weakly ferromagnetic inter-dimer interaction.« less

  8. Copper complexes as a source of redox active MRI contrast agents.

    PubMed

    Dunbar, Lynsey; Sowden, Rebecca J; Trotter, Katherine D; Taylor, Michelle K; Smith, David; Kennedy, Alan R; Reglinski, John; Spickett, Corinne M

    2015-10-01

    The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

  9. Ligand effects on the structure and magnetic properties of alternating copper(II) chains with 2,2'-bipyrimidine- and polymethyl-substituted pyrazolates as bridging ligands.

    PubMed

    Castro, Isabel; Calatayud, M Luisa; Barros, Wdeson P; Carranza, José; Julve, Miguel; Lloret, Francesc; Marino, Nadia; De Munno, Giovanni

    2014-06-02

    A novel series of heteroleptic copper(II) compounds of formulas {[Cu2(μ-H2O)(μ-pz)2(μ-bpm)(ClO4)(H2O)]ClO4·2H2O}n (1), {[Cu2(μ-H2O)(μ-3-Mepz)2(μ-bpm)](ClO4)2·2H2O}n (2), and {[Cu2(μ-OH)(μ-3,5-Me2pz)(μ-bpm)(H-3,5-Me2pz)2](ClO4)2}n (3) [bpm = 2,2'-bipyrimidine, Hpz = pyrazole, H-3-Mepz = 3-methylpyrazole, and H-3,5-Me2pz = 3,5-dimethylpyrazole] have been synthesized and structurally characterized by X-ray diffraction methods. The crystal structures of 1 and 2 consist of copper(II) chains with regular alternating bpm and bis(pyrazolate)(aqua) bridges, whereas that of 3 is made up of copper(II) chains with regular alternating bpm and (pyrazolate)(hydroxo) bridges. The copper centers are six- (1) or five-coordinate (2) in axially elongated, octahedral (1) or square-pyramidal (2) environments in 1 and 2, whereas they are five-coordinate in distorted trigonal-bipyramidal surroundings in 3. The values of the copper-copper separations across the bpm/pyrazolate bridges are 5.5442(7)/3.3131(6) (1), 5.538(1)/3.235(1) (2), and 5.7673(7)/3.3220(6) Å (3). The magnetic properties of 1-3 have been investigated in the temperature range of 25-300 K. The analysis of their magnetic susceptibility data through the isotropic Hamiltonian for an alternating antiferromagnetic copper(II) chain model [H = -J∑i=1-n/2 (S2i·S2i-1 + αS2i·S2i+1), with α = J'/J and Si = SCu = 1/2] reveals the presence of a strong to moderate antiferromagnetic coupling through the bis(pyrazolate)(aqua) [-J = 217 (1) and 215 cm(-1) (2)] and (pyrazolate)(hydroxo) bridges [-J = 153 cm(-1) (3)], respectively, whereas a strong to weak antiferromagnetic coupling occurs through the bis-bidentate bpm [-J' = 211 (1), 213 (2), and 44 cm(-1) (3)]. A simple orbital analysis of the magnetic exchange interaction within the bpm- and pyrazolate-bridged dicopper(II) fragments of 1-3 visualizes the σ-type pathways involving the (dx(2)-y(2)) (1 and 2) or d(z(2)) (3) magnetic orbitals on each metal ion, which account

  10. Synthesis and Cytotoxic Evaluation of Steroidal Copper (Cu (II)) Complexes

    PubMed Central

    Huang, Yanmin; Kong, Erbin; Zhan, Junyan; Chen, Shuang; Gan, Chunfang; Liu, Zhiping; Pang, Liping

    2017-01-01

    Using estrone and pregnenolone as starting materials, some steroidal copper complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide or diazanyl pyridine and then complexation of steroidal thiosemicarbazones or steroidal diazanyl pyridines with Cu (II). The complexes were characterized by IR, NMR, and HRMS. The synthesized compounds were screened for their cytotoxicity against HeLa, Bel-7404, and 293T cell lines in vitro. The results show that all steroidal copper (II) complexes display obvious antiproliferative activity against the tested cancer cells. The IC50 values of complexes 5 and 12 against Bel-7404 (human liver carcinoma) are 5.0 and 7.0 μM. PMID:29180937

  11. Characteristics of coated copper wire specimens using high frequency ultrasonic complex vibration welding equipments.

    PubMed

    Tsujino, J; Ihara, S; Harada, Y; Kasahara, K; Sakamaki, N

    2004-04-01

    Welding characteristic of thin coated copper wires were studied using 40, 60, 100 kHz ultrasonic complex vibration welding equipments with elliptical to circular vibration locus. The complex vibration systems consisted of a longitudinal-torsional vibration converter and a driving longitudinal vibration system. Polyurethane coated copper wires of 0.036 mm outer diameter and copper plates of 0.3 mm thickness and the other dimension wires were used as welding specimens. The copper wire part is completely welded on the copper substrate and the insulated coating material is driven from welded area to outsides of the wire specimens by high frequency complex vibration.

  12. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted phenyl...

  13. Reactivity Study of Unsymmetrical β-Diketiminato Copper(I) Complexes: Effect of the Chelating Ring.

    PubMed

    Chuang, Wan-Jung; Hsu, Sung-Po; Chand, Kuldeep; Yu, Fu-Lun; Tsai, Cheng-Long; Tseng, Yu-Hsuan; Lu, Yuh-Hsiu; Kuo, Jen-Yu; Carey, James R; Chen, Hsuan-Ying; Chen, Hsing-Yin; Chiang, Michael Y; Hsu, Sodio C N

    2017-03-06

    β-Diketiminato copper(I) complexes play important roles in bioinspired catalytic chemistry and in applications to the materials industry. However, it has been observed that these complexes are very susceptible to disproportionation. Coordinating solvents or Lewis bases are typically used to prevent disproportionation and to block the coordination sites of the copper(I) center from further decomposition. Here, we incorporate this coordination protection directly into the molecule in order to increase the stability and reactivity of these complexes and to discover new copper(I) binding motifs. Here we describe the synthesis, structural characterization, and reactivity of a series of unsymmetrical N-aryl-N'-alkylpyridyl β-diketiminato copper(I) complexes and discuss the structures and reactivity of these complexes with respect to the length of the pyridyl arm. All of the aforementioned unsymmetrical ß-diketiminato copper(I) complexes bind CO reversibly and are stable to disproportionation. The binding ability of CO and the rate of pyridyl ligand decoordination of these copper(I) complexes are directly related to the competition between the degree of puckering of the chelate system and the steric demands of the N-aryl substituent.

  14. Heteroleptic Copper(I)-Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization.

    PubMed

    Minozzi, Clémentine; Caron, Antoine; Grenier-Petel, Jean-Christophe; Santandrea, Jeffrey; Collins, Shawn K

    2018-05-04

    A library of 50 copper-based complexes derived from bisphosphines and diamines was prepared and evaluated in three mechanistically distinct photocatalytic reactions. In all cases, a copper-based catalyst was identified to afford high yields, where new heteroleptic complexes derived from the bisphosphine BINAP displayed high efficiency across all reaction types. Importantly, the evaluation of the library of copper complexes revealed that even when photophysical data is available, it is not always possible to predict which catalyst structure will be efficient or inefficient in a given process, emphasizing the advantages for catalyst structures with high modularity and structural variability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    EPA Science Inventory

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  16. DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes.

    PubMed

    Kumar, Rajendran Senthil; Arunachalam, Sankaralingam; Periasamy, Vaiyapuri Subbarayan; Preethy, Christo Paul; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2008-10-01

    Some novel water-soluble polymer-copper(II)-phenanthroline complex samples, [Cu(phen)2(BPEI)]Cl(2).4H2O (phen=1,10-phenanthroline, BPEI=branched polyethyleneimine), with different degrees of copper complex content in the polymer chain have been prepared by ligand substitution method in water-ethanol medium and characterized by infrared, UV-visible, EPR spectral and elemental analysis methods. The binding of these complex samples with DNA has been investigated by electronic absorption spectroscopy, emission spectroscopy and gel retardation assay. Electrostatic interactions between DNA molecule and polymer-copper(II) complex molecule containing many high positive charges have been observed. Besides these ionic interactions, van der Waals interactions, hydrogen bonding and other partial intercalation binding modes may also exist in this system. The polymer-copper(II) complex with higher degree of copper complex content was screened for its antimicrobial activity and antitumor activity.

  17. Syntheses, structures, and properties of imidazolate-bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) dinuclear complexes of a single macrocyclic ligand with two hydroxyethyl pendants.

    PubMed

    Li, Dongfeng; Li, Shuan; Yang, Dexi; Yu, Jiuhong; Huang, Jin; Li, Yizhi; Tang, Wenxia

    2003-09-22

    The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.

  18. Bridges in complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Ang-Kun; Tian, Liang; Liu, Yang-Yu

    2018-01-01

    A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations. We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have a very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.

  19. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition ofmore » cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC

  20. Geomorphology and river dynamics of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges.Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005–07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36–37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36–37 during average flow periods.The U.S. Geological Survey’s Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  1. 9-Triptycenecarboxylate-Bridged Diiron(II) Complexes

    PubMed Central

    Friedle, Simone; Kodanko, Jeremy J.; Fornace, Kyrstin L.; Lippard, Stephen J.

    2008-01-01

    The synthesis and characterization of diiron(II) complexes supported by 9-triptycenecarboxylate ligands (-O2CTrp) is described. The interlocking nature of the triptycenecarboxylates facilitates formation of quadruply bridged diiron(II) complexes of the type [Fe2(μ-O2CTrp)4(L)2] (L = THF, pyridine or imidazole derivative) with a paddlewheel geometry. A systematic lengthening of the Fe-Fe distance occurs with the increase in steric bulk of the neutral donor L, resulting in values of up to 3 Å without disassembly of the paddlewheel structure. Reactions with an excess of water do not lead to decomposition of the diiron(II) core, indicating that these quadruply bridged complexes are of exceptional stability. The red-colored complexes [Fe2(μ-O2CTrp)4(4-AcPy)2] (10) and [Fe2(μ-O2CTrp)4(4-CNPy)2] (11) exhibit solvent-dependent thermochromism in coordinating solvents that was studied by variable temperature UV-vis spectroscopy. Reaction of [Fe2(μ-O2CTrp)4(THF)2] with N,N,N’,N’-tetramethylethylenediamine (TMEDA), tetra-n-butyl ammonium thiocyanate, or excess 2-methylimidazole resulted in the formation of mononuclear complexes [Fe(O2CTrp)2(TMEDA)] (13), (n-Bu4N)2[Fe(O2CTrp)2(SCN)2] (14), and [Fe(O2CTrp)2(2-MeIm)2] (15) having an O4/N2 coordination sphere composition. PMID:19915653

  2. Multistep Oxidation of Diethynyl Oligophenylamine-Bridged Diruthenium and Diiron Complexes.

    PubMed

    Zhang, Jing; Guo, Shen-Zhen; Dong, Yu-Bao; Rao, Li; Yin, Jun; Yu, Guang-Ao; Hartl, František; Liu, Sheng Hua

    2017-01-17

    Homo-dinuclear nonlinear complexes [{M(dppe)Cp*} 2 {μ-(-C≡C) 2 X}] (dppe = 1,2-bis(diphenylphosphino)ethane; Cp* = η 5 -C 5 Me 5 ; X = triphenylamine (TPA), M = Ru (1a) and Fe (1b); X = N,N,N',N'-tetraphenylphenylene-1,4-diamine (TPPD), M = Ru (2a)) were prepared and characterized by 1 H, 13 C, and 31 P NMR spectroscopy and single-crystal X-ray diffraction (1a, 2a). Attempts to prepare the diiron analogue of 2a were not successful. Experimental data obtained from cyclic voltammetry, square wave voltammetry, UV-vis-NIR (NIR = near-infrared) spectro-electrochemistry, and very informative IR spectro-electrochemistry in the C≡C stretching region, combined with density functional theory calculations, afford to make an emphasizing assessment of the close association between the metal-ethynyl termini and the oligophenylamine bridge core as well as their respective involvement in sequential one-electron oxidations of these complexes. The anodic behavior of the homo-bimetallic complexes depends strongly both on the metal center and the length of the oligophenylamine bridge core. The poorly separated first two oxidations of diiron complex 1b are localized on the electronically nearly independent Fe termini. In contrast, diruthenium complex 1a exhibits a significantly delocalized character and a marked electronic communication between the ruthenium centers through the diethynyl-TPA bridge. The ruthenium-ethynyl halves in 2a, separated by the doubly extended and more flexible TPPD bridge core, show a lower degree of electronic coupling, resulting in close-lying first two anodic waves and the NIR electronic absorption of [2a] + with an indistinctive intervalence charge transfer character. Finally, the third anodic waves in the voltammetric responses of the homo-bimetallic complexes are associated with the concurrent exclusive oxidation of the TPA or TPPD bridge cores.

  3. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.

    PubMed

    Farraj, Yousef; Grouchko, Michael; Magdassi, Shlomo

    2015-01-31

    Highly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented. The ink is stable in air for prolonged periods, with no sedimentation or oxidation problems, which are usually encountered in copper nanoparticle based inks.

  4. BSA binding and antimicrobial studies of branched polyethyleneimine-copper(II)bipyridine/phenanthroline complexes

    NASA Astrophysics Data System (ADS)

    Vignesh, Gopalaswamy; Arunachalam, Sankaralingam; Vignesh, Sivanandham; James, Rathinam Arthur

    2012-10-01

    The interaction of two water soluble branched polyethyleneimine-copper(II) complexes containing bipyridine/phenanthroline with bovine serum albumin (BSA) was studied by, UV-Visible absorption, fluorescence, lifetime measurements and circular dichroism spectroscopic techniques. The polymer-copper(II) complexes strongly quench the intrinsic fluorescence of BSA is the static quenching mechanism through hydrogen bonds and van der Waal's attraction. The distance r, between the BSA and the complexes seems to be less than 2 nm indicating that the energy transfer between the donor and acceptor occurs with high probability. Synchronous fluorescence studies indicate the binding of polymer-copper(II) complexes with BSA mostly changes the polarity around tryptophan residues rather than tyrosine residues. The circular dichroism studies indicate that the binding has induced considerable amount of conformational changes in the protein. The complexes also show some antibacterial and antifungal properties.

  5. Communication During Complex Humanitarian Emergencies: Using Technology to Bridge the Gap

    DTIC Science & Technology

    2002-09-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS COMMUNICATION DURING COMPLEX HUMANITARIAN EMERGENCIES: USING TECHNOLOGY TO BRIDGE THE GAP by...Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 2002 3. REPORT TYPE AND DATES COVERED...Master’s Thesis 4. TITLE AND SUBTITLE Communication During Complex Humanitarian Emergencies: Using Technology to Bridge the Gap 5. FUNDING NUMBERS 6

  6. The impact of tertiary wastewater treatment on copper and zinc complexation.

    PubMed

    Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B

    2015-01-01

    Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.

  7. A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes

    PubMed Central

    Vipond, Jeff; Woods, Mark; Zhao, Piyu; Tircso, Gyula; Ren, Jimin; Bott, Simon G.; Ogrin, Doug; Kiefer, Garry E.; Kovacs, Zoltan; Sherry, A.Dean

    2008-01-01

    Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex. The ligand 8O2-bridged-DOTAM was synthesized in a 34% yield from cyclen. It was found that the lanthanide complexes of this ligand did not possess a water molecule in the inner coordination sphere of the bound lanthanide. The crystal structure of the ytterbium complex revealed that distortions to the coordination sphere were induced by the steric constraints imposed on the complex by the bridging unit. The extent of the distortion was found to increase with increasing ionic radius of the lanthanide ion, eventually resulting in a complete loss of symmetry in the complex. Because this ligand system is bicyclic, the conformation of each ring in the system is constrained by that of the other, in consequence inclusion of the bridging unit in the complexes means only a twisted square antiprismatic coordination geometry is observed for complexes of 8O2-bridged-DOTAM. PMID:17295475

  8. Crystal structures of two mixed-valence copper cyanide complexes with N-methyl­ethylenedi­amine

    PubMed Central

    Sabatino, Alexander

    2017-01-01

    The crystal structures of two mixed-valence copper cyanide compounds involving N-methyl­ethylenedi­amine (meen), are described. In compound (I), poly[bis(μ3-cyanido-κ3 C:C:N)tris(μ2-cyanido-κ2 C:N)bis(N-methylethane-1,2-di­amine-κ2 N,N′)tricopper(I)copper(II)], [Cu4(CN)5(C3H10N2)2] or Cu4(CN)5meen2, cyanide groups link CuI atoms into a three-dimensional network containing open channels parallel to the b axis. In the network, two tetra­hedrally bound CuI atoms are bonded by the C atoms of two end-on bridging CN groups to form Cu2(CN)6 moieties with the Cu atoms in close contact at 2.560 (1) Å. Other trigonally bound CuI atoms link these units together to form the network. The CuII atoms, coordinated by two meen units, are covalently linked to the network via a cyanide bridge, and project into the open network channels. In the mol­ecular compound (II), [(N-methylethylenediamine-κ2 N,N′)copper(II)]-μ2-cyanido-κ2 C:N-[bis(cyanido-κC)copper(I)] monohydrate, [Cu2(CN)3(C3H10N2)2]·H2O or Cu2(CN)3meen2·H2O, a CN group connects a CuII atom coordinated by two meen groups with a trigonal–planar CuI atom coordinated by CN groups. The mol­ecules are linked into centrosymmetric dimers via hydrogen bonds to two water mol­ecules. In both compounds, the bridging cyanide between the CuII and CuI atoms has the N atom bonded to CuII and the C atom bonded to CuI, and the CuII atoms are in a square-pyramidal coordination. PMID:28217329

  9. Antibacterial, antibiofilm and antioxidant screening of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Bukonjić, Andriana M.; Tomović, Dušan Lj.; Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Radojević, Ivana D.; Maksimović, Jovana Z.; Vasić, Sava M.; Čomić, Ljiljana R.; Trifunović, Srećko R.; Radić, Gordana P.

    2017-01-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid,[Cu2(S-et-thiosal)4(H2O)2] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu2(S-bu-thiosal)4(H2O)2] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay).

  10. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    PubMed

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  11. Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.

    PubMed

    Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R

    2018-02-06

    The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.

  12. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  13. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  14. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    PubMed

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Haeili, Mehri; Moore, Casey; Davis, Christopher J. C.; Cochran, James B.; Shah, Santosh; Shrestha, Tej B.; Zhang, Yaofang; Bossmann, Stefan H.; Benjamin, William H.

    2014-01-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. PMID:24752262

  16. Activation of dioxygen by copper metalloproteins and insights from model complexes.

    PubMed

    Quist, David A; Diaz, Daniel E; Liu, Jeffrey J; Karlin, Kenneth D

    2017-04-01

    Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing metalloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O 2 -activation in copper proteins are addressed.

  17. Geomorphology of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, T.P.

    1996-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1996, 11 bridges were located along this section of the highway. These bridges cross parts or all of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. At the peak outflow rate from Van Cleve Lake, the flow of the Copper River will increase an additional 140,000 and 190,000 cubic feet per second. Bedload sampling and continuous seismic reflection were used to show that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lakes, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow- gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long

  18. Geomorphology of the lower Copper River, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1997-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake

  19. Novel metal based anti-tuberculosis agent: synthesis, characterization, catalytic and pharmacological activities of copper complexes.

    PubMed

    Joseph, J; Nagashri, K; Janaki, G Boomadevi

    2012-03-01

    Copper complexes of molecular formulae, [CuL(1)(OAc)], [CuL(2)(H(2)O)], [CuL(3)(H(2)O)], [CuL(4)(H(2)O)], [CuL(5)(H(2)O)] where L(1)-L(5) represents Schiff base ligands [by the condensation of 3-hydroxyflavone with 4-aminoantipyrine (L(1))/o-aminophenol (L(2))/o-aminobenzoic acid (L(3))/o-aminothiazole (L(4))/thiosemicarbazide (L(5))], have been prepared. They were characterized using analytical and spectral techniques. The DNA binding properties of copper complexes were studied using electronic absorption spectra and viscosity measurements. Superoxide dismutase and antioxidant activities of the copper complexes have also been studied. Furthermore, the copper complexes have been found to promote pUC18 DNA cleavage in the presence of oxidant. Anti-tuberculosis activity was also performed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands.

    PubMed

    Khadka, Chhatra B; Najafabadi, Bahareh Khalili; Hesari, Mahdi; Workentin, Mark S; Corrigan, John F

    2013-06-17

    The redox-active diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been used to stabilize the copper(I) chalcogenide clusters [Cu12(μ4-S)6(μ-dppf)4] (1), [Cu8(μ4-Se)4(μ-dppf)3] (2), [Cu4(μ4-Te)(μ4-η(2)-Te2)(μ-dppf)2] (3), and [Cu12(μ5-Te)4(μ8-η(2)-Te2)2(μ-dppf)4] (4), prepared by the reaction of the copper(I) acetate coordination complex (dppf)CuOAc (5) with 0.5 equiv of E(SiMe3)2 (E = S, Se, Te). Single-crystal X-ray analyses of complexes 1-4 confirm the presence of {Cu(2x)E(x)} cores stabilized by dppf ligands on their surfaces, where the bidentate ligands adopt bridging coordination modes. The redox chemistry of cluster 1 was examined using cyclic voltammetry and compared to the electrochemistry of the free ligand dppf and the corresponding copper(I) acetate coordination complex 5. Cluster 1 shows the expected consecutive oxidations of the ferrocene moieties, Cu(I) centers, and phosphine of the dppf ligand.

  1. β-Ketoiminato-based copper(ii) complexes as CVD precursors for copper and copper oxide layer formation.

    PubMed

    Pousaneh, Elaheh; Korb, Marcus; Dzhagan, Volodymyr; Weber, Marcus; Noll, Julian; Mehring, Michael; Zahn, Dietrich R T; Schulz, Stefan E; Lang, Heinrich

    2018-06-19

    The synthesis of ketoiminato copper(ii) complexes [Cu(OCRCHC(CH3)NCH2CH2X)(μ-OAc)]2 (X = NMe2: 4a, R = Me; 4b, R = Ph. X = OMe: 5, R = Me) and [Cu(OCRCHCMeNCH2CH2NEt2)(OAc)] (6, R = Me) from RC(O)CHC(CH3)N(H)CH2CH2X (X = NMe2: 1a, R = Me; 1b, R = Ph. X = NEt2: 1c, R = Me. X = OMe: 2, R = Me) and [Cu(OAc)2·H2O] (3) is reported. The molecular solid-state structures of 4-6 were determined by single crystal X-ray diffraction studies, showing that 4a,b and 5 are dimers which are set up by two [{Cu(μ-OAc)L}] (L = ketoiminato ligand) units featuring a square-planar Cu2O2 core with a distorted square-pyramidal geometry at Cu(ii). In contrast, 6 is monomeric with a tridentate-coordinated OCMeCHCMeNCH2CH2NEt2 ligand and a σ-bonded acetate group, thus inducing a square-planar environment around Cu(ii). The thermal behavior of all complexes was studied by TG (Thermogravimetry) and DSC (Differential Scanning Calorimetry) under an atmosphere of Ar and O2. Complex 4b shows the highest first onset temperature at 213 °C (under O2) and 239 °C (Ar). PXRD studies confirmed the formation of CuO under an atmosphere of O2 and Cu/Cu2O under Ar. TG-MS studies, exemplarily carried out with 4a, indicate the elimination of the ketoiminato ligands with detectable fragments such as m/z = 15, 28, 43, 44, 45, and 60 at a temperature above 250 °C. Vapor pressure measurements displayed that 5 shows the highest volatility of 3.6 mbar at 70 °C (for comparison, 4a, 1.4; 4b, 1.3; 6, 0.4 mbar) and hence 4a and 5 were used as MOCVD precursors for Cu/Cu2O deposition on Si/SiO2 at substrate temperatures of 450 °C and 510 °C. The deposition experiments were carried out under an atmosphere of nitrogen as well as oxygen. The as-obtained layers were characterized by SEM, EDX, XPS, and PXRD, showing that with oxygen as the reactive gas a mixture of metallic copper and copper(i) oxide without carbon impurities was formed, while under N2 Cu films with 53-68 mol% C contamination were produced. In a

  2. Copper (II) complexes of bidentate ligands exhibit potent anti-cancer activity regardless of platinum sensitivity status.

    PubMed

    Wehbe, Mohamed; Lo, Cody; Leung, Ada W Y; Dragowska, Wieslawa H; Ryan, Gemma M; Bally, Marcel B

    2017-12-01

    Insensitivity to platinum, either through inherent or acquired resistance, is a major clinical problem in the treatment of many solid tumors. Here, we explored the therapeutic potential of diethyldithiocarbamate (DDC), pyrithione (Pyr), plumbagin (Plum), 8-hydroxyquinoline (8-HQ), clioquinol (CQ) copper complexes in a panel of cancer cell lines that differ in their sensitivity to platins (cisplatin/carboplatin) using a high-content imaging system. Our data suggest that the copper complexes were effective against both platinum sensitive (IC 50  ~ 1 μM platinum) and insensitive (IC 50  > 5 μM platinum) cell lines. Furthermore, copper complexes of DDC, Pyr and 8-HQ had greater therapeutic activity compared to the copper-free ligands in all cell lines; whereas the copper-dependent activities of Plum and CQ were cell-line specific. Four of the copper complexes (Cu(DDC) 2 , Cu(Pyr) 2 , Cu(Plum) 2 and Cu(8-HQ) 2 ) showed IC 50 values less than that of cisplatin in all tested cell lines. The complex copper DDC (Cu(DDC) 2 ) was selected for in vivo evaluation due to its low nano-molar range activity in vitro and the availability of an injectable liposomal formulation. Liposomal (Cu(DDC) 2 ) was tested in a fast-growing platinum-resistant A2780-CP ovarian xenograft model and was found to achieve a statistically significant reduction (50%; p < 0.05) in tumour size. This work supports the potential use of copper-based therapeutics to treat cancers that are insensitive to platinum drugs.

  3. Electron-Transfer Dynamics for a Donor-Bridge-Acceptor Complex in Ionic Liquids.

    PubMed

    DeVine, Jessalyn A; Labib, Marena; Harries, Megan E; Rached, Rouba Abdel Malak; Issa, Joseph; Wishart, James F; Castner, Edward W

    2015-08-27

    Intramolecular photoinduced electron transfer from an N,N-dimethyl-p-phenylenediamine donor bridged by a diproline spacer to a coumarin 343 acceptor was studied using time-resolved fluorescence measurements in three ionic liquids and in acetonitrile. The three ionic liquids have the bis[(trifluoromethyl)sulfonyl]amide anion paired with the tributylmethylammonium, 1-butyl-1-methylpyrrolidinium, and 1-decyl-1-methylpyrrolidinium cations. The dynamics in the two-proline donor-bridge-acceptor complex are compared to those observed for the same donor and acceptor connected by a single proline bridge, studied previously by Lee et al. (J. Phys. Chem. C 2012, 116, 5197). The increased conformational freedom afforded by the second bridging proline resulted in multiple energetically accessible conformations. The multiple conformations have significant variations in donor-acceptor electronic coupling, leading to dynamics that include both adiabatic and nonadiabatic contributions. In common with the single-proline bridged complex, the intramolecular electron transfer in the two-proline system was found to be in the Marcus inverted regime.

  4. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus.

    PubMed

    Haeili, Mehri; Moore, Casey; Davis, Christopher J C; Cochran, James B; Shah, Santosh; Shrestha, Tej B; Zhang, Yaofang; Bossmann, Stefan H; Benjamin, William H; Kutsch, Olaf; Wolschendorf, Frank

    2014-07-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Activation of dioxygen by copper metalloproteins and insights from model complexes

    PubMed Central

    Quist, David A.; Diaz, Daniel E.; Liu, Jeffrey J.; Karlin, Kenneth D.

    2017-01-01

    Nature uses dioxygen as a key oxidant in the transformation of biomolecules. Among the enzymes that are utilized for these reactions are copper-containing met-alloenzymes, which are responsible for important biological functions such as the regulation of neurotransmitters, dioxygen transport, and cellular respiration. Enzymatic and model system studies work in tandem in order to gain an understanding of the fundamental reductive activation of dioxygen by copper complexes. This review covers the most recent advancements in the structures, spectroscopy, and reaction mechanisms for dioxygen-activating copper proteins and relevant synthetic models thereof. An emphasis has also been placed on cofactor biogenesis, a fundamentally important process whereby biomolecules are post-translationally modified by the pro-enzyme active site to generate cofactors which are essential for the catalytic enzymatic reaction. Significant questions remaining in copper-ion-mediated O2-activation in copper proteins are addressed. PMID:27921179

  6. Systematic Introduction of Aromatic Rings to Diphosphine Ligands for Emission Color Tuning of Dinuclear Copper(I) Iodide Complexes.

    PubMed

    Okano, Yuka; Ohara, Hiroki; Kobayashi, Atsushi; Yoshida, Masaki; Kato, Masako

    2016-06-06

    We have newly synthesized two solution-stable luminescent dinuclear copper(I) complexes, [Cu2(μ-I)2(dpppy)2] (Cu-py) and [Cu2(μ-I)2(dpppyz)2] (Cu-pyz), where dpppy = 2,3-bis(diphenylphosphino)pyridine and dpppyz = 2,3-bis(diphenylphosphino)pyrazine, using chelating diphosphine ligands composed of N-heteroaromatic rings. X-ray analysis clearly indicates that the molecular structures of Cu-py and Cu-pyz are almost identical with that of the parent complex, [Cu2(μ-I)2(dppb)2] [Cu-bz; dppb = 2,3-bis(diphenylphosphino)benzene]. Complexes Cu-py and Cu-pyz exhibit luminescence [emission quantum yield (Φem) = 0.48 and 0.02, respectively] in the solid state at 298 K. A wide emission color tuning, from 497 to 638 nm (energy = 0.55 eV, with an emission color ranging from green to reddish-orange), was achieved in the solid state by the introduction of pyridinic N atoms into the bridging phenyl group between the two diphenylphosphine groups. Density functional theory calculations suggest that the emission could originate from the effective combination of the metal-to-ligand charge-transfer excited state with the halide-to-ligand charge-transfer excited state. Thus, the emission color change is due to stabilization of the π* levels of the central aryl group in the diphosphine ligand. Furthermore, these copper(I) complexes exhibit thermally activated delayed fluorescence at 298 K because of the small singlet-triplet energy difference (ΔE = 523 and 564 cm(-1) for Cu-py and Cu-pyz, respectively). The stability of these complexes in chloroform, due to the rigid bonds between the diphosphine ligands and the Cu(I) ions, enables the preparation of emissive poly(methyl methacrylate) films by the solution-doping technique.

  7. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    PubMed Central

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; van de Sluis, Bart; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling. PMID:25355947

  8. Synthesis, structural characterization, reactivity, and catalytic properties of copper(I) complexes with a series of tetradentate tripodal tris(pyrazolylmethyl)amine ligands.

    PubMed

    Haldón, Estela; Delgado-Rebollo, Manuela; Prieto, Auxiliadora; Alvarez, Eleuterio; Maya, Celia; Nicasio, M Carmen; Pérez, Pedro J

    2014-04-21

    Novel tris(pyrazolylmethyl)amine ligands Tpa(Me3), Tpa*(,Br), and Tpa(Br3) have been synthesized and structurally characterized. The coordination chemistries of these three new tetradentate tripodal ligands and the already known Tpa and Tpa* have been explored using different copper(I) salts as starting materials. Cationic copper(I) complexes [Tpa(x)Cu]PF6 (1-4) have been isolated from the reaction of [Cu(NCMe)4]PF6 and 1 equiv of the ligand. Complexes 2 (Tpa(x) = Tpa*) and 3 (Tpa(x) = Tpa(Me3)) have been characterized by X-ray studies. The former is a 1D helical coordination polymer, and the latter is a tetranuclear helicate. In both structures, the Tpa(x) ligand adopts a μ(2):κ(2):κ(1)-coordination mode. However, in solution, all of the four complexes form fluxional species. When CuI is used as the copper(I) source, neutral compounds 5-8 have been obtained. Complexes 6-8 exhibit a 1:1 metal-to-ligand ratio, whereas 5 presents 2:1 stoichiometry. Its solid-state structure has been determined by X-ray diffraction, revealing its 3D polymeric nature. The polymer is composed by the assembly of [Tpa2Cu4I4] units, in which Cu4I4 presents a step-stair structure. The Tpa ligands bridge the Cu4I4 clusters, adopting also a μ(2):κ(2):κ(1)-coordination mode. As observed for the cationic derivatives, the NMR spectra of 5-8 show the equivalence of the three pyrazolyl arms of the ligands in these complexes. The reactivities of cationic copper(I) derivatives 1-4 with PPh3 and CO have been explored. In all cases, 1:1 adducts [Tpa(x)CuL]PF6 [L = PPh3 (9-11), CO (12-15)] have been isolated. The crystal structure of [Tpa*Cu(PPh3)]PF6 (9) has been obtained, showing that the coordination geometry around copper(I) is trigonal-pyramidal with the apical position occupied by the tertiary amine N atom. The Tpa* ligand binds the Cu center to three of its four N atoms, with one pyrazolyl arm remaining uncoordinated. In solution, the carbonyl adducts 13-15 exist as a mixture of two

  9. Bismesitoylphosphinic Acid (BAPO-OH): A Ligand for Copper Complexes and Four-Electron Photoreductant for the Preparation of Copper Nanomaterials.

    PubMed

    Beil, Andreas; Müller, Georgina; Käser, Debora; Hattendorf, Bodo; Li, Zhongshu; Krumeich, Frank; Rosenthal, Amos; Rana, Vijay Kumar; Schönberg, Hartmut; Benkő, Zoltán; Grützmacher, Hansjörg

    2018-05-16

    Bismesitoylphosphinic acid, (HO)PO(COMes) 2 (BAPO-OH), is an efficient photoinitiator for free-radical polymerizations of olefins in aqueous phase. Described here are the structures of various copper(II) and copper(I) complexes with BAPO-OH as the ligand. The complex Cu II (BAPO-O) 2 (H 2 O) 2 is photoactive, and under irradiation with UV light in aqueous phase, it serves as a source of metallic copper in high purity and yield (>80 %). Simultaneously, the radical polymerization of acrylates can be initiated and allows the preparation of nanoparticle/polymer nanocomposites in which the metallic Cu nanoparticles are protected against oxidation. The determination of the stoichiometry of the photoreductions suggests an almost quantitative conversion from Cu II into Cu 0 with half an equivalent of BAPO-OH, which serves as a four-electron photoreductant. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    PubMed

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  11. 21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...

  12. 21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...

  13. 21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...

  14. 21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...

  15. 21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...

  16. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development

    PubMed Central

    Wehbe, Mohamed; Anantha, Malathi; Backstrom, Ian; Leung, Ada; Chen, Kent; Malhotra, Armaan; Edwards, Katarina; Bally, Marcel B.

    2016-01-01

    The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients. PMID:27055237

  17. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development.

    PubMed

    Wehbe, Mohamed; Anantha, Malathi; Backstrom, Ian; Leung, Ada; Chen, Kent; Malhotra, Armaan; Edwards, Katarina; Bally, Marcel B

    2016-01-01

    The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients.

  18. Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.

    PubMed

    Samai, Mohamed; Hague, Theresa; Naughton, Declan P; Gard, Paul R; Chatterjee, Prabal K

    2008-02-15

    Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.

  19. Load rating of complex bridges.

    DOT National Transportation Integrated Search

    2010-07-01

    The National Bridge Inspection Standards require highway departments to inspect, evaluate, and determine load ratings for : structures defined as bridges located on all public roads. Load rating of bridges is performed to determine the live load that...

  20. Surface Structures Formed by a Copper(II) Complex of Alkyl-Derivatized Indigo

    PubMed Central

    Honda, Akinori; Noda, Keisuke; Tamaki, Yoshinori; Miyamura, Kazuo

    2016-01-01

    Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed. PMID:28773957

  1. Synthesis and spectral and redox properties of three triply bridged complexes of ruthenium

    USGS Publications Warehouse

    Llobet, A.; Curry, M.E.; Evans, H.T.; Meyer, T.J.

    1989-01-01

    Syntheses are described for the ligand-bridged complexes [(tpm)RuIII(??-O)(??-L)2RuIII(tpm) n+ (L = O2P(O)(OH), n = 0 (1); L = O2CO, n = 0 (2); L = O2CCH3, n = 2 (3); tpm is the tridentate, facial ligand tris(1-pyrazolyl)methane. The X-ray crystal structure of [(tpm)Ru(??-O)(??-O2P(O)(OH))2Ru(tpm)]??8H 2O was determined from three-dimensional X-ray counter data. The complex crystallizes in the trigonal space group P3221 with three molecules in a cell of dimensions a = 18.759 (4) A?? and c = 9.970 (6) A??. The structure was refined to a weighted R factor of 0.042 based on 1480 independent reflections with I ??? 3??(I). The structure reveals that the complex consists of two six-coordinate ruthenium atoms that are joined by a ??-oxo bridge (rRU-O = 1.87 A??; ???RuORu = 124.6??) and two ??-hydrogen phosphato bridges (average rRu-O = 2.07 A??) which are capped by two tpm ligands. The results of cyclic voltammetric and coulometric experiments show that the complexes undergo both oxidative and reductive processes in solution. Upon reduction, the ligand-bridged structure is lost and the monomer [(tpm)Ru(H2O)3]2+ appears quantitatively. All three complexes are diamagnetic in solution. The diamagnetism is a consequence of strong electronic coupling between the low-spin d5 Ru(III) metal ions through the oxo bridge and the relatively small Ru-O-Ru angle. ?? 1989 American Chemical Society.

  2. Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid

    NASA Astrophysics Data System (ADS)

    Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Milovanović, Jelena; Arsenijević, Aleksandar; Stojanović, Bojana; Trifunović, Srećko R.; Radić, Gordana P.

    2016-07-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-ethyl derivative of thiosalicylic acid was confirmed by X-ray structural study and compared to previously reported crystal structure of the Cu complex with S-methyl derivative. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Cytotoxic effects of S-alkyl (R = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding binuclear copper(II)-complexes on murine colon carcinoma cell lines, CT26 and CT26.CL25 and human colon carcinoma cell line HCT-116 were reported here. The analysis of cancer cell viability showed that all the tested complexes had low cytotoxic effect on murine colon carcinoma cell lines, but several times higher cytotoxicity on normal human colon carcinoma cells.

  3. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  4. A diketiminate-bound diiron complex with a bridging carbonate ligand

    PubMed Central

    Sadique, Azwana R.; Brennessel, William W.; Holland, Patrick L.

    2009-01-01

    Reduction of carbon dioxide by a diiron(I) complex gives μ-carbonato-κ3 O:O′,O′′-bis­{[2,2,6,6-tetra­methyl-3,5-bis­(2,4,6-triisopropyl­phenyl)heptane-2,5-diiminate(1−)-κ2 N,N′]iron(II)} toluene disolvate, [Fe2(C41H65N)2(CO3)]·2C7H8, a diiron(II) species with a bridging carbonate ligand. The asymmetric unit contains one diiron complex and two cocrystallized toluene solvent mol­ecules that are distributed over three sites, one with atoms in general positions and two in crystallographic sites. Both FeII atoms are η2-coordinated to diketiminate ligands, but η1- and η2-coordinated to the bridging carbonate ligand. Thus, one FeII center is three-coordinate and the other is four-coordinate. The bridging carbonate ligand is nearly perpendicular to the iron–diketiminate plane of the four-coordinate FeII center and parallel to the plane of the three-coordinate FeII center. PMID:19407402

  5. The Ndc80 complex bridges two Dam1 complex rings

    PubMed Central

    Kim, Jae ook; Zelter, Alex; Umbreit, Neil T; Bollozos, Athena; Riffle, Michael; Johnson, Richard; MacCoss, Michael J; Asbury, Charles L; Davis, Trisha N

    2017-01-01

    Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex’s ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital. DOI: http://dx.doi.org/10.7554/eLife.21069.001 PMID:28191870

  6. Informational Entropy and Bridge Scour Estimation under Complex Hydraulic Scenarios

    NASA Astrophysics Data System (ADS)

    Pizarro, Alonso; Link, Oscar; Fiorentino, Mauro; Samela, Caterina; Manfreda, Salvatore

    2017-04-01

    Bridges are important for society because they allow social, cultural and economic connectivity. Flood events can compromise the safety of bridge piers up to the complete collapse. The Bridge Scour phenomena has been described by empirical formulae deduced from hydraulic laboratory experiments. The range of applicability of such models is restricted by the specific hydraulic conditions or flume geometry used for their derivation (e.g., water depth, mean flow velocity, pier diameter and sediment properties). We seek to identify a general formulation able to capture the main dynamic of the process in order to cover a wide range of hydraulic and geometric configuration, allowing to extend our analysis in different contexts. Therefore, exploiting the Principle of Maximum Entropy (POME) and applying it on the recently proposed dimensionless Effective flow work, W*, we derived a simple model characterized by only one parameter. The proposed Bridge Scour Entropic (BRISENT) model shows good performances under complex hydraulic conditions as well as under steady-state flow. Moreover, the model was able to capture the evolution of scour in several hydraulic configurations even if the model contains only one parameter. Furthermore, results show that the model parameter is controlled by the geometric configurations of the experiment. This offers a possible strategy to obtain a priori model parameter calibration. The BRISENT model represents a good candidate for estimating the time-dependent scour depth under complex hydraulic scenarios. The authors are keen to apply this idea for describing the scour behavior during a real flood event. Keywords: Informational entropy, Sediment transport, Bridge pier scour, Effective flow work.

  7. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen.

    PubMed

    Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita

    2018-05-11

    The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.

  8. Biomimetic Modeling of Copper Complexes: A Study of Enantioselective Catalytic Oxidation on D-(+)-Catechin and L-( − )-Epicatechin with Copper Complexes

    PubMed Central

    Mutti, Francesco G.; Pievo, Roberta; Sgobba, Maila; Gullotti, Michele; Santagostini, Laura

    2008-01-01

    The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II) complexes versus two catechols, namely, D-(+)-catechin and L-( − )-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH), and have been calculated the molar absorptivities of the different quinones. The catalytic efficiency is moderate, as inferred by kinetic constants, but the complexes exhibit significant enantio-differentiating ability towards the catechols, albeit for the dinuclear complexes, this enantio-differentiating ability is lower. In all cases, the preferred enantiomeric substrate is D-(+)-catechin to respect the other catechol, because of the spatial disposition of this substrate. PMID:18825268

  9. Infrared spectroscopy of copper-resveratrol complexes: A joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.; Taioli, S.; Mancini, I.; Tosi, P.

    2012-07-01

    Infrared multiple-photon dissociation spectroscopy has been used to record vibrational spectra of charged copper-resveratrol complexes in the 3500-3700 cm-1 and 1100-1900 cm-1 regions. Minimum energy structures have been determined by density functional theory calculations using plane waves and pseudopotentials. In particular, the copper(I)-resveratrol complex presents a tetra-coordinated metal bound with two carbon atoms of the alkenyl moiety and two closest carbons of the adjoining resorcinol ring. For these geometries vibrational spectra have been calculated by using linear response theory. The good agreement between experimental and calculated IR spectra for the selected species confirms the overall reliability of the proposed geometries.

