Sample records for copper deficiency involves

  1. Case of sensory ataxic ganglionopathy-myelopathy in copper deficiency.

    PubMed

    Zara, Gabriella; Grassivaro, Francesca; Brocadello, Filippo; Manara, Renzo; Pesenti, Francesco Francini

    2009-02-15

    Spinal cord involvement associated with severe copper deficiency has been reported in the last 8 years. Copper deficiency may produce an ataxic myelopathy. Clinical and neuroimaging findings are similar to the subacute combined degeneration seen in patients with vitamin B12 deficiency. Macrocytic, normocytic and microcytic anemia, leukopenia and, in severe cases, pancytopenia are well known hematologic manifestations. The most patients with copper deficiency myelopathy had unrecognized carency. Some authors suggested that early recognition and copper supplementation may prevent neurologic deterioration but clinical findings do not improve. We present a patient with copper deficiency, dorsal root ganglions and cervical dorsal columns involvement. Clinical status and neuroimaging improved after copper replacement therapy. Sensory neurons of dorsal root ganglia may be the most sensitive nervous pathway. In this case the early copper treatment allowed to improve neurologic lesions and to prevent further involvements.

  2. Clinically distinct presentations of copper deficiency myeloneuropathy and cytopenias in a patient using excessive zinc-containing denture adhesive.

    PubMed

    Cathcart, Sahara J; Sofronescu, Alina G

    2017-08-01

    While copper deficiency has long been known to cause cytopenias, copper deficiency myeloneuropathy is a more recently described entity. Here, we present the case of two clinically distinct presentations of acquired copper deficiency syndromes secondary to excessive use of zinc-containing denture adhesive over five years: myeloneuropathy and severe macrocytic anemia and neutropenia. Extensive laboratory testing and histologic evaluation of the liver and bone marrow, were necessary to rule out other disease processes and establish the diagnosis of copper deficiency. The initial presentation consisted of a myelopathy involving the posterior columns. Serum and urine copper were significantly decreased, and serum zinc was elevated. On second presentation (five years later), multiple hematological abnormalities were detected. Serum copper was again decreased, while serum zinc was elevated. Zinc overload is a preventable cause of copper deficiency syndromes. This rare entity presented herein highlights the importance of patient, as well as provider, education. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. The copper metallome in eukaryotic cells.

    PubMed

    Vest, Katherine E; Hashemi, Hayaa F; Cobine, Paul A

    2013-01-01

    Copper is an element that is both essential and toxic. It is a required micronutrient for energy production in aerobic eukaryotes, from unicellular yeast to plants and mammals. Copper is also required for the acquisition and systemic distribution of the essential metal iron, and so copper deficiency results in iron deficiency. Copper enzymes have been identified that explain the wide variety of symptoms suffered by copper deficient subjects. The cloning of the genes encoding transport proteins responsible for copper-related Menkes and Wilson diseases inspired and coincided with the discovery of copper chaperones that stimulated the copper homeostasis field. Copper continues to be implicated in new array of proteins, notably those involved in a variety of neurodegenerative diseases. Here we will describe the cadre of important historical copper proteins and survey the major metallochaperones and transporters responsible for mobilization and sequestration of copper in yeast, mammals and plants.

  4. Clinical, physiological and pathological characterisation of the sensory predominant peripheral neuropathy in copper deficiency.

    PubMed

    Taylor, Sean W; Laughlin, Ruple S; Kumar, Neeraj; Goodman, Brent; Klein, Christopher J; Dyck, Peter J; Dyck, P James B

    2017-10-01

    Myelopathy is considered the most common neurological complication of copper deficiency. Concurrent peripheral neuropathy has been recognised in association with copper deficiency but has not been well characterised. To characterise the clinical, physiological and pathological features of copper-deficient peripheral neuropathy. Patients with simultaneous copper deficiency (<0.78 μg/mL) and peripheral neuropathy seen at the Mayo Clinic from 1985 to 2005 were identified. 34 patients were identified (median age 55 years, range 36-78) including 24 women and 10 men. Myelopathy was found in 21 patients. Median serum copper level was 0.11 μg/mL (range 0-0.58). The most frequent clinical and electrophysiological pattern of neuropathy was a sensory predominant length-dependent peripheral neuropathy (71%). Somatosensory evoked potentials demonstrated central slowing supporting myelopathy (96%). Quantitative sensory testing demonstrated both small and large fibre involvement (100%). Autonomic reflex screens (77%) and thermoregulatory sweat test (67%) confirmed sudomotor dysfunction. 14 cutaneous nerve biopsies revealed loss of myelinated nerve fibres (86%), increased regenerative clusters (50%), increased rates of axonal degeneration (91%) and increased numbers of empty nerve strands (73%). 71% of biopsies demonstrated epineurial perivascular inflammation. An axonal, length-dependent sensory predominant peripheral neuropathy causing sensory ataxia is characteristic of copper deficiency usually co-occurring with myelopathy. Neurophysiological testing confirms involvement of large, greater than small fibres. The pathological findings suggest axonal degeneration and repair. Inflammatory infiltrates are common but are small and of doubtful pathological significance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Genetic Dissection of Nutritional Copper Signaling in Chlamydomonas Distinguishes Regulatory and Target Genes

    PubMed Central

    Eriksson, Mats; Moseley, Jeffrey L.; Tottey, Stephen; del Campo, Jose A.; Quinn, Jeanette; Kim, Youngbae; Merchant, Sabeeha

    2004-01-01

    A genetic screen for Chlamydomonas reinhardtii mutants with copper-dependent growth or nonphotosynthetic phenotypes revealed three loci, COPPER RESPONSE REGULATOR 1 (CRR1), COPPER RESPONSE DEFECT 1 (CRD1), and COPPER RESPONSE DEFECT 2 (CRD2), distinguished as regulatory or target genes on the basis of phenotype. CRR1 was shown previously to be required for transcriptional activation of target genes like CYC6, CPX1, and CRD1, encoding, respectively, cytochrome c6 (which is a heme-containing substitute for copper-containing plastocyanin), coproporphyrinogen III oxidase, and Mg-protoporphyrin IX monomethylester cyclase. We show here that CRR1 is required also for normal accumulation of copper proteins like plastocyanin and ferroxidase in copper-replete medium and for apoplastocyanin degradation in copper-deficient medium, indicating that a single pathway controls nutritional copper homeostasis at multiple levels. CRR1 is linked to the SUPPRESSOR OF PCY1-AC208 13 (SOP13) locus, which corresponds to a gain-of-function mutation resulting in copper-independent expression of CYC6. CRR1 is required also for hypoxic growth, pointing to a physiologically meaningful regulatory connection between copper deficiency and hypoxia. The growth phenotype of crr1 strains results primarily from secondary iron deficiency owing to reduced ferroxidase abundance, suggesting a role for CRR1 in copper distribution to a multicopper ferroxidase involved in iron assimilation. Mutations at the CRD2 locus also result in copper-conditional iron deficiency, which is consistent with a function for CRD2 in a pathway for copper delivery to the ferroxidase. Taken together, the observations argue for a specialized copper-deficiency adaptation for iron uptake in Chlamydomonas. PMID:15514054

  6. Subacute copper-deficiency myelopathy in a patient with occult celiac disease.

    PubMed

    Cavallieri, Francesco; Fini, Nicola; Contardi, Sara; Fiorini, Massimo; Corradini, Elena; Valzania, Franco

    2017-07-01

    Acquired copper deficiency represents a rare cause of progressive myelopathy presenting with sensory ataxia and spastic gait. The time interval from neurological symptoms onset to diagnosis of myelopathy ranges from 2 months to several years in almost all cases, mimicking the clinical course of subacute combined degeneration due to vitamin B12 deficiency. A 60-year-old man, without any gastrointestinal symptoms, developed over the course of one week rapidly progressive gait imbalance, tingling and numbness in his feet and ascending lower limb weakness. Spine magnetic resonance imaging revealed hyperintensity involving cervical and dorsal posterior columns of spinal cord. Blood analysis revealed undetectable serum copper levels, low serum ceruloplasmin and positive serum Immunoglobulin A anti-tissue transglutaminase. Upper gastrointestinal endoscopy was performed revealing duodenal villous atrophy consistent with a malabsorption pattern. A gluten-free diet in association with intravenous then oral copper supplementation prompted sustained normalization of serum copper levels and progressive clinical improvement. We report a rare case of myelopathy induced by copper deficiency secondary to undiagnosed celiac disease, peculiarly presenting with a subacute onset. This case expands the neurological presentation and clinical course of myelopathy due to acquired copper deficiency. We suggest investigation of copper deficiency in patients presenting with subacute or even acute sensory ataxia and spastic gait. Detection of hypocupremia in patients without a previous history of gastric surgery should lead to diagnostic testing for celiac disease even in the absence of any obvious gastrointestinal symptoms.

  7. Inflammation protects copper deficient rats from carbon tetrachloride toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F.L.; Joseph, E.; DiSilvestro, R.A.

    1991-03-11

    Copper deficient rats show low resistance to CCl{sub 4}, possibly due to low liver Cu-Zn superoxide dismutase (SOD) activities. If Cu-Zn SOD is involved, deficiency effects should be aggravated by inflammation which further lowers Cu-Zn SOD activities in deficient rats. On the contrary, inflammation from 0.1 ml turpentine (im, lef) protected these rats from CCl{sub 4} damage assessed by serum activities of 2 liver enzymes. CCl{sub 4} was given ip at 200 {mu}l/kg, 48 h after turpentine, 24 h before sacrifice. Rats were fed low copper for 40 days before CCl{sub 4} challenge. Inflammation also protected rats fed adequate coppermore » from injury, though injury in noninflamed rats was less than with noninflamed deficients. Protection could result from the large increase observed in liver metallothionein, an induction not restricted by copper deficiency. Alternatively, inflammation may block P-450 activation of CCl{sub 4}. Both explanations are currently under investigation, as is the role, if any, of Cu-Zn SOD in resisting CCl{sub 4} injury.« less

  8. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    PubMed

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  9. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Berg, G.J.; de Goeij, J.J.; Bock, I.

    1991-08-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less

  10. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.

    PubMed

    Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi

    2014-07-07

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  11. Transcuprein is a Macroglobulin Regulated by Copper and Iron Availability

    PubMed Central

    Liu, Nanmei; Lo, Louis Shi-li; Askary, S. Hassan; Jones, LaTrice; Kidane, Theodros Z.; Nguyen, Trisha Trang Minh; Goforth, Jeremy; Chu, Yu-Hsiang; Vivas, Esther; Tsai, Monta; Westbrook, Terence; Linder, Maria C.

    2009-01-01

    SUMMARY Transcuprein is a high affinity copper carrier in the plasma involved in the initial distribution of copper entering the blood from the digestive tract. To identify and obtain cDNA for this protein, it was purified from rat plasma by size exclusion and copper chelate affinity chromatography, and amino acid sequences were obtained. These revealed a 190 kDa glycosylated protein identified as the macroglobulin, α1inhibitorIII, the main macroglobulin of rodent blood plasma. Albumin (65 kDa) co-purified in variable amounts and was concluded to be a contaminant (although it transiently can bind the macroglobulin). The main macroglobulin in human blood plasma (α2-macroglobulin), homologous to α1inhibitorIII, also bound copper tightly. Expression of α1I3 (transcuprein) mRNA by the liver was examined in rats with and without copper deficiency, using quantitative PCR and Northern analysis. Protein expression was examined by Western blotting. Deficient rats with 40% less ceruloplasmin oxidase activity and liver copper concentrations expressed about twice as much α1I3 mRNA, but circulating levels of transcuprein did not differ. Iron deficiency, which increased liver copper concentrations 3-fold, reduced transcuprein mRNA expression and 7circulating levels of transcuprein relative to what occurred in rats with normal or excess iron. We conclude that transcupreins are specific macroglobulins that not only carry zinc but also transport copper in the blood; and that their expression can be modulated by copper and iron availability. PMID:17363239

  12. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    PubMed

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  13. Aberrant expression of copper associated genes after copper accumulation in COMMD1-deficient dogs.

    PubMed

    Favier, Robert P; Spee, Bart; Fieten, Hille; van den Ingh, Ted S G A M; Schotanus, Baukje A; Brinkhof, Bas; Rothuizen, Jan; Penning, Louis C

    2015-01-01

    COMMD1-deficient dogs progressively develop copper-induced chronic hepatitis. Since high copper leads to oxidative damage, we measured copper metabolism and oxidative stress related gene products during development of the disease. Five COMMD1-deficient dogs were studied from 6 months of age over a period of five years. Every 6 months blood was analysed and liver biopsies were taken for routine histological evaluation (grading of hepatitis), rubeanic acid copper staining and quantitative copper analysis. Expression of genes involved in copper metabolism (COX17, CCS, ATOX1, MT1A, CP, ATP7A, ATP7B, ) and oxidative stress (SOD1, catalase, GPX1 ) was measured by qPCR. Due to a sudden death of two animals, the remaining three dogs were treated with d-penicillamine from 43 months of age till the end of the study. Presented data for time points 48, 54, and 60 months was descriptive only. A progressive trend from slight to marked hepatitis was observed at histology, which was clearly preceded by an increase in semi-quantitative copper levels starting at 12 months until 42 months of age. During the progression of hepatitis most gene products measured were transiently increased. Most prominent was the rapid increase in the copper binding gene product MT1A mRNA levels. This was followed by a transient increase in ATP7A and ATP7B mRNA levels. In the sequence of events, copper accumulation induced progressive hepatitis followed by a transient increase in gene products associated with intracellular copper trafficking and temporal activation of anti-oxidative stress mechanisms. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Refractory cytopenias secondary to copper deficiency in children receiving exclusive jejunal nutrition.

    PubMed

    Jacobson, Amanda E; Kahwash, Samir B; Chawla, Anjulika

    2017-11-01

    Copper deficiency is a known cause of anemia and neutropenia that is easily remedied with copper supplementation. Copper is primarily absorbed in the stomach and proximal duodenum, so patients receiving enteral nutrition via methods that bypass this critical region may be at increased risk for copper deficiency. In pediatrics, postpyloric enteral feeding is increasingly utilized to overcome problems related to aspiration, severe reflux, poor gastric motility, and gastric outlet obstruction. However, little is known about the prevalence of copper deficiency in this population. We describe three pediatric patients receiving exclusive jejunal feeds who developed cytopenias secondary to copper deficiency. © 2017 Wiley Periodicals, Inc.

  15. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

    PubMed Central

    Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole

    2013-01-01

    Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

  16. High fructose feeding induces copper deficiency in Sprague-Dawley rats: A novel mechanism for obesity related fatty liver

    USDA-ARS?s Scientific Manuscript database

    Dietary copper deficiency is associated with a variety of manifestations of the metabolic syndrome, including hyperlipidemia and fatty liver. Fructose feeding has been reported to exacerbate complications of copper deficiency. In this study, we investigated whether copper deficiency plays a role in ...

  17. Impaired copper and iron metabolism in blood cells and muscles of patients affected by copper deficiency myeloneuropathy.

    PubMed

    Spinazzi, Marco; Sghirlanzoni, Angelo; Salviati, Leonardo; Angelini, Corrado

    2014-12-01

    Severe copper deficiency leads in humans to a treatable multisystem disease characterized by anaemia and degeneration of spinal cord and nerves, but its mechanisms have not been investigated. We tested whether copper deficit leads to alterations in fundamental copper-dependent proteins and in iron metabolism in blood and muscles of patients affected by copper deficiency myeloneuropathy, and if these metabolic abnormalities are associated with compensatory mechanisms for copper maintenance. We evaluated the expression of critical copper enzymes, of iron-related proteins, and copper chaperones and transporters in blood and muscles from five copper-deficient patients presenting with subacute sensory ataxia, muscle paralysis, liver steatosis and variable anaemia. Severe copper deficiency was caused by chronic zinc intoxication in all of the patients, with an additional history of gastrectomy in two cases. The antioxidant enzyme SOD1 and subunit 2 of cytochrome c oxidase were significantly decreased in blood cells and in muscles of copper-deficient patients compared with controls. In muscle, the iron storage protein ferritin was dramatically reduced despite normal serum ferritin, and the expression of the haem-proteins cytochrome c and myoglobin was impaired. Muscle expression of the copper transporter CTR1 and of the copper chaperone CCS, was strikingly increased, while antioxidant protein 1 was diminished. copper-dependent enzymes with critical functions in antioxidant defences, in mitochondrial energy production, and in iron metabolism are affected in blood and muscles of patients with profound copper deficiency leading to myeloneuropathy. Homeostatic mechanisms are strongly activated to increase intracellular copper retention. © 2013 British Neuropathological Society.

  18. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism.

    PubMed

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-02-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  19. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism

    PubMed Central

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-01-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. PMID:26865661

  20. Copper deficiency in Tule Elk at Point Reyes, California

    USGS Publications Warehouse

    Gogan, Peter J.P.; Jessup, David A.; Akeson, Mark

    1989-01-01

    Tule elk (Cervus elaphus nannodes) reintroduced to Point Reyes, Calif., in 1978 exhibited gross signs of copper deficiency by June 1979. Copper levels in liver (x=5.9 ppm) and serum (0.42 ppm) of elk in Point Reyes were below levels in adult tule elk from other locations in California (liver, x=80 ppm; serum, x=1.4 ppm). These levels were consistent with documented copper deficiencies in wild and domestic ruminants. Copper serum levels increased in response to copper enriched dietary supplements and declined after the elk stopped eating the supplements. Analysis of plant and soil samples showed both are deficient in copper and normal in molybdenum and sulfur-sulfates. Deficiency in plants and soils at Point Reyes are probably due to low copper levels in the underlying granitic parent material.

  1. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    PubMed

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  2. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    PubMed

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  3. Short-term dietary copper deficiency does not inhibit angiogenesis in tumours implanted in striated muscle.

    PubMed Central

    Schuschke, D. A.; Reed, M. W.; Saari, J. T.; Olson, M. D.; Ackermann, D. M.; Miller, F. N.

    1992-01-01

    The effect of dietary copper deficiency on tumour growth, neovascularisation and microvascular integrity was studied in the rat cremaster muscle. Male, weanling Sprague-Dawley rats were fed purified diets which were copper deficient (< 0.5 micrograms g-1 of diet) or copper adequate (5 micrograms g-1 of diet). Seven days after initiation of diets, a chondrosarcoma was implanted in the cremaster muscle of each rat. Five, 10 or 20 days after tumour implantation, rats were anesthetised and their cremasters prepared for observation by intravital microscopy. Intraarterial injection of fluorescein isothiocyanate-conjugated albumin and subsequent observation of fluorescence in the perivascular space indicated no difference in microvascular albumin leakage between the tumour vasculature of copper deficient and copper adequate rats. Neither tumour growth (assessed by wet weight), vascular density (assessed by light microscopy), nor any ultrastructural characteristics of the tumour or its vasculature (assessed by electron microscopy) were affected by copper deficiency. In view of findings by others which indicate changes in tumour characteristics with copper deficiency, we conclude that the copper dependency of tumour growth and vascularisation is a function of the type of tumour, the host tissue, or the conditions of copper depletion. PMID:1280989

  4. Dietary fructose but not starch is responsible for hyperlipidemia associated with copper deficiency in rats: effect of high-fat diet.

    PubMed

    Fields, M; Lewis, C G

    1999-02-01

    To test the hypothesis that copper deficiency in rats may be hyperlipidemic only when the diets consumed contain nutrients which contribute to blood lipids such as fructose and high fat. Weanling male Sprague Dawley rats were fed diets which contained either starch or fructose as their sole carbohydrate source. The diets were either inadequate (0.6 microg Cu/g) or adequate (6.0 microg Cu/g) in copper and contained either high (300 g/kg) or low (60 g/kg) fat. At the end of the 4th week the rats were killed. Livers were analyzed for copper content. Plasma was analyzed for cholesterol and triglyceride concentrations. High-fat diet did not increase blood lipids in rats fed a copper-deficient diet containing starch. In contrast, the combination of high-fat diet with fructose increased blood triglycerides and fructose with copper deficiency resulted in a significant increases in blood cholesterol. Hyperlipidemia of copper deficiency in rats is dependent on synergistic effects between dietary fructose and copper deficiency and fructose and amount of dietary fat. Hyperlipidemia does not develop if starch is the main source of dietary carbohydrate in a copper-deficient diet even if a high-fat diet is fed.

  5. A deleterious interaction between copper deficiency and sugar ingestion may be the missing link in heart disease.

    PubMed

    Aliabadi, Hamidreza

    2008-01-01

    Copper deficiency plays a vital role in atherogenesis. To the long list of risk factors for atherosclerotic cardiovascular disease should be added the deleterious interaction between copper deficiency and carbohydrate consumption. Here we critically evaluate the role of copper in the diet and its role as a possible etiological factor in the development of cardiovascular disease. A possible mechanism for the development of heart disease due to copper deficiency is proposed. There are many known risk factors for the development of heart disease, including hyperlipidemia and hypertension; however, little emphasis has been placed on the role of copper on heart disease. Over the last couple of decades, dietary copper deficiency has been shown to cause a variety of metabolic changes, including hypercholesterolemia, hypertriglyceridemia, hypertension, and glucose intolerance. Interestingly, these changes are common in the United States population and they are known risk factors for heart disease. Further research in this field is warranted considering the profound implications to people in the United States and around the world who consume processed foods marginally deficient in copper and replete with sugar. The only nutritional condition with signs and symptoms of atherosclerotic cardiovascular disease may be copper deficiency. Improving levels of copper in the diet, by appropriate food selection or by addition of a daily multi-vitamin, is recommended.

  6. Prevention of anemia alleviates heart hypertrophy in copper deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lure, M.D.; Fields, M.; Lewis, C.G.

    1991-03-11

    The present investigation was designed to examine the role of anemia in the cardiomegaly and myocardial pathology of copper deficiency. Weanling rats were fed a copper deficient diet containing either starch (ST) or fructose (FRU) for five weeks. Six rats consuming the FRU diet were intraperitoneally injected once a week with 1.0 ml/100g bw of packed red blood cells (RBC) obtained from copper deficient rats fed ST. FRU rats injected with RBC did not develop anemia. Additionally, none of the injected rats exhibited heart hypertrophy or gross pathology and all survived. In contrast, non-injected FRU rats were anemic, exhibited severemore » signs of copper deficiency which include heart hypertrophy with gross pathology, and 44% died. Maintaining the hematocrit with RBC injections resulted in normal heart histology and prevented the mortality associated with the fructose x copper interaction. The finding suggest that the anemia associated with copper deficiency contributes to heart pathology.« less

  7. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    PubMed

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  8. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    PubMed

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  9. Essentiality of copper in humans.

    PubMed

    Uauy, R; Olivares, M; Gonzalez, M

    1998-05-01

    The biochemical basis for the essentiality of copper, the adequacy of the dietary copper supply, factors that condition deficiency, and the special conditions of copper nutriture in early infancy are reviewed. New biochemical and crystallographic evidence define copper as being necessary for structural and catalytic properties of cuproenzymes. Mechanisms responsible for the control of cuproprotein gene expression are not known in mammals; however, studies using yeast as a eukaryote model support the existence of a copper-dependent gene regulatory element. Diets in Western countries provide copper below or in the low range of the estimated safe and adequate daily dietary intake. Copper deficiency is usually the consequence of decreased copper stores at birth, inadequate dietary copper intake, poor absorption, elevated requirements induced by rapid growth, or increased copper losses. The most frequent clinical manifestations of copper deficiency are anemia, neutropenia, and bone abnormalities. Recommendations for dietary copper intake and total copper exposure, including that from potable water, should consider that copper is an essential nutrient with potential toxicity if the load exceeds tolerance. A range of safe intakes should be defined for the general population, including a lower safe intake and an upper safe intake, to prevent deficiency as well as toxicity for most of the population.

  10. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    PubMed

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  11. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake

    PubMed Central

    Ranganathan, Perungavur N.; Lu, Yan; Jiang, Lingli; Kim, Changae

    2011-01-01

    Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ∼ 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency. PMID:21768302

  12. Haemolysis and Perturbations in the Systemic Iron Metabolism of Suckling, Copper-Deficient Mosaic Mutant Mice – An Animal Model of Menkes Disease

    PubMed Central

    Lenartowicz, Małgorzata; Starzyński, Rafał R.; Krzeptowski, Wojciech; Grzmil, Paweł; Bednarz, Aleksandra; Ogórek, Mateusz; Pierzchała, Olga; Staroń, Robert; Gajowiak, Anna; Lipiński, Paweł

    2014-01-01

    The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism. PMID:25247420

  13. Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling1[C][W

    PubMed Central

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A.; Puig, Sergi; Peñarrubia, Lola

    2013-01-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops. PMID:23487432

  14. Iron, zinc, and copper in retinal physiology and disease.

    PubMed

    Ugarte, Marta; Osborne, Neville N; Brown, Laurence A; Bishop, Paul N

    2013-01-01

    The essential trace metals iron, zinc, and copper play important roles both in retinal physiology and disease. They are involved in various retinal functions such as phototransduction, the visual cycle, and the process of neurotransmission, being tightly bound to proteins and other molecules to regulate their structure and/or function or as unbound free metal ions. Elevated levels of "free" or loosely bound metal ions can exert toxic effects, and in order to maintain homeostatic levels to protect retinal cells from their toxicity, appropriate mechanisms exist such as metal transporters, chaperones, and the presence of certain storage molecules that tightly bind metals to form nontoxic products. The pathways to maintain homeostatic levels of metals are closely interlinked, with various metabolic pathways directly and/or indirectly affecting their concentrations, compartmentalization, and oxidation/reduction states. Retinal deficiency or excess of these metals can result from systemic depletion and/or overload or from mutations in genes involved in maintaining retinal metal homeostasis, and this is associated with retinal dysfunction and pathology. Iron accumulation in the retina, a characteristic of aging, may be involved in the pathogenesis of retinal diseases such as age-related macular degeneration (AMD). Zinc deficiency is associated with poor dark adaptation. Zinc levels in the human retina and RPE decrease with age in AMD. Copper deficiency is associated with optic neuropathy, but retinal function is maintained. The changes in iron and zinc homeostasis in AMD have led to the speculation that iron chelation and/or zinc supplements may help in its treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Plasma peptidylglycine alpha-amidating monooxygenase (PAM) and ceruloplasmin are affected by age and copper status in rats and mice

    PubMed Central

    Prohaska, Joseph R.; Broderius, Margaret

    2009-01-01

    In an attempt to identify a sensitive and improved marker of mammalian copper status during neonatal development experiments compared two plasma cuproenzymes, peptidylglycine α-amidating monooxygenase (PAM ), an enzyme involved in peptide posttranslational activation, to ceruloplasmin (Cp), a ferroxidase involved in iron mobilization. Dietary Cu deficiency (Cu−) was studied in dams and offspring at postnatal age 3 (P3), P12, and P28. Rodent Cp activity rose during lactation whereas PAM activity fell. Reduction in Cp activity was more severe than reduction in PAM activity in Cu− offspring and dams. Cp activity was greater in rats than mice whereas PAM activity was similar in adults but greater in mouse than rat pups. Both cuproenzymes changed during neonatal development and when dietary copper was limiting. With proper controls, each enzyme can be used to assess copper status. PMID:16448835

  16. Fetal and neonatal iron deficiency but not copper deficiency increases vascular complexity in the developing rat brain

    PubMed Central

    Bastian, Thomas W.; Santarriaga, Stephanie; Nguyen, Thu An; Prohaska, Joseph R.; Georgieff, Michael K.; Anderson, Grant W.

    2015-01-01

    Objectives Anemia caused by nutritional deficiencies, such as iron and copper deficiencies, is a global health problem. Iron and copper deficiencies have their most profound effect on the developing fetus/infant, leading to brain development deficits and poor cognitive outcomes. Tissue iron depletion or chronic anemia can induce cellular hypoxic signaling. In mice, chronic hypoxia induces a compensatory increase in brain blood vessel outgrowth. We hypothesized that developmental anemia, due to iron or copper deficiencies, induces angiogenesis/vasculogenesis in the neonatal brain. Methods To test our hypothesis, three independent experiments were performed where pregnant rats were fed iron- or copper-deficient diets from gestational day 2 through mid-lactation. Effects on the neonatal brain vasculature were determined using qPCR to assess mRNA levels of angiogenesis/vasculogenesis-associated genes and GLUT1 immunohistochemistry (IHC) to assess brain blood vessel density and complexity. Results Iron deficiency, but not copper deficiency, increased mRNA expression of brain endothelial cell- and angiogenesis/vasculogenesis-associated genes (i.e. Glut1, Vwf, Vegfa, Ang2, Cxcl12, and Flk1) in the neonatal brain, suggesting increased cerebrovascular density. Iron deficiency also increased hippocampal and cerebral cortical blood vessel branching by 62% and 78%, respectively. Discussion This study demonstrates increased blood vessel complexity in the neonatal iron-deficient brain, which is likely due to elevated angiogenic/vasculogenic signaling. At least initially, this is probably an adaptive response to maintain metabolic substrate homeostasis in the developing iron-deficient brain. However, this may also contribute to long-term neurodevelopmental deficits. PMID:26177275

  17. Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders

    PubMed Central

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

  18. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    PubMed

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-07-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase.

  19. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    PubMed Central

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  20. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    PubMed

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  1. Copper deficiency in the preterm infant of very low birthweight. Four cases and a reference range for plasma copper.

    PubMed Central

    Sutton, A M; Harvie, A; Cockburn, F; Farquharson, J; Logan, R W

    1985-01-01

    Four preterm infants of very low birthweight (less than 1500 g) developed signs of copper deficiency between age 8 and 10 weeks. All had required prolonged ventilatory support, parenteral nutrition, and nasojejunal feeding. The clinical features, which included osteoporosis, oedema, anaemia, neutropenia, and late apnoea improved when the oral copper intake was increased. Diagnosis was made more difficult because a suitable reference range for plasma copper was not available. Serial measurements of plasma copper in 39 preterm infants who had no important medical problems were used to produce a reference range for plasma copper from 30 weeks' gestation to term plus seven weeks. This information will aid recognition of hypocupraemia in the very low birthweight infant who is particularly at risk of copper deficiency. PMID:4026360

  2. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Shoshani-Dror, Dana; Guillemin, Claire

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy.more » Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and oxidative stress of liver.« less

  3. Copper Deficiency in Calves in Northcentral Manitoba

    PubMed Central

    Smart, M. E.; Gudmundson, J.; Brockman, R. P.; Cymbaluk, N.; Doige, C.

    1980-01-01

    Four seven month old Simmental calves were examined because of unthriftiness, a persistent cough, stiffness and lameness. The calves had gastrointestinal and pulmonary parasitism. Analysis of the blood copper levels of these calves and of cows and calves on the farm indicated a generalized deficiency. Only the calves affected with parasitism showed signs of clinical copper deficiency. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:7260830

  4. Overview of the nutritional status of selected micronutrients in Mexican children in 2006.

    PubMed

    Shamah-Levy, Teresa; Villalpando, Salvador; Jáuregui, Alejandra; Rivera, Juan A

    2012-01-01

    To present an overview of micronutrient status of Mexican children in 2006. Data on iron, zinc, folate and vitamin B12 deficiencies and low serum copper and magnesium were gathered and critically analyzed from the 2006 National Health and Nutrition Survey. Iron deficiency is still the main nutritional deficiency in children (13%-26%). Zinc deficiency was high in all age groups (≈25%) but reduced 5.6 PP in children <5 y from 1999 to 2006. Folate deficiency was 3.2% and vitamin B12 deficiency 7.7% in children. Low serum magnesium and copper were high (22.6% and 30.6%, respectively). The prevalence of iron deficiency seems to be lowering, and zinc deficiency has reduced in Mexican children. A high prevalence of copper and magnesium deficiencies warrants further research on their public health implications.

  5. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii*

    PubMed Central

    Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.

    2013-01-01

    Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652

  6. Regression of Copper-Deficient Heart Hypertrophy: Reduction in the Size of Hypertrophic Cardiomyocytes

    USDA-ARS?s Scientific Manuscript database

    Dietary copper deficiency causes cardiac hypertrophy and its transition to heart failure in a mouse model. Copper repletion results in a rapid regression of cardiac hypertrophy and prevention of heart failure. The present study was undertaken to understand dynamic changes of cardiomyocytes in the hy...

  7. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach.

    PubMed

    Soto, Daniela F; Recalde, Alejandra; Orell, Alvaro; Albers, Sonja-Verena; Paradela, Alberto; Navarro, Claudio A; Jerez, Carlos A

    2018-03-01

    Inorganic polyphosphates (polyP) are present in all living cells and several important functions have been described for them. They are involved in the response to stress conditions, such as nutrient depletion, oxidative stress and toxic metals amongst others. A recombinant strain of Sulfolobus solfataricus unable to accumulate polyP was designed by the overexpression of its endogenous ppx gene. The overall impact of the lack of polyP on this S. solfataricus polyP (-) strain was analyzed by using quantitative proteomics (isotope-coded protein label, ICPL). Stress-related proteins, such as peroxiredoxins and heat shock proteins, proteins involved in metabolism and several others were produced at higher levels in the ppx expression strain. The polyP deficient strain showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA gene coding for the P-type copper-exporting ATPase. This implies a complementary function of both copper resistance systems. These results strongly suggests that the lack of polyP makes this hyperthermophilic archaeon more sensitive to toxic conditions, such as an exposure to metals or other harmful stimuli, emphasizing the importance of this inorganic phosphate polymers in the adaptations to live in the environmental conditions in which thermoacidophilic archaea thrive. Inorganic polyphosphate (polyP) are ubiquitous molecules with many functions in living organisms. Few studies related to these polymers have been made in archaea. The construction of a polyP deficient recombinant strain of Sulfolobus solfataricus allowed the study of the global changes in the proteome of this thermoacidophilic archaeon in the absence of polyP compared with the wild type strain. The results obtained using quantitative proteomics suggest an important participation of polyP in the oxidative stress response of the cells and as having a possible metabolic role in the cell, as previously described in bacteria. The polyP deficient strain also showed an increased copper sensitivity and an earlier transcriptional up-regulation of copA, implying a complementary role of both copper resistance systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    PubMed

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  9. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    PubMed Central

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy. PMID:26747866

  10. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    PubMed Central

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; van de Sluis, Bart; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling. PMID:25355947

  11. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats

    PubMed Central

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R.; Collins, James F.

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  12. High mortality rates occur in copper deficient rats exposed to a normally nonlethal endotoxin treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiSilvestro, R.; Joseph, E.; Yang, F.L.

    Endotoxin hepatotoxicity is proposed to occur by processes which could be retarded by 3 copper enzymes: ceruloplasmin, Cu-Zn superoxide dismutase (SOD), and extracellular (EC) SOD. Weanling rats fed low copper for 40 days showed low activity levels of these enzymes, and a very high mortality rate 20 h after endotoxin injection. No rats fed adequate copper died from this treatment. In addition, serum transaminase activities, indicators of liver damage, were elevated by 3 h to a greater extent in the deficient rats than in the adequates. The high susceptibility to endotoxemia in the deficient rats was not associated with lowmore » hepatic glutathione, high liver malondialedhyde, nor restricted metallothionein induction 3 h after endotoxin injection. Endotoxin reduced serum EC SOD activities in adequate and deficient rats, but final values were lower in the latter. Studies on roles of specific copper enzymes in resistance to endotoxemia are currently underway.« less

  13. Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia.

    PubMed

    Xu, Jingshu; Church, Stephanie J; Patassini, Stefano; Begley, Paul; Waldvogel, Henry J; Curtis, Maurice A; Faull, Richard L M; Unwin, Richard D; Cooper, Garth J S

    2017-08-16

    Datasets comprising simultaneous measurements of many essential metals in Alzheimer's disease (AD) brain are sparse, and available studies are not entirely in agreement. To further elucidate this matter, we employed inductively-coupled-plasma mass spectrometry to measure post-mortem levels of 8 essential metals and selenium, in 7 brain regions from 9 cases with AD (neuropathological severity Braak IV-VI), and 13 controls who had normal ante-mortem mental function and no evidence of brain disease. Of the regions studied, three undergo severe neuronal damage in AD (hippocampus, entorhinal cortex and middle-temporal gyrus); three are less-severely affected (sensory cortex, motor cortex and cingulate gyrus); and one (cerebellum) is relatively spared. Metal concentrations in the controls differed among brain regions, and AD-associated perturbations in most metals occurred in only a few: regions more severely affected by neurodegeneration generally showed alterations in more metals, and cerebellum displayed a distinctive pattern. By contrast, copper levels were substantively decreased in all AD-brain regions, to 52.8-70.2% of corresponding control values, consistent with pan-cerebral copper deficiency. This copper deficiency could be pathogenic in AD, since levels are lowered to values approximating those in Menkes' disease, an X-linked recessive disorder where brain-copper deficiency is the accepted cause of severe brain damage. Our study reinforces others reporting deficient brain copper in AD, and indicates that interventions aimed at safely and effectively elevating brain copper could provide a new experimental-therapeutic approach.

  14. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease

    PubMed Central

    Heffern, Marie C.; Park, Hyo Min; Au-Yeung, Ho Yu; Van de Bittner, Genevieve C.; Ackerman, Cheri M.; Stahl, Andreas; Chang, Christopher J.

    2016-01-01

    Copper is a required metal nutrient for life, but global or local alterations in its homeostasis are linked to diseases spanning genetic and metabolic disorders to cancer and neurodegeneration. Technologies that enable longitudinal in vivo monitoring of dynamic copper pools can help meet the need to study the complex interplay between copper status, health, and disease in the same living organism over time. Here, we present the synthesis, characterization, and in vivo imaging applications of Copper-Caged Luciferin-1 (CCL-1), a bioluminescent reporter for tissue-specific copper visualization in living animals. CCL-1 uses a selective copper(I)-dependent oxidative cleavage reaction to release d-luciferin for subsequent bioluminescent reaction with firefly luciferase. The probe can detect physiological changes in labile Cu+ levels in live cells and mice under situations of copper deficiency or overload. Application of CCL-1 to mice with liver-specific luciferase expression in a diet-induced model of nonalcoholic fatty liver disease reveals onset of hepatic copper deficiency and altered expression levels of central copper trafficking proteins that accompany symptoms of glucose intolerance and weight gain. The data connect copper dysregulation to metabolic liver disease and provide a starting point for expanding the toolbox of reactivity-based chemical reporters for cell- and tissue-specific in vivo imaging. PMID:27911810

  15. Role of Copper and Homocysteine in Pressure Overload Heart Failure

    PubMed Central

    Hughes, William M.; Rodriguez, Walter E.; Rosenberger, Dorothea; Chen, Jing; Sen, Utpal; Tyagi, Neetu; Moshal, Karni S.; Vacek, Thomas; Kang, Y. James

    2009-01-01

    Elevated levels of homocysteine (Hcy) (known as hyperhomocysteinemia HHcy) are involved in dilated cardiomyopathy. Hcy chelates copper and impairs copper-dependent enzymes. Copper deficiency has been linked to cardiovascular disease. We tested the hypothesis that copper supplement regresses left ventricular hypertrophy (LVH), fibrosis and endothelial dysfunction in pressure overload DCM mice hearts. The mice were grouped as sham, sham + Cu, aortic constriction (AC), and AC + Cu. Aortic constriction was performed by transverse aortic constriction. The mice were treated with or without 20 mg/kg copper supplement in the diet for 12 weeks. The cardiac function was assessed by echocardiography and electrocardiography. The matrix remodeling was assessed by measuring matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinases (TIMPs), and lysyl oxidase (LOX) by Western blot analyses. The results suggest that in AC mice, cardiac function was improved with copper supplement. TIMP-1 levels decreased in AC and were normalized in AC + Cu. Although MMP-9, TIMP-3, and LOX activity increased in AC and returned to baseline value in AC + Cu, copper supplement showed no significant effect on TIMP-4 activity after pressure overload. In conclusion, our data suggest that copper supplement helps improve cardiac function in a pressure overload dilated cardiomyopathic heart. PMID:18679830

  16. The prevalence of low serum zinc and copper levels and dietary habits associated with serum zinc and copper in 12- to 36-month-old children from low-income families at risk for iron deficiency.

    PubMed

    Schneider, Julie M; Fujii, Mary L; Lamp, Catherine L; Lönnerdal, Bo; Zidenberg-Cherr, Sheri

    2007-11-01

    Iron and zinc share common food sources, and children at risk of iron deficiency may also develop zinc deficiency. We determined the prevalence of zinc and copper deficiency and examined factors associated with serum zinc and copper in young children from low-income families at risk of iron deficiency. A cross-sectional study design was used to assess serum zinc and copper, along with an interview-assisted survey to assess factors associated with serum zinc and copper in a convenience sample. Participants were 435 children aged 12 to 36 months recruited from select clinics of the Special Supplemental Nutrition Program for Women, Infants, and Children in Contra Costa and Tulare Counties, California. Frequencies were used to report prevalence. Multiple linear regressions were conducted to examine factors associated with serum zinc and copper, controlling for age, sex, and ethnicity. The prevalence of low serum zinc level (<70 microg/dL [<10.7 micromol/L]) was 42.8%, and low serum copper level (<90 microg/dL [<14.2 micromol/L]) was <1%. Mean+/-standard deviation of serum copper was 150+/-22 microg/dL (23.6+/-3.5 micromol/L) and 140+/-24 microg/dL (22.1+/-3.8 micromol/L) for anemic and non-anemic children, respectively (t test, P=0.026). In multiple linear regression consumption of sweetened beverages was negatively associated with serum zinc level, and consumption of >15 g/day meat was positively associated with serum zinc level, whereas current consumption of breast milk and >15 g/day beans were positively associated with serum copper level. The prevalence of low serum zinc concentration in the sample was high, and warrants further investigation amongst vulnerable populations.

  17. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review.

    PubMed

    Medeiros, Denis M

    2016-06-01

    Nutrients have been known to have a significant role in maintaining the health of the skeleton, both bone and cartilage. The nutrients that have received the majority of the attention are Vitamin D and calcium. However, limited attention has been directed toward three trace elements that may have mechanistic impact upon the skeletal tissues and could compromise skeletal health resulting from inadequate intakes of copper, iron, and selenium. The role of copper and selenium has been known, but the role of iron has only received recent attention. Copper deficiency is thought to impact bone health by a decrease in lysyl oxidase, a copper-containing enzyme, which facilitates collagen fibril crosslinking. Iron deficiency impact upon bone has only recently been discovered but the exact mechanism on how the deficient states enhance bone pathology is speculative. Selenium deficiency has an impact on cartilage thereby having an indirect impact on bone. However, several studies suggest that a mycotoxin when consumed by humans is the culprit in some cartilage disorders and the presence of selenium could attenuate the pathology. This review summarizes the current knowledge base with respect to skeletal integrity when each of these three trace elements are inadequate in diets of both animals and humans. © 2016 by the Society for Experimental Biology and Medicine.

  18. Iatrogenic copper deficiency following information and drugs obtained over the Internet.

    PubMed

    Lang, T F; Glynne-Jones, R; Blake, S; Taylor, A; Kay, J D S

    2004-09-01

    We report the case of a 56-year-old woman with a 7-year history of metastatic cancer who presented with severe copper deficiency following self-treatment with the copper-chelating agent tetrathiomolybdate. This compound was used with the aim of inhibiting tumour angiogenesis and was obtained from the USA by placing an order on the internet. The patient exhibited severe neutropenia as her serum copper concentration fell from 19.8 micromol/L to 3.3 micromol/L and her caeruloplasmin concentration from 35 mg/dL to 4 mg/dL.

  19. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes.

    PubMed

    Penkowa, M; Giralt, M; Thomsen, P S; Carrasco, J; Hidalgo, J

    2001-04-01

    The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured brains, zinc deficiency only affected significantly lectin (increasing) and glial fibrillary acidic protein (GFAP) and Cu,Zn-superoxide dismutase (Cu,Zn-SOD) (decreasing) immunoreactivities (irs). In injured brains, a profound gliosis was observed in the area surrounding the lesion, along with severe damage to neurons as indicated by neuron specific enolase (NSE) ir, and the number of cells undergoing apoptosis (measured by TUNEL) was dramatically increased. Zinc deficiency significantly altered brain response to TBI, potentiating the microgliosis and reducing the astrogliosis, while increasing the number of apoptotic cells. Metallothioneins (MTs) are important zinc- and copper-binding proteins in the CNS, which could influence significantly the brain response to TBI because of their putative roles in metal homeostasis and antioxidant defenses. MT-I+II expression was dramatically increased by TBI, and this response was significantly blunted by zinc deficiency. The MT-III isoform was moderately increased by both TBI and zinc deficiency. TBI strongly increased oxidative stress levels, as demonstrated by malondialdehyde (MDA), protein tyrosine nitration (NITT), and nuclear factor kappaB (NF-kappaB) levels irs, all of which were potentiated by zinc deficiency. Further analysis revealed unbalanced expression of prooxidant and antioxidant proteins besides MT, since the levels of inducible nitric oxide synthase (iNOS) and Cu,Zn-SOD were increased and decreased, respectively, by zinc deficiency. All these effects were attributable to zinc deficiency, since pair-fed rats did not differ from normally fed rats. In general, copper deficiency caused a similar pattern of responses, albeit more moderate. Results obtained in mice with a null mutation for the MT-I+II isoforms strongly suggest that most of the effects observed in the rat brain after zinc and copper deficiencies are attributable to the concomitant changes in the MT expression.

  20. Reversal of Physiological Deficits Caused by Diminished Levels of Peptidylglycine α-Amidating Monooxygenase by Dietary Copper

    PubMed Central

    Bousquet-Moore, D.; Ma, X. M.; Nillni, E. A.; Czyzyk, T. A.; Pintar, J. E.; Eipper, B. A.; Mains, R. E.

    2009-01-01

    Amidated peptides are critically involved in many physiological functions. Genetic deletion of peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that can synthesize these peptides, is embryonically lethal. The goal of the present study was the identification of physiological functions impaired by haploinsufficiency of PAM. Regulation of the hypothalamic-pituitary-thyroid axis and body temperature, functions requiring contributions from multiple amidated peptides, were selected for evaluation. Based on serum T4 and pituitary TSH-β mRNA levels, mice heterozygous for PAM (PAM+/−) were euthyroid at baseline. Feedback within the hypothalamic-pituitary-thyroid axis was impaired in PAM+/− mice made hypothyroid using a low iodine/propylthiouracil diet. Despite their normal endocrine response to cold, PAM+/− mice were unable to maintain body temperature as well as wild-type littermates when kept in a 4 C environment. When provided with additional dietary copper, PAM+/− mice maintained body temperature as well as wild-type mice. Pharmacological activation of vasoconstriction or shivering also allowed PAM+/− mice to maintain body temperature. Cold-induced vasoconstriction was deficient in PAM+/− mice. This deficit was eliminated in PAM+/− mice receiving a diet with supplemental copper. These results suggest that dietary deficiency of copper, coupled with genetic deficits in PAM, could result in physiological deficits in humans. PMID:19022883

  1. Deficient copper concentrations in dried-defatted hepatic tissue from ob/ob mice: A potential model for study of defective copper regulation in metabolic liver disease.

    PubMed

    Church, Stephanie J; Begley, Paul; Kureishy, Nina; McHarg, Selina; Bishop, Paul N; Bechtold, David A; Unwin, Richard D; Cooper, Garth J S

    2015-05-08

    Ob/ob mice provide an animal model for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) in patients with obesity and type-2 diabetes. Low liver copper has been linked to hepatic lipid build-up (steatosis) in animals with systemic copper deficiency caused by low-copper diets. However, hepatic copper status in patients with NAFLD or NASH is uncertain, and a validated animal model useful for the study of hepatic copper regulation in common forms of metabolic liver disease is lacking. Here, we report parallel measurements of essential metal levels in whole-liver tissue and defatted-dried liver tissue from ob/ob and non-obese control mice. Measurements in whole-liver tissue from ob/ob mice at an age when they have developed NAFLD/NASH, provide compelling evidence for factitious lowering of copper and all other essential metals by steatosis, and so cannot be used to study hepatic metal regulation in this model. By marked contrast, metal measurements in defatted-dried liver samples reveal that most essential metals were actually normal and indicate specific lowering of copper in ob/ob mice, consistent with hepatic copper deficiency. Thus ob/ob mice can provide a model useful for the study of copper regulation in NAFLD and NASH, provided levels are measured in defatted-dried liver tissue. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Copper Deficiency in Pine Plantations in the Georgia Coastal Plain

    Treesearch

    David B. South; William A. Carey; Donald A. Johnson

    2004-01-01

    Copper deficiencies have been observed on several intensively managed pine plantations in the Georgia Coastal Plain. Loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii var. elliottii Engelm.) displayed plagiotropic growth within a year after planting on very acid, sandy soils. Typically, symptoms show...

  3. Experimental Copper Deficiency, Chromium Deficiency and Additional Molybdenum Supplementation in Goats – Pathological Findings

    PubMed Central

    Aupperle, H; Schoon, HA; Frank, A

    2001-01-01

    Secondary copper (Cu) deficiency, chromium (Cr) deficiency and molybdenosis (Mo) has been suggested to cause the "mysterious" moose disease in the southwest of Sweden. The present experiment was performed on goats to investigate the clinical, chemical, and pathological alterations after 20 months feeding of a semi-synthetic diet deficient in Cu and Cr. Four groups were included in the study: control group (n = 4), Cu-deficient group (group 1, n = 4), Cr-deficient group (group 2, n = 2) and Cu+Cr-deficient group (group 3, n = 3). Group 3 was additionally supplemented with tetrathiomolybdate during the last 2 months of the experiment. Main histopathological findings in groups 1 and 3 were the lesions in the liver, characterised by a severe active fibrosis, bile duct proliferation, haemosiderosis and mild necroses. Additionally, degenerative alterations of the exocrine pancreas were prominent in groups 1 and 3. Lesions in group 3 were more pronounced than in group 1. In group 3, the skin showed an atrophic dermatosis, while in group 2 a crusty dermatitis caused by Candida spp. was observed. This study shows that liver, pancreas and skin are mainly affected by a long term deficiency of copper and the findings are complicated by molybdenum application while chromium deficiency produced no histomorphological effects in our study. PMID:11887391

  4. Copper, iron and zinc absorption, retention and status of young women fed vitamin B-6 deficient diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnlund, J.R.; Keyes, W.R.; Hudson, C.A.

    1991-03-11

    A study was conducted in young women to determine the effect of vitamin B-6 deficient diets on copper, iron and zinc metabolism. Young women were confined to a metabolic research unit for 84 and 98 days. They were fed a vitamin B-6 deficient formula diet initially, followed by food diet containing four increasing levels of vitamin B-6. Copper, iron and zinc absorption, retention and status were determined at intervals throughout the study. Absorption was determined using the stable isotopes {sup 65}Cu, {sup 54}Fe, and {sup 67}Zn. Status was based on serum copper and zinc, hemoglobin, hematocrit and mean corpuscular volume.more » Copper absorption averaged 18 {plus minus} 1% during vitamin B-6 depletion, significantly lower than 24 {plus minus} 1% during repletion, but serum copper was not affected and balance was positive. Iron absorption was not impaired significantly by vitamin B-6 deficient diets, but status declined during the depletion period. Zinc absorption averaged 40 {plus minus} 2% during depletion and 27 {plus minus} 2% during repletion. Zinc absorption and retention were significantly greater during vitamin B-6 depletion, but serum zinc declined suggesting the absorbed zinc was not available for utilization. The results suggest that vitamin B-6 depletion of young women may inhibit copper absorption, affect iron status and alter zinc metabolism. The effects of vitamin B-6 depletion differ markedly among these elements.« less

  5. Biphasic modulation of atherosclerosis induced by graded dietary copper supplementation in the cholesterol-fed rabbit

    PubMed Central

    LAMB, DAVID J; AVADES, TONY Y; FERNS, GORDON AA

    2001-01-01

    There has been considerable debate about how copper status may affect the biochemical and cellular processes associated with atherogenesis. We have investigated the effects of graded dietary copper supplementation on processes likely to contribute to atherogenesis, using the cholesterol-fed New Zealand White rabbit model. Rabbits (n = 40) were fed a 0.25–1% cholesterol diet deficient in copper. Animals received either 0, 1, 3 or 20 mg copper/day and were killed after 13 weeks. Plasma cholesterol levels were similar in each dietary group. Aortic concentrations of copper were higher in the 20 mg copper/day animals compared to those receiving 0 mg copper/day (3.70 ± 0.78 vs. 1.33 ± 0.46 µg/g wet tissue; P < 0.05). Aortic superoxide dismutase activity was higher in animals receiving 20 mg copper/day (323 ± 21 IU/mg tissue) compared to the other groups (187 ± 21; 239 ± 53; 201 ± 33 IU/mg tissue) (P > 0.05). En face staining of aortae with oil red O showed that both high copper supplementation (20 mg/day) (67.1 ± 5.5%) and a deficient diet (0 mg/day) (63.1 ± 4.8%) was associated with significantly larger lesions (P < 0.05) compared to moderately supplemented animals (1 mg/day and 3 mg/day) (51.3 ± 6.3 and 42.8 ± 7.9%). These data indicate that in the cholesterol-fed rabbit, there is an optimal dietary copper intake and that dietary copper deficiency or excess are associated with an increased susceptibility to aortic atherosclerosis. Many Western diets contain insufficient copper and these findings indicate that a moderate dietary copper content may confer a degree of cardiac protection to the human population. PMID:11703538

  6. Phosphorylation of amyloid precursor protein at threonine 668 is essential for its copper-responsive trafficking in SH-SY5Y neuroblastoma cells.

    PubMed

    Acevedo, Karla M; Opazo, Carlos M; Norrish, David; Challis, Leesa M; Li, Qiao-Xin; White, Anthony R; Bush, Ashley I; Camakaris, James

    2014-04-18

    Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-β (GSK3β) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3β kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3β-dependent phosphorylation in SH-SY5Y cells.

  7. Phosphorylation of Amyloid Precursor Protein at Threonine 668 Is Essential for Its Copper-responsive Trafficking in SH-SY5Y Neuroblastoma Cells*

    PubMed Central

    Acevedo, Karla M.; Opazo, Carlos M.; Norrish, David; Challis, Leesa M.; Li, Qiao-Xin; White, Anthony R.; Bush, Ashley I.; Camakaris, James

    2014-01-01

    Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-β (GSK3β) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3β kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3β-dependent phosphorylation in SH-SY5Y cells. PMID:24610780

  8. Oxidative Stress in Cardiac Mitochondria Caused by Copper Deficiency May Be Insufficient to Damage Mitochondrial Proteins

    USDA-ARS?s Scientific Manuscript database

    Copper (Cu) deficiency may promote the generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain through inhibition of cytochrome c oxidase (CCO) and increased reduction of respiratory complexes upstream from CCO. In the present study, respiration, H2O2 production and...

  9. ELASTIN: DIMINISHED REACTIVITY WITH ALDEHYDE REAGENTS IN COPPER DEFICIENCY AND LATHYRISM

    PubMed Central

    Miller, E. J.; Fullmer, Harold M.

    1966-01-01

    Elastin fibers in the aortas of control, lathyritic, copper-supplemented, and copper-deficient chicks were examined histochemically and chemically for aldehyde content. Diminished staining for aldehydes was obtained in the fibers from the aortas of lathyritic and copper-deficient chicks. Chemical studies of elastin isolated from the aortas of control and lathyritic chicks showed an apparent loss of lysine residues in control elastin to be associated with an increase in aldehyde content providing evidence that lysine is converted to an aldehyde-containing intermediate during biosynthesis of desmosine and isodesmosine. Approximately 6 aldehyde groups were present for every 1000 amino acids in elastin isolated from the aortas of control animals, while the corresponding number in lathyritic elastin was 4. At least two types of aldehydes, saturated and α,β-unsaturated, appear to be associated with elastin, suggesting the presence of more than one intermediate between lysine and the desmosines. PMID:5941783

  10. Cognitive impairment, genomic instability and trace elements.

    PubMed

    Meramat, A; Rajab, N F; Shahar, S; Sharif, R

    2015-01-01

    Cognitive impairments are often related to aging and micronutrient deficiencies. Various essential micronutrients in the diet are involved in age-altered biological functions such as, zinc, copper, iron, and selenium that play pivotal roles either in maintaining and reinforcing the antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for biological functions. Genomic stability is one of the leading causes of cognitive decline and deficiencies or excess in trace elements are two of the factors relating to it. In this review, we report and discuss the role of micronutrients in cognitive impairment in relation to genomic stability in an aging population. Telomere integrity will also be discussed in relation to aging and cognitive impairment, as well as, the micronutrients related to these events. This review will provide an understanding on how these three aspects can relate with each other and why it is important to keep a homeostasis of micronutrients in relation to healthy aging. Micronutrient deficiencies and aging process can lead to genomic instability.

  11. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps.

    PubMed

    Castruita, Madeli; Casero, David; Karpowicz, Steven J; Kropat, Janette; Vieler, Astrid; Hsieh, Scott I; Yan, Weihong; Cokus, Shawn; Loo, Joseph A; Benning, Christoph; Pellegrini, Matteo; Merchant, Sabeeha S

    2011-04-01

    In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O₂-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper.

  12. Copper and Zinc Deficiency in a Patient Receiving Long-Term Parenteral Nutrition During a Shortage of Parenteral Trace Element Products.

    PubMed

    Palm, Eric; Dotson, Bryan

    2015-11-01

    Drug shortages in the United States, including parenteral nutrition (PN) components, have been common in recent years and can adversely affect patient care. Here we report a case of copper and zinc deficiency in a patient receiving PN during a shortage of parenteral trace element products. The management of the patient's deficiencies, including the use of an imported parenteral multi-trace element product, is described. © 2014 American Society for Parenteral and Enteral Nutrition.

  13. Influence of Ogg1 repair on the genetic stability of ccc2 mutant of Saccharomyces cerevisiae chemically challenged with 4-nitroquinoline-1-oxide (4-NQO).

    PubMed

    da Silva, Claudia R; Almeida, Gabriella S; Caldeira-de-Araújo, Adriano; Leitão, Alvaro C; de Pádula, Marcelo

    2016-01-01

    In Saccharomyces cerevisiae, disruption of genes by deletion allowed elucidation of the molecular mechanisms of a series of human diseases, such as in Wilson disease (WD). WD is a disorder of copper metabolism, due to inherited mutations in human copper-transporting ATPase (ATP7B). An orthologous gene is present in S. cerevisiae, CCC2 gene. Copper is required as a cofactor for a number of enzymes. In excess, however, it is toxic, potentially carcinogenic, leading to many pathological conditions via oxidatively generated DNA damage. Deficiency in ATP7B (human) or Ccc2 (yeast) causes accumulation of intracellular copper, favouring the generation of reactive oxygen species. Thus, it becomes important to study the relative importance of proteins involved in the repair of these lesions, such as Ogg1. Herein, we addressed the influence Ogg1 repair in a ccc2 deficient strain of S. cerevisiae. We constructed ccc2-disrupted strains from S. cerevisiae (ogg1ccc2 and ccc2), which were analysed in terms of viability and spontaneous mutator phenotype. We also investigated the impact of 4-nitroquinoline-1-oxide (4-NQO) on nuclear DNA damage and on the stability of mitochondrial DNA. The results indicated a synergistic effect on spontaneous mutagenesis upon OGG1 and CCC2 double inactivation, placing 8-oxoguanine as a strong lesion-candidate at the origin of spontaneous mutations. The ccc2 mutant was more sensitive to cell killing and to mutagenesis upon 4-NQO challenge than the other studied strains. However, Ogg1 repair of exogenous-induced DNA damage revealed to be toxic and mutagenic to ccc2 deficient cells, which can be due to a detrimental action of Ogg1 on DNA lesions induced in ccc2 cells. Altogether, our results point to a critical and ambivalent role of BER mediated by Ogg1 in the maintenance of genomic stability in eukaryotes deficient in CCC2 gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  15. Liver failure with coagulopathy, hyperammonemia and cyclic vomiting in a toddler revealed to have combined heterozygosity for genes involved with ornithine transcarbamylase deficiency and Wilson disease.

    PubMed

    Mira, Valerie; Boles, Richard G

    2012-01-01

    A girl with a 2 month history of cyclic episodes of vomiting, diarrhea, and lethargy lasting 2-3 days each presented with acute hepatopathy (ALT 3,500 IU/L) with coagulopathy (PT 55 s) and hyperammonemia (207 μmol/L) at age 1½ years. Biochemical and molecular analyzes revealed ornithine transcarbamylase (OTC) deficiency. While laboratory signs of mild hepatocellular dysfunction are common in OTC deficiency, substantial liver failure with coagulopathy is generally not seen, although four others cases have been reported, three of which presented with cyclic vomiting. Further evaluation in our case revealed elevated urine (198.8 μg/g creatinine) and liver (103 μg/g dry weight) copper content, and a heterozygous mutation in the Wilson disease gene, ATP7B. Our patient, now aged 5 years, has remained in excellent health with normal growth and development on fasting avoidance, a modified vegan diet, and sodium phenylbutyrate.These five cases demonstrate that generalized liver dysfunction/failure is a potential serious complication of OTC deficiency, although not a common one, and suggests that an ALT and PT should be obtained in OTC patients during episodes of hyperammonemia. Cyclic vomiting is a known presentation of OTC deficiency; it is not known if comorbid liver failure predisposes toward this phenotype. We propose that the heterozygote state in ATP7B increases the liver copper content, thus predisposing our patient with OTC deficiency to develop liver failure during a hyperammonemic episode. Our present case is an example of the opportunity of molecular diagnostics to identify putative modifier genes in patients with atypical presentations of genetic disorders.

  16. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.

    PubMed

    Nargund, Shilpa; Qiu, Jinshu; Goudar, Chetan T

    2015-01-01

    (13)C-metabolic flux analysis was used to understand copper deficiency-related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein-producing CHO cells. Stationary-phase labeling experiments with U-(13)C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed-batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC-MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%-79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%-23% and 74%, respectively) compared with the Cu-containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper-deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation. © 2015 American Institute of Chemical Engineers.

  17. Perspectives on the Role and Relevance of Copper in Cardiac Disease.

    PubMed

    Medeiros, Denis M

    2017-03-01

    Cardiac hypertrophy as a result of dietary copper deficiency has been studied for 40 plus years and is the subject of this review. While connective tissue anomalies occur, a hallmark pathology is cardiac hypertrophy, increased mitochondrial biogenesis, with disruptive cristae, vacuolization of mitochondria, and deposition of lipid droplets. Electrocardiogram abnormalities have been demonstrated along with biochemical changes especially as it relates to the copper-containing enzyme cytochrome c oxidase. The master controller of mitochondrial biogenesis, PGC1-α expression and protein, along with other proteins and transcriptional factors that play a role are upregulated. Nitric oxide, vascular endothelial growth factor, and cytochrome c oxidase all may enhance the upregulation of mitochondrial biogenesis. Marginal copper intakes reveal similar pathologies in the absence of cardiac hypertrophy. Reversibility of the copper-deficient rat heart with a copper-replete diet has resulted in mixed results, depending on both the animal model used and temporal relationships. New information has revealed that copper supplementation may rescue cardiac hypertrophy induced by pressure overload.

  18. Zinc in denture adhesive: a rare cause of copper deficiency in a patient on home parenteral nutrition

    PubMed Central

    Prasad, Rakesh; Hawthorne, Barney; Durai, Dharmaraj; McDowell, Ian

    2015-01-01

    A 65-year-old woman with Crohn's disease, who had been on home parenteral nutrition for many years, presented with perioral paraesthesia and a burning sensation in the mouth. Initial blood tests including serum ferritin, vitamin B12 and folate, were normal apart from mild pancytopaenia. Serum copper was low, in spite of receiving regular copper in her parenteral feeds. The copper in her parenteral feeds was increased initially, but when it did not improve, she was started on weekly intravenous copper infusions. She was using dental adhesive, which had zinc in it, and a possibility that this was causing her copper deficiency was raised. Serum zinc levels were normal, but urinary zinc was very high. The patient was advised to use zinc-free dental adhesive and her copper level returned to normal within a few months with normalisation of her pancytopaenia, and partial resolution of her oral paraesthesia. PMID:26452740

  19. Cardiac catecholamines in rats fed copper deficient or copper adequate diets containing fructose or starch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholfield, D.J.; Fields, M.; Beal, T.

    1989-02-09

    The symptoms of copper (Cu) deficiency are known to be more severe when rats are fed a diet with fructose (F) as the principal carbohydrate. Mortality, in males, due to cardiac abnormalities usually occurs after five weeks of a 62% F, 0.6 ppm Cu deficient diet. These effects are not observed if cornstarch (CS) is the carbohydrate (CHO) source. Studies with F containing diets have shown increased catecholamine (C) turnover rates while diets deficient in Cu result in decreased norepinephrine (N) levels in tissues. Dopamine B-hydroxylase (EC 1.14.17.1) is a Cu dependent enzyme which catalyzes the conversion of dopamine (D)more » to N. An experiment was designed to investigate the effects of CHO and dietary Cu on levels of three C in cardiac tissue. Thirty-two male and female Sprague-Dawley rats were fed Cu deficient or adequate diets with 60% of calories from F or CS for 6 weeks. N, epinephrine (E) and D were measured by HPLC. Statistical analysis indicates that Cu deficiency tends to decrease N levels, while having the reverse effect on E. D did not appear to change. These findings indicate that Cu deficiency but not dietary CHO can affect the concentration of N and E in rat cardiac tissue.« less

  20. Systems Biology Approach in Chlamydomonas Reveals Connections between Copper Nutrition and Multiple Metabolic Steps[C][W][OA

    PubMed Central

    Castruita, Madeli; Casero, David; Karpowicz, Steven J.; Kropat, Janette; Vieler, Astrid; Hsieh, Scott I.; Yan, Weihong; Cokus, Shawn; Loo, Joseph A.; Benning, Christoph; Pellegrini, Matteo; Merchant, Sabeeha S.

    2011-01-01

    In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O2-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper. PMID:21498682

  1. Dimethylthiourea inhibits heart weight and hematocrit changes caused by dietary copper deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saari, J.T.

    1991-03-11

    Feeding antioxidants to rats in a copper (Cu)-deficient diet can partially inhibit the cardiac enlargement and anemia caused by Cu deficiency. This study was done to determine whether an antioxidant which bypassed the gastrointestinal tract was also protective and whether an agent more potent than previously used was more effective in this inhibition. Male, weanling rats were fed diets deficient or sufficient in Cu for 4 wks. Dimethylthiourea (DMTU) or saline was injected (ip) 4 times a week; minimum amount of DMTU retained during the experiment was estimated to be 250 mg/kg. Unlike other antioxidants, DMTU completely prevented the increasemore » in heart wt/body wt ratio; like the other agents, it only partially inhibited the anemia of Cu deficiency. DMTU did not affect plasma or liver Cu content of CuD rats; however, heart copper of CuD rats was significantly increased by DMTU. The effects of DMTU on heart size and hematocrit (Hct) may be attributed to its antioxidant function, but the possibility of altered mineral status must also be considered.« less

  2. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana

    PubMed Central

    Waters, Brian M.; Stein, Ricardo J.

    2012-01-01

    Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include up-regulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana, and comparison with existing Col-0 data, revealed conserved rosette gene expression responses to Fe deficiency. Fe-regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function. Several genes responded to Fe deficiency in both roots and rosettes. Fe deficiency led to up-regulation of Cu,Zn superoxide dismutase (SOD) genes CSD1 and CSD2, and down-regulation of FeSOD genes FSD1 and FSD2. Eight microRNAs were found to respond to Fe deficiency. Three of these (miR397a, miR398a, and miR398b/c) are known to regulate transcripts of Cu-containing proteins, and were down-regulated by Fe deficiency, suggesting that they could be involved in plant adaptation to Fe limitation. Indeed, Fe deficiency led to accumulation of Cu in rosettes, prior to any detectable decrease in Fe concentration. ccs1 mutants that lack functional Cu,ZnSOD proteins were prone to greater oxidative stress under Fe deficiency, indicating that increased Cu concentration under Fe limitation has an important role in oxidative stress prevention. The present results show that Cu accumulation, microRNA regulation, and associated differential expression of Fe and CuSOD genes are coordinated responses to Fe limitation. PMID:22962679

  3. Idiopathic hyperzincemia with associated copper deficiency anemia: a diagnostic dilemma.

    PubMed

    Merza, Hussein; Sood, Neha; Sood, Raman

    2015-10-01

    Prompt serum copper and zinc in addition to vitamin B12 levels should be measured in patients suffering from refractory anemia with neurological symptoms. A timely copper supplementation can help revert the hematological and possibly the neurological manifestations.

  4. EFFECT OF PH, DIC, ORTHOPHOSPHATE AND SULFATE ON DRINKING WATER CUPROSOLVENCY

    EPA Science Inventory

    Field data from various copper monitoring studies and Lead and Copper Rule compliance data are often inappropriate and misleading for reliably determining fundamental chemical relationships behind copper corrosion control. To address this deficiency, a comprehensive solubility mo...

  5. The copper rush of the nineties.

    PubMed

    Solioz, Marc

    2016-09-01

    The nineties witnessed the discovery of the copper ATPases, enzymes which transport copper across the cytoplasmic membranes of bacteria and eukaryotes. In the same decade, several other key components of copper homeostasis have also been discovered, like copper chaperones and plasma membrane copper transporters. This has finally led to a molecular understanding of two inherited human diseases related to copper: Menkes disease, manifested by systemic copper deficiency, and Wilson disease, caused by defective secretion of excess copper. A historic perspective and untold stories of the events leading up to these discoveries are presented here.

  6. Erythrocyte CuZn superoxide dismutase activity is decreased in iron-deficiency anemia.

    PubMed

    Olivares, M; Araya, M; Pizarro, F; Letelier, A

    2006-09-01

    Iron and copper are essential microminerals that are intimately related. The present study was performed to determine the effect of iron-deficiency anemia (IDA) and treatment with iron on laboratory indicators of copper status. Hemoglobin, mean corpuscular volume erythrocyte Zn protoporphyrin, serum ferritin, serum copper, serum ceruloplasmin, and erythrocyte CuZn-superoxide dismutase (SOD) activity were studied in 12 adult women with IDA before and after iron treatment for 60-90 d (100 mg/d Fe, as ferric polymaltose) and in 27 women with normal iron status. Prior to treatment with iron, serum copper and ceruloplasmin were not different between the groups and treatment with iron did not affect these measures. IDA women, before and after treatment with iron, presented a 2.9- and 2-fold decrease in erythrocyte CuZn-SOD activity compared to women with normal iron status (p < 0.001). Treatment with iron increased erythrocyte CuZn-SOD activity of the IDA group; however, this change was not statistically significant. In conclusion, CuZn-SOD activity is decreased in IDA. Measurement of this enzyme activity is not useful for evaluating copper nutrition in iron-deficient subjects.

  7. MYELIN, COPPER, AND THE CUPRIZONE MODEL OF SCHIZOPHRENIA

    PubMed Central

    Herring, Nicole R.; Konradi, Christine

    2010-01-01

    In recent years increasing evidence is pointing toward white matter abnormalities in schizophrenia and other psychiatric disorders. The present paper will provide an overview over the role of myelin in cognition and brain function, and its potential involvement in brain disorders. Furthermore, we will examine one particular experimental model for the study of dysmyelination, created by the administration of the toxin cuprizone. Cuprizone, a copper chelator, causes white matter abnormalities in rodents. The administration of cuprizone during specific developmental periods allows for the targeting of specific brain areas for dysmyelination. Thus, cuprizone can be used to study the pathogenesis and pathophysiology of myelin deficiencies in the central nervous system, and its effect on behaviors relevant to psychiatric disorders. PMID:21196354

  8. A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita; Jana, Sumanta; Chattopadhyay, Dipankar; Mondal, Anup; Seok, Sang Il; Bera, Pulakesh

    2016-10-01

    Hexagonal copper-deficient copper(I) sulfide (Cu2- x S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa)2][CuCl2], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN2S2 chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu2- x S ( x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH2SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of CuI-complex to Cu2- x S ( x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu1.97S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu1.8S. The optical band gap values (2.25-2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity ( 87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).

  9. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has notmore » been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.« less

  10. Metal-deficient SOD1 in amyotrophic lateral sclerosis.

    PubMed

    Hilton, James B; White, Anthony R; Crouch, Peter J

    2015-05-01

    Mutations to the ubiquitous antioxidant enzyme Cu/Zn superoxide dismutase (SOD1) were the first established genetic cause of the fatal, adult-onset neurodegenerative disease amyotrophic lateral sclerosis (ALS). It is widely accepted that these mutations do not cause ALS via a loss of antioxidant function, but elucidating the alternate toxic gain of function has proven to be elusive. Under physiological conditions, SOD1 binds one copper ion and one zinc ion per monomer to form a highly stable and functional homodimer, but there is now ample evidence to indicate aberrant persistence of SOD1 in an intermediate metal-deficient state may contribute to the protein's involvement in ALS. This review briefly discusses some of the data to support a role for metal-deficient SOD1 in the development of ALS and some of the outcomes from drug development studies that have aimed to modify the symptoms of ALS by targeting the metal state of SOD1. The implications for the metal state of SOD1 in cases of sporadic ALS that do not involve mutant SOD1 are also discussed.

  11. Idiopathic hyperzincemia with associated copper deficiency anemia: a diagnostic dilemma

    PubMed Central

    Merza, Hussein; Sood, Neha; Sood, Raman

    2015-01-01

    Key Clinical Message Prompt serum copper and zinc in addition to vitamin B12 levels should be measured in patients suffering from refractory anemia with neurological symptoms. A timely copper supplementation can help revert the hematological and possibly the neurological manifestations. PMID:26509015

  12. EFFECT OF PH, DIC, ORTHOPHOSPHATE AND SULFATE ON DRINKING WATER CUPROSOLVENCY (EPA/600/R-95/085)

    EPA Science Inventory

    Field data from various copper monitoring studies and Lead and Copper Rule compliance data are often inappropriate and misleading for reliably determining fundamental chemical relationships behind copper corrosion control. To address this deficiency, a comprehensive solubility m...

  13. Inherited Copper Transport Disorders: Biochemical Mechanisms, Diagnosis, and Treatment

    PubMed Central

    Kodama, Hiroko; Fujisawa, Chie; Bhadhprasit, Wattanaporn

    2012-01-01

    Copper is an essential trace element required by all living organisms. Excess amounts of copper, however, results in cellular damage. Disruptions to normal copper homeostasis are hallmarks of three genetic disorders: Menkes disease, occipital horn syndrome, and Wilson’s disease. Menkes disease and occipital horn syndrome are characterized by copper deficiency. Typical features of Menkes disease result from low copper-dependent enzyme activity. Standard treatment involves parenteral administration of copper-histidine. If treatment is initiated before 2 months of age, neurodegeneration can be prevented, while delayed treatment is utterly ineffective. Thus, neonatal mass screening should be implemented. Meanwhile, connective tissue disorders cannot be improved by copper-histidine treatment. Combination therapy with copper-histidine injections and oral administration of disulfiram is being investigated. Occipital horn syndrome characterized by connective tissue abnormalities is the mildest form of Menkes disease. Treatment has not been conducted for this syndrome. Wilson’s disease is characterized by copper toxicity that typically affects the hepatic and nervous systems severely. Various other symptoms are observed as well, yet its early diagnosis is sometimes difficult. Chelating agents and zinc are effective treatments, but are inefficient in most patients with fulminant hepatic failure. In addition, some patients with neurological Wilson’s disease worsen or show poor response to chelating agents. Since early treatment is critical, a screening system for Wilson’s disease should be implemented in infants. Patients with Wilson’s disease may be at risk of developing hepatocellular carcinoma. Understanding the link between Wilson’s disease and hepatocellular carcinoma will be beneficial for disease treatment and prevention. PMID:21838703

  14. Levels of plasma ceruloplasmin protein are markedly lower following dietary copper deficiency in rodents

    PubMed Central

    Broderius, Margaret; Mostad, Elise; Wendroth, Krista; Prohaska, Joseph R.

    2010-01-01

    Ceruloplasmin (Cp) is a multicopper oxidase and the most abundant copper binding protein in vertebrate plasma. Loss of function mutations in humans or experimental deletion in mice result in iron overload consistent with a putative ferroxidase function. Prior work suggested plasma may contain multiple ferroxidases. Studies were conducted in Holtzman rats (Rattus novegicus), albino mice (Mus musculus), Cp -/- mice, and adult humans (Homo sapiens) to investigate the copper-iron interaction. Dietary copper-deficient (CuD) rats and mice were produced using a modified AIN-76A diet. Results confirmed that o-dianisidine is a better substrate than paraphenylene diamine (PPD) for assessing diamine oxidase activity of Cp. Plasma from CuD rat dams and pups, and CuD and Cp -/- mice contained no detectable Cp diamine oxidase activity. Importantly, no ferroxidase activity was detectable for CuD rats, mice, or Cp -/- mice compared to robust activity for copper-adequate (CuA) rodent controls using western membrane assay. Immunoblot protocols detected major reductions (60-90%) in Cp protein in plasma of CuD rodents but no alteration in liver mRNA levels by qRT-PCR. Data are consistent with apo-Cp being less stable than holo-Cp. Further research is needed to explain normal plasma iron in CuD mice. Reduction in Cp is a sensitive biomarker for copper deficiency. PMID:20170749

  15. Clusterin (Apolipoprotein J), a Molecular Chaperone That Facilitates Degradation of the Copper-ATPases ATP7A and ATP7B*

    PubMed Central

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2011-01-01

    The copper-transporting P1B-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and toxicity disorders, Menkes and Wilson diseases, respectively. This report describes the interaction between the Cu-ATPases and clusterin and demonstrates a chaperone-like role for clusterin in facilitating their degradation. Clusterin interacted with both ATP7A and ATP7B in mammalian cells. This interaction increased under conditions of oxidative stress and with mutations in ATP7B that led to its misfolding and mislocalization. A Wilson disease patient mutation (G85V) led to enhanced ATP7B turnover, which was further exacerbated when cells overexpressed clusterin. We demonstrated that clusterin-facilitated degradation of mutant ATP7B is likely to involve the lysosomal pathway. The knockdown and overexpression of clusterin increased and decreased, respectively, the Cu-ATPase-mediated copper export capacity of cells. These results highlight a new role for intracellular clusterin in mediating Cu-ATPase quality control and hence in the normal maintenance of copper homeostasis, and in promoting cell survival in the context of disease. Based on our findings, it is possible that variations in clusterin expression and function could contribute to the variable clinical expression of Menkes and Wilson diseases. PMID:21242307

  16. Role of antioxidants and trace elements in health and immunity of transition dairy cows.

    PubMed

    Spears, Jerry W; Weiss, William P

    2008-04-01

    A number of antioxidants and trace minerals have important roles in immune function and may affect health in transition dairy cows. Vitamin E and beta-carotene are important cellular antioxidants. Selenium (Se) is involved in the antioxidant system via its role in the enzyme glutathione peroxidase. Inadequate dietary vitamin E or Se decreases neutrophil function during the perpariturient period. Supplementation of vitamin E and/or Se has reduced the incidence of mastitis and retained placenta, and reduced duration of clinical symptoms of mastitis in some experiments. Research has indicated that beta-carotene supplementation may enhance immunity and reduce the incidence of retained placenta and metritis in dairy cows. Marginal copper deficiency resulted in reduced neutrophil killing and decreased interferon production by mononuclear cells. Copper supplementation of a diet marginal in copper reduced the peak clinical response during experimental Escherichia coli mastitis. Limited research indicated that chromium supplementation during the transition period may increase immunity and reduce the incidence of retained placenta.

  17. Mechanisms of iron and copper-frataxin interactions.

    PubMed

    Han, T H L; Camadro, J M; Santos, R; Lesuisse, E; El Hage Chahine, J M; Ha-Duong, N T

    2017-08-16

    Frataxin is a mitochondrial protein whose deficiency is the cause of Friedreich's ataxia, a hereditary neurodegenerative disease. This protein plays a role in iron-sulfur cluster biosynthesis, protection against oxidative stress and iron metabolism. In an attempt to provide a better understanding of the role played by metals in its metabolic functions, the mechanisms of mitochondrial metal binding to frataxin in vitro have been investigated. A purified recombinant yeast frataxin homolog Yfh1 binds two Cu(ii) ions with a K d1 (Cu II ) of 1.3 × 10 -7 M and a K d2 (Cu II ) of 3.1 × 10 -4 M and a single Cu(i) ion with a higher affinity than for Cu(ii) (K d (Cu I ) = 3.2 × 10 -8 M). Mn(ii) forms two complexes with Yfh1 (K d1 (Mn II ) = 4.0 × 10 -8 M; K d2 (Mn II ) = 4.0 × 10 -7 M). Cu and Mn bind Yfh1 with higher affinities than Fe(ii). It is established for the first time that the mechanisms of the interaction of iron and copper with frataxin are comparable and involve three kinetic steps. The first step occurs in the 50-500 ms range and corresponds to a first metal uptake. This is followed by two other kinetic processes that are related to a second metal uptake and/or to a change in the conformation leading to thermodynamic equilibrium. Frataxin deficient Δyfh1 yeast cells exhibited a marked growth defect in the presence of exogenous Cu or Mn. Mitochondria from Δyfh1 strains also accumulated higher amounts of copper, suggesting a functional role of frataxin in vivo in copper homeostasis.

  18. Colloidal silver ingestion with copper and caeruloplasmin deficiency.

    PubMed

    Stepien, Karolina M; Taylor, Andrew

    2012-05-01

    The copper concentration in serum can be affected by the presence of other trace elements such as silver. Low serum copper may result in decreased caeruloplasmin synthesis. We report the case of a 59-year-old woman, who was admitted to hospital with acute psychosis and who had been ingesting chronically, colloidal silver.

  19. Laryngeal Neuropathy in Adult Goats With Copper Deficiency.

    PubMed

    Sousa, R F A; Almeida, V M; Neto, J E; Nascimento, C W A; Medeiros, G X; Medeiros, R M T; Riet-Correa, F; Mendonça, F S

    2017-07-01

    The aim of this study was to elucidate the cause of a neurological syndrome characterized by stridor in adult goats with clinical signs of copper deficiency. The main clinical signs consisted of apathy, emaciation, pale mucous membranes, mucous nasal discharge, dyspnea, severe achromotrichia, diffuse alopecia, torpor, ataxia, and stridor. When the goats were forced to move, the stridor increased. In a herd of 194 Toggenburg goats, 10 adult goats with clinical signs of copper deficiency were removed from the herd and divided into 2 groups: group 1, which consisted of 4 nannies and 1 buck with stridor, and group 2, which consisted of 4 nannies and 1 buck without stridor. Group 3, used as a control, consisted of 5 adult goats from another flock without any clinical signs of disease. The mean serum copper concentrations were 1.3 ± 0.3 μmol/L in group 1, 8.1 ± 1.1 μmol/L in group 2, and 11.3 ± 2.2 μmol/L in group 3. The mean serum iron concentrations were 42.3 ± 14.2 μmol/L in group 1, 39.1 ± 8.2 μmol/L in group 2, and 20.6 ± 6.1 μmol/L in group 3. The main histological lesions in goats from group 1 were axonal degeneration of the recurrent laryngeal nerves and atrophy of the muscles of vocal folds and of the dorsal cricoarytenoid and right and left cricothyroid muscles. Goats with ataxia had neuronal degeneration and necrosis of cerebellar Purkinje cells and of the cranial cervical ganglion. We concluded that the stridor was caused by axonal degeneration of the recurrent laryngeal nerves due to the severe copper deficiency.

  20. Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis[C][W

    PubMed Central

    Bernal, María; Casero, David; Singh, Vasantika; Wilson, Grandon T.; Grande, Arne; Yang, Huijun; Dodani, Sheel C.; Pellegrini, Matteo; Huijser, Peter; Connolly, Erin L.; Merchant, Sabeeha S.; Krämer, Ute

    2012-01-01

    The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research. PMID:22374396

  1. Micronutrient Deficiencies Are Common in 6- to 8-Year-Old Children of Rural Nepal, with Prevalence Estimates Modestly Affected by Inflammation12

    PubMed Central

    Schulze, Kerry J.; Christian, Parul; Wu, Lee S.-F.; Arguello, Margia; Cui, Hongjie; Nanayakkara-Bind, Ashika; Stewart, Christine P.; Khatry, Subarna K.; LeClerq, Steven; West, Keith P.

    2014-01-01

    Subclinical micronutrient deficiencies remain a hidden aspect of malnutrition for which comprehensive data are lacking in school-aged children. We assessed the micronutrient status of Nepalese children, aged 6 to 8 y, born to mothers who participated in a community-based antenatal micronutrient supplementation trial from 1999 to 2001. Of 3305 participants, plasma indicators were assessed in a random sample of 1000 children. Results revealed deficiencies of vitamins A (retinol <0.70 μmol/L, 8.5%), D (25-hydroxyvitamin D <50 nmol/L, 17.2%), E (α-tocopherol <9.3 μmol/L, 17.9%), K (decarboxy prothombin >2 μg/L, 20%), B-12 (cobalamin <150 pmol/L, 18.1%), B-6 [pyridoxal-5′-phosphate (PLP) <20 nmol/L, 43.1%], and β-carotene (41.5% <0.09 μmol/L), with little folate deficiency (6.2% <13.6 nmol/L). Deficiencies of iron [ferritin <15 μg/L, 10.7%; transferrin receptor (TfR) >8.3 mg/L, 40.1%; TfR:ferritin >500 μg/μg, 14.3%], iodine (thyroglobulin >40 μg/L, 11.4%), and selenium (plasma selenium <0.89 μmol/L, 59.0%) were observed, whereas copper deficiency was nearly absent (plasma copper <11.8 μmol/L, 0.7%). Hemoglobin was not assessed. Among all children, 91.7% experienced at least 1 micronutrient deficiency, and 64.7% experienced multiple deficiencies. Inflammation (α-1 acid glycoprotein >1 g/L, C-reactive protein >5 mg/L, or both) was present in 31.6% of children, affecting the prevalence of deficiency as assessed by retinol, β-carotene, PLP, ferritin, TfR, selenium, copper, or having any or multiple deficiencies. For any nutrient, population deficiency prevalence estimates were altered by ≤5.4% by the presence of inflammation, suggesting that the majority of deficiencies exist regardless of inflammation. Multiple micronutrient deficiencies coexist in school-aged children in rural Nepal, meriting more comprehensive strategies for their assessment and prevention. PMID:24744314

  2. Micronutrients and kelp cultures: Evidence for cobalt and manganese deficiency in Southern California deep seawater

    USGS Publications Warehouse

    Kuwabara, J.S.

    1982-01-01

    It has been suggested that naturally occurring copper and zinc concentrations in deep seawater are toxic to marine organisms when the free ion forms are overabundant. The effects of micronutrients on the growth of gametophytes of the ecologically and commercially significant giant kelp (Macrocystis pyrifera) were studied in defined media. The results indicate that toxic copper and zinc ion concentrations as well as cobalt and manganese deficiencies may be among the factors controlling the growth of marine organisms in nature. Copyright ?? 1982 AAAS.

  3. SLC31 (CTR) Family of Copper Transporters in Health and Disease

    PubMed Central

    Kim, Heejeong; Wu, Xiaobin; Lee, Jaekwon

    2012-01-01

    Copper is a vital mineral for many organisms, yet it is highly toxic as demonstrated by serious health concerns associated with its deficiency or excess accumulation. The SLC31 (CTR) family of copper transporters is a major gateway of copper acquisition in eukaryotes, ranging from yeast to humans. Characterization of the function, modes of action, and regulation of CTR and other molecular factors that functionally cooperate with CTR for copper transport, compartmentalization, incorporation into cuproproteins, and detoxification has revealed that organisms have evolved fascinating mechanisms for tight control of copper metabolism. This research progress further indicates the significance of copper in health and disease and opens avenues for therapeutic control of copper bioavailability and its metabolic pathways. PMID:23506889

  4. Copper hazards to fish, wildlife and invertebrates: a synoptic review

    USGS Publications Warehouse

    Eisler, Ronald

    1998-01-01

    Selective review and synthesis of the technical literature on copper and copper salts in the environment and their effects primarily on fishes, birds, mammals, terrestrial and aquatic invertebrates, and other natural resources. The subtopics include copper sources and uses; chemical and biochemical properties; concentrations of copper in field collections of abiotic materials and living organisms; effects of copper deficiency; lethal and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds and mammals, including effects on survival, growth, reproduction, behavior, metabolism, carcinogenicity, matagenicity, and teratogenicity; proposed criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  5. Copper import in Escherichia coli by the yersiniabactin metallophore system

    PubMed Central

    Koh, Eun-Ik; Robinson, Anne E.; Bandara, Nilantha; Rogers, Buck E.; Henderson, Jeffrey P.

    2017-01-01

    Copper plays a dual role as nutrient and toxin during bacterial infections. While uropathogenic Escherichia coli (UPEC) strains can use the copper-binding metallophore yersiniabactin (Ybt) to resist copper toxicity, Ybt also converts bioavailable copper to Cu(II)-Ybt in low copper conditions. Although E. coli have long been considered to lack a copper import pathway, we observed Ybt-mediated copper import in UPEC using canonical Fe(III)-Ybt transport proteins. UPEC removed copper from Cu(II)-Ybt with subsequent re-export of metal-free Ybt to the extracellular space. Copper released through this process became available to an E. coli cuproenzyme (the amine oxidase TynA), linking this import pathway to a nutrient acquisition function. Ybt-expressing E. coli thus engage in nutritional passivation, a strategy of minimizing a metal ion's toxicity while preserving its nutritional availability. Copper acquisition through this process may contribute to the marked virulence defect of Ybt transport-deficient UPEC. PMID:28759019

  6. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Mazumder, B.; Fox, P. L.

    2000-01-01

    A role of the copper protein ceruloplasmin (Cp) in iron metabolism is suggested by its ferroxidase activity and by the tissue iron overload in hereditary Cp deficiency patients. In addition, plasma Cp increases markedly in several conditions of anemia, e.g. iron deficiency, hemorrhage, renal failure, sickle cell disease, pregnancy, and inflammation. However, little is known about the cellular and molecular mechanism(s) involved. We have reported that iron chelators increase Cp mRNA expression and protein synthesis in human hepatocarcinoma HepG2 cells. Furthermore, we have shown that the increase in Cp mRNA is due to increased rate of transcription. We here report the results of new studies designed to elucidate the molecular mechanism underlying transcriptional activation of Cp by iron deficiency. The 5'-flanking region of the Cp gene was cloned from a human genomic library. A 4774-base pair segment of the Cp promoter/enhancer driving a luciferase reporter was transfected into HepG2 or Hep3B cells. Iron deficiency or hypoxia increased luciferase activity by 5-10-fold compared with untreated cells. Examination of the sequence showed three pairs of consensus hypoxia-responsive elements (HREs). Deletion and mutation analysis showed that a single HRE was necessary and sufficient for gene activation. The involvement of hypoxia-inducible factor-1 (HIF-1) was shown by gel-shift and supershift experiments that showed HIF-1alpha and HIF-1beta binding to a radiolabeled oligonucleotide containing the Cp promoter HRE. Furthermore, iron deficiency (and hypoxia) did not activate Cp gene expression in Hepa c4 hepatoma cells deficient in HIF-1beta, as shown functionally by the inactivity of a transfected Cp promoter-luciferase construct and by the failure of HIF-1 to bind the Cp HRE in nuclear extracts from these cells. These results are consistent with in vivo findings that iron deficiency increases plasma Cp and provides a molecular mechanism that may help to understand these observations.