  10. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions

    NASA Astrophysics Data System (ADS)

    Yong, Yingqiong; Nguyen, Mai Thanh; Tsukamoto, Hiroki; Matsubara, Masaki; Liao, Ying-Chih; Yonezawa, Tetsu

    2017-03-01

    Mixtures of a copper complex and copper fine particles as copper-based metal-organic decomposition (MOD) dispersions have been demonstrated to be effective for low-temperature sintering of conductive copper film. However, the copper particle size effect on decomposition process of the dispersion during heating and the effect of organic residues on the resistivity have not been studied. In this study, the decomposition process of dispersions containing mixtures of a copper complex and copper particles with various sizes was studied. The effect of organic residues on the resistivity was also studied using thermogravimetric analysis. In addition, the choice of copper salts in the copper complex was also discussed. In this work, a low-resistivity sintered copper film (7 × 10-6 Ω·m) at a temperature as low as 100 °C was achieved without using any reductive gas.

  12. Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation

    NASA Astrophysics Data System (ADS)

    Lang, Johannes; Fries, Daniela V.; Niedner-Schatteburg, Gereon

    2018-05-01

    This study elucidates molecular structures, fragmentation pathways and relative stabilities of isolated trinuclear oxo bridged cobalt complexes of the structural type [Co3O(OAc)6(Py)n]+ (OAc=acetate, Py=pyridine, n=0, 1, 2, 3). We present infrared multiple photon dissociation (IR-MPD) spectra in combination with quantum chemical calculations. They indicate that the coordination of axial pyridine ligands to the [Co3O(OAc)6]+ subunit disturbs the triangular geometry of the Co3O core. [Co3O(OAc)6]+ exhibits a nearly equilateral triangular Co3O core geometry. The coordination of one or two pyridine ligands disturbs this arrangement resulting in isosceles triangular Co3O core geometries (in the cases of n=1 and 2). Coordination of three pyridine ligands (n=3) results in an equilateral triangular Co3O core geometry as in the case of n=0. Collision induced dissociation (CID) studies reveal that the complexes undergo a consecutive elimination of pyridine and acetate ligands with increasing excitation energy. Relative stabilities of the complexes decrease with the number of coordinated pyridine ligands. The presented results help to gain a fundamental insight into the molecular structure of trinuclear oxo bridged cobalt complexes void of any external effects such as crystal packing or solvation.

  13. Structural measurements and cell line studies of the copper-PEG-Rifampicin complex against Mycobacterium tuberculosis.

    PubMed

    Manning, Thomas; Mikula, Rachel; Wylie, Greg; Phillips, Dennis; Jarvis, Jackie; Zhang, Fengli

    2015-02-01

    The bacterium responsible for tuberculosis is increasing its resistance to antibiotics resulting in new multidrug-resistant Mycobacterium tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). In this study, several analytical techniques including NMR, FT-ICR, MALDI-MS, LC-MS and UV/Vis are used to study the copper-Rifampicin-Polyethylene glycol (PEG-3350) complex. The copper (II) cation is a carrier for the antibiotic Rifampicin as well as nutrients for the bacterium. The NIH-NIAID cell line containing several Tb strains (including antibiotic resistant strains) is tested against seven copper-PEG-RIF complex variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    PubMed

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  15. 1. DOWNRIVER VIEW OF BRIDGE, LOOKING SOUTHSOUTHWEST Peter J. Edwards, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DOWNRIVER VIEW OF BRIDGE, LOOKING SOUTH-SOUTHWEST Peter J. Edwards, photographer, August 1988 - Four Mile Bridge, Copper Creek Road, Spans Table Rock Fork, Mollala River, Molalla, Clackamas County, OR

  16. The copper complexation ability of a synthetic humic-like acid formed by an abiotic humification process and the effect of experimental factors on its copper complexation ability.

    PubMed

    Yang, Ting; Hodson, Mark E

    2018-03-26

    Humic acids have an important impact on the distribution, toxicity, and bioavailability of hazardous metals in the environment. In this study, a synthetic humic-like acid (SHLA) was prepared by an abiotic humification process using catechol and glycine as humic precursors and a MnO 2 catalyst. The effect of physico-chemical conditions (ionic strength from 0.01 to 0.5 M NaNO 3 , pH from 4 to 8, temperature from 25 to 45 °C, and humic acid concentration from 5 to 100 mg/L) on the complexation ability of SHLA for Cu 2+ were investigated. A commercial humic acid (CHA, CAS: 1415-93-6) from Sigma-Aldrich was also studied for comparison. The results showed that for pH 4 to 8, the conditional stability constants (log K) of SHLA and CHA were in the range 5.63-8.62 and 4.87-6.23, respectively, and complexation capacities (CC) were 1.34-2.61 and 1.42-2.31 mmol/g, respectively. The Cu complexation ability of SHLA was higher than that of the CHA due to its higher number of acidic functional groups (SHLA 19.19 mmol/g; CHA 3.87 mmol/g), extent of humification and aromaticity (AL/AR: 0.333 (SHLA); 1.554 (CHA)), and O-alkyl functional groups (SHLA 15.56%; CHA 3.45%). The log K and complexation efficiency (fraction of metal bound to SHLA) of SHLA were higher at higher pH, lower ionic strength, higher temperature, and higher SHLA concentration. Overall, SHLA was a good and promising complexation agent for copper in both soil washing of copper contaminated soil and the treatment of copper-containing wastewater.

  17. Copper complexation capacity in surface waters of the Venice Lagoon.

    PubMed

    Delgadillo-Hinojosa, Francisco; Zirino, Alberto; Nasci, Cristina

    2008-10-01

    Total copper (Cu(T)), copper ion activity (pCu) and the copper complexation capacity (CuCC) were determined in samples of seawater collected in July 2003 from the Venice Lagoon. Cu(T) and CuCC showed considerable spatial variability: Cu(T) ranged from 1.8 to 70.0nM, whereas the CuCC varied from 195 to 573nM. pCu values varied from 11.6 to 12.6 and are consistent with those previously reported in estuarine and coastal areas (10.9-14.1). The range of Cu(T) values compares well with those reported in the past in the lagoon and in the adjacent Adriatic Sea. The highest concentrations of Cu(T) were found in samples collected near the industrial area of Porto Marghera, whereas the lowest were measured near the Chioggia and Malamocco inlets, where an intense tidally-driven renewal of seawater takes place. Although CuCC showed a high degree of spatial variability, the values recorded in the Venice Lagoon are comparable to those reported in other estuarine systems. In addition, CuCC was positively correlated with dissolved organic carbon (DOC), suggesting that organic ligands responsible for Cu complexation are part of the bulk organic matter pool in the lagoon. The CuCC:Cu(T) molar ratio was, on average 55:1, indicating that a large excess of complexation capacity exists in the Venice Lagoon. The high levels of CuCC and the narrow range of pCu indicates the importance of the role played by organic ligands in controlling the free ion Cu concentrations in the lagoon, and as a consequence, regulating its availability and/or toxicity.

  18. 54. STEEL COMPLEX FROM CLARK AVENUE BRIDGE, LOOKING NORTHEAST. FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. STEEL COMPLEX FROM CLARK AVENUE BRIDGE, LOOKING NORTHEAST. FOUNDRY IN FOREGROUND, INGOT MOLDS ON TRACK AT RIGHT, BASIC OXYGEN FURNACE ON TRACK AT RIGHT. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  19. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  20. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I).

    PubMed

    Hanna, Jill R; Allan, Christopher; Lawrence, Charlotte; Meyer, Odile; Wilson, Neil D; Hulme, Alison N

    2017-05-14

    The CuAAC 'click' reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible 'turn-on' catalytic sensors for the detection of ligand-bound copper(I).

  1. Cationic copper (I) complexes with bulky 1,4-diaza-1,3-butadiene ligands - Synthesis, solid state structure and catalysis

    NASA Astrophysics Data System (ADS)

    Anga, Srinivas; Kottalanka, Ravi K.; Pal, Tigmansu; Panda, Tarun K.

    2013-05-01

    We report the full characterization of two glyoxal-based ligands N,N bis(diphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh2, 1) and more bulky N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh3, 2) by the condensation reaction of glyoxal and diphenylmethanamine and triphenyl-methanamine respectively. The copper (I) complex of composition [Cu(DADPh2)2]PF6 (3) having two neutral bidentate N,N bis(diphenyl-methyl)-1,4-diaza-1,3-butadiene ligand was prepared by the reaction of [Cu(CH3CN)4]PF6 and 1 in 1:2 ratio in dichloromethane. In a similar reaction with N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (2) and [Cu(CH3CN)4]PF6 in dichloromethane yielded corresponding heteroleptic copper (I) complex [Cu(DADPh3)(CH3CN)2]PF6 (4). Another copper (I) complex [Cu(DADPh2)(PPh3)]PF6 (5) can also be obtained by the one pot reaction involving ligand 1, [Cu(CH3CN)4]PF6 and triphenylphosphine. Solid state structures of all the five compounds were established by single crystal X-ray diffraction analysis. The solid state structures of the copper complexes 3-5 reveal a distorted tetrahedral geometry around the copper (I) centers. The copper complexes 3-5 were tested as catalysts for the coupling reaction of o-iodophenol and phenyl acetylene and it was observed that complex 4 exhibits the highest catalytic activity.

  2. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko

    2017-04-01

    Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.

  3. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.

    PubMed

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2016-11-01

    Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhou, Tao; Xu, Zhou-Qing; Gu, Xin-Nan; Wu, Wei-Na; Chen, Hong; Wang, Yuan; Jia, Lei; Zhu, Tao-Feng; Chen, Ru-Hua

    2017-01-01

    Five complexes, [Cu(L)2]·4.5H2O (1), [Cu(HL)2](NO3)2·CH3OH (2) {[Cu2(L)2(NO3)(H2O)2]·(NO3)}n (3), [Cu2(HL)2(SO4)2]·2CH3OH (4) and [Cu4(L)4Cl4]·5H2O (5) based on HL (where HL = 2-acetylpyrazine isonicotinoyl hydrazone) have been synthesized and characterized by X-ray diffraction analyses. The counter anion and organic base during the synthesis procedure influence the structures of the complexes efficiently, which generate five complexes as mono-, bi-, tetra-nuclear and one-dimensional structures. The antitumor activities of the complexes 1-5 (except for complex 3 with the poor solubility) against the Patu8988 human pancreatic cancer, ECA109 human esophagus cancer and SGC7901 human gastric cancer cell lines are screened by MTT assay. The results indicate that the chelation of Cu(II) with the ligand is responsible for the observed high cytotoxicity of the copper(II) complexes and the 1:2 copper species 1 and 2 demonstrate lower antitumor activities than that of the 1:1 copper species 4 and 5. In addition, the in vitro apoptosis inducing activity of the copper(II) complex 5 against SGC7901 cell line is determined. And the results show that the complex can bring about apoptosis of the cancerous cells in vitro.

  5. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells.

    PubMed

    Hattori, Shigeki; Wada, Yuji; Yanagida, Shozo; Fukuzumi, Shunichi

    2005-07-06

    The electron self-exchange rate constants of blue copper model complexes, [(-)-sparteine-N,N'](maleonitriledithiolato-S,S')copper ([Cu(SP)(mmt)])(0/)(-), bis(2,9-dimethy-1,10-phenanthroline)copper ([Cu(dmp)(2)](2+/+)), and bis(1,10-phenanthroline)copper ([Cu(phen)(2)](2+/+)) have been determined from the rate constants of electron transfer from a homologous series of ferrocene derivatives to the copper(II) complexes in light of the Marcus theory of electron transfer. The resulting electron self-exchange rate constant increases in the order: [Cu(phen)(2)](2+/+) < [Cu(SP)(mmt)](0/)(-) < [Cu(dmp)(2)](2+/+), in agreement with the order of the smaller structural change between the copper(II) and copper(I) complexes due to the distorted tetragonal geometry. The dye-sensitized solar cells (DSSC) were constructed using the copper complexes as redox couples to compare the photoelectrochemical responses with those using the conventional I(3)(-)/I(-) couple. The light energy conversion efficiency (eta) values under illumination of simulated solar light irradiation (100 mW/cm(2)) of DSSCs using [Cu(phen)(2)](2+/+), [Cu(dmp)(2)](2+/+), and [Cu(SP)(mmt)](0/)(-) were recorded as 0.1%, 1.4%, and 1.3%, respectively. The maximum eta value (2.2%) was obtained for a DSSC using the [Cu(dmp)(2)](2+/+) redox couple under the light irradiation of 20 mW/cm(2) intensity, where a higher open-circuit voltage of the cell was attained as compared to that of the conventional I(3)(-)/I(-) couple.

  6. Copper(II) hexaaza macrocyclic binuclear complexes obtained from the reaction of their copper(I) derivates and molecular dioxygen.

    PubMed

    Costas, Miquel; Ribas, Xavi; Poater, Albert; López Valbuena, Josep Maria; Xifra, Raül; Company, Anna; Duran, Miquel; Solà, Miquel; Llobet, Antoni; Corbella, Montserrat; Usón, Miguel Angel; Mahía, José; Solans, Xavier; Shan, Xiaopeng; Benet-Buchholz, Jordi

    2006-05-01

    Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.

  7. ON THE RELATIVE STABILITY OF ALUMINUM, TITANIUM, VANADIUM, IRON, AND COPPER TARTRATE COMPLEXES IN ALKALI MEDIA (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatnitskii, I.V.; Kostyshina, A.P.

    1959-06-01

    The stability of aluminum, copper, iron, titunium, and vanadium tartrate complexes was determined using bond magnitudes as criteria (the ratio between the concentrations of complexed and free ions at a certain standard acid condition). A method is suggested for determining the ratio of the bonds combining the complexes of two metals. The partition constaats of aluminum, copper, iron(III), and vanadium hydroxyquinolinates between the aqueous solution and chloroform were 2.6 x 10/sup -33/, 7.3 x 10/sup -23/, 1.5 x 10/sup -37/, and 4.2 x 10/sup -23/, respectively. The relative stability of copper and iron turtrate complexes in alkali solution (pH 13)more » and aluminum, iron(III), titunium, and vanadium(IV) tartrate complexes in ammonium solution (pH 9.5) was determined. (R.V.J.)« less

  8. Combinatorial synthesis of bimetallic complexes with three halogeno bridges.

    PubMed

    Gauthier, Sébastien; Quebatte, Laurent; Scopelliti, Rosario; Severin, Kay

    2004-06-07

    Methods for the synthesis of bimetallic complexes in which two different metal fragments are connected by three chloro or bromo bridges are reported. The reactions are general, fast, and give rise to structurally defined products in quantitative yields. Therefore, they are ideally suited for generating a library of homo- and heterobimetallic complexes in a combinatorial fashion. This is of special interest for applications in homogeneous catalysis. Selected members of this library were synthesized and comprehensively characterized; single-crystal X-ray analyses were performed for 15 new bimetallic compounds.

  9. Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2015-10-14

    In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.

  10. Theoretical, biological and in silico studies of pendant-armed heteroleptic copper(II) phenolate complexes

    NASA Astrophysics Data System (ADS)

    Arthi, P.; Mahendiran, D.; Shobana, S.; Srinivasan, P.; Rahiman, A. Kalilur

    2018-06-01

    A new series of pendant-armed heteroleptic copper(II) phenolate complexes of the type [CuL1-3(diimine)] (1-6) have been synthesized by the reaction of pendant-armed ligands 2,2'-(benzoyliminodiethylene)bissalicylidene (H2L1), 2,2'-(4-nitrobenzoyliminodiethylene)bissalicylidene (H2L2) or 2,2'-(3,5-dinitrobenzoyliminodiethylene)bissalicylidene (H2L3) with coligands (diimine; 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen)) in the presence of copper(II) chloride, and characterized by spectroscopic techniques. The seven coordinated pentagonal-bipyramidal geometry around the copper(II) center was inferred from the electronic spectra of the complexes. The bond length, bond angle and HOMO-LUMO energy gap calculations were carried out by DFT studies, using Gaussian 03 program. Electrochemical studies of the mononuclear complexes evidenced one-electron irreversible reduction wave in the cathodic region (Epc = -0.61 to -0.65 V). Experimental and in silico molecular docking studies support groove mode of binding with DNA. Further, the molecular docking studies of complexes with B-DNA indicate the binding of the guanine-cytosine residues in the minor groove of the DNA. Molecular docking studies also revealed the interaction of complexes with protein ERK2 kinase and significant topoisomerase (Topo-I) inhibitory activity. All the complexes display pronounced cleavage activity against supercoiled pBR322 DNA in the presence of H2O2. In vitro cytotoxicity of the complexes was tested against liver cancer cell line (HepG2) by MTT reduction assay.

  11. Spin exchange effects on the physicochemical properties of tetraoxolene-bridged bimetallic complexes.

    PubMed

    Guo, Dong; McCusker, James K

    2007-04-16

    The synthesis, physical, and spectroscopic properties of a series of metal complexes bridged by the redox-active chloranilate ligand are described. Compounds containing the (CAcat,cat)4- ligand, where (CAcat,cat)4- represents the fully reduced aromatic form of chloranilate, have been prepared by two different routes from H2CA and H4CA starting materials; the corresponding (CAsq,cat)3- analogue was obtained by one-electron oxidation with decamethylferrocenium tetrafluoroborate. Homo- and heterobimetallic complexes containing CrIII and GaIII with chloranilate have been prepared, yielding the following six complexes: [Ga2(tren)2(CAcat,cat)](BPh4)2 (1), [Ga2(tren)2(CAsq,cat)](BPh4)2(BF4) (2), [GaCr(tren)2(CAcat,cat)](BPh4)2 (3), [GaCr(tren)2(CAsq,cat)](BPh4)2(BF4) (4), [Cr2(tren)2(CAcat,cat)] (BPh4)2 (5), and [Cr2(tren)2(CAsq,cat)](BPh4)2(BF4) (6) (where tren is tris(2-aminoethyl)amine). Single-crystal X-ray structures have been obtained for complexes 1, 3, and 5; nearly identical C-C bond distances within the quinoidal ligand confirm the aromatic character of the bridge in each case. Complex 2 exhibits a temperature-independent magnetic moment of microeff = 1.64 +/- 0.04 microB in the solid state between 4 and 350 K, consistent with the CAsq,cat formulation of the ligand and an S = 1/2 ground state for complex 2. Complex 3 exhibits a value of microeff = 3.44 +/- 0.09 microB that is also temperature-independent, indicating an S = 3/2 ground state. Complexes 4-6 are all influenced by Heisenberg spin exchange. The temperature-independent behavior of complexes 4 and 6 indicate the presence of strong antiferromagnetic exchange between the CrIII and the (sq,cat) bridging radical yielding well-isolated ground states of S = 1 and 5/2 for 4 and 6, respectively. In contrast, complex 5 exhibits a weak intramolecular antiferromagnetic exchange interaction between the two CrIII centers (J = -2 cm-1 for H = -2Jŝ1.ŝ2) via superexchange through the diamagnetic CAcat,cat bridge. The

  12. Syntheses, crystal structures and properties of novel copper(II) complexes obtained by reactions of copper(II) sulfate pentahydrate with tripodal ligands.

    PubMed

    Zhao, Wei; Fan, Jian; Song, You; Kawaguchi, Hiroyuki; Okamura, Taka-aki; Sun, Wei-Yin; Ueyama, Norikazu

    2005-04-21

    Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.

  13. Copper-Mediated Fluorination of Arylboronate Esters. Identification of a Copper(III) Fluoride Complex

    PubMed Central

    Fier, Patrick S.; Luo, Jingwei; Hartwig, John F.

    2013-01-01

    A method for the direct conversion of arylboronate esters to aryl fluorides under mild conditions with readily available reagents is reported. Tandem reactions have also been developed for the fluorination of arenes and aryl bromides through aryl-boronate ester intermediates. Mechanistic studies suggest that this fluorination reaction occurs through facile oxidation of Cu(I) to Cu(III) followed by rate-limiting transmetallation of a bound arylboronate to Cu(III). Fast C-F reductive elimination is proposed to occur from an aryl-copper(III)-fluoride complex. Cu(III) intermediates have been generated independently and identified by NMR spectroscopy and ESI-MS. PMID:23384209

  14. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    PubMed

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-07

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  15. COPPER COMPLEXATION BY NATURAL ORGANIC MATTER IN CONTAMINATED AND UNCOMTAINATED GROUND WATER

    EPA Science Inventory

    Ground-water samples were collected from an uncontaminated and a contaminated site. Copper complexation was characterized by ion-selective electrode (ISE), fluorescence quenching (FQ), and cathodic stripping voltammetric (CSV) titrations. All of the samples were titrated at their...

  16. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides.

    PubMed

    Tye, Jesse W; Weng, Zhiqiang; Johns, Adam M; Incarvito, Christopher D; Hartwig, John F

    2008-07-30

    Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L 2Cu (+) cation and a CuX 2 (-) anion. A tetraalkylammonium salt of the CuX 2 (-) anion in which X = phthalimidate was also isolated. Conductivity measurements and (1)H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C-N coupling, but the ammonium salt of [Cu(phth) 2] (-) did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen) 2Cu][Cu(pyrr) 2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free

  17. Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate

    PubMed Central

    Kakuda, Saya; Rolle, Clarence; Ohkubo, Kei; Siegler, Maxime A.; Karlin, Kenneth D.; Fukuzumi, Shunichi

    2015-01-01

    Mononuclear copper complexes, [(tmpa)CuII(CH3CN)](ClO4)2 (1, tmpa = tris(2-pyridylmethyl)amine) and [(BzQ)CuII(H2O)2](ClO4)2 (2, BzQ = bis(2-quinolinylmethyl)benzylamine)], act as efficient catalysts for the selective two-electron reduction of O2 by ferrocene derivatives in the presence of scandium triflate (Sc(OTf)3), in acetone, whereas 1 catalyzes the four-electron reduction of O2 by the same reductant in the presence of Brønsted acids such as triflic acid. Following formation of the peroxo-bridged dicopper(II) complex [(tmpa)CuII(O2)CuII(tmpa)]2+, the two-electron reduced product of O2 with Sc3+ is observed to be scandium peroxide ([Sc3+(O22−)]+). In the presence of three equiv of hexamethylphosphoric triamide (HMPA), [Sc3+(O22−)]+ was oxidized by [Fe(bpy)3]3+ (bpy = 2,2′-bipyridine) to the known superoxide species [(HMPA)3Sc3+(O2•−)]2+ as detected by EPR spectroscopy. A kinetic study revealed that the rate-determining step of the catalytic cycle for the two-electron reduction of O2 with 1 is electron transfer from Fc* to 1 to give a cuprous complex which is highly reactive toward O2, whereas the rate-determining step with 2 is changed to the reaction of the cuprous complex with O2 following electron transfer from ferrocene derivatives to 2. The explanation for the change in catalytic O2-reaction stoichiometry from four-electron with Brønsted acids to two-electron reduction in the presence of Sc3+ and also for the change in the rate-determining step is clarified based on a kinetics interrogation of the overall catalytic cycle as well as each step of the catalytic cycle with study of the observed effects of Sc3+ on copper-oxygen intermediates. PMID:25659416

  18. Design, syntheses, characterization, and cytotoxicity studies of novel heterobinuclear oxindolimine copper(II)-platinum(II) complexes.

    PubMed

    Aranda, Esther Escribano; Matias, Tiago Araújo; Araki, Koiti; Vieira, Adriana Pires; de Mattos, Elaine Andrade; Colepicolo, Pio; Luz, Carolina Portela; Marques, Fábio Luiz Navarro; da Costa Ferreira, Ana Maria

    2016-12-01

    Herein, the design and syntheses of two new mononuclear oxindolimine-copper(II) (1 and 2) and corresponding heterobinuclear oxindolimine Cu(II)Pt(II) complexes (3 and 4), are described. All the isolated complexes were characterized by spectroscopic techniques (UV/Vis, IR, EPR), in addition to elemental analysis and mass spectrometry. Cyclic voltammetry (CV) measurements showed that in all cases, one-electron quasi-reversible waves were observed, and ascribed to the formation of corresponding copper(I) complexes. Additionally, waves related to oxindolimine ligand reduction was verified, and confirmed using analogous oxindolimine-Zn(II) complexes. The Pt(IV/II) reduction, and corresponding oxidation, for complexes 3 and 4 occurred at very close values to those observed for cisplatin. By complementary fluorescence studies, it was shown that glutathione (GSH) cannot reduce any of these complexes, under the experimental conditions (room temperature, phosphate buffer 50mM, pH7.4), using an excess of 20-fold [GSH]. All these complexes showed characteristic EPR spectral profile, with parameters values g ǁ >g ⊥ suggesting an axially distorted environment around the copper(II) center. Interactions with calf thymus-DNA, monitored by circular dichroism (CD), indicated different effects modulated by the ligands. Finally, the cytotoxicity of each complex was tested toward different tumor cells, in comparison to cisplatin, and low values of IC 50 in the range 0.6 to 4.0μM were obtained, after 24 or 48h incubation at 37°C. The obtained results indicate that such complexes can be promising alternative antitumor agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study

    NASA Astrophysics Data System (ADS)

    Mekahlia, S.; Bouzid, B.

    2009-11-01

    The antimicrobial activity of chitosan is unstable and sensitive to many factors such as molecular weight. Recent investigations showed that low molecular weight chitosan exhibited strong bactericidal activities compared to chitosan with high molecular weight. Since chitosan degradation can be caused by the coordinating bond, we attempt to synthesize and characterize the chitosan-Cu (II) complex, and thereafter study the coordinating bond effect on its antibacterial activity against Salmonella enteritidis. Seven chitosan-copper complexes with different copper contents were prepared and characterized by FT-IR, UV-vis, XRD and atomic absorption spectrophotometry (AAS). Results indicated that for chitosan-Cu (II) complexes with molar ratio close to 1:1, the inhibition rate reached 100%.

  20. Interaction of polyethyleneimine-anchored copper(II) complexes with tRNA studied by spectroscopy methods and biological activities.

    PubMed

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Gandi, Devadas A; Thirunalasundari, Thyagarajan; Vignesh, Sivanandham; James, Rathinam A

    2017-05-01

    Ultraviolet-visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine-copper(II) complexes [Cu(phen)(l-Tyr)BPEI]ClO 4 (where phen =1,10-phenanthroline, l-Tyr = l-tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine-copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye-exclusion, sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of a polyethyleneimine-copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Synthesis, structure, and magnetic properties of two 1-D helical coordination polymeric Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng

    2008-01-01

    Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.

  2. An orthogonal ferromagnetically coupled tetracopper(II) 2 x 2 homoleptic grid supported by micro-O4 bridges and its DFT study.

    PubMed

    Roy, Somnath; Mandal, Tarak Nath; Barik, Anil Kumar; Pal, Sachindranath; Butcher, Ray J; El Fallah, Mohamed Salah; Tercero, Javier; Kar, Susanta Kumar

    2007-03-28

    A pyrazole based ditopic ligand (PzOAP), prepared by the reaction between 5-methylpyrazole-3-carbohydrazide and methyl ester of imino picolinic acid, reacts with Cu(NO3)2.6H2O to form a self-assembled, ferromagnetically coupled, alkoxide bridged tetranuclear homoleptic Cu(II) square grid-complex [Cu4(PzOAP)4(NO3)2] (NO3)2.4H2O (1) with a central Cu4[micro-O4] core, involving four ligand molecules. In the Cu4[micro-O4] core, out of four copper centers, two copper centers are penta-coordinated and the remaining two are hexa-coordinated. In each case of hexa-coordination, the sixth position is occupied by the nitrate ion. The complex 1 has been characterized structurally and magnetically. Although Cu-O-Cu bridge angles are too large (138-141 degrees) and Cu-Cu distances are short (4.043-4.131 A), suitable for propagation of expected antiferromagnetic exchange interactions within the grid, yet intramolecular ferromagnetic exchange (J = 5.38 cm(-1)) is present with S = 4/2 magnetic ground state. This ferromagnetic interaction is quite obvious from the bridging connections (d(x2-y2)) lying almost orthogonally between the metal centers. The exchange pathways parameters have been evaluated from density functional calculations.

  3. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers.

    PubMed

    Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K

    2007-04-01

    Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.

  5. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia.

    PubMed

    Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-04-28

    It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen-bridged dimolybdenum complex bearing a pincer ligand, where up to twenty three equivalents of ammonia were produced based on the catalyst. Here we study the origin of the catalytic behaviour of the dinitrogen-bridged dimolybdenum complex bearing the pincer ligand with density functional theory calculations, based on stoichiometric and catalytic formation of ammonia from molecular dinitrogen under ambient conditions. Comparison of di- and mono-molybdenum systems shows that the dinitrogen-bridged dimolybdenum core structure plays a critical role in the protonation of the coordinated molecular dinitrogen in the catalytic cycle.

  6. Effect of substituent of terpyridines on the in vitro antioxidant, antitubercular, biocidal and fluorescence studies of copper(II) complexes with clioquinol

    NASA Astrophysics Data System (ADS)

    Kharadi, G. J.

    2014-01-01

    An octahedral complexes of copper with clioquinol(CQ) and substituted terpyridine have been synthesized. The Cu(II) complexes have been characterized by elemental analyses, thermogravimetric analyses, magnetic moment measurements, FT-IR, electronic, 1H NMR and FAB mass spectra. Antimycobacterial screening of ligand and its copper compound against Mycobacterium tuberculosis shows clear enhancement in the antitubercular activity upon copper complexation. Ferric-reducing anti-oxidant power of all complexes were measured. The fluorescence spectra of complexes show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The antimicrobial efficiency of the complexes were tested on five different microorganisms and showed good biological activity.

  7. The effects of transistor source-to-gate bridging faults in complex CMOS gates

    NASA Astrophysics Data System (ADS)

    Visweswaran, G. S.; Ali, Akhtar-Uz-Zaman M.; Lala, Parag K.; Hartmann, Carlos R. P.

    1991-06-01

    A study of the effect of gate-to-source bridging faults in the pull-up section of a complex CMOS gate is presented. The manifestation of these faults depends on the resistance value of the connection causing the bridging. It is shown that such faults manifest themselves either as stuck-at or stuck-open faults and can be detected by tests for stuck-at and stuck-open faults generated for the equivalent logic current. It is observed that for transistor channel lengths larger than 1 microns there exists a range of values of the bridging resistance for which the fault behaves as a pseudo-stuck-open fault.

  8. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole.

    PubMed

    Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan

    2018-01-02

    The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).

  9. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.

    PubMed

    Nassar, Muammar A Y; Eldien, Heba M Saad; Tawab, Hanem S Abdel; Saleem, Tahia H; Omar, Hossam M; Nassar, Ahmed Y; Hussein, Mahmoud Rezk Abdelwahed

    2012-10-01

    Thermal tissue injury is partly mediated by reactive oxygen metabolites. Oxygen free radicals are contributory to local tissue damage following thermal injury and accordingly an interventional therapy using antioxidants may be beneficial. Copper nicotinate complex can scavenge reactive oxygen species (i.e., has antioxidant activity). To examine time-related morphological and biochemical changes following skin thermal injury and their modulation by copper nicotinate complex. An animal model composed of 80 albino rats was established. Ten rats (nonburn group) served as a control group. Seventy rats (burn group) were anesthetized, given a 10% total body surface area, full-thickness burn. Ten rats (from the postburn group) were sacrificed after 24 h (without treatment, i.e., untreated-burn group). The remaining rats were divided into three subgroups (20 rats, each) and were treated topically either with soft paraffin, moist exposed burn ointment (MEBO, a standard therapeutic treatment for burns), or copper nicotinate complex. Five animals from each subgroup were sacrificed every week over a period of 4 weeks. The morphological and biochemical changes were evaluated and compared among the different groups. High levels of the plasma and skin nitiric oxide (marker of oxidative stress) were observed in the untreated-burn group. These levels were significantly low following the application of copper nicotinate complex. Low levels of plasma and skin superoxide dismutase (marker of oxidative stress) and plasma ceruloplasmin were observed in the untreated-burn group. These levels were significantly high following copper nicotinate complex treatment. The total and differential leukocyte counts were low following the onset of the thermal injury. They gradually returned to normal levels over a 4-week period following the application of MEBO or copper nicotinate complex. Compared to untreated-burn group, postburn-healing changes (resolution of the inflammatory reaction

  10. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  11. Competitive reactions among glutathione, cisplatin and copper-phenanthroline complexes.

    PubMed

    Cadoni, Enzo; Valletta, Elisa; Caddeo, Graziano; Isaia, Francesco; Cabiddu, Maria Grazia; Vascellari, Sarah; Pivetta, Tiziana

    2017-08-01

    A large number of cancers are treated with cisplatin (CDDP). However, its use is limited by drug resistance, which is often related to intracellular levels of thiol-containing molecules such as glutathione (GSH). The role of GSH in cisplatin-resistant cancer cells is still unclear. GSH may form adducts with CDDP which results in the deactivation of the drug, and, actually, a high intracellular level of GSH was observed in some cisplatin-resistant cancers. To overcome drug resistance, CDDP is often administered in combination with one or more drugs to exploit a possible synergistic effect. In previous studies, we observed that the sensitivity to CDDP of leukemic and ovarian cisplatin-resistant cancer cells was restored in the presence of [Cu(phen) 2 (H 2 O)](ClO 4 ) 2 (C0) (phen is 1,10-phenathroline). In order to clarify the possible interactions between GSH and CDDP, the reactivity and competitive reactions among CDDP, C0 and GSH in binary and ternary mixtures were studied. The investigation was extended also to [Cu(phen)(H 2 O) 2 (ClO 4 ) 2 ] (C10) and GSSG, the oxidized form of GSH. It was observed that CDDP was able to react with the studied copper complexes and with GSH or GSSG. However, in mixtures containing CDDP, GSH or GSSG and C0 or C10, only copper-glutathione complexes were detected, while no platinum-glutathione adducts were found. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Intralesional copper wire retention and pingyangmycin injection: an effective combinational therapy for complex venous malformation in soft tissue.

    PubMed

    Yuan, S-M; Hong, Z-J; Jiang, H-Q; Wang, J; Hu, X-B

    2014-04-01

    Complex venous malformations (VMs) may extensively involve the soft tissue. The treatment remains a challenge till now. Here we introduce a combinational therapy of copper wires and pingyangmycin (bleomycin A5,PYM). Copper wires were retained in VMs by repeated penetration with a straight needle. Subsequently, PYM solution was injected into the lesion. Eight to 10 days later, copper wires were removed. The dressing was changed every day until the puncture pores healed. Magnetic resonance imaging scanning was performed to observe the change of VMs. From January 2001 to December 2011, 56 patients were treated. During the follow-up period, most of the VMs shrunk obviously. The symptoms were relieved or disappeared. The complications included local pain, temporary paraesthesia and moderate fever, which disappeared quickly after the removal of copper wires. This combinational therapy is a safe and effective approach for the complex VMs in soft tissue.

  13. Copper(I)- and copper(0)-promoted homocoupling and homocoupling-hydrodehalogenation reactions of dihalogenoclathrochelate precursors for C-C conjugated iron(II) bis-cage complexes.

    PubMed

    Varzatskii, Oleg A; Shul'ga, Sergey V; Belov, Alexander S; Novikov, Valentin V; Dolganov, Alexander V; Vologzhanina, Anna V; Voloshin, Yan Z

    2014-12-28

    Iron(II) dibromo- and diiodoclathrochelates undergo copper(I)-promoted reductive homocoupling in HMPA at 70-80 °C leading to C-C conjugated dibromo- and diiodo-bis-clathrochelates in high yields. Under the same conditions, their dichloroclathrochelate analog does not undergo the same homocoupling reaction, so the target dichloro-bis-cage product was obtained in high yield via dimerization of its heterodihalogenide iodochloromonomacrobicyclic precursor. The use of NMP as a solvent at 120-140 °C gave the mixture of bis-clathrochelates resulting from a tandem homocoupling-hydrodehalogenation reaction: the initial acetonitrile copper(I) solvato-complex at a high temperature underwent re-solvatation and disproportionation leading to Cu(II) ions and nano-copper, which promoted the hydrodehalogenation process even at room temperature. The most probable pathway of this reaction in situ includes hydrodehalogenation of the already formed dihalogeno-bis-clathrochelate via the formation of reduced anion radical intermediates. As a result, chemical transformations of the iron(II) dihalogenoclathrochelates in the presence of an acetonitrile copper(I) solvato-complex were found to depend both on the nature of halogen atoms in their ribbed chelate fragments and on reaction conditions (i.e. solvent and temperature). The C-C conjugated iron(II) dihalogeno-bis-clathrochelates easily undergo nucleophilic substitution with various N,S-nucleophiles giving ribbed-functionalized bis-cage species. These iron(II) complexes were characterized by elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (1)H and (13)C NMR spectroscopy, and by X-ray diffraction; their electrochemical properties were studied by cyclic voltammetry. The isomeric shift values in (57)Fe Mössbauer spectra of such cage compounds allowed identifying them as low-spin iron(II) complexes, while those of the quadrupole splitting are the evidence for a significant TP distortion of their FeN6-coordination polyhedra

  14. Structural influence in the interaction of cysteine with five coordinated copper complexes: Theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Huerta-Aguilar, Carlos Alberto; Thangarasu, Pandiyan; Mora, Jesús Gracia

    2018-04-01

    Copper complexes of N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,2-diaminoethane (L1) and N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,3-diaminopropane (L2) prepared were characterized completely by different analytical methods. The X-structure of the complexes shows that Cu(II) presents in trigonal bi-pyramidal (TBP) geometry, consisting with the electronic spectra where two visible bands corresponding to five coordinated structure were observed. Thus TD-DFT was used to analyze the orbital contribution to the electronic transitions for the visible bands. Furthermore, the interaction of cysteine with the complexes was spectrally studied, and the results were explained through DFT analysis, observing that the geometrical parameters and oxidation state of metal ions play a vital role in the binding of cysteine with copper ion. It appears that the TBP structure is being changed into octahedral geometry during the addition of cysteine to the complexes as two bands (from complex) is turned to a broad band in visible region, signifying the occupation of cysteine molecule at sixth position of octahedral geometry. In the molecular orbital analysis, the existence of a strong overlapping of HOMOs (from cysteine) with LUMOs of Cu ion was observed. The total energy of the systems calculated by DFT shows that cysteine binds favorably with copper (I) than that with Cu(II).

  15. Structural characterization of two solvates of a luminescent copper(II) bis­(pyridine)-substituted benzimidazole complex

    PubMed Central

    DeStefano, Matthew R.; Lewis, Robert A.

    2017-01-01

    Copper(II) complexes of benzimidazole are known to exhibit biological activity that makes them of inter­est for chemotherapeutic and other pharmaceutical uses. The complex bis­(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)meth­yl]-1H-benzimidazole-κ2 N 2,N 3}copper(II), has been prepared. The absorption spectrum has features attributed to intra­ligand and ligand-field transitions and the complex exhibits ligand-centered room-temperature luminescence in solution. The aceto­nitrile monosolvate, [Cu(C2H3O2)2(C20H18N4)]·C2H3N (1), and the ethanol hemisolvate, [Cu(C2H3O2)2(C20H18N4)]·0.5C2H6O (2), have been structurally characterized. Compound 2 has two copper(II) complexes in the asymmetric unit. In both 1 and 2, distorted square-planar N2O2 coordination geometries are observed and the Cu—N(Im) bond distance is slightly shorter than the Cu—N(py) bond distance. Inter­molecular π–π inter­actions are found in 1 and 2. A weak C—H⋯π inter­action is observed in 1. PMID:29152336

  16. Copper(II) and zinc(II) dinuclear enzymes model compounds: The nature of the metal ion in the biological function

    NASA Astrophysics Data System (ADS)

    Ferraresso, L. G.; de Arruda, E. G. R.; de Moraes, T. P. L.; Fazzi, R. B.; Da Costa Ferreira, A. M.; Abbehausen, C.

    2017-12-01

    First series transition metals are used abundantly by nature to perform catalytic transformations of several substrates. Furthermore, the cooperative activity of two proximal metal ions is common and represents a highly efficient catalytic system in living organisms. In this work three dinuclear μ-phenolate bridged metal complexes were prepared with copper(II) and zinc(II), resulting in a ZnZn, CuCu and CuZn with the ligand 2-ethylaminodimethylamino phenol (saldman) as model compounds of superoxide dismutase (CuCu and CuZn) and metallo-β-lactamases (ZnZn). Metals are coordinated in a μ-phenolate bridged symmetric system. Cu(II) presents a more distorted structure, while zinc is very symmetric. For this reason, [CuCu(saldman)] shows higher water solubility and also higher lability of the bridge. The antioxidant and hydrolytic beta-lactamase-like activity of the complexes were evaluated. The lability of the bridge seems to be important for the antioxidant activity and is suggested to because of [CuCu(saldman)] presents a lower antioxidant capacity than [CuZn(saldman)], which showed to present a more stable bridge in solution. The hydrolytic activity of the bimetallic complexes was assayed using nitrocefin as substrate and showed [ZnZn(saldman)] as a better catalyst than the Cu(II) analog. The series demonstrates the importance of the nature of the metal center for the biological function and how the reactivity of the model complex can be modulated by coordination chemistry.

  17. Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes.

    PubMed

    Fukuzumi, Shunichi; Tahsini, Laleh; Lee, Yong-Min; Ohkubo, Kei; Nam, Wonwoo; Karlin, Kenneth D

    2012-04-25

    The selective two-electron reduction of O(2) by one-electron reductants such as decamethylferrocene (Fc*) and octamethylferrocene (Me(8)Fc) is efficiently catalyzed by a binuclear Cu(II) complex [Cu(II)(2)(LO)(OH)](2+) (D1) {LO is a binucleating ligand with copper-bridging phenolate moiety} in the presence of trifluoroacetic acid (HOTF) in acetone. The protonation of the hydroxide group of [Cu(II)(2)(LO)(OH)](2+) with HOTF to produce [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF) makes it possible for this to be reduced by 2 equiv of Fc* via a two-step electron-transfer sequence. Reactions of the fully reduced complex [Cu(I)(2)(LO)](+) (D3) with O(2) in the presence of HOTF led to the low-temperature detection of the absorption spectra due to the peroxo complex [Cu(II)(2)(LO)(OO)] (D) and the protonated hydroperoxo complex [Cu(II)(2)(LO)(OOH)](2+) (D4). No further Fc* reduction of D4 occurs, and it is instead further protonated by HOTF to yield H(2)O(2) accompanied by regeneration of [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF), thus completing the catalytic cycle for the two-electron reduction of O(2) by Fc*. Kinetic studies on the formation of Fc*(+) under catalytic conditions as well as for separate examination of the electron transfer from Fc* to D1-OTF reveal there are two important reaction pathways operating. One is a rate-determining second reduction of D1-OTF, thus electron transfer from Fc* to a mixed-valent intermediate [Cu(II)Cu(I)(LO)](2+) (D2), which leads to [Cu(I)(2)(LO)](+) that is coupled with O(2) binding to produce [Cu(II)(2)(LO)(OO)](+) (D). The other involves direct reaction of O(2) with the mixed-valent compound D2 followed by rapid Fc* reduction of a putative superoxo-dicopper(II) species thus formed, producing D.

  18. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  19. Unexpected ferromagnetic interaction in a new tetranuclear copper(II) complex: synthesis, crystal structure, magnetic properties, and theoretical studies.

    PubMed

    Fondo, Matilde; García-Deibe, Ana M; Corbella, Monstserrat; Ruiz, Eliseo; Tercero, Javier; Sanmartín, Jesús; Bermejo, Manuel R

    2005-07-11

    The new tetranuclear carbonate complex [Cu2L)2(CO3)] x 8H2O (1 x 8H2O) (H3L = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) has been obtained by two different synthetic routes and fully characterized. Recrystallization of 1 x 8H2O in methanol yields single crystals of {[(Cu2L)2(CO3)]}2 x 12H2O (1 x 6H2O), suitable for X-ray diffraction studies. The crystal structure of 1 x 6H2O shows two crystallographically different tetranuclear molecules in the asymmetric unit, 1a and 1b. Both molecules can be understood as self-assembled from two dinuclear [Cu2L]+ cations, joined by a mu4-eta(2):eta(1):eta(1) carbonate ligand. The copper atoms of each crystallographically different [(Cu2L)2(CO3)] molecule present miscellaneous coordination polyhedra: in both 1a and 1b, two metal centers are in square pyramidal environments, one displays a square planar chromophore and the other one has a geometry that can be considered as an intermediate between square pyramid and trigonal bipyramid. Magnetic studies reveal net intramolecular ferromagnetic coupling between the metal atoms. Density functional calculations allow the assignment of the different magnetic coupling constants and explain the unexpected ferromagnetic behavior, because of the presence of an unusual NCN bridging moiety and countercomplementarity of the phenoxo (or carbonate) and NCN bridges.