  7. Copper Import into the Mitochondrial Matrix in Saccharomyces cerevisiae Is Mediated by Pic2, a Mitochondrial Carrier Family Protein*

    PubMed Central

    Vest, Katherine E.; Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2013-01-01

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria. PMID:23846699

  8. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein.

    PubMed

    Vest, Katherine E; Leary, Scot C; Winge, Dennis R; Cobine, Paul A

    2013-08-16

    Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.

  9. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].

    PubMed

    Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A

    1978-12-01

    Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.

  10. Scoliosis in Chickens: Responsiveness of Severity and Incidence to Dietary Copper

    NASA Astrophysics Data System (ADS)

    Opsahl, William; Abbott, Ursula; Kenney, Cristina; Rucker, Robert

    1984-07-01

    The severity and incidence of spinal lesions were manipulated in a line of chickens susceptible to scoliosis by varying their dietary intake of copper. A decrease in expression of the lesion was related to increased intake of copper. The change in expression, however, appeared to be related only indirectly to the defects in collagen cross-linking, maturation, and deposition known to be associated with dietary copper deficiency. Thus, a dietary constituent in the range of normal intakes may act as an environmental factor in the expression of scoliosis.

  11. Low nitric oxide: a key factor underlying copper-deficiency teratogenicity.

    PubMed

    Yang, Soo Jin; Keen, Carl L; Lanoue, Louise; Rucker, Robert B; Uriu-Adams, Janet Y

    2007-12-15

    Copper (Cu)-deficiency-induced teratogenicity is characterized by major cardiac, brain, and vascular anomalies; however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity and increases superoxide anions, which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu-adequate (Cu+) or Cu-deficient (Cu-) dams were cultured for 48 h in Cu+ or Cu- medium, respectively. We report that NO levels were low in conditioned medium from Cu-/Cu- embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3',5'-monophosphate (cGMP) concentrations in the Cu-/Cu- group. The altered NO levels in Cu-deficient embryos are functionally significant, as the administration of the NO donor DETA/NONOate increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling, which contributes to abnormal embryo and yolk sac development.

  12. Low nitric oxide: a key factor underlying copper deficiency teratogenicity

    PubMed Central

    Yang, Soo Jin; Keen, Carl L.; Lanoue, Louise; Rucker, Robert B.; Uriu-Adams, Janet Y.

    2008-01-01

    Copper (Cu) deficiency-induced teratogenicity is characterized by major cardiac, brain and vascular anomalies, however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity, and increases superoxide anions which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu deficient (Cu−) dams were cultured for 48 h in Cu+ or Cu− medium, respectively. We report that NO levels were low in conditioned media from Cu−/Cu− embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions, and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3′,5′-monophosphate (cGMP) concentrations in the Cu−/Cu− group. The altered NO levels in Cu deficient embryos are functionally significant, as the administration of the NO donor, DETA/NONOate, increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling which contributes to abnormal embryo and yolk sac development. PMID:18037129

  13. Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron–copper crosstalk

    PubMed Central

    Waters, Brian M.; McInturf, Samuel A.; Amundsen, Keenan

    2014-01-01

    Summary Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. In previous work, Fe deficiency interacted with Cu regulated genes and stimulated Cu accumulation. The C940-fe (fefe) Fe uptake mutant of melon (Cucumis melo) was characterized, and the fefe mutant was used to test whether Cu deficiency could stimulate Fe uptake. Wild type and fefe mutant transcriptomes were determined by RNA-seq under Fe and Cu deficiency. FeFe regulated genes included core Fe uptake, metal homeostasis, and transcription factor genes. Numerous genes were regulated by both Fe and Cu. The fefe mutant was rescued by high Fe or by Cu deficiency, which stimulated ferric-chelate reductase activity, FRO2 expression, and Fe accumulation. Accumulation of Fe in Cu deficient plants was independent of the normal Fe uptake system. One of the four FRO genes in the melon and cucumber (Cucumis sativus) genomes was Fe regulated, and one was Cu regulated. Simultaneous Fe and Cu deficiency synergistically upregulated Fe uptake gene expression. Overlap in Fe and Cu deficiency transcriptomes highlights the importance of Fe– Cu crosstalk in metal homeostasis. The fefe gene is not orthologous to FIT, thus identification of this gene will provide clues to help understand regulation of Fe uptake in plants. PMID:24975482

  14. Molybdenum toxicity and hypocuprosis in ruminants: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, G.M.

    1978-01-01

    Elevated Mo intakes depress Cu availability and may produce a physiological Cu deficiency in ruminants. Total sulfur or sulfate in the ration generally potentiates the effect of Mo. The ratio of Cu to Mo in feed is important regardless of the absolute amount of each. For this reason, and because of the importance of the S content of the diet, it is impossible to define safe dietary limits for Cu and Mo. Physiological Cu deficiencies are produced by four classes of feeds: (1) high Mo, generally above 100 ppM, (2) low Cu:Mo ratio, 2:1 or less, (3) Cu deficiency, belowmore » 5 ppM, and (4) high protein, 20 to 30% protein in fresh forage. The latter situation probably results from higher levels of sulfide produced from sulfur amino acids during rumen fermentation. Copper sulfide is largely unabsorbed. Future instances of hypocuprosis in the US are most likely to occur from marginal copper deficiencies in forages.« less

  15. Molecular Mediators Governing Iron-Copper Interactions

    PubMed Central

    Gulec, Sukru; Collins, James F.

    2015-01-01

    Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states. PMID:24995690

  16. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway

    PubMed Central

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function. PMID:26879543

  17. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.

    PubMed

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-02-16

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.

  18. Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes

    NASA Astrophysics Data System (ADS)

    Huttunen-Saarivirta, E.; Rajala, P.; Bomberg, M.; Carpén, L.

    2017-02-01

    Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu2S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu2O. Furthermore, in the absence of SRB, Cu2O provided slightly inferior protection against corrosion compared to that by Cu2S in the presence of SRB. The obtained results show that the presence of microorganisms may enhance the passivity of copper. In addition, the identification of key microbial species, such as SRB thriving on copper for long time periods, is important for successful prediction of the behaviour of copper.

  19. Modulation of angiogenesis for cancer prevention: strategies based on antioxidants and copper deficiency.

    PubMed

    Khan, Gazala N; Merajver, Sofia D

    2007-01-01

    Although anti- angiogenesis strategies have generated much enthusiasm for therapeutic applications, it is still unknown whether they would be feasible for prevention. The possibility of interfering very early in tumor progression by modulating the cancer angiogenic switch is appealing. In this chapter, we review progress with in vitro and in vivo models that show that anti-angiogenic interventions may be amenable to long- term chemopreventive measures. In particular, some approaches that are nearly ready for major applications are anti-oxidant nutraceuticals and copper deficiency. We use these strategies as paradigms of how to make progress in this difficult but important area of translational research.

  20. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation

    PubMed Central

    2014-01-01

    Background Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. Methods Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. Results Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). Conclusions Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM. PMID:24927960

  1. Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes.

    PubMed

    Shen, P-J; Gong, B; Xu, F-Y; Luo, Y

    2015-12-01

    Lack of trace elements during pregnancy is detrimental to maternal and fetal health. Our aim is to study the changes in trace element levels in Chinese pregnant women and their association with adverse pregnancy outcomes. 1568 cases of Chinese pregnant women in remote areas were collected for a prospective cohort study. Serum copper, zinc, calcium and iron levels were measured at pre-pregnancy, 1st trimester (7w-12w), 2nd trimester (24w-28w) and 3rd trimester (35w-40w). (1) Serum copper levels was significantly higher after pregnancy than before, calcium and iron levels decreased, but zinc levels did not change significantly. (2) Copper and zinc deficiency in pregnant women was not a common finding, but lack of iron and calcium was frequently encountered; iron deficiency was especially common in the 3rd trimester (42.27%). (3) Serum zinc and iron levels in patients who either had a miscarriage or a preterm delivery were significantly lower than in the control group (p < 0.05). In patients with premature rupture of membranes, serum zinc levels were significantly lower (p < 0.05). In patients with intrauterine growth restriction (IUGR), serum copper, zinc, calcium and iron were significantly lower (p < 0.05). Trace elements is closely associated with fetal growth and development during pregnancy. Deficiency can lead to adverse pregnancy outcomes. Therefore, we should have a reasonable diet, replenish trace elements, therefore reducing the occurrence of adverse pregnancy outcomes.

  2. Copper-facilitated Suzuki reactions: application to 2-heterocyclic boronates.

    PubMed

    Deng, James Z; Paone, Daniel V; Ginnetti, Anthony T; Kurihara, Hideki; Dreher, Spencer D; Weissman, Steven A; Stauffer, Shaun R; Burgey, Christopher S

    2009-01-15

    The palladium-catalyzed Suzuki-Miyaura reaction has been utilized as one of the most powerful methods for C-C bond formation. However, Suzuki reactions of electron-deficient 2-heterocyclic boronates generally give low conversions and remain challenging. The successful copper(I) facilitated Suzuki coupling of 2-heterocyclic boronates that is broad in scope is reported. Use of this methodology affords greatly enhanced yields of these notoriously difficult couplings. Furthermore, mechanistic investigations suggest a possible role of copper in the catalytic cycle.

  3. Trace element status and fatty acids metabolism during healthy ageing: an example of a population from the Tunisian eastern coast.

    PubMed

    Sfar, Sonia; El Heni, Jihen; Laporte, François; Braham, Hamadi; Jawed, Abdelhafidh; Amor, Salah; Sfar, Mohamed Tahar; Kerkeni, Abdelhamid

    2012-03-01

    Micronutrients as well as essential fatty acids are indispensable for the correct functioning of the organism. The risk of disturbance in the associated nutrition and metabolism is expected to increase during ageing. In addition, it seems that trace elements are involved in the fatty acids metabolism. The aim of the present study was then to assess age-related changes in trace elements status and in plasma essential fatty acids composition with an emphasis on the desaturase activity estimation. Two hundred healthy Tunisian subjects (30-85 years old) were recruited and separated into two subgroups: elderly (65-85 years old) and middle-aged (30-60 years old). The findings revealed that plasma zinc and calcium concentrations significantly decreased according to age. The prevalence of zinc deficiency was therefore shown to increase in old age (over 60% of elderly subjects were deficient or at risk of deficiency). No age-related changes were obtained for copper or magnesium status. The Δ6 desaturase, involved in the EFAs conversion, was shown to decrease according to age and to be associated with the plasma zinc level. Since elderly subjects were at risk of nutritional imbalance, it would be interesting to set optimal dietary proportion. This will help to prevent age-associated alterations and diseases for a better and healthy ageing. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Sites of electron transfer to membrane-bound copper and hydroperoxide-induced damage in the respiratory chain of Escherichia coli.

    PubMed

    Rodríguez-Montelongo, L; Farías, R N; Massa, E M

    1995-10-20

    Previous studies in Escherichia coli as a model system for peroxide toxicity (L. Rodríguez-Montelongo, L. C. De la Cruz-Rodríguez, R. N. Farías, and E. M. Massa, 1993, Biochim. Biophys. Acta 1144, 77-84) have shown that electron flow through the respiratory chain supports a membrane-associated Cu(II)/Cu(I) redox cycle involved in irreversible impairment of the respiratory system by tert-butyl hydroperoxide (t-BOOH). In this paper, E. coli mutants deficient in specific respiratory chain components have been used to determine the sites of copper reduction and the targets inactivated by t-BOOH. Two sites of electron transfer to membrane-bound copper were identified: one in the region between NADH and ubiquinone supported by NADH as electron donor and another localized between ubiquinone and the cytochromes supported by electrons coming from NADH, succinate, or D-lactate. Electron flow through the former site in the presence of t-BOOH led to inactivation of NADH dehydrogenase II, whereas electron flow through the latter site in the presence of the hydroperoxide led to damage of ubiquinone. In agreement with the above in vitro results with isolated membranes, copper-dependent inactivation of NADH dehydrogenase and ubiquinone was demonstrated in E. coli cells exposed to t-BOOH. It is proposed that the t-BOOH-induced damage is a consequence of t-butylalkoxy radical generation through a Fenton-type reaction mediated by redox cycling of membrane-bound copper at those two loci of the respiratory chain.

  5. Micronutrient levels and nutritional status of school children living in Northwest Ethiopia.

    PubMed

    Amare, Bemnet; Moges, Beyene; Fantahun, Bereket; Tafess, Ketema; Woldeyohannes, Desalegn; Yismaw, Gizachew; Ayane, Tilahun; Yabutani, Tomoki; Mulu, Andargachew; Ota, Fusao; Kassu, Afework

    2012-12-13

    Several micronutrients are essential for adequate growth of children. However, little information is available on multiple micronutrient status of school children in Ethiopia. The present study was designed to evaluate the relationship between multiple micronutrient levels and nutritional status among school children. In this cross-sectional study, anthropometric data, blood and stool samples were collected from 100 children at Meseret Elementary School in Gondar town, Northwest Ethiopia. Serum concentration of magnesium, calcium, iron, copper, zinc, selenium and molybdenum were measured by inductively coupled plasma mass spectrometer. Anthropometric indices of weight-for-age, height-for-age and BMI-for-age were used to estimate the children's nutritional status. Stool samples were examined by standard microscopic methods for intestinal parasites. The prevalence of stunting, underweight, wasting and intestinal parasitoses among school children was 23%, 21%, 11% and 18%, respectively. The mean serum levels of magnesium, calcium, iron, copper, zinc, selenium and molybdenum were 2.42±0.32 (mg/dl), 15.31±2.14 (mg/dl), 328.19±148.91 (μg/dl), 191.30±50.17 (μg/dl), 86.40±42.40 (μg/dl), 6.32±2.59 (μg/dl), and 0.23±0.15 (μg/dl), respectively. Selenium deficiency, zinc deficiency and magnesium deficiency occurred in 62%, 47%, and 2% of the school children, respectively. Height-for-age showed significant positive correlation with the levels of copper and molybdenum (p = 0.01) and with the levels of magnesium (p = 0.05). Deficiencies of selenium and zinc were high among the school children although the deficiencies were not significantly related with their nutritional status. The prevalence of both malnutrition and intestinal parasitism was not negligible. These calls for the need to undertake multicentre studies in various parts of the country to substantiate the data obtained in the present study so that appropriate and beneficial strategies for micronutrient supplementation and interventions on nutritional deficiencies can be planned.

  6. A Role for the ATP7A Copper-transporting ATPase in Macrophage Bactericidal Activity*

    PubMed Central

    White, Carine; Lee, Jaekwon; Kambe, Taiho; Fritsche, Kevin; Petris, Michael J.

    2009-01-01

    Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. Interferon-γ was found to increase expression of the high affinity copper importer, CTR1, and stimulate copper uptake. This was accompanied by copper-stimulated trafficking of the ATP7A copper exporter from the Golgi to vesicles that partially overlapped with phagosomal compartments. Silencing of ATP7A expression attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of macrophages. Significantly, a copper-sensitive mutant of Escherichia coli lacking the CopA copper-transporting ATPase was hypersensitive to killing by RAW264.7 macrophages, and this phenotype was dependent on ATP7A expression. Collectively, these data suggest that copper-transporting ATPases, CopA and ATP7A, in both bacteria and macrophage are unique determinants of bacteria survival and identify an unexpected role for copper at the host-pathogen interface. PMID:19808669

  7. MicroRNA857 Is Involved in the Regulation of Secondary Growth of Vascular Tissues in Arabidopsis1

    PubMed Central

    Zhao, Yuanyuan; Lin, Sen; Qiu, Zongbo; Cao, Dechang; Wen, Jialong; Deng, Xin; Wang, Xiaohua; Lin, Jinxing; Li, Xiaojuan

    2015-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs that repress target gene expression posttranscriptionally, and are critically involved in various developmental processes and responses to environmental stresses in eukaryotes. MiRNA857 is not widely distributed in plants and is encoded by a single gene, AtMIR857, in Arabidopsis (Arabidopsis thaliana). The functions of miR857 and its mechanisms in regulating plant growth and development are still unclear. Here, by means of genetic analysis coupled with cytological studies, we investigated the expression pattern and regulation mechanism of miR857 and its biological functions in Arabidopsis development. We found that miR857 regulates its target gene, Arabidopsis LACCASE7, at the transcriptional level, thereby reducing laccase activity. Using stimulated Raman scattering and x-ray microtomography three-dimensional analyses, we showed that miR857 was involved in the regulation of lignin content and consequently morphogenesis of the secondary xylem. In addition, miR857 was activated by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 in response to low copper conditions. Collectively, these findings demonstrate the role of miR857 in the regulation of secondary growth of vascular tissues in Arabidopsis and reveal a unique control mechanism for secondary growth based on the miR857 expression in response to copper deficiency. PMID:26511915

  8. [Changes in serum lipids in rats treated with oral cooper].

    PubMed

    Alarcón-Corredor, O M; Carnevalí de Tatá, E; Reinosa-Füller, J; Contreras, Y; Ramírez de Fernández, M; Yánez-Domínguez, C

    2000-09-01

    Disturbances in lipid metabolism during copper deficiency in rats are well recognized. Copper deficiency is associated with the spontaneous retention of hepatic iron. Previous studies have reported that hypercholesterolemia and hypertriglyceridemia are associated with elevated hepatic iron concentrations in copper deficient rats. There was a direct relationship between the magnitude of blood lipids and the concentration of hepatic iron. Based on these data, it has been hypothesized that iron was responsible for the development of lipemia of copper deficiency. In this study was determined the effect of increasing doses of Cu(10, 20 and 50 ppm) in the diet, on the serum total lipids, total cholesterol, triglycerides (triacylglicerols), phospholipids, non-esterified fatty acids (NEFA) and liver iron and zinc concentrations in normal rats. The results were compared with normal rats that received a balanced diet containing 0.6 and 6 ppm of Cu, respectively. The results show that Cu-supplement diminished the cholesterol and triglyceride serum levels, increased the level of phospholipids, NEFA and concomitantly decreased the hepatic concentrations of Fe and Zn. There was a statistically significant (p < 0.05) simple correlation between triglycerides and liver Fe (r = 0.917; R2 = 64.03%), cholesterol and liver Zn (r = 0.872; R2 = 76.07%), cholesterol and liver Fe (r = 0.995; R2 = 99.10%), liver Fe and liver Cu (r = -0.612), liver Fe and liver Zn (r = 0.837), liver Cu and liver Zn (r = -0.612), and serum triglycerides and liver Zn (r = 0.967). The mechanism(s) by which Fe and Zn determine these changes is not known; none of the enzymes that act in cholesterol and triglyceride metabolism and biosynthesis require Fe and/or Zn. The increase of NEFA is due to changes in the process of lipolysis and re-esterification of the fatty acids in blood. However, additional studies are needed for the precise mechanisms of this interrelationships to be clarified.

  9. [The effect of copper on the metabolism of iodine, carbohydrates and proteins in rats].

    PubMed

    Esipenko, B E; Marsakova, N V

    1990-01-01

    Experiments on 156 rats maintained at ration with copper deficiency have demonstrated a decrease in the values of iodine metabolism in organs and tissues excluding the liver where a sharp increase in the concentration and content of inorganic iodine was observed. A disturbance in indices of carbohydrate and proteins metabolism in the organism of animals is marked. A direct relationship with a correlation coefficient equaling 0.87-1.00 is determined between changes in the concentration of protein-bound iodine in blood and concentration of glycogen in the liver, skeletal muscles, albumins, alpha 1-, alpha 2-globulins, urea concentration; an inverse relationship with glucose, activity of blood lipo-dehydrogenase and liver mitochondria, aldolase, concentration of pyruvic and lactic acids is established as well. It is concluded that copper deficiency can exert both a direct effect on metabolic processes (as data from literature testify) and an indirect one disturbing iodine metabolism, i. e. sharply decreasing protein-bound iodine production by the thyroid gland.

  10. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    PubMed

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  11. Beer improves copper metabolism and increases longevity in Cu-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, R.J.; Klevay, L.M.

    Moderate consumption of alcoholic beverages decreases risk of death from ischemic heart disease (IHD). Evidence suggests that Cu-deficiency is important in the etiology and pathophysiology of IHD. The effect of beer (25 ng Cu/ml) drinking on the severity of Cu-deficiency was examined in weanling, male Sprague-Dawley rats fed a low Cu diet (0.84 {mu}g Cu/g). Beer drinking increased median longevity to 204 or 299 d from 62 or 42 d respectively in rats drinking water in two experiments (15 rats/group). In experiment 3, a single dose of {sup 67}Cu (3.3 {mu}Ci as chloride) was added to 1 g of feedmore » and given to 12-h fasted rats 30 d after the start of the experiment. Whole body counting over 13 d showed apparent Cu absorption and t{sub {1/2}} (biological) were greater in Cu-deficient rats drinking beer than in similar rats drinking water. Plasma cholesterol was lower but hematocrit and liver Cu were higher in surviving rats drinking beer than in rats drinking water. Body weight was not affected by beer in any experiment. In experiment 4, a 4% aqueous ethanol solution had no effect on longevity of copper deficient rats. A non-alcohol component of beer alters Cu metabolism and mitigates the severity of nutritional Cu-deficiency in rats.« less

  12. Autonomous requirements of the Menkes disease protein in the nervous system.

    PubMed

    Hodgkinson, Victoria L; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A; Lee, Jaekwon; Gitlin, Jonathan D; Petris, Michael J

    2015-11-15

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients. Copyright © 2015 the American Physiological Society.

  13. Nutrition and hair: deficiencies and supplements.

    PubMed

    Finner, Andreas M

    2013-01-01

    Hair follicle cells have a high turnover. A caloric deprivation or deficiency of several components, such as proteins, minerals, essential fatty acids, and vitamins, caused by inborn errors or reduced uptake, can lead to structural abnormalities, pigmentation changes, or hair loss, although exact data are often lacking. The diagnosis is established through a careful history, clinical examination of hair loss activity, and hair quality and confirmed through targeted laboratory tests. Examples of genetic hair disorders caused by reduced nutritional components are zinc deficiency in acrodermatitis enteropathica and copper deficiency in Menkes kinky hair syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    PubMed Central

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  15. Synthesis of [ 18F]arenes via the copper-mediated [ 18F]fluorination of boronic acids

    DOE PAGES

    Mossine, Andrew V.; Brooks, Allen F.; Makaravage, Katarina J.; ...

    2015-11-14

    Here, a copper-mediated radiofluorination of aryl- and vinylboronic acids with K 18F is described. This method exhibits high functional group tolerance and is effective for the radiofluorination of a range of electron-deficient, -neutral, and -rich aryl-, heteroaryl-, and vinylboronic acids. This method has been applied to the synthesis of [ 18F]FPEB, a PET radiotracer for quantifying metabotropic glutamate 5 receptors.

  16. Synthesis of [ 18F]arenes via the copper-mediated [ 18F]fluorination of boronic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mossine, Andrew V.; Brooks, Allen F.; Makaravage, Katarina J.

    Here, a copper-mediated radiofluorination of aryl- and vinylboronic acids with K 18F is described. This method exhibits high functional group tolerance and is effective for the radiofluorination of a range of electron-deficient, -neutral, and -rich aryl-, heteroaryl-, and vinylboronic acids. This method has been applied to the synthesis of [ 18F]FPEB, a PET radiotracer for quantifying metabotropic glutamate 5 receptors.

  17. The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans*♦

    PubMed Central

    Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun

    2017-01-01

    Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans. Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. PMID:27881675

  18. Copper status in weanling rats fed low levels of inorganic tin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, J.I.; Hight, S.C.

    1991-03-15

    The metabolism of Cu and Fe is adversely affected by ingestion of tin (Sn). In the present study, weanling male rats were fed 33 ug Sn/g in purified Cu-adequate or Cu-deficient diets for 14 or 28 days. Diets were based upon diet AIN-76A and contained 55% glucose and 15% starch. Ceruloplasmin was undetectable in serum of rats fed diets 2, 3 and 4 for 14 or 28 days. Superoxide dismutase (SOD) and Cu in liver decreased when 33 ug Sn/g was included in +Cu diets. Wt. gain, relative heart wt., SOD, and Cu and Fe in liver were sensitive indicesmore » of copper depletion in rats fed {minus}Cu diets. Cu status in rats fed {minus}Cu diets for 14 or 28 days was adversely affected by inclusion of Sn as indicated by changes in hemoglobin (HGB) and relative heart wt. Ingestion of low levels of inorganic tin causes Cu depletion in rats fed +Cu diets and accelerated the appearance of signs of copper deficiency in those fed {minus}Cu diets.« less

  19. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis

    PubMed Central

    Boulet, Aren; Vest, Katherine E.; Maynard, Margaret K.; Gammon, Micah G.; Russell, Antoinette C.; Mathews, Alexander T.; Cole, Shelbie E.; Zhu, Xinyu; Phillips, Casey B.; Kwong, Jennifer Q.; Dodani, Sheel C.; Leary, Scot C.; Cobine, Paul A.

    2018-01-01

    Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2. Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo. PMID:29237729

  20. The Neurological Complications of Nutritional Deficiency following Bariatric Surgery

    PubMed Central

    Becker, Danielle A.; Balcer, Laura J.; Galetta, Steven L.

    2012-01-01

    Neurologic complications of bariatric surgery have become increasingly recognized with the rising numbers of procedures and the increasing prevalence of obesity in the US. Deficits are most commonly seen with thiamine, vitamin B12, folate, vitamin D, vitamin E, and copper deficiencies. The neurological findings observed with these nutritional deficiencies are variable and include encephalopathy, optic neuropathy, myelopathy, polyradiculoneuropathy, and polyneuropathy. We review the neurological complications of bariatric surgery and emphasize that these findings may vary based on the specific type of bariatric surgery and time elapsed from the procedure. PMID:22970351

  1. Comparative study on the passivation layers of copper sulphide minerals during bioleaching

    NASA Astrophysics Data System (ADS)

    Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long

    2012-10-01

    The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.

  2. The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans.

    PubMed

    Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun

    2017-01-06

    Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Canine Models for Copper Homeostasis Disorders.

    PubMed

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-02-04

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  4. Canine Models for Copper Homeostasis Disorders

    PubMed Central

    Wu, Xiaoyan; Leegwater, Peter A. J.; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted. PMID:26861285

  5. Nutritional causes of anemia in Mexican children under 5 years. Results from the 2006 National Health and Nutrition Survey.

    PubMed

    De la Cruz-Góngora, Vanessa; Villalpando, Salvador; Rebollar, Rosario; Shamah-Levy, Teresa; Méndez-Gómez Humarán, Ignacio

    2012-01-01

    To describe the frequency and severity of anemia and the nutritional variables associated to hemoglobin levels (Hb) in children <5 years of age. We studied 981 children measuring hemoglobin and serum concentrations of ferritin, soluble transferrin receptors (sTfR), C-reactive protein (CRP), zinc, iron, copper, magnesium, folate and vitamin B12. Ordinal logit or multiple regression models were constructed to assess the risk for anemia and the associations among nutritional variables. The overall prevalence of anemia was 20.6%, of which 14% were mild cases and 6.38% moderate. Anemia was associated with iron deficiency (ID) in 42.17% of the cases, whereas ID coexisted with either folate or vitamin B12 deficiency in 9%. Only 2% of cases of anemia were associated with either folate or vitamin B12 deficiencies. CRP (coef: 0.17 g/dl) and third tertile of s-copper (coef: -0.85 g/dl) were associated to unexplained anemia (p<0.05). ID is the main cause of anemia in children <5 y. Folate and vitamin B12 concentrations were associated with anemia. CRP was associated to unexplained anemia. However, vitamin A deficiency, which is associated with anemia, was not studied.

  6. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis.

    PubMed

    Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La

    2013-01-01

    Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  7. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    PubMed Central

    Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La

    2013-01-01

    Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration. PMID:23986700

  8. The content of trace elements in the diet of adolescents in Warsaw.

    PubMed

    Dybkowska, Ewa; Swiderski, Franciszek; Waszkiewicz-Robak, Bozena

    2011-01-01

    The aim of the study is to assess the contents of iron, zinc and copper in the diet among of adolescents living in Warsaw. The intake ofselected trace elements was estimated on the basis of three-day dietary records. Microelement contents in the diet were calculated using Food Composition Tables. The percentage of the RDA realization for the safe level was calculated on the basis of standards for Polish population, developed by National Food and Nutrition Institute. It was demonstrated that adolescents living in Warsaw had 50-60% copper-deficient diets. The content of iron and zinc in the diet of adolescents was about 10-40% lower than recommended. Deficiency of iron in the body causes anaemia and influences learning process, therefore the content of this element in the diet of young people is especially important.

  9. Copper deficiency and effects of copper supplementation in a herd of red deer (Cervus elaphus)

    PubMed Central

    Handeland, Kjell; Bernhoft, Aksel; Aartun, Magne S

    2008-01-01

    Copper (Cu) deficiency was diagnosed in a Norwegian red deer (Cervus elaphus) herd subsequent to deaths due to emaciation in late autumn 1999. The animals had free access to salt licks containing 3000 mg Cu/kg. An evaluation of the herd revealed poor calf growth rate, low weights of adult hinds, dull and light-coloured hair coats and cases of diarrhoea. The herd was subsequently monitored throughout a three-year period of Cu-supplementation. The monitoring regimen included clinical observation, copper serum examination, weighing, faecal parasitological examination, and reproduction control by ultrasound. During the period January 2000 to May 2001, the animals were treated with Cu oxid capsules (1 g CuO/10 kg liveweight) at 2–4 months intervals, with the exception of March to September 2000. The animals were fed continuously with Cu-enriched concentrates containing 300 mg Cu/kg, at a rate of 1/2 kg per head and day, from May 2001 to January 2003. Following both copper supplementation regimens adequate serum Cu concentrations were measured, and markedly improved body weights, coat quality and reproductive results were observed, except for the period from March to September 2000 when no treatment was given. The results showed that in a deer herd, with a diet low in Cu, supplementation with CuO capsules had to be given at intervals of a few months to maintain adequate serum Cu levels. Free access to Cu-containing salt licks did not meet the animals' Cu demand. Good and stable results were achieved by the daily feeding of Cu-enriched concentrates. PMID:18447913

  10. Towards bio monitoring of toxic (lead) and essential elements in whole blood from 1- to 72-month old children: a cross-sectional study.

    PubMed

    Kang-Sheng, Liu; Xiao-Dong, Mao; Juan, Shi; Chun-Fan, Dai; Pingqing, Gu

    2015-06-01

    Minerals such as zinc, copper, selenium, calcium, and magnesium are essential for normal human development and functioning of the body. They have been found to play important roles in immuno-physiologic functions. The study is to evaluate the distribution and correlation of nonessential (lead) and essential elements in whole blood from 1- to 72-month old children. The cross-sectional study was performed in 1551 children. Six element concentrations, including copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg), iron (Fe) and lead (Pb) in the blood were determined by atomic absorption spectrometry. Distributions and correlations of trace elements in different age groups were analyzed and compared. A Pearson correlation controlled for age and gender was used to assess the relationship of non essential (lead) and essential elements. Levels of copper and magnesium were 18.09 ± 4.42 µmol/L and 1.42 ± 0.12 mmol/L, respectively. 6.04% of all children showed copper levels below the normal threshold, the levels of Magnesium were stable in different age groups. Though the overall mean blood zinc and iron concentrations (61.19 ± 11.30 µmol/L and 8.24 ± 0.59 mmol/L, respectively) gradually increased with age and the overall deficiency levels (24.1% and 36.0%, respectively) decreased with age, zinc and iron deficiencies were still very stable. Controlling for gender and age, significant positive correlations were found when comparing copper to zinc, calcium, magnesium, and iron ((r = 0.333, 0.241, 0.417, 0.314 ,p < 0.01); zinc to magnesium and iron (r = 0.440, 0.497p < 0.01); and magnesium to Calcium and iron (r = 0.349, 0.645, p < 0.01). The overall mean blood lead levels (41.16 ± 16.10) were relatively unstable among different age groups. The prevalence of lead intoxication in all children was 1.3% .Calcium levels decreased gradually with age, with an overall concentration of 1.78 ± 0.13 mmol/L. Significant negative correlations were also noted between Pb and Zn, Fe (r = -0.179, -0.124.p < 0.01) .The importance of calcium deficiency and supplementation is well realized, but the severity of iron and zinc deficiency is not well recorded. The degree of lead intoxication in all the children studied was low; The established reference intervals for Cu, Zn, Ca and Mg provide an important guidance for the reasonable supplementation of essential elements during different age groups.

  11. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis.

    PubMed

    Boulet, Aren; Vest, Katherine E; Maynard, Margaret K; Gammon, Micah G; Russell, Antoinette C; Mathews, Alexander T; Cole, Shelbie E; Zhu, Xinyu; Phillips, Casey B; Kwong, Jennifer Q; Dodani, Sheel C; Leary, Scot C; Cobine, Paul A

    2018-02-09

    Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2 Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. GOLGI IN COPPER HOMEOSTASIS: A VIEW FROM THE MEMBRANE TRAFFICKING FIELD

    PubMed Central

    Polishchuk, Roman; Lutsenko, Svetlana

    2013-01-01

    Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B, that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper-ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintain Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease. PMID:23846821

  13. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  14. The plasma membrane proteome of maize roots grown under low and high iron conditions.

    PubMed

    Hopff, David; Wienkoop, Stefanie; Lüthje, Sabine

    2013-10-08

    Iron (Fe) homeostasis is essential for life and has been intensively investigated for dicots, while our knowledge for species in the Poaceae is fragmentary. This study presents the first proteome analysis (LC-MS/MS) of plasma membranes isolated from roots of 18-day old maize (Zea mays L.). Plants were grown under low and high Fe conditions in hydroponic culture. In total, 227 proteins were identified in control plants, whereas 204 proteins were identified in Fe deficient plants and 251 proteins in plants grown under high Fe conditions. Proteins were sorted by functional classes, and most of the identified proteins were classified as signaling proteins. A significant number of PM-bound redox proteins could be identified including quinone reductases, heme and copper-containing proteins. Most of these components were constitutive, and others could hint at an involvement of redox signaling and redox homeostasis by change in abundance. Energy metabolism and translation seem to be crucial in Fe homeostasis. The response to Fe deficiency includes proteins involved in development, whereas membrane remodeling and assembly and/or repair of Fe-S clusters is discussed for Fe toxicity. The general stress response appears to involve proteins related to oxidative stress, growth regulation, an increased rigidity and synthesis of cell walls and adaption of nutrient uptake and/or translocation. This article is part of a Special Issue entitled: Plant Proteomics in Europe. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Gene expression patterns in the progression of canine copper-associated chronic hepatitis

    PubMed Central

    Dirksen, Karen; Spee, Bart; Penning, Louis C.; van den Ingh, Ted S. G. A. M.; Burgener, Iwan A.; Watson, Adrian L.; Groot Koerkamp, Marian; Rothuizen, Jan

    2017-01-01

    Copper is an essential trace element, but can become toxic when present in abundance. The severe effects of copper-metabolism imbalance are illustrated by the inherited disorders Wilson disease and Menkes disease. The Labrador retriever dog breed is a novel non-rodent model for copper-storage disorders carrying mutations in genes known to be involved in copper transport. Besides disease initiation and progression of copper accumulation, the molecular mechanisms and pathways involved in progression towards copper-associated chronic hepatitis still remain unclear. Using expression levels of targeted candidate genes as well as transcriptome micro-arrays in liver tissue of Labrador retrievers in different stages of copper-associated hepatitis, pathways involved in progression of the disease were studied. At the initial phase of increased hepatic copper levels, transcriptomic alterations in livers mainly revealed enrichment for cell adhesion, developmental, inflammatory, and cytoskeleton pathways. Upregulation of targeted MT1A and COMMD1 mRNA shows the liver’s first response to rising intrahepatic copper concentrations. In livers with copper-associated hepatitis mainly an activation of inflammatory pathways is detected. Once the hepatitis is in the chronic stage, transcriptional differences are found in cell adhesion adaptations and cytoskeleton remodelling. In view of the high similarities in copper-associated hepatopathies between men and dog extrapolation of these dog data into human biomedicine seems feasible. PMID:28459846

  16. Silicon-zinc interactions and potential roles for dietary zinc and copper in minimizing silica urolithiasis in rats.

    PubMed

    Stewart, S R; Emerick, R J; Kayongo-Male, H

    1993-04-01

    Two 8-wk experiments were conducted with Sprague-Dawley weanling rats to determine whether interactions occurring between Zn and Si, or a nutritional deficiency of either Cu or Zn, affect silica urolith formation. In Exp. 1, concentrations of 0, 540, and 2,700 mg of Si/kg of diet from tetraethylorthosilicate were used with dietary Zn concentrations of 4, 12, and 500 mg/kg of diet in a 3 x 3 factorial arrangement. In Exp. 2, copper at 1 or 5 mg/kg of diet and Zn at 4, 12, and 500 mg/kg of diet were used in a 2 x 3 factorial arrangement. All diets in Exp. 2 contained 2,700 mg of Si/kg. Silica uroliths occurred in all treatments providing, 2,700 mg of Si/kg of diet. There was a trend (P = .17) toward a reduction of silica urolith incidence with increasing concentrations of dietary Zn in Exp. 1. In Exp. 2, a deficiency of Zn, and a Cu deficiency exacerbated by 500 mg of Zn/kg of diet, increased (P < .05) silica urolith formation. An antagonism between Si and Zn, as demonstrated previously in the rat, may not be of a sufficient magnitude to be applicable to the prevention of silica urolithiasis. The data further demonstrate that Zn deficiency and, to a lesser extent, Cu deficiency contributed to silica urolith formation in rats fed diets having a high content of absorbable Si. However, 540 mg of Si/kg of diet may potentiate the metabolic activity of Zn, as indicated by a 23% Si-mediated weight gain response in Zn-deficient rats.

  17. Copper absorption from human milk, cow's milk, and infant formulas using a suckling rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loennerdal, B.B.; Bell, J.G.; Keen, C.L.

    1985-11-01

    Since copper deficiency is known to occur during infancy, it becomes important to assess copper uptake from various infant diets. The authors have investigated the uptake of copper from human milk, cow's milk, cow's milk formulas, cereal/milk formula and soy formula, compensating for the decay of /sup 64/Cu and using the suckling rat as a model. Radiocopper was added to the diet in trace amounts. Ultracentrifugation, ultrafiltration, and gel filtration were used to show that the added /sup 64/Cu bound to milk fractions and individual binding compounds in a manner analogous to the distribution of native copper, thus validating themore » use of extrinsically labeled diets. Labeled diets were intubated into 14-day-old suckling rats. Animals were killed after 6 h and tissues removed and counted. Liver copper uptake was 25% from human milk, 23% from cow's milk formula, 18% from cow's milk, 17% from premature (cow's milk based) infant formula, 17% from cereal/milk formula and 10% from soy formula. These results show that the rat pup model may provide a rapid, inexpensive, and sensitive method to assay bioavailability of copper from infant foods.« less

  18. Comparison of copper heptonate with copper oxide wire particles as copper supplements for sheep on pasture of high molybdenum content.

    PubMed

    Judson, G J; Babidge, P J

    2002-10-01

    To assess the effectiveness of intramuscular injection of copper heptonate (CuHep) and an oral dose of copper oxide wire particles (COWP) in preventing Cu inadequacy in adult and young sheep on pasture of high Mo content. Field experiments with flocks of mature Merino wethers and crossbred weaners. Adult wethers were given 25 or 37.5 mg Cu as CuHep, 2.5 g COWP or no Cu treatment. The weaners were given 12.5 or 25 mg Cu as CuHep, 1.25 g COWP or no Cu treatment. At intervals over the next 12 (adults) or 8 (weaners) months the sheep were weighed and samples of blood and liver were collected for trace element assay. Wool samples collected from the adults at the end of the experiment were assessed for physical characteristics. The higher dosage of CuHep raised liver Cu above control group values for at least 9 months in adults and 3 months in weaners. The lower dosage of CuHep was similarly effective for 3 months in adults but was without effect in weaners. In adults the response to COWP matched that to the higher dosage of CuHep; in weaners it was greater, lasting at least 5 months. No changes indicative of Cu deficiency, apart from a depressed body weight in adults, were seen. In sheep on pasture of high Mo content a single intramuscular injection of CuHep providing 37.5 mg Cu to adults or 25 mg Cu to weaners will raise liver Cu reserves for at least 9 and 3 months respectively and may be an acceptable alternative to COWP for preventing seasonal Cu deficiency in sheep in southern Australia.

  19. The role of insufficient copper in lipid synthesis and fatty-liver disease.

    PubMed

    Morrell, Austin; Tallino, Savannah; Yu, Lei; Burkhead, Jason L

    2017-04-01

    The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X-linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood-brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub-optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non-alcoholic fatty-liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD. © 2016 IUBMB Life, 69(4):263-270, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  20. Functional and Biochemical Characterization of Cucumber Genes Encoding Two Copper ATPases CsHMA5.1 and CsHMA5.2*

    PubMed Central

    Migocka, Magdalena; Posyniak, Ewelina; Maciaszczyk-Dziubinska, Ewa; Papierniak, Anna; Kosieradzaka, Anna

    2015-01-01

    Plant copper P1B-type ATPases appear to be crucial for maintaining copper homeostasis within plant cells, but until now they have been studied mostly in model plant systems. Here, we present the molecular and biochemical characterization of two cucumber copper ATPases, CsHMA5.1 and CsHMA5.2, indicating a different function for HMA5-like proteins in different plants. When expressed in yeast, CsHMA5.1 and CsHMA5.2 localize to the vacuolar membrane and are activated by monovalent copper or silver ions and cysteine, showing different affinities to Cu+ (Km ∼1 or 0.5 μm, respectively) and similar affinity to Ag+ (Km ∼2.5 μm). Both proteins restore the growth of yeast mutants sensitive to copper excess and silver through intracellular copper sequestration, indicating that they contribute to copper and silver detoxification. Immunoblotting with specific antibodies revealed the presence of CsHMA5.1 and CsHMA5.2 in the tonoplast of cucumber cells. Interestingly, the root-specific CsHMA5.1 was not affected by copper stress, whereas the widely expressed CsHMA5.2 was up-regulated or down-regulated in roots upon copper excess or deficiency, respectively. The copper-induced increase in tonoplast CsHMA5.2 is consistent with the increased activity of ATP-dependent copper transport into tonoplast vesicles isolated from roots of plants grown under copper excess. These data identify CsHMA5.1 and CsHMA5.2 as high affinity Cu+ transporters and suggest that CsHMA5.2 is responsible for the increased sequestration of copper in vacuoles of cucumber root cells under copper excess. PMID:25963145

  1. L-threo 3,4-dihydroxyphenylserine treatment during mouse perinatal and rat postnatal development does not alter the impact of dietary copper deficiency

    PubMed Central

    Pyatskowit, Joshua W.; Prohaska, Joseph R.

    2009-01-01

    Dietary copper (Cu) deficiency was induced perinatally in Swiss Albino mice and postnatally in male Holtzman rats to investigate the effect of L-threo 3,4-dihydroxyphenylserine (DOPS) on pup survival and catecholamine levels in a 2 × 2 factorial design. Mouse dams were placed on one of four treatments 14 days after mating and rats at postnatal day 19 (P19). Treatments were Cu-adequate (Cu +) and Cu-deficient (Cu −) diets with or without DOPS (1 mg/ml) in the drinking water. Mouse pups were killed at P14 and rats at P49. Mortality in Cu − pups was 46% and not significantly improved by DOPS, 39%. A repeat study with mice adding ascorbic acid in the water with DOPS showed no improvement. Compared to Cu + animals, Cu − animals were smaller, anemic and had a 92% reduction in liver Cu. DOPS treatment made no improvement to and in some cases exacerbated the Cu deficiency. Catecholamine levels measured in heart and brain by LCEC showed decreased NE levels and increased DA levels in Cu − animals compared to controls. DOPS treatment did not alter this pattern. Although DOPS was present in treated animal’s tissues, survival in mice and catecholamine levels in mice and rats were not altered by the 1 mg/ml dose of DOPS. PMID:16117185

  2. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    PubMed

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development.

    PubMed

    Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter

    2014-01-01

    Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-like-protein (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development.

  4. The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development

    PubMed Central

    Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter

    2014-01-01

    Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-LIKE-PROTEIN (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development. PMID:24713636

  5. Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens.

    PubMed

    Bakalli, R I; Pesti, G M; Ragland, W L; Konjufca, V

    1995-02-01

    Male commercial broiler strain chickens were fed from hatching to 42 d of age either a control diet (based on corn and soybean meal) or the control diet supplemented with 250 mg copper/kg diet from cupric sulfate pentahydrate (for 35 or 42 d). Hypocholesterolemia (11.8% reduction) and decreased breast muscle cholesterol (20.4% reduction) were observed in copper-supplemented birds. There was a slight increase (P > .05) in breast muscle copper (14.5%), and all levels were very low (< .5 mg/kg). Feeding copper for 42 vs 35 d resulted in lower levels of cholesterol in the plasma (12.9 vs 10.8% reduction) and breast muscle (24.6 vs 16.2% reduction). Very similar results were found in two additional experiments in which hypocholesterolemia and reduced breast muscle cholesterol were associated with reduced plasma triglycerides and blood reduced glutathione. It is well known that hypercholesterolemia is a symptom of dietary copper deficiency. The data presented here indicate that blood and breast muscle cholesterol are inversely related to dietary copper in excess of the dietary requirement for maximal growth. The cholesterol content of the edible muscle tissue of broiler chickens can be reduced by approximately 25% after feeding a supranormal level of copper for 42 d without altering the growth of the chickens or substantially increasing the copper content of the edible meat.