  20. Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media.

    PubMed

    Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei

    2018-01-24

    Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.

  1. A Dicobalt Complex with an Unsymmetrical Quinonoid Bridge Isolated in Three Units of Charge: A Combined Structural, (Spectro)electrochemical, Magnetic and Spectroscopic Study.

    PubMed

    van der Meer, Margarethe; Rechkemmer, Yvonne; Frank, Uta; Breitgoff, Frauke D; Hohloch, Stephan; Su, Cheng-Yong; Neugebauer, Petr; Marx, Raphael; Dörfel, María; van Slageren, Joris; Sarkar, Biprajit

    2016-09-19

    Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High stability and biological activity of the copper(II) complexes of alloferon 1 analogues containing tryptophan.

    PubMed

    Kadej, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Urbański, Arkadiusz; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2016-10-01

    Copper(II) complex formation processes between the alloferon 1 (Allo1) (HGVSGHGQHGVHG) analogues where the tryptophan residue is introducing in the place His residue H1W, H6W, H9W and H12W have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For all analogues of alloferon 1 complex speciation have been obtained for a 1:1 metal-to-ligand molar ratio and 2:1 of H1W because of precipitation at higher (2:1, 3:1 and 4:1) ratios. At physiological pH7.4 and a 1:1 metal-to-ligand molar ratio the tryptophan analogues of alloferon 1 form the CuH -1 L and/or CuH -2 L complexes with the 4N binding mode. The introduction of tryptophan in place of histidine residues changes the distribution diagram of the complexes formed with the change of pH and their stability constants compared to the respective substituted alanine analogues of alloferon 1. The CuH -1 L, CuH -2 L and CuH -3 L complexes of the tryptophan analogues are more stable from 1 to 5 log units in comparison to those of the alanine analogues. This stabilization of the complexes may result from cation(Cu(II))-π and indole/imidazole ring interactions. The induction of apoptosis in vivo, in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 was studied. The biological results show that copper(II) ions in vivo did not cause any apparent apoptotic features. The most active were the H12W peptide and Cu(II)-H12W complex formed at pH7.4. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. trans-Methylpyridine cyclen versus cross-bridged trans-methylpyridine cyclen. Synthesis, acid-base and metal complexation studies (metal = Co2+, Cu2+, and Zn2+).

    PubMed

    Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël

    2011-05-07

    The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.

  4. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  5. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    PubMed

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  6. Syntheses and crystal structures of "unligated" copper(I) and copper(II) trifluoroacetates.

    PubMed

    Cotton, F A; Dikarev, E V; Petrukhina, M A

    2000-12-25

    Two extremely unstable copper trifluoroacetates with no exogenous ligands, namely, Cu(O2CCF3) (1) and Cu(O2CCF3)2 (2), are prepared for the first time and obtained in crystalline form by deposition from the vapor phase. Their structures are determined by X-ray crystallography. The crystallographic parameters are as follows: for 1, monoclinic space group P2(1)/c, with a = 9.7937(6) A, b = 15.322(1) A, c = 12.002(1) A, beta = 106.493(9) degrees, and Z = 4; for 2, orthorhombic space group Pcca, with a = 16.911(1) A, b = 10.5063(9) A, c = 9.0357(6) A, and Z = 4. Both structures are unique among other CuI and CuII carboxylates, as well as among metal carboxylates in general. Compound 1 consists of a planar rhombus of four copper atoms with sides of 2.719(1)-2.833(1) A and trifluoroacetate ligands bridging the pairs of adjacent metal atoms alternately above and below the plane. The tetrameric units are further aggregated in a polymeric zigzag ribbon [Cu4(O2CCF3)4]infinity by virtue of intermolecular Cu...O contacts. The structure of 2 is built on cis bis-bridged dimers in which every metal atom is also connected with two copper atoms of the neighboring units. The stacking planes in this extended chain are almost perpendicular to one another. The Cu...Cu distance inside the dimer is 3.086(2) A, indicating a nonbonding interaction.

  7. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes.

    PubMed

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro . The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.

  8. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes

    PubMed Central

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold. PMID:28344771

  9. Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review).

    PubMed

    Zhang, Zhen; Wang, Huiyun; Yan, Maocai; Wang, Huannan; Zhang, Chunyan

    2017-01-01

    The use of metal complexes in the pharmaceutical industry has recently increased and as a result, novel metal‑based complexes have initiated an interest as potential anticancer agents. Copper (Cu), which is an essential trace element in all living organisms, is important in maintaining the function of numerous proteins and enzymes. It has recently been demonstrated that Cu complexes may be used as tumor‑specific proteasome inhibitors and apoptosis inducers, by targeting the ubiquitin‑proteasome pathway (UPP). Cu complexes have demonstrated promising results in preclinical studies. The UPP is important in controlling the expression, activity and location of various proteins. Therefore, selective proteasome inhibition and apoptotic induction in cancer cells have been regarded as potential anticancer strategies. The present short review discusses recent progress in the development of Cu complexes, including clioquinol, dithiocarbamates and Schiff bases, as proteasome inhibitors for cancer treatment. A discussion of recent research regarding the understanding of metal inhibitors based on Cu and ligand platforms is presented.

  10. Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes

    NASA Astrophysics Data System (ADS)

    Mykhalichko, B. M.; Temkin, Oleg N.; Mys'kiv, M. G.

    2000-11-01

    Characteristic features of the coordination chemistry of Cu(I) and mechanisms of catalytic conversions of alkynes in the CuCl-MCl-H2O-HC≡CR system (MCl is alkali metal or ammonium chloride or amine hydrochloride; R=H, CH2OH, CH=CH2, etc.) are analysed based on studies of the compositions and structures of copper(I) chloride (bromide) complexes, alkyne π-complexes and ethynyl organometallic polynuclear compounds formed in this system in solutions and in the crystalline state. The role of polynuclear complexes in various reactions of alkynes is discussed. The bibliography includes 149 references.

  11. Differential affinity of BsSCO for Cu(II) and Cu(I) suggests a redox role in copper transfer to the Cu(A) center of cytochrome c oxidase.

    PubMed

    Hill, Bruce C; Andrews, Diann

    2012-06-01

    SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the Cu(A) center contained within subunit II of the oxidase complex. The Cu(A) center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a(3) and Cu(B). Cu(A) consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of Cu(A) present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in Cu(A) assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-Cu(A) site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Synthesis, structure and catechol-oxidase activity of copper(II) complexes of 17-hydroxy-16-(N-3-oxo-prop-1-enyl)amino steroids.

    PubMed

    Wegner, Rainer; Dubs, Manuela; Görls, Helmar; Robl, Christian; Schönecker, Bruno; Jäger, Ernst-G

    2002-09-01

    Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity.

  13. Interpretation of the Electron Paramagnetic Resonance Spectra of Copper(II)-Tyrosine Complex

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Hui; Kuang, Min-Quan

    2017-12-01

    The electron paramagnetic resonance (EPR) spectra of [Cu(l-tyrosine)2]n (CuA) were interpreted based on the fourth-order perturbation treatments where the contributions due to the local distortion, ligand orbit and spin-orbit coupling were included. The calculated band transitions d_{x^2} - y^2 to dxy (≈16412 cm-1) and d_{z^2} (≈14845 cm-1) agree well with the band analysis results (d_{x^2} - y^2 \\to d_{xy} ≈16410 and d_{x^2} - y^2 \\to d_{z^2} ≈14850 cm-1). The unresolved separations d_{x^2} - y^2 \\to d_{xz} and d_{x^2} - y^2 \\to d_{yz} in the absorption spectra were evaluated as 26283 and 26262 cm-1, respectively. For CuA, copper chromophores in 1,3-diaminorpropane isophtalate copper(II) complex (CuB) and N-methyl-1,2-diaminoetaane-bis copper(II) polymer (CuC), the transition d_{x^2} - y^2 \\to d_{xy} (=E1≈10Dq) suffered an increase with a decrease in R̅L which was evaluated as the mean value of the copper-ligand bond lengths. The correlations between the tetragonal elongation ratio ρ (=(Rz-R̅L)/R̅L) (or the ratio G=(gz-ge)/((gx+gy)/2-ge)) and the g isotropy gav (=(gx+gy+gz)/3) (or the covalency factor N) for CuA, CuB and CuC were acquired and all the results were discussed.

  14. Colloidal and electrochemical aspects of copper-CMP

    NASA Astrophysics Data System (ADS)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm

  15. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    PubMed

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Determination of the Bridging Ligand in the Active Site of Tyrosinase.

    PubMed

    Zou, Congming; Huang, Wei; Zhao, Gaokun; Wan, Xiao; Hu, Xiaodong; Jin, Yan; Li, Junying; Liu, Junjun

    2017-10-28

    Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.

  17. Luminescent Copper(I) Halide Butterfly Dimers Coordinated to [Au(CH3imCH2py)2]BF4 and [Au(CH3imCH2quin)2]BF4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, V.; Moore, A; Shearer, J

    2009-01-01

    The coordination chemistry of copper(I) halides to the homoleptic, N-heterocyclic carbene Au(I) complexes [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} and [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} was explored. The reaction of CuX (X = Cl, Br, I) with either [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} or [Au(CH{sub 3}imCH{sub 2}py){sub 2}]BF{sub 4} produces trimetallic complexes containing Cu{sub 2}X{sub 2}-butterfly copper clusters coordinated to the two imine moieties. The triangular arrangement of the metals places the gold(I) center in close proximity ({approx}2.5-2.6 {angstrom}) to the centroid of the Cu-Cu vector. The Cu-Cu separations vary as a function of bridging halide with the shortest Cu-Cu separationsmore » of {approx}2.5 {angstrom} found in the iodo-complexes and the longest separations of 2.9 {angstrom} found in the bridging chloride complexes. In all six complexes the Au-Cu separations range from {approx}2.8 to 3.0 {angstrom}. In the absence of halides, the dimetallic complex [AuCu(CH{sub 3}imCH{sub 2}py){sub 2}(NCCH{sub 3}){sub 2}](BF{sub 4}){sub 2}, containing a long Au-Cu distance of {approx}4.72 {angstrom} is formed. Additionally, as the byproduct of the reaction of CuBr with [Au(CH{sub 3}imCH{sub 2}quin){sub 2}]BF{sub 4} the deep-red, dimetallic compound, AuCuBr{sub 2}(CH{sub 3}imCH{sub 2}quin){sub 2}, was isolated in very low yield. All of these complexes were studied by NMR spectroscopy, mass spectrometry, and the copper containing species were additionally characterized by X-ray crystallography. In solution the copper centers dissociate from the gold complexes, but as shown by XANES and EXAFS spectroscopy, at low temperature the Cu-Cu linkage is broken, and the individual copper(I) halides reposition themselves to opposite sides of the gold complex while remaining coordinated to one imine moiety. In the solid state all of the complexes are photoluminescent, though the nature of the excited state was not determined.« less

  18. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  19. Dinuclear metallacycles with single M-O(H)-M bridges [M = Fe(II), Co(II), Ni(II), Cu(II)]: effects of large bridging angles on structure and antiferromagnetic superexchange interactions.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Foley, Elizabeth A; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2014-02-17

    The reactions of M(ClO4)2·xH2O and the ditopic ligands m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) or m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (Lm*) in the presence of triethylamine lead to the formation of monohydroxide-bridged, dinuclear metallacycles of the formula [M2(μ-OH)(μ-Lm)2](ClO4)3 (M = Fe(II), Co(II), Cu(II)) or [M2(μ-OH)(μ-Lm*)2](ClO4)3 (M = Co(II), Ni(II), Cu(II)). With the exception of the complexes where the ligand is Lm and the metal is copper(II), all of these complexes have distorted trigonal bipyramidal geometry around the metal centers and unusual linear (Lm*) or nearly linear (Lm) M-O-M angles. For the two solvates of [Cu2(μ-OH)(μ-Lm)2](ClO4)3, the Cu-O-Cu angles are significantly bent and the geometry about the metal is distorted square pyramidal. All of the copper(II) complexes have structural distortions expected for the pseudo-Jahn-Teller effect. The two cobalt(II) complexes show moderate antiferromagnetic coupling, -J = 48-56 cm(-1), whereas the copper(II) complexes show very strong antiferromagnetic coupling, -J = 555-808 cm(-1). The largest coupling is observed for [Cu2(μ-OH)(μ-Lm*)2](ClO4)3, the complex with a Cu-O-Cu angle of 180°, such that the exchange interaction is transmitted through the dz(2) and the oxygen s and px orbitals. The interaction decreases, but it is still significant, as the Cu-O-Cu angle decreases and the character of the metal orbital becomes increasingly d(x(2)-y(2)). These intermediate geometries and magnetic interactions lead to spin Hamiltonian parameters for the copper(II) complexes in the EPR spectra that have large E/D ratios and one g matrix component very close to 2. Density functional theory calculations were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with the experiments.

  20. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes

    NASA Astrophysics Data System (ADS)

    Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes.

  1. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes.

    PubMed

    Loo, Rachel R Ogorzalek; Loo, Joseph A

    2016-06-01

    Native electrospray ionization-mass spectrometry, with gas-phase activation and solution compositions that partially release subcomplexes, can elucidate topologies of macromolecular assemblies. That so much complexity can be preserved in gas-phase assemblies is remarkable, although a long-standing conundrum has been the differences between their gas- and solution-phase decompositions. Collision-induced dissociation of multimeric noncovalent complexes typically distributes products asymmetrically (i.e., by ejecting a single subunit bearing a large percentage of the excess charge). That unexpected behavior has been rationalized as one subunit "unfolding" to depart with more charge. We present an alternative explanation based on heterolytic ion-pair scission and rearrangement, a mechanism that inherently partitions charge asymmetrically. Excessive barriers to dissociation are circumvented in this manner, when local charge rearrangements access a lower-barrier surface. An implication of this ion pair consideration is that stability differences between high- and low-charge state ions usually attributed to Coulomb repulsion may, alternatively, be conveyed by attractive forces from ion pairs (salt bridges) stabilizing low-charge state ions. Should the number of ion pairs be roughly inversely related to charge, symmetric dissociations would be favored from highly charged complexes, as observed. Correlations between a gas-phase protein's size and charge reflect the quantity of restraining ion pairs. Collisionally-facilitated salt bridge rearrangement (SaBRe) may explain unusual size "contractions" seen for some activated, low charge state complexes. That some low-charged multimers preferentially cleave covalent bonds or shed small ions to disrupting noncovalent associations is also explained by greater ion pairing in low charge state complexes. Graphical Abstract ᅟ.

  2. Copper(II) complexes of methimazole, an anti Grave's disease drug. Synthesis, characterization and its potential biological behavior as alkaline phosphatase inhibitor.

    PubMed

    Urquiza, Nora M; Manca, Silvia G; Moyano, María A; Dellmans, Raquel Arrieta; Lezama, Luis; Rojo, Teófilo; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G

    2010-04-01

    Methimazole (MeimzH) is an anti-thyroid drug and the first choice for patients with Grave's disease. Two new copper(II) complexes of this drug: [Cu(MeimzH)(2)(NO(3))(2)]*0.5H(2)O and [Cu(MeimzH)(2)(H(2)O)(2)](NO(3))(2)*H(2)O were synthesized and characterized by elemental analysis, dissolution behavior, thermogravimetric analysis and UV-vis, diffuse reflectance, FTIR and EPR spectroscopies. As it is known that copper(II) cation can act as an inhibitor of alkaline phosphatase (ALP), the inhibitory effect of methimazole and its copper(II) complexes on ALP activity has also been investigated.

  3. Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry

    PubMed Central

    Trnkova, Libuse; Zerzankova, Lenka; Dycka, Filip; Mikelova, Radka; Jelen, Frantisek

    2008-01-01

    Using a paraffin impregnated graphite electrode (PIGE) and mercury-modified pyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNA purine base solutions have been studied by cyclic (CV) and linear sweep voltammetry (LSV) in connection with elimination voltammetry with linear scan (EVLS). In chloride and bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with two cathodic and two anodic potentially separated signals. According to the elimination function E4, the first cathodic peak corresponds to the reduction Cu(II) + e- → Cu(I) with the possibility of fast disproportionation 2Cu(I) → Cu(II)+ Cu(0). The E4 of the second cathodic peak signalized an electrode process controlled by a surface reaction. The electrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by one cathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodic stripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where the reduction of copper ions took place and Cu(I)-purine complexes were formed. By using ASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complex detection was enhanced relative to either ASV or CSV alone, resulting in higher peak currents of more than one order of magnitude. The statistical treatment of CE data was used to determine the reproducibility of measurements. Our results show that EVLS in connection with the stripping procedure is useful for both qualitative and quantitative microanalysis of purine derivatives and can also reveal details of studied electrode processes. PMID:27879715

  4. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes.

    PubMed

    Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand

    2016-12-17

    In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  5. Reversible double oxidation and protonation of the non-innocent bridge in a nickel(II) salophen complex.

    PubMed

    de Bellefeuille, David; Askari, Mohammad S; Lassalle-Kaiser, Benedikt; Journaux, Yves; Aukauloo, Ally; Orio, Maylis; Thomas, Fabrice; Ottenwaelder, Xavier

    2012-12-03

    Substitution on the aromatic bridge of a nickel(II) salophen complex with electron-donating dimethylamino substituents creates a ligand with three stable, easily and reversibly accessible oxidation states. The one-electron-oxidized product is characterized as a nickel(II) radical complex with the radical bore by the central substituted aromatic ring, in contrast to other nickel(II) salen or salophen complexes that oxidize on the phenolate moieties. The doubly oxidized product, a singlet species, is best described as having an iminobenzoquinone bridge with a vinylogous distribution of bond lengths between the dimethylamino substituents. Protonation of the dimethylamino substituents inhibits these redox processes on the time scale of cyclovoltammetry, but electrolysis and chemical oxidation are consistent with deprotonation occurring concomitantly with electron transfer to yield the mono- and dioxidized species described above.

  6. [Synthesis and Properties of 1,11,15,25-Tetrahydroxy-4,8,18,22-Di (Bridged Dipropionate Carboxyl) Phthalocyanine Copper].

    PubMed

    Xia, Dao-cheng; Li, Wan-cheng; Li, Jie-jun; Wang, Gai-ping; Duan, Hong-wei; Ren, Xu-wen; Feng, Kai; Li, Pei-tao; Wang, Hui-fang; Pu, Gai-qin

    2015-08-01

    In this dissertation, we study the synthesis and character of new substituted Phthalocyanine. Due to the widely application of Pcs in the fields, such as the communication, medical treatment, chemical industry and so on, therefore, they have been a hot topic over several decades by scientists. Nowadays, scientists have prepared thousands of Pcs and their derivatives. However, along with the human society development and the progress in science and technology, the new phthalocyanine with novle characteristics are still the goal of the scientists. In this dissertion, the synthetic methods of the phthlocyanine is improved. The synthesis and characterization of 1,11,15,25-tetrahydroxy-4,8,18,22-di(bridged dipropionate carboxyl) phthalocyanines are reported in this paper. The mixtures of malonic acid and 3,6-dihydroxy-phthalonitrile was added to water under stiriing. Then, a catalyst amount of sulfuric acid was added. The first synthetic precursor, i. e., malonic acid 3,3'-bis(6-hydroxy phthalonitrile) butter, its molecular formula is C19H8N4O6. phthalocyanines was prepared by malonic acid 3,3'-bis(6-hydroxy phthalonitrile) butter and dihydrate zinc acetate, copper acetate monohydrate in n-amyl alcohol, using DBU as a catalyst under the 135 °C, molecular formula of phthalocyanine complexes is C38H16N8O12M. The product was characterized by Ultraviolet-visible (UV/Vis) Spectrum absorption and fluorescence, The results are agreement with the proposed structures. And electrochemical properties were studied.

  7. N-benzoylated 1,4,8,11-tetraazacyclotetradecane and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Nirmala, G.; Rahiman, A. Kalilur; Sreedaran, S.; Jegadeesh, R.; Raaman, N.; Narayanan, V.

    2010-09-01

    A series of N-benzoylated cyclam ligands incorporating three different benzoyl groups 1,4,8,11-tetra-(benzoyl)-1,4,8,11-tetraazacyclotetradecane (L 1), 1,4,8,11-tetra-(2-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 2) and 1,4,8,11-tetra-(4-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 3) and their nickel(II) and copper(II) complexes are described. Crystal structure of L 1 is also reported. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-benzoylation causes red shift in the λmax values of the complexes. The cyclic voltammogram of the complexes of ligand L 1 show one-electron, quasi-reversible reduction wave in the region -1.00 to -1.04 V, whereas that of L 2 and L 3 show two quasi-reversible reduction peaks. Nickel complexes show one-electron quasi-reversible oxidation wave at a positive potential in the range +1.05 to +1.15 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment values μeff 1.70-1.73 BM which is close to the spin-only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. All the ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.

  8. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu(-)(cytidine) and Cu(-)(uridine).

    PubMed

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H; Guevara-García, Alfredo; Martínez, Ana

    2011-02-07

    The copper-nucleoside anions, Cu(-)(cytidine) and Cu(-)(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu(-)(cytidine) and Cu(-)(uridine), respectively. According to our calculations, Cu(-)(cytidine) and Cu(-)(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu(-)(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  9. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu-(cytidine) and Cu-(uridine)

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H.; Guevara-García, Alfredo; Martínez, Ana

    2011-02-01

    The copper-nucleoside anions, Cu-(cytidine) and Cu-(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu-(cytidine) and Cu-(uridine), respectively. According to our calculations, Cu-(cytidine) and Cu-(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu-(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  10. Electrochemical and optical characterization of cobalt, copper and zinc phthalocyanine complexes.

    PubMed

    Lee, Jaehyun; Kim, Se Hun; Lee, Woosung; Lee, Jiwon; An, Byeong-Kwan; Oh, Se Young; Kim, Jae Pil; Park, Jongwook

    2013-06-01

    New phthalocyanine (Pc) derivatives that include the alkyl group in ligand were synthesized based on three core metals such as zinc (Zn), copper (Cu), and cobalt (Co). Electrochemical behaviors and optical properties of the new phthalocyanine derivatives with ligand and different core metal were investigated by using cyclic voltammetry, UV-Visible (UV-Vis) spectroscopy and photoluminescence (PL) spectroscopy. In UV-Vis data, maximum values of 2H, Co, Cu, and Zn complexes were 708 nm and 677 nm, 686 nm, 684 nm, respectively.

  11. Pyrazolate-based copper(II) and nickel(II) [2 x 2] grid complexes: protonation-dependent self-assembly, structures and properties.

    PubMed

    Klingele, Julia; Prikhod'ko, Alexander I; Leibeling, Guido; Demeshko, Serhiy; Dechert, Sebastian; Meyer, Franc

    2007-05-28

    The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (xComplexes 1-3 have been structurally characterised and found to be isomorphous, with each ligand strand acting as a hybrid N3-NO chelator. The copper ions in 1 are in a distorted square-pyramidal N(4)O coordination environment with rather long M-O(apical) distances. The coordination sphere about the nickel ions in 2 is roughly the same, but with even longer M...O distances, and it is therefore best described as N4 square-planar with low-spin nickel(II) ions. The single crystal X-ray data obtained for the mixed-metal complex 3 gave the best results assuming a statistical distribution of copper and nickel ions. X-Band EPR spectra of 1 and 2 indicate magnetically coupled copper(II) ions and low-spin nickel(II), respectively. EPR spectra of a powdered sample of a complex with the general formulation [Cu(x)Ni(4-x)(HL)4].8H(2)O with a large excess of Ni(2+) (95%) was shown to be characteristic for individual copper(II) ions in the tetranuclear grid system. Magnetic susceptibility data of 1 indicate weak antiferromagnetic spin coupling between the copper ions (J = -8.2 +/- 0.4 cm(-1)), which is explained by the particular spatial arrangement of the magnetic orbitals.

  12. Topical Treatment With Liposomal Sodium Copper Chlorophyllin Complex in Subjects With Facial Redness and Erythematotelangiectatic Rosacea: Case Studies.

    PubMed

    Vasily, David B

    2015-10-01

    Physicians are often presented with patients complaining of facial redness and difficult to control rosacea. The water soluble sodium copper chlorophyllin complex has been shown to have anti-oxidant, anti-inflammatory, and anti-bacterial activities in vitro and anti-redness, pore reduction, and anti-acne activities in pilot clinical studies. In these case studies, the safety and efficacy of a topical gel containing a liposomal suspension of sodium copper chlorophyllin complex was assessed in subjects with facial redness and erythematotelangiectatic rosacea.

  13. Spectroscopic characterization, antioxidant and antitumour studies of novel bromo substituted thiosemicarbazone and its copper(II), nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.

    2015-01-01

    A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.

  14. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    PubMed

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.

  15. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.

    2018-01-01

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.

  16. Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis.

    PubMed

    Lord, Rianne M; Allison, Simon J; Rafferty, Karen; Ghandhi, Laura; Pask, Christopher M; McGowan, Patrick C

    2016-08-16

    This report presents the first known p-cymene ruthenium quinaldamide complexes which are stabilised by a hydrogen-bridging atom, [{(p-cym)Ru(II)X(N,N)}{H(+)}{(N,N)XRu(II)(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br). These complexes are formed by a reaction of [p-cymRu(μ-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 ⇔ NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H(+), which are counter-balanced by a PF6 counterion. X-ray crystallographic analysis is presented for six new structures with OO distances of 2.420(4)-2.448(15) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatin-resistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4'-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index >1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis.

  17. Fetal and neonatal iron deficiency but not copper deficiency increases vascular complexity in the developing rat brain

    PubMed Central

    Bastian, Thomas W.; Santarriaga, Stephanie; Nguyen, Thu An; Prohaska, Joseph R.; Georgieff, Michael K.; Anderson, Grant W.

    2015-01-01

    Objectives Anemia caused by nutritional deficiencies, such as iron and copper deficiencies, is a global health problem. Iron and copper deficiencies have their most profound effect on the developing fetus/infant, leading to brain development deficits and poor cognitive outcomes. Tissue iron depletion or chronic anemia can induce cellular hypoxic signaling. In mice, chronic hypoxia induces a compensatory increase in brain blood vessel outgrowth. We hypothesized that developmental anemia, due to iron or copper deficiencies, induces angiogenesis/vasculogenesis in the neonatal brain. Methods To test our hypothesis, three independent experiments were performed where pregnant rats were fed iron- or copper-deficient diets from gestational day 2 through mid-lactation. Effects on the neonatal brain vasculature were determined using qPCR to assess mRNA levels of angiogenesis/vasculogenesis-associated genes and GLUT1 immunohistochemistry (IHC) to assess brain blood vessel density and complexity. Results Iron deficiency, but not copper deficiency, increased mRNA expression of brain endothelial cell- and angiogenesis/vasculogenesis-associated genes (i.e. Glut1, Vwf, Vegfa, Ang2, Cxcl12, and Flk1) in the neonatal brain, suggesting increased cerebrovascular density. Iron deficiency also increased hippocampal and cerebral cortical blood vessel branching by 62% and 78%, respectively. Discussion This study demonstrates increased blood vessel complexity in the neonatal iron-deficient brain, which is likely due to elevated angiogenic/vasculogenic signaling. At least initially, this is probably an adaptive response to maintain metabolic substrate homeostasis in the developing iron-deficient brain. However, this may also contribute to long-term neurodevelopmental deficits. PMID:26177275

  18. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN) 4] 2-: Synthesis, crystal structure, magnetic properties and ESR studies

    NASA Astrophysics Data System (ADS)

    Jian, Fang-Fang; Xiao, Hai-Lian; Liu, Fa Qian

    2006-12-01

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN) 4Ni(Im) 3] ∞1, [Hg(SCN) 4Mn(Im) 2] ∞2, and [Hg(SCN) 4Cu(Me-Im) 2 Hg(SCN) 4Cu(Me-Im) 4] ∞3, (Im=imidazole, Me-Im= N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg⋯M⋯Hg chain ( M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN) 4] 2- anion connects three [Ni(Im) 3] 2+ using three SCN ligands giving rise to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN) 4] 2- and [Mn(Im) 2] 2+ to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu 2+ ion lie on octahedral environment.

  19. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Sherman, David M.

    2013-10-01

    Copper exists as two isotopes: 65Cu (∼30.85%) and 63Cu (∼69.15%). The isotopic composition of copper in secondary minerals, surface waters and oxic groundwaters is 1-12‰ heavier than that of copper in primary sulfides. Changes in oxidation state and complexation should yield substantial isotopic fractionation between copper species but it is unclear to what extent the observed Cu isotopic variations reflect equilibrium fractionation. Here, I calculate the reduced partition function ratios for chalcopyrite (CuFeS2), cuprite (Cu2O), tenorite (CuO) and aqueous Cu+, Cu+2 complexes using periodic and molecular hybrid density functional theory to predict the equilibrium isotopic fractionation of Cu resulting from oxidation of Cu+ to Cu+2 and by complexation of dissolved Cu. Among the various copper(II) complexes in aqueous environments, there is a significant (1.3‰) range in the reduced partition function ratios. Oxidation and congruent dissolution of chalcopyrite (CuFeS2) to dissolved Cu+2 (as Cu(H2O)5+2) yields 65-63δ(Cu+2-CuFeS2) = 3.1‰ at 25 °C; however, chalcopyrite oxidation/dissolution is incongruent so that the observed isotopic fractionation will be less. Secondary precipitation of cuprite (Cu2O) would yield further enrichment of dissolved 65Cu since 65-63δ(Cu+2-Cu2O) is 1.2‰ at 25 °C. However, precipitation of tenorite (CuO) will favor the heavy isotope by +1.0‰ making dissolved Cu isotopically lighter. These are upper-limit estimates for equilibrium fractionation. Therefore, the extremely large (9‰) fractionations between dissolved Cu+2 (or Cu+2 minerals) and primary Cu+ sulfides observed in supergene environments must reflect Rayleigh (open-system) or kinetic fractionation. Finally the previously proposed (Asael et al., 2009) use of δ65Cu in chalcopyrite to estimate the oxidation state of fluids that transported Cu in stratiform sediment-hosted copper deposits is refined.

  20. Identifying Marine Copper-Binding Ligands in Seawater

    NASA Astrophysics Data System (ADS)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  1. Biotin Decorated Gold Nanoparticles for Targeted Delivery of a Smart-Linked Anticancer Active Copper Complex: In Vitro and In Vivo Studies.

    PubMed

    Pramanik, Anup K; Siddikuzzaman; Palanimuthu, Duraippandi; Somasundaram, Kumaravel; Samuelson, Ashoka G

    2016-12-21

    The synthesis and anticancer activity of a copper(II) diacetyl-bis(N4-methylthiosemicarbazone) complex and its nanoconjugates are reported. The copper(II) complex is connected to a carboxylic acid group through a cleavable disulfide link to enable smart delivery. The copper complex is tethered to highly water-soluble 20 nm gold nanoparticles (AuNPs), stabilized by amine terminated lipoic acid-polyethylene glycol (PEG). The gold nanoparticle carrier was further decorated with biotin to achieve targeted action. The copper complex and the conjugates with and without biotin, were tested against HeLa and HaCaT cells. They show very good anticancer activity against HeLa cells, a cell line derived from cervical cancer and are less active against HaCaT cells. Slow and sustained release of the complex from conjugates is demonstrated through cleavage of disulfide linker in the presence of glutathione (GSH), a reducing agent intrinsically present in high concentrations within cancer cells. Biotin appended conjugates do not show greater activity than conjugates without biotin against HeLa cells. This is consistent with drug uptake studies, which suggests similar uptake profiles for both conjugates in vitro. However, in vivo studies using a HeLa cell xenograft tumor model shows 3.8-fold reduction in tumor volume for the biotin conjugated nanoparticle compared to the control whereas the conjugate without biotin shows only 2.3-fold reduction in the tumor volume suggesting significant targeting.

  2. Synthesis and reactivity of NHC-supported Ni2(μ(2)-η(2),η(2)-S2)-bridging disulfide and Ni2(μ-S)2-bridging sulfide complexes.

    PubMed

    Olechnowicz, Frank; Hillhouse, Gregory L; Jordan, Richard F

    2015-03-16

    The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ(2)-η(2),η(2)-S2, η(2)-S2, μ-S, and μ-SH motifs. The reaction of {(IPr)Ni}2(μ-Cl)2 (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with S8 yields the bridging disulfide species {(IPr)ClNi}2(μ(2)-η(2),η(2)-S2) (2). Complex 2 reacts with 2 equiv of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide compound (IPr)(AdNC)Ni(η(2)-S2) (3a) and trans-(IPr)(AdNC)NiCl2 (4a). 2 also reacts with KC8 to produce the Ni-Ni-bonded bridging sulfide complex {(IPr)Ni}2(μ-S)2 (6). Complex 6 reacts with H2 to yield the bridging hydrosulfide compound {(IPr)Ni}2(μ-SH)2 (7), which retains a Ni-Ni bond. 7 is converted back to 6 by hydrogen atom abstraction by 2,4,6-(t)Bu3-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand provide lateral steric protection of the (IPr)Ni unit but allow for the formation of Ni-Ni-bonded dinuclear species and electronically preferred rather than sterically preferred structures.

  3. 2,3-Di(2-pyridyl)-5-phenylpyrazine: a NN-CNN-type bridging ligand for dinuclear transition-metal complexes.

    PubMed

    Wu, Si-Hai; Zhong, Yu-Wu; Yao, Jiannian

    2013-07-01

    A new bridging ligand, 2,3-di(2-pyridyl)-5-phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN-CNN-type coordination mode. The reaction of dpppzH with cis-[(bpy)2RuCl2] (bpy = 2,2'-bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)](2+) (1(2+)) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)](3+) (2(3+)) was prepared from complex 1(2+) and [(Mebip)RuCl3] (Mebip = bis(N-methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C≡CPh)](2+) (4(2+)) has been prepared from complex 1(2+), in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 1(2+) is emissive at room temperature, with an emission λmax = 695 nm. No emission was detected for complex 2(3+) at room temperature in MeCN, whereas complex 4(2+) displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3-di(2-pyridyl)-5,6-diphenylpyrazine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermally driven self-healing using copper nanofiber heater

    NASA Astrophysics Data System (ADS)

    Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.

    2017-07-01

    Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.

  5. Spectroscopic studies on Solvatochromism of mixed-chelate copper(II) complexes using MLR technique

    NASA Astrophysics Data System (ADS)

    Golchoubian, Hamid; Moayyedi, Golasa; Fazilati, Hakimeh

    2012-01-01

    Mixed-chelate copper(II) complexes with a general formula [Cu(acac)(diamine)]X where acac = acetylacetonate ion, diamine = N,N-dimethyl,N'-benzyl-1,2-diaminoethane and X = BPh 4-, PF 6-, ClO 4- and BF 4- have been prepared. The complexes were characterized on the basis of elemental analysis, molar conductance, UV-vis and IR spectroscopies. The complexes are solvatochromic and their solvatochromism were investigated by visible spectroscopy. All complexes demonstrated the positive solvatochromism and among the complexes [Cu(acac)(diamine)]BPh 4·H 2O showed the highest Δ νmax value. To explore the mechanism of interaction between solvent molecules and the complexes, different solvent parameters such as DN, AN, α and β using multiple linear regression (MLR) method were employed. The statistical results suggested that the DN parameter of the solvent plays a dominate contribution to the shift of the d-d absorption band of the complexes.

  6. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  7. Structure of complexes of nitrilo tris methylene phosphonic acid with copper, [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] and Na{sub 4}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O, as bactericides and inhibitors of scaling and corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@uni.udm.ru

    2015-03-15

    Nitrilotris methylene phosphonate triaqua copper and octasodium bis(nitrilotris methylene phosphonate cuprate(II)) nonadecahydrate have been synthesized and investigated. [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] is crystallized in the sp. gr. P2{sub 1}/c, Z = 4, a = 9.2506(2) Å, b = 15.9815(2) Å, c = 9.5474(2) Å, β = 113.697(2)°. The copper atom is coordinated by oxygen atoms in the configuration of elongated octahedron; the ligand (of bridge type) links neighboring copper atoms. Na{sub 8}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O is crystallized in the sp. gr. P2{sub 1}/c, Z = 2, a = 11.24550(10) Å, b = 17.38980(10) Å,more » c = 13.5852(2) Å, β = 127.8120(10)°. This complex is chelating; the copper atom closes three five-membered N-C-P-O-Cu cycles with a shared Cu-N bond. Copper is coordinated in a distorted trigonal-bipyramidal configuration.« less

  8. New copper complexes with bipyrazolic ligands: Synthesis, characterization and evaluation of the antibacterial and catalytic properties

    NASA Astrophysics Data System (ADS)

    Harit, Tarik; Abouloifa, Houssam; Tillard, Monique; Eddike, Driss; Asehraou, Abdeslam; Malek, Fouad

    2018-07-01

    The synthesis of new bipyrazolic ligands functionalized by carboxyl groups, namely 3-Bis(3‧-carboxyl-5‧-methyl-l'-pyrazolyl) propan-2-ol (L1) and 1,3-Bis(3‧-carboxyl-5‧-methyl-l '-pyrazolyl),2-methyl propane (L2) is reported. Their corresponding [C13H15CuN4O5] (CuL1) and [C14H16CuN4O4] (CuL2) copper (II) complexes are also elaborated and characterized by elemental analysis, FTIR an UV-visible spectroscopy. The crystal structure of the CuL1 complex confirms that copper atom is 4-coordinated, in a distorted square planar geometry within the molecule, and achieves its coordination through weak intermolecular interactions leading to two dimensional slabs. This geometry is in agreement with UV-visible results which also evidence that structure of complexes are affected in DMSO in contrast to methanol. No antibacterial activity against all the tested bacterial strains has been found for the Cu (II) complexes. By contrast, CuL1 is characterized with good catalytic properties in the air-oxidation of catechol substrate to quinone.

  9. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt (generic). 721.2577 Section 721.2577 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...

  10. Thermodynamics of the complex formation of copper(II) with L-phenylalanine in aqueous ethanol solutions

    NASA Astrophysics Data System (ADS)

    Burov, D. M.; Ledenkov, S. F.; Vandyshev, V. N.

    2013-05-01

    Constants of the acid dissociation and complexation of L-phenylalanine (HPhe) with copper(II) ions are determined by potentiometry in aqueous ethanol solutions containing 0 to 0.7 molar fraction of alcohol. Changes in the Gibbs energy for the transfer from water to a binary solvent of L-phenylalanine, Phe- anion, and [CuPhe]+ complex are calculated. It is found that the weakening of solvation of the ligand donor groups in solvents with high ethanol contents is accompanied by an increase in the stability of [CuPhe]+ complex.

  11. Inhibition of cyclin-dependent kinase CDK1 by oxindolimine ligands and corresponding copper and zinc complexes.

    PubMed

    Miguel, Rodrigo Bernardi; Petersen, Philippe Alexandre Divina; Gonzales-Zubiate, Fernando A; Oliveira, Carla Columbano; Kumar, Naresh; do Nascimento, Rafael Rodrigues; Petrilli, Helena Maria; da Costa Ferreira, Ana Maria

    2015-10-01

    Oxindolimine-copper(II) and zinc(II) complexes that previously have shown to induce apoptosis, with DNA and mitochondria as main targets, exhibit here significant inhibition of kinase CDK1/cyclin B protein. Copper species are more active than the corresponding zinc, and the free ligand shows to be less active, indicating a major influence of coordination in the process, and a further modulation by the coordinated ligand. Molecular docking and classical molecular dynamics provide a better understanding of the effectiveness and kinase inhibition mechanism by these compounds, showing that the metal complex provides a stronger interaction than the free ligand with the ATP-binding site. The metal ion introduces charge in the oxindole species, giving it a more rigid conformation that then becomes more effective in its interactions with the protein active site. Analogous experiments resulted in no significant effect regarding phosphatase inhibition. These results can explain the cytotoxicity of these metal complexes towards different tumor cells, in addition to its capability of binding to DNA, and decreasing membrane potential of mitochondria.

  12. Acetate-Bridged Platinum(III) Complexes Derived from Cisplatin

    PubMed Central

    Wilson, Justin J.

    2012-01-01

    Oxidation of the acetate-bridged half-lantern platinum(II) complex, cis-[PtII(NH3)2(µ-OAc)2PtII(NH3)2](NO3)2, [1](NO3)2, with iodobenzene dichloride or bromine generates the halide-capped platinum(III) species, cis-[XPtIII(NH3)2(µ-OAc)2PtIII(NH3)2X](NO3)2, where X is Cl in [2](NO3)2, or Br in [3](NO3)2, respectively. These three complexes, characterized structurally by X-ray crystallography, feature short (≈ 2.6 Å) Pt–Pt separations, consistent with formation of a formal metal-metal bond upon oxidation. Elongated axial Pt–X distances occur, reflecting the strong trans influence of the metal-metal bond. The three structures are compared to those of other known dinuclear platinum complexes. A combination of 1H, 13C, 14N, and 195Pt NMR spectroscopy was used to characterize [1]2+–[3]2+ in solution. All resonances shift downfield upon oxidation of [1]2+ to [2]2+ and [3]2+. For the platinum(III) complexes, the 14N and 195Pt resonances exhibit decreased linewidths by comparison to those of [1]2+. Density functional theory (DFT) calculations suggest that the decrease in 14N linewidth arises from a diminished electric field gradient (EFG) at the 14N nuclei in the higher valent compounds. The oxidation of [1](NO3)2 with the alternative oxidizing agent, bis(trifluoroacetoxy) iodobenzene, affords the novel tetranuclear complex, cis-[(O2CCF3)PtIII(NH3)2(µ-OAc)2PtIII(NH3)(µ-NH2)]2(NO3)4, [4](NO3)4, also characterized structurally by X-ray crystallography. In solution, this complex exists as a mixture of species, the identities of which are proposed. PMID:22946515

  13. Structural diversity of benzil bis(benzoylhydrazone): Mononuclear, binuclear and trinuclear complexes.

    PubMed

    López-Torres, Elena; Mendiola, M Antonia

    2009-10-07

    The coordination behaviour of the Schiff-base, benzil bis(benzoylhydrazone), LH(2) towards divalent nickel, lead, cadmium, zinc and copper ions has been investigated. The complexes have been fully characterized by techniques including (113)Cd and (207)Pb NMR, as well as (13)C and (113)Cd CP/MAS NMR and by single crystal X-ray diffraction. All the complexes have the general formula [ML](n) (n = 1-3 depending on the metal ion), with the ligand doubly deprotonated. The nickel complex [NiL] is a monomeric compound, the lead complex [PbL](2) shows a binuclear structure, whereas zinc [ZnL](3) and copper [CuL](3) complexes are trinuclear helicates. The cadmium complex seems to be a dimer with a structure similar to that of . In the nickel and lead derivatives, the ligand behaves as a tetradentate N(2)O(2) chelate and in complex also as a bridge through one of the O atoms. In the crystal structures of Zn and Cu complexes [ML](3) each metal is in a pentadentate N(3)O(2) environment formed by two different ligands, one tridentate chelate and the other bidentate chelate, giving rise to trinuclear helicates. These results point out the versatility of benzil bis(benzoylhydrazone) on its coordination.