  6. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    PubMed

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  7. [Trace elements in serum of malnourished and well-nourished children living in Lubumbashi and Kawama].

    PubMed

    Musimwa, Aimée Mudekereza; Kanteng, Gray Wakamb; Kitoko, Hermann Tamubango; Luboya, Oscar Numbi

    2016-01-01

    The role of trace metals elements in human nutrition can no longer be ignored. Deficiency caused by inadequate dietary intake, secondary deficiencies often under - estimated, and iatrogenic deficiencies lead to pathologies such as infections and others. For this reason their dosages are particularly important to assess disease severity and to facilitate early treatment or improve patient's diet. The aim of this study was to determine trace elements profile in blood (copper, selenium, zinc, iron, chromium, cobalt, etc.) among malnourished and well-nourished children in a mining community in Lubumbashi. Three hundred eleven cases have been collected, 182 malnourished children and 129 well-nourished children in a cross-sectional descriptive study conducted from July 2013 to December 2014. Exhaustive sampling was performed. Metal determination in serum was performed using Inductively Coupled Plasma Spectroscopy (ICP-OES/MS) in the laboratory at Congolese Control Office in Lubumbashi. Essential trace elements (copper, zinc, selenium and iron) were found at very low concentrations in both the malnourished and well-nourished children. Arsenic, cadmium, magnesium and manganese concentrations were normal compared with reference values in well-nourished children Antimony, chromium, lead and cobalt levels were high in both the malnourished and well-nourished children. Nickel level was normal malnourished and well-nourished children. Magnesium, manganese were found in very low levels in malnourished children. Both the malnourished and well-nourished children suffer from deficiencies of essential trace elements associated with trace metals elements This allows to assume that essential micronutrients deficiency promotes the absorption of heavy metals.

  8. Copper-Deficiency in Brassica napus Induces Copper Remobilization, Molybdenum Accumulation and Modification of the Expression of Chloroplastic Proteins

    PubMed Central

    Billard, Vincent; Ourry, Alain; Maillard, Anne; Garnica, Maria; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Etienne, Philippe

    2014-01-01

    During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain. PMID:25333918

  9. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  10. Minor elements in Keweenawan lavas, Michigan

    USGS Publications Warehouse

    Cornwall, H.R.; Rose, H.J.

    1957-01-01

    The distribution of minor elements in three basaltic flows of the Keweenawan series, of Michigan, is related to differentiation in the flows. Thus, nickel is most abundant in the early differentiates; nickel, chromium, and barium are generally deficient in the pegmatites, which formed late; whereas copper, vanadium, yttrium, and other minor elements are concentrated in the pegmatites. The minor-element content of individual minerals in the Greenstone flow varies markedly from one mineral to another and seems to depend primarily on the presence or absence in the minerals of major elements for which the minor elements can substitute. Minor elements have substituted most readily for those major elements with similar ionic radii. Valence and electronegativity also seem to influence the ease of substitution. The distribution of other minor elements in copper-bearing lodes of the Michigan copper district shows no apparent relation to copper mineralization. ?? 1957.

  11. Overexpression of copper transporter CTR1 in the brain barrier of North Ronaldsay sheep: implications for the study of neurodegenerative disease.

    PubMed

    Haywood, S; Vaillant, C

    2014-01-01

    Age-related regulatory failure of the brain barrier towards the influx of redox metals such as copper and iron may be associated with the pathological changes that characterize dementias such as Alzheimer's diseases (ADs) and amyotrophic lateral sclerosis (ALS). The integrity of the brain barrier to regulate copper in the brain is maintained by the complex interplay of membrane-located transporters, of which copper transporter 1 (CTR1) exerts a defining role. North Ronaldsay (NR) sheep are a primitive breed that have adapted to a copper-deficient environment by an enhanced uptake of the metal, resulting in copper overload in the liver and brain. This study reports that CTR1 is overexpressed in both the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB) of adult NR sheep when compared with a domesticated breed. The excess copper is stored ultimately in astrocytes as non-injurious copper-metallothionein (MT). NR sheep have apparently retained an immature regulatory setting for CTR1 in the BBB, promoting facilitated copper uptake into the brain. This putative failure of maturation of CTR1 allows insight into the regulatory control of brain copper homeostasis, whereby the BBB and BCB act in concert to sequester excess copper and protect neurons from injury. The elevated copper content of the ageing human brain may derive from a dysregulation of CTR1 at the brain barrier, with a return to the default (immature) setting and implications for neurodegenerative disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of non-alcoholic fatty-liver disease

    PubMed Central

    Tallino, Savannah; Duffy, Megan; Ralle, Martina; Cortés, María Paz; Latorre, Mauricio; Burkhead, Jason L.

    2015-01-01

    Nonalcoholic fatty-liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes non-alcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decrease liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w), or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high sucrose or low Cu diets had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase (Acly) and fatty-acid synthase (Fasn) gene transcription (Fold change >2, p <0.02). Low dietary Cu decreased hepatic and serum Cu (p ≤0.05), promoted lipid peroxidation, and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis. PMID:26033743

  13. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease.

    PubMed

    Tallino, Savannah; Duffy, Megan; Ralle, Martina; Cortés, María Paz; Latorre, Mauricio; Burkhead, Jason L

    2015-10-01

    Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    PubMed

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Copper Homeostasis in Escherichia coli and Other Enterobacteriaceae.

    PubMed

    Rensing, Christopher; Franke, Sylvia

    2007-04-01

    An interesting model for studying environmental influences shaping microbial evolution is provided by a multitude of copper resistance and copper homeostasis determinants in enteric bacteria. This review describes these determinants and tries to relate their presence to the habitat of the respective organism, as a current hypothesis predicts that the environment should determine an organism's genetic makeup. In Escherichia coli there are four regulons that are induced in the presence of copper. Two, the CueR and the CusR regulons, are described in detail. A central component regulating intracellular copper levels, present in all free-living enteric bacteria whose genomes have so far been sequenced, is a Cu(I)translocating P-type ATPase. The P-type ATPase superfamily is a ubiquitous group of proteins involved in the transport of charged substrates across biological membranes. Whereas some components involved in copper homeostasis can be found in both anaerobes and aerobes, multi-copper oxidases (MCOs) implicated in copper tolerance in E. coli, such as CueO and the plasmid-based PcoA, can be found only in aerobic organisms. Several features indicate that CueO, PcoA, and other related MCOs are specifically adapted to combat copper-mediated oxidative damage. In addition to these well-characterized resistance operons, there are numerous other genes that appear to be involved in copper binding and trafficking that have not been studied in great detail. SilE and its homologue PcoE, for example, are thought to effect the periplasmic binding and sequestration of silver and copper, respectively.

  16. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia

    PubMed Central

    González-Guerrero, Manuel; Escudero, Viviana; Saéz, Ángela; Tejada-Jiménez, Manuel

    2016-01-01

    Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant–microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia. PMID:27524990

  17. Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide-Alkyne Cycloaddition

    PubMed Central

    Kuang, Gui-Chao; Guha, Pampa M.; Brotherton, Wendy S.; Simmons, J. Tyler; Stankee, Lisa A.; Nguyen, Brian T.; Clark, Ronald J.; Zhu, Lei

    2011-01-01

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)2) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and 1H NMR assays are developed for monitoring the reaction progress in two different solvents – methanol and acetonitrile. Solvent kinetic isotopic effect and pre-mixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)2 suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)2 in mediating a 2-picolylazide-involved AAC reaction than the fully reduced Cu(OAc)2. Finally, the discontinuous kinetic behavior that has been observed by us and others in copper(I/II)-mediated AAC reactions is explained by the likely catalyst disintegration during the course of a relatively slow reaction. Complementing the prior mechanistic conclusions drawn by other investigators which primarily focus on the copper(I)/alkyne interactions, we emphasize the kinetic significance of copper(I/II)/azide interaction. This work not only provides a mechanism accounting for the fast Cu(OAc)2-mediated AAC reactions involving chelating azides, which has apparent practical implications, but suggests the significance of mixed-valency dinuclear copper species in catalytic reactions where two copper centers carry different functions. PMID:21809811

  18. Copper Status of Exposed Microorganisms Influences Susceptibility to Metallic Nanoparticles

    PubMed Central

    Reyes, Vincent C.; Spitzmiller, Melissa R.; Hong-Hermesdorf, Anne; Kropat, Janette; Damoiseaux, Robert D.; Merchant, Sabeeha S.; Mahendra, Shaily

    2017-01-01

    Although interactions of metallic nanoparticles (NP) with various microorganisms have been previously explored, few studies have examined how metal sensitivity impacts NP toxicity. Herein, we investigated the effects of copper nanoparticles’ (Cu-NPs) exposure to the model alga, Chlamydomonas reinhardtii, in the presence and absence of the essential micronutrient copper. The toxic ranges for Cu-NPs and the ionic control, CuCl2, were determined using a high-throughput ATP-based fluorescence assay. Cu-NPs caused similar mortality in copper-replete and copper-deplete cells (IC50: 14–16 mg/L), but were less toxic than the ionic control, CuCl2 (IC50: 7 mg/L). Using this concentration range, we assessed Cu-NP impacts to cell morphology, copper accumulation, chlorophyll content, and expression of stress genes under both copper supply states. Osmotic swelling, membrane damage, and chloroplast and organelle disintegration were observed by transmission electron microscopy at both conditions. Despite these similarities, copper-deplete cells showed greater accumulation of loosely bound and tightly bound copper after exposure to Cu-NPs. Furthermore, copper-replete cells experienced greater loss of chlorophyll content, 19 % for Cu-NPs, compared to only an 11% net decrease in copper-deplete cells. The tightly bound copper was bioavailable as assessed by reverse-transcriptase quantitative PCR analysis of CYC6, a biomarker for Cu-deficiency. The increased resistance of copper-deplete cells to Cu-NPs suggests that these cells potentially metabolize excess Cu-NPs or better manage sudden influxes of ions. Our findings recommend that toxicity assessments must account for the nutritional status of impacted organisms and use toxicity models based on estimations of the bioavailable fractions. PMID:26387648

  19. In vitro digestion method for estimation of copper bioaccessibility in Açaí berry.

    PubMed

    Ruzik, Lena; Wojcieszek, Justyna

    Copper is an essential trace element for humans and its deficiency can lead to numerous diseases. A lot of mineral supplements are available to increase intake of copper. Unfortunately, only a part of the total concentration of elements is available for human body. Thus, the aim of the study was to determine bioaccessibility of copper in Açai berry, known as a "superfood" because of its antioxidant qualities. An analytical methodology was based on size exclusion chromatography (SEC) coupled to a mass spectrometer with inductively coupled plasma (ICP MS) and on capillary liquid chromatography coupled to tandem mass spectrometer with electrospray ionization (µ-HPLC-ESI MS/MS). To extract various copper compounds, berries were treated with the following buffers: ammonium acetate, Tris-HCl, and sodium dodecyl sulfate (SDS). The best extraction efficiency of copper was obtained for SDS extract (88 %), while results obtained for Tris-HCl and ammonium acetate were very similar (47 and 48 %, respectively). After SEC-ICP-MS analysis, main signal was obtained for all extracts in the region of molecular mass about 17 kDa. A two-step model simulated gastric (pepsin) and gastrointestinal (pancreatin) digestion was used to obtain the knowledge about copper bioaccessibility. Copper compounds present in Açai berry were found to be highly bioaccessible. The structures of five copper complexes with amino acids such as aspartic acid, tyrosine, phenylalanine, were proposed after µ-HPLC-ESI MS/MS analysis. Obtained results show that copper in enzymatic extracts is bound by amino acids and peptides what leads to better bioavailability of copper for human body.

  20. Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies.

    PubMed

    Ordax, Mónica; Marco-Noales, Ester; López, María M; Biosca, Elena G

    2010-09-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants very difficult to control. We demonstrated that copper, employed to control plant diseases, induces the "viable-but-nonculturable" (VBNC) state in E. amylovora. Moreover, it was previously reported that copper increases production of its main exopolysaccharide (EPS), amylovoran. In this work, the copper-complexing ability of amylovoran and levan, other major EPS of E. amylovora, was demonstrated. Following this, EPS-deficient mutants were used to determine the role of these EPSs in survival of this bacterium in AB mineral medium with copper, compared to their wild type strain and AB without copper. Total, viable and culturable counts of all strains were monitored for six months. With copper, a larger fraction of the viable population of EPS mutants entered into the VBNC state, and earlier than their wild type strain, showing the contribution of both EPSs to long-term survival in a culturable state. Further, we demonstrated that both EPSs can be used as carbon source by E. amylovora under deprivation conditions. Overall, these previously unreported functions of amylovoran and levan provide survival advantages for E. amylovora, which could contribute to its enhanced persistence in nature. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  1. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    PubMed

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  2. The science and practice of micronutrient supplementations in nutritional anemia: an evidence-based review.

    PubMed

    Chan, Lingtak-Neander; Mike, Leigh Ann

    2014-08-01

    Nutritional anemia is the most common type of anemia, affecting millions of people in all age groups worldwide. While inadequate access to food and nutrients can lead to anemia, patients with certain health status or medical conditions are also at increased risk of developing nutritional anemia. Iron, cobalamin, and folate are the most recognized micronutrients that are vital for the generation of erythrocytes. Iron deficiency is associated with insufficient production of hemoglobin. Deficiency of cobalamin or folate leads to impaired synthesis of deoxyribonucleic acid, proteins, and cell division. Recent research has demonstrated that the status of copper and zinc in the body can significantly affect iron absorption and utilization. With an increasing number of patients undergoing bariatric surgical procedures, more cases of anemia associated with copper and zinc deficiencies have also emerged. The intestinal absorption of these 5 critical micronutrients are highly regulated and mediated by specific apical transport mechanisms in the enterocytes. Health conditions that persistently alter the histology of the upper intestinal architecture, expression, or function of these substrate-specific transporters, or the normal digestion and flow of these key micronutrients, can lead to nutritional anemia. The focus of this article is to review the science of intestinal micronutrient absorption, discuss the clinical assessment of micronutrient deficiencies in relation to anemia, and suggest an effective treatment plan and monitoring strategies using an evidence-based approach. © 2014 American Society for Parenteral and Enteral Nutrition.

  3. Influence of essential trace minerals and micronutrient insufficiencies on harmful metal overload in a Mongolian patient with multiple sclerosis.

    PubMed

    Komatsu, Fumio; Kagawa, Yasuo; Kawabata, Terue; Kaneko, Yoshinori; Kudoh, Hideki; Purvee, Baatar; Otgon, Jugder; Chimedregzen, Ulziiburen

    2012-07-01

    Parkinson's disease and other neurological disorders are prevalent in Mongolia. Our previous studies revealed a significant correlation of these diseases with high oxidative stress due to a high body burden of harmful metals, such as manganese, iron, lead, cadmium, and aluminum. This report describes a 37-year-old male Mongolian patient with multiple sclerosis and essential micronutrient deficiency. This patient demonstrated high oxidative stress, as shown by high urinary 8-hydroxy-2'-deoxyguanosine levels of 14.7 and 14.3 ng/mg creatinine (crea), although his hair levels of these toxic metals were markedly lower than other Mongolians. In addition, this patient was deficient not only in various essential minerals, including selenium, magnesium, copper, cobalt, vanadium, and nickel, but also in micronutrients such as vitamin B6, C, E, folic acid, niacin, and β-carotene. Furthermore, after taking 2,3-dimercaptosuccinic acid, a chelating agent, urinary excretion of lead, cadmium, manganese, aluminum, iron, copper, and lithium were increased 156-, 8.4-, 7.6-, 4.3-, 3.3-, 2.1-, and 2.1-fold, respectively. These results suggest that this patient suffered from a deficiency in micronutrients such as essential minerals and vitamins, which resulted in a disturbance in the ability to excrete harmful metals into the urine and hair. It is possible that a deficiency of micronutrients and a high burden of heavy metals play a role in the pathogenesis of multiple sclerosis. Nutritional treatment may be an effective approach to this disease.

  4. Effects of rutin supplementation on antioxidant status and iron, copper, and zinc contents in mouse liver and brain.

    PubMed

    Gao, Zhonghong; Xu, Huibi; Huang, Kaixun

    2002-09-01

    The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.

  5. Method for forming silver-copper mixed kesterite semiconductor film

    DOEpatents

    Gershon, Talia S.; Gunawan, Oki; Lee, Yun S.; Mankad, Ravin

    2018-01-23

    After forming a layer of a Cu-deficient kesterite compound having the formula Cu.sub.2-xZn.sub.1+xSn(S.sub.ySe.sub.1-y).sub.4, wherein 0

  6. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice.

    PubMed

    Noda, Yoshihiro; Ota, Kuniaki; Shirasawa, Takuji; Shimizu, Takahiko

    2012-01-01

    Copper/zinc superoxide dismutase (CuZn-SOD, SOD1) is one of the major antioxidant enzymes, and is localized in the cytoplasm to scavenge superoxide. To investigate the physiological role of SOD1 in the ovaries, we analyzed the fertility of Sod1-deficient female mice. To evaluate their hormonal metabolism, we measured pituitary and ovarian hormone levels in the plasma of the mutant mice. Plasma follicle-stimulating hormone, luteinizing hormone, and estradiol were not altered in the mutant compared to the wild-type females, while the plasma progesterone level was significantly reduced in the mutant females. Furthermore, the mutant mice showed decreased progesterone secretion under the condition of superovulation. In a histochemical analysis, we observed a remarkable reduction in the corpus luteum area in the mutant ovaries without atrophic changes. The mutant mice also displayed enhanced superoxide generation in the region surrounding the corpora lutea, which was associated with increased apoptotic cells and suppressed vasculature. These results suggested that SOD1 deficiency dysregulated luteal formation because of increased superoxide generation in the ovary. In vitro fertilization experiments showed no abnormal fertilization of Sod1-deficient oocytes. In addition, when Sod1-deficient embryos were transferred into the oviducts of wild-type females, mutant embryos developed at a normal rate, indicating that SOD1 deficiency in embryos did not cause miscarriage in the uterus of wild-type females. These results indicated that increased intracellular ROS impaired luteal formation and progesterone production in the mutant females, thus suggesting that SOD1 plays a crucial role in both the luteal function and the maintenance of fertility in female mice.

  7. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.

    PubMed

    Santos-Ocaña, C; Navas, P; Crane, F L; Córdoba, F

    1995-12-01

    The presence of yeast cells in the incubation medium prevents the oxidation of ascrobate catalyzed by copper ions. Ethanol increases ascorbate retention. Pyrazole, an alcohol dehydrogenase inhibitor, prevents ascorbate stabilization by cells. Chelation of copper ions does not account for stabilization, since oxidation rates with broken or boiled cells or conditioned media are similar to control rates in the absence of cells. Protoplast integrity is needed to reach optimal values of stabilization. Chloroquine, a known inhibitor of plasma membrane redox systems, inhibits the ascorbate stabilization, the inhibition being partially reversed by coenzyme Q6. Chloroquine does not inhibit ferricyanide reduction. Growth of yeast in iron-deficient media to increase ferric ion reductase activity also increases the stabilization. In conclusion, extracellular ascorbate stabilization by yeast cells can reflect a coenzyme Q dependent transplasmalemma electron transfer which uses NADH as electron donor. Iron deficiency increases the ascorbate stabilization but the transmembrane ferricyanide reduction system can act independently of ascorbate stabilization.

  8. Using Copper to Improve the Well-Being of the Skin

    PubMed Central

    Borkow, Gadi

    2014-01-01

    Copper has two key properties that are being exploited in consumer and medical device products in the last decade. On the one hand, copper has potent biocidal properties. On the other hand, copper is involved in numerous physiological and metabolic processes critical for the appropriate functioning of almost all tissues in the human body. In the skin, copper is involved in the synthesis and stabilization of extracellular matrix skin proteins and angiogenesis. This manuscript reviews clinical studies that show that the use of textile consumer and medical device products, embedded with microscopic copper oxide particles, improve the well-being of the skin. These include studies showing a) cure of athlete’s foot infections and improvement in skin elasticity, especially important for individuals suffering from diabetes; b) reduction of facial fine line and wrinkles; and c) enhancement of wound healing; by copper oxide embedded socks, pillowcases and wound dressings, respectively. The manuscript also reviews and discusses the mechanisms by which the presence of copper in these products improves skin well-being. PMID:26361585

  9. Review of Copper Provision in the Parenteral Nutrition of Adults [Formula: see text].

    PubMed

    Livingstone, Callum

    2017-04-01

    The essential trace element copper (Cu) is required for a range of physiologic processes, including wound healing and functioning of the immune system. The correct amount of Cu must be provided in parenteral nutrition (PN) if deficiency and toxicity are to be avoided. While provision in line with the standard recommendations should suffice for most patients, Cu requirements may be higher in patients with increased gastrointestinal losses and severe burns and lower in those with cholestasis. The tests of Cu status that are currently available for clinical use are unreliable. Serum Cu concentration is the most commonly ordered test but is insensitive to Cu deficiency and toxicity and is misleadingly increased during the acute phase response. These limitations make it difficult for prescribers to assess Cu status and to decide how much Cu to provide. There is a need for better tests of Cu status to be developed to decrease uncertainty and improve individualization of Cu dosing. More information is needed on Cu requirements in disease and Cu contamination of PN components and other intravenous fluids. New multi-trace element products should be developed that provide Cu doses in line with the 2012 American Society for Parenteral and Enteral Nutrition recommendations. This article discusses the evaluation and treatment of Cu deficiency and toxicity in patients treated with PN.

  10. Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species.

    PubMed

    Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S

    2010-01-01

    Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions. Copyright © 2010 S. Karger AG, Basel.

  11. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    PubMed

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  12. Copper-Mediated Radiofluorination of Arylstannanes with [18F]KF

    PubMed Central

    2016-01-01

    A copper-mediated nucleophilic radiofluorination of aryl- and vinylstannanes with [18F]KF is described. This method is fast, uses commercially available reagents, and is compatible with both electron-rich and electron-deficient arene substrates. This method has been applied to the manual synthesis of a variety of clinically relevant radiotracers including protected [18F]F-phenylalanine and [18F]F-DOPA. In addition, an automated synthesis of [18F]MPPF is demonstrated that delivers a clinically validated dose of 200 ± 20 mCi with a high specific activity of 2400 ± 900 Ci/mmol. PMID:27718581

  13. Copper-Mediated Radiofluorination of Arylstannanes with [ 18F]KF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makaravage, Katarina J.; Brooks, Allen F.; Mossine, Andrew V.

    In this article, a copper-mediated nucleophilic radiofluorination of aryl- and vinylstannanes with [ 18F]KF is described. This method is fast, uses commercially available reagents, and is compatible with both electron-rich and electron-deficient arene substrates. This method has been applied to the manual synthesis of a variety of clinically relevant radiotracers including protected [ 18F]F-phenylalanine and [ 18F]F-DOPA. In addition, an automated synthesis of [ 18F]MPPF is demonstrated that delivers a clinically validated dose of 200 ± 20 mCi with a high specific activity of 2400 ± 900 Ci/mmol.

  14. Copper-Mediated Radiofluorination of Arylstannanes with [ 18F]KF

    DOE PAGES

    Makaravage, Katarina J.; Brooks, Allen F.; Mossine, Andrew V.; ...

    2016-10-10

    In this article, a copper-mediated nucleophilic radiofluorination of aryl- and vinylstannanes with [ 18F]KF is described. This method is fast, uses commercially available reagents, and is compatible with both electron-rich and electron-deficient arene substrates. This method has been applied to the manual synthesis of a variety of clinically relevant radiotracers including protected [ 18F]F-phenylalanine and [ 18F]F-DOPA. In addition, an automated synthesis of [ 18F]MPPF is demonstrated that delivers a clinically validated dose of 200 ± 20 mCi with a high specific activity of 2400 ± 900 Ci/mmol.

  15. Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer.

    PubMed

    Shamim, Uzma; Hanif, Sarmad; Albanyan, Abdulmajeed; Beck, Frances W J; Bao, Bin; Wang, Zhiwei; Banerjee, Sanjeev; Sarkar, Fazlul H; Mohammad, Ramzi M; Hadi, Sheikh M; Azmi, Asfar S

    2012-04-01

    Many critical factors such as hypoxia, nutrient deficiency, activation of glycolytic pathway/Warburg effect contribute to the observed low pH in tumors compared to normal tissue. Studies suggest that such tumor specific acidic environment can be exploited for the development of therapeutic strategies against cancer. Independent observations show reduction in pH of mammalian cells undergoing internucleosomal DNA fragmentation and apoptosis. As such, our group has extensively demonstrated that anticancer mechanisms of different plant polyphenols involve mobilization of endogenous copper and consequent internucleosomal DNA breakage. Copper is redox active metal, an essential component of chromatin and is sensitive to subtle pH changes in its microenvironment. Here we explored whether, acidic pH promotes growth inhibition, apoptosis, and DNA damaging capacity of chemopreventive agent resveratrol. Our results reveal that growth inhibition and internucleosomal DNA fragmentation induced apoptosis in Capan-2 and Panc-28 pancreatic cancer cell lines (and not in normal HPDE cells) by resveratrol is enhanced at lower pH. Using comet assay, we further demonstrate that DNA breakage by resveratrol is enhanced with acidification. Membrane permeable copper specific chelator neocuproine (and not iron chelator orthophenanthroline) abrogated growth inhibition and apoptosis by resveratrol. Western blot results show enhanced activation of DNA laddering marker H2.aX by resveratrol at acidic pH that was reversed by neocuproine and not by orthophenanthroline. Our findings provide irrevocable proof that low pH environment can be turned into tumor weakness and assist in eradication of cancer cells by resveratrol. Copyright © 2011 Wiley Periodicals, Inc.

  16. Demarcation of potentially mineral-deficient areas in central and northern Namibia by means of natural classification systems.

    PubMed

    Grant, C C; Biggs, H C; Meissner, H H

    1996-06-01

    Mineral deficiencies that lead to production losses often occur concurrently with climatic and management changes. To diagnose these deficiencies in time to prevent production losses, long-term monitoring of mineral status is advisable. Different classification systems were examined to determine whether areas of possible mineral deficiencies could be identified, so that those which were promising could then be selected for further monitoring purposes. The classification systems addressed differences in soil, vegetation and geology, and were used to define the cattle-ranching areas in the central and northern districts of Namibia. Copper (Cu), Iron (Fe), zinc (Zn), manganese (Mn) and cobalt (Co) concentrations were determined in cattle livers collected at abattoirs. Pooled faecal grab samples and milk samples were collected by farmers, and used to determine phosphorus (P) and calcium (Ca), and iodine (I) status, respectively. Areas of low P concentrations could be identified by all classification systems. The lowest P concentrations were recorded in samples from the Kalahari-sand area, whereas faecal samples collected from cattle on farms in the more arid areas, where the harder soils are mostly found, rarely showed low P concentrations. In the north of the country, low iodine levels were found in milk samples collected from cows grazing on farms in the northern Kalahari broad-leaved woodland. Areas supporting animals with marginal Cu status, could be effectively identified by the detailed soil-classification system of irrigation potential. Copper concentrations were lowest in areas of arid soils, but no indication of Co, Fe, Zn, or Mn deficiencies were found. For most minerals, the geological classification was the best single indicator of areas of lower concentrations. Significant monthly variation for all minerals could also be detected within the classification system. It is concluded that specific classification systems can be useful as indicators of areas with lower mineral concentrations or possible deficiencies.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we havemore » shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.« less

  18. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    PubMed

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  19. Effect of thiomolybdate and ammonium molybdate in pregnant guinea pigs and their offspring.

    PubMed

    Howell, J M; Shunxiang, Y; Gawthorne, J M

    1993-09-01

    Groups of eight guinea pigs and their offspring were given drinking water containing molybdenum as ammonium molybdate (AM) or thiomolybdate (TM) throughout and subsequent to pregnancy. All adult females had oestrous cycles and conception rates were unaffected. Fetal death was common in groups given the high dose of TM. The concentration of copper in liver was reduced in all groups at all ages except for pups killed at birth from animals given AM. The concentration of molybdenum was elevated in liver and kidney of all groups and was statistically significant in the majority. The concentration in plasma of copper, molybdenum and copper insoluble in trichloroacetic acid was elevated in all groups. Superoxide dismutase activity was significantly reduced in dams and six-week-old pups in which TM administration commenced before mating. Histological damage occurred in the pancreas of animals given AM or TM. The effects on the fetus and pancreas were considered to result from copper deficiency rather than molybdenum toxicity.

  20. Fluorescence Lifetime Imaging of Physiological Free Cu(II) Levels in Live Cells with a Cu(II)-Selective Carbonic Anhydrase-Based Biosensor

    PubMed Central

    McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.

    2014-01-01

    Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220

  1. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    USGS Publications Warehouse

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  2. Anemia caused by low iron - children

    MedlinePlus

    ... can cause the body to absorb too much lead. Prevention Eating a variety of healthy foods is the most important way to prevent and treat iron deficiency. Alternative Names Anemia - ... MD. Disorders of iron and copper metabolism, the sideroblastic anemias, and lead toxicity. In: Orkin SH, Fisher DE, Ginsburg D, ...

  3. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.

    PubMed

    Tanaka, Natsuki; Kato, Mariko; Tomioka, Rie; Kurata, Rie; Fukao, Yoichiro; Aoyama, Takashi; Maeshima, Masayoshi

    2014-04-01

    The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leite, Carlos Eduardo, E-mail: carlos.leite@pucrs.br; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 90035-003; Maboni, Lucas de Oliveira

    The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling moleculesmore » during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE{sub 2}. Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae. - Graphical abstract: This scheme provides a chronological proposition for the biochemical events induced by copper in zebrafish larvae. The dashed line shows the absorption of copper over the exposure time. After 1 h of exposure to copper, the release of PGE{sub 2} occurs, followed by an increase of MPO (as a consequence of neutrophil migration), increased expression of genes involved in inflammatory events (IL-1β and TNF-α) and, reduction of the anti-inflammatory cytokine IL-10 at 4 h. At 24 h, the copper concentration is found highly increased, what is coincident with oxidative stress. Regarding the purinergic system, it is possible to observe an inhibition of ecto-5′-NT and ADA, with the consequent increase of AMP and ADA, respectively, at 24 h. The expression of enzyme-related genes shows a decrease in the expression of ecto-5′-NT and variable expressions of ADA subfamily enzymes. - Highlights: • Copper led to increased oxidative stress, and decreased the antioxidants' defenses. • Copper induced time-related changes of IL-1β, TNF-α, IL-10 and PGE{sub 2} levels. • ADA activity controls the levels of adenosine in copper-induced inflammation. • ADA 2 is the main ADA subfamily involved. • The purinergic system seems to be involved in the resolution of inflammation.« less

  5. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  6. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization

    PubMed Central

    Hyre, Amanda N.; Kavanagh, Kylie; Kock, Nancy D.; Donati, George L.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. PMID:28031261

  7. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    PubMed

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  8. [Determination of micro and macronutrients in the cattle of the Venezuelan plains and their influence on the origin of bovine paraplegic syndrome].

    PubMed

    Rojas, H; Serrano, J R; DiPolo, R

    1994-01-01

    We report a study carried out in three livestock-producing regions of Venezuela to determine the mineral status of grazing cattle and its relationship to the Síndrome Parpléjico del Bovino (SPB). Animal tissue samples from blood and liver were collected from a total of 17 farms within three regions: southwest (Apure), central (Guárico) and southeast (Bolívar) both during the dry and rainy seasons. In SPB free animals, the serum levels of sodium, potassium, chloride, magnesium, total and ionized calcium, phosphorus, and creatinine, were within the normal range. Glucose was found to be deficient in cattle from Bolívar and Guárico states and normal in Apure. With the exception of liver copper and serum zinc, all the other microelements analyzed (liver cobalt, and molybdenum, and serum iron) were found to be normal. Copper was found to be low in all regions studied with a mean value of 74.8 ppm indicating a moderate deficiency of this element. Similarly, in the central and southwest regions, zinc was found to be close to 0.34 ppm, significantly lower than the critical level of 0.7 ppm. In order to determine the effect of the dry and rainy seasons on the content of macro and microelements, controlled group of cattle from the three regions were followed in their contents of magnesium, calcium, copper and iron. In the dry season all of these elements tended to be much lower, showing a significant increase in the rainy season. This increase was much greater in cattle that received mineral supplementation and sanitary treatment. Bovines with diagnosis of SPB showed: low liver copper content, low serum magnesium and phosphorus levels significantly higher that control cattle.

  9. Copper Corrosion and Biocorrosion Events in Premise Plumbing

    PubMed Central

    Fischer, Diego A.; Alsina, Marco A.; Pastén, Pablo A.

    2017-01-01

    Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed. PMID:28872628

  10. Copper Corrosion and Biocorrosion Events in Premise Plumbing.

    PubMed

    Vargas, Ignacio T; Fischer, Diego A; Alsina, Marco A; Pavissich, Juan P; Pastén, Pablo A; Pizarro, Gonzalo E

    2017-09-05

    Corrosion of copper pipes may release high amounts of copper into the water, exceeding the maximum concentration of copper for drinking water standards. Typically, the events with the highest release of copper into drinking water are related to the presence of biofilms. This article reviews this phenomenon, focusing on copper ingestion and its health impacts, the physicochemical mechanisms and the microbial involvement on copper release, the techniques used to describe and understand this phenomenon, and the hydrodynamic effects. A conceptual model is proposed and the mathematical models are reviewed.

  11. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  12. Bariatric Surgery and the Neuro-Ophthalmologist

    PubMed Central

    Moss, Heather E.

    2016-01-01

    Background As the prevalence of obesity increases, so are the prevalences of weight related diseases and the incidence of surgical procedures to promote weight loss. It is important for neuro-ophthalmologists to be familiar with these procedures and possible downstream effects on afferent and efferent visual function. Evidence acquisition Review of ophthalmology, neurology, general surgery, obesity, endocrinology, nutrition, psychiatry and neurosurgery literature. Results Bariatric surgery is a safe and effective treatment for weight loss in obese individuals. There is level IV evidence that it is associated with improvement in idiopathic intracranial hypertension(IIH). Laboratory nutrient deficiencies are common following some types of bariatric procedures. Symptomatic deficiencies are less common but can be devastating. Thiamine deficiency can cause nystagmus and other symptoms in weeks to months following surgery, B12 or copper deficiency can cause optic neuropathy in the years to decades following bariatric surgery. Conclusions Bariatric surgery may be a treatment for IIH. Postoperative vitamin deficiencies may present with nystagmus, optic neuropathy, nyctalopia and/or ophthalmoparesis weeks to years after surgery. PMID:26764529

  13. Bariatric Surgery and the Neuro-Ophthalmologist.

    PubMed

    Moss, Heather E

    2016-03-01

    As the prevalence of obesity increases, so, too, do the prevalences of weight-related diseases and surgical procedures to promote weight loss. It is important for neuro-ophthalmologists to be familiar with these procedures and possible downstream effects on afferent and efferent visual function. Review of ophthalmology, neurology, general surgery, obesity, endocrinology, nutrition, psychiatry, and neurosurgery literature. Bariatric surgery is a safe and effective treatment for weight loss in obese individuals. There is Level IV evidence that it is associated with improvement in idiopathic intracranial hypertension (IIH). Laboratory nutrient deficiencies are common following some types of bariatric procedures. Symptomatic deficiencies are less common but can be devastating. Thiamine deficiency can cause nystagmus and other symptoms in weeks to months after surgery, whereas B12 or copper deficiency can cause optic neuropathy in years to decades following bariatric surgery. Bariatric surgery is a potential treatment for IIH. Postoperative vitamin deficiencies may cause nystagmus, optic neuropathy, nyctalopia, and/or ophthalmoparesis weeks to years after surgery.

  14. Draft Genome Sequences of Four Alteromonas macleodii Strains Isolated from Copper Coupons and Grown Long-Term at Elevated Copper Levels.

    PubMed

    Cusick, Kathleen D; Dale, Jason R; Little, Brenda J; Biffinger, Justin C

    2016-11-23

    Alteromonas macleodii is a marine bacterium involved in the early stages of biofouling on ship hulls treated with copper as an antifouling agent. We report here the draft genome sequences of an A. macleodii strain isolated from copper coupons and three laboratory mutants grown long-term at elevated copper levels. Copyright © 2016 Cusick et al.

  15. Neuropathy by folic acid supplementation in a patient with anaemia and an untreated cobalamin deficiency: a case report.

    PubMed

    Smelt, H J M; Pouwels, S; Said, M; Smulders, J F

    2018-05-31

    The rising rates of bariatric surgery (BS) are accompanied by neurological complications related to nutrient deficiencies. One of the risk factors for neurological complications in BS patients is poor vitamin and mineral supplementation. Prevention, diagnosis and treatment of these disorders are necessary parts of lifelong care after BS. Particularly important for optimal functioning of the nervous system are vitamin B 1 , B 6 , B 12 (cobalamin), E, copper and possibly vitamin B 11 (folic acid). In this case report, we narrate about a patient with anaemia and multiple vitamin and mineral deficiencies after Roux-en-Y gastric bypass (RYGB) with an alimentary limb of 150 cm and a biliopancreatic limb of 100 cm. RYGB is associated with an increased risk of vitamin deficiencies, especially a vitamin B 12 deficiency. The patient in this case report developed psychiatric-neurological symptoms due to folic acid supplementation in an untreated cobalamin deficiency. Second, we tried to elucidate the vitamin physiology to understand specific mechanisms after BS. © 2018 World Obesity Federation.

  16. Effect of low-level copper and pentachlorophenol exposure on various early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1996-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis, was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorphenol, from 0 d to 4 d (standard Frog Embryo Teratogenesis Assay--Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased in eachmore » successive time period. Longer-term exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5 {micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  17. Effect of chronic copper and pentachlorophenol exposure to early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1995-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorophenol, from 0 d to 4 d (standard Frog Embryo Teratagenesis Assay Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased inmore » each successive time period. Continuous exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5/{micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  18. Evaluation of Copper Supplementation to Control Haemonchus contortus Infections of Sheep in Sweden

    PubMed Central

    Waller, PJ; Bernes, G; Rudby-Martin, L; Ljungström, B-L; Rydzik, A

    2004-01-01

    A pen study was conducted to assess the effect of providing daily copper mineral supplement, or copper wire particle (COWP) capsules, on established or incoming mixed nematode infections in young sheep. For lambs with established (6 week old) infections, COWP resulted in 97% and 56% reduction of the adult and early L4 stages of H. contortus, respectively, compared with controls (p < 0.001). Additionally there was a 74% reduction in Teladorsagia circumcincta infections in the COWP lambs compared with controls (p < 0.01). However, no effect was observed when COWP were given at the commencement of a larval dosing period of 6 weeks. There was no significant effect of copper mineral supplement (given at the recommended rate to prevent Cu deficiency) on either established, or developing parasite infections. In addition, a field trial was conducted on a commercial farm to assess the effects of COWP in the management of recurrent H. contortus infections, but lack of parasites during the grazing season prevented an adequate assessment from being made. These results indicate that there is little, if any, benefit from a parasite control standpoint in recommending copper therapy, specifically to control parasites in Swedish sheep flocks. PMID:15663075

  19. Molecular Characterization of CTR-type Copper Transporters in an Oceanic Diatom, Thalassiosira oceanica 1005

    NASA Astrophysics Data System (ADS)

    Kong, L.; Price, N. M.

    2016-02-01

    Copper is an essential micronutrient for phytoplankton growth because of its role as a redox cofactor in electron transfer proteins in photosynthesis and respiration, and a potentially limiting resource in parts of the open sea. Thalassiosira oceanica 1005 can grow at inorganic copper concentrations varying from 10 fmol/L to 10 nmol/L by regulating copper uptake across plasma membrane. Four putative CTR-type copper transporter genes (ToCTR1, ToCTR2, ToCTR3.1 and ToCTR3.2) were identified by BLASTP search against the T. oceanica genome. Predicted gene models were revised by assembled mRNA sequencing transcripts and updated gene models contained all conserved features of characterized CTR-type copper transporters. ToCTR3.1 and ToCTR3.2 may arise from one another by gene duplication as they shared a sequence similarity of 97.6% with a peptide insertion of 5 amino acids at N-terminus of ToCTR3.1. The expression of ToCTR1, ToCTR2 and ToCTR3.1/3.2 was upregulated in low copper concentrations, but only ToCTR3.1/3.2 showed a significant increase (2.5 fold) in copper-starved cells. Both ToCTR3.1 and ToCTR3.2 restored growth of a yeast double mutant, Saccharomyces cerevisiae ctr1Δctr3Δ, in copper deficient medium. GFP-fused ToCTR expression showed that some ToCTR3.1 localized to the plasma membrane but a large portion was retained in the endoplasmic reticulum. Inefficient targeting of ToCTR3.1 to the yeast outer membrane may explain poorer growth compared to the Saccharomyces native ScCTR1 transformant. Thus, diatom CTR genes encoding CTR-type copper transporters show high-affinity copper uptake and their regulation may enable diatoms to survive in ocean environments containing a wide range of copper concentrations.

  20. Characterization of the Bacillus stearothermophilus manganese superoxide dismutase gene and its ability to complement copper/zinc superoxide dismutase deficiency in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowler, C.; Inze, D.; Van Camp, W.

    1990-03-01

    Recombinant clones containing the manganese superoxide dismutase (MnSOD) gene of Bacillus stearothermophilus were isolated with an oligonucleotide probe designed to match a part of the previously determined amino acid sequence. Complementation analyses, performed by introducing each plasmid into a superoxide dismutase-deficient mutant of Escherichia coli, allowed us to define the region of DNA which encodes the MnSOD structural gene and to identify a promoter region immediately upstream from the gene. These data were subsequently confirmed by DNA sequencing. Since MnSOD is normally restricted to the mitochondria in eucaryotes, we were interested (i) in determining whether B. stearothermophilus MnSOD could functionmore » in eucaryotic cytosol and (ii) in determining whether MnSOD could replace the structurally unrelated copper/zinc superoxide dismutase (Cu/ZnSOD) which is normally found there. To test this, the sequence encoding bacterial MnSOD was cloned into a yeast expression vector and subsequently introduced into a Cu/ZnSOD-deficient mutant of the yeast Saccharomyces cerevisiae. Functional expression of the protein was demonstrated, and complementation tests revealed that the protein was able to provide tolerance at wild-type levels to conditions which are normally restrictive for this mutant. Thus, in spite of the evolutionary unrelatedness of these two enzymes, Cu/ZnSOD can be functionally replaced by MnSOD in yeast cytosol.« less

  1. Development of Low Cost Contacts to Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Tanner, D. P.

    1979-01-01

    Different electroless plating systems were evaluated in conjunction with copper electroplating. All tests involved simultaneous deposition of front and back contacts using a standard cell materials. Cells with good adhesion and good curve fill factors were obtained using a palladium-chromium-copper metallization system. The final copper contact system was evaluated to determine if the copper would migrate at elevated temperatures. The copper migrated at elevated temperatures causing cell output degradation.

  2. Optimal copper supply is required for normal plant iron deficiency responses

    PubMed Central

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity. PMID:24084753

  3. Optimal copper supply is required for normal plant iron deficiency responses.

    PubMed

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity.

  4. Identification of the key molecules involved in chronic copper exposure-aggravated memory impairment in transgenic mice of Alzheimer's disease using proteomic analysis.

    PubMed

    Yu, Jun; Luo, Xiaobin; Xu, Hua; Ma, Quan; Yuan, Jianhui; Li, Xuling; Chang, Raymond Chuen-Chung; Qu, Zhongsen; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei

    2015-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by a progressive impairment of cognitive functions including spatial learning and memory. Excess copper exposure accelerates the development of AD; however, the potential mechanisms by which copper exacerbates the symptoms of AD remain unknown. In this study, we explored the effects of chronic copper exposure on cognitive function by treating 6 month-old triple AD transgenic (3xTg-AD) mice with 250 ppm copper sulfate in drinking water for 6 months, and identified several potential key molecules involved in the effects of chronic copper exposure on memory by proteomic analysis. The behavioral test showed that chronic copper exposure aggravated memory impairment of 3xTg-AD mice. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry revealed a total of 44 differentially expressed proteins (18 upregulated and 26 down-regulated) in hippocampus between the wild-type (WT) mice and non-exposed 3xTg-AD mice. A total of 40 differentially expressed proteins were revealed (20 upregulated and 20 down-regulated) in hippocampus between copper exposed and non-exposed 3xTg-AD mice. Among these differentially expressed proteins, complexin-1 and complexin-2, two memory associated proteins, were significantly decreased in hippocampus of 3xTg-AD mice compared with the WT mice. Furthermore, the expression of these two proteins was further down-regulated in 3xTg-AD mice when exposed to copper. The abnormal expression of complexin-1 and complexin-2 identified by proteomic analysis was verified by western blot analysis. Taken together, our data showed that chronic copper exposure accelerated memory impairment and altered the expression of proteins in hippocampus in 3xTg-AD mice. The functional analysis on the differentially expressed proteins suggested that complexin-1 and complexin-2 may be the key molecules involved in chronic copper exposure-aggravated memory impairment in AD.

  5. Laminated beams: deflection and stress as a function of epoxy shear modulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialek, J.

    1976-01-01

    The large toroidal field coil deflections observed during the PLT power test are due to the poor shear behavior of the insulation material used between layers of copper. Standard techniques for analyzing such laminated structures do not account for this effect. This paper presents an analysis of laminated beams that corrects this deficiency. The analysis explicitly models the mechanical behavior of each layer in a laminated beam and hence avoids the pitfalls involved in any averaging technique. In particular, the shear modulus of the epoxy in a laminated beam (consisting of alternate layers of metal and epoxy) may span themore » entire range of values from zero to classical. Solution of the governing differential equations defines the stress, strain, and deflection for any point within a laminated beam. The paper summarizes these governing equations and also includes a parametric study of a simple laminated beam.« less

  6. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease

    PubMed Central

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-01-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content. PMID:25704483

  7. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon.

    PubMed

    Xie, Ruzhen; Jin, Yan; Chen, Yao; Jiang, Wenju

    2017-12-01

    In this study, activated carbon (AC) was prepared from walnut shell using chemical activation. The surface chemistry of the prepared AC was modified by introducing or blocking certain functional groups, and the role of the different functional groups involved in the copper uptake was investigated. The structural and chemical heterogeneity of the produced carbons are characterized by Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, Boehm titration method and N 2 /77 K adsorption isotherm analysis. The equilibrium and the kinetics of copper adsorption onto AC were studied. The results demonstrated that the functional groups on AC played an important role in copper uptake. Among various surface functional groups, the oxygen-containing group was found to play a critical role in the copper uptake, and oxidation is the most effective way to improve Cu (II) adsorption onto AC. Ion-exchange was identified to be the dominant mechanism in the copper uptake by AC. Some other types of interactions, like complexation, were also proven to be involved in the adsorption process, while physical force was found to play a small role in the copper uptake. The regeneration of copper-loaded AC and the recovery of copper were also studied to evaluate the reusability of the oxidized AC.

  8. Juxtaposition of chemical and mutation-induced developmental defects in zebrafish reveal a copper-chelating activity for kalihinol F.

    PubMed

    Sandoval, Imelda T; Manos, Elizabeth J; Van Wagoner, Ryan M; Delacruz, Richard Glenn C; Edes, Kornelia; Winge, Dennis R; Ireland, Chris M; Jones, David A

    2013-06-20

    A major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis, and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a copper-chelating activity. Our data support this mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying therapeutic and target pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Copper and zinc level in biological samples from healthy subjects of vegetarian food habit in reference to community environment.

    PubMed

    Bhattacharya, R D; Patel, T S; Pandya, C B

    1985-01-01

    Many epidemiologists have found a correlation between copper and zinc in the community environment and diseases, such as myocardial and vascular pathologies, and diabetes. The purpose of this study was to investigate the total daily intake of these two metals in cooked food, drinking water and air and their respective levels in blood and urine. A chronobiological methodology has been adopted to establish the reference values of these two metals in biological samples. It has been observed that the daily intake of copper is within the recommended value, whereas its urinary excretion is high. The daily intake of zinc is below the recommended value and its urinary excretion is also high. Both the metals showed a temporal oscillation pattern in blood and urine. A possible chronic zinc deficiency has been anticipated in this particular ethnic group of vegetarian food habit.

  10. Spectroscopic Characterization of a Green Copper Site in a Single-Domain Cupredoxin

    PubMed Central

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J.; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought. PMID:24932914

  11. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    PubMed

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  12. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    PubMed

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent concentrations of below 0.01 mg NH4-N L(-1), and had a long-term effect on nitrification performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases*

    PubMed Central

    Sautron, Emeline; Giustini, Cécile; Dang, ThuyVan; Moyet, Lucas; Salvi, Daniel; Crouzy, Serge; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2016-01-01

    Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi. Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases. PMID:27493208

  14. Accumulation and depletion of liver copper stores in dairy cows challenged with a Cu-deficient diet and oral and injectable forms of Cu supplementation.

    PubMed

    Balemi, S C; Grace, N D; West, D M; Smith, S L; Knowles, S O

    2010-06-01

    To quantify the capacity of the liver to respond to a Cu-deficient diet and various forms of Cu supplementation in dairy cows with high Cu status. Sixty non-pregnant, non lactating mixed-age Friesian dairy cows were fed baled silage for 116 days, containing 5.8 mg Cu/kg dry matter (DM), that provided an inadequate Cu intake. They were either unsupplemented (Control); or treated thrice weekly orally with solutions containing the equivalent of 150 mg Cu/day as copper sulphate pentahydrate (CS), copper amino chelate (CAC), or copper glycinate (CG); 16 g Cu as CuO wire particles, administered in an intra-ruminal bolus on Day 0; or 100 mg Cu as calcium copper edetate, administered by S/C injection on Days 0 and 58. On Days -5, 14, 28, 58, 86 and 116, liver biopsies and blood samples were obtained for determination of Cu. Mean initial concentrations of Cu in liver for all groups was 827 (SE 42) micromol/kg fresh tissue. In control cows, this decreased to 552 micromol/kg on Day 116, and averaged 670 micromol/kg over the length of the trial. Oral forms of Cu supplementation increased overall mean concentrations in liver to 960 (SE 79), 1,050 (SE 81) and 1,100 (SE 84) micromol/kg for CS, CAC and CG, respectively, but there was no difference between form of supplement. Mean concentrations were significantly increased by bolus treatment, but not by injection. Concentrations of Cu in serum in all groups decreased from 12.1 (SE 0.3) to 10.4 (SE 0.6) micromol/L by Day 116, with no differences due to treatments. The initial concentration of Cu in liver significantly affected the rate of accumulation of Cu among cows supplemented orally. In cows with an initial concentration <1,100 micromol/kg, the average increase was 4.1 micromol/kg fresh tissue/day, whereas rates were variable, even negative, when initial concentrations were >1,100 micromol/kg. Release of Cu over 116 days in cows given the bolus was calculated to be equivalent to an oral intake of CS of 106 mg Cu/day. In dairy cows with a high Cu status fed a Cu-deficient diet, responses to supplementation with two chelated forms of Cu administrated orally were similar to those due to CS. Copper as CuO was about 77% as effective as oral supplementation with chemically similar inorganic Cu. Initial concentrations of Cu in liver influenced the rate of accumulation following oral supplementation. Changes in concentrations of Cu in liver were readily observed following oral supplementation over a wide range of initial concentrations, whereas these changes could not be detected in serum. The liver is thus a good index of the Cu status of dairy cows.

  15. Is copper chelation an effective anti-angiogenic strategy for cancer treatment?

    PubMed

    Antoniades, V; Sioga, A; Dietrich, E M; Meditskou, S; Ekonomou, L; Antoniades, K

    2013-12-01

    Angiogenesis and the acquisition of an angiogenic phenotype is important for cancer cell proliferation. Copper in an essential trace element that participates in many enzymatic complexes like the cytochrome c, superoxide dismutase and lysyl oxidase and it is involved in processes, like embryogenesis, growth, angiogenesis and carcinogenesis. In particular, its involvement in carcinogenesis was described for the first time in oral submucous fibrosis, where fibroblasts produce large amounts of collagen in the presence of copper. Copper's action in carcinogenesis is two-fold: (1) it participates in reactions with an increased redox potential that result in the production of oxidative products and oxidative stress. Through this mechanism, copper may cause DNA mutations in the nucleus and mitochondria or alterations to membrane phospholipids, (2) it participates in angiogenesis even in the absence of angiogenic molecules, as it was reported for the first time in rabbit cornea models with copolymer pellets charged with PGE1. Copper chelation regimens like penicillamine and tetrathiomolybdate are being described in the literature as having anti-angiogenic, anti-fibrotic and anti-inflammatory actions. Animal models of brain cancer that evaluated the anti-angiogenic properties of copper, have proven evidence of the reduction of tumor's microvascular supply, tumor volume and vascular permeability after plasma copper levels reduction. Interestingly, plasma copper levels reduction was shown to suppress micrometastases generation in mice models of breast cancer. We hypothesize that copper chelation therapy: increases oxidative stress in cancer cells to a level that does not allow survival because of the reduction of anti-oxidative enzymes production. It may also result in inhibition of angiogenesis and of the initiation of the angiogenic switch, because copper normally enhances endothelial cell migration and proliferation, improves binding of growth factors to endothelial cells and enhances the expression of angiogenic molecules. Copper chelation may also reduce extracellular matrix degradation and cancer spread, through reduction of MMP-9 production and probably of other collagenases and may inhibit propagation of micrometastases. However, copper chelation therapy may enhance angiogenesis through reduction of thrombospondin-1, that results into an increase in VEGF-VEGFR2 complexes and a high level of active MMP-9. These hypotheses help in understanding of the anti-angiogenic action of copper chelation therapies and of the complex network of interactions between copper and other molecules involved in angiogenesis. It may also stimulate further research regarding differences in copper metabolism, the effects of anti-copper regimens on organs, the development of resistance, and their possible angiogenic action through thrombospondin expression reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.

    PubMed

    Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-02-06

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.

  17. Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress.

    PubMed

    Irazusta, Verónica; Estévez, Cristina; Amoroso, María Julia; de Figueroa, Lucía I C

    2012-06-01

    In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noordewier, B.; Saari, J.T.

    This study examined the effects of furosemide (Furo), a Loop diuretic, and amiloride (Am), a potassium (K)-sparing diuretic, on the excretion of sodium (Na) and K in copper-adequate (CuAdeq) and copper-deficient (CuDef) rats. Weanling male Sprague Dawley rats were fed a CuDef or CuAdeq diet ad libitum and given deionized water to drink. After 5 weeks on the diets, rats were assigned to one of four treatment regimens: Furo, Am or Furo + Am. Rats were anesthetized and electrolyte excretion was measured in 2 {times} 15 min control periods followed by 3 {times} 15 min treatment periods. Furo increased Namore » excretion in a dose dependent manner in both the CuAdeq and the CuDef rats. The response of the CuAdeq rats was slightly greater than that of the CuDef rats in each of the 3 treatment groups in which Furo was given. K excretion following Furo increased to the same extent in the CuAdeq and CuDef rats. The natriuretic response to Am alone was slightly greater in the CuDef than the CuAdeq rats. The antikaliuretic response of the CuDef rats was similar to that of the CuAdeq rats whether Am was given alone or in combination with Furo. These data show that CuDef rats respond to Furo and Am in a manner which is similar to that of CuAdeq rats, this indicates that the sensitivity of the Na reabsorption mechanisms to inhibition by diuretics is not markedly affected by copper deficiency.« less

  19. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.

    PubMed

    Takahashi, Shunsuke; Ando, Akira; Takagi, Hiroshi; Shima, Jun

    2009-11-01

    Saccharomyces cerevisiae is exposed to freeze-thaw stress in commercial processes, including frozen dough baking. Cell viability and fermentation activity after a freeze-thaw cycle were dramatically decreased due to freeze-thaw injury. Because this type of injury involves complex phenomena, the injury mechanisms are not fully understood. We examined freeze-thaw injury by indirect gene expression analysis during postthaw incubation after freeze-thaw treatment using DNA microarray profiling. The results showed that genes involved in the homeostasis of metal ions were frequently contained in genes that were upregulated, depending on the freezing period. We assessed the phenotype of deletion mutants of the metal ion homeostasis genes that exhibited freezing period-dependent upregulation and found that the strains with deletion of the MAC1 and CTR1 genes involved in copper ion homeostasis exhibited freeze-thaw sensitivity, suggesting that copper ion homeostasis is required for freeze-thaw tolerance. We found that supplementation with copper ions during postthaw incubation increased intracellular superoxide dismutase activity and intracellular levels of reactive oxygen species were decreased. Moreover, cell viability was increased by supplementation with copper ions. These results suggest that insufficiency of copper ion homeostasis may be one of the causes of freeze-thaw injury.

  20. [Trace element supply to ruminants in the German Democratic Republic. 2. Supply of copper].

    PubMed

    Anke, M; Groppel, B; Lüdke, H; Grün, M; Kleemann, J

    1975-06-01

    The supply of copper to ruminants as influenced by and depending on the geological origin of soils was investigated in different parts of the GDR by using the hair test. Red clovers (meadow clover and field clover) were used as indicator plants. The following results were obtained: Data on the Cu content of clovers grown on soils of the same geological origin were found to correlate with r = 0,81. After eliminating the effects of Cu antagonists resulting from industrial pollution it was possible to establish numerical relations (B = 0.39 and B = 0.89) between the relative values (specific for the particular location) for the Cu content of the indicator plants and the percentage of cows suffering from Cu deficiencies (6.0 and 5.0 ppm Cu in hair). The lowest percentages of Cu supply to the ruminants (established on the basis of the Cu content of red clovers) were found on diluvial sandy soils, glacial loams and peat and bog soils whereas the highest percentages of Cu were found on weathered soils (of phyllite, gneiss, shell limestone, red marl soils and porphyry). Secondary Cu deficiencies in ruminants may arise, independent of the geological origin of the soil material, in places exposed to the main direction of the winds from major industrial areas (emission of SO2, Cd and Mo). Due to primary and/or secondary deficiencies the supply of Cu to ruminants in various locations (syenite, granite, red sandstone, gneiss, loess; peat soils, diluvial sandy soils) may be insufficient. A detailed description is given of areas where Cu deficiency is likely to occur and recommendations are given on how to use mineral mixtures containing a high proportion of Cu (1.00 g Cu per kg).

  1. Screening of Blood Levels of Mercury, Cadmium, and Copper in Pregnant Women in Dakahlia, Egypt: New Attention to an Old Problem.

    PubMed

    Motawei, Shimaa M; Gouda, Hossam E

    2016-06-01

    Heavy metals toxicity is a prevalent health problem particularly in developing countries. Mercury and cadmium are toxic elements that have no physiologic functions in human body. They should not be present in the human body by any concentration. Copper, on the other hand, is one of the elements that are essential for normal cell functions and a deficiency as well as an excess of which can cause adverse health effects. To test blood levels of mercury, cadmium, and copper in pregnant women in Dakahlia, Egypt. Using atomic absorption spectrophotometry, blood levels of cadmium, mercury, and copper were measured in 150 pregnant women attending to the antenatal care in Mansoura University Hospital in Dakahlia governorate, Egypt. The mean ± SD of blood mercury, cadmium, and copper levels were found to be far from their levels in the population surveys carried in developed countries like United States of America (USA) and Canada. Heavy metal intoxication and accumulation is a major health hazard. Developing countries, including Egypt, still lack many of the regulatory policies and legislations to control sources of pollution exposure. This should be dealt with in order to solve this problem and limit its health consequences.

  2. Proteome characterization of copper stress responses in the roots of sorghum

    USDA-ARS?s Scientific Manuscript database

    Copper (Cu) is an essential micronutrient for all living organisms, but at elevated concentrations, it is extremely toxic to plants and can inactivate and disturb protein structures. To explore the molecular changes involved in the copper stress response, a study was conducted using the roots of sor...

  3. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

    PubMed

    Kobayashi, Takanori; Itai, Reiko Nakanishi; Senoura, Takeshi; Oikawa, Takaya; Ishimaru, Yasuhiro; Ueda, Minoru; Nakanishi, Hiromi; Nishizawa, Naoko K

    2016-07-01

    Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.

  4. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization.

    PubMed

    Hyre, Amanda N; Kavanagh, Kylie; Kock, Nancy D; Donati, George L; Subashchandrabose, Sargurunathan

    2017-03-01

    Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae , in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. Copyright © 2017 American Society for Microbiology.

  5. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides†

    PubMed Central

    Hein, Jason E.

    2011-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(i) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science. PMID:20309487

  6. Differential bacteriophage mortality on exposure to copper.

    PubMed

    Li, Jinyu; Dennehy, John J

    2011-10-01

    Many studies report that copper can be used to control microbial growth, including that of viruses. We determined the rates of copper-mediated inactivation for a wide range of bacteriophages. We used two methods to test the effect of copper on bacteriophage survival. One method involved placing small volumes of bacteriophage lysate on copper and stainless steel coupons. Following exposure, metal coupons were rinsed with lysogeny broth, and the resulting fluid was serially diluted and plated on agar with the corresponding bacterial host. The second method involved adding copper sulfate (CuSO(4)) to bacteriophage lysates to a final concentration of 5 mM. Aliquots were removed from the mixture, serially diluted, and plated with the appropriate bacterial host. Significant mortality was observed among the double-stranded RNA (dsRNA) bacteriophages Φ6 and Φ8, the single-stranded RNA (ssRNA) bacteriophage PP7, the ssDNA bacteriophage ΦX174, and the dsDNA bacteriophage PM2. However, the dsDNA bacteriophages PRD1, T4, and λ were relatively unaffected by copper. Interestingly, lipid-containing bacteriophages were most susceptible to copper toxicity. In addition, in the first experimental method, the pattern of bacteriophage Φ6 survival over time showed a plateau in mortality after lysates dried out. This finding suggests that copper's effect on bacteriophage is mediated by the presence of water.

  7. DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*

    PubMed Central

    Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi

    2014-01-01

    Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322

  8. Resolving distinct molecular origins for copper effects on PAI-1.

    PubMed

    Bucci, Joel C; McClintock, Carlee S; Chu, Yuzhuo; Ware, Gregory L; McConnell, Kayla D; Emerson, Joseph P; Peterson, Cynthia B

    2017-10-01

    Components of the fibrinolytic system are subjected to stringent control to maintain proper hemostasis. Central to this regulation is the serpin plasminogen activator inhibitor-1 (PAI-1), which is responsible for specific and rapid inhibition of fibrinolytic proteases. Active PAI-1 is inherently unstable and readily converts to a latent, inactive form. The binding of vitronectin and other ligands influences stability of active PAI-1. Our laboratory recently observed reciprocal effects on the stability of active PAI-1 in the presence of transition metals, such as copper, depending on the whether vitronectin was also present (Thompson et al. Protein Sci 20:353-365, 2011). To better understand the molecular basis for these copper effects on PAI-1, we have developed a gel-based copper sensitivity assay that can be used to assess the copper concentrations that accelerate the conversion of active PAI-1 to a latent form. The copper sensitivity of wild-type PAI-1 was compared with variants lacking N-terminal histidine residues hypothesized to be involved in copper binding. In these PAI-1 variants, we observed significant differences in copper sensitivity, and these data were corroborated by latency conversion kinetics and thermodynamics of copper binding by isothermal titration calorimetry. These studies identified a copper-binding site involving histidines at positions 2 and 3 that confers a remarkable stabilization of PAI-1 beyond what is observed with vitronectin alone. A second site, independent from the two histidines, binds metal and increases the rate of the latency conversion.

  9. [Vitamin and mineral supplements in the diet of military personnel: effect on the balance of iron, copper and manganese, immune reactivity and physical work-capacity].

    PubMed

    Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P

    2012-03-01

    Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.

  10. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system

    PubMed Central

    2014-01-01

    Background Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. Results We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu’s positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson’s disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. Conclusions A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations. PMID:24708151

  11. Rheological study of copper and copper grapheme feedstock for powder injection molding

    NASA Astrophysics Data System (ADS)

    Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.

    2017-01-01

    Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper feedstocks were successfully molded and free from the physical defects.

  12. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma

    PubMed Central

    Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-01-01

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693

  13. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    PubMed

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  14. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  15. PIXE analysis of trace metals in selenium and copper deficient mice exposed to influenza virus and salicylate

    NASA Astrophysics Data System (ADS)

    Andres, J. M.; Hurd, R. W.; Van Rinsvelt, H. A.; Small, P. A.; Maenhaut, W.; Vandenhaute, J.

    1987-03-01

    Reye's syndrome is an acute illness in children manifested by encephalopathy, fatty infiltration of liver, and thymic hypoplasia. The syndrome usually occurs in a susceptible individual with a viral illness who has ingested salicylate. We previously investigated the metal status of children with this syndrome; serum Se and Cu levels were noted to be decreased. Chronic aspirin treatment of rats also produced alterations of serum Se, and liver Se and Cu. We now report our observations for an experimental model of Reye's syndrome. Analysis by PIXE of various metals in Se- and Cu-deficient mice exposed to virus and salicylate are discussed.

  16. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities.

    PubMed

    Lauer, Mariana Machado; de Oliveira, Camila Bento; Yano, Natalia Lie Inocencio; Bianchini, Adalto

    2012-11-01

    The estuarine crab Neohelice granulata was exposed (96 h) to a sublethal copper concentration under two different physiological conditions (hyperosmoregulating crabs: 2 ppt salinity, 1 mg Cu/L; isosmotic crabs: 30 ppt salinity, 5 mg Cu/L). After exposure, gills (anterior and posterior) were dissected and activities of enzymes involved in glycolysis (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase), Krebs cycle (citrate synthase), and mitochondrial electron transport chain (cytochrome c oxidase) were analyzed. Membrane potential of mitochondria isolated from anterior and posterior gill cells was also evaluated. In anterior gills of crabs acclimated to 2 ppt salinity, copper exposure inhibited hexokinase, phosphofructokinase, pyruvate kinase, and citrate synthase activity, increased lactate dehydrogenase activity, and reduced the mitochondrial membrane potential. In posterior gills, copper inhibited hexokinase and pyruvate kinase activity, and increased citrate synthase activity. In anterior gills of crabs acclimated to 30 ppt salinity, copper exposure inhibited phosphofructokinase and citrate synthase activity, and increased hexokinase activity. In posterior gills, copper inhibited phosphofructokinase and pyruvate kinase activity, and increased hexokinase and lactate dehydrogenase activity. Copper did not affect cytochrome c oxidase activity in either anterior or posterior gills of crabs acclimated to 2 and 30 ppt salinity. These findings indicate that exposure to a sublethal copper concentration affects the activity of enzymes involved in glycolysis and Krebs cycle, especially in anterior (respiratory) gills of hyperosmoregulating crabs. Changes observed indicate a switch from aerobic to anaerobic metabolism, characterizing a situation of functional hypoxia. In this case, reduced mitochondrial membrane potential would suggest a decrease in ATP production. Although gills of isosmotic crabs were also affected by copper exposure, changes observed suggest no impact in the overall tissue ATP production. Also, findings suggest that copper exposure would stimulate the pentose phosphate pathway to support the antioxidant system requirements. Although N. granulata is very tolerant to copper, acute exposure to this metal can disrupt the energy balance by affecting biochemical systems involved in carbohydrate metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Effect of dietary copper and breed on gene products involved in copper acquisition, distribution, and use in Angus and Simmental cows and fetuses.

    PubMed

    Fry, R S; Spears, J W; Lloyd, K E; O'Nan, A T; Ashwell, M S

    2013-02-01

    Copper (Cu) deficiency is a widespread problem in cattle across the United States and breed differences in Cu metabolism may contribute to this issue. Intracellular Cu is tightly regulated by transport and chaperone proteins, and to date, these mechanisms have not been elucidated to address breed differences in Cu metabolism, nor have these proteins been characterized in bovine fetal liver. Mature, pregnant Angus (n = 8) and Simmental (n = 8) cows (∼4 mo into gestation) were used in a 2 × 2 factorial arrangement of treatments. All cows were bred to Angus sires resulting in an Angus vs. Simmental × Angus comparison for fetuses. Cows were randomly assigned to corn silage-based diets that were either adequate (+Cu) or deficient (-Cu; 6.6 mg Cu/kg DM) in Cu. Diets were individually fed for 112 d. At the end of the study, cows were harvested to collect duodenal mucosa scrapes, liver samples, and fetal liver samples for mineral analysis and also for mRNA and protein analysis of Cu transport and chaperone proteins. Placentomes were also obtained for mineral analysis. Plasma Cu and liver Cu were affected by Cu, breed, and Cu × breed. Both of these Cu indices were less (P ≤ 0.05) in-Cu Simmentals (-CuS) than in-Cu Angus (- uA), but were similar among +Cu Simmental (+CuS) and +Cu Angus cows (+CuA). Duodenal Cu was less (P = 0.01) in-Cu vs. +Cu cows. Placentome Cu was less (P = 0.003) in-Cu vs. +Cu cows, and was also less (P = 0.03) in Simmentals vs. Angus. Fetal liver Cu was less (P = 0.002) in-Cu vs. +Cu fetuses, and was also less (P = 0.05) in Simmental × Angus vs. Angus. Abundance of Cu transporter1 (CTR1) protein and transcripts for Cu transporters and chaperones were not affected by Cu or breed in liver and were not affected by Cu in the intestine. Duodenal Ctr1 was less (P = 0.04) and CTR1 tended (P = 0.10) to be less in Simmentals vs. Angus. Expression of Atp7a tended (P = 0.08) to be less in Simmentals than in Angus. In fetal liver, expression of antioxidant 1 (Atox1), cytochrome c oxidase assembly protein 17 (Cox17), and Cu metabolism MURR1 domain 1 (Commd1) were up-regulated (P ≤ 0.05) in-Cu vs. +Cu fetuses. In conclusion, less expression of duodenal Ctr1 and a tendency for less CTR1 (P = 0.10) and Atp7a (P = 0.08) suggest that Simmentals have a lesser ability to absorb and utilize dietary Cu, and may explain why Simmentals are more prone to Cu deficiency than Angus. Up-regulation of fetal liver Atox1, Cox17, and Commd1 in-Cu fetuses may reflect the great Cu demand by the fetus.

  18. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients.

    PubMed

    Bourre, J M

    2006-01-01

    The objective of this update is to give an overview of the effects of dietary nutrients on the structure and certain functions of the brain. As any other organ, the brain is elaborated from substances present in the diet (sometimes exclusively, for vitamins, minerals, essential amino-acids and essential fatty acids, including omega- 3 polyunsaturated fatty acids). However, for long it was not fully accepted that food can have an influence on brain structure, and thus on its function, including cognitive and intellectuals. In fact, most micronutrients (vitamins and trace-elements) have been directly evaluated in the setting of cerebral functioning. For instance, to produce energy, the use of glucose by nervous tissue implies the presence of vitamin B1; this vitamin modulates cognitive performance, especially in the elderly. Vitamin B9 preserves brain during its development and memory during ageing. Vitamin B6 is likely to benefit in treating premenstrual depression. Vitamins B6 and B12, among others, are directly involved in the synthesis of some neurotransmitters. Vitamin B12 delays the onset of signs of dementia (and blood abnormalities), provided it is administered in a precise clinical timing window, before the onset of the first symptoms. Supplementation with cobalamin improves cerebral and cognitive functions in the elderly; it frequently improves the functioning of factors related to the frontal lobe, as well as the language function of those with cognitive disorders. Adolescents who have a borderline level of vitamin B12 develop signs of cognitive changes. In the brain, the nerve endings contain the highest concentrations of vitamin C in the human body (after the suprarenal glands). Vitamin D (or certain of its analogues) could be of interest in the prevention of various aspects of neurodegenerative or neuroimmune diseases. Among the various vitamin E components (tocopherols and tocotrienols), only alpha-tocopherol is actively uptaken by the brain and is directly involved in nervous membranes protection. Even vitamin K has been involved in nervous tissue biochemistry. Iron is necessary to ensure oxygenation and to produce energy in the cerebral parenchyma (via cytochrome oxidase), and for the synthesis of neurotransmitters and myelin; iron deficiency is found in children with attention-deficit/hyperactivity disorder. Iron concentrations in the umbilical artery are critical during the development of the foetus, and in relation with the IQ in the child; infantile anaemia with its associated iron deficiency is linked to perturbation of the development of cognitive functions. Iron deficiency anaemia is common, particularly in women, and is associated, for instance, with apathy, depression and rapid fatigue when exercising. Lithium importance, at least in psychiatry, is known for a long time. Magnesium plays important roles in all the major metabolisms: in oxidation-reduction and in ionic regulation, among others. Zinc participates among others in the perception of taste. An unbalanced copper metabolism homeostasis (due to dietary deficiency) could be linked to Alzheimer disease. The iodine provided by the thyroid hormone ensures the energy metabolism of the cerebral cells; the dietary reduction of iodine during pregnancy induces severe cerebral dysfunction, actually leading to cretinism. Among many mechanisms, manganese, copper, and zinc participate in enzymatic mechanisms that protect against free radicals, toxic derivatives of oxygen. More specifically, the full genetic potential of the child for physical growth ad mental development may be compromised due to deficiency (even subclinical) of micronutrients. Children and adolescents with poor nutritional status are exposed to alterations of mental and behavioural functions that can be corrected by dietary measures, but only to certain extend. Indeed, nutrient composition and meal pattern can exert either immediate or long-term effects, beneficial or adverse. Brain diseases during aging can also be due to failure for protective mechanism, due to dietary deficiencies, for instance in anti-oxidants and nutrients (trace elements, vitamins, non essential micronutrients such as polyphenols) related with protection against free radicals. Macronutrients are presented in the accompanying paper.

  19. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells

    PubMed Central

    Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; De Marco, Paola; Cirillo, Francesca; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2015-01-01

    Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression. PMID:26415222

  20. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells.

    PubMed

    Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; De Marco, Paola; Cirillo, Francesca; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2015-10-27

    Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.

  1. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-02-07

    Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching processes.

  2. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42.

    PubMed

    González-Sánchez, Antonio; Cubillas, Ciro A; Miranda, Fabiola; Dávalos, Araceli; García-de Los Santos, Alejandro

    2017-12-27

    Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu + /Cu 2+ ) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram-negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein-protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper-based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl 2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β-barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild-type gene restored its wild-type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. The copper transporter (SLC31A1/CTR1) is expressed in bovine spermatozoa and oocytes: Copper in IVF medium improves sperm quality.

    PubMed

    Anchordoquy, J P; Anchordoquy, J M; Pascua, A M; Nikoloff, N; Peral-García, P; Furnus, C C

    2017-07-15

    Adequate dietary intake of copper (Cu) is required for normal reproductive performance in cattle. The objective of this study was to investigate the pregnancy rates from cattle with deficient, marginal and adequate Cu plasma concentration at the beginning of artificial insemination protocol. Moreover, we determined Cu concentrations present in bovine oviductal fluid (OF), and the effects of Cu on fertilizing ability of bovine spermatozoa. Also, the presence of Cu transporter, SLC31A1 (also known as CTR1), in spermatozoa and in vitro matured oocyte were investigated. We found no differences in pregnancy rates among animals with adequate, marginal, and deficient Cu concentrations measured in plasma at the beginning of fixed-time artificial insemination (FTAI) protocol. Copper concentrations in OF were 38.3 ± 2.17 μg/dL (mean ± SEM) regardless of cupremia levels. The addition of 40 μg/dL Cu to IVF medium enhanced total and progressive motility, sperm viability, functional sperm membrane integrity (HOST), sperm-zona binding, and pronuclear formation. On the other hand, the presence of Cu in IVF medium did not modify acrosome integrity and cleavage rates after IVF, but impaired blastocyst rates. Cu transporter SLC31A1 was detected in bovine spermatozoa in the apical segment of acrosome, and in the oocyte matured in vitro. In conclusion, the results obtained in the present study determined that cupremia levels at the beginning of FTAI protocol did not influence the pregnancy rates at 60 d after insemination. The presence of CTR1 in bovine mature oocyte and spermatozoa, as well as the beneficial effect of Cu on sperm quality would suggest an important role of this mineral during the fertilization process. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Dietary mineral supplies in Africa

    PubMed Central

    Joy, Edward J M; Ander, E Louise; Young, Scott D; Black, Colin R; Watts, Michael J; Chilimba, Allan D C; Chilima, Benson; Siyame, Edwin W P; Kalimbira, Alexander A; Hurst, Rachel; Fairweather-Tait, Susan J; Stein, Alexander J; Gibson, Rosalind S; White, Philip J; Broadley, Martin R

    2014-01-01

    Dietary micronutrient deficiencies (MNDs) are widespread, yet their prevalence can be difficult to assess. Here, we estimate MND risks due to inadequate intakes for seven minerals in Africa using food supply and composition data, and consider the potential of food-based and agricultural interventions. Food Balance Sheets (FBSs) for 46 countries were integrated with food composition data to estimate per capita supply of calcium (Ca), copper (Cu), iron (Fe), iodine (I), magnesium (Mg), selenium (Se) and zinc (Zn), and also phytate. Deficiency risks were quantified using an estimated average requirement (EAR) ‘cut-point’ approach. Deficiency risks are highest for Ca (54% of the population), followed by Zn (40%), Se (28%) and I (19%, after accounting for iodized salt consumption). The risk of Cu (1%) and Mg (<1%) deficiency are low. Deficiency risks are generally lower in the north and west of Africa. Multiple MND risks are high in many countries. The population-weighted mean phytate supply is 2770 mg capita−1 day−1. Deficiency risks for Fe are lower than expected (5%). However, ‘cut-point’ approaches for Fe are sensitive to assumptions regarding requirements; e.g. estimates of Fe deficiency risks are 43% under very low bioavailability scenarios consistent with high-phytate, low-animal protein diets. Fertilization and breeding strategies could greatly reduce certain MNDs. For example, meeting harvestplus breeding targets for Zn would reduce dietary Zn deficiency risk by 90% based on supply data. Dietary diversification or direct fortification is likely to be needed to address Ca deficiency risks. PMID:24524331

  5. Mitochondrial Copper Metabolism and Delivery to Cytochrome c Oxidase

    PubMed Central

    Horn, Darryl; Barrientos, Antoni

    2010-01-01

    Summary Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the CuA site, the primary acceptor of electrons from ferrocytochrome c. The third copper, CuB, is associated with the high-spin heme a3 group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1- the source of the copper used for COX metallation; 2- the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the CuA and CuB sites, respectively; 3- the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4- the existence of at least four Cox17p homologues carrying a similar twin CX9C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5- the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX9C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis. PMID:18459161

  6. Design of a Photoredox Catalyst that Enables the Direct Synthesis of Carbamate-Protected Primary Amines via Photoinduced, Copper-Catalyzed N-Alkylation Reactions of Unactivated Secondary Halides.

    PubMed

    Ahn, Jun Myun; Peters, Jonas C; Fu, Gregory C

    2017-12-13

    Despite the long history of S N 2 reactions between nitrogen nucleophiles and alkyl electrophiles, many such substitution reactions remain out of reach. In recent years, efforts to develop transition-metal catalysts to address this deficiency have begun to emerge. In this report, we address the challenge of coupling a carbamate nucleophile with an unactivated secondary alkyl electrophile to generate a substituted carbamate, a process that has not been achieved effectively in the absence of a catalyst; the product carbamates can serve as useful intermediates in organic synthesis as well as bioactive compounds in their own right. Through the design and synthesis of a new copper-based photoredox catalyst, bearing a tridentate carbazolide/bisphosphine ligand, that can be activated upon irradiation by blue-LED lamps, we can achieve the coupling of a range of primary carbamates with unactivated secondary alkyl bromides at room temperature. Our mechanistic observations are consistent with the new copper complex serving its intended role as a photoredox catalyst, working in conjunction with a second copper complex that mediates C-N bond formation in an out-of-cage process.

  7. Use of PIXE to measure serum copper, zinc, selenium, and bromine in patients with hematologic malignancies

    NASA Astrophysics Data System (ADS)

    Beguin, Y.; Bours, V.; Delbrouck, J.-M.; Robaye, G.; Roelandts, I.; Fillet, G.; Weber, G.

    1990-04-01

    The use of PIXE allowed for a simultaneous determination of serum copper (Cu), zinc (Zn), selenium (Se) and bromine (Br), in various groups of patients with hematologic malignancies. In 78 patients with acute nonlymphocytic leukemia, it was observed that (1) serum Se was significantly lower than in healthy controls and correlated inversely with the tumor burden; (2) serum bromine was normal at diagnosis but dropped dramatically after intensive chemotherapy, before recovering progressively over a period of months; and (3) pretreatment serum copper and zinc were significant prognostic factors of the chance to achieve a complete remission. In 50 patients with chronic lymphocytic leukemia, it was observed that (1) serum Cu and Cu/Zn ratio were useful indices of the disease activity, which were independent of a nonspecific acute phase reaction; and (2) Zn deficiency could contribute to immune dysfunction. In 119 patients with myeloproliferative disorders or myelodysplasic syndromes, serum Cu and Zn levels were mostly dependent on nonspecific factors, such as age and inflammation.

  8. Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina.

    PubMed

    Averbeck, N B; Borghouts, C; Hamann, A; Specke, V; Osiewacz, H D

    2001-01-01

    The lifespan of the ascomycete Podospora anserina was previously demonstrated to be significantly increased in a copper-uptake mutant, suggesting that copper is a potential stressor involved in degenerative processes. In order to determine whether changes in copper stress occur in the cells during normal aging of cultures, we cloned and characterized a gene coding for a component of the molecular machinery involved in the control of copper homeostasis. This gene, PaMt1, is a single-copy gene that encodes a metallothionein of 26 amino acids. The coding sequence of PaMt1 is interrupted by a single intron. The deduced amino acid sequence shows a high degree of sequence identity to metallothioneins of the filamentous ascomycete Neurospora crassa and the basidiomycete Agaricus bisporus, and to the N-terminal portion of mammalian metallothioneins. Levels of PaMt1 transcript increase in response to elevated amounts of copper in the growth medium and during aging of wild-type cultures. In contrast, in the long-lived mutant grisea, transcript levels first increase but then decrease again. The ability of wild-type cultures to respond to exogenous copper stress via the induction of PaMt1 transcription is not affected as they grow older.

  9. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    PubMed

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  10. Roles of Copper-Binding Proteins in Breast Cancer.

    PubMed

    Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla

    2017-04-20

    Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.

  11. Impact of Micronutrient Malnutrition on the Health of Preschool Children: A Cross-Sectional Study.

    PubMed

    Shah, Afzal; Ullah Shah, Farid; Ud-Din Khan, Salah; Ali Rana, Usman; Shoaib Khan, Muhammad; Ahmad, Zahoor

    2015-01-01

    A cross-sectional study was designed to diagnose the prevalence of serum micronutrient deficiencies in apparently healthy preschool children in Pakistan. Children with any organic illnesses, abnormal blood parameters or genetic disorder were excluded. Amongst the studied samples, 56 % were healthy, 7 % were overweight, 7 % were obese, and 30 % were underweight. The body mass index (BMI) of female children was reduced compared to male children, which was statistically significant (p < 0.05). Similarly, zinc and iron deficiencies, ranging from moderate to severe, were found in 50 % and 25 % of the studied population, respectively. Copper and vitamin A concentrations were insufficient in 7 % and 25 % of the subject children, respectively. Micronutrient malnutrition is a recurrent health problem in children below the age of 5 years worldwide, particularly in developing countries. Serum micronutrient deficiencies and imbalances were more prevalent in children from rural than from urban areas.

  12. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  13. The role of nickel in urea assimilation by algae.

    PubMed

    Rees, T A; Bekheet, I A

    1982-12-01

    Nickel is required for urease synthesis by Phaeodactylum tricornutum and Tetraselmis subcordiformis and for growth on urea by Phaeodactylum. There is no requirement for nickel for urea amidolyase synthesis by Chlorella fusca var. vacuolata. Neither copper nor palladium can substitute for nickel but cobalt partially restored urease activity in Phaeodactylum. The addition of nickel to nickel-deficient cultures of Phaeodactylum or Tetraselmis resulted in a rapid increase of urease activity to 7-30 times the normal level; this increase was not inhibited by cycloheximide. It is concluded that nickel-deficient cells over-produce a non-functional urease protein and that either nickel or the functional urease enzyme participates in the regulation of the production of urease protein.

  14. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    PubMed

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  15. Field investigation of a 100-year-old timber crib foundation at a historic copper mine

    Treesearch

    James Wacker; Xiping Wang; Douglas R. Rammer

    2010-01-01

    In June 2009, the authors conducted a comprehensive on-site evaluation of the timber crib foundation at Alaska’s Historic Kennecott Mine Concentration Mill Building. The primary goal of the 6-day inspection was to assess the physical conditions of the existing timber crib foundation and identify timber members and areas that have structural deficiencies. The inspection...

  16. Serum micronutrient levels, nucleic acid metabolism and antioxidant defences in pregnant Nigerians: implications for fetal and maternal health.

    PubMed

    Anetor, J I; Adelaja, O; Adekunle, A O

    2003-09-01

    Micronutrients regulate numerous metabolic processes in pregnancy but their possible antioxidant function and contributions of alterations in their metabolism to fetal and maternal morbidity and mortality have received insufficients attention. Serum levels of copper, manganese and zinc were determined in 40 pregnant Nigerian women spread across the three trimesters of pregnancy and compared with those of 25 non-pregnant women of similar demographic and anthropometric characteristics. Serum levels of uric acid were also determined in both groups of women. The mean serum levels of manganese and zinc were significantly lower in the pregnant than in the non-pregnant state (P<0.02, P<0.002), respectively. Unlike manganese and zinc, copper was significantly elevated in the pregnant than in the non-pregnant state. The endogenous anti-oxidant, uric acid, was also significantly reduced in the pregnant than in the non-pregnant state (P<0.001). Copper levels increased progressively in all the three trimesters of pregnancy compared with controls (P<0.001). However, zinc levels declined steadily in all the 3 trimesters, but only the level of the third trimester was significantly different from the non-pregnant state (P<0.05). Unlike zinc, uric acid rose consistently in all the 3 trimesters compared with the non-pregnant state. Manganese and uric acid were significantly more elevated in the third than the first trimester. One way analysis of variance (ANOVA) and multiple comparisons (Tukey HSD) show that the differences in the antioxidant levels can be ascribed mainly to the second and third trimesters. The prevalence of zinc deficiency was 4.0% in the non-pregnant state as compared to 22.5% in the pregnant subjects. The implications of micronutrient deficiencies and associated antioxidant status in pregnancy are discussed. Considering their role in pregnancy, prevention of such deficiencies and attendant oxidative stress may contribute to a reduction in the incidence of fetal and maternal ill-health, and complications of pregnancy. Interventions should be aimed mainly at the second and third trimesters.

  17. Copper toxicity in the crab, Scylla serrata, copper levels in tissues and regulation after exposure to a copper-rich medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, M.; Ravindranath, M.H.

    1987-10-01

    In the decapod crustaceans copper is distributed in various tissues. In these animals the tissue copper generally exists in four forms; ionic, bound to proteins, lipids and membrane. In the estuarine crab Scylla serrata, the haemolymph copper exists only in association with proteins, whereas in the hepatopancreas it exists in all the four forms and in gills it exists in all the forms except in combination with lipids. Although food is the major source of copper in decapod crustaceans evidence indicate that copper may be directly obtained from the environment. It was postulated earlier that in Scylla serrata the haemolymphmore » and hepatopancreas may be involved in copper regulation. In the present work the authors have studied the nature and levels of copper in different tissues after exposing the crabs to copper-rich medium. The results indicate the relative importance of various tissues in accumulation an the possible mechanisms of regulation of the environmental copper. Besides, as a pre-requisite for studies of this kind, the toxic levels for different forms of copper were estimated since the form of toxicant is known to influence the toxicity to the decapod crustaceans.« less

  18. Redox control of copper homeostasis in cyanobacteria.

    PubMed

    López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J

    2012-12-01

    Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.

  19. The Myxococcus xanthus two-component system CorSR regulates expression of a gene cluster involved in maintaining copper tolerance during growth and development.

    PubMed

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ-Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.

  20. The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    PubMed Central

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J.; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains. PMID:23874560

  1. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B*

    PubMed Central

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and COMMD1 were previously identified as interacting partners of these Cu-ATPases. In this study, we confirmed that clusterin and COMMD1 interact to down-regulate both ATP7A and ATP7B. Overexpression and knockdown of clusterin/COMMD1 decreased and increased, respectively, endogenous levels of ATP7A and ATP7B, consistent with a role in facilitating Cu-ATPase degradation. We demonstrate that whereas the clusterin/ATP7B interaction was enhanced by oxidative stress or mutation of ATP7B, the COMMD1/ATP7B interaction did not change under oxidative stress conditions, and only increased with ATP7B mutations that led to its misfolding. Clusterin and COMMD1 facilitated the degradation of ATP7B containing the same Wilson disease-causing C-terminal mutations via different degradation pathways, clusterin via the lysosomal pathway and COMMD1 via the proteasomal pathway. Furthermore, endogenous ATP7B existed in a complex with clusterin and COMMD1, but these interactions were neither competitive nor cooperative and occurred independently of each other. Together these data indicate that clusterin and COMMD1 represent alternative and independent systems regulating Cu-ATPase quality control, and consequently contributing to the maintenance of copper homeostasis. PMID:22130675

  2. Copper treatment of the digestive gland of the slug Arion ater L. 2. Morphometrics and histophysiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marigomez, J.A.; Angulo, E.; Moya, J.

    1986-04-01

    In order to have a clear image of processes involved in copper bioaccumulation-detoxication mechanisms in the terrestrial slug, Arion ater, the authors planned a histophysiological analysis based on morphometrics and on the variations in morphological characteristics of epithelia. This study is the completion of the histochemical analysis, in which the authors suggest a close relationship between copper and calcium in the digestive gland of Arion ater. They had observed that copper was exclusively stored within calcium cells and that calcium cells secretion was more intensive at higher copper dosages and at larger bioassay times. Therefore, histophysiological analysis was necessary formore » explaining the nature of copper bioaccumulation-detoxication mechanisms.« less

  3. Dielectric Properties of Reduced Graphene Oxide/Copper Phthalocyanine Nanocomposites Fabricated Through π- π Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through π- π interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.

  4. Bacterial copper storage proteins.

    PubMed

    Dennison, Christopher; David, Sholto; Lee, Jaeick

    2018-03-30

    Copper is essential for most organisms as a cofactor for key enzymes involved in fundamental processes such as respiration and photosynthesis. However, copper also has toxic effects in cells, which is why eukaryotes and prokaryotes have evolved mechanisms for safe copper handling. A new family of bacterial proteins uses a Cys-rich four-helix bundle to safely store large quantities of Cu(I). The work leading to the discovery of these proteins, their properties and physiological functions, and how their presence potentially impacts the current views of bacterial copper handling and use are discussed in this review. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  6. Copper toxicity, oxidative stress, and antioxidant nutrients.