  14. Redox-Controlled Olefin (Co)Polymerization Catalyzed by Ferrocene-Bridged Phosphine-Sulfonate Palladium Complexes.

    PubMed

    Chen, Min; Yang, Bangpei; Chen, Changle

    2015-12-14

    The facile and reversible interconversion between neutral and oxidized forms of palladium complexes containing ferrocene-bridged phosphine sulfonate ligands was demonstrated. The activity of these palladium complexes could be controlled using redox reagents during ethylene homopolymerization, ethylene/methyl acrylate copolymerization, and norbornene oligomerization. Specifically in norbornene oligomerization, the neutral complexes were not active at all whereas the oxidized counterparts showed appreciable activity. In situ switching between the neutral and oxidized forms resulted in an interesting "off" and "on" behavior in norbornene oligomerization. This work provides a new strategy to control the olefin polymerization process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    PubMed

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  16. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  17. Synthesis, characterization, electrical conductivity and luminescence properties of two copper(II) complexes with tridentate N2O chelating ligands containing imine bond

    NASA Astrophysics Data System (ADS)

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Şahin, Onur; Serin, Selahattin

    2018-03-01

    In the present study, we describe the synthesis and characterization of two tridentate N2O donor ligands, namely, (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-methoxyphenol (HL1) and (E)-2-(((2-(diethylamino)ethyl)imino)methyl)-6-ethoxyphenol (HL2), and their copper(II) complexes, [Cu(L1)(CH3COO)] (1), [Cu(L2)(CH3COO)] (2). They have been synthesized under conventional methods and characterized by elemental analysis, FTIR, 1H and 13C NMR, ICP-OES, TGA and GC/MS analysis. For the morphological analysis field emission scanning electron microscopy (FESEM) was used. The geometry of the copper(II) complexes was determined by single crystal X-ray diffraction analysis. The copper(II) ions are in distorted square-pyramidal coordination environments. Complexes crystallize in monoclinic space group, P21/c. The electrical conductivity and luminescence properties of 1-2 have been investigated.

  18. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    NASA Astrophysics Data System (ADS)

    Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.

    2015-06-01

    In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  19. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling.

    PubMed

    DeGayner, Jordan A; Jeon, Ie-Rang; Harris, T David

    2015-11-13

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N , N ', N '', N '''-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone ( NMePh LH 2 ) was metalated to give the series of dinuclear complexes [(TPyA) 2 M 2 ( NMePh L 2- )] 2+ (TPyA = tris(2-pyridylmethyl)amine, M = Mn II , Fe II , Co II ). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = -1.64(1) and -2.16(2) cm -1 for M = Mn II and Fe II , respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA) 2 M 2 ( NMePh L 3- ˙)] + . Following a slightly different synthetic procedure, the related complex [(TPyA) 2 CrIII2( NMePh L 3- ˙)] 3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePh L 3- ˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = -626(7), -157(7), -307(9), and -396(16) cm -1 for M = Cr III , Mn II , Fe II , and Co II , respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M-L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA) 2 Fe 2 ( NMePh L 3- ˙)] + behaves as a single-molecule magnet with a relaxation barrier of U eff = 52(1) cm -1 . These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine

  20. Dinuclear copper(II) complexes with {Cu2(mu-hydroxo)bis(mu-carboxylato)}+ cores and their reactions with sugar phosphate esters: A substrate binding model of fructose-1,6-bisphosphatase.

    PubMed

    Kato, Merii; Tanase, Tomoaki; Mikuriya, Masahiro

    2006-04-03

    Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X

  1. Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands.

    PubMed

    Muthuramalingam, Sethuraman; Khamrang, Themmila; Velusamy, Marappan; Mayilmurugan, Ramasamy

    2017-11-28

    New copper(ii) complexes, [Cu(L1) 2 (H 2 O)](ClO 4 ) 2 , 1 [L1 = 2-pyridin-2-yl-quinoline], [Cu(L2) 2 (H 2 O)](ClO 4 ) 2 , 2 [L2 = 2-pyridin-2-yl-quinoxaline], [Cu(L3) 2 (H 2 O)](ClO 4 ) 2 , 3 [L3 = 6,7-dimethyl-2-pyridin-2-yl-quinoxaline], [Cu(L4) 2 (H 2 O)](ClO 4 ) 2 , 4 [L4 = 4-phenyl-2-pyridin-2-yl-quinoline] and [Cu(L5) 2 (H 2 O)](ClO 4 ) 2 , 5 [L5 = 4-phenyl-2-pyridin-2-yl-quinazoline], were synthesized and characterized as catalysts for selective fixation of atmospheric CO 2 . The molecular structure of 2 was determined by single-crystal X-ray studies and shown to have an unusual trigonal bipyramid geometry (τ, 0.936) around the copper(ii) center, with the coordination of two ligand units and a water molecule. The Cu-N quin (2.040, 2.048 Å) bonds are slightly longer than the Cu-N pyr (1.987 Å) bonds but shorter than the Cu-O water bond (2.117 Å). Well-defined Cu(ii)/Cu(i) redox potentials of around 0.352 to 0.401 V were observed for 1-5 in acetonitrile. The electronic absorption spectra of 1-5 showed ligand-based transitions at around 208-286 nm with a visible shoulder at around 342-370 nm. The d-d transitions appeared at around 750-800 and 930-955 nm in acetonitrile. The rhombic EPR spectra of 1-5 exhibited three different g values g x , 2.27-2.34; g y , 2.06-2.09; and g z , 1.95-1.98 at 70 K. Atmospheric CO 2 was successfully fixed by 1-5 using Et 3 N as a sacrificial reducing agent, resulting in CO 3 2- -bound complexes of type [Cu(L)CO 3 (H 2 O)] that display an absorption band at around 614-673 nm and a ν st at 1647 cm -1 . This CO 3 2- -bound complex of 1 was crystallized from the reaction mixture and it displayed a distorted square pyramidal geometry (τ, 0.369) around the copper(ii) center via the coordination of only one ligand unit, a carbonate group, and water molecules. Furthermore, treatment of the carbonate-bound Cu(ii) complexes with one equivalent of H + under N 2 atmosphere resulted in the liberation of bicarbonate (HCO 3 - ) and

  2. Enhanced reactive oxygen species through direct copper sulfide nanoparticle-doxorubicin complexation

    NASA Astrophysics Data System (ADS)

    Li, Yajuan; Cupo, Michela; Guo, Liangran; Scott, Julie; Chen, Yi-Tzai; Yan, Bingfang; Lu, Wei

    2017-12-01

    CuS-based nanostructures loading the chemotherapeutic agent doxorubicin (DOX) exerted excellent cancer photothermal chemotherapy under multi-external stimuli. The DOX loading was generally designed through electrostatic interaction or chemical linkers. However, the interaction between DOX molecules and CuS nanoparticles has not been investigated. In this work, we use PEGylated hollow copper sulfide nanoparticles (HCuSNPs) to directly load DOX through the DOX/Cu2+ chelation process. Distinctively, the synthesized PEG-HCuSNPs-DOX release the DOX/Cu2+ complexes into surrounding environment, which generate significant reactive oxygen species (ROS) in a controlled manner by near-infrared laser. The CuS nanoparticle-mediated photothermal ablation facilitates the ROS-induced cancer cell killing effect. Our current work reveals a DOX/Cu2+-mediated ROS-enhanced cell-killing effect in addition to conventional photothermal chemotherapy through the direct CuS nanoparticle-DOX complexation.

  3. Surface complexation model for multisite adsorption of copper(II) onto kaolinite

    NASA Astrophysics Data System (ADS)

    Peacock, Caroline L.; Sherman, David M.

    2005-08-01

    We measured the adsorption of Cu(II) onto kaolinite from pH 3-7 at constant ionic strength. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 inner-sphere complexes on variable-charge ≡AlOH sites and as Cu 2+ on ion exchangeable ≡X-H + sites. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed at least up to pH 6.5. Inner-sphere complexes are bound to the kaolinite surface by corner-sharing with two or three edge-sharing Al(O,OH) 6 polyhedra. Our interpretation of the EXAFS data are supported by ab initio (density functional theory) geometries of analog clusters simulating Cu complexes on the {110} and {010} crystal edges and at the ditrigonal cavity sites on the {001}. Having identified the bidentate (≡AlOH) 2Cu(OH) 20, tridentate (≡Al 3O(OH) 2)Cu 2(OH) 30 and ≡X-Cu 2+ surface complexes, the experimental copper(II) adsorption data can be fit to the reactions

  4. A synthetic NO reduction cycle on a bis(pyrazolato)-bridged dinuclear ruthenium complex including photo-induced transformation.

    PubMed

    Arikawa, Yasuhiro; Hiura, Junko; Tsuchii, Chika; Kodama, Mika; Matsumoto, Naoki; Umakoshi, Keisuke

    2018-05-17

    A synthetic NO reduction cycle (2NO + 2H+ + 2e- → N2O + H2O) on a dinuclear platform {(TpRu)2(μ-pz)2} (Tp = HB(pyrazol-1-yl)3) was achieved, where an unusual N-N coupling complex was included. Moreover, an interesting photo-induced conversion of the N-N coupling complex to an oxido-bridged complex was revealed.

  5. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  6. A family of acetato-diphenoxo triply bridged dimetallic Zn(II)Ln(III) complexes: SMM behavior and luminescent properties.

    PubMed

    Oyarzabal, Itziar; Artetxe, Beñat; Rodríguez-Diéguez, Antonio; García, JoséÁngel; Seco, José Manuel; Colacio, Enrique

    2016-06-21

    Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region.

  7. Metamagnetism in hydrophobically induced carboxylate (phenylmalonate)-bridged copper(II) layers.

    PubMed

    Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Campo, Javier; Lloret, Francesc; Julve, Miguel

    2006-07-21

    Self-assembly of copper(l) ions, phenylmalonate and pyrimidine yields the layered compound [Cu(pym)(Phmal)n (1) where intralayer ferro- and interlayer antiferromagnetic interactions occur with three-dimensional antiferromagnetic ordering at T(c) = 2.15 K.

  8. Synthesis and crystal structure of catena-bis(nicotinamide)aqua({mu}-phthalato)copper(II) hemihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Koksharova, T. V.; Antsyshkina, A. S.

    2008-07-15

    The copper(II) phthalate complex with nicotinamide [CuL{sub 2}({mu}-Pht)(H{sub 2}O)] . 0.5H{sub 2}O(I) (where L is nicotinamide and Pht{sup 2-} is an anion of phthalic acid) is synthesized and investigated using IR spectroscopy and X-ray diffraction. The crystals of compound I are monoclinic, a = 13.368(2) A, b = 7.891(3) A, c = 20.480(2) A, {beta} = 108.69(2){sup o}, Z = 4, and space group P2{sub 1}/c. The structural units of crystal I are linear chains formed by bridging phthalate anions and crystallization water molecules. The copper atom is coordinated by two pyridine nitrogen atoms of two nicotinamide ligands (Cu-N, 2.001more » and 2.045 A), two oxygen atoms of different phthalate anions (Cu-O, 1.964 and 2.235 A), and the oxygen atom of the H{sub 2} O molecule (Cu-O, 2.014 A). The coordination polyhedron of the copper atom is completed to an elongated (4 + 1 + 1) tetragonal bipyramid by the second (chelating) oxygen atom of the carboxyl group (Cu-O, 2.587 A), which is one of the anions of phthalic acid. The linear polymer molecules are joined into complex macromolecular dimers with the closest internal contacts of the specific type. The macromolecular dimers are the main supramolecular ensembles of the crystal structure.« less

  9. ATR-FTIR spectroscopic investigation of the cis- and trans-bis-(α-amino acids) copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Berestova, Tatyana V.; Kuzina, Lyudmila G.; Amineva, Natalya A.; Faizrakhmanov, Ilshat S.; Massalimov, Ismail A.; Mustafin, Akhat G.

    2017-06-01

    The crystalline phases of the trans-(a) and cis-(b)-isomers of bis-(α-amino acids) copper(II) complexes [Cu(bL)2] 1-5 (bL - bidentate ligand: gly (1), S-ala (2), R,S-val (3), (±)-thr (4), R,S-phe (5)) were studied by ATR-FTIR spectroscopy in the mid region IR spectrum. It was established that asymmetric νas(COO) and symmetric νs(COO) stretching vibrations of carboxylic groups of 1-5 are sensitive to change of the geometric structure and have a different maxima for the trans(a)- and cis(b)-isomers. It found that νas(COO) and νs(COO) stretching vibrations of cis-isomers are broadened and shifted to longer wavelengths (b) as compared with trans-isomers (a). Shown that peculiarities of crystal packing molecules of geometric isomers may affect on carboxylate stretching vibration bis-α-amino acids complexes copper(II) 1-5 a,b.

  10. Diagnosis of abnormal biliary copper excretion by positron emission tomography with targeting of 64Copper-asialofetuin complex in LEC rat model of Wilson’s disease

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev

    2014-01-01

    Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson’s disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson’s disease. After complexing 64Cu to asialofetuin we studied handling of this complex compared with 64Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, 64Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than 64Cu. In LEC rats, 64Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither 64Cu-asialofetuin nor 64Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after 64Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that 64Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson’s disease. PMID:25250203

  11. Studies of EXAFSSpectra using Copper (II) Schiff Base complexes and Determination of Bond lengths Using Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Vibhute, V.; Ninama, S.; Parsai, N.; Jha, S. N.; Sharma, P.

    2016-10-01

    X-ray absorption fine structure (XAFS) at the K-edge of copper has been studied in some copper (II) complexes with substituted anilines like (2Cl, 4Br, 2NO2, 4NO2 and pure aniline) with o-PDA (orthophenylenediamine) as ligand. The X-ray absorption measurements have been performed at the recently developed BL-8 dispersive EXAFS beam line at 2.5 GeV Indus-2 Synchrotron Source at RRCAT, Indore, India. The data obtained has been processed using EXAFS data analysis program Athena.The graphical method gives the useful information about bond length and also the environment of the absorbing atom. The theoretical bond lengths of the complexes were calculated by using interactive fitting of EXAFS using fast Fourier inverse transformation (IFEFFIT) method. This method is also called as Fourier transform method. The Lytle, Sayers and Stern method and Levy's method have been used for determination of bond lengths experimentally of the studied complexes. The results of both methods have been compared with theoretical IFEFFIT method.

  12. Oxoiron(IV) Complex of the Ethylene-Bridged Dialkylcyclam Ligand Me2EBC.

    PubMed

    England, Jason; Prakash, Jai; Cranswick, Matthew A; Mandal, Debasish; Guo, Yisong; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2015-08-17

    We report herein the first example of an oxoiron(IV) complex of an ethylene-bridged dialkylcyclam ligand, [Fe(IV)(O)(Me2EBC)(NCMe)](2+) (2; Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Complex 2 has been characterized by UV-vis, (1)H NMR, resonance Raman, Mössbauer, and X-ray absorption spectroscopy as well as electrospray ionization mass spectrometry, and its properties have been compared with those of the closely related [Fe(IV)(O)(TMC)(NCMe)](2+) (3; TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), the intensively studied prototypical oxoiron(IV) complex of the macrocyclic tetramethylcyclam ligand. Me2EBC has an N4 donor set nearly identical with that of TMC but possesses an ethylene bridge in place of the 1- and 8-methyl groups of TMC. As a consequence, Me2EBC is forced to deviate from the trans-I configuration typically found for Fe(IV)(O)(TMC) complexes and instead adopts a folded cis-V stereochemistry that requires the MeCN ligand to coordinate cis to the Fe(IV)═O unit in 2 rather than in the trans arrangement found in 3. However, switching from the trans geometry of 3 to the cis geometry of 2 did not significantly affect their ground-state electronic structures, although a decrease in ν(Fe═O) was observed for 2. Remarkably, despite having comparable Fe(IV/III) reduction potentials, 2 was found to be significantly more reactive than 3 in both oxygen-atom-transfer (OAT) and hydrogen-atom-transfer (HAT) reactions. A careful analysis of density functional theory calculations on the HAT reactivity of 2 and 3 revealed the root cause to be the higher oxyl character of 2, leading to a stronger O---H bond specifically in the quintet transition state.

  13. Synthesis, characterization, and antimicrobial activity of silver(I) and copper(II) complexes of phosphate derivatives of pyridine and benzimidazole.

    PubMed

    Kalinowska-Lis, Urszula; Szewczyk, Eligia M; Chęcińska, Lilianna; Wojciechowski, Jakub M; Wolf, Wojciech M; Ochocki, Justyn

    2014-01-01

    Two silver(I) complexes--[Ag(4-pmOpe)]NO₃}(n) and [Ag(2-bimOpe)₂]NO₃--and three copper(II) complexes--[Cu₄Cl₆O(2-bimOpe)₄], [CuCl₂(4-pmOpe)₂], and [CuCl₂(2-bis(pm)Ope]--were synthesized by reaction of silver(I) nitrate or copper(II) chloride with phosphate derivatives of pyridine and benzimidazole, namely diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe), 1H-benzimidazol-2-ylmethyl diethyl phosphate (2-bimOpe), and ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope). These compounds were characterized by ¹H, ¹³C, and ³¹P NMR as well as IR spectroscopy, elemental analysis, and ESIMS spectrometry. Additionally, molecular and crystal structures of {[Ag(4-pmOpe)]NO₃}n and [Cu₄Cl₆O(2-bimOpe)₄] were determined by single-crystal X-ray diffraction analysis. The antimicrobial profiles of synthesized complexes and free ligands against test organisms from the ATCC and clinical sources were determined. Silver(I) complexes showed good antimicrobial activities against Candida albicans strains (MIC values of ∼19 μM). [Ag(2-bimOpe)₂]NO₃ was particularly active against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus epidermidis, with MIC values of ∼5 and ∼10 μM, respectively. Neither copper(II) complexes nor the free ligands inhibited the growth of test organisms at concentrations below 500 μg mL⁻¹. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.

    PubMed

    Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-05-01

    The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one

  15. Influence of ligand-bridged substitution on the exchange coupling constant of chromium-wheels host complexes: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Sadeghi Googheri, Motahare; Abolhassani, Mohammad Reza; Mirzaei, Mahmoud

    2018-05-01

    Designing and introducing novel wheel-shaped supramolecular as host complexes with new magnetic properties is the theme of the day. So in this study, new eight binuclear chromium (III) complexes, as models of real chromium-wheel host complexes, were designed based on changing of bridged-ligands and exchange coupling constants (J) of them were calculated using the broken symmetry density functional theory approach. Substitution of fluorine ligand in fluoro-bridged model [Cr2F(tBuCO2)2(H2O)2(OH)4]-1 by halogen anions (Cl-, Br- and I- ) decreased the antiferromagnetic exchange coupling between Cr(III) centres such that by going from F- to I- the J values became more positive. In the case of hydroxo-bridged model [Cr2OH(tBuCO2)2(H2O)2(OH)4]-1, replacement of hydroxyl by methoxy anion (OMe-) strengthened the antiferromagnetic property of the complex but substitution by sulfanide (SH-) and amide (NH2-) anions weakened it and changed the nature of complexes to ferromagnetic. Because of their different magnetic properties, these new investigated complexes can be suggested as interesting synthetic targets. Also, the J value changes due to ligand substitution were evaluated and it was found that the Cr-X bond strength and partial charges of involved atoms were the most effective factors on it.

  16. Synthesis of isocoumarins through three-component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC-copper complex.

    PubMed

    Yoo, Woo-Jin; Nguyen, Thanh V Q; Kobayashi, Shū

    2014-09-15

    A copper-catalyzed multicomponent coupling reaction between in situ generated ortho-arynes, terminal alkynes, and carbon dioxide was developed to access isocoumarins in moderate to good yields. The key to this CO2-incorporating reaction was the use of a versatile N-heterocyclic carbene/copper complex that was able to catalyze multiple transformations within the three-component reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Movable bridge maintenance monitoring.

    DOT National Transportation Integrated Search

    2013-10-01

    Movable bridges have particular maintenance issues, which cost considerably more than those of fixed bridges, : mostly because of the complex interaction of the mechanical, electrical and structural components. In order to track : maintenance and ope...

  18. An unsupported metal hydroxide for the design of molecular μ-oxo bridged heterobimetallic complexes.

    PubMed

    Falzone, A J; Nguyen, J; Weare, W W; Sommer, R D; Boyle, P D

    2014-02-28

    A terminal and unsupported chromium(III) hydroxide is reported. The terminal hydroxide is used to synthesize the first example of a heterobimetallic Ti-O-Cr compound containing an unsupported μ-oxo bridge. The heterobimetallic complex exhibits a new absorbance at 288 nm (4.32 eV), which is assigned to a metal-to-metal charge transfer (MMCT) transition.

  19. A spin-frustrated trinuclear copper complex based on triaminoguanidine with an energetically well-separated degenerate ground state.

    PubMed

    Spielberg, Eike T; Gilb, Aksana; Plaul, Daniel; Geibig, Daniel; Hornig, David; Schuch, Dirk; Buchholz, Axel; Ardavan, Arzhang; Plass, Winfried

    2015-04-06

    We present the synthesis and crystal structure of the trinuclear copper complex [Cu3(saltag)(bpy)3]ClO4·3DMF [H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine; bpy = 2,2'-bipyridine]. The complex crystallizes in the trigonal space group R3̅, with all copper ions being crystallographically equivalent. Analysis of the temperature dependence of the magnetic susceptibility shows that the triaminoguanidine ligand mediates very strong antiferromagnetic interactions (JCuCu = -324 cm(-1)). Detailed analysis of the magnetic susceptibility and magnetization data as well as X-band electron spin resonance spectra, all recorded on both powdered samples and single crystals, show indications of neither antisymmetric exchange nor symmetry lowering, thus indicating only a very small splitting of the degenerate S = (1)/2 ground state. These findings are corroborated by density functional theory calculations, which explain both the strong isotropic and negligible antisymmetric exchange interactions.

  20. Movable bridge maintenance monitoring : [technical summary].

    DOT National Transportation Integrated Search

    2013-10-01

    Maintenance costs for movable bridges are considerably higher than for fixed bridges, mostly because of the complex interaction of mechanical, electrical, and structural components. Malfunction of any component can cause unexpected failure of bridge ...

  1. Performance of two solid fumigants in covered bridges

    Treesearch

    Matthew J. Konkler; Mark A. Newbill; Stan Lebow; Jeffrey J. Morrell

    2017-01-01

    The potential for two solid wood fumigants, dazomet and methylisothiocyanate (MITC), to move through wood at levels sufficient to arrest decay in covered bridges was assessed. Dazomet alone failed to decompose to MITC and move into the wood at effective levels, probably because too little moisture was available for breakdown. Adding a copper accelerant improved dazomet...

  2. The role of amine ligands in governing film morphology and electrical properties of copper films derived from copper formate-based molecular inks.

    PubMed

    Paquet, Chantal; Lacelle, Thomas; Liu, Xiangyang; Deore, Bhavana; Kell, Arnold J; Lafrenière, Sylvie; Malenfant, Patrick R L

    2018-04-19

    Copper formate complexes with various primary amines, secondary amines and pyridines were prepared, and their decomposition into conductive films was characterized. A comparison of the various complexes reveals that the temperature of thermolysis depends on the number of hydrogen bonds that can be formed between the amine and formate ligands. The particle size resulting from sintering of the copper complexes is shown to depend on the fraction of amine ligand released during the thermolysis reaction. The particle size in turn is shown to govern the electrical properties of the copper films. Correlations between the properties of the amines, such as boiling point and coordination strength, with the morphology and electrical performance of the copper films were established and provide a basis for the molecular design of copper formate molecular inks.

  3. Bioinorganic Chemical Modeling of Dioxygen-Activating Copper Proteins.

    ERIC Educational Resources Information Center

    Karlin, Kenneth D.; Gultneh, Yilma

    1985-01-01

    Discusses studies done in modeling the copper centers in the proteins hemocyanin (a dioxygen carrier), tyrosinase, and dopamine beta-hydroxylase. Copper proteins, model approach in copper bioinorganic chemistry, characterization of reversible oxygen carriers and dioxygen-metal complexes, a copper mono-oxygenase model reaction, and other topics are…

  4. Roles of Bridging Ligand Topology and Conformation in Controlling Exchange Interactions between Paramagnetic Molybdenum Fragments in Dinuclear and Trinuclear Complexes.

    PubMed

    Ung VÂ, V&acaron;n Ân; Cargill Thompson, Alexander M. W.; Bardwell, David A.; Gatteschi, Dante; Jeffery, John C.; McCleverty, Jon A.; Totti, Federico; Ward, Michael D.

    1997-07-30

    The magnetic properties of two series of dinuclear complexes, and one trinuclear complex, have been examined as a function of the bridging pathway between the metal centers. The first series of dinuclear complexes is [{Mo(V)(O)(Tp)Cl}(2)(&mgr;-OO)], where "OO" is [1,4-O(C(6)H(4))(n)O](2)(-) (n = 1, 1; n = 2, 3), [4,4'-O(C(6)H(3)-2-Me)(2)O](2)(-) (4), or [1,3-OC(6)H(4)O](2)(-) (2) [Tp = tris(3,5-dimethylpyrazolyl)hydroborate]. The second series of dinuclear complexes is [{Mo(I)(NO)(Tp)Cl}(2)(&mgr;-NN)], where "NN" is 4,4'-bipyridyl (5), 3,3'-dimethyl-4,4'-bipyridine (6), 3,8-phenanthroline (7), or 2,7-diazapyrene (8). The trinuclear complex is [{Mo(V)(O)(Tp)Cl}(3)(1,3,5-C(6)H(3)O(3))] (9), whose crystal structure was determined [9.5CH(2)Cl(2): C(56)H(81)B(3)Cl(13)Mo(3)N(18)O(6); monoclinic, P2(1)/n; a = 13.443, b = 41.46(2), c = 14.314(6) Å; beta = 93.21(3) degrees; V = 7995(5) Å(3); Z = 4; R(1) = 0.106]. In these complexes, the sign and magnitude of the exchange coupling constant J is clearly related to both the topology and the conformation of the bridging ligand [where J is derived from H = -JS(1)().S(2)() for 1-8 and H = -J(S(1)().S(2)() + S(2)().S(3)() + S(1)().S(3)()) for 9]. The values are as follows: 1, -80 cm(-)(1); 2, +9.8 cm(-)(1); 3, -13.2 cm(-)(1); 4, -2.8 cm(-)(1); 5, -33 cm(-)(1); 6, -3.5 cm(-)(1); 7, -35.6 cm(-)(1); 8, -35.0 cm(-)(1); 9, +14.4 cm(-)(1). In particular the following holds: (1) J is negative (antiferromagnetic exchange) across the para-substituted bridges ligands of 1 and 3-8 but positive (ferromagnetic exchange) across the meta-substituted bridging ligands of 2 and 9. (2) J decreases in magnitude dramatically as the bridging ligand conformation changes from planar to twisted (compare 3 and 4, or 6 and 8). These observations are consistent with a spin-polarization mechanism for the exchange interaction, propagated across the pi-system of the bridging ligand by via overlap of bridging ligand p(pi) orbitals with the d(pi) magnetic

  5. Integrated copper-containing wastewater treatment using xanthate process.

    PubMed

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  6. Putting copper into action: copper-impregnated products with potent biocidal activities.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2004-11-01

    Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria.

  7. Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications.

    PubMed

    David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr

    2015-12-21

    Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very

  8. Optical properties of trinuclear metal chalcogenolate complexes - room temperature NIR fluorescence in [Cu2Ti(SPh)6(PPh3)2].

    PubMed

    Kühn, Michael; Lebedkin, Sergei; Weigend, Florian; Eichhöfer, Andreas

    2017-01-31

    The optical properties of four isostructural trinuclear chalcogenolato bridged metal complexes [Cu 2 Sn(SPh) 6 (PPh 3 ) 2 ], [Cu 2 Sn(SePh) 6 (PPh 3 ) 2 ], [Ag 2 Sn(SPh) 6 (PPh 3 ) 2 ] and [Cu 2 Ti(SPh) 6 (PPh 3 ) 2 ] have been investigated by absorption and photoluminescence spectroscopy and time-dependent density functional theory (TDDFT) calculations. All copper-tin compounds demonstrate near-infrared (NIR) phosphorescence at ∼900-1100 nm in the solid state at low temperature, which is nearly absent at ambient temperature. Stokes shifts of these emissions are found to be unusually large with values of about 1.5 eV. The copper-titanium complex [Cu 2 Ti(SPh) 6 (PPh 3 ) 2 ] also shows luminescence in the NIR at 1090 nm but with a much faster decay (τ ∼ 10 ns at 150 K) and a much smaller Stokes shift (ca. 0.3 eV). Even at 295 K this fluorescence is found to comprise a quantum yield as high as 9.5%. The experimental electronic absorption spectra well correspond to the spectra simulated from the calculated singlet transitions. In line with the large Stokes shifts of the emission spectra the calculations reveal for the copper-tin complexes strong structural relaxation of the excited triplet states whereas those effects are found to be much smaller in the case of the copper-titanium complex.

  9. Investigating the pharmacodynamic and magnetic properties of pyrophosphate-bridged coordination complexes

    NASA Astrophysics Data System (ADS)

    Ikotun, Oluwatayo (Tayo) F.

    The multidentate nature of pyrophosphate makes it an attractive ligand for complexation of metal cations. The participation of pyrophosphate in a variety of biological pathways and its metal catalyzed hydrolysis has driven our investigation into its coordination chemistry. We have successfully synthesized a library of binuclear pyrophosphate bridge coordination complexes. The problem of pyrophosphate hydrolysis to phosphate in the presence of divalent metal ions was overcome by incorporating capping ligands such as 1,10-phenanthroline and 2,2'-bipyridine prior to the addition of the pyrophosphate. The magnetic properties of these complexes was investigated and magneto-structural analysis was conducted. The biological abundance of pyrophosphate and the success of metal based drugs such as cisplatin, prompted our investigation of the cytotoxic properties of M(II) pyrophosphate dimeric complexes (where M(II) is CoII, CuII, and NiII) in adriamycin resistant human ovarian cancer cells. Thess compounds were found to exhibit toxicity in the nanomolar to picomolar range. We conducted in vitro stability studies and the mechanism of cytoxicity was elucidated by performing DNA mobility and binding assays, enzyme inhibition assays, and in vitro oxidative stress studies.

  10. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands.

    PubMed

    Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu

    2016-06-01

    A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen.

    PubMed

    Yuki, Masahiro; Sakata, Ken; Kikuchi, Shoma; Kawai, Hiroyuki; Takahashi, Tsuyoshi; Ando, Masaki; Nakajima, Kazunari; Nishibayashi, Yoshiaki

    2017-01-23

    Thiolate-bridged diruthenium complexes bearing pendent ethers have been found to work as effective catalysts toward the oxidation of molecular dihydrogen into protons and electrons in water. The pendent ether moiety in the complex plays an important role to facilitate the proton transfer between the metal center and the external proton acceptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Discovery of a potent and highly specific β2 proteasome inhibitor from a library of copper complexes.

    PubMed

    Zhou, Tongliang; Cai, Yuanbo; Liang, Lei; Yang, Lingfei; Xu, Fengrong; Niu, Yan; Wang, Chao; Zhang, Jun-Long; Xu, Ping

    2016-12-01

    We reported the synthesis, characterization and biological activity of several copper(II) Schiff base complexes, which exhibit high proteasome inhibitory activities with particular selectivity of β 2 subunit. Structure-activity relationships information obtained from complex Na 2 [Cu(a4s1)] demonstrated that distinct bonding modes in β 2 and β 5 subunits determines its selectivity and potent inhibition for β 2 subunit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Olshin, Pavel K.; Myasnikova, Olesya S.; Kashina, Maria V.; Gorbunov, Artem O.; Bogachev, Nikita A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Pulkin, Sergey A.; Kochemirovsky, Vladimir A.; Skripkin, Mikhail Yu.; Mereshchenko, Andrey S.

    2018-03-01

    The results of spectrophotometric study and quantum chemical calculations for copper(II) chloro- and bromocomplexes in acetonitrile are reported. Electronic spectra of the individual copper(II) halide complexes were obtained in a wide spectral range 200-2200 nm. Stability constants of the individual copper(II) halide complexes in acetonitrile were calculated: log β1 = 8.5, log β2 = 15.6, log β3 = 22.5, log β4 = 25.7 for [CuCln]2-n and log β1 = 17.0, log β2 = 24.6, log β3 = 28.1, log β4 = 30.4 for [CuBrn]2-n. Structures of the studied complexes were optimized and electronic spectra were simulated using DFT and TD-DFT methodologies, respectively. According to the calculations, the more is the number of halide ligands the less is coordination number of copper ion.

  14. Nucleophilic ring opening of bridging thietanes in open triosmium cluster complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.D.; Belinski, J.A.

    1992-07-01

    The complexes Os{sub 3}(CO){sub 9}({mu}{sub 3}-S)[{mu}-SCH{sub 2}CMe{sub 2}CMe{sub 2}CH{sub 2}] (1) and Os{sub 3}(CO){sub 9}({mu}{sub 3}-S)[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}] (2) were obtained from the reactions of Os{sub 3}(CO){sub 10}({mu}{sub 3}-S) with 3,3-dimethylthietane (DMT) and thietane, respectively, at -42 {degree}C in the presence of Me{sub 3}NO. Compound 1 was characterized by a single-crystal X-ray diffraction analysis and was found to contain a DMT group bridging two of the nonbonded metal atoms in the open cluster of three metal atoms by using both lone pairs of electrons on the sulfur atom. Compound 1 reacted with bis(triphenylphosphine)nitrogen(1+) chloride ([PPN]Cl) at 25 {degrees}C tomore » yield the salt [PPN][Os{sub 3}-(CO){sub 9}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}Cl)({mu}{sub 3}-S)] (3; 76%), in which the chloride ion was added to one of the methylene groups of the DMT ring in a process that caused the ring to open by cleavage of one of the carbon-sulfur bonds. A 4-chloro-3,3-dimethylpropanethiolate ligand bridges the open edge of the anionic triosmium cluster. Compound 3 was converted to the neutral complex Os{sub 3}(CO){sub 9}[{mu}-SCH{sub 2}CMe{sub 2}CMe{sub 2}CH{sub 2}Cl]({mu}{sub 3}-S)({mu}-H) (4) by reaction with HCl at 25 {degrees}C. Compound 4 is structurally similar to 3, except that is contains a hydride ligand bridging one of the two metal-metal bonds. Compounds 1 and 2 react with HCl in CH{sub 2}Cl{sub 2} solvent to yield the neutral compounds 4 and Os{sub 3}(CO){sub 9}[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}Cl]({mu}{sub 3}-S)({mu}-H) (5) in 89% and 90% yields, respectively, in one step. 11 refs., 3 figs., 10 tabs.« less

  15. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  16. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  17. Copper mercaptides as sulfur dioxide indicators

    DOEpatents

    Eller, Phillip G.; Kubas, Gregory J.

    1979-01-01

    Organophosphine copper(I) mercaptide complexes are useful as convenient and semiquantitative visual sulfur dioxide gas indicators. The air-stable complexes form 1:1 adducts in the presence of low concentrations of sulfur dioxide gas, with an associated color change from nearly colorless to yellow-orange. The mercaptides are made by mixing stoichiometric amounts of the appropriate copper(I) mercaptide and phosphine in an inert organic solvent.

  18. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu{sup -}(cytidine) and Cu{sup -}(uridine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiang; Ko, Yeon-Jae; Wang Haopeng

    2011-02-07

    The copper-nucleoside anions, Cu{sup -}(cytidine) and Cu{sup -}(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu{sup -}(cytidine) and Cu{sup -}(uridine), respectively. According to our calculations, Cu{sup -}(cytidine) and Cu{sup -}(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostaticmore » interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu{sup -}(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.« less

  19. High in Vivo Stability of 64Cu-Labeled Cross-Bridged Chelators Is a Crucial Factor in Improved Tumor Imaging of RGD Peptide Conjugates.

    PubMed

    Sarkar, Swarbhanu; Bhatt, Nikunj; Ha, Yeong Su; Huynh, Phuong Tu; Soni, Nisarg; Lee, Woonghee; Lee, Yong Jin; Kim, Jung Young; Pandya, Darpan N; An, Gwang Il; Lee, Kyo Chul; Chang, Yongmin; Yoo, Jeongsoo

    2018-01-11

    Although the importance of bifunctional chelators (BFCs) is well recognized, the chemophysical parameters of chelators that govern the biological behavior of the corresponding bioconjugates have not been clearly elucidated. Here, five BFCs closely related in structure were conjugated with a cyclic RGD peptide and radiolabeled with Cu-64 ions. Various biophysical and chemical properties of the Cu(II) complexes were analyzed with the aim of identifying correlations between individual factors and the biological behavior of the conjugates. Tumor uptake and body clearance of the 64 Cu-labeled bioconjugates were directly compared by animal PET imaging in animal models, which was further supported by biodistribution studies. Conjugates containing propylene cross-bridged chelators showed higher tumor uptake, while a closely related ethylene cross-bridged analogue exhibited rapid body clearance. High in vivo stability of the copper-chelator complex was strongly correlated with high tumor uptake, while the overall lipophilicity of the bioconjugate affected both tumor uptake and body clearance.

  20. Improvement in Titanium Complexes Bearing Schiff Base Ligands in the Ring-Opening Polymerization of L-Lactide: A Dinuclear System with Hydrazine-Bridging Schiff Base Ligands.

    PubMed

    Tseng, Hsi-Ching; Chen, Hsing-Yin; Huang, Yen-Tzu; Lu, Wei-Yi; Chang, Yu-Lun; Chiang, Michael Y; Lai, Yi-Chun; Chen, Hsuan-Ying

    2016-02-15

    A series of titanium (Ti) complexes bearing hydrazine-bridging Schiff base ligands were synthesized and investigated as catalysts for the ring-opening polymerization (ROP) of L-lactide (LA). Complexes with electron withdrawing or steric bulky groups reduced the catalytic activity. In addition, the steric bulky substituent on the imine groups reduced the space around the Ti atom and then reduced LA coordination with Ti atom, thereby reducing catalytic activity. All the dinuclear Ti complexes exhibited higher catalytic activity (approximately 10-60-fold) than mononuclear L(Cl-H)-TiOPr2 did. The strategy of bridging dinuclear Ti complexes with isopropoxide groups in the ROP of LA was successful, and adjusting the crowded heptacoordinated transition state by the bridging isopropoxide groups may be the key to our successful strategy.

  1. Characterization and mechanism of copper biosorption by a highly copper-resistant fungal strain isolated from copper-polluted acidic orchard soil.

    PubMed

    Tu, Chen; Liu, Ying; Wei, Jing; Li, Lianzhen; Scheckel, Kirk G; Luo, Yongming

    2018-06-22

    In this paper, a highly copper-resistant fungal strain NT-1 was characterized by morphological, physiological, biochemical, and molecular biological techniques. Physiological response to Cu(II) stress, effects of environmental factors on Cu(II) biosorption, as well as mechanisms of Cu(II) biosorption by strain NT-1 were also investigated in this study. The results showed that NT-1 belonged to the genus Gibberella, which exhibited high tolerance to both acidic conditions and Cu(II) contamination in the environment. High concentrations of copper stress inhibited the growth of NT-1 to various degrees, leading to the decreases in mycelial biomass and colony diameter, as well as changes in morphology. Under optimal conditions (initial copper concentration: 200 mg L -1 , temperature 28 °C, pH 5.0, and inoculum dose 10%), the maximum copper removal percentage from solution through culture of strain NT-1 within 5 days reached up to 45.5%. The biosorption of Cu(II) by NT-1 conformed to quasi-second-order kinetics and Langmuir isothermal adsorption model and was confirmed to be a monolayer adsorption process dominated by surface adsorption. The binding of NT-1 to Cu(II) was mainly achieved by forming polydentate complexes with carboxylate and amide group through covalent interactions and forming Cu-nitrogen-containing heterocyclic complexes via Cu(II)-π interaction. The results of this study provide a new fungal resource and key parameters influencing growth and copper removal capacity of the strain for developing an effective bioremediation strategy for copper-contaminated acidic orchard soils.

  2. Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases.

    PubMed

    Singh, Atresh Kumar; Singh, Alok Kumar

    2012-10-01

    Some novel trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes of the general formula [Fe(3)O(OOCR)(3)(SB)(3)L(3)] (where R=C(13)H(27), C(15)H(31) or C(17)H(35,) HSB=Schiff bases and L=Ethanol) have been synthesized by the stepwise substitutions of acetate ions from μ(3)-oxo-hexa(acetato)tri(aqua)iron(II)diiron(III), first with straight chain carboxylic acids and then with Schiff bases. The complexes were characterized by elemental analyses, molecular weight determinations and spectral (electronic, infrared, FAB mass, Mössbauer and powder XRD) studies. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bridging nature of carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Mössbauer spectroscopic studies indicated two quadrupole-split doublets due to Fe(II) and Fe(III) ions at 80, 200 and 295K, confirming the complexes are mixed-valence species. This was also supported by the observed electronic spectra of the complexes. Magnetic susceptibility measurements displayed octahedral geometry around iron in mixed-valence state and a net antiferromagnetic exchange coupling via μ-oxo atom. Trinuclear nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. A plausible structure for these complexes has been established on the basis of spectral and magnetic moment data. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Copper redox chemistry of plant frataxins.

    PubMed

    Sánchez, Manu; Palacios, Òscar; Buchensky, Celeste; Sabio, Laura; Gomez-Casati, Diego Fabian; Pagani, Maria Ayelen; Capdevila, Mercè; Atrian, Silvia; Dominguez-Vera, Jose M

    2018-03-01

    The presence of a conserved cysteine residue in the C-terminal amino acid sequences of plant frataxins differentiates these frataxins from those of other kingdoms and may be key in frataxin assembly and function. We report a full study on the ability of Arabidopsis (AtFH) and Zea mays (ZmFH-1 and ZmFH-2) frataxins to assemble into disulfide-bridged dimers by copper-driven oxidation and to revert to monomers by chemical reduction. We monitored the redox assembly-disassembly process by electrospray ionization mass spectrometry, electrophoresis, UV-Vis spectroscopy, and fluorescence measurements. We conclude that plant frataxins AtFH, ZmFH-1 and ZmFH-2 are oxidized by Cu 2+ and exhibit redox cysteine monomer - cystine dimer interexchange. Interestingly, the tendency to interconvert is not the same for each protein. Through yeast phenotypic rescue experiments, we show that plant frataxins are important for plant survival under conditions of excess copper, indicating that these proteins might be involved in copper metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 5-Nitroimidazole-derived Schiff bases and their copper(II) complexes exhibit potent antimicrobial activity against pathogenic anaerobic bacteria.

    PubMed

    Oliveira, Alexandre A; Oliveira, Ana P A; Franco, Lucas L; Ferencs, Micael O; Ferreira, João F G; Bachi, Sofia M P S; Speziali, Nivaldo L; Farias, Luiz M; Magalhães, Paula P; Beraldo, Heloisa

    2018-05-07

    In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.

  5. Bimetallic ruthenium complexes bridged by divinylphenylene bearing oligo(ethylene glycol)methylether: synthesis, (spectro)electrochemistry and the lithium cation effect.

    PubMed

    Tian, Li Yan; Liu, Yuan Mei; Tian, Guang-Xuan; Wu, Xiang Hua; Li, Zhen; Kou, Jun-Feng; Ou, Ya-Ping; Liu, Sheng Hua; Fu, Wen-Fu

    2014-03-14

    A series of 1,4-disubstituted ruthenium-vinyl complexes, (E,E)-[{(PMe3)3(CO)ClRu}2(μ-HC=CH-Ar-CH=CH)], in which the 1,4-diethenylphenylene bridge bears two oligo(ethylene glycol)methyl ether side chains at different positions (2,5- and 2,3-positions), were prepared. The respective products were characterized by elemental analyses and NMR spectroscopy. The structures of complexes 1b and 1e were established by X-ray crystallography. The electronic properties of the complexes were investigated by cyclic voltammetry, and IR and UV-vis/NIR spectroscopies. Electrochemical studies showed that the 2,5-substituents better stabilized the mixed-valence states; the electrochemical behavior was greatly affected by lithium cations, especially complex 1g with 2,3-substituents, which was further supported by IR and UV-vis/NIR spectra changes. Spectroelectrochemical studies showed that the redox chemistry was dominated by the non-innocent character of the bridging fragment.

  6. Copper uptake by the water hyacinth. [Eichornia crassipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.A.; Hardy, J.K.

    1987-01-01

    Factors affecting Cu/sup +2/ uptake by the water hyacinth (Eichornia crassipes) were examined. Two phases of copper uptake were observed throughout the uptake range (1-1000 mg/1). An initial rapid uptake phase of 4 hours followed by a slower, near linear uptake phase extending past 48 hours was observed. Stirring the solution enhanced uptake, suggesting copper removal is partially diffusion limited. Variations in pH over the range of 3 to 10 did not significantly affect uptake. Increasing the root mass of the plant increased the amount of copper taken up. As solution volume was increased more copper was removed. The presencemore » of complexing agents during the uptake phase reduced copper uptake. The inability of complexing agents to recover all copper initially removed by a plant suggests a migration to sites within the plant.« less

  7. Sulfonato-imino copper(ii) complexes: fast and general Chan-Evans-Lam coupling of amines and anilines.

    PubMed

    Hardouin Duparc, V; Schaper, F

    2017-10-14

    Sulfonato-imine copper complexes with either chloride or triflate counteranions were prepared in a one-step reaction followed by anion-exchange. They are highly active in Chan-Evans-Lam couplings under mild conditions with a variety of amines or anilines, in particular with sterically hindered substrates. No optimization of reaction conditions other than time and/or temperature is required.

  8. Synthesis and evaluation of copper(II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents.

    PubMed

    Firmino, Gisele S S; de Souza, Marcus V N; Pessoa, Claudia; Lourenco, Maria C S; Resende, Jackson A L C; Lessa, Josane A

    2016-12-01

    In this study, the N,N,O metal chelator 2-pyridinecarboxaldehydeisonicotinoyl hydrazone (HPCIH, 1) and its derivatives 2-acetylpyridine-(HAPIH 2), 2-pyridineformamide-(HPAmIH, 3) and pyrazineformamide-(HPzAmIH, 4) were employed in the synthesis of four copper(II) complexes, [Cu(HPCIH)Cl 2 ]·0.4H 2 O (5), [Cu(HAPIH)Cl 2 ]·1.25H 2 O (6), [Cu(HPAmIH)Cl 2 ]·H 2 O (7) and [Cu(HPzAmIH)Cl 2 ]·1.25H 2 O (8). The compounds were assayed for their action toward Mycobacterium tuberculosis H37Rv ATCC 27294 strain and the human tumor cell lines OVCAR-8 (ovarian cancer), SF-295 (glioblastoma multiforme) and HCT-116 (colon adenocarcinoma). All copper(II) complexes were more effective in reducing growth of HCT-116 and SF-295 cells than the respective free hydrazones at 5 µg/mL, whereas only complex 7 was more cytotoxic toward OVCAR-8 lines than its ligand HPAmIH. 6 proved to be cytotoxic at submicromolar doses, whose IC 50 values (0.39-0.86 µM) are similar to those ones found for doxorubicin (0.23-0.43 µM). Complexes 5 and 6 displayed high activity against M. tuberculosis (MIC = 0.85 and 1.58 µM, respectively), as compared with isoniazid (MIC = 2.27 µM), which suggests the compounds are attractive candidates as antitubercular drugs.

  9. X-Ray absorption spectroscopy quantitative analysis of biomimetic copper(II) complexes with tridentate nitrogen ligands mimicking the tris(imidazole) array of protein centres.

    PubMed

    Borghi, Elena; Casella, Luigi

    2010-02-21

    In this study copper(ii) complexes with the tridentate nitrogen ligand bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB) are considered as model compounds for the Cu-tris(imidazole) array found in several copper proteins. 2-BB chelates copper(ii) forming two six-membered rings and the complexes contain methanol, nitrite, azide and water as ancillary ligands; both the coordination numbers and stereochemistries differ in these complexes. Their key structural features were investigated by using full multiple-scattering theoretical analysis of the copper K-edge X-ray absorption spectrum with the MXAN code. We showed that using cluster sizes large enough to include all atoms of the ligand, the analysis of the XANES region can give both a structural model of the metal centre and map the structure of the 2-BB complexes. Complex [Cu(2-BB)(N(3))](+) provided a critical test through the comparison of the XANES simulation results with crystallographic data, thus permitting the extension of the method to the complex [Cu(2-BB)(H(2)O)(n)](+) (n = 1 or 2), for which crystallographic data are not available but is expected to bear a five-coordinated Cu(3N)(2O) core (n = 2). The structural data of [Cu(2-BB)(MeOH)(ClO(4))](+) and [Cu(2-BB)(NO(2))](+), both with a Cu(3N)(2O) core but with a different stereochemistry, were used as the starting parameters for two independent simulations of the XANES region of the [Cu(2-BB)(H(2)O)(2)](+) cation. The two structural models generated by simulation converge towards a structure for the aqua-cation with a lower coordination number. New calculations, where four-coordinated Cu(3N)(O) cores were considered as the starting structures, validated that the structure of the aqua-complex in the powder state has a copper(ii) centre with a four-coordinated Cu(3N)(O) core and a molecular formula [Cu(2-BB)(H(2)O)](ClO(4)).(H(2)O). A water solvation molecule, presumed to be disordered from the simulations with the two Cu(3N)(2O) cores, is present. The

  10. Luminescent zinc(ii) and copper(i) complexes for high-performance solution-processed monochromic and white organic light-emitting devices.

    PubMed

    Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming; Che, Chi-Ming

    2015-08-01

    The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba- nido -undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3 ) and 0.96 (for Zn-1 ), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1 -OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3 -OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively.

  11. Selective Reduction of CO2 to a Formate Equivalent with Heterobimetallic Gold- - -Copper Hydride Complexes.

    PubMed

    Hicken, Alexandra; White, Andrew J P; Crimmin, Mark R

    2017-11-20

    A series of heterobimetallic complexes containing three-center, two-electron Au-H-Cu bonds have been prepared from addition of a parent gold hydride to a bent d 10 copper(I) fragment. These highly unusual heterobimetallic complexes represent a missing link in the widely investigated series of neutral and cationic coinage metal hydride complexes containing Cu-H-Cu and M-H-M + moieties (M=Cu, Ag). The well-defined heterobimetallic hydride complexes act as precatalysts for the conversion of CO 2 into HCO 2 Bpin with HBpin as the reductant. The selectivity of the heterobimetallic complexes for the catalytic production of a formate equivalent surpasses that of the parent monomeric Group 11 complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nitric oxide donors or nitrite counteract copper-[dithiocarbamate](2)-mediated tumor cell death and inducible nitric oxide synthase down-regulation: possible role of a nitrosyl-copper [dithiocarbamate](2) complex.

    PubMed

    Rhenals, Maricela Viola; Strasberg-Rieber, Mary; Rieber, Manuel

    2010-02-25

    In contrast to other metal-dithiocarbamate [DEDTC] complexes, the copper-DEDTC complex is highly cytotoxic, inducing oxidative stress, preferentially in tumor cells. Because nitric oxide (NO) forms adducts with Cu[DEDTC](2), we investigated whether NO donors like S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside (SNP), and nitrite, a NO decomposition product, modulate Cu[DEDTC](2) cytotoxicity against human tumor cells. We show that apoptosis-associated PARP cleavage and inducible nitric oxide synthase (iNOS) down-regulation induced by nanomolar Cu[DEDTC](2), are counteracted by 50 muM SNAP, SNP, or CoCl(2), an inducer of hypoxia and NO signaling. Nitrite was stochiometrically effective in antagonizing Cu[DEDTC](2) cytotoxicity and inducing shifts in the absorption spectrum of the binary complex in the 280 and 450 nm regions. Subtoxic concentrations of Cu[DEDTC](2) became lethal when tumor cells were pretreated with c-PTIO, a membrane-impermeable scavenger for extracellular NO. Our results suggest that: (a) reactive oxygen species induced by Cu[DEDTC](2) are scavenged by nitrite released from NO, (b) the extent of lethality of Cu[DEDTC](2) is dependent on the reciprocal formation of an inactive ternary Cu[DEDTC](2)NO copper-nitrosyl complex.

  13. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

    PubMed

    Postnikova, G B; Shekhovtsova, E A

    2016-12-01

    In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO 2 and MbO 2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E 0 , 200-600 mV) and high stability constants, such as [Cu(phen) 2 ] 2+ , [Cu(dmphen) 2 ] 2+ , and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E 0 ≤ 100-150 mV) react with HbO 2 and MbO 2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO 2 and MbO 2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PP i proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO 2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO 2 and cytochrome b 5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO 2 and MbO 2 transformation into met-forms in the presence

  14. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes.

    PubMed

    Reddy, Kumbam Lingeshwar; Kumar, Anabathula Manoj; Dhir, Abhimanew; Krishnan, Venkata

    2016-11-01

    New pyrene and anthracene based copper complexes 4 and 7 respectively were designed, synthesized and characterized. The fluorescence behaviour of both 4 and 7 were evaluated towards nitro aromatics and anions. Both 4 and 7 possess high selectivity for the detection of well-known explosive picric acid (PA) by showing maximum fluorescence affinity. Furthermore, complex 4 showed similar sensing efficiency towards PA at different pH ranges. It was also used for real world applications, as illustrated by the very fast detection of PA from soil samples observed directly by naked eye.

  15. Selective Production of 2-Methylfuran by Gas-Phase Hydrogenation of Furfural on Copper Incorporated by Complexation in Mesoporous Silica Catalysts.

    PubMed

    Jiménez-Gómez, Carmen Pilar; Cecilia, Juan A; Moreno-Tost, Ramón; Maireles-Torres, Pedro

    2017-04-10

    Copper species have been incorporated in mesoporous silica (MS) through complexation with the amine groups of dodecylamine, which was used as a structure-directing agent in the synthesis. A series of Cu/SiO 2 catalysts (xCu-MS) with copper loadings (x) from 2.5 to 20 wt % was synthesized and evaluated in the gas-phase hydrogenation of furfural (FUR). The most suitable catalytic performance in terms of 2-methylfuran yield was obtained with an intermediate copper content (10 wt %). This 10Cu-MS catalyst exhibits a 2-methylfuran yield higher than 95 mol % after 5 h time-on-stream (TOS) at a reaction temperature of 210 °C with a H 2 /FUR molar ratio of 11.5 and a weight hourly space velocity (WHSV) of 1.5 h -1 . After 14 h TOS, this catalyst still showed a yield of 80 mol %. In all cases, carbonaceous deposits on the external surface were the cause of the catalyst deactivation, although sintering of the copper particles was observed for higher copper loadings. This intermediate copper loading (10 wt %) offered a suitable balance between resistance to sintering and tendency to form carbonaceous deposits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis, structure, and magnetic properties of regular alternating μ-bpm/di-μ-X copper(II) chains (bpm = 2,2'-bipyrimidine; X = OH, F).

    PubMed

    Marino, Nadia; Armentano, Donatella; De Munno, Giovanni; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2012-04-02

    The preparation and X-ray crystal structure of four 2,2'-bipyrimidine (bpm)-containing copper(II) complexes of formula {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)][Mn(H(2)O)(6)](SO(4))(2)}(n) (1), {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)]SiF(6)}(n) (2), {Cu(2)(μ-bpm)(H(2)O)(2)(μ-F)(2)F(2)}(n) (3), and [Cu(bpm)(H(2)O)(2)F(NO(3))][Cu(bpm)(H(2)O)(3)F]NO(3)·2H(2)O (4) are reported. The structures of 1-3 consist of chains of copper(II) ions with regular alternation of bis-bidentate bpm and di-μ-hydroxo (1 and 2) or di-μ-fluoro (3) groups, the electroneutrality being achieved by either hexaaqua manganese(II) cations plus uncoordinated sulfate anions (1), uncoordinated hexafluorosilicate anions (2), or terminally bound fluoride ligands (3). Each copper(II) ion in 1-4 is six-coordinated in elongated octahedral surroundings. 1 and 2 show identical, linear chain motifs with two bpm-nitrogen atoms and two hydroxo groups building the equatorial plane at each copper(II) ion and the axial position being filled by water molecules. In the case of 3, the axial sites at the copper atom are occupied by a bpm-nitrogen atom and a bis-monodentate fluoride anion, producing a "step-like" chain motif. The values of the angle at the hydroxo and fluoro bridges are 94.11(6) (1), 94.75(4) (2), and 101.43(4)° (3). In each case, the copper-copper separation through the bis-bidentate bpm [5.428(1) (1), 5.449(1) (2), and 5.9250(4) Å (3)] is considerably longer than that through the di-μ-hydroxo [2.8320(4) (1) and 2.824(1) Å (2)] or di-μ-fluoro [3.3027(4) Å (3)] bridges. Compound 4 is a mononuclear species whose structure is made up of neutral [Cu(bpm)(H(2)O)(2)F(NO(3))] units, [Cu(bpm)(H(2)O)(3)F](+) cations, uncoordinated nitrate anions, and crystallization water molecules, giving rise to a pseudo-helical, one-dimensional (1D) supramolecular motif. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-300 K. Relatively large, alternating antiferro- [J = -149 (1) and

  17. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  18. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  19. Synthesis, X-ray crystal structures, and phosphate ester cleavage properties of bis(2-pyridylmethyl)amine copper(II) complexes with guanidinium pendant groups.

    PubMed

    Belousoff, Matthew J; Tjioe, Linda; Graham, Bim; Spiccia, Leone

    2008-10-06

    Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.

  20. Alkoxy bridged binuclear rhenium (I) complexes as a potential sensor for β-amyloid aggregation.

    PubMed

    Sathish, Veerasamy; Babu, Eththilu; Ramdass, Arumugam; Lu, Zong-Zhan; Velayudham, Murugesan; Thanasekaran, Pounraj; Lu, Kuang-Lieh; Rajagopal, Seenivasan

    2014-12-01

    Alkoxy bridged binuclear rhenium(I) complexes are used as a probe for the selective and sensitive detection of aggregation of β-amyloid fibrils that are consorted with Alzheimer's disease (AD). The strong binding of the complexes is affirmed by the fluorescence enhancement and calculated binding constant value in the order of 10(5)M(-1) is obtained from the Scatchard plots. The binding of β-amyloid can be attributed to π-π stacking interaction of naphthalene moiety present in rhenium(I) complexes, and it is supported by docking studies. The selectivity is quite high towards other proteins and the formation of fibrils can be observed in the range of 30-40 nm through the AFM and TEM techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors.

    PubMed

    Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E

    2007-05-31

    A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium

  3. Raman, IR, UV-vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine

    NASA Astrophysics Data System (ADS)

    Barreto, Wagner J.; Barreto, Sônia R. G.; Ando, Rômulo A.; Santos, Paulo S.; DiMauro, Eduardo; Jorge, Thiago

    2008-12-01

    The anionic complexes [Cu(L 1-) 3] 1-, L - = dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the νCC + νCO stretching mode at ca. 1384 cm -1. The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g = 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.

  4. High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT.

    PubMed

    Pelmenschikov, Vladimir; Gee, Leland B; Wang, Hongxin; MacLeod, K Cory; McWilliams, Sean F; Skubi, Kazimer L; Cramer, Stephen P; Holland, Patrick L

    2018-05-30

    High-spin iron species with bridging hydrides have been detected in species trapped during nitrogenase catalysis, but there are few general methods of evaluating Fe-H bonds in high-spin multinuclear iron systems. An 57 Fe nuclear resonance vibrational spectroscopy (NRVS) study on an Fe(μ-H) 2 Fe model complex reveals Fe-H stretching vibrations for bridging hydrides at frequencies greater than 1200 cm -1 . These isotope-sensitive vibrational bands are not evident in infrared (IR) spectra, showing the power of NRVS for identifying hydrides in this high-spin iron system. Complementary density functional theory (DFT) calculations elucidate the normal modes of the rhomboidal iron hydride core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stress Corrosion Cracking Control Plans. 3. Copper Alloys

    DTIC Science & Technology

    1975-06-01

    convenience intended to include amines and all other species which can react with copper to produce the cupric -ammonium complex ion or perhap...capability of forming complexes even resembling the cupric -ammonium complex should be considered as potentially causative of SCC as ammonia unless...nitrate, acetate, tartrate , or citrate which also contain copper ions. There is some evidence that oxides of nitrogen (generating ammoniacal species

  6. Synthesis and Characterization of A Coordination Complex of Tetrakis(diphenylamine)copper(II) Sulfate Hexahydrate

    NASA Astrophysics Data System (ADS)

    Syaima, H.; Rahardjo, S. B.; Suciningrum, E.

    2018-03-01

    CuSO4·5H2O with diphenylamine formed a complex compound in 1:4 mole ratio of metal to the ligand in methanol. The forming of the complex was indicated by shifting of UV-Vis spectra of CuSO4·5H2O and the complex from 819 nm to 593 nm. The result of analysis Cu(II) in the complex showed the copper content in the complex was 6.43 % therefore the empirical formula of the complex was Cu(diphenylamine)4SO4(H2O)6. The electrical conductivity of complex showed the charge ratio of cation and anion = 1:1. Therefore, the proposed formula of the complex was [Cu(diphenylamine)4]SO4·6H2O. Based on infrared spectra, it was determined that the functional group of N-H of diphenylamine was coordinated to the center ion Cu2+. The electronic spectral study of the complex showed a transition peak on λ = 593 nm (υ = 16863 cm-1) corresponding to the 2B1g → 2A1g transition. The complex was paramagnetic with effective magnetic moment 1.72 B.M. It was indicated square planar geometry around Cu(II).

  7. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  8. Two binuclear cyanide-bridged Cr(III)-Mn(III) complexes based-on [Cr(2,2'-bipy)(CN)4]- building block: synthesis, crystal structures and magnetic properties.

    PubMed

    Zhanga, Daopeng; Kong, Lingqian; Zhang, Hongyan

    2015-01-01

    Tetracyanide building block [Cr(2,2'-bipy)(CN)(4)]- and two bicompartimental Schiff-base based manganese(III) compounds have been employed to assemble cyanide-bridged heterometallic complexes, resulting in two cyanide-bridged CrIII-MnIII complexes: [Mn(L(1))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·2.5H(2)O (1) and [Mn(L(2))(H(2)O)][Cr(2,2'-bipy)(CN)(4)]·CH(3)OH·(3)H(2)O (2) (L1 = N,N'-(1,3-propylene)-bis(3-methoxysalicylideneiminate), L2 = N,N'-ethylene-bis(3-ethoxysalicylideneiminate)). Single X-ray diffraction analysis shows their similar cyanide-bridged binuclear structures, in which the cyanide precursor acting as monodentate ligand connects the manganese(III) ion. The binuclear complexes are self-complementary through coordinated aqua ligand and the free O4 compartment from the neighboring complex, giving H-bond linking dimer structure. Investigation over magnetic properties reveals the antiferromagnetic magnetic coupling between the cyanide-bridged Cr(III) and Mn(III) ions. A best-fit to the magnetic susceptibilities of these two complexes leads to the magnetic coupling constants J = -5.95 cm(-1), j = -0.61 cm(-1) (1) and J = -4.15 cm(-1), j = -0.57 cm(-1) (2), respectively.

  9. Mixed copper-platinum complex formation could explain synergistic antiproliferative effect exhibited by binary mixtures of cisplatin and copper-1,10-phenanthroline compounds: An ESI-MS study.

    PubMed

    Pivetta, Tiziana; Lallai, Viola; Valletta, Elisa; Trudu, Federica; Isaia, Francesco; Perra, Daniela; Pinna, Elisabetta; Pani, Alessandra

    2015-10-01

    Cisplatin, cis-diammineplatinum(II) dichloride, is a metal complex used in clinical practice for the treatment of cancer. Despite its great efficacy, it causes adverse reactions and most patients develop a resistance to cisplatin. To overcome these issues, a multi-drug therapy was introduced as a modern approach to exploit the drug synergy. A synergistic effect had been previously found when testing binary combinations of cisplatin and three copper complexes in vitro, namely, Cu(phen)(OH2)2(OClO3)2, [Cu(phen)2(OH2)](ClO4)2 and [Cu(phen)2(H2dit)](ClO4)2,(phen=1,10-phenanthroline, H2dit=imidazolidine-2-thione), against the human acute T-lymphoblastic leukaemia cell line (CCRF-CEM). In this work [Cu(phen)2(OH2)](ClO4)2 was also tested in combination with cisplatin against cisplatin-resistant sublines of CCRF-CEM (CCRF-CEM-res) and ovarian (A2780-res) cancer cell lines. The tested combinations show a synergistic effect against both the types of resistant cells. The possibility that this effect was caused by the formation of new adducts was considered and mass spectra of solutions containing cisplatin and one of the three copper complexes at a time were measured using electrospray ionisation at atmospheric-pressure mass spectrometry (ESI-MS). A mixed complex was detected and its stoichiometry was assessed on the basis of the isotopic pattern and the results of tandem mass spectrometry experiments. The formed complex was found to be [Cu(phen)(OH)μ-(Cl)2Pt(NH3)(H2O)](+). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ferromagnetic coupling by spin polarization in a trinuclear copper(II) metallacyclophane with a triangular cage-like structure.

    PubMed

    Dul, Marie-Claire; Ottenwaelder, Xavier; Pardo, Emilio; Lescouëzec, Rodrigue; Journaux, Yves; Chamoreau, Lise-Marie; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc

    2009-06-15

    A series of trinuclear copper(II) complexes of general formula A(6)[Cu(3)L(2)] x nH(2)O [L = benzene-1,3,5-tris(oxamate); A = Li(+) (n = 8), 1a; Na(+) (n = 11.5), 1b; and K(+) (n = 8.5), 1c] have been synthesized, and they have been structurally and magnetically characterized. X-ray diffraction on single crystals of 1c shows the presence of three square-planar copper(II)-bis(oxamato) moieties which are connected by a double benzene-1,3,5-triyl skeleton to give a unique metallacyclophane-type triangular cage. The copper basal planes are virtually orthogonal to the two benzene rings, which adopt an almost perfect face-to-face alignment. Complexes 1a-c exhibit a quartet (S = 3/2) ground spin state resulting from the moderate ferromagnetic coupling (J values in the range of +7.3 to +16.5 cm(-1)) between the three Cu(II) ions across the two benzene-1,3,5-tris(amidate) bridges [H = -J(S(1) x S(2) + S(2) x S(3) + S(3) x S(1)) with S(1) = S(2) = S(3) = S(Cu) = 1/2]. Density functional theory calculations on the S = 3/2 Cu(II)(3) ground spin state of 1c support the occurrence of a spin polarization mechanism for the propagation of the exchange interaction, as evidenced by the sign alternation of the spin density in the 1,3,5-substituted benzene spacers.

  11. Pentacoordinate and Hexacoordinate Mn(III) Complexes of Tetradentate Schiff-Base Ligands Containing Tetracyanidoplatinate(II) Bridges and Revealing Uniaxial Magnetic Anisotropy.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Trávníček, Zdeněk

    2016-12-08

    Crystal structures and magnetic properties of polymeric and trinuclear heterobimetallic Mn III ···Pt II ···Mn III coordination compounds, prepared from the Ba[Pt(CN)₄] and [Mn(L4A/B)(Cl)] ( 1a / b ) precursor complexes, are reported. The polymeric complex [{Mn(L4A)}₂{μ⁴-Pt(CN)₄}] n ( 2a ), where H₂L4A = N , N '-ethylene-bis(salicylideneiminate), comprises the {Mn(L4A)} moieties covalently connected through the [Pt(CN)₄] 2- bridges, thus forming a square-grid polymeric structure with the hexacoordinate Mn III atoms. The trinuclear complex [{Mn(L4B)}₂{μ-Pt(CN)₄}] ( 2b ), where H₂L4B = N , N '-benzene-bis(4-aminodiethylene-salicylideneiminate), consists of two [{Mn(L4B)} moieties, involving pentacoordinate Mn III atoms, bridged through the tetracyanidoplatinate (II) bridges to which they are coordinated in a trans fashion. Both complexes possess uniaxial type of magnetic anisotropy, with D (the axial parameter of zero-field splitting) = -3.7(1) in 2a and -2.2(1) cm -1 in 2b . Furthermore, the parameters of magnetic anisotropy 2a and 2b were also thoroughly studied by theoretical complete active space self-consistent field (CASSCF) methods, which revealed that the former is much more sensitive to the ligand field strength of the axial ligands.

  12. Syntheses, crystal structures and spectroscopic properties of copper(II)-tetracyanometallate(II) complexes with nicotinamide and isonicotinamide ligands

    NASA Astrophysics Data System (ADS)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-09-01

    Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.

  13. Halochromism, ionochromism, solvatochromism and density functional study of a synthesized copper(II) complex containing hemilabile amide derivative ligand.

    PubMed

    Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda

    2015-03-05

    This study investigates chromotropism of newly synthesized 3,3'-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the CuO to CuN bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the CuN/CuO isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the CuO isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Probing the electronic structures of [Cu2(mu-XR2)]n+ diamond cores as a function of the bridging X atom (X = N or P) and charge (n = 0, 1, 2).

    PubMed

    Harkins, Seth B; Mankad, Neal P; Miller, Alexander J M; Szilagyi, Robert K; Peters, Jonas C

    2008-03-19

    A series of dicopper diamond core complexes that can be isolated in three different oxidation states ([Cu2(mu-XR2)]n+, where n = 0, 1, 2 and X = N or P) is described. Of particular interest is the relative degree of oxidation of the respective copper centers and the bridging XR2 units, upon successive oxidations. These dicopper complexes feature terminal phosphine and either bridging amido or phosphido donors, and as such their metal-ligand bonds are highly covalent. Cu K-edge, Cu L-edge, and P K-edge spectroscopies, in combination with solid-state X-ray structures and DFT calculations, provides a complementary electronic structure picture for the entire set of complexes that tracks the involvement of a majority of ligand-based redox chemistry. The electronic structure picture that emerges for these inorganic dicopper diamond cores shares similarities with the Cu2(mu-SR)2 CuA sites of cytochrome c oxidases and nitrous oxide reductases.

  15. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties

    NASA Astrophysics Data System (ADS)

    Beckford, Floyd A.; Webb, Kelsey R.

    2017-08-01

    A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50) × 104 M- 1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105 M- 1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65 μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27 μM.

  16. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis

    PubMed Central

    Sato, Mariana R; Oshiro Junior, João A; Machado, Rachel TA; de Souza, Paula C; Campos, Débora L; Pavan, Fernando R; da Silva, Patricia B; Chorilli, Marlus

    2017-01-01

    Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs) for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1–F6), and 0.50% cetyltrimethylammonium bromide (F7–F12); and incorporated the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2), and [Cu(NCO)2(INH)2]·4H2O (3) to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined the melting points of the constituents of the NLCs. The in vitro activity of copper(II) complex-loaded NLCs against M. tuberculosis H37Rv showed an improvement in the anti-TB activity of 55.4, 27.1, and 41.1 times the activity for complexes 1, 2, and 3, respectively. An in vivo acute toxicity study of complex-loaded NLCs demonstrated their reduced toxicity. The results suggest that NLCs may be a powerful tool to optimize the activity of copper(II) complexes against M. tuberculosis. PMID:28356717

  17. Bonding and structure of copper nitrenes.

    PubMed

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  18. Polymer-Supported Optically Active fac(S)-Tris(thiotato)rhodium(III) Complex for Sulfur-Bridging Reaction With Precious Metal Ions.

    PubMed

    Aizawa, Sen-Ichi; Tsubosaka, Soshi

    2016-01-01

    The optically active mixed-ligand fac(S)-tris(thiolato)rhodium(III) complexes, ΔL -fac(S)-[Rh(aet)2 (L-cys-N,S)](-) (aet = 2-aminoethanethiolate, L-cys = L-cysteinate) () and ΔLL -fac(S)-[Rh(aet)(L-cys-N,S)2 ](2-) were newly prepared by the equatorial preference of the carboxyl group in the coordinated L-cys ligand. The amide formation reaction of with 1,10-diaminodecane and polyallylamine gave the diamine-bridged dinuclear Rh(III) complex and the single-chain polymer-supported Rh(III) complex with retention of the ΔL configuration of , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear-type trinuclear structure with the S-bridged Co(III) center and the two Δ-Rh(III) terminal moieties. The polymer-supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85-91, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Spectroscopic and DFT study of atenolol and metoprolol and their copper complexes

    NASA Astrophysics Data System (ADS)

    Cozar, O.; Szabó, L.; Cozar, I. B.; Leopold, N.; David, L.; Căinap, C.; Chiş, V.

    2011-05-01

    IR, Raman and surface-enhanced Raman scattering (SERS) spectra of atenolol (ATE) and metoprolol (MET) were recorded and assigned on the basis of density functional theory (DFT) calculations. A reliable assignment of vibrational IR and Raman bands of the two compounds was possible by a proper choice of models used in quantum chemical calculations. Both molecules are adsorbed to the silver surface mainly through the oxygen atoms and π-electrons of the phenyl ring. The coordination mode of the metal ions in Cu(II)-ATE and -MET compounds was also derived from IR and EPR spectra. EPR spectra give evidence for a square-planar arrangement around the copper (II) ion in the case of Cu-ATE complex, with a N 2O 2 chromophore. Only oxygen atoms are involved in the cooper coordination for Cu-MET complex, and two types of local symmetries with d and d as ground states for paramagnetic electron coexist.

  20. Spectral investigations on binding of DNA-CTMA complex with tetrameric copper phthalocyanines

    NASA Astrophysics Data System (ADS)

    Venkat, Narayanan; Haley, Joy E.; Swiger, Rachel; Zhu, Lei; Wei, Xiaoliang; Ouchen, Fahima; Grote, James G.

    2013-10-01

    The binding of DNA-CTMA (Deoxyribonucleic acid-cetyltrimethylammonium) complex with two tetrameric Copper Phthalocyanine (CuPc) systems, substituted with carboxylic acid (CuPc-COOH) and derivatized further as an imidazolium salt (CuPc-COOR), was investigated in dimethylsulfoxide (DMSO) solutions using UV/Visible Spectroscopy. Absorbance changes at 685 nm (Q band of the CuPc) were monitored as a function of DNA-CTMA added to the dye solution and stock concentrations of DNA-CTMA in DMSO were varied to facilitate observation of the full binding process. Our findings indicated that while binding with DNA-CTMA was more well-defined in the case of CuPc-COOH, the binding profile of the CuPc-COOR showed initial growth followed by decay in its Q-band absorbance which was indicative of a more complex binding mechanism involving the dye and DNA-CTMA. Preliminary findings from photophysical studies involving the CuPc tetramers and DNA-CTMA are also discussed in this paper.

  1. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy.

    PubMed

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G; Zhang, Xiaoyi; Liu, Cunming; Mulfort, Karen L; Chen, Lin X

    2018-01-28

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)-Ru(ii) analogs of the homodinuclear Cu(i)-Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.

  2. Di-μ-acetato-bis­[(acetato-κ2 O,O′)bis­(iso­nicotinamide-κN)copper(II)

    PubMed Central

    Perec, Mireille; Baggio, Ricardo

    2010-01-01

    The title centrosymmetric bimetallic complex, [Cu2(C2H3O2)4(C6H6N2O)4], is composed of two copper(II) cations, four acetate anions and four isonicotinamide (INA) ligands. The asymmetric unit contains one copper cation to which two acetate units bind asymmetrically; one of the Cu—O distances is rather long [2.740 (2) Å], almost at the limit of coordination. These Cu—O bonds define an equatorial plane to which the Cu—N bonds to the INA ligands are almost perpendicular, the Cu—N vectors subtending angles of 2.4 (1) and 2.3 (1)° to the normal to the plane. The metal coordination geometry can be described as a slightly distorted trigonal bipyramid if the extremely weak Cu—O bond is disregarded, or as a highly distorted square bipyramid if it is not. The double acetate bridge between the copper ions is not coplanar with the CuO4 equatorial planes, the dihedral angle between the (O—C—O)2 and O—Cu—O groups being 34.3 (1)°, resulting in a sofa-like conformation for the 8-member bridging loop. In the crystal, N—H⋯O hydrogen bonds occur, some of which generate a head-to tail-linkage between INA units, giving raise to chains along [101]; the remaining ones make inter-chain contacts, defining a three-dimensional network. There are in addition a number of C—H⋯O bonds involving aromatic H atoms. Probably due to steric hindrance, the aromatic rings are not involved in significant π⋯π inter­actions. PMID:21580223

  3. Fluorescence "turn on" detection of mercuric ion based on bis(dithiocarbamato)copper(II) complex functionalized carbon nanodots.

    PubMed

    Yuan, Chao; Liu, Bianhua; Liu, Fei; Han, Ming-Yong; Zhang, Zhongping

    2014-01-21

    A new "turn on" fluorescence nanosensor for selective Hg(2+) determination is reported based on bis(dithiocarbamato)copper(II) functionalized carbon nanodots (CuDTC2-CDs). The CuDTC2 complex was conjugated to the prepared amine-coated CDs by the condensation of carbon disulfide onto the nitrogen atoms in the surface amine groups, followed by the coordination of copper(II) to the resulting dithiocarbamate groups (DTC) and finally by the additional coordination of ammonium N-(dithicarbaxy) sarcosine (DTCS) to form the CuDTC2-complexing CDs. The CuDTC2 complex at surface strongly quenched the bright-blue fluorescence of the CDs by a combination of electron transfer and energy transfer mechanism. Hg(2+) could immediately switch on the fluorescence of the CuDTC2-CDs by promptly displacing the Cu(2+) in the CuDTC2 complex and thus shutting down the energy transfer pathway, in which the sensitive limit for Hg(2+) as low as 4 ppb was reached. Moreover, a paper-based sensor has been fabricated by printing the CuDTC2-CDs probe ink on a piece of cellulose acetate paper using a commercial inkjet printer. The fluorescence "turn on" on the paper provided the most conveniently visual detection of aqueous Hg(2+) ions by the observation with naked eye. The very simple and effective strategy reported here facilitates the development of portable and reliable fluorescence nanosensors for the determination of Hg(2+) in real samples.

  4. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  5. Cytokinin oxidase from Phaseolus vulgaris callus tissues. Enhanced in vitro activity of the enzyme in the presence of copper-imidazole complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatfield, J.M.; Armstrong, D.J.

    1987-07-01

    The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N/sup 6/-(..delta../sup 2/-isopentenyl)-adenine-2,8-/sup 3/H (i/sup 6/ Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, asmore » judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N/sup 6/-side chain of i/sup 6/ Ade.« less

  6. Effect of Copper Acyclovir Complexes on Herpes Simplex Virus Type 1 and Type 2 (HSV-1, HSV-2) Infection in Cultured Cells

    PubMed Central

    Panteva, M.; Varadinova, T.; Turel, I.

    1998-01-01

    We have found that when copper, zinc or cobalt is bound to a suitable ligand, the appropriate complex exhibited a significant anti-HSV effect (Varadinova et al., 1993; 1996). Recently published data by Sagripanti et al. (1997) also show that the inhibition of HSV by copper was enhanced by reducing agents and that mechanism of the inactivation is similar as for copper-mediated DNA damage (Aruoma, et al. 1991; Dizdaroglu, et al., 1991; Toyokuni and Sagripanti, 1994). Therefore it was interesting to study the efect of Cu(ll) coordination compounds with acyclovir (ACV) on the replication of HSV in cultured cells. The experiments on cytotoxicity as well as on the activity of three different Cu-ACV complexes [Cu(ACV)2Cl2(H2O)2] = (A); [Cu(ACV)2(H2O)3](NO3)2.H2O = (B) and [Cu(ACV)2(H2O)2](NO3)2] = (C) towards virus replication, with special attention on the growth of ACV-resistant strain R-100 were performed on MDBK cells. ACV was used as a reference compound. The following results were obtained: 1) Increased cell’s viability in the presence of 20-40(g/ml ACV and decreased one in the presence of Cu-ACV complexes with relative level (A) >> (B) > (C); 2) Cu-ACV complexes are more cytotoxic than the ligand - ACV and the relative level is (C)>(B)>(A); 3) The anti-HSV effect of ACV can be modulated by copper at levels depending on the specificity of the particular virus strain: (i) for the ACV sensitive strain DA (HSV-1) - ACV ((A) > (C) > (B); (ii) for the ACV sensitive strain Bja (HSV-2) (A) > ACV > (C) > (B); (iii) for strain R-100 (ACVR, TKa) - (A) > ACV > (C) > (B). This findings are consistent with previously published data and undoubtedly show that Cu-ACV complexes could be useful in the treatment of HSV infections, especially when the causative agent is a resistant to ACV mutant. PMID:18475820

  7. Enzyme-like catalysis via ternary complex mechanism: alkoxy-bridged dinuclear cobalt complex mediates chemoselective O-esterification over N-amidation.

    PubMed

    Hayashi, Yukiko; Santoro, Stefano; Azuma, Yuki; Himo, Fahmi; Ohshima, Takashi; Mashima, Kazushi

    2013-04-24

    Hydroxy group-selective acylation in the presence of more nucleophilic amines was achieved using acetates of first-row late transition metals, such as Mn, Fe, Co, Cu, and Zn. Among them, cobalt(II) acetate was the best catalyst in terms of reactivity and selectivity. The combination of an octanuclear cobalt carboxylate cluster [Co4(OCOR)6O]2 (2a: R = CF3, 2b: R = CH3, 2c: R = (t)Bu) with nitrogen-containing ligands, such as 2,2'-bipyridine, provided an efficient catalytic system for transesterification, in which an alkoxide-bridged dinuclear complex, Co2(OCO(t)Bu)2(bpy)2(μ2-OCH2-C6H4-4-CH3)2 (10), was successfully isolated as a key intermediate. Kinetic studies and density functional theory calculations revealed Michaelis-Menten behavior of the complex 10 through an ordered ternary complex mechanism similar to dinuclear metallo-enzymes, suggesting the formation of alkoxides followed by coordination of the ester.

  8. 40 CFR 180.1021 - Copper; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (2) Basic copper carbonate (malachite) as an algicide or herbicide in impounded and stagnant bodies.... Basic copper carbonate (malachite) 1184-64-1 Copper ammonia complex 16828-95-8 Copper ethylenediamine...

  9. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays.

    PubMed

    Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia

    2016-11-01

    Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    PubMed

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  11. Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants.

    PubMed

    Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone

    2011-01-17

    Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA

  12. ESI-MS measurements for the equilibrium constants of copper(II)-insulin complexes.

    PubMed

    Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan

    2018-06-01

    Trace elements regulate many biological reactions in the body. Copper(II) is known as one of trace elements and capable of binding to proteins. Insulin is a blood glucose-lowering peptide hormone and it is secreted by the pancreatic β-cells. In this study, Cu(II)-insulin complexes were investigated by using ESI-MS method. Insulin molecule gives ESI-MS peaks at +4, +5, +6 and +7 charged states. Cu(II)-insulin complexes can be monitored and quantified on the ESI-MS spectra as the shifted peaks according to insulin peaks. The solutions of Cu(II)-insulin complexes at different pHs and mole ratios of Cu(II) ions to insulin molecule were measured on the ESI-MS. The highest complex formation ratio for Cu(II)-insulin were found at pH 7. The multiple bindings of Cu(II) ions to insulin molecule was observed. The formation equilibrium constants of Cu(II)-insulin complexes were calculated as Kf 1 : 3.34 × 10 4 , Kf 2 : 2.99 × 10 4 , Kf 3 : 7.00 × 10 3 and Kf 4 :2.86 × 10 3 . The specific binding property of Cu(II) ions was controlled by using different spray ion sources including electrospray and nano-electrospray. The binding property of Cu(II) also investigated by MS/MS fragmentation. It was concluded from the ESI-MS measurements that Cu(II) ion has a high affinity to insulin molecules to form stable complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effect of copper sulphate treatment on natural phytoplanktonic communities.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Deluchat, Véronique; Briand, Jean-François; Lenain, Jean-François; Baudu, Michel; Amblard, Christian

    2006-12-01

    Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.

  14. A study of the effects of phosphates on copper corrosion in drinking water: Copper release, electrochemical, and surface analysis approach

    NASA Astrophysics Data System (ADS)

    Kang, Young C.

    by ToF-SIMS. Dynamic SIMS provided shallow depth profile of corroded copper sample. The third set of the experiments was related to electrochemical noise (EN) measurement through copper coupons to pipes. Calculating corrosion rate of a metal and predicting exactly how long it lasts are problematic since the metal corrosion may be caused by combined corrosion types. Many other metals undergo not only uniform corrosion, but localized corrosion. Uniform corrosion may be conducive for copper pipe to prevent it from further severe corrosion and form passivated film, but localized corrosion causes pinhole leaks and limits the copper pipe applications. The objective of this set of experiment is to discuss the application of electrochemical noise approaches to drinking water copper corrosion problems. Specially, a fundamental description of EN is presented including a discussion of how to interpret the results and technique limitations. Although it was indicated with electrochemical analysis that the corrosion activity was affected by orthophosphate addition in the short-term test, no copper-phosphate complex or compound was found by copper surface characterization. Apparently, orthophosphate can inhibit corrosion by adsorption on the copper surface, but cannot form solid complexes with copper in such a short time, 2 days. When polyphosphate was added into recirculating copper pipe system, copper level increased and polarization resistance decreased. Greenish blue residue on the copper pipe was suspected as copper phosphate complex and corrosion inhibition mechanism was proposed.

  15. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    NASA Astrophysics Data System (ADS)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  16. Copper transport and regulation in Schizosaccharomyces pombe.

    PubMed

    Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon

    2013-12-01

    The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis.

  17. Metal-metal interactions in tetrakis(diphenylphosphino)benzene-bridged dimetallic complexes and their related coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei-Wei; Fox, M.A.

    1994-06-22

    Electrochemical, EPR, and spectroelectrochemical methods have been used to probe electronic coupling through a 1,2,4,5-tetrakis(diphenylphosphino)benzene bridging ligand connecting metal centers in several Ni-, Pd-, and Pt-containing dimetallic complexes. These dimetalated complexes showed weak intervalence charge transfer (IT) bands and slightly shifted redox potentials in comparison with their monometallic models. A Marcus-Hush analysis of the energies of the IT bands for the electrochemically generated mixed-valence heterodimetallic complexes (Ni{sup o}-Pd{sup II} and Ni{sup o}-Pt{sup II}, respectively) established the magnitude of intermetallic electronic coupling. The weak thermal coupling observed in these dimetalated complexes is consistent with the very low conductivities (10{sup {minus}8}-10{sup {minus}10}{omega}{supmore » -1} cm{sup {minus}1}) observed in the polymeric analogs of these complexes, namely, the newly prepared metal coordination polymers (M = Ni{sup II}, Pd{sup II}, Pt{sup II}) with 1,2,4,5-tetrakis(diphenylphosphino)benzene.« less

  18. Neurokinin B and serum albumin limit copper binding to mammalian gonadotropin releasing hormone.

    PubMed

    Gul, Ahmad Samir; Tran, Kevin K; Jones, Christopher E

    2018-02-26

    Gonadotropin releasing hormone (GnRH) triggers secretion of luteinizing hormone and follicle stimulating hormone from gonadotropic cells in the anterior pituitary gland. GnRH is able to bind copper, and both in vitro and in vivo studies have suggested that the copper-GnRH complex is more potent at triggering gonadotropin release than GnRH alone. However, it remains unclear whether copper-GnRH is the active species in vivo. To explore this we have estimated the GnRH-copper affinity and have examined whether GnRH remains copper-bound in the presence of serum albumin and the neuropeptide neurokinin B, both copper-binding proteins that GnRH will encounter in vivo. We show that GnRH has a copper dissociation constant of ∼0.9 × 10 -9  M, however serum albumin and neurokinin B can extract metal from the copper-GnRH complex. It is therefore unlikely that a copper-GnRH complex will survive transit through the pituitary portal circulation and that any effect of copper must occur outside the bloodstream in the absence of neurokinin B. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Complexation of copper by aquatic humic substances from different environments

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.