    PubMed

    Gaetke, Lisa M; Chow, Ching Kuang

    2003-07-15

    Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Although normally bound to proteins, Cu may be released and become free to catalyze the formation of highly reactive hydroxyl radicals. Data obtained from in vitro and cell culture studies are largely supportive of Cu's capacity to initiate oxidative damage and interfere with important cellular events. Oxidative damage has been linked to chronic Cu-overload and/or exposure to excess Cu caused by accidents, occupational hazards, and environmental contamination. Additionally, Cu-induced oxidative damage has been implicated in disorders associated with abnormal Cu metabolism and neurodegenerative changes. Interestingly, a deficiency in dietary Cu also increases cellular susceptibility to oxidative damage. A number of nutrients have been shown to interact with Cu and alter its cellular effects. Vitamin E is generally protective against Cu-induced oxidative damage. While most in vitro or cell culture studies show that ascorbic acid aggravates Cu-induced oxidative damage, results obtained from available animal studies suggest that the compound is protective. High intakes of ascorbic acid and zinc may provide protection against Cu toxicity by preventing excess Cu uptake. Zinc also removes Cu from its binding site, where it may cause free radical formation. Beta-carotene, alpha-lipoic acid and polyphenols have also been shown to attenuate Cu-induced oxidative damage. Further studies are needed to better understand the cellular effects of this essential, but potentially toxic, trace mineral and its functional interaction with other nutrients.

  7. Heavy Metal Uptake by Herbs. IV. Influence of Soil pH on the Content of Heavy Metals in Valeriana officinalis L.

    PubMed

    Adamczyk-Szabela, Dorota; Markiewicz, Justyna; Wolf, Wojciech M

    The aim of the study was to estimate the influence of soil pH on the uptake of copper, zinc, and manganese by Valeriana officinalis . Preliminary studies involved soil analyses to determine acidity, organic matter content, and copper, zinc, and manganese total and bioavailable forms. The study involved atomic absorption spectrometry to determine the concentration of the elements, and mineral soil of pH = 5.1 was used in the study, as being typical for central Poland. The copper, zinc, and manganese contents were determined in plants grown in soils which had been modified to cover a wide range of pH values 3÷13. The intensity of germination was strongly pH dependent with the highest yield obtained in original, unmodified soil. Surprisingly, high soil alkalinity stimulated copper and manganese uptake while at the same time resulting in a decrease in zinc content.

  8. Copper transport into the secretory pathway is regulated by oxygen in macrophages

    PubMed Central

    White, Carine; Kambe, Taiho; Fulcher, Yan G.; Sachdev, Sherri W.; Bush, Ashley I.; Fritsche, Kevin; Lee, Jaekwon; Quinn, Thomas P.; Petris, Michael J.

    2009-01-01

    Summary Copper is an essential nutrient for a variety of biochemical processes; however, the redox properties of copper also make it potentially toxic in the free form. Consequently, the uptake and intracellular distribution of this metal is strictly regulated. This raises the issue of whether specific pathophysiological conditions can promote adaptive changes in intracellular copper distribution. In this study, we demonstrate that oxygen limitation promotes a series of striking alterations in copper homeostasis in RAW264.7 macrophage cells. Hypoxia was found to stimulate copper uptake and to increase the expression of the copper importer, CTR1. This resulted in increased copper delivery to the ATP7A copper transporter and copper-dependent trafficking of ATP7A to cytoplasmic vesicles. Significantly, the ATP7A protein was required to deliver copper into the secretory pathway to ceruloplasmin, a secreted copperdependent enzyme, the expression and activity of which were stimulated by hypoxia. However, the activities of the alternative targets of intracellular copper delivery, superoxide dismutase and cytochrome c oxidase, were markedly reduced in response to hypoxia. Collectively, these findings demonstrate that copper delivery into the biosynthetic secretory pathway is regulated by oxygen availability in macrophages by a selective increase in copper transport involving ATP7A. PMID:19351718

  9. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  10. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    NASA Astrophysics Data System (ADS)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  11. Bio-mimicking galactose oxidase and hemocyanin, two dioxygen-processing copper proteins.

    PubMed

    Gamez, Patrick; Koval, Iryna A; Reedijk, Jan

    2004-12-21

    The modelling of the active sites of metalloproteins is one of the most challenging tasks in bio-inorganic chemistry. Copper proteins form part of this stimulating field of research as copper enzymes are mainly involved in oxidation bio-reactions. Thus, the understanding of the structure-function relationship of their active sites will allow the design of effective and environmental friendly oxidation catalysts. This perspective illustrates some outstanding structural and functional synthetic models of the active site of copper proteins, with special attention given to models of galactose oxidase and hemocyanin.

  12. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.

  13. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. - Highlights: • Subneurotoxic copper(II) triggers NF-κB-dependent microglial activation. • This activation leads to hippocampal neuronal death. • This activation may involve mitochondria-derived reactive oxygen species.« less

  14. [Hygienic substantiation of application of functional dairy products in the prevention of macro- and micronutrient deficiency].

    PubMed

    Boyarskaya, L A; Vil’ms, E A; Turchaninov, D V; Bogdashin, I V; Erofeev, Yu V

    Based on the study of actual nutrition and availability of macroelements there was found that adult population of the city of Omsk was established to refer to the group at risk for the development of micronutrient deficiency associated with low content of a set of essential elements (copper, zinc, calcium, selenium) in the ration, being prior for correction.There was executed the hygienic substantiation developed the fermented acid milk bioproduct of a functional purpose "Bifidin" enriched with micronutrients, prior for the population of the Omsk region. Introduction of this bio-product into the ration allows to effectively correct disorders of the mineral status, that was manifested in a decline in the proportion of patients with insufficiency of calcium (from 37.9 to 24.1%; p = 0.013), copper (from 51.7 to 25.9%; p = 0.004), selenium (from 96.6 to 84.5%; p = 0.026), zinc (from 58.6 to 48.3% of the subjects; p = 0.264). Upon the completion of the prophylactic course (intake "Bifidin" of 200 ml for 60 days), there was noted the gain in the concentration in hair: calcium (by 24.4%; p=0.441), zinc (by 8.0%; p=0.0008), copper (by 8.8%; p < 0.001), selenium (by 41.5%; p < 0.001). There was established the efficacy of the use of bio-product "Bifidin" enriched with micronutrients for the improvement of the structure of nutrition and element status of the adult population of the city of Omsk. There was justified the extensive use of dairy products enriched with micronutrients both for the reduction of the prevalence of microelementoses and the improvement of the nutritional status.

  15. What can flies tell us about copper homeostasis?

    PubMed

    Southon, Adam; Burke, Richard; Camakaris, James

    2013-10-01

    Copper (Cu) is an essential redox active metal that is potentially toxic in excess. Multicellular organisms acquire Cu from the diet and must regulate uptake, storage, distribution and export of Cu at both the cellular and organismal levels. Systemic Cu deficiency can be fatal, as seen in Menkes disease patients. Conversely Cu toxicity occurs in patients with Wilson disease. Cu dyshomeostasis has also been implicated in neurodegenerative disorders such as Alzheimer's disease. Over the last decade, the fly Drosophila melanogaster has become an important model organism for the elucidation of eukaryotic Cu regulatory mechanisms. Gene discovery approaches with Drosophila have identified novel genes with conserved protein functions relevant to Cu homeostasis in humans. This review focuses on our current understanding of Cu uptake, distribution and export in Drosophila and the implications for mammals.

  16. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  17. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    PubMed

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.

  18. Copper increases the ability of 6-hydroxydopamine to generate oxidative stress and the ability of ascorbate and glutathione to potentiate this effect: potential implications in Parkinson's disease.

    PubMed

    Cruces-Sande, Antón; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón

    2017-06-01

    Copper is an essential metal for the function of many proteins related to important cellular reactions and also involved in the synaptic transmission. Although there are several mechanisms involved in copper homeostasis, a dysregulation in this process can result in serious neurological consequences, including degeneration of dopaminergic neurons. 6-Hydroxydopamine is a dopaminergic neurotoxin mainly used in experimental models of Parkinson's disease, whose neurotoxicity has been related to its ability to generate free radicals. In this study, we examined the effects induced by copper on 6-OHDA autoxidation. Our data show that both Cu + and Cu 2+ caused an increase in • OH production by 6-OHDA autoxidation, which was accompanied by an increase in the rate of both p-quinone formation and H 2 O 2 accumulation. The presence of ascorbate greatly enhanced this process by establishing a redox cycle which regenerates 6-OHDA from its p-quinone. However, the presence of glutathione did not change significantly the copper-induced effects. We observed that copper is able to potentiate the ability of 6-OHDA to cause both lipid peroxidation and protein oxidation, with the latter including a reduction in free-thiol content and an increase in carbonyl content. Ascorbate also increases the lipid peroxidation induced by the action of copper and 6-OHDA. Glutathione protects against the copper-induced lipid peroxidation, but does not reduce its potential to oxidize free thiols. These results clearly demonstrate the potential of copper to increase the capacity of 6-OHDA to generate oxidative stress and the ability of ascorbate to enhance this potential, which may contribute to the destruction of dopaminergic neurons. © 2017 International Society for Neurochemistry.

  19. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics.

    PubMed

    Yu, Corey H; Yang, Nan; Bothe, Jameson; Tonelli, Marco; Nokhrin, Sergiy; Dolgova, Natalia V; Braiterman, Lelita; Lutsenko, Svetlana; Dmitriev, Oleg Y

    2017-11-03

    The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo -Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis

    DTIC Science & Technology

    2000-09-01

    circumscribed mass with no microcalcifications. Final pathologic studies revealed carcinosarcoma (half ductal, half chondrosarcoma ). (a) Lateral-axial...Prostate 2 0 0 2 Angiosarcoma 0 0 2 2 Chondrosarcoma 0 1 0 1 Nasopharyngeal tumor 0 0 1 1 Hemangioendothelioma 0 0 1 1 Renal tumor 1 0 2 3 Baseline...patient with metastatic rendered copper deficient. Table 2 summarizes the clinical chondrosarcoma secondary to radiation treatment for breast course of

  1. Selenium

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Selenium is a naturally occurring element that is present in some soils. Unlike mercury and lead, which also are natural environmental components, selenium is an essential nutrient in living systems. The amount of dietary selenium required by animals depends upon many factors, including the availability of certain other metals such as zinc and copper, as well as vitamin E and other nutrients. Muscle damage results if dietary selenium is deficient, but dietary excess can be toxic.

  2. Low Copper Levels Associated with Low Carcass Weight in Wild Red Deer ( Cervus elaphus ) in Norway.

    PubMed

    Handeland, Kjell; Viljugrein, Hildegunn; Lierhagen, Syverin; Opland, Marthe; Tarpai, Attila; Vikøren, Turid

    2017-01-01

    Copper (Cu) deficiency is associated with several disease syndromes, including poor growth, in farmed red deer ( Cervus elaphus ), but little is known of the consequences of low Cu levels in free-ranging populations. Low hepatic Cu levels have been documented in several wild red deer populations along the west coast of Norway, with the lowest values found on the island of Hitra. We studied the relationship between liver Cu concentration and slaughter weight in 63 red deer calves and 69 yearlings shot on Hitra during the autumn hunting season of 2009. Less than half of each age class had adequate Cu levels (>20 μg/g dry weight) and 14% of the calves and 28% of the yearlings had levels indicating deficiency (<13 μg/g). For yearlings, but not calves, there was a significant increase in slaughter weight with increasing hepatic Cu level. The differences between yearlings and calves could be linked to differences in physiologic Cu status of the two age classes, in that red deer calves are born with much higher levels of hepatic Cu than are their mothers. Our data demonstrate an association between low levels of Cu and reduced growth rate in a free-ranging cervid population.

  3. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  4. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.

    PubMed

    Radford, David S; Kihlken, Margaret A; Borrelly, Gilles P M; Harwood, Colin R; Le Brun, Nick E; Cavet, Jennifer S

    2003-03-14

    The structure of the hypothetical copper-metallochaperone CopZ from Bacillus subtilis and its predicted partner CopA have been studied but their respective contributions to copper export, -import, -sequestration and -supply are unknown. DeltacopA was hypersensitive to copper and contained more copper atoms cell(-1) than wild-type. Expression from the copA operator-promoter increased in elevated copper (not other metals), consistent with a role in copper export. A bacterial two-hybrid assay revealed in vivo interaction between CopZ and the N-terminal domain of CopA but not that of a related transporter, YvgW, involved in cadmium-resistance. Activity of copper-requiring cytochrome caa(3) oxidase was retained in deltacopZ and deltacopA. DeltacopZ was only slightly copper-hypersensitive but deltacopZ/deltacopA was more sensitive than deltacopA, implying some action of CopZ that is independent of CopA. Significantly, deltacopZ contained fewer copper atoms cell(-1) than wild-type under these conditions. CopZ makes a net contribution to copper sequestration and/or recycling exceeding any donation to CopA for export.

  5. Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture.

    PubMed

    Rodríguez, L Mato; Alatossava, T

    2008-10-01

    To determine the effects of supplemented copper (Cu2+) on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. Thirteen strains belonging to Lactobacillus delbrueckii, Lactobacillus helveticus, Lactobacillus rhamnosus, Streptococcus thermophilus or Propionibacterium freudenreichii species were exposed to various copper concentrations in the proper growth medium at relevant growth temperatures, and the effects of supplemented copper on bacterial growth and cell viability were determined by optical density and pH measurements, also by platings. Among the species considered, L. delbrueckii was the most copper resistant and S. thermophilus the most sensitive to copper. Anaerobic conditions increased this sensitivity significantly. There was also a considerable amount of variation in copper resistance at strain level. Copper resistance is both a species- and strain-dependent property and may reflect variability in copper-binding capacities by cell wall components among species and strains. In addition, the chemical state of copper may be involved. This study revealed that copper resistance is a highly variable property among starter and adjunct strains, and this variability should be considered when strains are selected for Emmental cheese manufacture.

  6. EVALUATING ACQ AS AN ALTERNATIVE WOOD PRESERVATIVE SYSTEM

    EPA Science Inventory

    This evaluation addresses the waste reduction/pollution prevention and economic issues involved in replacing chromated copper arsenate (CCA) with ammoniacal copper/quaternary ammonium (ACQ) as a way to preserve wood. The most obvious pollution prevention benefit gained by using A...

  7. Nutrition Deficiencies in Children With Intestinal Failure Receiving Chronic Parenteral Nutrition.

    PubMed

    Namjoshi, Shweta S; Muradian, Sarah; Bechtold, Hannah; Reyen, Laurie; Venick, Robert S; Marcus, Elizabeth A; Vargas, Jorge H; Wozniak, Laura J

    2017-02-01

    Home parenteral nutrition (PN) is a lifesaving therapy for children with intestinal failure (IF). Our aims were to describe the prevalence of micronutrient deficiencies (vitamin D, zinc, copper, iron, selenium) in a diverse population of children with IF receiving PN and to identify and characterize risk factors associated with micronutrient deficiencies, including hematologic abnormalities. Data were collected on 60 eligible patients through retrospective chart review between May 2012 and February 2015. Descriptive statistics included frequencies, medians, interquartile ranges (IQRs), and odds ratios (ORs). Statistical analyses included χ 2 , Fisher's exact, t tests, and logistic, univariate, and multivariate regressions. Patients were primarily young (median age, 3.3 years; IQR, 0.7-8.4), Latino (62%), and male (56%), with short bowel syndrome (70%). Of 60 study patients, 88% had ≥1 deficiency and 90% were anemic for age. Of 51 patients who had all 5 markers checked, 59% had multiple deficiencies (defined as ≥3). Multivariate analysis shows multiple deficiencies were associated with nonwhite race (OR, 9.4; P = .012) and higher body mass index z score (OR, 2.2; P = .016). Children with severe anemia (hemoglobin <8.5 g/dL) made up 50% of the cohort. Nonwhite race (OR, 6.6; P = .037) and zinc deficiency (OR, 11; P = .003) were multivariate predictors of severe anemia. Micronutrient deficiency and anemia are overwhelmingly prevalent in children with IF using chronic PN. This emphasizes the importance of universal surveillance and supplementation to potentially improve quality of life and developmental outcomes. Future research should investigate how racial disparities might contribute to nutrition outcomes for children using chronic PN.

  8. [The role of essential metal ions in the human organism and their oral supplementation to the human body in deficiency states].

    PubMed

    Lakatos, Béla; Szentmihályi, Klára; Vinkler, Péter; Balla, József; Balla, György

    2004-06-20

    The role of essential nutrient metal ions (Mg, Fe, Cu, Zn, Mn and Co) often deficient in our foodstuffs, although vitally essential in the function of the human organism as well as the different reasons for these deficiencies both in foods and in the human body have been studied. The most frequent nutritional disease is iron deficient anaemia. Inorganic salts, artificial synthetic monomer organic metal complexes of high stability or organic polymer complexes of high molecular mass are unsatisfactory for supplementation to the human body, owing to poor absorption, low availability and/or harmful side effects. In contrast, we have recently found that mixed metal complexes of oligo/polygalacturonic acids with medium molecular weight prepared from natural pectin of plant origin are efficient for oral supplementation. Sufficient absorption of essential metal ions from metal oligo/polygalacturonate mixed complexes with polynuclear innersphere structure is due to the high ionselectivity and medium stability values. Metal oligo/polygalacturonate mixed complexes contain all deficient essential metal ions in adequate amounts and ratios for higher bioavailability of metal ions and optimal vital function. Therefore, by oral administration of these complexes, metal ion homeostasis and optimal interactions with vitamins and hormones can be ensured. Prelatent or latent macroelement Mg deficiency can often be observed among clinical or ambulance patients. Latent or manifest mesoelement iron deficiency is the most common, however, the occurrence of microelement copper, zinc, manganese and cobalt latent deficiencies is not seldom either. Supplementation studies utilizing essential metal oligo/polygalacturonate complexes led to satisfactory outcome without harmful side effects.

  9. Effect of inorganic and organic copper fertilizers on copper nutrition in Spinacia oleracea and on labile copper in soil.

    PubMed

    Obrador, Ana; Gonzalez, Demetrio; Alvarez, Jose M

    2013-05-22

    To ensure an optimal concentration of Cu in food crops, the effectiveness of eight liquid Cu fertilizers was studied in a spinach ( Spinacia oleracea L.) crop grown on Cu-deficient soil under greenhouse conditions. Plant dry matter yields, Cu concentrations in spinach plants (total and morpholino acid (MES)- and ethylenediaminedisuccinic acid (EDDS)-extractable), and Cu uptakes were studied. The behavior of Cu in soil was evaluated by both single and sequential extraction procedures. The highest quantities of Cu in labile forms in the soil, total uptakes, and Cu concentrations in the plants were associated with the application of the two sources that contained Cu chelated by EDTA and/or DTPA. The fertilizers containing these Cu chelates represent a promising approach to achieve high levels of agronomic biofortification. The stronger correlations obtained between low-molecular-weight organic acid-extractable Cu in soil and the Cu concentrations and Cu uptakes by the plants show the suitability of this soil extraction method for predicting Cu available to spinach plants.

  10. Molecular Basis for Antioxidant Enzymes in Mediating Copper Detoxification in the Nematode Caenorhabditis elegans

    PubMed Central

    Song, Shaojuan; Zhang, Xueyao; Wu, Haihua; Han, Yan; Zhang, Jianzhen; Ma, Enbo; Guo, Yaping

    2014-01-01

    Antioxidant enzymes play a major role in defending against oxidative damage by copper. However, few studies have been performed to determine which antioxidant enzymes respond to and are necessary for copper detoxification. In this study, we examined both the activities and mRNA levels of SOD, CAT, and GPX under excessive copper stress in Caenorhabditis elegans, which is a powerful model for toxicity studies. Then, taking advantage of the genetics of this model, we assessed the lethal concentration (LC50) values of copper for related mutant strains. The results showed that the SOD, CAT, and GPX activities were significantly greater in treated groups than in controls. The mRNA levels of sod-3, sod-5, ctl-1, ctl-2, and almost all gpx genes were also significantly greater in treated groups than in controls. Among tested mutants, the sod-5, ctl-1, gpx-3, gpx-4, and gpx-6 variants exhibited hypersensitivity to copper. The strains with SOD or CAT over expression were reduced sensitive to copper. Mutations in daf-2 and age-1, which are involved in the insulin/insulin-like growth factor-1 signaling pathway, result in reduced sensitivity to stress. Here, we showed that LC50 values for copper in daf-2 and age-1 mutants were significantly greater than in N2 worms. However, the LC50 values in daf-16;daf-2 and daf-16;age-1 mutants were significantly reduced than in daf-2 and age-1 mutants, implying that reduced copper sensitivity is influenced by DAF-16-related functioning. SOD, CAT, and GPX activities and the mRNA levels of the associated copper responsive genes were significantly increased in daf-2 and age-1 mutants compared to N2. Additionally, the activities of SOD, CAT, and GPX were greater in these mutants than in N2 when treated with copper. Our results not only support the theory that antioxidant enzymes play an important role in copper detoxification but also identify the response and the genes involved in these processes. PMID:25243607

  11. The effects of silver ions on copper metabolism in rats.

    PubMed

    Ilyechova, E Yu; Saveliev, A N; Skvortsov, A N; Babich, P S; Zatulovskaia, Yu A; Pliss, M G; Korzhevskii, D E; Tsymbalenko, N V; Puchkova, L V

    2014-10-01

    The influence of short and prolonged diet containing silver ions (Ag-diet) on copper metabolism was studied. Two groups of animals were used: one group of adult rats received a Ag-diet for one month (Ag-A1) and another group received a Ag-diet for 6 months from birth (Ag-N6). In Ag-A1 rats, the Ag-diet caused a dramatic decrease of copper status indexes that was manifested as ceruloplasmin-associated copper deficiency. In Ag-N6 rats, copper status indexes decreased only 2-fold as compared to control rats. In rats of both groups, silver entered the bloodstream and accumulated in the liver. Silver was incorporated into ceruloplasmin (Cp), but not SOD1. In the liver, a prolonged Ag-diet caused a decrease of the expression level of genes, associated with copper metabolism. Comparative spectrophotometric analysis of partially purified Cp fractions has shown that Cp from Ag-N6 rats was closer to holo-Cp by specific enzymatic activities and tertiary structure than Cp from Ag-A1 rats. However, Cp of Ag-N6 differs from control holo-Cp and Cp of Ag-A1 in its affinity to DEAE-Sepharose and in its binding properties to lectins. In the bloodstream of Ag-N6, two Cp forms are present as shown in pulse-experiments on rats with the liver isolated from circulation. One of the Cp isoforms is of hepatic origin, and the other is of extrahepatic origin; the latter is characterized by a faster rate of secretion than hepatic Cp. These data allowed us to suggest that the disturbance of holo-Cp formation in the liver was compensated by induction of extrahepatic Cp synthesis. The possible biological importance of these effects is discussed.

  12. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    PubMed

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  13. Free Energy Defect Model for the Cu-In-Ga-Se Tetrahedral Lattice

    NASA Astrophysics Data System (ADS)

    Stanbery, B. J.

    2003-03-01

    The most efficient thin-film photovoltaic converters of solar insolation to electrical power have recently achieved conversion efficiencies exceeding 19%, and are based on light absorbing layers containing the binary alloy (CuInSe_2)_1-X(CuGaSe_2)X of the α phases of these ternary chalcopyrite compounds. A statistical quantum mechanical model of the thermodynamic equilibrium defect structure of the tetrahedral lattice of copper, indium, and selenium with composition in the domain between that of the stoichiometric CuIn_1-XGa_XSe2 alloy and the β phase Cu(In_1-XGa_X)_3Se5 composition is presented. Compositions more copper-deficient than the latter have been reported experimentally to result in a breakdown of the tetrahedral coordination characteristic of the chalcopyrite lattice. These computations are based on a cluster expansion algorithm that minimizes the total free energy of the system using the Gibbs-Duhem equation to compute quasichemical reaction equilibria between the neutral clusters, and explicitly incorporates Fermi-Dirac statistics to determine their ionization equilibria and consequent carrier concentrations in the conduction and valence bands. The results are consistent with recent experimental evidence that the stoichiometric CuIn_1-XGa_XSe2 composition segregates in equilibrium into a two-phase mixture of a copper-deficient quaternary Cu_1-γIn_1-XGa_XSe2 composition and the binary Cu_2-δSe compound. The model predicts that the hole majority carrier (p-type) can only be achieved in the equilibrium single-phase chalcopyrite lattice with compositions that correspond to Cu_1-γIn_1-XGa_XSe_2+ɛ with γ and ɛ >0. This predicted requirement for selenium enrichment compared to the stoichiometric CuIn_1-XGa_XSe2 alloy composition for the dominance of holes over electrons as the majority carrier type is consistent with experimental evidence, and is explained in terms of a transition of the dominant lattice defect from the selenium vacancy in the stoichiometric case to the copper vacancy defect in the selenium-enriched lattice. This result is of particular importance since all CuIn_1-XGa_XSe2 thin-film solar cells utilize p-type absorber films.

  14. Genomic and Transcriptomic Analyses to Identify Pathways Involved in Nanoparticle Generation in the Ubiquitous Marine Bacterium Alteromonas macleodii Under Elevated Copper Conditions

    NASA Astrophysics Data System (ADS)

    Cusick, K. D.; Dale, J.; Little, B.; Cockrell, A.; Biffinger, J.

    2016-02-01

    Alteromonas macleodii is a ubiquitous marine bacterium that clusters by molecular analyses into two ecotypes: surface and deep-water. Our group isolated a marine bacterium from copper coupons that generates nanoparticles (NPs) at elevated copper concentrations. Sequencing of the 16S rRNA gene identified it as an A. macleodii strain. In phylogenetic analyses based on the gyrB gene, it clustered with other surface isolates; however, it formed a unique cluster separate from that of other surface isolates based on rpoB gene sequences. Copper is commonly employed as an antifouling agent on the hulls of ships, and so copper tolerance and NP generation is under investigation in this strain. The overall goals of this study were: (1) to determine if copper tolerance is the result of changes at the genetic or transcriptional level and (2) to identify the genes involved in NP formation. Sub-cultures were established from the initial isolate in which copper concentrations were increased in .25 mM increments through multiple generations. These sub-cultures were assayed for NP formation in seawater medium supplemented with 3-4 mM copper. Scanning electron microscopy revealed large aggregates of NPs on the exterior surface of all sub-cultures. Additionally, a portion of the cells in all sub-cultures displayed an elongated morphology in comparison to the wild-type. No NPs were observed in wild-type controls grown without the addition of increased copper. Metagenomic sequencing of natural populations of A. macleodii revealed extreme divergence in several large genomic regions whose content includes genes coding for exopolysaccharide production and metal resistance. High-throughput sequencing is being used to determine whether copper tolerance and NP generation is the result of genetic or transcriptional changes. These results will be extended to natural communities to gain insights into the role of bacterial NPs during conditions of elevated metal concentrations in coastal systems.

  15. Role of the XIAP-Copper Axis in Prostate Cancer

    DTIC Science & Technology

    2010-04-01

    the copper chaperone for superoxide dismutase (CCS). We performed a targeted genetic screen in yeast to identify proteins involved in delivery of...copper (Cu) to XIAP. This screen identified CCS as a primary mediator of Cu delivery to XIAP in yeast , and we subsequently determined that CCS...protocol for growing yeast transformed with a plasmid encoding human XIAP in Cu-free selective medium. Supplemental Cu was added to the medium 1-2 hours

  16. The BiCu{sub 1−x}OS oxysulfide: Copper deficiency and electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berthebaud, D.; Guilmeau, E.; Lebedev, O.I.

    2016-05-15

    An oxysulfide series of nominal compositions BiCu{sub 1−x}OS with x<0.20 has been prepared and its structural properties characterized by combining powder X-ray diffraction and transmission electron microscopy techniques. It is found that this oxysulfide, crystallizing in the P4/nmm space group, tends to adopt a constant amount of copper vacancy corresponding to x=0.05 in the BiCu{sub 1−x}OS formula. The presence of Cu vacancies is confirmed by HAADF-STEM analysis showing, in the Cu atomic columns, alternating peaks of different intensities in some very localized regions. For larger Cu deficiencies (x>0.05 in the nominal composition), other types of structural nanodefects are evidenced suchmore » as bismuth oxysulfides of the “BiOS” ternary system which might explain the report of superconductivity for the BiCu{sub 1−x}OS oxysulfide. Local epitaxial growth of the BiCuOS oxysulfide on top of CuO is also observed. In marked contrast to the BiCu{sub 1−x}OSe oxyselenide, these results give an explanation to the limited impact of Cu deficiency on the Seebeck coefficient in BiCu{sub 1−x}OS compounds. - Graphical abstract: High resolution TEM image showing a Bi(Cu)OS/Bi{sub 2}O{sub 2}S interface and corresponding dislocation region. The Bi(Cu)OS structure adopts a rather constant Cu content (near 0.95); starting from BiCuOS leads to the formation of defects such as the Bi{sub 2}O{sub 2}S oxysulfide.« less

  17. Cost-benefit analysis of copper recovery in remediation projects: A case study from Sweden.

    PubMed

    Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Karlfeldt Fedje, Karin

    2017-12-15

    Contamination resulting from past industrial activity is a problem throughout the world and many sites are severely contaminated by metals. Advances in research in recent years have resulted in the development of technologies for recovering metal from metal-rich materials within the framework of remediation projects. Using cost-benefit analysis (CBA), and explicitly taking uncertainties into account, this paper evaluates the potential social profitability of copper recovery as part of four remediation alternatives at a Swedish site. One alternative involves delivery of copper-rich ash to a metal production company for refining. The other three alternatives involve metal leaching from materials and sale of the resulting metal sludge for its further processing at a metal production company using metallurgical methods. All the alternatives are evaluated relative to the conventional excavation and disposal method. Metal recovery from the ash, metal sludge sale, and disposal of the contaminated soil and the ash residue at the local landfill site, was found to be the best remediation alternative. However, given the present conditions, its economic potential is low relative to the conventional excavation and disposal method but higher than direct disposal of the copper-rich ash for refining. Volatile copper prices, the high cost of processing equipment, the highly uncertain cost of the metal leaching and washing process, coupled with the substantial project risks, contribute most to the uncertainties in the CBA results for the alternatives involving metal leaching prior to refining. However, investment in processing equipment within the framework of a long-term investment project, production of safe, reusable soil residue, and higher copper prices on the metal market, can make metal recovery technology socially profitable. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Chemical speciation and bioavailability of Cu(II). Study of the ionic copper(II) and bis(glycinate)-copper(II) accumulation by Lemna species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benda, F.; Kouba, J.

    1991-03-01

    In this paper, the authors examined the accumulation of copper(II) in, and its toxic effect on, duckweed, a plant which exhibits extremely high concentration factors. The effect of copper(II) was investigated by adding it to the minimal medium in two forms: CuSO{sub 4} and (Cu(Gly){sub 2}). The neutral (2:1) tetracoordinated bis(glycinate)-copper(II) complex is constituted by two five-membered rings bonded to the central copper atom with the cis configuration. This complex was chosen to model the function of a neutral species (eliminating the charge effect) involving a nontoxic ligand, for which - in contrast to the hydrated Cu{sup 2+} species -more » direct permeation through the cell wall is conceivable.« less

  19. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Excessive zinc ingestion: A reversible cause of sideroblastic anemia and bone marrow depression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broun, E.R.; Greist, A.; Tricot, G.

    1990-09-19

    Two patients with sideroblastic anemia secondary to zinc-induced copper deficiency absorbed excess zinc secondary to oral ingestion. The source of excess zinc was a zinc supplement in one case; in the other, ingested coins. In each case, the sideroblastic anemia was corrected promptly after removal of the source of excess zinc. These two cases emphasize the importance of recognizing this clinical entity, since the myelodysplastic features are completely reversible.

  1. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    PubMed

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Characterization and copper binding properties of human COMMD1 (MURR1).

    PubMed

    Narindrasorasak, Suree; Kulkarni, Prasad; Deschamps, Patrick; She, Yi-Min; Sarkar, Bibudhendra

    2007-03-20

    COMMD1 (copper metabolism gene MURR1 (mouse U2af1-rs1 region1) domain) belongs to a family of multifunctional proteins that inhibit nuclear factor NF-kappaB. COMMD1 was implicated as a regulator of copper metabolism by the discovery that a deletion of exon 2 of COMMD1 causes copper toxicosis in Bedlington terriers. Here, we report the detailed characterization and specific copper binding properties of purified recombinant human COMMD1 as well as that of the exon 2 product, COMMD(61-154). By using various techniques including native-PAGE, EPR, UV-visible electronic absorption, intrinsic fluorescence spectroscopies as well as DEPC modification of histidines, we demonstrate that COMMD1 specifically binds copper as Cu(II) in 1:1 stoichiometry and does not bind other divalent metals. Moreover, the exon 2 product, COMMD(61-154), alone was able to bind Cu(II) as well as the wild type protein, with a stoichiometry of 1 mol of Cu(II) per protein monomer. The protection of DEPC modification of COMMD1 by Cu(II) implied that Cu(II) binding involves His residues. Further investigation by DEPC modification of COMMD(61-154) and subsequent MALDI MS mapping and MS/MS sequencing identified the protection of His101 and His134 residues in the presence of Cu(II). Fluorescence studies of single point mutants of the full-length protein revealed the involvement of M110 in addition to H134 in direct Cu(II) binding. Taken together, the data provide insight into the function of COMMD1 and especially COMMD(61-154), a product of exon 2 that is deleted in terriers affected by copper toxicosis, as a regulator of copper homeostasis.

  3. Silencing the Menkes Copper-Transporting ATPase (Atp7a) Gene in Rat Intestinal Epithelial (IEC-6) Cells Increases Iron Flux via Transcriptional Induction of Ferroportin 1 (Fpn1)123

    PubMed Central

    Gulec, Sukru; Collins, James F.

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron (59Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished. PMID:24174620

  4. Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections

    PubMed Central

    Mackie, Joanna; Ballou, Elizabeth R.; Childers, Delma S.; MacCallum, Donna M.; Feldmann, Joerg; Brown, Alistair J. P.

    2016-01-01

    Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS) and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection) and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection) to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits—metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease. PMID:27362522

  5. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  6. Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer's mouse model.

    PubMed

    Ceccom, Johnatan; Coslédan, Frédéric; Halley, Hélène; Francès, Bernard; Lassalle, Jean Michel; Meunier, Bernard

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative syndrom involving many different biological parameters, including the accumulation of copper metal ions in Aβ amyloid peptides due to a perturbation of copper circulation and homeostasis within the brain. Copper-containing amyloids activated by endogenous reductants are able to generate an oxidative stress that is involved in the toxicity of abnormal amyloids and contribute to the progressive loss of neurons in AD. Since only few drugs are currently available for the treatment of AD, we decided to design small molecules able to interact with copper and we evaluated these drug-candidates with non-transgenic mice, since AD is mainly an aging disease, not related to genetic disorders. We created a memory deficit mouse model by a single icv injection of Aβ(1-42) peptide, in order to mimic the early stage of the disease and the key role of amyloid oligomers in AD. No memory deficit was observed in the control mice with the antisense Aβ(42-1) peptide. Here we report the capacity of a new copper-specific chelating agent, a bis-8-aminoquinoline PA1637, to fully reverse the deficit of episodic memory after three weeks of treatment by oral route on non-transgenic amyloid-impaired mice. Clioquinol and memantine have been used as comparators to validate this fast and efficient mouse model.

  7. Comparative evaluation of micronutrient status in the serum of diabetes mellitus patients and healthy individuals with periodontitis

    PubMed Central

    Thomas, Biju; Kumari, Suchetha; Ramitha, K.; Ashwini Kumari, M. B.

    2010-01-01

    Background: Periodontal diseases are microbial induced chronic inflammatory conditions characterized by infiltration of leukocytes, loss of connective tissue, alveolar bone resorption, and formation of periodontal pockets. In response to periodontal pathogens, the leukocytes (PMN) elaborate destructive oxidants, proteinases and other factors. The balance between these factors, the antioxidants and endogenously synthesized antiproteinases determine the extent of periodontal damage. Diabetes mellitus is a metabolic disorder. Most of the complications of diabetes are due to hyperglycemia. Persons with diabetes are at a greater risk for periodontal disease Malnutrition is characterized by marked tissue depletion of antioxidant nutrients and impaired acute phase protein response to infections resulting in impaired healing. Diabetes mellitus also alters the micronutrient levels. Malnutrition is characterized by marked tissue depletion of antioxidant nutrients and impaired acute phase protein response to infections resulting in impaired healing. Malnutrition, which usually involves concomitant deficiencies of several essential macro and micro nutrients, therefore, has the potential to adversely influence the prognosis of periodontal infections. Objectives:This study has been conducted to evaluate and compare the serum levels of vitamin C, zinc and copper in diabetic and healthy individuals with periodontitis. Materials and Methods: In this case control study 60 subjects inclusive of both sexes were selected and divided into 3 groups of 20 each. Group 1 comprised of 20 subjects with type 2 diabetes mellitus and periodontal disease, Group 2 comprised of 20 healthy subjects with periodontal disease. And Group 3 comprised of 20 healthy subjects without periodontal disease. Venous blood samples were collected and centrifuged at 3000rpm for 15 minutes and the superanatant serum is collected to measure the vitamin C, zinc and copper levels. The vitamin C levels of clinical samples were measured using spectrophotometric quantitation (dinitrophenyl hydrazine method) and zinc and copper levels were measured using atomic absorption spectrophotometry. Results: The results showed that the levels of vitamin C and zinc decreased and copper levels increased in diabetic patients with periodontits compared to healthy individuals with periodontitis. Conclusion: It may be reasonable to suggest vitamin and/or mineral supplements for patients whose nutrition might be inadequate. Future research should focus on an evaluation of which nutrients may help to prevent the onset and progression of periodontal disease PMID:20922079

  8. Speciation of copper diffused in a bi-porous molecular sieve

    NASA Astrophysics Data System (ADS)

    Huang, C.-H.; Paul Wang, H.; Wei, Y.-L.; Chang, J.-E.

    2010-07-01

    To better understand diffusion of copper in the micro- and mesopores, speciation of copper in a bi-porous molecular sieve (BPMS) possessing inter-connecting 3-D micropores (0.50-0.55 nm) and 2-D mesopores (4.1 nm) has been studied by X-ray absorption near edge structure (XANES) spectroscopy. It is found that about 77% (16% of CuO nanoparticles and 61% of CuO clusters) and 23% (CuO ads) of copper can be diffused into the meso- and micropores, respectively, in the BPMS. At least two diffusion steps in the BPMS may be involved: (i) free diffusion of copper in the mesopores and (ii) diffusion-controlled copper migrating into the micropores of the BPMS. The XANES data also indicate that diffusion rate of copper in the BPMS (4.68×10 -5 g/s) is greater than that in the ZSM-5 (1.11×10 -6 g/s) or MCM-41 (1.17×10 -5 g/s).

  9. Immobilization and release of copper species from a microstructured polypyrrole matrix.

    PubMed

    González, M B; Brugnoni, L I; Flamini, D O; Quinzani, L M; Saidman, S B

    2017-01-01

    Copper species immobilization in hollow rectangular-sectioned microtubes of polypyrrole (PPy) electrosynthesized on 316L stainless steel was carried out using two different methods. One of them involved the immobilization after the PPy electropolymerization and the other one during the electrosynthesis process. The electrodes modified with copper species were rotated at different speeds in well water under open-circuit potential conditions. The release of copper species from the PPy matrix and the antibacterial activity against Escherichia coli were analyzed. The obtained results demonstrate that the amount of copper species released as well as the bactericidal effects against E. coli increases with rotation speed. The PPy coating modified with copper species after the electropolymerization reaction exhibited the best performance in terms of antibacterial activity and corrosion protection. These electrodes were tested in a lab-scale continuous flow system for well water disinfection.

  10. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  11. ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.

    PubMed

    Cater, Michael A; La Fontaine, Sharon; Shield, Kristy; Deal, Yolanda; Mercer, Julian F B

    2006-02-01

    The Wilson protein (ATP7B) regulates levels of systemic copper by excreting excess copper into bile. It is not clear whether ATP7B translocates excess intrahepatic copper directly across the canalicular membrane or sequesters this copper into exocytic vesicles, which subsequently fuse with canalicular membrane to expel their contents into bile. The aim of this study was to clarify the mechanism underlying ATP7B-mediated copper detoxification by investigating endogenous ATP7B localization in the HepG2 hepatoma cell line and its ability to mediate vesicular sequestration of excess intracellular copper. Immunofluorescence microscopy was used to investigate the effect of copper concentration on the localization of endogenous ATP7B in HepG2 cells. Copper accumulation studies to determine whether ATP7B can mediate vesicular sequestration of excess intracellular copper were performed using Chinese hamster ovary cells that exogenously expressed wild-type and mutant ATP7B proteins. In HepG2 cells, elevated copper levels stimulated trafficking of ATP7B to pericanalicular vesicles and not to the canalicular membrane as previously reported. Mutation of an endocytic retrieval signal in ATP7B caused the protein to constitutively localize to vesicles and not to the plasma membrane, suggesting that a vesicular compartment(s) is the final trafficking destination for ATP7B. Expression of wild-type and mutant ATP7B caused Chinese hamster ovary cells to accumulate copper in vesicles, which subsequently undergo exocytosis, releasing copper across the plasma membrane. This report provides compelling evidence that the primary mechanism of biliary copper excretion involves ATP7B-mediated vesicular sequestration of copper rather than direct copper translocation across the canalicular membrane.

  12. Interaction Between ABA Signaling and Copper Homeostasis in Arabidopsis thaliana.

    PubMed

    Carrió-Seguí, Àngela; Romero, Paco; Sanz, Amparo; Peñarrubia, Lola

    2016-07-01

    ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops. Here the reciprocal influence between ABA and Cu content was addressed by using knockout mutants and overexpressing transgenic plants of high affinity plasma membrane Cu transporters (pmCOPT) with altered Cu uptake. Exogenous ABA inhibited pmCOPT expression and drastically modified COPT2-driven localization in roots. ABA regulated SPL7, the main transcription factor responsive for Cu deficiency responses, and subsequently affected expression of its targets. ABA biosynthesis (aba2) and signaling (hab1-1 abi1-2) mutants differentially responded to ABA according to Cu levels. Alteration of Cu homeostasis in the pmCOPT mutants affected ABA biosynthesis, transport and signaling as genes such as NCED3, WRKY40, HY5 and ABI5 were differentially modulated by Cu status, and also in the pmCOPT and ABA mutants. Altered Cu uptake resulted in modified plant sensitivity to salt-mediated increases in endogenous ABA. The overall results provide evidence for reciprocal cross-talk between Cu status and ABA metabolism and signaling. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.

    PubMed

    Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang

    2016-05-01

    Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes.

    PubMed

    Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel

    2014-08-01

    The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.

  15. Rapid and reliable diagnosis of Wilson disease using X-ray fluorescence.

    PubMed

    Kaščáková, Slávka; Kewish, Cameron M; Rouzière, Stéphan; Schmitt, Françoise; Sobesky, Rodolphe; Poupon, Joël; Sandt, Christophe; Francou, Bruno; Somogyi, Andrea; Samuel, Didier; Jacquemin, Emmanuel; Dubart-Kupperschmitt, Anne; Nguyen, Tuan Huy; Bazin, Dominique; Duclos-Vallée, Jean-Charles; Guettier, Catherine; Le Naour, François

    2016-07-01

    Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper-transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X-ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High-resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X-ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin-fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting.

  16. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria

    PubMed Central

    2012-01-01

    Background Different systems contributing to copper homeostasis in bacteria have been described in recent years involving periplasmic and transport proteins that provide resistance via metal efflux to the extracellular media (CopA/Cue, Cus, Cut, and Pco). The participation of these proteins in the assembly of membrane, periplasmic and secreted cuproproteins has also been postulated. The integration and interrelation of these systems and their apparent redundancies are less clear since they have been studied in alternative systems. Based on the idea that cellular copper is not free but rather it is transferred via protein-protein interactions, we hypothesized that systems would coevolve and be constituted by set numbers of essential components. Results By the use of a phylogenomic approach we identified the distribution of 14 proteins previously characterized as members of homeostasis systems in the genomes of 268 gamma proteobacteria. Only 3% of the genomes presented the complete systems and 5% of them, all intracellular parasites, lacked the 14 genes. Surprisingly, copper homeostatic pathways did not behave as evolutionary units with particular species assembling different combinations of basic functions. The most frequent functions, and probably because of its distribution the most vital, were copper extrusion from the cytoplasm to the periplasm performed by CopA and copper export from the cytoplasm to the extracellular space performed by CusC, which along with the remaining 12 proteins, assemble in nine different functional repertoires. Conclusions These observations suggest complex evolutionary dynamics and still unexplored interactions to achieve copper homeostasis, challenging some of the molecular transport mechanism proposed for these systems. PMID:23122209

  17. Differential affinity of BsSCO for Cu(II) and Cu(I) suggests a redox role in copper transfer to the Cu(A) center of cytochrome c oxidase.

    PubMed

    Hill, Bruce C; Andrews, Diann

    2012-06-01

    SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the Cu(A) center contained within subunit II of the oxidase complex. The Cu(A) center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a(3) and Cu(B). Cu(A) consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of Cu(A) present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in Cu(A) assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-Cu(A) site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection.

    PubMed

    Liu, Chong; Xie, Xing; Zhao, Wenting; Yao, Jie; Kong, Desheng; Boehm, Alexandria B; Cui, Yi

    2014-10-08

    Safe water scarcity occurs mostly in developing regions that also suffer from energy shortages and infrastructure deficiencies. Low-cost and energy-efficient water disinfection methods have the potential to make great impacts on people in these regions. At the present time, most water disinfection methods being promoted to households in developing countries are aqueous chemical-reaction-based or filtration-based. Incorporating nanomaterials into these existing disinfection methods could improve the performance; however, the high cost of material synthesis and recovery as well as fouling and slow treatment speed is still limiting their application. Here, we demonstrate a novel flow device that enables fast water disinfection using one-dimensional copper oxide nanowire (CuONW) assisted electroporation powered by static electricity. Electroporation relies on a strong electric field to break down microorganism membranes and only consumes a very small amount of energy. Static electricity as the power source can be generated by an individual person's motion in a facile and low-cost manner, which ensures its application anywhere in the world. The CuONWs used were synthesized through a scalable one-step air oxidation of low-cost copper mesh. With a single filtration, we achieved complete disinfection of bacteria and viruses in both raw tap and lake water with a high flow rate of 3000 L/(h·m(2)), equivalent to only 1 s of contact time. Copper leaching from the nanowire mesh was minimal.