    1983-01-01

    The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.

  20. Copper thiobis(alkylphenols) and antioxidant compositions thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braid, M.

    1980-09-30

    Novel copper thiobis(alkylphenol-phenolate) complexes are effective antioxidant additives for various organic media such as oils of lubricating viscosity and plastics. Additionally these novel copper organo-sulfur compounds are highly useful as energy quenchers and antisludging agents in a variety of organic substrates.

  1. Chemical speciation and bioavailability of Cu(II). Study of the ionic copper(II) and bis(glycinate)-copper(II) accumulation by Lemna species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benda, F.; Kouba, J.

    1991-03-01

    In this paper, the authors examined the accumulation of copper(II) in, and its toxic effect on, duckweed, a plant which exhibits extremely high concentration factors. The effect of copper(II) was investigated by adding it to the minimal medium in two forms: CuSO{sub 4} and (Cu(Gly){sub 2}). The neutral (2:1) tetracoordinated bis(glycinate)-copper(II) complex is constituted by two five-membered rings bonded to the central copper atom with the cis configuration. This complex was chosen to model the function of a neutral species (eliminating the charge effect) involving a nontoxic ligand, for which - in contrast to the hydrated Cu{sup 2+} species -more » direct permeation through the cell wall is conceivable.« less

  2. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  3. A novel dumbbell-like polyoxometalate assembled of copper(II)-disubstituted monovacant keggin polyoxoanions with a tetranuclear copper cluster.

    PubMed

    Miao, Hao; Xu, Xiao; Ju, Wei-Wei; Wan, Hong-Xiang; Zhang, Yu; Zhu, Dun-Ru; Xu, Yan

    2014-03-17

    A dimeric Keggin polyoxometalate, [Cu(bpy)(μ2-OH)]4[(H2O)(bpy)2HPW11Cu2O39]2·2CH3CH2OH·10H2O (1), constructed from two dicopper(II)-substituted monovacant Keggin polyoxoanions bridged by a Cu4 cluster, has been hydrothermally synthesized. Magnetic analysis indicates predominantly an antiferromagnetic interaction between copper(II) centers. Compound 1 also shows very high catalytic activity for the esterification of phosphoric acid with equimolar lauryl alcohol to monoalkyl phosphate ester.

  4. Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L.

    PubMed

    Liu, Donghua; Jiang, Wusheng; Meng, Qingmin; Zou, Jin; Gu, Jiegang; Zeng, Muai

    2009-04-01

    Different copper concentrations, as well as different exposure times, were applied to investigate both cytogenetical and ultrastructural alterations in garlic (Allium sativum L.) meristem cells. Results showed that the mitotic index decreased progressively when either copper concentration or exposure time increased. C-mitosis, anaphase bridges, chromosome stickiness and broken nuclei were observed in the copper treated root tip cells. Some particulates containing the argyrophilic NOR-associated proteins were distributed in the nucleus of the root-tip cells and the amount of this particulate material progressively increased with increasing exposure time. Finally, the nucleolar material was extruded from the nucleus into the cytoplasm. Also, increased dictyosome vesicles in number, formation of cytoplasmic vesicles containing electron dense granules, altered mitochondrial shape, disruption of nuclear membranes, condensation of chromatin material, disintegration of organelles were observed. The mechanisms of detoxification and tolerance of copper are briefly discussed.

  5. A new cadmium(II) complex with bridging dithiolate ligand: Synthesis, crystal structure and antifungal activity study

    NASA Astrophysics Data System (ADS)

    Singh, Mahesh Kumar; Sutradhar, Sanjit; Paul, Bijaya; Adhikari, Suman; Laskar, Folguni; Butcher, Raymond J.; Acharya, Sandeep; Das, Arijit

    2017-07-01

    A new polymeric complex of Cd(II) with 1,1-dicyanoethylene- 2,2-dithiolate [ i-MNT2- = {S2C:C(CN)2}2- ] as a bridging ligand has been synthesized and characterized on the basis of spectroscopy and single-crystal X-ray diffraction analysis. Single crystal X-ray diffraction analysis reveals that the Cadmium (II) complex is six coordinated 1D polymeric in nature. Biological screening effects in vitro of the synthesized polymeric complex has been tested against five fungi Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans(ATCC10231), Trichophyton mentagrophytes by the disc diffusion method. In vitro antifungal screening indicates that the complex exhibits fungistatic and fungicidal antifungal activity whereas K2i-MNT.H2O became silent on Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231), Trichophyton mentagrophytes.

  6. Extraction-spectrophotometric determination of traces of gold in copper in silver, lead, blister copper, copper concentrate and anode slime with 4,4'-bis(dimethylamino)-thiobenzophenone.

    PubMed

    Tsukahara, I

    1977-10-01

    A sensitive spectrophotometric method has been developed for the determination of gold in copper, silver, lead, blister copper, copper concentrate and anode slime. Optimal conditions have been established for the extraction and determination of gold. Gold is extracted as its bromo complex with tri-n-octylamine and determined photometrically with 4,4'-bis(dimethylamino)thiobenzophenone; the absorbance of the organic phase is measured at 540 nm and the apparent molar absorptivity is about 1.2 x 10(5) 1.mole(-1). cm(-1). As little as 0.1 or 0.2 ppm of gold in these materials can be determined.

  7. Copper(II) complexes as catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine

    NASA Astrophysics Data System (ADS)

    Khattar, Raghvi; Yadav, Anjana; Mathur, Pavan

    2015-05-01

    Two new mononuclear copper(II) complexes [Cu (L) (NO3)2] (1) and [Cu (L) Br2] (2) where (L = bis(1-(pyridin-2-ylmethyl)-benzimidazol-2-ylmethyl)ether) are synthesized and characterized by single-crystal X-ray diffraction analysis, elemental analysis, UV-Visible, IR spectroscopy, EPR and cyclic voltammetry. The complexes exhibit different coordination structures; the E1/2 value of the complex (1) is found to be relatively more cathodic than that of complex (2). X-band EPR spectra at low temperature in DMF supports a tetragonally distorted complex (1) while complex (2) shows three different g values suggesting a rhombic geometry. These complexes were utilized as a catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine assisted by molecular oxygen. The initial rate of reaction is dependent on the concentration of Cu(II) complex as well as substrate, and was found to be higher for the nitrate bound complex, while presence of acetate anion acts as a mild inhibitor of the reaction, as it is likely to pick up protons generated during the course of reaction. The inhibition suggests that the generated protons are further required in another important catalytic step.

  8. Unusual saccharin-N,O (carbonyl) coordination in mixed-ligand copper(II) complexes: Synthesis, X-ray crystallography and biological activity

    NASA Astrophysics Data System (ADS)

    Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed

    2017-07-01

    Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.

  9. Copper(II) binding by dissolved organic matter: Importance of the copper-to-dissolved organic matter ratio and implications for the Biotic Ligand Model

    USGS Publications Warehouse

    Craven, Alison M.; Aiken, George R.; Ryan, Joseph N.

    2012-01-01

    The ratio of copper to dissolved organic matter (DOM) is known to affect the strength of copper binding by DOM, but previous methods to determine the Cu2+–DOM binding strength have generally not measured binding constants over the same Cu:DOM ratios. In this study, we used a competitive ligand exchange–solid-phase extraction (CLE-SPE) method to determine conditional stability constants for Cu2+–DOM binding at pH 6.6 and 0.01 M ionic strength over a range of Cu:DOM ratios that bridge the detection windows of copper-ion-selective electrode and voltammetry measurements. As the Cu:DOM ratio increased from 0.0005 to 0.1 mg of Cu/mg of DOM, the measured conditional binding constant (cKCuDOM) decreased from 1011.5 to 105.6 M–1. A comparison of the binding constants measured by CLE-SPE with those measured by copper-ion-selective electrode and voltammetry demonstrates that the Cu:DOM ratio is an important factor controlling Cu2+–DOM binding strength even for DOM isolates of different types and different sources and for whole water samples. The results were modeled with Visual MINTEQ and compared to results from the biotic ligand model (BLM). The BLM was found to over-estimate Cu2+ at low total copper concentrations and under-estimate Cu2+ at high total copper concentrations.

  10. Synthesis, structure, spectroscopic and electrochemical properties of bis(histamine-saccharinate) copper(II) complex

    NASA Astrophysics Data System (ADS)

    Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet

    2007-05-01

    Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.

  11. New copper(I) complexes bearing lomefloxacin motif: Spectroscopic properties, in vitro cytotoxicity and interactions with DNA and human serum albumin.

    PubMed

    Komarnicka, Urszula K; Starosta, Radosław; Kyzioł, Agnieszka; Płotek, Michał; Puchalska, Małgorzata; Jeżowska-Bojczuk, Małgorzata

    2016-12-01

    In this paper we present lomefloxacin's (HLm, 2nd generation fluoroquinolone antibiotic agent) organic and inorganic derivatives: aminomethyl(diphenyl)phosphine (PLm), its oxide as well as new copper(I) iodide or copper(I) thiocyanate complexes with PLm and 2,9-dimethyl-1,10-phenanthroline (dmp) or 2,2'-biquinoline (bq) as the auxiliary ligands. The synthesized compounds were fully characterised by NMR, UV-Vis and luminescence spectroscopies. Selected structures were analysed by theoretical DFT (density functional theory) methods. High stability of the complexes in aqueous solutions in the presence of atmosferic oxygen was proven. Cytotoxic activity of all compounds was tested towards three cancer cell lines (CT26 - mouse colon carcinoma, A549 - human lung adenocarcinoma, and MCF7 - human breast adenocarcinoma). All complexes are characterised by cytotoxic activity higher than the activity of the parent drug and its organic derivatives as well as cisplatin. Studied derivatives as well as parent drug do not intercalate to DNA, except Cu(I) complexes with bq ligand. All studied complexes caused single-stranded cleavage of the sugar-phosphate backbone of plasmid DNA. The addition of H 2 O 2 caused distinct changes in the plasmid structure and led to single- and/or double-strain plasmid cleavage. Studied compounds interact with human serum albumin without affecting its secondary structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Electronic Structural Analysis of Copper(II)–TEMPO/ABNO Complexes Provides Evidence for Copper(I)–Oxoammonium Character

    DOE PAGES

    Walroth, Richard C.; Miles, Kelsey C.; Lukens, James T.; ...

    2017-09-18

    Copper/aminoxyl species are proposed as key intermediates in aerobic alcohol oxidation. Several possible electronic structural descriptions of these species are possible, and here we probe this issue by examining four crystallographically characterized Cu/aminoxyl halide complexes by Cu K-edge, Cu L 2,3- edge, and Cl K-edge X-ray absorption spectroscopy. The mixing coefficients between Cu, aminoxyl, and halide orbitals are determined via these techniques with support from density functional theory. The emergent electronic structure picture reveals that Cu coordination confers appreciable oxoammonium character to the aminoxyl ligand. The computational methodology is extended to one of the putative intermediates invoked in catalytic Cu/aminoxyl-drivenmore » alcohol oxidation reactions, with similar findings. On the whole, the results have important implications for the mechanism of alcohol oxidation and the underlying basis for cooperativity in this co- catalyst system.« less

  13. Production of Copper as a Complex Mining and Metallurgical Processing System in Polish Copper Mines of the Legnica-Glogów Copper Belt

    NASA Astrophysics Data System (ADS)

    Malewski, Jerzy

    2017-12-01

    Geological and technological conditions of Cu production in the Polish copper mines of the Legnica-Glogów Copper Belt are presented. Cu production is recognized as a technological fractal consisting of subsystems for mineral exploration, ore extraction and processing, and metallurgical treatment. Qualitative and quantitative models of these operations have been proposed, including estimation of their costs of process production. Numerical calculations of such a system have been performed, which allow optimize the system parameters according to economic criteria under variable Cu mineralization in the ore deposit. The main objective of the study is to develop forecasting tool for analysis of production efficiency in domestic copper mines based on available sources of information. Such analyses are primarily of social value, allowing for assessment of the efficiency of management of local mineral resources in the light of current technological and market constraints. At the same time, this is a concept of the system analysis method to manage deposit exploitation on operational and strategic level.

  14. Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein†

    PubMed Central

    Burns, Colin S.; Aronoff-Spencer, Eliah; Dunham, Christine M.; Lario, Paula; Avdievich, Nikolai I.; Antholine, William E.; Olmstead, Marilyn M.; Vrielink, Alice; Gerfen, Gary J.; Peisach, Jack; Scott, William G.; Millhauser, Glenn L.

    2010-01-01

    Recent evidence suggests that the prion protein (PrP) is a copper binding protein. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60–91. This region selectively binds Cu2+ in vivo. In a previous study using peptide design, EPR, and CD spectroscopy, we showed that the HGGGW segment within each octarepeat comprises the fundamental Cu2+ binding unit [Aronoff-Spencer et al. (2000) Biochemistry 40, 13760–13771]. Here we present the first atomic resolution view of the copper binding site within an octarepeat. The crystal structure of HGGGW in a complex with Cu2+ reveals equatorial coordination by the histidine imidazole, two deprotonated glycine amides, and a glycine carbonyl, along with an axial water bridging to the Trp indole. Companion S-band EPR, X-band ESEEM, and HYSCORE experiments performed on a library of 15N-labeled peptides indicate that the structure of the copper binding site in HGGGW and PHGGGWGQ in solution is consistent with that of the crystal structure. Moreover, EPR performed on PrP(23–28, 57–91) and an 15N-labeled analogue demonstrates that the identified structure is maintained in the full PrP octarepeat domain. It has been shown that copper stimulates PrP endocytosis. The identified Gly–Cu linkage is unstable below pH ≈6.5 and thus suggests a pH-dependent molecular mechanism by which PrP detects Cu2+ in the extracellular matrix or releases PrP-bound Cu2+ within the endosome. The structure also reveals an unusual complementary interaction between copper-structured HGGGW units that may facilitate molecular recognition between prion proteins, thereby suggesting a mechanism for transmembrane signaling and perhaps conversion to the pathogenic form. PMID:11900542

  15. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed

  16. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy

    DOE PAGES

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G.; ...

    2017-11-28

    Here, the kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)–Ru(II) analogs of the homodinuclear Cu(I)–Cu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These resultsmore » suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.« less

  17. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G.

    Here, the kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)–Ru(II) analogs of the homodinuclear Cu(I)–Cu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These resultsmore » suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.« less

  18. Copper transport and regulation in Schizosaccharomyces pombe

    PubMed Central

    Beaudoin, Jude; Ekici, Seda; Daldal, Fevzi; Ait-Mohand, Samia; Guérin, Brigitte; Labbé, Simon

    2016-01-01

    The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4–Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification of one of the first vacuolar copper transporters, Ctr6, as well as the copper-responsive Cuf1 transcription factor. Recent investigations have extended the use of S. pombe to elucidate new roles for copper metabolism in meiotic differentiation. For example, these studies have led to the discovery of Mfc1, which turned out to be the first example of a meiosis-specific copper transporter. Whereas copper-dependent transcriptional regulation of the Ctr family members is under the control of Cuf1 during mitosis or meiosis, meiosis-specific copper transporter Mfc1 is regulated by the recently discovered transactivator Mca1. It is foreseeable that identification of novel meiotic copper-related proteins will serve as stepping stones to unravel fundamental aspects of copper homoeostasis. PMID:24256274

  19. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  20. Synthesis of mononuclear copper(II) complexes of N3O2 and N4O2 donors containing Schiff base ligands: Theoretical and biological observations

    NASA Astrophysics Data System (ADS)

    Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.

    2017-09-01

    A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.

  1. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense.

    PubMed

    Wiemann, Philipp; Perevitsky, Adi; Lim, Fang Yun; Shadkchan, Yana; Knox, Benjamin P; Landero Figueora, Julio A; Choera, Tsokyi; Niu, Mengyao; Steinberger, Andrew J; Wüthrich, Marcel; Idol, Rachel A; Klein, Bruce S; Dinauer, Mary C; Huttenlocher, Anna; Osherov, Nir; Keller, Nancy P

    2017-05-02

    The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. An investigation into the unusual linkage isomerization and nitrite reduction activity of a novel tris(2-pyridyl) copper complex

    NASA Astrophysics Data System (ADS)

    Roger, Isolda; Wilson, Claire; Senn, Hans M.; Sproules, Stephen; Symes, Mark D.

    2017-08-01

    The copper-containing nitrite reductases (CuNIRs) are a class of enzymes that mediate the reduction of nitrite to nitric oxide in biological systems. Metal-ligand complexes that reproduce the salient features of the active site of CuNIRs are therefore of fundamental interest, both for elucidating the possible mode of action of the enzymes and for developing biomimetic catalysts for nitrite reduction. Herein, we describe the synthesis and characterization of a new tris(2-pyridyl) copper complex ([Cu1(NO2)2]) that binds two molecules of nitrite, and displays all three of the common binding modes for NO2-, with one nitrite bound in an asymmetric quasi-bidentate κ2-ONO manner and the other bound in a monodentate fashion with a linkage isomerism between the κ1-ONO and κ1-NO2 binding modes. We use density functional theory to help rationalize the presence of all three of these linkage isomers in one compound, before assessing the redox activity of [Cu1(NO2)2]. These latter studies show that the complex is not a competent nitrite reduction electrocatalyst in non-aqueous solvent, even in the presence of additional proton donors, a finding which may have implications for the design of biomimetic catalysts for nitrite reduction.

  3. Cyanide-limited complexation of molybdenum(III): synthesis of octahedral [Mo(CN)(6)](3-) and cyano-bridged [Mo(2)(CN)(11)](5-).

    PubMed

    Beauvais, Laurance G; Long, Jeffrey R

    2002-03-13

    Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.

  4. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones.

    PubMed

    Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Three Bridge Fryer's Ford Bridge, Nimrod Bridge, and Ward's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three Bridge - Fryer's Ford Bridge, Nimrod Bridge, and Ward's Crossing Bridge - Fryer's Ford Bridge, Spanning East Fork of Point Remove Creek at Fryer Bridge Road (CR 67), Solgohachia, Conway County, AR

  6. Synthesis, molecular docking and DNA binding studies of phthalimide-based copper(II) complex: In vitro antibacterial, hemolytic and antioxidant assessment

    NASA Astrophysics Data System (ADS)

    Arif, Rizwan; Nayab, Pattan Sirajuddin; Ansari, Istikhar A.; Shahid, M.; Irfan, Mohammad; Alam, Shadab; Abid, Mohammad; Rahisuddin

    2018-05-01

    In the present research work, we prepared N-substituted phthalimide, 2-(-(2-(2-(2-(1,3-dioxoisoindoline-2-yl-ethylamino)ethylamino)ethyl)isoindoline-1,3-dione (DEEI) and its copper(II) complex. The ligand (DEEI) and its Cu(II) complex were structurally identified using absorption, FTIR, NMR, electron spin resonance, X-ray diffraction spectral studies, thermogravimetric and elemental analyses. The electronic spectrum and magnetic moment value proposed that Cu(II) complex has square planar geometry. The DNA interaction ability of the ligand (DEEI) and Cu(II) complex was studied by means of absorption and fluorescence spectrophotometer, viscosity measurements, cyclic voltammetery, and circular dichroism methods. The extent of DNA binding (Kb) with Calf thymus (Ct-DNA) follows the order of Cu(II) complex (1.11 × 106 M-1) > DEEI (1.0 × 105 M-1), indicating that Cu(II) complex interact with Ct-DNA through groove binding mode and more sturdily than ligand (DEEI). Interestingly, in silico predictions were corroborated with in vitro DNA binding studies. The antibacterial evaluation of these compounds was screened against a panel of bacterial strains Pseudomonas aeruginosa (MTCC 2453), Salmonella enterica (MTCC 3224), Streptococcus pneumoniae (MTCC 655), Enterococcus faecalis (MTCC 439), Klebsiella pneumonia and Escherichia coli (ATCC 25922). The results showed that the copper(II) complex has significant antibacterial potential (IC50 = 0.0019 μg/mL) against Salmonella enteric comparable with ligand (DEEI) and standard drug ciprofloxacin. Growth curve study of Cu(II) complex against only three bacterial strains S. enterica, E. faecalis and S. pneumoniae showed its bactericidal nature. Cu(II) complex showed less than 2% hemolysis on human RBCs indicating its non toxic nature. The results of antioxidant assay demonstrated that scavenging activity of Cu(II) complex is higher as compared to ligand and ascorbic acid as standard.

  7. Synthesis, thermogravimetric, spectroscopic and theoretical characterization of copper(II) complex with 4-chloro-2-nitrobenzenosulfonamide

    NASA Astrophysics Data System (ADS)

    Camí, G.; Chacón Villalba, E.; Di Santi, Y.; Colinas, P.; Estiu, G.; Soria, D. B.

    2011-05-01

    4-Chloro-2-nitrobenzenesulfonamide (ClNbsa) was purified and characterized. A new copper(II) complex, [Cu(ClNbsa) 2(NH 3) 2], has been prepared using the sulfonamide as ligand. The thermal behavior of both, the ligand and the Cu(II) complex, was investigated by thermogravimetric analyses (TG) and differential thermal analysis (DT), and the electronic characteristics analyzed by UV-VIS, FTIR, Raman and 1H NMR spectroscopies. The experimental IR, Raman and UV-VIS spectra have been assigned on the basis of DFT calculations at the B3LYP level of theory using the standard (6-31 + G ∗∗) basis set. The geometries have been fully optimized in vacuum and in modeled dimethylsulfoxide (DMSO) solvent, using for the latter a continuum solvation model that reproduced the experimental conditions of the UV-VIS spectroscopy. The theoretical results converged to stable conformations for the free sulfonamide and for the complex, suggesting for the latter a distorted square planar geometry in both environments.

  8. Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications.

    PubMed

    Dalecki, Alex G; Crawford, Cameron L; Wolschendorf, Frank

    2017-01-01

    Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper. © 2017 Elsevier Ltd. All rights reserved.

  9. Polynuclear Hydroxido-Bridged Complexes of Platinum(IV) with Terminal Nitrato Ligands.

    PubMed

    Vasilchenko, Danila; Berdugin, Semen; Tkachev, Sergey; Baidina, Iraida; Romanenko, Galina; Gerasko, Olga; Korenev, Sergey

    2015-05-18

    For the first time the polynuclear hydroxido-bridged platinum(IV) nitrato complexes with nuclearity higher than two were isolated from nitric acid solutions of [Pt(H2O)2(OH)4] and crystallized as supramolecular compounds of macrocyclic cavitands cucurbit[n]uril (CB[n], n = 6,8) and 18-crown-6 ether: [Pt4(μ3-OH)2(μ2-OH)4(NO3)10]·CB[6]·25H2O (I), [Pt6(μ3-OH)4(μ2-OH)6(NO3)12](NO3)2·CB[8]·50H2O (II), and [H3O⊂18-crown-6]2[Pt2(μ2-OH)2(NO3)8][Pt4(μ3-OH)2(μ2-OH)4(NO3)10] (III). The isolation of the compounds in the single crystalline state allows the determination of the structure of the tetranuclear and hexanuclear complexes [Pt4(μ3-OH)2(μ2-OH)4(NO3)10] and [Pt6(μ3-OH)4(μ2-OH)6(NO3)12](2+), which have been previously unknown in the solid state. Stability of Ptx(OH)y cores of the polynuclear nitrato complexes toward alkaline hydrolysis was verified by (195)Pt NMR spectroscopy. Analysis of (195)Pt NMR spectra of the compound III reveals that addition of every Pt(μ-OH)2Pt ring results in ∼260 ppm downfield shift relative to the mononuclear form, which allows the prediction of signal positions for complexes of higher nuclearity.

  10. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes.

    PubMed

    da Silva, Patricia B; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus

    2015-12-16

    The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij(®) 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC(®) 25923 and Escherichia coli ATCC(®) 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC(®) CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the

  11. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes.

    PubMed

    Silva, Patricia B da; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus

    2015-12-16

    The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij® 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC® 25923 and Escherichia coli ATCC® 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC® CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the Vero

  12. Dihydroxo-bridged dimeric Cu(II) system containing sandwiched non-coordinating phenylacetate anion: Crystal structure, spectroscopic, anti-bacterial, anti-fungal and DNA-binding studies of [(phen)(H2O)Cu(OH)2Cu(H2O)(phen)]2L.6H2O: (HL = phenylacetic acid; phen = 1,10-phenanthroline)

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali

    2017-09-01

    This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.

  13. Release of Micronized Copper Particles from Pressure ...

    EPA Pesticide Factsheets

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the particles. Two common pathways of exposure, leaching during contact with water and transfer during physical contact, were investigated to gage potential human and environmental risk during intended use of the product. Characterization, leaching tests, and wipe tests were conducted on two representative formulations of micronized copper PTL (micronized copper azole or MCA) to quantify the levels of copper present in the treated material and the amount of copper released during use as well as to determine the form (particle or ion) of the copper after it was released. Additionally, an ionized copper pressure treated wood (alkaline copper azole or ACA) was tested for comparison. The characterization showed that copper carbonate is the primary particle form in the MCA treated wood, but other forms are also present, particularly in the MCA-1 formulation, which contained a large amount of organically complexed copper. Microscopy showed that MCA-1 contained particles roughly half the size of MCA-2. The leaching results indicate that mostly (> ~95%) ionic copper is released from the MCA wood and that the particulate copper that was released is attached to cellulose and not free in solution. A sma

  14. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jinbin, E-mail: hanjinbin@gmail.com; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032; Shanghai Clinical Center, Chinese Academy of Sciences/Xuhui Central Hospital, Shanghai 200031

    2013-12-15

    It is a therapeutic strategy for cancers including pancreatic to inhibit proteasome activity. Disulfiram (DSF) may bind copper (Cu) to form a DSF–Cu complex. DSF–Cu is capable of inducing apoptosis in cancer cells by inhibiting proteasome activity. DSF is rapidly converted to diethyldithiocarbamate (DDTC) within bodies. Copper(II) absorbed by bodies is reduced to copper(I) when it enters cells. We found that DDTC and copper(I) could form a binuclear complex which might be entitled DDTC–Cu(I), and it had been synthesized by us in the laboratory. This study is to investigate the anticancer potential of this complex on pancreatic cancer and themore » possible mechanism. Pancreatic cancer cell lines, SW1990, PANC-1 and BXPC-3 were used for in vitro assays. Female athymic nude mice grown SW1990 xenografts were used as animal models. Cell counting kit-8 (cck-8) assay and flow cytometry were used for analyzing apoptosis in cells. A 20S proteasome assay kit was used in proteasome activity analysis. Western blot (WB) and immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were used in tumor sample analysis. The results suggest that DDTC–Cu(I) inhibit pancreatic cancer cell proliferation and proteasome activity in vitro and in vivo. Accumulation of ubiquitinated proteins, and increased p27 as well as decreased NF-κB expression were detected in tumor tissues of DDTC–Cu(I)-treated group. Our data indicates that DDTC–Cu(I) is an effective proteasome activity inhibitor with the potential to be explored as a drug for pancreatic cancer. - Highlights: • A new structure of DDTC–Cu(I) was reported for the first time. • DDTC–Cu(I) dissolved directly in water was for in vitro and in vivo uses. • DDTC–Cu(I) demonstrated significant anticancer effect in vitro and in vivo. • DDTC–Cu(I) is capable of inhibiting proteasome activity in vitro and in vivo.« less

  15. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    PubMed Central

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  16. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    PubMed

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Synthesis and Study of Metallonitride Complexes and Polymers

    DTIC Science & Technology

    1992-03-02

    heterobimetallic nitride-bridged complexes, examples of homobimetallic nitride-bridged complexes, and new linear chain metallonitride polymers. We...the Nitride Bridge. Synthesis and Reactivity of Early-Late Heterobimetallic Nitride-Bridged Complexes," C. M. Jones, D. M.-T. Chan, J. C. Calabrese

  18. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  19. Origin of a counterintuitive yellow light-emitting electrochemical cell based on a blue-emitting heteroleptic copper(i) complex.

    PubMed

    Weber, Michael D; Garino, Claudio; Volpi, Giorgio; Casamassa, Enrico; Milanesio, Marco; Barolo, Claudia; Costa, Rubén D

    2016-06-07

    This work provides the synthesis, structural characterization, electrochemical and photophysical features, as well as the application in light-emitting electrochemical cells (LECs) of a novel heteroleptic copper(i) complex - [Cu(impy)(POP)][PF6], where impy is 3-(2-methoxyphenyl)-1-(pyridine-2-yl)imidazo[1,5-a]pyridine and POP is bis{2-(diphenylphosphanyl)phenyl}ether. This compound shows blue photoluminescence (PL, λ = 450 nm) in solution and solid-state and excellent redox stability. Despite these excellent features, the electroluminescence (EL) response is located at ∼550 nm. Although the EL spectrum of LECs is typically red-shifted compared to the PL of the electroluminescent material, a shift of ca. 100 nm represents the largest one reported in LECs. To date, the large shift phenomena have been attributed to (i) a change in the nature of the lowest emitting state due to a concentration effect of the films, (ii) a reversible substitution of the ligands due to the weak coordination to the Cu(i), and (iii) a change in the distribution of the excited states due to polarization effects. After having discarded these along with others like the irreversible degradation of the emitter during device fabrication and/or under operation conditions, driving conditions, active layer composition, and changes in the excited states under different external electrical stimuli, we attribute the origin of this unexpected shift to a lack of a thermally activated delayed fluorescence (TADF) process due to the solely ligand-centered character of the excited states. As such, the lack of a charge transfer character in the excited states leads to a blue-fluorescence and yellow-phosphorescence photo- and electro-responses, respectively. This corroborates recent studies focused on the design of TADF for heteroleptic copper(i) complexes. Overall, this work is a clear insight into the design of new copper(i) complexes towards the preparation of blue LECs, which are still unexplored.

  20. Synthesis, characterization, X-ray crystal structure and conductometry studying of a number of new Schiff base complexes; a new example of binuclear square pyramidal geometry of Cu(II) complex bridged with an oxo group

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Alavipour, Ehsan

    2015-11-01

    Three new binuclear Cu(II), Mn(II), Co(II) complexes [Cu2(L) (ClO4)](ClO4)2 (1), [Mn2(L) (ClO4)](ClO4)2 (2), and [Co2(L) (ClO4)](ClO4)2 (3), {L = 1,3-bis(2-((Z)-(2-aminopropylimino)methyl)phenoxy)propan-2-ol} have been synthesized. Single crystal X-ray structure analysis of complex 1 showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. In addition, the crystal structure studying shows, a perchlorate ion has been bridged to the Cu(II) metal centers. However, two distorted square pyramidal Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, the conductometry behaviors of all complexes were studied in acetonitrile solution.

  1. 6-Azabicyclo[3.2.1]octanes Via Copper-Catalyzed Enantioselective Alkene Carboamination

    PubMed Central

    Casavant, Barbara J.; Hosseini, Azade S.

    2014-01-01

    Bridged bicyclic rings containing nitrogen heterocycles are important motifs in bioactive small organic molecules. An enantioselective copper-catalyzed alkene carboamination reaction that creates bridged heterocycles is reported herein. Two new rings are formed in this alkene carboamination reaction where N-sulfonyl-2-aryl-4-pentenamines are converted to 6-azabicyclo[3.2.1]octanes using [Ph-Box-Cu](OTf)2 or related catalysts in the presence of MnO2 as stoichiometric oxidant in moderate to good yields and generally excellent enantioselectivities. Two new stereocenters are formed in the reaction, and the C-C bond-forming arene addition is a net C-H functionalization. PMID:25484848

  2. Biomineralization of copper: Solutions for waste remediation and biomining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, C.R.; Thompson, S.A.; Crusberg, T.C.

    1997-12-31

    The fungus Penicillium ochro-chloron is able to extract copper from aqueous solutions and form insoluble copper precipitates within the matrix of fungal mycelia. The formation of these complexes is probably a detoxification mechanism used by the organism to deal with the potentially lethal concentrations of heavy metals. Metal immobilization occurs external to the cells but within the mycelia when the solubility products of copper phosphate and copper oxalate are exceeded. This process may be exploited in biomining to remove and recover copper and perhaps other heavy metals that have become solubilized in pit mine lakes.

  3. Design of copper DNA intercalators with leishmanicidal activity.

    PubMed

    Navarro, Maribel; Cisneros-Fajardo, Efrén José; Sierralta, Aníbal; Fernández-Mestre, Mercedes; Silva, Pedro; Arrieche, Dwight; Marchán, Edgar

    2003-04-01

    The complexes [Cu(dppz)(NO(3))]NO(3) (1), [Cu(dppz)(2)(NO(3))]NO(3) (2), [Cu(dpq)(NO(3))]NO(3) (3), and [Cu(dpq)(2)(NO(3))]NO(3) (4) were synthesized and characterized by elemental analysis, FAB-mass spectrometry, EPR, UV, and IR spectroscopies, and molar conductivity. DNA interaction studies showed that intercalation is an important way of interacting with DNA for these complexes. The biological activity of these copper complexes was evaluated on Leishmania braziliensis promastigotes, and the results showed leishmanicidal activity. Preliminary ultrastructural studies with the most active complex (2) at 1 h revealed parasite swelling and binucleated cells. This finding suggests that the leishmanicidal activity of the copper complexes could be associated with their interaction with the parasitic DNA.

  4. Computational studies on nonlinear optical property of novel Wittig-based Schiff-base ligands and copper(II) complex

    NASA Astrophysics Data System (ADS)

    Rajasekhar, Bathula; Patowary, Nidarshana; K. Z., Danish; Swu, Toka

    2018-07-01

    Hundred and forty-five novel molecules of Wittig-based Schiff-base (WSB), including copper(II) complex and precursors, were computationally screened for nonlinear optical (NLO) properties. WSB ligands were derived from various categories of amines and aldehydes. Wittig-based precursor aldehydes, (E)-2-hydroxy-5-(4-nitrostyryl)benzaldehyde (f) and 2-hydroxy-5-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl) benzaldehyde (g) were synthesised and spectroscopically confirmed. Schiff-base ligands and copper(II) complex were designed, optimised and their NLO property was studied using GAUSSIAN09 computer program. For both optimisation and hyperpolarisability (finite-field approach) calculations, Density Functional Theory (DFT)-based B3LYP method was applied with LANL2DZ basis set for metal ion and 6-31G* basis set for C, H, N, O and Cl atoms. This is the first report to present the structure-activity relationship between hyperpolarisability (β) and WSB ligands containing mono imine group. The study reveals that Schiff-base ligands of the category N-2, which are the ones derived from the precursor aldehyde, 2-hydroxy-5-(4nitro-styryl)benzaldehyde and pre-polarised WSB coordinated with Cu(II), encoded as Complex-1 (β = 14.671 × 10-30 e.s.u) showed higher β values over other categories, N-1 and N-3, i.e. WSB derived from precursor aldehydes, 2-hydroxy-5-styrylbenzaldehyde and 2-hydroxy-5-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl)benzaldehyde, respectively. For the first time here we report the geometrical isomeric effect on β value.

  5. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pH<6) showed a clearer biochar-induced immobilization of copper with biochar than neutral or alkaline soils. The analyses of leachate waters of microlysimeter experiments showed that the biochar effects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally

  6. Pore water distributions of dissolved copper and copper-complexing ligands in estuarine and coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Skrabal, Stephen A.; Donat, John R.; Burdige, David J.

    2000-06-01

    differences in the type of Cu-complexing organic matter. Total ligand concentrations ( L1 S + L2 S) are 15 to >100 times higher in the upper intervals of the pore waters relative to ligand concentrations in the bottom waters of the Chesapeake Bay (30-60 nM), consistent with previous observations of fluxes of these ligands from the sediments to overlying waters. These results suggest that sediments are potentially significant sources of Cu-complexing ligands to the overlying waters of the Chesapeake Bay, and perhaps, other shallow water estuarine and coastal environments. Copper-complexing ligands released from sediment pore waters may play an important role in influencing Cu speciation in overlying waters.

  7. Copper-Hydroperoxo Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monoxygenases

    PubMed Central

    Maiti, Debabrata; Narducci Sarjeant, Amy A.; Karlin, Kenneth D.

    2008-01-01

    Substantial oxidative N-debenzylation reaction along with PhCH=O formation occurs from a hydroperoxo copper(II) complex which has a dibenzylamino substrate (-N(CH2Ph)2 appended as a substituent on one pyridyl group of its tripodal tetradentate TMPA {≡ TPA ≡ tris(2-pyridylmethyl)amine)} ligand framework. During the course of the (LN(CH2Ph)2)CuII(−OOH) reactivity, formation of a substrate and −OOH (an oxygen atom) derived alkoxo CuII(−OR) complex occurs. The observation that the same CuII(−OR) species occurs from CuI/PhIO chemistry suggests the possibility that a copper-oxo (cupryl) reactive intermediate forms during alkoxo species formation, and new ESI-MS data obtained provides some further support for this high-valent intermediate. Net H-atom abstraction chemistry is proposed, based on kinetic isotope effect studies provided here and that previously published for a closely related CuII(−OOH) species incorporating dimethylamine (-N(CH3)2) as the internal substrate (J. Am. Chem. Soc. 2007, 129, 6720-6721); the CuI/PhIO reactivity, with similar isotope effect results, provides further support. The reactivity of these chemical systems closely resembles proposed oxidative N-dealkylation mechanisms effected by the copper-monooxygenases dopamine β-monooxygenase (DβM) or peptidylglycine-α-hydroxylating monooxygenase (PHM). PMID:18783212

  8. Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.

    PubMed

    Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2014-10-29

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.

  9. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits.

    PubMed

    Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M

    2015-05-01

    Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. © 2014 Wiley Periodicals, Inc.

  10. Study of the influence of the bridge on the magnetic coupling in cobalt(II) complexes.

    PubMed

    Fabelo, Oscar; Cañadillas-Delgado, Laura; Pasán, Jorge; Delgado, Fernando S; Lloret, Francesc; Cano, Joan; Julve, Miguel; Ruiz-Pérez, Catalina

    2009-12-07

    Two new cobalt(II) complexes of formula [Co(2)(bta)(H(2)O)(6)](n) x 2nH(2)O (1) and [Co(phda)(H(2)O)](n) x nH(2)O (2) [H(4)bta = 1,2,4,5-benzenetetracarboxylic acid, H(2)phda = 1,4-phenylenediacetic acid] have been characterized by single crystal X-ray diffraction. Compound 1 is a one-dimensional compound where the bta(4-) ligand acts as 2-fold connector between the cobalt(II) ions through two carboxylate groups in para-conformation. Triply bridged dicobalt(II) units occur within each chain, a water molecule, a carboxylate group in the syn-syn conformation, and an oxo-carboxylate with the mu(2)O(1);kappa(2)O(1),O(2) coordination mode acting as bridges. Compound 2 is a three-dimensional compound, where the phda(2-) group acts as a bridge through its two carboxylate groups, one of them adopting the mu-O,O' coordination mode in the syn-syn conformation and the other exhibiting the single mu(2)-O'' bridging mode. As in 1, chains of cobalt(II) ions occur in 2 with a water molecule, a syn-syn carboxylate group, and an oxo-carboxylate constitute the triply intrachain bridging skeleton. Each chain is linked to other four ones through the phda(2-) ligand, giving rise to the three-dimensional structure. The values of the intrachain cobalt-cobalt separation are 3.1691(4) (1) and 3.11499(2) A (2) whereas those across the phenyl ring of the extended bta(4-) (1) and phda(2-) (2) groups are 10.1120(6) and 11.4805(69 A, respectively. The magnetic properties of 1 and 2 have been investigated in the temperature range 1.9-300 K, and their analysis has revealed the occurrence of moderate intrachain ferromagnetic couplings [J = +5.4 (1) and +2.16 cm(-1) (2), J being the isotropic magnetic coupling parameter], the magnetic coupling through the extended bta(4-) and phda(2-) with cobalt-cobalt separations larger than 10 A being negligible. The nature and magnitude of the magnetic interactions between the high-spin cobalt(II) ions in 1 and 2 are compared to those of related systems and

  11. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruckeberg, A.L.; Wu, L.

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population,more » and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.« less

  12. Copper Homeostasis at the Host-Pathogen Interface*

    PubMed Central

    Hodgkinson, Victoria; Petris, Michael J.

    2012-01-01

    The trace element copper is indispensable for all aerobic life forms. Its ability to cycle between two oxidation states, Cu1+ and Cu2+, has been harnessed by a wide array of metalloenzymes that catalyze electron transfer reactions. The metabolic needs for copper are sustained by a complex series of transporters and carrier proteins that regulate its intracellular accumulation and distribution in both pathogenic microbes and their animal hosts. However, copper is also potentially toxic due in part to its ability to generate reactive oxygen species. Recent studies suggest that the macrophage phagosome accumulates copper during bacterial infection, which may constitute an important mechanism of killing. Bacterial countermeasures include the up-regulation of copper export and detoxification genes during infection, which studies suggest are important determinants of virulence. In this minireview, we summarize recent developments that suggest an emerging role for copper as an unexpected component in determining the outcome of host-pathogen interactions. PMID:22389498

  13. A novel tridentate coordination mode for the carbonatonickel system exhibited in an unusual hexanuclear nickel(II) mu3-carbonato-bridged complex.

    PubMed

    Anderson, James C; Blake, Alexander J; Moreno, Rafael Bou; Raynel, Guillaume; van Slageren, Joris

    2009-11-14

    The fixation of CO(2) at ambient temperature has been achieved by the reaction of Ni(cod)(2) and TMEDA in CO(2) saturated THF that yields a novel hexanuclear nickel(II) mu(3)-carbonato bridged complex [Ni(6)(mu(3)-CO(3))(4)(TMEDA)(6)(H(2)O)(12)](OH)(4) in 59% yield. The complex was characterised by MS analysis and the structure corroborated by single-crystal X-ray crystallography. The complex exhibits a rare carbonato binding mode for Ni(II) complexes and moderately strong antiferromagnetic interactions.

  14. GOLGI IN COPPER HOMEOSTASIS: A VIEW FROM THE MEMBRANE TRAFFICKING FIELD

    PubMed Central

    Polishchuk, Roman; Lutsenko, Svetlana

    2013-01-01

    Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B, that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper-ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintain Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease. PMID:23846821

  15. Intramolecular ferro- and antiferromagnetic interactions in oxo-carboxylate bridged digadolinium(III) complexes.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Delgado, Fernando S; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2010-08-21

    Two new digadolinium(III) complexes with monocarboxylate ligands, [Gd2(pac)6(H2O)4] (1) and [Gd2(tpac)6(H2O)4] (2) (Hpac = pentanoic acid and Htpac = 3-thiopheneacetic acid), have been prepared and their structures determined by X-ray diffraction on single crystals. Their structures consist of neutral and isolated digadolinium(III) units, containing six monocarboxylate ligands and four coordinated water molecules, the bridging skeleton being built by a muO(1):kappa2O(1)O(2) framework. This structural pattern has already been observed in the parent acetate-containing compound [Gd2(ac)6(H2O)4] x 4 H2O (3) whose structure and magnetic properties were reported elsewhere (L. Cañadillas-Delgado, O. Fabelo, J. Cano, J. Pasán, F. S. Delgado, M. Julve, F. Lloret and C. Ruiz-Pérez, CrystEngComm, 2009, 11, 2131). Each gadolinium(III) ion in 1 and 2 is nine-coordinated with seven carboxylate-oxygen atoms from four pac (1)/tpac (2) ligands and two water molecules (1 and 2) building a distorted monocapped square antiprism. The values of the intramolecular gadolinium-gadolinium separation are 4.1215(5) (1), 4.1255(6) (2) and 4.1589(3) A (3) and those of the angle at the oxo-carboxylate bridge (theta) are 113.16(13) (1), 112.5(2) (2) and 115.47(7) degrees (3). Magnetic susceptibility measurements in the temperature range 1.9-300 K reveal the occurrence of a weak intramolecular antiferromagnetic interaction [J = -0.032(1) (1) and -0.012(1) cm(-1) (2), the Hamiltonian being defined as H = -JS(A) x S(B)] in contrast with the intramolecular ferromagnetic coupling which occurs in 3 (J = +0.031(1) cm(-1)). The magneto-structural data of 1-3 show the relevance of the geometrical parameters at the muO(1):kappa2O(1)O(2) bridge on the nature of the magnetic coupling between two gadolinium(III) ions.

  16. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Mononuclear thiocyanate containing nickel(II) and binuclear azido bridged nickel(II) complexes of N4-coordinate pyrazole based ligand: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran

    2013-10-01

    Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1‧ and L2‧ are N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2), N,N-diethyl-N‧-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1‧) and N-((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2‧) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (μ-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.

  18. Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN){sub 4}]{sup 2-}: Synthesis, crystal structure, magnetic properties and ESR studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Fangfang; Xiao Hailian; Liu Faqian

    2006-12-15

    Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by means of elemental analysis, ESR, and single-crystal X-ray. X-ray diffraction analysis reveals that these three complexes all form 3D network structure, and their structures all contain a thiocyanato-bridged Hg...Hg chain (M=Mn, Ni, Cu) in which the metal and mercury centers exhibit different coordination environments. In complex 1, the [Hg(SCN){sub 4}]{sup 2-} anion connects three [Ni(Im){sub 3}]{sup 2+} using three SCN ligands giving risemore » to a 3D structure, and in complex 2, four SCN ligands bridge [Hg(SCN){sub 4}]{sup 2-} and [Mn(Im){sub 2}]{sup 2+} to form a 3D structure. The structure of 3 contains two copper atoms with distinct coordination environment; one is coordinated by four N-methyl-imidazole ligands and two axially elongated SCN groups, and another by four SCN groups (two elongated) and two N-methyl-imidazole ligands. The magnetic property of complex 1 has been investigated. The spin state structure in hetermetallic NiHgNi systems of complex 1 is irregular. The ESR spectra results of complex 3 demonstrate Cu{sup 2+} ion lie on octahedral environment. -- Graphical abstract: Three new M/Hg bimetallic thiocyanato-bridged coordination polymers; [Hg(SCN){sub 4}Ni(Im){sub 3}] {sub {infinity}} 1, [Hg(SCN){sub 4}Mn(Im){sub 2}] {sub {infinity}} 2, and [Hg(SCN){sub 4}Cu(Me-Im){sub 2} Hg(SCN){sub 4}Cu(Me-Im){sub 4}] {sub {infinity}} 3, (Im=imidazole, Me-Im=N-methyl-imidazole), have been synthesized and characterized by single-crystal X-ray. All coordination polymers possess 3-D structures, and consist of organic base neutral ligands (imidazole and N-methyl-imidazole) and SCN{sup -1} anions. Their structural difference

  19. Non-covalent interactions in 2-methylimidazolium copper(II) complex (MeImH)2[Cu(pfbz)4]: Synthesis, characterization, single crystal X-ray structure and packing analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Saini, Anju; Kumar, Santosh; Kumar, Jitendra; Sathishkumar, Ranganathan; Venugopalan, Paloth

    2017-01-01

    A new anionic copper(II) complex, (MeImH)2 [Cu(pfbz)4] (1) where, MeImH = 2-methylimidazolium and pfbz = pentafluorobenzoate has been isolated by reacting copper(II) sulfate pentahydrate, pentafluorobenzoic acid and 2-methylimidazole in ethanol: water mixture in 1:2:2 molar ratio. This complex 1 has been characterized by elemental analysis, thermogravimetric analysis, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. The complex salt crystallizes in monoclinic crystal system with space group C2/c. Single crystal X-ray structure determination revealed the presence of discrete ions: [Cu(pfbz)4]2- anion and two 2-methylimidazolium cation (C4H7N2)+. The crystal lattice is stabilized by strong hydrogen bonding and F⋯F interactions between cationic-anionic and the anionic-anionic moieties respectively, besides π-π interactions.

  20. Resonant tunneling via a Ru-dye complex using a nanoparticle bridge junction.

    PubMed

    Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya

    2018-06-15

    Nonlinear current-voltage (I-V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru-dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I-V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I-V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.

  1. Resonant tunneling via a Ru–dye complex using a nanoparticle bridge junction

    NASA Astrophysics Data System (ADS)

    Nishijima, Satoshi; Otsuka, Yoichi; Ohoyama, Hiroshi; Kajimoto, Kentaro; Araki, Kento; Matsumoto, Takuya

    2018-06-01

    Nonlinear current–voltage (I–V) characteristics is an important property for the realization of information processing in molecular electronics. We studied the electrical conduction through a Ru–dye complex (N-719) on a 2-aminoethanethiol (2-AET) monolayer in a nanoparticle bridge junction system. The nonlinear I–V characteristics exhibited a threshold voltage at around 1.2 V and little temperature dependence. From the calculation of the molecular states using density functional theory and the energy alignment between the electrodes and molecules, the conduction mechanism in this system was considered to be resonant tunneling via the HOMO level of N-719. Our results indicate that the weak electronic coupling of electrodes and molecules is essential for obtaining nonlinear I–V characteristics with a clear threshold voltage that reflect the intrinsic molecular state.

  2. Synthesis, characterization and biological activities of copper(II) complex of 2-Benzimidazolyl-urea and the nitrate salt of 2-Benzimidazolyl-urea

    NASA Astrophysics Data System (ADS)

    Poyraz, Mehmet; Sari, Musa; Banti, Christina N.; Hadjikakou, Sotiris K.

    2017-10-01

    The synthesis of the complex {[Cu(BZIMU)2](NO3)2} (1) (BZIMU = 2-Benzimidazolyl-urea) is reported here. The complex 1 was characterized by elemental analysis, FT-IR, magnetic susceptibility and molar conductance measurements. The crystal structures of 1 and of the nitrate salt of [(BZIMUH+)(NO3)-] (2) were determined by X-ray diffraction analysis. The copper complex 1 and [(BZIMUH+)(NO3)-] (2) were evaluated for their in vitro cytotoxic activity (cell viability) against human cervix adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell line and normal human fetal lung fibroblast cells (MRC-5) with SRB assay.

  3. Antitumoral, antihypertensive, antimicrobial, and antioxidant effects of an octanuclear copper(II)-telmisartan complex with an hydrophobic nanometer hole.

    PubMed

    Islas, María S; Martínez Medina, Juan J; López Tévez, Libertad L; Rojo, Teófilo; Lezama, Luis; Griera Merino, Mercedes; Calleros, Laura; Cortes, María A; Rodriguez Puyol, Manuel; Echeverría, Gustavo A; Piro, Oscar E; Ferrer, Evelina G; Williams, Patricia A M

    2014-06-02

    A new Cu(II) complex with the antihypertensive drug telmisartan, [Cu8Tlm16]·24H2O (CuTlm), was synthesized and characterized by elemental analysis and electronic, FTIR, Raman and electron paramagnetic resonance spectroscopy. The crystal structure (at 120 K) was solved by X-ray diffraction methods. The octanuclear complex is a hydrate of but otherwise isostructural to the previously reported [Cu8Tlm16] complex. [Cu8Tlm16]·24H2O crystallizes in the tetragonal P4/ncc space group with a = b = 47.335(1), c = 30.894(3) Å, Z = 4 molecules per unit cell giving a macrocyclic ring with a double helical structure. The Cu(II) ions are in a distorted bipyramidal environment with a somewhat twisted square basis, cis-coordinated at their core N2O2 basis to two carboxylate oxygen and two terminal benzimidazole nitrogen atoms. Cu8Tlm16 has a toroidal-like shape with a hydrophobic nanometer hole, and their crystal packing defines nanochannels that extend along the crystal c-axis. Several biological activities of the complex and the parent ligand were examined in vitro. The antioxidant measurements indicate that the complex behaves as a superoxide dismutase mimic with improved superoxide scavenger power as compared with native sartan. The capacity of telmisartan and its copper complex to expand human mesangial cells (previously contracted by angiotensin II treatment) is similar to each other. The antihypertensive effect of the compounds is attributed to the strongest binding affinity to angiotensin II type 1 receptor and not to the antioxidant effects. The cytotoxic activity of the complex and that of its components was determined against lung cancer cell line A549 and three prostate cancer cell lines (LNCaP, PC-3, and DU 145). The complex displays some inhibitory effect on the A549 line and a high viability decrease on the LNCaP (androgen-sensitive) line. From flow cytometric analysis, an apoptotic mechanism was established for the latter cell line. Telmisartan and CuTlm show

  4. Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite

    NASA Astrophysics Data System (ADS)

    Tiberg, Charlotta; Sjöstedt, Carin; Persson, Ingmar; Gustafsson, Jon Petter

    2013-11-01

    Transport of lead(II) and copper(II) ions in soil is affected by the soil phosphorus status. Part of the explanation may be that phosphate increases the adsorption of copper(II) and lead(II) to iron (hydr)oxides in soil, but the details of these interactions are poorly known. Knowledge about such mechanisms is important, for example, in risk assessments of contaminated sites and development of remediation methods. We used a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and surface complexation modeling with the three-plane CD-MUSIC model to study the effect of phosphate on sorption of copper(II) and lead(II) to ferrihydrite. The aim was to identify the surface complexes formed and to derive constants for the surface complexation reactions. In the batch experiments phosphate greatly enhanced the adsorption of copper(II) and lead(II) to ferrihydrite at pH < 6. The largest effects were seen for lead(II).

  5. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits

    PubMed Central

    Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M

    2015-01-01

    Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. J. Comp. Neurol. 523:997–1037, 2015. © 2014 Wiley Periodicals, Inc. PMID:25380328

  6. Synthesis, electrochemical, structural, spectroscopic and biological activities of mixed ligand copper (II) complexes with 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid and nitrogenous bases

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-02-01

    Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.

  7. Rheological study of copper and copper grapheme feedstock for powder injection molding

    NASA Astrophysics Data System (ADS)

    Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.

    2017-01-01

    Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper

  8. Copper(II) complexes of N-(2-{[(2E)-2-(2-Hydroxy-(5-substituted)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide ligands and heterocyclic coligands

    NASA Astrophysics Data System (ADS)

    Chavan, S. S.; Sawant, V. A.; Jadhav, A. N.

    2014-01-01

    Some copper(II) complexes of the type [Cu(L1-3)(phen]ṡCH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]ṡCH2Cl2 (1b-3b) (where L1 = N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2 = N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3 = N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen = 1,10-phenanthroline, bipy = 2,2‧-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]ṡCH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group = P21/n, a = 11.5691(16) Å, b = 11.0885(15) Å, c = 24.890(4) Å, V = 3166.2(8) Å3, Z = 4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π → π∗) emission excited state.

  9. Origins of contrasting copper coordination geometries in crystalline copper sulfate pentahydrate.

    PubMed

    Ruggiero, Michael T; Erba, Alessandro; Orlando, Roberto; Korter, Timothy M

    2015-12-14

    Metal-aqua ion ([M(H2O)n](X+)) formation is a fundamental step in mechanisms that are central to enzymatic and industrial catalysis. Past investigations of such ions have yielded a wealth of information regarding their properties, however questions still exist involving the exact structures of these complexes. A prominent example of this is hexaaqua copper(II) ([Cu(H2O)6](2+)), with the solution versus gas-phase configurations under debate. The differences are often attributed to the intermolecular interactions between the bulk solvent and the aquated complex, resulting in structures stabilized by extended hydrogen-bonding networks. Yet solution phase systems are difficult to study due to the lack of atomic-level positional details. Crystalline solids are ideal models for comparative study, as they contain fixed structures that can be fully characterized using diffraction techniques. Here, crystalline copper sulfate pentahydrate (CuSO4·5H2O), which contains two unique copper-water geometries, was studied in order to elucidate the origin of these contrasting hydrated metal envrionments. A combination of solid-state density functional theory and low-temperature X-ray diffraction was used to probe the electronic origins of this phenomenon. This was accomplished through implementation of crystal orbital overlap population and crystal orbital Hamiltonian population analyses into a developmental version of the CRYSTAL14 software. These new computational methods help highlight the delicate interplay between electronic structure and metal-water geometries.

  10. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evaluation of fleet management techniques for timber highway bridges

    Treesearch

    Brent M. Phares; Travis K. Hosteng; Justin Dahlberg; Michael A. Ritter

    2011-01-01

    The general condition of the nation's bridges presents a complex management issue when considering cost, safety, and time. Consequently, the management of those bridges can become an overwhelming task. The need for a management system that is specific to rural systems may help to improve the management of this significant number of bridges. Although individual...

  12. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy.

    PubMed

    Slenkamp, Karla M; Lynch, Michael S; Van Kuiken, Benjamin E; Brookes, Jennifer F; Bannan, Caitlin C; Daifuku, Stephanie L; Khalil, Munira

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O and formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm(-1). The mixed-mode anharmonicities range from 2 to 14 cm(-1). In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm(-1). This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  13. A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase.

    PubMed

    Tanino, Soichiro; Li, Zilong; Ohki, Yasuhiro; Tatsumi, Kazuyuki

    2009-03-16

    A dithiolate-bridged dinuclear Fe-Ni complex, which has the desired fac-(CN)(2)(CO) ligand set at iron, has been synthesized. Its CN/CO bands in the IR spectrum reproduce those of the Ni-A, Ni-B, and Ni-SU states, which indicate that these octahedral Fe(II) centers have similar electronic properties. This result verifies the assignment of a (CN)(2)(CO)Fe(II) moiety in the active site of [NiFe] hydrogenase.

  14. Forming Refractory Insulation On Copper Wire

    NASA Technical Reports Server (NTRS)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  15. Visual Observation of Dissolution of Copper Ions from a Copper Electrode

    ERIC Educational Resources Information Center

    Ikemoto, Isao; Saitou, Kouichi

    2013-01-01

    During electrolysis, to visually observe the conversion of a metal to its cation, either the cation or its complex ion should have a distinct color while the electrolyte solution must be colorless and transparent. A demonstration is described in which copper is used as the electrodes and sodium polyacrylate (a superabsorbent polymer) solution is…

  16. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  17. Is copper chelation an effective anti-angiogenic strategy for cancer treatment?

    PubMed

    Antoniades, V; Sioga, A; Dietrich, E M; Meditskou, S; Ekonomou, L; Antoniades, K

    2013-12-01

    Angiogenesis and the acquisition of an angiogenic phenotype is important for cancer cell proliferation. Copper in an essential trace element that participates in many enzymatic complexes like the cytochrome c, superoxide dismutase and lysyl oxidase and it is involved in processes, like embryogenesis, growth, angiogenesis and carcinogenesis. In particular, its involvement in carcinogenesis was described for the first time in oral submucous fibrosis, where fibroblasts produce large amounts of collagen in the presence of copper. Copper's action in carcinogenesis is two-fold: (1) it participates in reactions with an increased redox potential that result in the production of oxidative products and oxidative stress. Through this mechanism, copper may cause DNA mutations in the nucleus and mitochondria or alterations to membrane phospholipids, (2) it participates in angiogenesis even in the absence of angiogenic molecules, as it was reported for the first time in rabbit cornea models with copolymer pellets charged with PGE1. Copper chelation regimens like penicillamine and tetrathiomolybdate are being described in the literature as having anti-angiogenic, anti-fibrotic and anti-inflammatory actions. Animal models of brain cancer that evaluated the anti-angiogenic properties of copper, have proven evidence of the reduction of tumor's microvascular supply, tumor volume and vascular permeability after plasma copper levels reduction. Interestingly, plasma copper levels reduction was shown to suppress micrometastases generation in mice models of breast cancer. We hypothesize that copper chelation therapy: increases oxidative stress in cancer cells to a level that does not allow survival because of the reduction of anti-oxidative enzymes production. It may also result in inhibition of angiogenesis and of the initiation of the angiogenic switch, because copper normally enhances endothelial cell migration and proliferation, improves binding of growth factors to endothelial cells

  18. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.

    PubMed

    Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S

    2010-04-01

    In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.

  19. Ligand-bridged dinuclear cyclometalated Ir(III) complexes: from metallamacrocycles to discrete dimers.

    PubMed

    Chandrasekhar, Vadapalli; Hajra, Tanima; Bera, Jitendra K; Rahaman, S M Wahidur; Satumtira, Nisa; Elbjeirami, Oussama; Omary, Mohammad A

    2012-02-06

    Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured

  20. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    NASA Astrophysics Data System (ADS)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  1. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA

    PubMed Central

    Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.

    2017-01-01

    ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest

  2. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.

    PubMed

    Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V

    2017-08-15

    The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest

  3. Wright-Fisher diffusion bridges.

    PubMed

    Griffiths, Robert C; Jenkins, Paul A; Spanò, Dario

    2017-10-06

    The trajectory of the frequency of an allele which begins at x at time 0 and is known to have frequency z at time T can be modelled by the bridge process of the Wright-Fisher diffusion. Bridges when x=z=0 are particularly interesting because they model the trajectory of the frequency of an allele which appears at a time, then is lost by random drift or mutation after a time T. The coalescent genealogy back in time of a population in a neutral Wright-Fisher diffusion process is well understood. In this paper we obtain a new interpretation of the coalescent genealogy of the population in a bridge from a time t∈(0,T). In a bridge with allele frequencies of 0 at times 0 and T the coalescence structure is that the population coalesces in two directions from t to 0 and t to T such that there is just one lineage of the allele under consideration at times 0 and T. The genealogy in Wright-Fisher diffusion bridges with selection is more complex than in the neutral model, but still with the property of the population branching and coalescing in two directions from time t∈(0,T). The density of the frequency of an allele at time t is expressed in a way that shows coalescence in the two directions. A new algorithm for exact simulation of a neutral Wright-Fisher bridge is derived. This follows from knowing the density of the frequency in a bridge and exact simulation from the Wright-Fisher diffusion. The genealogy of the neutral Wright-Fisher bridge is also modelled by branching Pólya urns, extending a representation in a Wright-Fisher diffusion. This is a new very interesting representation that relates Wright-Fisher bridges to classical urn models in a Bayesian setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates.

    PubMed

    Łodyga-Chruscińska, Elżbieta; Pilo, Maria; Zucca, Antonio; Garribba, Eugenio; Klewicka, Elżbieta; Rowińska-Żyrek, Magdalena; Symonowicz, Marzena; Chrusciński, Longin; Cheshchevik, Vitalij T

    2018-03-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) metal chelates are of interest as this plant polyphenol has revealed broad prospects for its use as natural medicine in the treatment of various diseases. Metal interactions may change or enhance fisetin biological properties so understanding fisetin metal chelation is important for its application not only in medicine but also as a food additive in nutritional supplements. This work was aimed to determine and characterize copper complexes formed in different pH range at applying various metal/ligand ratios. Fisetin and Cu(II)-fisetin complexes were characterized by potentiometric titrations, UV-Vis (Ultraviolet-visible spectroscopy), EPR, ESI-MS, FTIR and cyclic voltammetry. Their effects on DNA were investigated by using circular dichroism, spectrofluorimetry and gel electrophoresis methods. The copper complex with the ratio of Cu(II)/fisetin 1/2 exhibited significant DNA cleavage activity, followed by complete degradation of DNA. The influence of copper(II) ions on antioxidant activity of fisetin in vitro has been studied using DPPH, ABTS and mitochondrial assays. The results have pointed out that fisetin or copper complexes can behave both as antioxidants or pro-oxidants. Antimicrobial activity of the compounds has been investigated towards several bacteria and fungi. The copper complex of Cu(II)/fisetin 1/2 ratio showed higher antagonistic activity against bacteria comparing to the ligand and it revealed a promising antifungal activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sporicidal efficacy of thermal-sprayed copper alloy coating.

    PubMed

    Shafaghi, Romina; Mostaghimi, Javad; Pershin, Valerian; Ringuette, Maurice

    2017-05-01

    Approximately 200 000 Canadians acquire healthcare-associated bacterial infections each year and several-fold more acquire food-borne bacterial illnesses. Bacterial spores are particularly problematic because they can survive on surfaces for several months. Owing to its sporicidal activity, copper alloy sheet metal is sometimes used in hospital settings, but its widespread use is limited by cost and incompatibility with complex furniture and instrument designs and topographies. A potential alternative is the use of thermal spray technology to coat surfaces with copper alloys. We compared the sporicidal activity of thermally sprayed copper alloy on stainless steel with that of copper alloy sheet metal against Bacillus subtilis spores. Spores remained intact for at least 1 week on uncoated stainless steel, whereas spore fragmentation was initiated within 2 h of exposure to either copper surface. Less than 15% of spores were viable 2 h after exposure to either copper surface, as compared with stainless steel. By day 7, only degraded spores and petal-like nanoflowers were present on the copper surfaces. Nanoflowers, which are laminar arrangements of thin crystal sheets composed of carbon - copper phosphate, appeared to be derived from the degraded spores. Altogether, these results indicate that a thermal-sprayed copper alloy coating on stainless steel provides sporicidal activity similar to that afforded by copper alloy sheet metal.

  6. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  7. Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands.

    PubMed

    Palacios, María A; Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Pope, Simon J A; Brechin, Euan K; Colacio, Enrique

    2014-02-03

    There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(μ-L)(μ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(μ-L)(μ-NO3)Er(NO3)2] (5), [Zn(H2O)(μ-L)Nd(NO3)3]·2CH3OH (6), [Zn(μ-L)(μ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(μ-L)(μ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(μ-L)(μ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(μ-L)(μ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(μ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials

  8. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus.

    PubMed Central

    Harwood, V J; Gordon, A S

    1994-01-01

    Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076

  9. Luminescence, electrochemistry and host-guest properties of dinuclear platinum(ii) terpyridyl complexes of sulfur-containing bridging ligands.

    PubMed

    Tang, Rowena Pui-Ling; Wong, Keith Man-Chung; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2009-05-28

    A series of dinuclear platinum(ii) terpyridyl and terpyridyl-crown complexes with 2,2-dicyano-1,1-ethylenedithiolate (i-mnt), 1,3-benzenedithiolate (SC(6)H(4)S-1,3) and N,N-diethyldithiocarbamate (dtc) bridging ligands have been synthesized and characterized. Their photophysical and electrochemical properties, together with that of the related mononuclear platinum(ii) terpyridyl-crown complex and its crown-free analogue, have been studied. The ion-binding properties of the terpyridyl-crown complexes have been determined by electronic absorption spectroscopy and ESI-mass spectrometry. The X-ray crystal structures of [Pt(trpyC[triple bond, length as m-dash]C-benzo-15-crown-5)Cl]PF(6), [{Pt(trpy)}(2)(micro-SC(6)H(4)S-1,3)](PF(6))(2) and [{Pt(trpy)}(2){micro-(i-mnt)}](PF(6))(2) have also been determined.

  10. Near-saturated red emitters: four-coordinate copper(i) halide complexes containing 8-(diphenylphosphino)quinoline and 1-(diphenylphosphino)naphthalene ligands.

    PubMed

    Liu, Li-Ping; Li, Qian; Xiang, Song-Po; Liu, Li; Zhong, Xin-Xin; Liang, Chen; Li, Guang Hua; Hayat, Tasawar; Alharbi, Njud S; Li, Fa-Bao; Zhu, Nian-Yong; Wong, Wai-Yeung; Qin, Hai-Mei; Wang, Lei

    2018-06-07

    Recently, highly emissive neutral copper halide complexes have received much attention. Here, a series of four-coordinate mononuclear Cu(i) halide complexes, [CuX(dpqu)(dpna)] (dpqu = 8-(diphenylphosphino)quinoline, dpna = 1-(diphenylphosphino)naphthalene, X = I (1), Br (2) and Cl (3)), were synthesized, and their molecular structures and photophysical properties were investigated. These complexes exhibit near-saturated red emission in the solid state at room temperature and have peak emission wavelengths at 669-691 nm with microsecond lifetimes (τ = 0.46-1.80 μs). Small S1-T1 energy gaps in the solid state indicate that the emission occurs from a thermally activated excited singlet state at ambient temperature. The emission of the complexes 1-3 mainly originates from MLCT transition. The solution-processed devices of complex 1 exhibit stable red emission with a CIE(x, y) of (0.62, 0.38) for a doped device and (0.63, 0.37) for a non-doped device.

  11. Copper(II) complexes of N-(2-{[(2E)-2-(2-Hydroxy-(5-substituted)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide ligands and heterocyclic coligands.

    PubMed

    Chavan, S S; Sawant, V A; Jadhav, A N

    2014-01-03

    Some copper(II) complexes of the type [Cu(L1-3)(phen]·CH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]·CH2Cl2 (1b-3b) (where L1=N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2=N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3=N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen=1,10-phenanthroline, bipy=2,2'-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]·CH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group=P21/n, a=11.5691(16) Å, b=11.0885(15) Å, c=24.890(4) Å, V=3166.2(8) Å(3), Z=4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π→π(*)) emission excited state. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Copper(I) Complexes of N-(2-{[(2E)-2-(4-Nitrobenzylidenyl)Hydrazinyl]Carbonyl}Phenyl)Benzamide and Triphenylphosphine: Synthesis, Characterization and Luminescence Properties.

    PubMed

    Chavan, S S; Pawal, S B; More, M S; Willis, A C

    2016-11-01

    Copper(I) complexes of the formula [Cu(L)(PPh 3 ) 2 ]X (1-4) (X = Cl(1), ClO 4 (2), BF 4 (3) and PF 6 (4)) [where L = N-(2-{[(2E)-2-(4-nitrobenzylidenyl)hydrazinyl]carbonyl}phenyl)benzamide; PPh 3  = triphenylphosphine] have been prepared by the condensation of N-[2-(hydrazinocarbonyl)phenyl]benzamide with 4-nitrobenzaldehyde followed by the reaction with CuCl, [Cu(MeCN) 4 ]ClO 4 , [Cu(MeCN) 4 ]BF 4 and [Cu(MeCN) 4 ]PF 6 in presence of triphenylphosphine as a coligand. Complexes 1-4 were then characterized by elemental analyses, FTIR, UV-visible and 1 H NMR spectroscopy. Mononuclear copper(I) complexes 1-4 were formed with L in its keto form by involvement of azomethine nitrogen and the carbonyl oxygen along with two PPh 3 groups. A single crystal X-ray diffraction study of the representative complex [(Cu(L)(PPh 3 ) 2 ]CIO 4 (2) reveals a distorted tetrahedral geometry around Cu(I). Crystal data of (2): space group = C2/c, a = 42.8596 (9) Å, b = 14.6207 (3) Å, c = 36.4643 (7) Å, V = 20,653.7 (7) Å 3 , Z = 16. Complexes 1-4 exhibit quasireversible redox behaviour corresponding to a Cu(I)/Cu(II) couple. All complexes show blue-green emission as a result of fluorescence from an intra-ligand charge transition (ILCT), ligand to ligand charge transfer transition (LLCT) or mixture of both. Significant increase in size of the counter anion shows marked effect on quantum efficiency and lifetime of the complexes in solution.

  13. Long-term maintenance monitoring demonstration on a movable bridge.

    DOT National Transportation Integrated Search

    2011-09-30

    The maintenance costs related to movable bridges are considerably higher than those of fixed bridges, mostly : because of the complex interaction of the mechanical, electrical and structural components. A malfunction of any : component can cause an u...

  14. Patterned low temperature copper-rich deposits using inkjet printing

    NASA Astrophysics Data System (ADS)

    Rozenberg, Gregor G.; Bresler, Eric; Speakman, Stuart P.; Jeynes, Chris; Steinke, Joachim H. G.

    2002-12-01

    A PZT piezoelectric ceramic research drop-on-demand inkjet print head operating in bend mode was used as a means of delivering a copper precursor, vinyltrimethylsilane copper (+1) hexafluoroacetylacetonate, in a controlled and placement accurate fashion. The reagent disproportionates at low temperature (<200 °C), to deposit copper on glass. These deposits are shown to be more than 90% copper by weight by electron probe microanalysis and microbeam Rutherford backscattering spectroscopy. Microscopy shows a deposit diameter and three-dimensional profile that suggests a complex deposition and conversion mechanism. Our findings represent an important step towards the manufacture of electronic devices by entirely nonlithographic means.

  15. New Approach to Remove Metals from Chromated Copper Arsenate (CCA)-Treated Wood

    Treesearch

    Todd F. Shupe; Chung Y. Hse; Hui Pan

    2012-01-01

    Recovery of metals from chromated copper arsenate (CCA)-treated southern pine wood particles was investigated using binary acid solutions consisting of acetic, oxalic, and phosphoric acids in a microwave reactor. Formation of an insoluble copper oxalate complex in the binary solution containing oxalic acid was the major factor for low copper removal. Furthermore, the...

  16. Effectiveness of a stormwater collection and detention system for reducing constituent loads from bridge runoff in Pinellas County, Florida

    USGS Publications Warehouse

    Stoker, Y.E.

    1996-01-01

    , orthophosphorus, phosphorus, total organic carbon, aluminum, arsenic, copper, and zinc in stormwater runoff generally were inversely related to runoff volume. The quality of outflow from the detention pond also varied during a storm event and with season. Maximum concentrations generally occurred near the beginning of a storm, and decreased as the storm continued. Maximum concentrations of many constituents occurred in June and July 1995. During the summer months, pH exceeded 9.0 while inorganic nitrogen concentrations were very low. These high pH values and low inorganic nitrogen concentrations are most likely associated with photosynthesis by algae or aquatic plants in the pond. Concentrations of nitrogen, phosphorus, and nickel in stormwater runoff were correlated with total organic carbon concentrations. Concentrations of chromium, copper, iron, nickel, lead, and zinc in stormwater runoff were correlated with aluminum concentrations. The source of these metals is probably the bridge materials and metallic debris from vehicles. The northern detention pond system of the Bayside Bridge effectively reduced concentrations of suspended solids, ammonia nitrogen, nitrite plus nitrate nitrogen, phosphorus, aluminum, cadmium, chromium, copper, iron, lead, nickel, and zinc in stormwater runoff before water discharged from the pond. However, concentrations of ammonia plus organic nitrogen, organic carbon, arsenic, and values for alkalinity, pH, and specific conductance generally were greater in outflow from the pond than in stormwater runoff from the bridge. Stormwater runoff and pond outflow for three storm events were evaluated to determine the effectiveness of the detention pond system in removing selected constituents from the stormwater runoff. Most constituents and constituent loads were reduced in the outflow from the pond. Suspended solids loads were reduced about 30 to 45 percent, inorganic nitrogen loads were reduced by about 60 to 90 percent, and loads of most trace elements

  17. In vitro effects of benzimidazole/thioether-copper complexes with antitumor activity on human erythrocytes.

    PubMed

    Suwalsky, Mario; Castillo, Ivan; Sánchez-Eguía, Brenda N; Gallardo, María José; Dukes, Nathan; Santiago-Osorio, Edelmiro; Aguiñiga, Itzen; Rivera-Martínez, Ana R

    2018-01-01

    Two cytotoxic copper(II) complexes with N-H and N-methylated benzimidazole-derived ligands (Cu-L 1 and Cu-L 1Me ; L 1 =bis(2-methylbenzimidazolyl)(2-methylthioethyl)amine, L 1Me =bis(1-methyl-2-methylbenzimidazolyl)(2-methylthioethyl)amine) were synthesized and exposed to human erythrocytes and molecular models of its membrane. The latter were bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of lipids present in the external and internal moieties of the human red cell membrane, respectively. Scanning electron microscopy (SEM) of erythrocytes incubated with solutions of both Cu(II) complexes showed that they induced morphological changes to the normal cells to echinocytes, and hemolysis at higher concentrations. Real-time observation of the dose-dependent effects of the complexes on live erythrocytes by defocusing microscopy (DM) confirmed SEM results. The formation of echinocytes implied that complex molecules inserted into the outer moiety of the red cell membrane. X-ray diffraction studies on DMPC and DMPE showed that none of these complexes interacted with DMPE and only Cu-L 1 interacted with DMPC. This difference was explained by the fact that Cu-L 1Me complex is more voluminous than Cu-L 1 because it has two additional methyl groups; on the other hand, DMPC molecule has three methyl groups in its bulky terminal amino end. Thus, by steric hindrance Cu-L 1Me molecules cannot intercalate into DMPC bilayer, which besides is present in the gel phase. These results, together with the increased antiproliferative capacity of the N-methylated complex Cu-L 1Me over that of Cu-L 1 are rationalized mainly based on its higher lipophilicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    PubMed

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  19. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    PubMed

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Form and toxicity of copper released into marine systems from ...

    EPA Pesticide Factsheets

    The fate and effects of pristine engineered nanomaterials (ENMs) in simplified systems have been widely studied; however, little is known about the potential release and impact of ENMs from consumer goods, especially lumber that has been treated with micronized copper. Micronized copper solutions contain copper complexes predominately in the 10-700 nm size range, and are used in lumber to prevent microbial degradation and fouling. In this work, the goal was to determine the rate, concentration, and form of copper released from commercially available pressure treated lumber samples (blocks and sawdust) exposed to an aqueous system. Lumber tested included Southern Yellow Pine (SYP) treated with micronized copper azole (MCA) at 0.96 and 2.4 Kg/m3, alkaline copper quaternary (ACQ) at 0.30 and 9.6 Kg/m3, and chromated copper arsenate (CCA) at 40 Kg/m3. Of the different chemical treatments, only MCA included nano- and micro-sized copper complexes. The experimental system included wood cubes cut from the outer 2 cm surface of the lumber or the equivalent mass (4 g) of sawdust submerged in 250 mL of media (0, 1, 10, and 30 ppt filtered natural seawater) in polyethylene bottles, and mixed on a shaker table at 120 rpm. Water samples were taken at 8 hours, and on days 1, 2, 7, 14, and 28 for the blocks and days 1, 2, 3, 7, 17, and 28 for the sawdust. Subsamples included unfiltered water (defined as 0.45 µm - filtered water for the sawdust), and water filtered through a 0.

  1. Salt bridges: geometrically specific, designable interactions.

    PubMed

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.

  2. Earthquake fragility assessment of curved and skewed bridges in Mountain West region.

    DOT National Transportation Integrated Search

    2016-09-01

    Reinforced concrete (RC) bridges with both skew and curvature are common in areas with : complex terrains. Skewed and/or curved bridges were found in existing studies to exhibit more : complicated seismic performance than straight bridges, however th...

  3. Nucleophilic ring opening of bridging thietane ligands in trirhenium carbonyl cluster complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.D.; Cortopassi, J.E.; Falloon, S.B.

    1992-11-01

    The reactions of 3,3-dimethylthietane, SCH{sub 2}CMe{sub 2}CH{sub 2} (3,3-DMT), and thietane, SCH{sub 2}CH{sub 2}CH{sub 2}, with Re{sub 3}(CO){sub 10}[{mu}-SCH{sub 2}CH{sub 2}CH{sub 2}]({mu}-H){sub 3}, 2b. Compound 2a was characterized crystallographically and was found to consist of a trirhenium cluster with three bridging hydride ligands and a bridging thietane ligand coordinated through its sulfur atom. 2a and 2b react with halide ions by ring-opening additions to the 3,3-DMT ligand to yield the complex anions [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}x)({mu}-h){sub 3}]{sup -} 3A-6A, X = F (71%), Cl(71%), Br(84%), I(87%) and [Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CH{sub 2}CH{sub 2}Cl)({mu}-H){sub 3}]{sup -}, 4b (67%). Similarly,more » addition of NMe{sub 3} to 2a and 2b yielded the ring-opened zwitterions Re{sub 3}(CO){sub 10}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}NMe{sub 3})({mu}-H){sub 3}, 7 a crystographically. They are zwitterions positively charged at the nitrogen atoms and negatively charged on the trirhenium clusters. Complex 7b was also obtained in a 48% yield from the reaction of Re{sub 3}(C){sub 12}({mu}-H){sub 3} with Me{sub 3}NO in the presence of thietane, but the corresponding reaction using 3,3-DMT yielded only 2a and Re{sub 3}(CO){sub 11}(SCH{sub 2}CMe{sub 2}CH{sub 2})({mu}-H){sub 3}, 8. Attempts to obtain a ring-opening addition to 2a by reaction with PMe{sub 2}Ph yielded only Re{sub 3}(CO){sub 10}(PMe{sub 2}PH){sub 2}({mu}-H){sub 3} by ligand substitution. Attempts to obtain ring opening addition to 8 by reaction with I{sup -} yielded only [Re{sub 3}(CO){sub 11}I({mu}-H){sub 3}]{sup -} by ligand substitution. 20 refs., 3 figs., 10 tabs.« less

  4. Modeling Security Bridge Certificate Authority Architecture

    NASA Astrophysics Data System (ADS)

    Ren, Yizhi; Li, Mingchu; Sakurai, Kouichi

    Current Public Key Infrastructures suffer from a scaling problem, and some may have security problems, even given the topological simplification of bridge certification authorities. This paper analyzes the security problems in Bridge Certificate Authorities (BCA) model by using the concept of “impersonation risk, ” and proposes a new modified BCA model, which enhances its security, but is a bit more complex incertification path building and implementation than the existing one.

  5. Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner

    PubMed Central

    Dalecki, Alex G.; Haeili, Mehri; Shah, Santosh; Speer, Alexander; Niederweis, Michael; Kutsch, Olaf

    2015-01-01

    Tuberculosis is a severe disease affecting millions worldwide. Unfortunately, treatment strategies are hampered both by the prohibitively long treatment regimen and the rise of drug-resistant strains. Significant effort has been expended in the search for new treatments, but few options have successfully emerged, and new treatment modalities are desperately needed. Recently, there has been growing interest in the synergistic antibacterial effects of copper ions (CuII/I) in combination with certain small molecular compounds, and we have previously reported development of a drug screening strategy to harness the intrinsic bactericidal properties of CuII/I. Here, we describe the copper-dependent antimycobacterial properties of disulfiram, an FDA-approved and well-tolerated sobriety aid. Disulfiram was inhibitory to mycobacteria only in the presence of CuII/I and exerted its bactericidal activity well below the active concentration of CuII/I or disulfiram alone. No other physiologically relevant bivalent transition metals (e.g., FeII, NiII, MnII, and CoII) exhibited this effect. We demonstrate that the movement of the disulfiram-copper complex across the cell envelope is porin independent and can inhibit intracellular protein functions. Additionally, the complex is able to synergistically induce intracellular copper stress responses significantly more than CuII/I alone. Our data suggest that by complexing with disulfiram, CuII/I is likely allowed unfettered access to vulnerable intracellular components, bypassing the normally sufficient copper homeostatic machinery. Overall, the synergistic antibacterial activity of CuII/I and disulfiram reveals the susceptibility of the copper homeostasis system of Mycobacterium tuberculosis to chemical attacks and establishes compounds that act in concert with copper as a new class of bacterial inhibitors. PMID:26033731

  6. Three tier transition of Neoarchean TTG-sanukitoid magmatism in the Beit Bridge Complex, Southern Africa

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.; Belyanin, G. A.; Van Reenen, D. D.

    2018-01-01

    Neoarchean TTG-sanukitoid associations of contrasting scales occur within the Beit Bridge Complex terrane of the Limpopo Complex in southern Africa. These include the smaller 2.65-2.63 Ga Avoca granitoid and the voluminous 2.73-2.64 Ga Alldays granitoid. This study characterizes the wide compositional spectrum preserved in these two granitoids. The elliptical Avoca pluton consists of a biotite-amphibole-orthopyroxene ± clinopyroxene-bearing core that is dominantly trondhjemite with less dominant tonalite and granodiorite variants, and a thin amphibole-biotite-bearing granite rim, with local occurrence of two-pyroxene-bearing metabasite boudins. While both the core and rim rocks exhibit a linear fabric, the granite in addition preserves a penetrative foliation. Field relations of granite enclaves in the core rocks together with available ages indicate that the core rocks intruded the granite. The foliated biotite ± amphibole-bearing Alldays granitoid contains inclusions of older supracrustals and rocks of the Messina layered intrusion, and is widely distributed. Compositionally, it include tonalites and granodiorites and to a lesser extent trondhjemites. Both the Avoca core and rim rocks are characterized by difference in mineral chemistry, with the mafic minerals Mg-rich in the TTG core, while they are Fe-rich in the granite and metabasite. In comparison, biotite is Mg-rich and amphibole is Fe-rich in the Alldays granitoid. Two groups of Alldays TTG can be delineated in terms of whole-rock geochemical characteristics, and are comparable to the low- to medium-pressure TTG groups delineated by Moyen (2011), while the Avoca TTG is similar to the high-pressure TTG group. The lowest silica samples from each group of granitoid have geochemical characteristics comparable to Archean sanukitoids, with those from the Avoca granitoid similar to low-Ti sanukitoids, and those from the Alldays granitoid similar to low-Ti and high-Ti sanukitoids. Separate petrogenetic models

  7. Mineralogical Characterization of Copper Slag from Tongling Nonferrous Metals Group China

    NASA Astrophysics Data System (ADS)

    Chun, Tiejun; Ning, Chao; Long, Hongming; Li, Jiaxin; Yang, Jialong

    2016-09-01

    In this paper, the mineralogical characterization of typical copper slag supplied by the Tongling Nonferrous Metals Group China was performed based on x-ray fluorescence, x-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy. The results show that the dominant phases of the slag are fayalite, glassy substance and magnetite. The minor accessory phases consist of copper matte, metallic copper and other complex lead and zinc minerals. The contents of iron, copper, lead and zinc in copper slag are 40.21%, 0.79%, 0.24%, and 2.80%, respectively. The mineralogy of copper slag indicates that these valuable elements are difficult to recover by beneficiation processes due to the complicated occurrences. Instead, the pyro-metallurgical processes appear promising in recovering the valuable metals from copper slag.

  8. Matrix effects on copper(II)phthalocyanine complexes. A combined continuous wave and pulse EPR and DFT study.

    PubMed

    Finazzo, Cinzia; Calle, Carlos; Stoll, Stefan; Van Doorslaer, Sabine; Schweiger, Arthur

    2006-04-28

    The effect of the electron withdrawing or donating character of groups located at the periphery of the phthalocyanine ligand, as well as the influence of polar and nonpolar solvents are of importance for the redox chemistry of metal phthalocyanines. Continuous wave and pulse electron paramagnetic resonance and pulse electron nuclear double resonance spectroscopy at X- and Q-band are applied to investigate the electronic structure of the complexes Cu(II)phthalocyanine (CuPc), copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuPc(t)), and copper(II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine (CuPc(F)) in various matrices. Isotope substitutions are used to determine the g values, the copper hyperfine couplings and the hyperfine interactions with the 14N, 1H and 19F nuclei of the macrocycle and the surrounding matrix molecules. Simulations and interpretations of the spectra are shown and discussed, and a qualitative analysis of the data using previous theoretical models is given. Density functional computations facilitate the interpretation of the EPR parameters. The experimental g, copper and nitrogen hyperfine and nuclear quadrupole values are found to be sensitive to changes of the solvent and the structure of the macrocycle. To elucidate the electronic, structural and bonding properties the changes in the g principal values are related to data from UV/Vis spectroscopy and to density functional theory (DFT) computations. The analysis of the EPR data indicates that the in-plane metal-ligand sigma bonding is more covalent for CuPc(t) in toluene than in sulfuric acid. Furthermore, the out-of-plane pi bonding is found to be less covalent in the case of a polar sulfuric acid environment than with nonpolar toluene or H2Pc environment, whereby the covalency of this bonding is increased upon addition of tert-butyl groups. No contribution from in-plane pi bonding is found.