  19. Alterations in fear response and spatial memory in pre- and post-natal zinc supplemented rats: remediation by copper.

    PubMed

    Railey, Angela M; Micheli, Teresa L; Wanschura, Patricia B; Flinn, Jane M

    2010-05-11

    The role of zinc in the nervous system is receiving increased attention. At a time when dietary fortification and supplementation have increased the amount of zinc being consumed, little work has been done on the effects of enhanced zinc on behavior. Both zinc and copper are essential trace minerals that are acquired from the diet; under normal conditions the body protects against zinc overload, but at excessive dosages, copper deficiency has been seen. In order to examine the effect of enhanced metal administration on learning and memory, Sprague Dawley rats were given water supplemented with 10ppm Zn, 10ppm Zn+0.25ppm Cu, or normal lab water, during pre- and post-natal development. Fear conditioning tests at 4months showed significantly higher freezing rates during contextual retention and extinction and cued extinction for rats drinking water supplemented with zinc, suggesting increased anxiety compared to controls raised on lab water. During the MWM task at 9months, zinc-enhanced rats had significantly longer latencies to reach the platform compared to controls. The addition of copper to the zinc supplemented water brought freezing and latency levels closer to that of controls. These data demonstrate the importance of maintaining appropriate intake of both metals simultaneously, and show that long-term supplementation with zinc may cause alterations in memory. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus.

    PubMed

    Kusuya, Yoko; Hagiwara, Daisuke; Sakai, Kanae; Yaguchi, Takashi; Gonoi, Tohru; Takahashi, Hiroki

    2017-08-01

    Copper (Cu) is an essential metal for all living organisms, although it is toxic in excess. Filamentous fungus must acquire copper from its environment for growth. Despite its essentiality for growth, the mechanisms that maintain copper homeostasis are not fully understood in filamentous fungus. To gain insights into copper homeostasis, we investigated the roles of a copper transcription factor Afmac1 in the life-threatening fungus Aspergillus fumigatus, a homolog of the yeast MAC1. We observed that the Afmac1 deletion mutant exhibited not only significantly slower growth, but also incomplete conidiation including a short chain of conidia and defective melanin. Moreover, the expressions of the copper transporters, ctrA1, ctrA2, and ctrC, and metalloreductases, Afu8g01310 and fre7, were repressed in ∆Afmac1 cells, while those expressions were induced under copper depletion conditions in wild-type. The expressions of pksP and wetA, which are, respectively, involved in biosynthesis of conidia-specific melanin and the late stage of conidiogenesis, were decreased in the ∆Afmac1 strain under minimal media condition. Taken together, these results indicate that copper acquisition through AfMac1 functions in growth as well as conidiation.

  1. Synthesis and Analysis of Copper Hydroxy Double Salts

    ERIC Educational Resources Information Center

    Brigandi, Laura M.; Leber, Phyllis A.; Yoder, Claude H.

    2005-01-01

    A project involving the synthesis of several naturally occurring copper double salts using simple aqueous conditions is reported. The ions present in the compound are analyzed using colorimetric, gravimetric, and gas-analysis techniques appropriate for the first-year laboratory and from the percent composition, the empirical formula of each…

  2. Copper-catalyzed Green and Expeditious N-Arylation of Sulfoximines using Diaryliodonium Salts

    EPA Science Inventory

    An ultrasound-accelerated green route for an expeditious N-arylation of NH-sulfoximines is described that involves the use of benign diaryliodonium salts in aqueous polyethylene glycol-400 and copper(I) bromide as catalyst at room temperature. The high yields of the products and...

  3. Low hepatic copper content and PNPLA3 polymorphism in non-alcoholic fatty liver disease in patients without metabolic syndrome.

    PubMed

    Stättermayer, Albert Friedrich; Traussnigg, Stefan; Aigner, Elmar; Kienbacher, Christian; Huber-Schönauer, Ursula; Steindl-Munda, Petra; Stadlmayr, Andreas; Wrba, Friedrich; Trauner, Michael; Datz, Christian; Ferenci, Peter

    2017-01-01

    The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is multifactorial including metabolic, genetic (e.g. PNPLA3 [patatin-like phospholipase domain-containing 3 gene]), viral factors and drugs. Besides, there is evidence for a role of copper deficiency. Aim of the study was to evaluate the role of hepatic copper content, PNPLA3 in NAFLD patients with and without metabolic syndrome (MetS). One-hundred seventy-four NAFLD patients, who underwent liver biopsy for diagnostic work-up, were studied. Diagnosis of MetS was based on the WHO Clinical Criteria. Steatosis was semiquantified as percentage of fat containing hepatocytes and was graded according to Brunt. Histological features of non-alcoholic steatohepatitis (NASH) were assessed using the Bedossa classification. Hepatic copper content (in μg/g dry weight) was measured by flame atomic absorption spectroscopy. SNP rs738409 in PNPLA3 was investigated by RT-PCR. Mean hepatic copper content was 22.3 (19.6-25.1) μg/g. The mean percentage of histologically lipid containing hepatocytes was 42.2% (38.3-46.0) and correlated inversely with hepatic copper content (ρ=-0.358, P<0.001). By subgroup analysis this inverse correlation remained significant only in patients without MetS (OR: 0.959 [CI95%: 0.926-0.944], P=0.020). Presence of minor allele (G) of PNPLA3 was also associated with moderate/severe steatosis (≥33%) both in patients with (OR: 2.405 [CI95%: 1.220-4.744], P=0.011) and without MetS (OR: 2.481 [CI95%: 1.172-5.250], P=0.018), but was only associated with NASH (OR: 2.002 [CI95%: 1.062-3.772], P=0.032) and liver fibrosis (OR: 2.646 [CI95%: 1.299-5.389], P=0.007) in patients without MetS. Hepatic copper content and PNPLA3 mutations are associated with disease activity in NAFLD patients without MetS. Presence of MetS appears to mask the effects of hepatic copper and PNPLA3. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. High-Valent Organometallic Copper and Palladium in Catalysis

    PubMed Central

    Hickman, Amanda J.; Sanford, Melanie S.

    2015-01-01

    Preface Copper and palladium catalysts are critically important for numerous commercial chemical processes. Improvements in the activity, selectivity, and scope of these catalysts have the potential to dramatically reduce the environmental impact and increase the sustainability of chemical reactions. One rapidly emerging strategy to achieve these goals is to exploit “high-valent” copper and palladium intermediates in catalysis. This review describes exciting recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations. PMID:22498623

  5. Control of the Structure of Diffusion Layer in Carbon Steels Under Nitriding with Preliminary Deposition of Copper Oxide Catalytic Films

    NASA Astrophysics Data System (ADS)

    Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.

    2017-07-01

    The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.

  6. Effects of copper ions on the characteristics of egg white gel induced by strong alkali.

    PubMed

    Shao, Yaoyao; Zhao, Yan; Xu, Mingsheng; Chen, Zhangyi; Wang, Shuzhen; Tu, Yonggang

    2017-09-01

    This study investigated the effects of copper ions on egg white (EW) gel induced by strong alkali. Changes in gel characteristics were examined through texture profile analysis, scanning electron microscopy (SEM), and chemical methods. The value of gel strength reached its maximum when 0.1% copper ions was added. However, the lowest cohesiveness values were observed at 0.1%. The springiness of gel without copper ions was significantly greater than the gel with copper ions added. SEM results illustrated that the low concentration of copper ions contributes to a dense and uniform gel network, and an open matrix was formed at 0.4%. The free and total sulphhydryl group content in the egg white protein gel significantly decreased with the increased copper. The increase of copper ions left the contents of ionic and hydrogen bonds basically unchanged, hydrophobic interaction presented an increasing trend, and the disulfide bond exhibited a completely opposite change. The change of surface hydrophobicity proved that the main binding force of copper induced gel was hydrophobic interaction. However, copper ions had no effect on the protein component of the gels. Generally, a low level of copper ions facilitates protein-protein association, which is involved in the characteristics of gels. Instead, high ionic strength had a negative effect on gels induced by strong alkali. © 2017 Poultry Science Association Inc.

  7. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males.

    PubMed

    Zhang, Sheng; Zhang, Yunxiang; Cao, Yanchun; Lei, Yanbao; Jiang, Hao

    2016-03-04

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.

  8. Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.

    PubMed

    Guyot, Hugues; Saegerman, Claude; Lebreton, Pascal; Sandersen, Charlotte; Rollin, Frédéric

    2009-01-01

    Selenium (Se), iodine (I), zinc (Zn) and copper (Cu) deficiencies in cattle have been reported in Europe. These deficiencies are often associated with diseases. The aim of the study was to assess trace element status in Belgian cattle herds showing pathologies and to compare them to healthy cattle herds. Eighty-two beef herds with pathologies, 11 healthy beef herds, 65 dairy herds with pathologies and 20 healthy dairy herds were studied during barn period. Blood and/or milk samples were taken in healthy animals. Plasma Zn, Cu, inorganic I (PII) and activity of glutathione peroxidase in erythrocytes (GPX) were assayed. In milk, I concentration was measured. Data about pathologies and nutrition in the herds were collected. According to defined thresholds, it appeared that a large proportion of deficient herds belonged to "sick" group of herds. This conclusion was supported by the mean value of trace elements and by the fact that a majority of individual values of trace elements was below the threshold. Dairy herds had mean values of trace elements higher than beef herds. More concentrates and minerals were used in healthy herds versus "sick" herds. These feed supplements were also used more often in dairy herds, compared to beef herds. Trace elements deficiencies are present in cattle herds in Belgium and are linked to diseases. Nutrition plays a major role in the trace elements status.

  9. Effects of zinc-deficient diets on the cardiovascular system in rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J.W.; Koo, S.I.

    1986-03-05

    The authors used male New Zealand white rabbits to study the effects of zinc-deficient diets on the cardiovascular system. These 10 week-old rabbits were fed semi-purified diets containing either 50 ppm or less than 1 ppm zinc for 12 weeks. Serum samples were analyzed at 3,6,9 and 12 weeks. Body weight and food consumption were measured weekly. At necropsy the liver and heart were removed and weighed. Then the heart was perfused at 100 mm Hg with 10% buffered formalin via the ascending aorta. Coronary arteries were block-dissected and processed for light microscopy. Food consumption and body weights were notmore » significantly altered throughout the study. Relative heart weights were not different; however, the relative liver weight of the zinc-deficient group was elevated by 11%. Neither total serum cholesterol or HDL-cholesterol were changed at any time. After 6 weeks treatment, serum zinc levels were depressed by 29% in the zinc-deficient group; no changes were observed for serum copper or calcium. Morphometric analysis of coronary arteries revealed a decreased combined thickness of the tunica intima and tunica media and a decreased area per unit length in the left coronary circumflex arteries of zinc-deficient rabbits. Significant changes reported here are probably related to possible alterations in lipoproteins metabolism and will be investigated in future studies.« less

  10. The CopRS Two-Component System Is Responsible for Resistance to Copper in the Cyanobacterium Synechocystis sp. PCC 68031[C][W][OA

    PubMed Central

    Giner-Lamia, Joaquín; López-Maury, Luis; Reyes, José C.; Florencio, Francisco J.

    2012-01-01

    Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the PI-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen. PMID:22715108

  11. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquín; López-Maury, Luis; Reyes, José C; Florencio, Francisco J

    2012-08-01

    Photosynthetic organisms need copper for cytochrome oxidase and for plastocyanin in the fundamental processes of respiration and photosynthesis. However, excess of free copper is detrimental inside the cells and therefore organisms have developed homeostatic mechanisms to tightly regulate its acquisition, sequestration, and efflux. Herein we show that the CopRS two-component system (also known as Hik31-Rre34) is essential for copper resistance in Synechocystis sp. PCC 6803. It regulates expression of a putative heavy-metal efflux-resistance nodulation and division type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to the presence of copper in the media. Mutants in this two-component system or the efflux system render cells more sensitive to the presence of copper in the media and accumulate more intracellular copper than the wild type. Furthermore, CopS periplasmic domain is able to bind copper, suggesting that CopS could be able to detect copper directly. Both operons (copMRS and copBAC) are also induced by the photosynthetic inhibitor 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone but this induction requires the presence of copper in the media. The reduced response of two mutant strains to copper, one lacking plastocyanin and a second one impaired in copper transport to the thylakoid, due to the absence of the P(I)-type ATPases PacS and CtaA, suggests that CopS can detect intracellular copper. In addition, a tagged version of CopS with a triple HA epitope localizes to both the plasma and the thylakoid membranes, suggesting that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.

  12. Copper-catalyzed, C-C coupling-based one-pot tandem reactions for the synthesis of benzofurans using o-iodophenols, acyl chlorides, and phosphorus ylides.

    PubMed

    Liu, Yunyun; Wang, Hang; Wan, Jie-Ping

    2014-11-07

    One-pot reactions involving acyl chlorides, phosphorus ylides, and o-iodophenols with copper catalysis have been established for the rapid synthesis of functionalized benzofurans. With all of these easily available and stable reactants, the construction of the target products has been accomplished via tandem transformations involving a key C-C coupling, leading to the formation of one C(sp(2))-C bond, one C(sp(2))-O bond, and one C ═ C bond.

  13. Influence of Copper Resistance Determinants on Gold Transformation by Cupriavidus metallidurans Strain CH34

    PubMed Central

    Wiesemann, Nicole; Mohr, Juliane; Grosse, Cornelia; Herzberg, Martin; Hause, Gerd; Reith, Frank

    2013-01-01

    Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757–17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems. PMID:23475973

  14. Copper-induced overexpression of genes encoding antioxidant system enzymes and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa.

    PubMed

    Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra

    2016-08-01

    Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

    PubMed Central

    Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y

    2016-01-01

    KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. DOI: http://dx.doi.org/10.7554/eLife.16093.001 PMID:27542194

  16. Influence of injected caffeine on the metabolism of calcium and the retention and excretion of sodium, potassium, phosphorus, magnesium, zinc and copper in rats.

    PubMed

    Yeh, J K; Aloia, J F; Semla, H M; Chen, S Y

    1986-02-01

    Mineral metabolism was studied by the metabolic balance technique in rats with and without administration of caffeine. Caffeine was injected subcutaneously each day at either 2.5 mg or 10 mg/100 g body weight for 2 wk before the balance studies. Urinary volume excretion was higher in the group given caffeine than in the control group, but the creatinine clearance was not different. Urinary excretion of potassium, sodium, inorganic phosphate, magnesium and calcium, but not of zinc and copper, was also higher in the rats given caffeine. The rank order of the difference was the same as the percent of ingested mineral excreted in urine in the absence of caffeine. Caffeine caused a negative balance of potassium, sodium and inorganic phosphate. There was no significant difference from the control levels and in the apparent metabolic balance of calcium and magnesium. The urinary and fecal excretion of zinc and copper were found to be unaffected by caffeine. It is suggested that chronic administration of caffeine may lead to a tendency toward deficiency of those minerals that are excreted primarily in urine.

  17. Copper Metal from Malachite Circa 4000 B.C.E.

    ERIC Educational Resources Information Center

    Yee, Gordon T.; Eddleton, Jeannine E.; Johnson, Cris E.

    2004-01-01

    The feasibility of the laboratory production of copper metal from a readily available, naturally occurring mineral malachite utilizing techniques that are consistent with the time period of around 4000 B.C.E. is presented. The starting materials are inexpensive and convenient and the procedure involves no hazardous reagents and produces no…

  18. 12 CFR 204.6 - Charges for reserve deficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) Deficiencies in a depository institution's required reserve balance, after application of the... authorized to assess charges for deficiencies in required reserves at a rate of 1 percentage point per year... involved, permit a depository institution to eliminate deficiencies in its required reserve balance by...

  19. 7 CFR 1980.398 - Unauthorized assistance and other deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... proper change orders. (3) Fraud or misrepresentation. A deficiency that involves an action by the Lender... debarment. Examples of this type of deficiency include falsified Verifications of Employment, false...

  20. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis.

    PubMed

    Roberts, Blaine R; Lim, Nastasia K H; McAllum, Erin J; Donnelly, Paul S; Hare, Dominic J; Doble, Philip A; Turner, Bradley J; Price, Katherine A; Lim, Sin Chun; Paterson, Brett M; Hickey, James L; Rhoads, Timothy W; Williams, Jared R; Kanninen, Katja M; Hung, Lin W; Liddell, Jeffrey R; Grubman, Alexandra; Monty, Jean-Francois; Llanos, Roxana M; Kramer, David R; Mercer, Julian F B; Bush, Ashley I; Masters, Colin L; Duce, James A; Li, Qiao-Xin; Beckman, Joseph S; Barnham, Kevin J; White, Anthony R; Crouch, Peter J

    2014-06-04

    Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1. Copyright © 2014 the authors 0270-6474/14/348021-11$15.00/0.

  1. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance

    PubMed Central

    Samsel, Anthony

    2013-01-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of “ripening” sugar cane with glyphosate may explain the recent surge in kidney failure among agricultural workers in Central America. We conclude with a plea to governments to reconsider policies regarding the safety of glyphosate residues in foods. PMID:24678255

  2. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance.

    PubMed

    Samsel, Anthony; Seneff, Stephanie

    2013-12-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup(®), is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent surge in kidney failure among agricultural workers in Central America. We conclude with a plea to governments to reconsider policies regarding the safety of glyphosate residues in foods.

  3. Monitoring the Photosynthetic Apparatus During Space Flight: Interspecific Variation in Chlorophyll Fluorescence Signatures Induced by Different Root Zone Stresses

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Patterson, Mark T.; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Chlorophyll fluorescence has been used extensively as a tool to indicate stress to the photosynthetic apparatus in green plants. A rise in fluorescence has been attributed to the blockage of photosystem II photochemistry, and patterns of fluorescence decay (quenching) from dark adapted leaves can be related to specific photochemical and non-photochemical deexcitation pathways of light trapped by the photosynthetic apparatus and thus result in characteristically different fluorescence signatures. Four distantly related plant species, Hypocharis radicata (Asteraceae), Brassica rapa (Brassicaceae), Spinacea oleracea (Chenopodiaceae) and Triticum aestivum (Poaceae), were grown hydroponically for three weeks before the initiation of three different root zone stresses (10 mM Cu, 100 mM NaCl and nitrogen deficient nutrition). After 10 days, characteristic fluorescence signatures for each stress could be noted although the degree varied between species. Fast kinetics analysis showed a reduction in plastoquinone pool size for copper and nitrogen stress for all species but a more species specific result with NaCl stress. Photochemical quenching kinetics varied between species and stress treatments from no quenching in S. oleracea in copper treatments to increased photochemical quenching in NaCl treatments. Non-photochemical quenching kinetics demonstrated a distinct pattern between stresses for all species. Copper treatments characteristically exhibited a shallow, flat non-photochemical quenching profile suggesting a general blockage of electron transport whereas NaCl treatments exhibited a slow rising profile that suggested damage to thylakoid acidification kinetics and nitrogen deficiency exhibited a fast rising and declining profile that suggested an altered state 1-state 2 transition regulated by the phosphorylation of LHCII. These results demonstrate characteristic fluorescence signatures for specific plant stresses that may be applied to different, unrelated plant species. In addition, the potential use of chlorophyll fluorescence for both basic research and diagnostic physiology in space biology is presented.

  4. Residential agricultural pesticide exposures and risks of selected birth defects among offspring in the San Joaquin Valley of California.

    PubMed

    Carmichael, Suzan L; Yang, Wei; Roberts, Eric; Kegley, Susan E; Brown, Timothy J; English, Paul B; Lammer, Edward J; Shaw, Gary M

    2016-01-01

    We examined associations of birth defects with residential proximity to commercial agricultural pesticide applications in California. Subjects included 367 cases representing five types of birth defects and 785 nonmalformed controls born 1997 to 2006. Associations with any versus no exposure to physicochemical groups of pesticides and specific chemicals were assessed using logistic regression adjusted for covariates. Overall, 46% of cases and 38% of controls were classified as exposed to pesticides within a 500 m radius of mother's address during a 3-month periconceptional window. We estimated odds ratios (ORs) for 85 groups and 95 chemicals with five or more exposed cases and control mothers. Ninety-five percent confidence intervals (CI) excluded 1.0 for 11 ORs for groups and 22 ORs for chemicals, ranging from 1.9 to 3.1 for groups and 1.8 to 4.9 for chemicals except for two that were <1 (noted below). For groups, these ORs were for anotia/microtia (n = 95 cases) and dichlorophenoxy acids/esters and neonicotinoids; anorectal atresia/stenosis (n = 77) and alcohol/ethers and organophosphates (these ORs were < 1.0); transverse limb deficiencies (n = 59) and dichlorophenoxy acids/esters, petroleum derivatives, and triazines; and craniosynostosis (n = 79) and alcohol/ethers, avermectins, neonicotinoids, and organophosphates. For chemicals, ORs were: anotia/microtia and five pesticides from the groups dichlorophenoxy acids/esters, copper-containing compounds, neonicotinoids, organophosphates, and triazines; transverse limb deficiency and six pesticides - oxyfluorfen and pesticides from the groups copper-containing compounds, 2,6-dinitroanilines, neonicotinoids, petroleum derivatives and polyalkyloxy compounds; craniosynostosis and 10 pesticides - oxyfluorfen and pesticides from the groups alcohol/ethers, avermectins, n-methyl-carbamates, neonicotinoids, ogranophosphates (two chemicals), polyalkyloxy compounds (two chemicals), and pyrethroids; and congenital diaphragmatic hernia (n = 62) and a copper-containing compound. © 2015 Wiley Periodicals, Inc.

  5. The influence of light on copper-limited growth of an oceanic diatom, Thalassiosira oceanica (Coscinodiscophyceae).

    PubMed

    Kim, Jun-Woo; Price, Neil M

    2017-10-01

    Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu-replete medium (263 fmol Cu' · L -1 ) with maximum rates achieved at 200 μmol photons · m -2  · s -1 . Lowering the Cu concentration at this irradiance to 30.8 fmol Cu' · L -1 decreased cellular Cu quota by 7-fold and reduced growth rate by 50%. Copper-deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETR max ) than Cu-sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low-Cu medium (30.8 fmol Cu' · L -1 ), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu-replete cells when irradiance increased to 400 μmol photons · m -2  · s -1 . Thus, at high light, low-Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETR max and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m -2  · s -1 to levels measured in Cu-replete cells. Steady-state uptake rates of Cu-deficient and sufficient cells were light-dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light-stimulated Cu uptake. © 2017 Phycological Society of America.

  6. Copper-Catalyzed Synthesis of Trifluoroethylarenes from Benzylic Bromodifluoroacetates.

    PubMed

    Ambler, Brett R; Zhu, Lingui; Altman, Ryan A

    2015-08-21

    Trifluoroethylarenes are found in a variety of biologically active molecules, and strategies for accessing this substructure are important for developing therapeutic candidates and biological probes. Trifluoroethylarenes can be directly accessed via nucleophilic trifluoromethylation of benzylic electrophiles; however, current catalytic methods do not effectively transform electron-deficient substrates and heterocycles. To address this gap, we report a Cu-catalyzed decarboxylative trifluoromethylation of benzylic bromodifluoroacetates. To account for the tolerance of sensitive functional groups, we propose an inner-sphere mechanism of decarboxylation.

  7. Effect of dietary copper addition on lipid metabolism in rabbits

    PubMed Central

    Lei, Liu; Xiaoyi, Sui; Fuchang, Li

    2017-01-01

    ABSTRACT The present study was conducted to investigate the effect of copper supplementation on lipid metabolism in rabbits. Our study showed dietary copper addition (5-45 mg/kg) increased body mass gain, but decreased fat and liver weights compared with those in the control group (P < 0.05). Copper (45 mg/kg) addition significantly increased the skeletal muscle weight, but inhibited cytoplasmic lipid accumulation in liver, skeletal muscle and adipose tissue (P < 0.05). Compared with the control group, dietary copper addition (45 mg/kg) significantly increased plasma triglyceride levels but decreased very low density lipoprotein levels (P < 0.05). Copper treatment significantly increased gene expression of carnitine palmitoyltransferase (CPT) 1, CPT2 and peroxisome proliferator-activated receptor (PPAR) a in liver (P < 0.05). In skeletal muscle, CPT1, CPT2, fatty acid transport protein, fatty acid-binding protein, and PPARa mRNA as well as phosphorylated AMP-activated protein kinase (AMPK) levels were significantly up-regulated by copper treatment (P < 0.05). Rabbits receiving copper supplementation had higher CPT1, CPT2, PPARa and hormone-sensitive lipase mRNA levels in adipose tissue (P < 0.05). In conclusion, copper promoted skeletal muscle growth and reduced fat accretion. PPARa signaling in liver, skeletal muscle and adipose tissues and AMPK signaling in skeletal muscle tissue were involved in the regulation of lipid metabolism by copper. PMID:28747869

  8. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A.

    PubMed

    Yu, Corey H; Dolgova, Natalia V; Dmitriev, Oleg Y

    2017-04-01

    Copper transporters ATP7A and ATP7B regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. ATP7A and ATP7B belong to the P-type ATPases and share much of the domain architecture and the mechanism of ATP hydrolysis with the other, well-studied, enzymes of this type. A unique structural feature of the copper ATPases is the chain of six cytosolic metal-binding domains (MBDs), which are believed to be involved in copper-dependent regulation of the activity and intracellular localization of these enzymes. Although the structures of all the MBDs have been solved, the mechanism of copper-dependent regulation of ATP7B and ATP7A, the roles of individual MBDs, and the relationship between the regulatory and catalytic copper binding are still unknown. We describe the structure and dynamics of the MBDs, review the current knowledge about their functional roles and propose a mechanism of regulation of ATP7B by copper-dependent changes in the dynamics and conformation of the MBD chain. Transient interactions between the MBDs, rather than transitions between distinct static conformations are likely to form the structural basis of regulation of the ATP-dependent copper transporters in human cells. © 2016 IUBMB Life, 69(4):226-235, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  9. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves.

    PubMed

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Li, Yan; Chen, Li-Song

    2015-11-04

    MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing. Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity. Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.

  10. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications. An evaluation of copper wire bond technology for applicability to spaceflight hardware may be warranted along with concurrently compiling a comprehensive understanding of the failure mechanisms involved with copper wire bonded semiconductor devices.

  11. Copper Reduction and Contact Killing of Bacteria by Iron Surfaces

    PubMed Central

    Mathews, Salima; Kumar, Ranjeet

    2015-01-01

    The well-established killing of bacteria by copper surfaces, also called contact killing, is currently believed to be a combined effect of bacterial contact with the copper surface and the dissolution of copper, resulting in lethal bacterial damage. Iron can similarly be released in ionic form from iron surfaces and would thus be expected to also exhibit contact killing, although essentially no contact killing is observed by iron surfaces. However, we show here that the exposure of bacteria to iron surfaces in the presence of copper ions results in efficient contact killing. The process involves reduction of Cu2+ to Cu+ by iron; Cu+ has been shown to be considerably more toxic to cells than Cu2+. The specific Cu+ chelator, bicinchoninic acid, suppresses contact killing by chelating the Cu+ ions. These findings underline the importance of Cu+ ions in the contact killing process and infer that iron-based alloys containing copper could provide novel antimicrobial materials. PMID:26150470

  12. Recovery of Silver and Gold from Copper Anode Slimes

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu

    2015-02-01

    Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.

  13. Towards the discovery of novel genetic component involved in stress resistance in Arabidopsis thaliana.

    PubMed

    Juraniec, Michal; Lequeux, Hélène; Hermans, Christian; Willems, Glenda; Nordborg, Magnus; Schneeberger, Korbinian; Salis, Pietrino; Vromant, Maud; Lutts, Stanley; Verbruggen, Nathalie

    2014-02-01

    The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess. A Cu(2+) -sensitive mutant named copper modified resistance1 (cmr1) was isolated and a causative mutation in the CMR1 gene was identified by using positional cloning and next-generation sequencing. CMR1 encodes a plant-specific protein of unknown function. The analysis of the cmr1 mutant indicates that the CMR1 protein is required for optimal growth under normal conditions and has an essential role in the stress response. Impairment of the CMR1 activity alters root growth through aberrant activity of the root meristem, and modifies potassium concentration and hormonal balance (ethylene production and auxin accumulation). Our data support a putative role for CMR1 in cell division regulation and meristem maintenance. Research on the role of CMR1 will contribute to the understanding of the plasticity of plants in response to changing environments. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    PubMed Central

    Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing

    2013-01-01

    Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827

  15. Effect of infections and environmental factors on growth and nutritional status in developing countries.

    PubMed

    Bhutta, Zulfiqar Ahmed

    2006-12-01

    Despite numerous advances and improvements in child health globally, malnutrition remains a major problem and underlies a significant proportion of child deaths. A large proportion of the hidden burden of malnutrition is represented by widespread single and multiple micronutrient deficiencies. A number of factors may influence micronutrient deficiencies in developing countries, including poor body stores at birth, dietary deficiencies and high intake of inhibitors of absorption such as phytates and increased losses from the body. Although the effects of poor intake and increased micronutrient demands are well described, the potential effects of acute and chronic infections on the body's micronutrient status are less well appreciated. Even more obscure is the potential effect of immunostimulation and intercurrent infections on the micronutrient distribution and homeostasis. The association therefore of relatively higher rates of micronutrient deficiencies with infectious diseases may be reflective of both increased predisposition to infections in deficient populations as well as a direct effect of the infection itself on micronutrient status indicators. Recently the association of increased micronutrient losses such as those of zinc and copper with acute diarrhea has been recognized and a net negative balance of zinc has been shown in zinc metabolic studies in children with persistent diarrhea. It is also recognized that children with shigellosis can lose a significant amount of vitamin A in the urine, thus further aggravating preexisting subclinical vitamin A deficiency. Given the epidemiological association between micronutrient deficiencies and diarrhea, supplementation strategies in endemic areas are logical. The growing body of evidence on the key role of zinc supplementation in accelerating recovery from diarrheal illnesses in developing countries supports its use in public health strategies.

  16. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems

    PubMed Central

    2018-01-01

    Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed. PMID:29743987

  17. Trace elements: implications for nursing.

    PubMed

    Hayter, J

    1980-01-01

    Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.

  18. Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase.

    PubMed

    Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F; Cao, Xiaohang; Taylor, Alexander B; Whitson, Lisa J; Holloway, Stephen P; Hart, P John; Cabelli, Diane E; Gralla, Edith Butler; Valentine, Joan Selverstone

    2015-01-23

    The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Insights into the Role of the Unusual Disulfide Bond in Copper-Zinc Superoxide Dismutase*

    PubMed Central

    Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F.; Cao, Xiaohang; Taylor, Alexander B.; Whitson, Lisa J.; Holloway, Stephen P.; Hart, P. John; Cabelli, Diane E.; Gralla, Edith Butler; Valentine, Joan Selverstone

    2015-01-01

    The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. PMID:25433341

  20. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood.

    PubMed

    Ognik, Katarzyna; Sembratowicz, Iwona; Cholewińska, Ewelina; Jankowski, Jan; Kozłowski, Krzysztof; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2018-03-01

    The aim of this experiment was to determine what dosage of copper (Cu) nanoparticles, added to a standard dietary supplementation with copper sulfate, would improve antioxidant and immune defense in chickens. The experiment was conducted with 126 broiler chickens assigned to seven treatments with three pens per treatment and six broiler chickens per pen. The basal-diet treatment did not receive Cu nanoparticles (nano-Cu) and as shown by analyses it was Cu-deficient (-29% vs. National Research Council (NRC) recommendations; 5.7 vs. 8 mg/kg). Broiler chickens received nano-Cu (0.5, 1.0 or 1.5 mg/kg body weight per day) via a tube into the crop over three 3-day periods (days 8-10, 22-24 and 36-38) or three 7-day periods (days 8-14, 22-28 and 36-42). As a result, in the nano-Cu-treated broilers the total experimental Cu intake was from -11% to +96% versus NRC recommendations. At the age of 42 days of broilers, their blood indices were determined. The obtained results showed that correction of the deficient basal diet of chickens with nano-Cu to a level of copper exceeding the NRC recommendation by 54% increased the antioxidant potential of the organism and inhibited lipid peroxidation. At the dosage of +96% versus NRC, some symptoms of a deterioration in antioxidant status appeared (a decrease in the level of glutathione plus glutathione disulfide and an increase in superoxide dismutase, catalase and ceruloplasmin activity and in lipid hydroperoxide content). Additionally, +7% versus the recommended Cu dietary level was followed by unfavorable results, indicating a deterioration in red blood cell parameters and stimulation of the immune system (an increase in interleukin-6, immunoglobulin A (IgA), IgM and IgY). To conclude, it was shown that it is possible to simultaneously increase antioxidant and immune defense of chickens by supplementing their diets with nano-Cu - up to 12 mg per bird during 6 weeks of feeding, that is to a level no more than 7% over the NRC recommendation for growing broiler chickens. © 2017 Japanese Society of Animal Science.

  1. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds.

    PubMed

    Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu

    2012-02-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.

  2. Copper Transporter ATP7A Protects Against Endothelial Dysfunction in Type 1 Diabetic Mice by Regulating Extracellular Superoxide Dismutase

    PubMed Central

    Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884

  3. Analysis of Copper-Bearing Rocks and Minerals for Their Metal Content Using Visible Spectroscopy: A First Year Chemistry Laboratory Exploration

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2016-01-01

    General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…

  4. Copper-Zinc Superoxide Dismutase: A Unique Biological "Ligand" for Bioinorganic Studies.

    ERIC Educational Resources Information Center

    Valentine, Joan Selverstone; de Freitas, Duarte Mota

    1985-01-01

    Discusses superoxide dismutase (SOD) research and the properties of copper, zinc (Cu, Zn)-SOD. Emphasizes the controversy concerning the role of Cu,Zn-SOD and other SOD enzymes as protective agents in reactions involving dioxygen metabolism, and the properties of Cu, Zn-SOD that make it an interesting biological ligand for physical studies of…

  5. Cellular and molecular responses of adult zebrafish after exposure to CuO nanoparticles or ionic copper.

    PubMed

    Vicario-Parés, Unai; Lacave, Jose M; Reip, Paul; Cajaraville, Miren P; Orbea, Amaia

    2018-01-01

    Due to their antimicrobial, electrical and magnetic properties, copper nanoparticles (NPs) are suitable for a vast array of applications. Copper can be toxic to biota, making it necessary to assess the potential hazard of copper nanomaterials. Zebrafish (Danio rerio) were exposed to 10 µg Cu/L of CuO NPs of ≈100 nm (CuO-poly) or ionic copper to compare the effects provoked after 3 and 21 days of exposure and at 6 months post-exposure (mpe). At 21 days, significant copper accumulation was only detected in fish exposed to ionic copper. Exposure to both copper forms caused histopathological alterations that could reduce gill functionality, more markedly in the case of ionic copper. Nevertheless, at 6 mpe higher prevalences of gill lesions were detected in fish previously exposed to CuO-poly NPs. No relevant histological alterations were detected in liver, but the lysosomal membrane stability test showed significantly impaired general health status after exposure to both metal forms that lasted up to 6 mpe. 69 transcripts appeared regulated after 3 days of exposure to CuO-poly NPs, suggesting that NPs could produce oxidative stress and reduce metabolism and transport processes. Thirty transcripts were regulated after 21 days of exposure to ionic copper, indicating possible DNA damage. Genes of the circadian clock were identified as the key genes involved in time-dependent differences between the two copper forms. In conclusion, each copper form showed a distinct pattern of liver transcriptome regulation, but both caused gill histopathological alterations and long lasting impaired health status in adult zebrafish.

  6. Metals, toxicity and oxidative stress.

    PubMed

    Valko, M; Morris, H; Cronin, M T D

    2005-01-01

    Metal-induced toxicity and carcinogenicity, with an emphasis on the generation and role of reactive oxygen and nitrogen species, is reviewed. Metal-mediated formation of free radicals causes various modifications to DNA bases, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Lipid peroxides, formed by the attack of radicals on polyunsaturated fatty acid residues of phospholipids, can further react with redox metals finally producing mutagenic and carcinogenic malondialdehyde, 4-hydroxynonenal and other exocyclic DNA adducts (etheno and/or propano adducts). Whilst iron (Fe), copper (Cu), chromium (Cr), vanadium (V) and cobalt (Co) undergo redox-cycling reactions, for a second group of metals, mercury (Hg), cadmium (Cd) and nickel (Ni), the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. Arsenic (As) is thought to bind directly to critical thiols, however, other mechanisms, involving formation of hydrogen peroxide under physiological conditions, have been proposed. The unifying factor in determining toxicity and carcinogenicity for all these metals is the generation of reactive oxygen and nitrogen species. Common mechanisms involving the Fenton reaction, generation of the superoxide radical and the hydroxyl radical appear to be involved for iron, copper, chromium, vanadium and cobalt primarily associated with mitochondria, microsomes and peroxisomes. However, a recent discovery that the upper limit of "free pools" of copper is far less than a single atom per cell casts serious doubt on the in vivo role of copper in Fenton-like generation of free radicals. Nitric oxide (NO) seems to be involved in arsenite-induced DNA damage and pyrimidine excision inhibition. Various studies have confirmed that metals activate signalling pathways and the carcinogenic effect of metals has been related to activation of mainly redox-sensitive transcription factors, involving NF-kappaB, AP-1 and p53. Antioxidants (both enzymatic and non-enzymatic) provide protection against deleterious metal-mediated free radical attacks. Vitamin E and melatonin can prevent the majority of metal-mediated (iron, copper, cadmium) damage both in vitro systems and in metal-loaded animals. Toxicity studies involving chromium have shown that the protective effect of vitamin E against lipid peroxidation may be associated rather with the level of non-enzymatic antioxidants than the activity of enzymatic antioxidants. However, a very recent epidemiological study has shown that a daily intake of vitamin E of more than 400 IU increases the risk of death and should be avoided. While previous studies have proposed a deleterious pro-oxidant effect of vitamin C (ascorbate) in the presence of iron (or copper), recent results have shown that even in the presence of redox-active iron (or copper) and hydrogen peroxide, ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in humans in vitro. Experimental results have also shown a link between vanadium and oxidative stress in the etiology of diabetes. The impact of zinc (Zn) on the immune system, the ability of zinc to act as an antioxidant in order to reduce oxidative stress and the neuroprotective and neurodegenerative role of zinc (and copper) in the etiology of Alzheimer's disease is also discussed. This review summarizes recent findings in the metal-induced formation of free radicals and the role of oxidative stress in the carcinogenicity and toxicity of metals.

  7. Determination of Serum Trace Elements (Zn, Cu, and Fe) in Pakistani Patients with Rheumatoid Arthritis.

    PubMed

    Ullah, Zia; Ullah, Muhammad Ikram; Hussain, Shabbir; Kaul, Haiba; Lone, Khalid P

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, which mainly involves the joints. RA is prevalent worldwide with increasing prevalence in elderly people. The mechanism of RA pathogenesis is still undefined, and it is interplaying between genetic susceptibility and environmental factors. Although risk factors for RA are not fully established, various studies have focused on the role of trace elements in association with RA. Trace elements act as co-factors for most of the enzymes, and their deficiency is associated with many untoward effects on human health. The homeostatic alterations in the metabolism of trace elements may partly be due to inflammatory response in RA. The objective of the present study was to determine the serum concentrations and correlation of zinc, copper, and iron in RA patients and healthy controls. The study comprised of 61 RA patients and 61 age- and sex-related healthy individuals of Pakistani population. Serum levels of Zn, Cu, and Fe were measured in all the participants by atomic absorption spectrophotometer. Serum Zn and Fe were significantly reduced in the RA patients than those in the healthy controls. Serum Cu concentrations were found elevated in the RA patients. Correlation studies of trace elements determine that there was negative correlation between Zn and Cu in the RA patients and no correlation in the control group. It is very important to explore the deficiency of essential trace metals in biological samples of the RA patients in different populations which may be helpful for diagnosis and supplementary management of rheumatoid arthritis patients.

  8. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    PubMed

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  9. Intralesional copper wire retention and pingyangmycin injection: an effective combinational therapy for complex venous malformation in soft tissue.

    PubMed

    Yuan, S-M; Hong, Z-J; Jiang, H-Q; Wang, J; Hu, X-B

    2014-04-01

    Complex venous malformations (VMs) may extensively involve the soft tissue. The treatment remains a challenge till now. Here we introduce a combinational therapy of copper wires and pingyangmycin (bleomycin A5,PYM). Copper wires were retained in VMs by repeated penetration with a straight needle. Subsequently, PYM solution was injected into the lesion. Eight to 10 days later, copper wires were removed. The dressing was changed every day until the puncture pores healed. Magnetic resonance imaging scanning was performed to observe the change of VMs. From January 2001 to December 2011, 56 patients were treated. During the follow-up period, most of the VMs shrunk obviously. The symptoms were relieved or disappeared. The complications included local pain, temporary paraesthesia and moderate fever, which disappeared quickly after the removal of copper wires. This combinational therapy is a safe and effective approach for the complex VMs in soft tissue.

  10. Influence of feedstock on the copper removal capacity of waste-derived biochars.

    PubMed

    Arán, Diego; Antelo, Juan; Fiol, Sarah; Macías, Felipe

    2016-07-01

    Biochar samples were generated by low temperature pyrolysis of different types of waste. The physicochemical characteristics of the different types of biochar affected the copper retention capacity, by determining the main mechanism involved. The capacity of the biochar to retain copper present in solution depended on the size of the inorganic fraction and varied in the following order: rice biochar>chicken manure biochar>olive mill waste biochar>acacia biochar>eucalyptus biochar>corn cob biochar. The distribution of copper between the forms bound to solid biochar, dissolved organic matter and free organic matter in solution also depended on the starting material. However, the effect of pH on the adsorption capacity was independent of the nature of the starting material, and the copper retention of all types of biochar increased with pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    PubMed

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dehalogenation potential of municipal waste incineration fly ash. I. General principles.

    PubMed

    Pekárek, Vladimír; Karban, Jindrich; Fiserová, Eva; Bures, Michal; Pacáková, Vera; Vecerníková, Eva

    2003-01-01

    It is well known that the fly ash from filters of municipal waste incinerators (MWI-FA) shows dehalogenation properties after heating it to 240-450 degrees C. However, this property is not general, and fly ash samples do not possess dehalogenation ability at all in many cases. Fly ash has a very variable composition, and the state of the fly ash matter therefore plays the decisive role. In the present paper, the function of important components responsible for the dehalogenation activity of MWI-FA is analysed and compared with the model fly ash. With the aim of accounting for the dehalogenation activity of MWI-FA, the following studies of hexachlorobenzene (HCB) dechlorination were performed: The role of copper in dehalogenation experiments was evaluated for five types of metallic copper. The gasification of carbon in MWI-FA was studied in the 250-350 degrees C temperature range. Five different kinds of carbon were used, combined with conventional Cu(o) and activated nanosize copper powder. The dechlorination experiments were also carried out with Cu(II) compounds such as CuO, Cu(OH)2, CuCl2 and CuSO4. The results were discussed from the standpoint of thermodynamics of potential reactions. Based on these results, the model of fly ash was proposed, containing silica gel, metallic copper and carbon. The dechlorination ability of MWI-FA and the model fly ash are compared under oxygen-deficient atmosphere. The results show that, under given experimental conditions, copper acts in the dechlorination as a stoichiometric agent rather than as a catalyst. The increased surface activity of copper enhances its dechlorination activity. It was found further that the presence of copper leads to a decrease in the temperature of carbon gasification. The cyclic valence change from Cu(o) to Cu+ or Cu2+ is a prerequisite for the dehalogenation to take place. Thermodynamic analysis of the dechlorination effect, as well as the comparison of dechlorination pathways on MWI-FA and model fly ash, can provide a deeper understanding of the studied reaction.

  13. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. [ELEMENTAL STATUS OF PATIENTS WITH VARIOUS FORMS OF VITILIGO].

    PubMed

    Tsiskarishvili, N I; Katsitadze, A; Tsiskarishvili, N V; Charischarishvili, I

    2017-12-01

    Vitiligo is a multifactorial disease in which, in each specific case of its manifestation, different mechanisms of its pathogenesis and different levels of melanin formation in the skin can be involved. Skin is one of the most metabolically active organs. Carrying out a number of vital functions (barrier, protective, respiratory, excretory, metabolic, immune, etc.), it needs microelementss. Of the 92 naturally occurring chemical elements, 81 are found in the human body. Lack of the vital elements, leads to the emergence of diseases, which are based on deficiency, excess or imbalance of micro- and macroelements in the body. To assess the elemental status of patients with various forms of vitiligo, fluorescent x-ray spectroscopy was used. The method has good informativeness, since the hair most fully reflects the level of content of both toxic and vital elements. According to the results obtained, in patients with segmental vitiligo, a slight decrease in the content of manganese and copper was detected in the hair. In the group of patients with non-segmental form of vitiligo, along with a significant decrease in the concentration of basic elements (on average from 20 to 50%) copper, manganese, selenium, zinc, there was an increase in the indices of such toxic elements as lead and cadmium. The data of multi-element hair analysis, as are confirmed by well-known information about the role of certain chemical elements in the pathogenesis of vitiligo, also allow us to make new assumptions about the possible relationship between the violation of the microelement balance of the organism with the emergence and peculiarity of the flow of various forms of vitiligo. The correct approach to understanding the mechanisms of the emergence of vitiligo, will allow to offer new effective schemes for the treatment of vitiligo.