  9. A binuclear Mn(III) complex of a scorpiand-like ligand displaying a single unsupported Mn(III)-O-Mn(III) bridge.

    PubMed

    Blasco, Salvador; Cano, Joan; Clares, M Paz; García-Granda, Santiago; Doménech, Antonio; Jiménez, Hermas R; Verdejo, Begoña; Lloret, Francesc; García-España, Enrique

    2012-11-05

    The crystal structure of a binuclear Mn(III) complex of a scorpiand-like ligand (L) displays an unsupported single oxo bridging ligand with a Mn(III)-O-Mn(III) angle of 174.7°. Magnetic susceptibility measurements indicate strong antiferromagnetic coupling between the two metal centers. DFT calculations have been carried out to understand the magnetic behavior and to analyze the nature of the observed Jahn-Teller distortion. Paramagnetic (1)H NMR has been applied to rationalize the formation and magnetic features of the complexes formed in solution.

  10. Electrochemical variational study of donor/acceptor orbital mixing and electronic coupling in cyanide-bridged mixed-valence complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yuhuua; Hupp, J.T.

    1992-07-08

    Cyanide-bridged mixed-valence complexes are interesting examples of strongly covalently linked redox systems which, nevertheless, exist in valence-localized form. As mixed-valence species, they display fairly intense intervalence (or metal-to-metal) charge-transfer transitions ([epsilon] [approx] 3000 M[sup [minus]1] cm[sup [minus]1]), which tend to be shifted toward the visible region from the near-infrared on account of substantial redox asymmetry. The authors have recently succeeded in obtaining (by femtosecond transient absorbance spectroscopy) a direct measure of the thermal kinetics (k[sub ET]) of the highly exothermic back-electron-transfer reaction which follows intervalence excitation in one of these complexes, (H[sub 3]N)[sub 5]Ru-NC-Fe(CN)[sub 5][sup [minus

  11. Synthesis, spectroscopic, thermal and structural properties of [M(3-aminopyridine)2Ni(μ-CN)2(CN)2]n (M(II) = Co and Cu) heteropolynuclear cyano-bridged complexes

    NASA Astrophysics Data System (ADS)

    Kartal, Zeki

    2016-01-01

    Two novel cyano-bridged heteropolynuclear complexes, [Co(3-aminopyridine)2Ni(μ-CN)2(CN)2]n and [Cu(3-aminopyridine)2Ni(μ-CN)2(CN)2]n have been synthesized and characterized by elemental, thermal, FT-IR and FT-Raman spectroscopies. The structures of complexes have been determined by X-ray powder diffraction. The FT-IR and FT-Raman spectra of complexes have been recorded in the region of 3500-400 cm-1 and 3500-100 cm-1, respectively. General information was acquired about structural properties of these complexes from FT-IR and FT-Raman spectra by considering changes at characteristic peaks of the cyano group and 3AP. The splitting of the ν(Ctbnd N) stretching bands in the FT-IR spectra for complexes indicates the presence of terminal and bridging cyanides. The thermal behaviors of these complexes have been also investigated in the range of 25-950 °C using TG and DTG methods. Magnetic susceptibility measurements were made at room temperature using Gouy-balance.

  12. Transferring the entatic-state principle to copper photochemistry

    NASA Astrophysics Data System (ADS)

    Dicke, B.; Hoffmann, A.; Stanek, J.; Rampp, M. S.; Grimm-Lebsanft, B.; Biebl, F.; Rukser, D.; Maerz, B.; Göries, D.; Naumova, M.; Biednov, M.; Neuber, G.; Wetzel, A.; Hofmann, S. M.; Roedig, P.; Meents, A.; Bielecki, J.; Andreasson, J.; Beyerlein, K. R.; Chapman, H. N.; Bressler, C.; Zinth, W.; Rübhausen, M.; Herres-Pawlis, S.

    2018-03-01

    The entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored. Here we study a copper complex—with a specifically designed constraining ligand geometry—that exhibits metal-to-ligand charge-transfer state lifetimes that are very short. The guanidine-quinoline ligand used here acts on the bis(chelated) copper(I) centre, allowing only small structural changes after photoexcitation that result in very fast structural dynamics. The data were collected using a multimethod approach that featured time-resolved ultraviolet-visible, infrared and X-ray absorption and optical emission spectroscopy. Through supporting density functional calculations, we deliver a detailed picture of the structural dynamics in the picosecond-to-nanosecond time range.

  13. Bridge Condition Assessment Using D Numbers

    PubMed Central

    Hu, Yong

    2014-01-01

    Bridge condition assessment is a complex problem influenced by many factors. The uncertain environment increases more its complexity. Due to the uncertainty in the process of assessment, one of the key problems is the representation of assessment results. Though there exists many methods that can deal with uncertain information, however, they have more or less deficiencies. In this paper, a new representation of uncertain information, called D numbers, is presented. It extends the Dempster-Shafer theory. By using D numbers, a new method is developed for the bridge condition assessment. Compared to these existing methods, the proposed method is simpler and more effective. An illustrative case is given to show the effectiveness of the new method. PMID:24696639

  14. Cost and Ecological Feasibility of using UHPC in Highway Bridges

    DOT National Transportation Integrated Search

    2017-11-15

    There is a growing interest in expanding the use of Ultra-high performance concrete (UHPC) from bridge deck joints for accelerated bridge construction to complex architectural and advanced structural applications. The high costs currently associated ...

  15. Syntheses, structures and characterizations of three novel vanadium selenites with organically bonded copper/nickel complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Cheng; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002; Kong, Fang

    2016-06-15

    A series of vanadium selenites covalently bonded with metal-organic complex, namely, Ni(2,2-bipy){sub 2}V{sub 2}O{sub 4}(SeO{sub 3}){sub 2} (1), Cu(2,2-bipy)V{sub 2}O{sub 4}(SeO{sub 3}){sub 2}·0.5H{sub 2}O (2) and Cu{sub 2}(2,2-bipy){sub 2}V{sub 5}O{sub 12}(SeO{sub 3}){sub 2} (3) (2,2-bipy=2,2-bipyridine) have been hydrothermally synthesized and structurally characterized. They exhibit three different structural dimensions, from 0D cluster, 1D chain to 2D layer. Compound 1 features a 0D {Ni(2,2-bipy)_2V_2O_4(SeO_3)_2}{sub 2} dimeric cluster composed of two {Ni(2,2-bipy)_2}{sup 2+} moieties connected by the {V_4O_8(SeO_3)_4}{sup 4-} cluster. Compound 2 shows a 1D {Cu(2,2-bipy)V_2O_4(SeO_3)_2}{sub n} chain in which the {Cu_2(2,2-bipy)_2}{sup 4+} moieties are bridged by the {V_4O_8(SeO_3)_4}{sup 4−} clusters. Compound 3more » displays a 2D structure consisted of mixed valence vanadium selenites layers {V"I"VV"V_4Se"I"V_2O_1_8}{sub n}{sup 4−} and {Cu(2,2-bipy)}{sup 2+} complex moieties. The adjacent layers are further interconnected via π-π interactions between the 2,2-bipy ligands exhibiting an interesting 3D supramolecular architecture. Both compound 1 and 2 contain a new {V_4O_8(SeO_3)_4}{sup 4−} cluster and compound 3 exhibits the first 2D vanadate polyhedral layer in vanadium selenites/tellurites with organic moieties. - Graphical abstract: We got three new vanadium selenites with organically linked copper/nickel complex, namely, Ni(2,2-bipy){sub 2}V{sub 2}O{sub 4}(SeO{sub 3}){sub 2} (1), Cu(2,2-bipy)V{sub 2}O{sub 4}(SeO{sub 3}){sub 2}·0.5H{sub 2}O (2) and Cu{sub 2}(2,2-bipy){sub 2}V{sub 5}O{sub 12}(SeO{sub 3}){sub 2} (3) by hydrothermally syntheses. They display three different structural dimensions, from 0D cluster, to 1D chain and 2D layer. Display Omitted - Highlights: • Three new compounds display three different structural dimensions, from 0D cluster, to 1D chain and 2D layer. • The Tetranuclear {V_4O_8(SeO_3)_4}{sup 4−} cluster and the

  16. Facile O-atom insertion into CC and CH bonds by a trinuclear copper complex designed to harness a singlet oxene

    PubMed Central

    Chen, Peter P.-Y.; Yang, Richard B.-G.; Lee, Jason C.-M.; Chan, Sunney I.

    2007-01-01

    Two trinuclear copper [CuICuICuI(L)]1+ complexes have been prepared with the multidentate ligands (L) 3,3′-(1,4-diazepane-1,4-diyl)bis(1-((2-(dimethylamino)ethyl)(methyl)amino)propan-2-ol) (7-Me) and (3,3′-(1,4-diazepane-1,4-diyl)bis(1-((2-(diethylamino) ethyl)(ethyl) amino)propan-2-ol) (7-Et) as models for the active site of the particulate methane monooxygenase (pMMO). The ligands were designed to form the proper spatial and electronic geometry to harness a “singlet oxene,” according to the mechanism previously suggested by our laboratory. Consistent with the design strategy, both [CuICuICuI(L)]1+ reacted with dioxygen to form a putative bis(μ3-oxo)CuIICuIICuIII species, capable of facile O-atom insertion across the central CC bond of benzil and 2,3-butanedione at ambient temperature and pressure. These complexes also catalyze facile O-atom transfer to the CH bond of CH3CN to form glycolonitrile. These results, together with our recent biochemical studies on pMMO, provide support for our hypothesis that the hydroxylation site of pMMO contains a trinuclear copper cluster that mediates CH bond activation by a singlet oxene mechanism. PMID:17804786

  17. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    PubMed

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  18. The importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation.

    PubMed

    Dehghan-Shasaltaneh, Marzieh; Lanjanian, Hossein; Riazi, Gholam Hossein; Masoudi-Nejad, Ali

    2018-01-01

    Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction remains elusive because of the receptor's structural complexity and structural changes during the interaction. In this work, we tried to fractionate the interactions. Therefore, sequential docking method utilization of HADDOCK was used to achieve the mentioned goal, so the following processes were done: the first, two pdb files of IR i.e., 3LOH and 3W11 were concatenated using modeller. The second, flexible regions of IR were predicted by HingeProt. Output files resulting from HingeProt were uploaded into HADDOCK. Our results predict new salt bridges in the complex and emphasize on the role of salt bridges to maintain an inverted V structure of IR. Having an inverted V structure leads to activate intracellular signaling pathway. In addition to presence salt bridges to form a convenient structure of IR, the importance of α-chain of carboxyl terminal (α-CT) to interact with insulin was surveyed and also foretokened new insulin/IR contacts, particularly at site 2 (rigid parts 2 and 3). Finally, several conformational changes in residues Asn711-Val715 of α-CT were occurred, we suggest that α-CT is a suitable situation relative to insulin due to these conformational alterations.

  19. Roy D. Bridges Bridge

    NASA Image and Video Library

    2003-08-06

    From left, incoming KSC Director James W. Kennedy looks on as departing KSC Director Roy D. Bridges Jr. shakes hands with the 45th Space Wing Commander Brig. Gen. J. Gregory Pavlovich. The occasion is the unveiling of the new sign on the NASA Causeway naming the bridge for Bridges who is leaving KSC to become the director of NASA's Langley Research Center, Hampton, Va. The bridge spans the Banana River on the NASA Causeway and connects Kennedy Space Center and Cape Canaveral Air Force Station.

  20. Ternary copper(II) complex: NCI60 screening, toxicity studies, and evaluation of efficacy in xenograft models of nasopharyngeal carcinoma.

    PubMed

    Ahmad, Munirah; Suhaimi, Shazlan-Noor; Chu, Tai-Lin; Abdul Aziz, Norazlin; Mohd Kornain, Noor-Kaslina; Samiulla, D S; Lo, Kwok-Wai; Ng, Chew-Hee; Khoo, Alan Soo-Beng

    2018-01-01

    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.

  1. 3. ENVIRONMENT, FROM WEST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ENVIRONMENT, FROM WEST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON STREET OVER HARRIS CREEK SEWER, WITH PORTION OF AMERICAN CAN COMPANY COMPLEX - Boston Street Bridge, Spanning Harris Creek Sewer at Boston Street, Baltimore, Independent City, MD

  2. Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases.

    PubMed

    Mukherjee, Payal; Cheng, Kai; Flanagan, Sean; Greenberg, Simon

    2017-08-01

    With the advent of single-sided hearing loss increasingly being treated with cochlear implantation, bone conduction implants are reserved for cases of conductive and mixed hearing loss with greater complexity. The BoneBridge (BB, MED-EL, Innsbruck, Austria) is an active fully implantable device with no attenuation of sound energy through soft tissue. However, the floating mass transducer (FMT) part of the device is very bulky, which limits insertion in complicated ears. In this study, 3D printed temporal bones of patients were used to study its utility in preoperative planning on complicated cases. Computed tomography (CT) scans of 16 ears were used to 3D print their temporal bones. Three otologists graded the use of routine preoperative planning provided by MED-EL and that of operating on the 3D printed bone of the patient. Data were collated to assess the advantage and disadvantage of the technology. There was a statistically significant benefit in using 3D printed temporal bones to plan surgery for difficult cases of BoneBridge surgery compared to the current standard. Surgeons preferred to have the printed bones in theatre to plan their drill sites and make the transition of the planning to the patient's operation more precise. 3D printing is an innovative use of technology in the use of preoperative planning for complex ear surgery. Surgical planning can be done on the patient's own anatomy which may help to decrease operating time, reduce cost, increase surgical precision and thus reduce complications.

  3. Unusual bridging of three nitrates with two bridgehead protons in an octaprotonated azacryptand

    PubMed Central

    Saeed, Musabbir A.; Fronczek, Frank R.; Huang, Ming-Ju; Hossain, Md. Alamgir

    2010-01-01

    Structural analysis of the nitrate complex of a thiophene-based azacryptand suggests that three nitrates are bridged with two bridgehead protons which play the topological role of two transition metal ions in a classical Werner type coordination complex bridging three anions. PMID:20066306

  4. Drastic Effect of the Peptide Sequence on the Copper-Binding Properties of Tripeptides and the Electrochemical Behaviour of Their Copper(II) Complexes.

    PubMed

    Mena, Silvia; Mirats, Andrea; Caballero, Ana B; Guirado, Gonzalo; Barrios, Leoní A; Teat, Simon J; Rodriguez-Santiago, Luis; Sodupe, Mariona; Gamez, Patrick

    2018-04-06

    The binding and electrochemical properties of the complexes Cu II -HAH, Cu II -HWH, Cu II -Ac-HWH, Cu II -HHW, and Cu II -WHH have been studied by using NMR and UV/Vis spectroscopies, CV, and density functional calculations. The results obtained highlight the importance of the peptidic sequence on the coordination properties and, consequently, on the redox properties of their Cu II complexes. For Cu II -HAH and Cu II -HWH, no cathodic processes are observed up to -1.2 V; that is, the complexes exhibit very high stability towards copper reduction. This behaviour is associated with the formation of very stable square-planar (5,5,6)-membered chelate rings (ATCUN motif), which enclose two deprotonated amides. In contrast, for non-ATCUN Cu II -Ac-HWH, Cu II -HHW complexes, simulations seem to indicate that only one deprotonated amide is enclosed in the coordination sphere. In these cases, the main electrochemical feature is a reductive irreversible one electron-transfer process from Cu II to Cu I , accompanied with structural changes of the metal coordination sphere and reprotonation of the amide. Finally, for Cu II -WHH, two major species have been detected: one at low pH (<5), with no deprotonated amides, and another one at high pH (>10) with an ATCUN motif, both species coexisting at intermediate pH. The present study shows that the use of CV, using glassy carbon as a working electrode, is an ideal and rapid tool for the determination of the redox properties of Cu II metallopeptides. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Copper sulfates as cathode materials for Li batteries

    NASA Astrophysics Data System (ADS)

    Schwieger, Jonathan N.; Kraytsberg, Alexander; Ein-Eli, Yair

    As lithium battery technology sets out to bridge the gap between portable electronics and the electrical automotive industry, cathode materials still stand as the bottleneck regarding performances. In the realm of highly attractive polyanion-type structures as high-voltage cathode materials, the sulfate group (SO 4) 2- possesses an acknowledged superiority over other contenders in terms of open circuit voltage arising from the inductive effect of strong covalent S-O bonds. In parallel, novel lithium insertion mechanisms are providing alternatives to traditional intercalation, enabling reversible multi-electron processes securing high capacities. Combining both of these advantageous features, we report here the successful electrochemical reactivity of copper sulfate pentahydrate (CuSO 4·5H 2O) with respect to lithium insertion via a two-electron displacement reaction entailing the extrusion of metallic copper at a dual voltage of 3.2 V and 2.7 V followed by its reversible insertion at 3.5 V and 3.8 V. At this stage, cyclability was still shown to be limited due to the irreversible degradation to a monohydrate structure owing to constitutional water loss.

  6. Synthesis, electronic and ESR spectral studies on copper(II) nitrate complexes with some acylhydrazines and hydrazones.

    PubMed

    Singh, Vinod P

    2008-11-01

    This paper describes the preparation of [Cu(bh)2(H2O)2](NO3)2], [Cu(ibh)2(NO3)2], [Cu(ibh)2(H2O)2](NO3)2 and [Cu(iinh)2(NO3)2] (bh = benzoyl hydrazine (C6H5CONHNH2); ibh = isonicotinoyl hydrazine (NC5H4CONHNH2); ibh = isopropanone benzoyl hydrazone (C6H5CONHN=C(CH3)2; iinh = isopropanone isonicotinoyl hydrazone (NC5H4CONHN=C(CH3)2). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300 K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77 K in DMSO solution. The trend g(||) > g(perpendicular) > g(e,) observed in all the complexes suggests the presence of an unpaired electron in the d x2-y2 orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >C=O and -NH2 groups whereas, ibh and iinh bond through >C=O and >C=N- groups. The IR spectra of bh and ibh complexes also show H-O-H stretching and bending modes of coordinated water.

  7. Geometries and properties of bimetallic phosphido-bridged complex Cp(CO) 2W(μ-PPh 2)W(CO) 5 and Cp(CO) 3W(μ-PPh 2)W(CO) 5

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Yang, Hongmei; Yang, Zuoyin; Zhang, Jingchang; Cao, Weiliang

    2007-01-01

    Complete geometry optimizations were carried out by HF and DFT methods to study the molecular structure of binuclear transition-metal compounds (Cp(CO) 3W(μ-PPh 2)W(CO) 5) (I) and (Cp(CO) 2W(μ-PPh 2)W(CO) 5) (II). A comparison of the experimental data and calculated structural parameters demonstrates that the most accurate geometry parameters are predicted by the MPW1PW91/LANL2DZ among the three DFT methods. Topological properties of molecular charge distributions were analyzed with the theory of atoms in molecules. (3, -1) critical points, namely bond critical point, were found between the two tungsten atoms, and between W1 and C10 in complex II, which confirms the existence of the metal-metal bond and a semi-bridging CO between the two tungsten atoms. The result provided a theoretical guidance of detailed study on the binuclear phosphido-bridged complex containing transition metal-metal bond, which could be useful in the further study of the heterobimetallic phosphido-bridged complexes.

  8. Doubly end-on azido bridged mixed-valence cobalt trinuclear complex: Spectral study, VTM, inhibitory effect and antimycobacterial activity on human carcinoma and tuberculosis cells

    NASA Astrophysics Data System (ADS)

    Datta, Amitabha; Das, Kuheli; Sen, Chandana; Karan, Nirmal Kumar; Huang, Jui-Hsien; Lin, Chia-Her; Garribba, Eugenio; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Mane, Sandeep B.

    2015-09-01

    Doubly end-on azido-bridged mixed-valence trinuclear cobalt complex, [Co3(L)2(N3)6(CH3OH)2] (1) is afforded by employing a potential monoanionic tetradentate-N2O2 Schiff base precursor (2-[{[2-(dimethylamino)ethyl]imino}methyl]-6-methoxyphenol; HL). Single crystal X-ray structure reveals that in 1, the adjacent CoII and CoIII ions are linked by double end-on azido bridges and thus the full molecule is generated by the site symmetry of a crystallographic twofold rotation axis. Complex 1 is subjected on different spectral analysis such as IR, UV-vis, emission and EPR spectroscopy. On variable temperature magnetic study, we observe that during cooling, the χMT values decrease smoothly until 15 K and then reaches to the value 1.56 cm3 K mol-1 at 2 K. Complex 1 inhibits the cell growth on human lung carcinoma (A549 cells), human colorectal (COLO 205 and HT-29 cells), and human heptacellular (PLC5 cells) carcinoma cells. Complex 1 exhibits anti-mycobacterial activity and considerable efficacy on Mycobacterium tuberculosis H37Rv ATCC 27294 and H37Ra ATCC 25177 strains.

  9. Electronic communication in phosphine substituted bridged dirhenium complexes - clarifying ambiguities raised by the redox non-innocence of the C4H2- and C4-bridges.

    PubMed

    Li, Yan; Blacque, Olivier; Fox, Thomas; Luber, Sandra; Polit, Walther; Winter, Rainer F; Venkatesan, Koushik; Berke, Heinz

    2016-04-07

    The mononuclear rhenium carbyne complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([triple bond, length as m-dash]C-Me)(PMe3)4][PF6] (2) was prepared in 90% yield by heating a mixture of the dinitrogen complex trans-[ReCl(N2)(PMe3)4] (1), TlPF6, and an excess of HC[triple bond, length as m-dash]CSiMe3. 2 could be deprotonated with KOtBu to the vinylidene complex trans-[Re(C[triple bond, length as m-dash]CSiMe3)([double bond, length as m-dash]C[double bond, length as m-dash]CH2)(PMe3)4] (3) in 98% yield. Oxidation of 3 with 1.2 equiv. of [Cp2Fe][PF6] at -78 °C gave the Cβ-C'β coupled dinuclear rhenium biscarbyne complex trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH2-CH2-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 (5) in 92% yield. Deprotonation of 5 with an excess of KOtBu in THF produced the diamagnetic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[double bond, length as m-dash]C[double bond, length as m-dash]CH-CH[double bond, length as m-dash]C[double bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)] complex (E-6(S)) in 87% yield with an E-butadienediylidene bridge. Density functional theory (DFT) calculations of E-6(S) confirmed its singlet ground state. The Z-form of 6 (Z-6(S)) could not be observed, which is in accord with its DFT calculated 17.8 kJ mol(-1) higher energy. Oxidation of E-6 with 2 equiv. of [Cp2Fe][PF6] resulted in the stable diamagnetic dicationic trans-[(Me3SiC[triple bond, length as m-dash]C)(PMe3)4Re[triple bond, length as m-dash]C-CH[double bond, length as m-dash]CH-C[triple bond, length as m-dash]Re(PMe3)4(C[triple bond, length as m-dash]CSiMe3)][PF6]2 complex (E-6[PF6]2) with an ethylenylidene dicarbyne structure of the bridge. The paramagnetic mixed-valence (MV) complex E-6[PF6] was obtained by comproportionation of E-6(S) and E-6[PF6]2 or by oxidation of E-6(S) with 1 equiv. of [Cp2Fe][PF6]. The

  10. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    PubMed Central

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in

  11. The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions

    PubMed Central

    Tvrdý, Václav; Karlíčková, Jana; Migkos, Thomas; Mladěnka, Přemysl

    2017-01-01

    Interaction of flavonoids with transition metals can be partially responsible for their impact on humans. Stoichiometry of the iron/copper complex with a flavonoid glycoside isoquercitrin, a frequent component of food supplements, was assessed using competitive and non-competitive methods in four (patho)physiologically-relevant pH values (4.5. 5.5, 6.8, and 7.5). Isoquercitrin chelated all tested ions (Fe2+, Fe3+, Cu2+, and Cu+) but its affinity for Cu+ ions proved to be very low. In general, the chelation potency dropped with pH lowering. Metal complexes of 1:1 stoichiometry were mostly formed, however, they were not stable and the stoichiometry changed depending on conditions. Isoquercitrin was able to reduce both Cu2+ and Fe3+ ions at low ratios, but its reducing potential was diminished at higher ratios (isoquercitrin to metal) due to the metal chelation. In conclusion, this study emphasizes the need of using multiple different methods for the assessment of chelation potential in moderately-active metal chelators, like flavonoids. PMID:29084179

  12. Structural characterization of a bridged 99Tc-Sn-dimethylglyoxime complex: implications for the chemistry of 99mTc-radiopharmaceuticals prepared by the Sn (II) reduction of pertechnetate.

    PubMed Central

    Deutsch, E; Elder, R C; Lange, B A; Vaal, M J; Lay, D G

    1976-01-01

    Reduction of pertechnetate by tin(II) in the presence of dimethylglyoxime is shown, by single crystal x-ray analysis, to yield a technetium-tin-dimethylglyoxime complex in which tin and technetium are intimately connected by a triple bridging arrangement. One bridge consists of a single oxygen atom and it is hypothesized that this bridge arises from the inner sphere reduction of technetium by tin(II), the electrons being transferred through a technetium "yl" oxygen which eventually becomes the bridging atom. Two additional bridges arise from two dimethylglyoxime ligands that function as bidentate nitrogen donors towards Tc and monodentate oxygen donors towards Sn. The tin atom can thus be viewed as providing a three-pronged "cap" on one end of the Tc-dimethylglyoxime complex. The additional coordination sites around Tc are occupied by the two nitrogens of a third dimethylglyoxime ligand, making the Tc seven-coordinate. The additional coordination sites around Sn are occupied by three chloride anions, giving the Sn a fac octahedral coordination environment. From indirect evidence the oxidation states of tin and technetium are tentatively assigned to be IV and V, respectively. Since most 99mTc-radiopharmaceuticals are synthesized by the tin(II) reduction of pertechnetate, it is likely that the Sn-O-Tc linkage described in this work is an important feature of the chemistry of these species. This linkage also provides a ready rationale for the close association of tin and technetium observed in many 99mTc-radiopharmaceuticals. PMID:1069984

  13. The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes.

    PubMed

    Kuzmina, O; Hassan, N H; Patel, L; Ashworth, C; Bakis, E; White, A J P; Hunt, P A; Welton, T

    2017-09-28

    Solvatochromic transition metal (TM)-complexes with weakly associating counter-anions are often used to evaluate traditional neutral solvent and anion coordination ability. However, when employed in ionic liquids (IL) many of the common assumptions made are no longer reliable. This study investigates the coordinating ability of weakly coordinating IL anions in traditional solvents and within IL solvents employing a range of solvatochromic copper complexes. Complexes of the form [Cu(acac)(tmen)][X] (acac = acetylacetonate, tmen = tetramethylethylenediamine) where [X] - = [ClO 4 ] - , Cl - , [NO 3 ] - , [SCN] - , [OTf] - , [NTf 2 ] - and [PF 6 ] - have been synthesised and characterised both experimentally and computationally. ILs based on these anions and imidazolium and pyrrolidinium cations, some of which are functionalised with hydroxyl and nitrile groups, have been examined. IL-anion coordination has been investigated and compared to typical weakly coordinating anions. We have found there is potential for competition at the Cu-centre and cases of anions traditionally assigned as weakly associating that demonstrate a stronger than expected level of coordinating ability within ILs. [Cu(acac)(tmen)][PF 6 ] is shown to contain the least coordinating anion and is established as the most sensitive probe studied here. Using this probe, the donor numbers (DNs) of ILs have been determined. Relative donor ability is further confirmed based on the UV-Vis of a neutral complex, [Cu(sacsac) 2 ] (sacsac = dithioacetylacetone), and DNs evaluated via 23 Na NMR spectroscopy. We demonstrate that ILs can span a wide donor range, similar in breadth to conventional solvents.

  14. Thiol-based copper handling by the copper chaperone Atox1.

    PubMed

    Hatori, Yuta; Inouye, Sachiye; Akagi, Reiko

    2017-04-01

    Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  15. 2-tert-Butyl-5-(2-pyridyl)-2H-tetrazole as a chelating ligand in the direct synthesis of novel Cu(II) and heterobimetallic Cu(II)/Mn(II) complexes.

    PubMed

    Mosalkova, Anastasiya P; Voitekhovich, Sergei V; Lyakhov, Alexander S; Ivashkevich, Ludmila S; Lach, Jochen; Kersting, Berthold; Gaponik, Pavel N; Ivashkevich, Oleg A

    2013-02-28

    For the first time, a representative of the 2,5-disubstituted tetrazoles, namely, 2-tert-butyl-5-(2-pyridyl)-2H-tetrazole (L), has been found to participate in oxidative dissolution of copper powder in homometalic systems Cu0–L–NH4X–DMSO (X = Cl, SCN, ClO4) and heterobimetallic ones Cu0–Mn(OAc)2–L–NH4OAc–Solv (Solv = DMSO, DMF), providing the formation of molecular homometallic complexes [CuL2Cl2] (1), [CuL2(SCN)2] (2), and [CuL2(H2O)](ClO4)2 (3), heterobimetallic complex [Cu2MnL2(OAc)6] (4) from DMF solution and its mixture with complex [Cu2MnL2(OAc)6]·2DMSO (5) from DMSO solution. Free ligand L and complexes 1–4 were characterized by elemental analysis, IR spectroscopy, thermal and X-ray single crystal analyses, whereas complex 5 was characterized by X-ray analysis only. Compounds 1–3 are mononuclear complexes, with chelating coordination mode of L via the tetrazole ring N4 and pyridine ring N7 atoms. Heterobimetallic complexes 4 and 5 possess trinuclear structures, with a linear Cu–Mn–Cu arrangement of the metal atoms, linked by the acetate anions; each copper(II) atom is decorated by a chelating unit of L via the tetrazole ring N1 and pyridine ring N7 atoms in complex 4, and via the N4, N7 atoms in complex 5. Temperature-dependent magnetic susceptibility measurements of complex 4 revealed a weak antiferromagnetic coupling between the paramagnetic copper(II) and manganese(II) ions (J = −2.5 cm(−1), g(Cu) = 2.25 and g(Mn) = 2.01), with magnetic exchange through the acetato bridges.

  16. X-ray crystal structure and theoretical study of a new dinuclear Cu(II) complex with two different geometry centers bridged with an oxo group

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Azimi, Saeid; Molaei, Atefeh; Hatami, Masoud; Notash, Behrouz

    2017-10-01

    A new Schiff base ligand HL, 1,3-bis(2-((Z)-(2-aminoethylimino)methyl)phenoxy)ethylene di amine, has been synthesized from the reaction of a new aldehyde and ethylenediamine. After preparation the Schiff base, a new dinuclear Cu(II) complex with two different geometry for each metal ion was synthesized. Single crystal X-ray structure analysis of the complex Cu(II) showed that the complex is binuclear and all nitrogen and oxygen atoms of ligand (N4O3) are coordinated to two Cu(II) center ions. The crystal structure studying shows, a perchlorate ion has been coordinated to the two Cu(II) metal centers as bridged and another perchlorate coordinated to the one of Cu(II) ion as terminal. However, two interesting structures square pyramidal and distorted octahedral Cu(II) ions are bridged asymmetrically by a perchlorate ion and oxygen of hydroxyl group of Schiff base ligand. In addition, we had a theoretical study to have a comparison of experimental and theoretical results we determined the HOMO and LUMO orbitals.

  17. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies

    NASA Astrophysics Data System (ADS)

    Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan

    2016-09-01

    Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.

  18. Structure and Stability of Carboxylate Complexes. 20. Diaqua Bis(methoxyacetato) Complexes of Nickel(II), Copper(II), and Zinc(II): A Structural Study of the Dynamic Pseudo-Jahn-Teller Effect.

    PubMed

    Prout, Keith; Edwards, Alison; Mtetwa, Victor; Murray, Jon; Saunders, John F.; Rossotti, Francis J. C.

    1997-06-18

    The crystal structure of trans-diaquabis(methoxyacetato)copper(II), C(6)H(14)O(8)Cu, has been determined by neutron diffraction at 4.2 K (monoclinic, P2(1)/n, a = 6.88(1), b = 7.19(1), c = 9.77(2) Å, gamma = 95.7(1) degrees, (Z = 2)) and by X-ray diffraction at 125, 165, 205, 240, 265, 295, and 325 K. These measurements show that there is no phase change in the temperature range 4.2-325 K. The copper(II) coordination at 4.2 K is a tetragonally distorted elongated rhombic octahedron (Cu-OOC 1.955(1), Cu-OMe 2.209(1), and Cu-OH(2) 2.031(2) Å). As the temperature increases to 325 K, the Cu-OOC bonds shorten slightly to 1.934(5) Å, the Cu-OMe bonds shorten more markedly to 2.137(4) Å, and Cu-OH(2) lengthens to 2.155(6) Å to give a tetragonally distorted compressed rhombic octahedron. For comparison the structure of the isomorphous nickel(II) complex (monoclinic, P2(1)/n, a = 6.633(1), b = 7.192(1), c = 10.016(2) Å, gamma = 98.30(2) degrees, (Z = 2)) has been redetermined at 295 K and the structure of the analogous zinc(II) complex (orthorhombic, F2dd, a = 7.530(1), b = 13.212(1), c = 21.876(2) Å (Z = 8)) has also been determined. The nickel(II) complex has an almost regular trans (centrosymmetric) octahedral coordination (Ni-OOC 2.022(1), Ni-OMe 2.043(1), and Ni-OH(2) 2.077(2) Å). However, zinc(II) has a very distorted octahedral coordination with the zinc atom on a 2-fold axis with the water molecules and the methoxy ligators cis and the carboxylate ligators trans (Zn-OOC 1.985(1), Zn-OMe 2.304(2), and Zn-OH(2) 2.038(2) Å). The variation in the dimensions of the copper(II) coordination sphere is discussed in terms of static (low temperature) and planar dynamic (high temperature) pseudo-Jahn-Teller effects.

  19. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu, E-mail: 7213792@qq.com

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O–more » are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.« less

  20. 47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...

  1. 47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...

  2. Earthquake fragility assessment of curved and skewed bridges in Mountain West region : research brief.

    DOT National Transportation Integrated Search

    2016-09-01

    the ISSUE : the RESEARCH : Earthquake Fragility : Assessment of Curved : and Skewed Bridges in : Mountain West Region : Reinforced concrete bridges with both skew and curvature are common in areas with complex terrains. : These bridges are irregular ...

  3. Exceptionally high lactide polymerization activity of zirconium complexes with bridged diketiminate ligands.

    PubMed

    El-Zoghbi, Ibrahim; Whitehorne, Todd J J; Schaper, Frank

    2013-07-07

    A cyclohexanediyl-bridged, bis(N-xylyl) diketiminate ligand, (±)-C6H10(nacnac(Xyl)H)2, LH2 (Xyl = 2,6-dimethylphenyl), was obtained from the reaction of [(2,6-dimethylphenyl)amino]-pent-3-en-2-one first with Meerwein's salt, then with (±)-cyclohexanediamine. The reaction of the ligand with Zr(NMe2)4 yielded LZr(NMe2)2. Protonation of the remaining diamide ligands with EtOH or [H2NMe2]Cl yielded LZr(OEt)2 and LZrCl2, respectively. The latter complex was also obtained by the reaction of LH2 first with nBuLi and then with ZrCl4(THF)2. The dichloride complex yielded LZr(OEt)2 and LZrMe2 upon reaction with NaOEt or MeLi/AlMe3, respectively. X-ray diffraction studies showed a trans-configuration of the ancillary ligands in LZrCl2 and LZrMe2, and a cis-configuration in LZr(NMe2)2 and LZr(OEt)2. LZr(OEt)2 was tested as a catalyst for the polymerization of rac-lactide. Kinetic investigations yielded a rate law first order in catalyst and monomer and a rate constant k = 14(1) L mol(-1) s(-1), the latter being orders of magnitude higher than typical activities for group 4 complexes in lactide polymerization. Analyses of the obtained polymer revealed an atactic polymer and broad polymer molecular weight distributions with sizeable fractions of cyclic oligomers. The influence of contaminants on the polymerization activity was examined: while lactic acid deactivates the catalyst, addition of up to 1 equiv. of water or para-toluenesulfonic acid revitalized catalysts not showing maximum activity.

  4. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  5. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  6. Reactions of monodithiolene tungsten(VI) sulfido complexes with copper(I) in relation to the structure of the active site of carbon monoxide dehydrogenase.

    PubMed

    Groysman, Stanislav; Majumdar, Amit; Zheng, Shao-Liang; Holm, R H

    2010-02-01

    Reactions directed at the synthesis of structural analogues of the active site of molybdenum-containing carbon monoxide dehydrogenase have been investigated utilizing [WO(2)S(bdt)](2-) (1) and [WOS(2)(bdt)](2-) (2) and sterically hindered [Cu(R)L] or [Cu(SSiR'(3))(2)](-) as reactants. All successful reactions of 2 afford the binuclear W(VI)/Cu(I) products [WO(bdt)(mu(2)-S)(2)Cu(L)](2-/-) with L = carbene (3), Ar*S (4), Ar* (7), SSiR(3) (R = Ph (5), Pr(i) (6)). Similarly, [W(bdt)(OSiPh(3))S(2)](-) leads to [W(bdt)(OSiPh(3))(mu(2)-S)(2)Cu(SAr*)](-) (8). These complexes, with apical oxo and basal dithiolato and sulfido coordination (excluding 8), terminal thiolate ligation at Cu(I) (4-6, 8), and W-(mu(2)-S)-Cu bridging, bear a structural resemblance to the enzyme site. Differences include two bridges instead of one and the absence of basal oxo/hydroxo ligation. Complex 8 differs from the others by utilizing apical and basal sulfido ligands in bridge formation. Related reaction systems based on 1 gave 4 in small yield or product mixtures in which the desired monobridged complex [WO(2)(bdt)(mu(2)-S)Cu(R)](2-) was not detected. Mass spectrometric analysis of the reaction system with L = carbene suggests that any monobridged species forms may converted to the dibridged form by disproportionation. In these experiments, the use of W(VI) preserves the structural integrity of Mo(VI), whose analogues of 1 and 2 have not been isolated. (Ar* = 2,6-bis(2,4,6-triisopropylphenyl)phenyl, bdt = benzene-1,2-dithiolate(2-)).

  7. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  8. Two novel mixed-ligand complexes containing organosulfonate ligands.

    PubMed

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  9. Synthesis of Well-Defined Copper "N"-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment that Emphasizes the Role of Catalysis in Green Chemistry

    ERIC Educational Resources Information Center

    Ison, Elon A.; Ison, Ana

    2012-01-01

    A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…

  10. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.

  11. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  12. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides†

    PubMed Central

    Hein, Jason E.

    2011-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(i) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science. PMID:20309487

  13. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution.

    PubMed

    Denoyer, Delphine; Pearson, Helen B; Clatworthy, Sharnel A S; Smith, Zoe M; Francis, Paul S; Llanos, Roxana M; Volitakis, Irene; Phillips, Wayne A; Meggyesy, Peter M; Masaldan, Shashank; Cater, Michael A

    2016-06-14

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed.

  14. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    PubMed Central

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  15. Steel bridge retrofit evaluation

    NASA Astrophysics Data System (ADS)

    Prine, David W.

    1998-03-01

    The development of a retrofit design aimed at retarding or eliminating fatigue crack growth in a large bridge can be a very difficult and expensive procedure. Analytical techniques frequently do not provide sufficient accuracy when applied to complex structural details. The Infrastructure Technology Institute (ITI) of Northwestern University, under contract to the California Department of Transportation (Caltrans), recently applied experimental state-of-the-art NDE technology to the Interstate 80 bridge over the Sacramento River near Sacramento, California (Bryte Bend). Acoustic emission monitoring was applied in conjunction with strain gage monitoring to aid in characterizing the retrofits' effect on existing active fatigue cracks. The combined test results clearly showed that one retrofit design was superior to the other.

  16. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    PubMed

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  17. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  18. [Influence of the earthworm Lumbricus terrestris on soil solution complexation capacity].

    PubMed

    el Gharmali, A; Rada, A; el Meray, M; Nejmeddine, A

    2001-04-01

    Four soil samples highly contaminated with metals of urban and mine origin (SE1, SE2, SM1, SM2) and having different physico-chemical proprieties were selected to study copper complexation capacity (LT) of soil solution. The effect of Lumbricus terrestris on copper complexation capacity of soil solution was investigated on SE1 and SE2. The complexation capacity was estimated by amperometric titration of soil solution by copper. Free hydrated cation and labile complexes of copper were determined by DPASV. The results show that the copper complexation capacity variation depends on the physico-chemical characteristics of soils, particularly pH. Thus, the values of copper complexation capacity are 0; 0.6 x 10(-7); 1.8 x 10(-7) and 5.5 x 10(-7) mol l-1 respectively for SM2; SM1; SE1 and SE2 which are pH 5; 5.4; 6.5 and 7.4. Based on these results, the bioavailability levels of heavy metals show the following pool ranking: SM2 > SM1 > SE1 > SE2. The copper complexation capacity of soil solution increases with the soil disturbance by Lumbricus terrestris. This is more obvious when the time of disturbance by lumbrics is longer. Indeed, average values determined for 1 month and 3 months are 3.8 x 10(-7) and 7.8 x 10(-7) mol l-1 for SE1; 7.7 x 10(-7) and 15.2 x 10(-7) mol l-1 for SE2 respectively. It seems that the action of earthworm on soil can contribute to the decrease of bioavailability of heavy metals, particularly copper.

  19. Optimizing the Electronic Properties of Photoactive Anticancer Oxypyridine-Bridged Dirhodium(II,II) Complexes

    DOE PAGES

    Li, Zhanyong; David, Amanda; Albani, Bryan A.; ...

    2014-12-01

    A series of partial paddlewheel dirhodium compounds of general formula cis-[Rh 2(xhp) 2(CH 3CN) n][BF 4] 2 (n = 5 or 6) were synthesized {xhp = 6-R-2-oxypyridine ligands, R = -CH 3 (mhp), -F (fhp), -Cl (chp)}. X-ray crystallographic studies indicate the aforementioned compounds contain two cis-oriented bridging xhp ligands, with the remaining sites being coordinated by CH 3CN ligands. The lability of the equatorial (eq) CH 3CN groups in these complexes in solution is in the order -CH 3 > -Cl > -F, in accord with the more electron rich bridging ligands exerting a stronger trans effect. In themore » case of cis-[Rh 2(chp) 2(CH 3CN) 6][BF 4] 2 (5), light irradiation enhances the production of the aqua adducts in which eq CH 3CN is replaced by H 2O molecules, whereas the formation of the aqua species for cis-[Rh 2(fhp) 2(CH 3CN) 6][BF 4] 2 (7) is only slightly increased by irradiation. The potential of both compounds to act as photochemotherapy agents was evaluated. A 16.4-fold increase in cytotoxicity against the HeLa cell line was observed for 5 upon 30 min irradiation (λ > 400 nm), in contrast to the nontoxic compound 7, which is in accord with the results from the photochemistry. Furthermore, the cell death mechanism induced by 5 was determined to be apoptosis. In conclusion, these results clearly demonstrate the importance of tuning the ligand field around the dimetal center to maximize the photoreactivity and achieve the best photodynamic action.« less

  20. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.