  15. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    PubMed

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P < 0.05). Notably, only rats that accumulated high levels of Cu in liver had lower erythrocyte CCS (47% reduction, P < 0.05) compared to rats fed normal levels of Cu. Together, these data indicate that decreased erythrocyte CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  16. Zinc and Copper Metabolism and Risk of Autism: a reply to Sayehmiri et al.

    PubMed

    Fluegge Ba, Keith

    2017-01-01

    Sayehmiri et al. recently conducted a meta-analysis to explore the relationship between zinc and copper metabolism and autism spectrum disorders (ASD). Recent reports have elucidated a full behavioral profile of mice exposed to prenatal zinc deficiency and documented a phenotype similar to that found in autism spectrum disorders (ASD). These studies suggest that significant alterations in Zn metabolism may be an important nutritional component in the development of ASD. The idea that prenatal zinc deficiency may be to blame is cursorily challenged. Epidemiological studies show that high-income countries with a low estimated prevalence of inadequate zinc intake report the highest prevalence of ASD. Consistent with other reports indicating a link between air pollution and ASD, it has recently been proposed that use of the herbicide, glyphosate, in agriculture may serve as an instrumental variable in predicting later neurodevelopmental impairment via emissions of the agricultural air pollutant, nitrous oxide (N2O). Work in anesthesiology has demonstrated the neurological effects from subanesthetic doses of N2O, including its inhibition of the alpha 7 nicotinic acetylcholine receptor (α7), a receptor coupled to both central nitric oxide (NO) metabolism and peripheral anti-inflammation. This correspondence explores how the aforementioned nutritional phenotypes found by Sayehmiri et al. in their systematic review may be a compensatory mechanism to counter the effects (namely, α7 inhibition) of air pollutant exposures occurring during the most critical stages of fetal development.

  17. Comparative Investigation of Copper Tolerance and Identification of Putative Tolerance Related Genes in Tardigrades

    PubMed Central

    Hygum, Thomas L.; Fobian, Dannie; Kamilari, Maria; Jørgensen, Aslak; Schiøtt, Morten; Grosell, Martin; Møbjerg, Nadja

    2017-01-01

    Tardigrades are microscopic aquatic animals renowned for their tolerance toward extreme environmental conditions. The current study is the first to investigate their tolerance toward heavy metals and we present a novel tardigrade toxicant tolerance assay based on activity assessments as a measure of survival. Specifically, we compare tolerance toward copper in four species representing different evolutionary lineages, habitats and adaptation strategies, i.e., a marine heterotardigrade, Echiniscoides sigismundi, a limno-terrestrial heterotardigrade, Echiniscus testudo, a limno-terrestrial eutardigrade, Ramazzottius oberhaeuseri, and a marine eutardigrade, Halobiotus crispae. The latter was sampled at a time of year, when the population is predominantly represented by aberrant P1 cysts, while the other species were in normal active states prior to exposure. Based on volume measurements and a general relation between body mass and copper tolerance, expected tardigrade EC50 values were estimated at 0.5–2 μg l−1. Following 24 h of exposure, tolerance was high with no apparent link to lineage or habitat. EC50s (95% CI), 24 h after exposure, were estimated at 178 (168–186) and 310 (295–328) μg l−1, respectively, for E. sigismundi and R. oberhaeuseri, whereas E. testudo and H. crispae were less affected. Highest tolerance was observed in H. crispae with a mean ± s.e.m. activity of 77 ± 2% (n = 3) 24 h after removal from ~3 mg l−1 copper, suggesting that tardigrade cysts have increased tolerance toward toxicants. In order to identify putative tolerance related genes, an E. sigismundi transcriptome was searched for key enzymes involved in osmoregulation, antioxidant defense and copper metabolism. We found high expression of Na/K ATPase and carbonic anhydrase, known targets for copper. Our transcriptome, furthermore, revealed high expression of antioxidant enzymes, copper transporters, ATOX1, and a Cu-ATPase. In summary, our results indicate that tardigrades express well-known key osmoregulatory enzymes, supporting the hypothesis that copper inhibits sodium turnover as demonstrated for other aquatic organisms. Tardigrades, nevertheless, have high tolerance toward the toxicant, which is likely linked to high expression of antioxidant enzymes and an ability to enter dormant states. Tardigrades, furthermore, seem to have a well-developed battery of cuproproteins involved in copper homeostasis, providing basis for active copper sequestering and excretion. PMID:28293195

  18. Comparative Investigation of Copper Tolerance and Identification of Putative Tolerance Related Genes in Tardigrades.

    PubMed

    Hygum, Thomas L; Fobian, Dannie; Kamilari, Maria; Jørgensen, Aslak; Schiøtt, Morten; Grosell, Martin; Møbjerg, Nadja

    2017-01-01

    Tardigrades are microscopic aquatic animals renowned for their tolerance toward extreme environmental conditions. The current study is the first to investigate their tolerance toward heavy metals and we present a novel tardigrade toxicant tolerance assay based on activity assessments as a measure of survival. Specifically, we compare tolerance toward copper in four species representing different evolutionary lineages, habitats and adaptation strategies, i.e., a marine heterotardigrade, Echiniscoides sigismundi , a limno-terrestrial heterotardigrade, Echiniscus testudo , a limno-terrestrial eutardigrade, Ramazzottius oberhaeuseri , and a marine eutardigrade, Halobiotus crispae . The latter was sampled at a time of year, when the population is predominantly represented by aberrant P1 cysts, while the other species were in normal active states prior to exposure. Based on volume measurements and a general relation between body mass and copper tolerance, expected tardigrade EC50 values were estimated at 0.5-2 μg l -1 . Following 24 h of exposure, tolerance was high with no apparent link to lineage or habitat. EC50s (95% CI), 24 h after exposure, were estimated at 178 (168-186) and 310 (295-328) μg l -1 , respectively, for E. sigismundi and R. oberhaeuseri , whereas E. testudo and H. crispae were less affected. Highest tolerance was observed in H. crispae with a mean ± s.e.m . activity of 77 ± 2% ( n = 3) 24 h after removal from ~3 mg l -1 copper, suggesting that tardigrade cysts have increased tolerance toward toxicants. In order to identify putative tolerance related genes, an E. sigismundi transcriptome was searched for key enzymes involved in osmoregulation, antioxidant defense and copper metabolism. We found high expression of Na/K ATPase and carbonic anhydrase, known targets for copper. Our transcriptome, furthermore, revealed high expression of antioxidant enzymes, copper transporters, ATOX1, and a Cu-ATPase. In summary, our results indicate that tardigrades express well-known key osmoregulatory enzymes, supporting the hypothesis that copper inhibits sodium turnover as demonstrated for other aquatic organisms. Tardigrades, nevertheless, have high tolerance toward the toxicant, which is likely linked to high expression of antioxidant enzymes and an ability to enter dormant states. Tardigrades, furthermore, seem to have a well-developed battery of cuproproteins involved in copper homeostasis, providing basis for active copper sequestering and excretion.

  19. The neurologic significance of celiac disease biomarkers

    PubMed Central

    Lennon, Vanda A.; Pittock, Sean J.; Kryzer, Thomas J.; Murray, Joseph

    2014-01-01

    Objective: To report neurologic phenotypes and their etiologies determined among 68 patients with either (1) celiac disease (CD) or (2) no CD, but gliadin antibody positivity (2002–2012). Methods: Neurologic patients included both those with the CD-prerequisite major histocompatibility complex class II human leukocyte antigen (HLA)-DQ2/DQ8 haplotype, and those without. The 3 groups were as follows: group 1 (n = 44), CD or transglutaminase (Tg)-2/deamidated gliadin immunoglobulin (Ig)A/IgG detected; group 2 (n = 15), HLA-DQ2/DQ8 noncarriers, and gliadin IgA/IgG detected; and group 3 (n = 9), HLA-DQ2/DQ8 carriers, and gliadin IgA/IgG detected. Neurologic patients and 21 nonneurologic CD patients were evaluated for neural and Tg6 antibodies. Results: In group 1, 42 of 44 patients had CD. Neurologic phenotypes (cerebellar ataxia, 13; neuropathy, 11; dementia, 8; myeloneuropathy, 5; other, 7) and causes (autoimmune, 9; deficiencies of vitamin E, folate, or copper, 6; genetic, 6; toxic or metabolic, 4; unknown, 19) were diverse. In groups 2 and 3, 21 of 24 patients had cerebellar ataxia; none had CD. Causes of neurologic disorders in groups 2 and 3 were diverse (autoimmune, 4; degenerative, 4; toxic, 3; nutritional deficiency, 1; other, 2; unknown, 10). One or more neural-reactive autoantibodies were detected in 10 of 68 patients, all with autoimmune neurologic diagnoses (glutamic acid decarboxylase 65 IgG, 4; voltage-gated potassium channel complex IgG, 3; others, 5). Tg6-IgA/IgG was detected in 7 of 68 patients (cerebellar ataxia, 3; myelopathy, 2; ataxia and parkinsonism, 1; neuropathy, 1); the 2 patients with myelopathy had neurologic disorders explained by malabsorption of copper, vitamin E, and folate rather than by neurologic autoimmunity. Conclusions: Our data support causes alternative to gluten exposure for neurologic dysfunction among most gliadin antibody–positive patients without CD. Nutritional deficiency and coexisting autoimmunity may cause neurologic dysfunction in CD. PMID:25261501

  20. Hepatic concentrations of copper and other metals in dogs with and without chronic hepatitis.

    PubMed

    Cedeño, Y; López-Alonso, M; Miranda, M

    2016-12-01

    Defects in copper metabolism have been described in several dog breeds, and recently, it has been suggested that changes in other essential trace elements could be involved in the pathogenesis of hepatic disease. This study measured hepatic copper accumulation and its interactions with other essential trace and toxic metals in dogs diagnosed with chronic hepatitis. Liver samples of 20 chronic hepatitis and 20 healthy dogs were collected. Samples were acid digested, and essential metals (cobalt, copper, iron, manganese, molibdenum, selenium and zinc) and toxic metals (arsenic, cadmium, mercury and lead) were analysed by inductively-coupled plasma mass spectrometry. Copper concentrations were significantly higher in dogs affected by hepatic disease than in controls. Dogs having chronic hepatitis with liver copper concentration greater than 100 mg/kg wet weight showed statistically higher cobalt, manganese and zinc concentrations than dogs having chronic hepatitis with liver copper concentrations less than 100 mg/kg wet weight and controls. Toxic metal concentrations were low - in all cases below the threshold associated with toxicity in dogs. Dogs with chronic hepatitis not only have increased concentrations of copper in the liver but also increased concentrations of cobalt, manganese and zinc; measurement of these elements may perhaps aid in diagnosis of liver disease in dogs. © 2016 British Small Animal Veterinary Association.

  1. Lack of Involvement of Fenton Chemistry in Death of Methicillin-Resistant and Methicillin-Sensitive Strains of Staphylococcus aureus and Destruction of Their Genomes on Wet or Dry Copper Alloy Surfaces

    PubMed Central

    2016-01-01

    The pandemic of hospital-acquired infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has declined, but the evolution of strains with enhanced virulence and toxins and the increase of community-associated infections are still a threat. In previous studies, 107 MRSA bacteria applied as simulated droplet contamination were killed on copper and brass surfaces within 90 min. However, contamination of surfaces is often via finger tips and dries rapidly, and it may be overlooked by cleaning regimes (unlike visible droplets). In this new study, a 5-log reduction of a hardy epidemic strain of MRSA (epidemic methicillin-resistant S. aureus 16 [EMRSA-16]) was observed following 10 min of contact with copper, and a 4-log reduction was observed on copper nickel and cartridge brass alloys in 15 min. A methicillin-sensitive S. aureus (MSSA) strain from an osteomyelitis patient was killed on copper surfaces in 15 min, and 4-log and 3-log reductions occurred within 20 min of contact with copper nickel and cartridge brass, respectively. Bacterial respiration was compromised on copper surfaces, and superoxide was generated as part of the killing mechanism. In addition, destruction of genomic DNA occurs on copper and brass surfaces, allaying concerns about horizontal gene transfer and copper resistance. Incorporation of copper alloy biocidal surfaces may help to reduce the spread of this dangerous pathogen. PMID:26826226

  2. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-02-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux-resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ~3 × 10(-16) ). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-01-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960

  4. Determination of factors responsible for the bioweathering of copper minerals from organic-rich copper-bearing Kupferschiefer black shale.

    PubMed

    Włodarczyk, Agnieszka; Szymańska, Agata; Skłodowska, Aleksandra; Matlakowska, Renata

    2016-04-01

    The aim of this study was to investigate the bioweathering of copper minerals present in the alkaline, copper-bearing and organic-rich Kupferschiefer black shale through the action of a consortium of indigenous lithobiontic, heterotrophic, neutrophilic bacteria isolated from this sedimentary rock. The involvement of microorganisms in the direct/enzymatic bioweathering of fossil organic matter of the rock was confirmed. As a result of bacterial activity, a spectrum of various organic compounds such as urea and phosphoric acid tributyl ester were released from the rock. These compounds indirectly act on the copper minerals occurring in the rock and cause them to weather. This process was reflected in the mobilization of copper, iron and sulfur and in changes in the appearance of copper minerals observed under reflected light. The potential role of identified enzymes in biodegradation of fossil organic matter and role of organic compounds released from black shale as a result of this process in copper minerals weathering was discussed. The presented results provide a new insight into the role of chemical compounds released by bacteria during fossil organic matter bioweathering potentially important in the cycling of copper and iron deposited in the sedimentary rock. The originality of the described phenomenon lies in the fact that the bioweathering of fossil organic matter and, consequently, of copper minerals occur simultaneously in the same environment, without any additional sources of energy, electrons and carbon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Neutropenia restores virulence to an attenuated Cu,Zn superoxide dismutase-deficient Haemophilus ducreyi strain in the swine model of chancroid.

    PubMed

    San Mateo, L R; Toffer, K L; Orndorff, P E; Kawula, T H

    1999-10-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu, Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host.

  6. Neutropenia Restores Virulence to an Attenuated Cu,Zn Superoxide Dismutase-Deficient Haemophilus ducreyi Strain in the Swine Model of Chancroid

    PubMed Central

    San Mateo, Lani R.; Toffer, Kristen L.; Orndorff, Paul E.; Kawula, Thomas H.

    1999-01-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu,Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host. PMID:10496915

  7. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4) and H(2)SO(4) promoted bioleaching in the soils and can be employed ex situ to remediate copper-impacted soils.

  8. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium

    Treesearch

    Amber Vanden Wymelenberg; Grzegorz Sabat; Michael Mozuch; Philip J. Kersten; Dan Cullen; Robert A. Blanchette

    2006-01-01

    The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences...

  9. An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field

    PubMed Central

    Xiang, Jin Yu; Ponder, Jay W.

    2014-01-01

    An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model fragments of amino acid residues involved in the copper binding sites of type 1 copper proteins. Molecular dynamics (MD) simulations were performed on aqueous copper (II) ion at various temperatures, as well as plastocyanin (1AG6) and azurin (1DYZ). Results demonstrated that the AMOEBA-AOM significantly improves the accuracy of classical MM in a number of test cases when compared to ab initio calculations. The Jahn-Teller distortion for hexa-aqua copper (II) complex was handled automatically without specifically designating axial and in-plane ligands. Analyses of MD trajectories resulted in a 6-coordination first solvation shell for aqueous copper (II) ion and a 1.8ns average residence time of water molecules. The ensemble average geometries of 1AG6 and 1DYZ copper binding sites were in general agreement with X-ray and previous computational studies. PMID:25045338

  10. Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency.

    PubMed

    Kobayashi, Masahiro; Kato, Hiroki; Hada, Hiroshi; Itoh-Nakadai, Ari; Fujiwara, Tohru; Muto, Akihiko; Inoguchi, Yukihiro; Ichiyanagi, Kenji; Hojo, Wataru; Tomosugi, Naohisa; Sasaki, Hiroyuki; Harigae, Hideo; Igarashi, Kazuhiko

    2017-03-01

    Iron plays the central role in oxygen transport by erythrocytes as a constituent of heme and hemoglobin. The importance of iron and heme is also to be found in their regulatory roles during erythroblast maturation. The transcription factor Bach1 may be involved in their regulatory roles since it is deactivated by direct binding of heme. To address whether Bach1 is involved in the responses of erythroblasts to iron status, low iron conditions that induced severe iron deficiency in mice were established. Under iron deficiency, extensive gene expression changes and mitophagy disorder were induced during maturation of erythroblasts. Bach1 -/- mice showed more severe iron deficiency anemia in the developmental phase of mice and a retarded recovery once iron was replenished when compared with wild-type mice. In the absence of Bach1, the expression of globin genes and Hmox1 (encoding heme oxygenase-1) was de-repressed in erythroblasts under iron deficiency, suggesting that Bach1 represses these genes in erythroblasts under iron deficiency to balance the levels of heme and globin. Moreover, an increase in genome-wide DNA methylation was observed in erythroblasts of Bach1 -/- mice under iron deficiency. These findings reveal the principle role of iron as a regulator of gene expression in erythroblast maturation and suggest that the iron-heme-Bach1 axis is important for a proper adaptation of erythroblast to iron deficiency to avoid toxic aggregates of non-heme globin. Copyright© Ferrata Storti Foundation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enablemore » cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.« less

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Background information, procedures, and typical results obtained are provided for two demonstrations. The first involves the colorful complexes of copper(II). The second involves reverse-phase separation of Food, Drug, and Cosmetic (FD & C) dyes using a solvent gradient. (JN)

  13. [Dietary reference intakes of trace elements for Japanese and problems in clinical fields].

    PubMed

    Inoue, Yoshifumi

    2016-07-01

    In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.

  14. Impact of vegetarian diet on serum immunoglobulin levels in children.

    PubMed

    Gorczyca, Daiva; Prescha, Anna; Szeremeta, Karolina

    2013-03-01

    Nutrition plays an important role in immune response. We evaluated the effect of nutrient intake on serum immunoglobulin levels in vegetarian and omnivore children. Serum immunoglobulin levels and iron status were estimated in 22 vegetarian and 18 omnivore children. Seven-day food records were used to assess the diet. There were no significant differences in serum IgA, IgM, and IgG levels between groups of children. Serum immunoglobulin levels were lower in vegetarian children with iron deficiency in comparison with those without iron deficiency. In the vegetarians, IgG level correlated positively with energy, zinc, copper, and vitamin B(6) intake. In the omnivores, these correlations were stronger with IgM level. Despite negligible differences in serum immunoglobulin levels between vegetarian and omnivore children, the impact of several nutrient intakes on IgM and IgG levels differed between groups. Low iron status in vegetarian children can lead to decreased immunoglobulin levels.

  15. Trace Mineral Micronutrients and Chronic Periodontitis-a Review.

    PubMed

    Gaur, Sumit; Agnihotri, Rupali

    2017-04-01

    Trace mineral micronutrients are imperative for optimum host response. Populations worldwide are prone to their insufficiency owing to lifestyle changes or poor nutritional intake. Balanced levels of trace minerals like iron (Fe), zinc (Zn), selenium (Se) and copper (Cu) are essential to prevent progression of chronic conditions like periodontitis. Their excess as well as deficiency is detrimental to periodontal health. This is specifically true in relation to Fe. Furthermore, some trace elements, e.g. Se, Zn and Cu are integral components of antioxidant enzymes and prevent reactive oxygen species induced destruction of tissues. Their deficiency can worsen periodontitis associated with systemic conditions like diabetes mellitus. With this background, the present review first focusses on the role of four trace minerals, namely, Fe, Zn, Se and Cu in periodontal health followed by an appraisal of the data from case control studies related to their association with chronic periodontitis.

  16. Enhanced thermoelectric performance in ternary spinel Cu4Mn2Te4via the synergistic effect of tellurium deficiency and chlorine doping.

    PubMed

    Chen, Hong; Lin, Hua; Liu, Yi; Wu, Xin-Tao; Wu, Li-Ming

    2017-11-07

    The chemistry of copper-based chalcogenides has received considerable attention due to their diverse structures and potential applications in the area of thermoelectric (TE) materials. In this communication, a series of spinel-type Cu 4 Mn 2 Te 4 -based samples have been successfully prepared and their high TE performances are attributed to the enhanced power factor and low thermal conductivity via the synergistic effect of Te deficiency and Cl doping. Consequently, a maximum TE figure of merit (ZT) of ∼0.4 was achieved for the Cu 4 Mn 2 Te 3.93 Cl 0.03 sample at 700 K, which was about 100% enhanced in comparison with the undoped Cu 4 Mn 2 Te 4 sample and one of the highest ZT values reported for p-type spinel tellurides.

  17. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    PubMed

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. Copyright © 2017 American Society for Microbiology.

  18. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli

    PubMed Central

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin

    2017-01-01

    ABSTRACT While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they are under aerobic conditions. Under anaerobic conditions, E. coli cells accumulate excess intracellular copper, which specifically targets iron-sulfur proteins by blocking iron-sulfur cluster biogenesis. Since iron-sulfur proteins are involved in diverse and vital physiological processes, inhibition of iron-sulfur cluster biogenesis by copper disrupts multiple cellular functions and ultimately inhibits cell growth. The results from this study illustrate a new interplay between intracellular copper toxicity and iron-sulfur cluster biogenesis in bacterial cells under anaerobic conditions. PMID:28576762

  19. Colloidal and electrochemical aspects of copper-CMP

    NASA Astrophysics Data System (ADS)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  20. Controlled synthesis of carbon-encapsulated copper nanostructures by using smectite clays as nanotemplates.

    PubMed

    Tsoufis, Theodoros; Colomer, Jean-François; Maccallini, Enrico; Jankovič, Lubos; Rudolf, Petra; Gournis, Dimitrios

    2012-07-23

    Rhomboidal and spherical metallic-copper nanostructures were encapsulated within well-formed graphitic shells by using a simple chemical method that involved the catalytic decomposition of acetylene over a copper catalyst that was supported on different smectite clays surfaces by ion-exchange. These metallic-copper nanostructures could be separated from the inorganic support and remained stable for months. The choice of the clay support influenced both the shape and the size of the synthesized Cu nanostructures. The synthesized materials and the supported catalysts from which they were produced were studied in detail by TEM and SEM, powder X-ray diffraction, thermal analysis, as well as by Raman and X-ray photoelectron spectroscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  2. Effects of preoperative oral carbohydrates and trace elements on perioperative nutritional status in elective surgery patients.

    PubMed

    Oyama, Yoshimasa; Iwasaka, Hideo; Shiihara, Keisuke; Hagiwara, Satoshi; Kubo, Nobuhiro; Fujitomi, Yutaka; Noguchi, Takayuki

    2011-10-01

    In order to enhance postoperative recovery, preoperative consumption of carbohydrate (CHO) drinks has been used to suppress metabolic fluctuations. Trace elements such as zinc and copper are known to play an important role in postoperative recovery. Here, we examined the effects of preoperatively consuming a CHO drink containing zinc and copper. Subjects were 122 elective surgery patients divided into two groups (overnight fasting and CHO groups); each group was further divided into morning or afternoon surgery groups. Subjects in the CHO group consumed 300 mL of a CHO drink the night before surgery, followed by 200 ml before morning surgery or 700 ml before afternoon surgery (> or =2 hours before anesthesia induction). Blood levels of glucose, nonesterified fatty acids (NEFA), retinol-binding protein, zinc, and copper were determined. One subject in the CHO group was excluded after refusing the drink. There were no adverse effects from the CHO drink. NEFA levels increased in the fasting groups. Although zinc levels increased in the CHO group immediately after anesthesia induction, no group differences were observed the day after surgery. Preoperative consumption of a CHO drink containing trace elements suppressed preoperative metabolic fluctuations without complications and prevented trace element deficiency. Further beneficial effects during the perioperative period can be expected by adding trace elements to CHO supplements.

  3. Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutation rates in vivo.

    PubMed

    Schweigert, N; Belkin, S; Leong-Morgenthaler, P; Zehnder, A J; Eggen, R I

    1999-01-01

    Chlorocatechols introduced into the environment directly or as a result of degradation processes are highly toxic, particularly when combined with heavy metals. With in vitro DNA degradation assays, the high reactivity of chlorocatechols combined with heavy metals could be shown, whereby copper was shown to be more active than iron. Structure-activity analysis showed that the degradation potential of the chlorocatechols decreased with an increasing number of chloratoms. The addition of reactive oxygen species scavengers allowed the identification of hydrogen peroxide as an important agent leading to DNA damage in this reaction. The potential of other reactive compounds, however, can neither be determined nor excluded with this approach. Exposure of Escherichia coli and Salmonella typhimurium cultures to the same mixtures of chlorocatechols and copper surprisingly did not lead to an enhanced mutation rate. This phenomenon was explained by doing marker gene expression measurements and toxicity tests with E. coli mutants deficient in oxidative stress defense or DNA repair. In catechol-copper-exposed cultures an increased peroxide level could indeed be demonstrated, but the highly efficient defense and repair systems of E. coli avoid the phenotypical establishment of mutations. Increased mutation rates under chronic exposure, however, cannot be excluded.

  4. Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer's disease.

    PubMed

    Cooper, Garth J S

    2011-07-09

    This article reviews recent evidence, much of which has been generated by my group's research programme, which has identified for the first time a previously unknown copper-overload state that is central to the pathogenesis of diabetic organ damage. This state causes tissue damage in the blood vessels, heart, kidneys, retina and nerves through copper-mediated oxidative stress. This author now considers this copper-overload state to provide an important new target for therapeutic intervention, the objective of which is to prevent or reverse the diabetic complications. Triethylenetetramine (TETA) has recently been identified as the first in a new class of anti-diabetic molecules through the original work reviewed here, thus providing a new use for this molecule, which was previously approved by the US FDA in 1985 as a second-line treatment for Wilson's disease. TETA acts as a highly selective divalent copper (Cu(II)) chelator that prevents or reverses diabetic copper overload, thereby suppressing oxidative stress. TETA treatment of diabetic animals and patients has identified and quantified the interlinked defects in copper metabolism that characterize this systemic copper overload state. Copper overload in diabetes mellitus differs from that in Wilson's disease through differences in their respective causative molecular mechanisms, and resulting differences in tissue localization and behaviour of the excess copper. Elevated pathogenetic tissue binding of copper occurs in diabetes. It may well be mediated by advanced-glycation endproduct (AGE) modification of susceptible amino-acid residues in long-lived fibrous proteins, for example, connective tissue collagens in locations such as blood vessel walls. These AGE modifications can act as localized, fixed endogenous chelators that increase the chelatable-copper content of organs such as the heart and kidneys by binding excessive amounts of catalytically active Cu(II) in specific vascular beds, thereby focusing the related copper-mediated oxidative stress in susceptible tissues. In this review, summarized evidence from our clinical studies in healthy volunteers and diabetic patients with left-ventricular hypertrophy, and from nonclinical models of diabetic cardiac, arterial, renal and neural disease is used to construct descriptions of the mechanisms by which TETA treatment prevents injury and regenerates damaged organs. Our recent phase II proof-of-principle studies in patients with type 2 diabetes and in nonclinical models of diabetes have helped to define the pathogenetic defects in copper regulation, and have shown that they are reversible by TETA. The drug tightly binds and extracts excess systemic Cu(II) into the urine whilst neutralizing its catalytic activity, but does not cause systemic copper deficiency, even after prolonged use. Its physicochemical properties, which are pivotal for its safety and efficacy, clearly differentiate it from all other clinically available transition metal chelators, including D-penicillamine, ammonium tetrathiomolybdate and clioquinol. The studies reviewed here show that TETA treatment is generally effective in preventing or reversing diabetic organ damage, and support its ongoing development as a new medicine for diabetes. Trientine (TETA dihydrochloride) has been used since the mid-1980s as a second-line treatment for Wilson's disease, and our recent clinical studies have reinforced the impression that it is likely to be safe for long-term use in patients with diabetes and related metabolic disorders. There is substantive evidence to support the view that diabetes shares many pathogenetic mechanisms with Alzheimer's disease and vascular dementia. Indeed, the close epidemiological and molecular linkages between them point to Alzheimer's disease/vascular dementia as a further therapeutic target where experimental pharmacotherapy with TETA could well find further clinical application.

  5. Transcriptional Response of the Mussel Mytilus galloprovincialis (Lam.) following Exposure to Heat Stress and Copper

    PubMed Central

    Negri, Alessandro; Oliveri, Catherina; Sforzini, Susanna; Mignione, Flavio; Viarengo, Aldo; Banni, Mohamed

    2013-01-01

    Global warming is a major factor that may affect biological organization, especially in marine ecosystems and in coastal areas that are particularly subject to anthropogenic pollution. We evaluated the effects of simultaneous changes in temperature and copper concentrations on lysosomal membrane stability (N-acetyl-hexosaminidase activity) and malondialdehyde accumulation (MDA) in the gill of the blue mussel Mytilus galloprovincialis (Lam.). Temperature and copper exerted additive effects on lysosomal membrane stability, exacerbating the toxic effects of metal cations present in non-physiological concentrations. Mussel lysosomal membrane stability is known to be positively related to scope for growth, indicating possible effects of increasing temperature on mussel populations in metal-polluted areas. To clarify the molecular response to environmental stressors, we used a cDNA microarray with 1,673 sequences to measure the relative transcript abundances in the gills of mussels exposed to copper (40 µg/L) and a temperature gradient (16°C, 20°C, and 24°C). In animals exposed only to heat stress, hierarchical clustering of the microarray data revealed three main clusters, which were largely dominated by down-regulation of translation-related differentially expressed genes, drastic up-regulation of protein folding related genes, and genes involved in chitin metabolism. The response of mussels exposed to copper at 24°C was characterized by an opposite pattern of the genes involved in translation, most of which were up-regulated, as well as the down-regulation of genes encoding heat shock proteins and “microtubule-based movement” proteins. Our data provide novel information on the transcriptomic modulations in mussels facing temperature increases and high copper concentrations; these data highlight the risk of marine life exposed to toxic chemicals in the presence of temperature increases due to climate change. PMID:23825565

  6. Cox17 Protein Is an Auxiliary Factor Involved in the Control of the Mitochondrial Contact Site and Cristae Organizing System.

    PubMed

    Chojnacka, Magdalena; Gornicka, Agnieszka; Oeljeklaus, Silke; Warscheid, Bettina; Chacinska, Agnieszka

    2015-06-12

    The mitochondrial contact site and cristae organizing system (MICOS) is a recently discovered protein complex that is crucial for establishing and maintaining the proper inner membrane architecture and contacts with the outer membrane of mitochondria. The ways in which the MICOS complex is assembled and its integrity is regulated remain elusive. Here, we report a direct link between Cox17, a protein involved in the assembly of cytochrome c oxidase, and the MICOS complex. Cox17 interacts with Mic60, thereby modulating MICOS complex integrity. This interaction does not involve Sco1, a partner of Cox17 in transferring copper ions to cytochrome c oxidase. However, the Cox17-MICOS interaction is regulated by copper ions. We propose that Cox17 is a newly identified factor involved in maintaining the architecture of the MICOS complex. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation.

    PubMed

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Jianping; Lin, Sheng; Wang, Jianfeng; Lin, Wenxiong; Xu, Weifeng

    2017-04-01

    DELLA proteins positively regulate nitrogen deficiency-induced anthocyanin accumulation through directly interaction with PAP1 to enhance its transcriptional activity on anthocyanin biosynthetic gene expressions. Plants can survive a limiting nitrogen supply by undergoing adaptive responses, including induction of anthocyanin production. However, the detailed mechanism is still unclear. In this study, we found that this process was impaired and enhanced, respectively, by exogenous GA 3 (an active form of GAs) and paclobutrazol (PAC, a specific GA biosynthesis inhibitor) in Arabidopsis seedlings. Consistently, the nitrogen deficiency-induced transcript levels of several key genes involved in anthocyanin biosynthesis, including F3'H, DFR, LDOX, and UF3GT, were decreased and enhanced by exogenous GA 3 and PAC, respectively. Moreover, the nitrogen deficiency-induced anthocyanin accumulation and biosynthesis gene expressions were impaired in the loss-of-function mutant gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 (della) but enhanced in the GA-insensitive mutant gai, suggesting that DELLA proteins, known as repressors of GA signaling, are necessary for fully induction of nitrogen deficiency-driven anthocyanin biosynthesis. Using yeast two-hybrid (Y2H) assay, pull-down assay, and luciferase complementation assay, it was found that RGA, a DELLA of Arabidopsis, could strongly interact with PAP1, a known regulatory transcription factor positively involved in anthocyanin biosynthesis. Furthermore, transient expression assays indicated that RGA and GAI could enhance the transcriptional activities of PAP1 on its downstream genes, including F3'H and DFR. Taken together, this study suggests that DELLAs are necessary regulators for nitrogen deficiency-induced anthocyanin accumulation through interaction with PAP1 and enhancement of PAP1's transcriptional activity on its target genes. GA-DELLA-involved anthocyanin accumulation is important for plant adaptation to nitrogen deficiency.

  8. Sediment Ecosystem Assessment Protocol (SEAP): An Accurate and Integrated Weight-of-Evidence Based System

    DTIC Science & Technology

    2011-01-01

    polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions ...involved 96 h exposures in aqueous solutions , followed by a 1-2 hour (depending on size) feeding period on Artemia (brine shrimp) nauplii in clean seawater...EC50) based on post- exposure feeding of the polychaete Neanthes arenaceodentata from exposures to copper in aqueous solutions . Metric (µg/L) Worm age

  9. Capacitance scaling of grain boundaries with colossal permittivity of CaCu3Ti4O12-based materials

    NASA Astrophysics Data System (ADS)

    De Almeida-Didry, Sonia; Autret, Cécile; Honstettre, Christophe; Lucas, Anthony; Pacreau, François; Gervais, François

    2015-04-01

    Samples of copper-deficient CaCu3Ti4O12 (CCTO) compared to the nominal composition, all synthesized via organic gel-assisted citrate process, show huge change of grain boundaries capacitance as deduced from a fit of an RC element model to the impedance spectroscopic data. The grain boundary capacitance is found to scale with the permittivity measured at 1 kHz weighted by the size of the grains. This result is found consistent with the internal barrier layer capacitance (IBLC) model.

  10. Alum sludge land application and its effect on plant growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, J.B.; Dillaha, T.A.; Reneau, R.B.

    These investigators conducted three greenhouse experiments to determine the impact of alum sludge from the Harwood's Mill water treatment plant, newport News, Va., on the growth and chemical composition of fescue grass. Fescue yields decreased with increased sludge addition, a trend that was attributed to reductions in plant-available phosphorus (P) at higher loadings. Supplemental P fertilization corrected this deficiency. Lime addition did not affect yield. The presence of manganese and copper in the sludge increased metal uptake by the plants but did not affect yield.

  11. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    PubMed

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  12. Educational Interventions for Visual-Motor Deficiencies That Affect Handwriting in School-Aged Children.

    ERIC Educational Resources Information Center

    Dikowski, Timothy J.

    This practicum was designed to remediate handwriting skills in school-aged children who displayed visual-motor deficiencies that affect mechanical skills. Practicum goals were to: (1) identify and diagnose children with handwriting delays; (2) involve school and parent interaction by involving them with pre- and post-program assessment; (3)…

  13. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.

    PubMed

    Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea

    2014-03-19

    Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity inorganic phosphate transport (Pit) system in E. coli copper tolerance. PolyP levels were modulated by the media phosphate concentration and/or using mutants in polyP metabolism. Stationary phase wild-type cells grown in high phosphate medium were significantly more tolerant to copper than those grown in sufficient phosphate medium. Copper addition to tolerant cells induced polyP degradation by PPX (an exopolyphosphatase), phosphate efflux and membrane polarization. ppk-ppx- (unable to synthesize/degrade polyP), ppx- (unable to degrade polyP) and Pit system mutants were highly sensitive to metal even in high phosphate media. In exponential phase, CopA and polyP-Pit system would act simultaneously to detoxify the metal or one could be sufficient to safeguard the absence of the other. Our results support a mechanism for copper detoxification in exponential and stationary phases of E. coli, involving Pit system and degradation of polyP. Data reflect the importance of the environmental phosphate concentration in the regulation of the microbial physiological state.

  14. Effect of copper on Mytilus californianus and Mytilus edulis. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-06

    Mytilus edulis and Mytilus californianus have come into widespread use as valuable test animals in estimating the effects and extent of copper pollution, both naturally as indicators and under simulated conditions as bioassays. These mussels are known bioaccumulators of heavy metals. They have a broad distribution, and mutually exclusive habitats. How the mussel reacts to copper is directly related to how copper affects the physiology of the mussel. The filtration rate and oxygen consumption of Mytilus are known to decline by more than 50% under exposure to as low as 200 ppB Cu in the water. Decline in heart ratemore » (bradycardia) also occurs under exposure to copper. Byssus thread production suffers in copper concentrations of 500 ppB and higher. The ability of M. edulis to close its valves in the presence of copper has been documented by several researchers. Of all the physiological parameters, oxygen consumption, heart rate, and valve closure are basic physiological functions which are easily measured. Mortality of Mytilus edulis is known to occur at concentrations of copper 330 ppB and higher within four to five days. It would be advantageous to have a continuous monitoring of the heart, oxygen consumption, and valve gape during this period to determine the state of each and the contribution of each to the possible death of the mussel. This study involves monitoring the three above physiological functions under varying concentrations of copper. In both species, M. edulis and M. californianus, detailed toxicological response records were obtained for each function. These records were then used to compare the physiological responses of each species to different levels of ambient copper in order to explain the possibility of repeatable, species-specific, response patterns to copper. (ERB)« less

  15. Effect of copper on the performance and bacterial communities of activated sludge using Illumina MiSeq platforms.

    PubMed

    Sun, Fu-Lin; Fan, Lei-Lei; Xie, Guang-Jian

    2016-08-01

    The anaerobic-anoxic-aerobic (A2O) process is a highly efficient sewage treatment method, which uses complex bacterial communities. However, the effect of copper on this process and the bacterial communities involved remains unknown. In this study, a systematic investigation of the effect of persistent exposure of copper in the A2O wastewater treatment system was performed. An A2O device was designed to examine the effect of copper on the removal efficiency and microbial community compositions of activated sludge that was continuously treated with 10, 20, and 40 mg L(-1) copper, respectively. Surprisingly, a decrease in chemical oxygen demand (COD) and ammonia nitrogen (NH4N) removal efficiency was observed, and the toxicity of high copper concentration was significantly greater at 7d than at 1d. Proteobacteria, Bacteroidetes, Acidobacteria, Chlorobi, and Nitrospirae were the dominant bacterial taxa in the A2O system, and significant changes in microbial community were observed during the exposure period. Most of the dominant bacterial groups were easily susceptible to copper toxicity and diversely changed at different copper concentrations. However, not all the bacterial taxa were inhibited by copper treatment. At high copper concentration, many bacterial species were stimulated and their abundance increased. Cluster analysis and principal coordinate analysis (PCoA) based on operational taxonomic units (OTUs) revealed clear differences in the bacterial communities among the samples. These findings indicated that copper severely affected the performance and key microbial populations in the A2O system as well as disturbed the stability of the bacterial communities in the system, thus decreasing the removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.

    PubMed

    Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin

    2018-04-01

    Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    PubMed

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-01-06

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary cell wall. Cell wall modifications could affect the mechanical and permeability properties of the xylem sap vessels, and therefore ultimately affect solute transport and distribution to the leaves. Results also suggest that signaling cascades involving lipid and peptides might play a role in nutrient stress signaling and pinpoint interesting candidates for future studies. Finally, both nutrient deficiencies seem to affect phosphorylation and glycosylation processes, again following an opposite pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.

    PubMed

    Cusick, Kathleen D; Dale, Jason R; Fitzgerald, Lisa A; Little, Brenda J; Biffinger, Justin C

    2017-07-01

    An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu 2+ . Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.

  19. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model.

    PubMed

    Cholewińska, Ewelina; Juśkiewicz, Jerzy; Ognik, Katarzyna

    2018-07-01

    The aim of the study was to evaluate the effects of a diet containing different levels of Cu in two different chemical forms (carbonate and nanoparticles) on metabolic, immune and antioxidant status in a rat model. Five experimental treatments (8 rats in each) were used to test different dosages of Cu added to the diet (standard -6.5 mg/kg, half the standard dosage -3.25 mg/kg, and no added Cu as a negative control) and two sources of added copper (standard -CuCO 3 and copper nanoparticles -CuNPs). Blood and urine samples were collected from all the animals after four weeks of treatment. Metabolic and immune parameters were determined in blood and urine samples. The study has shown that a dietary Cu deficiency (negative control) decreases rat's plasma levels of Cu, Fe, CREAT, BIL and IL-6, whereas reducing the level of Cu from the recommended 6.5 mg/kg to 3.25 mg/kg decreases only the plasma concentration of TG, IgE and IL-6. Replacing CuCO 3 with CuNPs in rat diets affects their metabolism, as indicated by decreased Ca, CREAT, BIL, ALB and IL-6 plasma levels. To sum up, CuNP added to a diet of rats have a more beneficial effect on metabolic indices (indicative of kidney and liver function) and inhibit inflammatory processes more effectively than CuCO 3 . Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations

    PubMed Central

    Yin, Ping; Bousquet-Moore, Danielle; Annangudi, Suresh P.; Southey, Bruce R.; Mains, Richard E.; Eipper, Betty A.; Sweedler, Jonathan V.

    2011-01-01

    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides. PMID:22194882

  1. Mineral Levels in Thalassaemia Major Patients Using Different Iron Chelators.

    PubMed

    Genc, Gizem Esra; Ozturk, Zeynep; Gumuslu, Saadet; Kupesiz, Alphan

    2016-03-01

    The goal of the present study was to determine the levels of minerals in chronically transfused thalassaemic patients living in Antalya, Turkey and to determine mineral levels in groups using different iron chelators. Three iron chelators deferoxamine, deferiprone and deferasirox have been used to remove iron from patients' tissues. There were contradictory results in the literature about minerals including selenium, zinc, copper, and magnesium in thalassaemia major patients. Blood samples from the 60 thalassaemia major patients (the deferoxamine group, n = 19; the deferiprone group, n = 20 and the deferasirox group, n = 21) and the controls (n = 20) were collected. Levels of selenium, zinc, copper, magnesium, and iron were measured, and all of them except iron showed no significant difference between the controls and the patients regardless of chelator type. Serum copper levels in the deferasirox group were lower than those in the control and deferoxamine groups, and serum magnesium levels in the deferasirox group were higher than those in the control, deferoxamine and deferiprone groups. Iron levels in the patient groups were higher than those in the control group, and iron levels showed a significant correlation with selenium and magnesium levels. Different values of minerals in thalassaemia major patients may be the result of different dietary intake, chelator type, or regional differences in where patients live. That is why minerals may be measured in thalassaemia major patients at intervals, and deficient minerals should be replaced. Being careful about levels of copper and magnesium in thalassaemia major patients using deferasirox seems to be beneficial.

  2. Pulse-radiolysis studies on the interaction of one-electron reduced species with blue oxidases. Reduction of type-2-copper-depleted ascorbate oxidase.

    PubMed

    O'Neill, P; Fielden, E M; Avigliano, L; Marcozzi, G; Ballini, A; Agrò, F

    1984-08-15

    The interaction of one-electron reduced metronidazole (ArNO2.-) with native and Type-2-copper-depleted ascorbate oxidase were studied in buffered aqueous solution at pH 6.0 and 7.4 by using the technique of pulse radiolysis. With ArNO2.-, reduction of Type 1 copper of the native enzyme and of the Type-2-copper-depleted ascorbate oxidase occurs via a bimolecular step and at the same rate. Whereas the native protein accepts, in the absence of O2, 6-7 reducing equivalents, Type-2-copper-depleted ascorbate oxidase accepts only 3 reducing equivalents with stoichiometric reduction of Type 1 copper. On reaction of O2.- with ascorbate oxidase under conditions of [O2.-] much greater than [ascorbate oxidase], removal of Type 2 copper results in reduction of all the Type 1 copper atoms, in contrast with reduction of the equivalent of only one Type 1 copper atom in the holoprotein. From observations at 610 nm, the rate of reduction of ascorbate oxidase by O2.- is not dependent on the presence of Type 2 copper. For the holoprotein, no significant optical-absorption changes were observed at 330 nm. It is proposed that electrons enter the protein via Type 1 copper in a rate-determining step followed by a fast intramolecular transfer of electrons within the protein. For the Type-2-copper-depleted protein, intramolecular transfer within the protein, however, is slow or does not occur. In the presence of O2, it is also suggested that re-oxidation of the partially reduced holoprotein occurs at steady state, as inferred from the observations at 330 nm and 610 nm. The role of Type 2 copper in ascorbate oxidase is discussed in terms of its involvement in redistribution of electrons within the protein or structural considerations.

  3. Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids.

    PubMed

    Nantasanti, Sathidpak; Spee, Bart; Kruitwagen, Hedwig S; Chen, Chen; Geijsen, Niels; Oosterhoff, Loes A; van Wolferen, Monique E; Pelaez, Nicolas; Fieten, Hille; Wubbolts, Richard W; Grinwis, Guy C; Chan, Jefferson; Huch, Meritxell; Vries, Robert R G; Clevers, Hans; de Bruin, Alain; Rothuizen, Jan; Penning, Louis C; Schotanus, Baukje A

    2015-11-10

    The recent development of 3D-liver stem cell cultures (hepatic organoids) opens up new avenues for gene and/or stem cell therapy to treat liver disease. To test safety and efficacy, a relevant large animal model is essential but not yet established. Because of its shared pathologies and disease pathways, the dog is considered the best model for human liver disease. Here we report the establishment of a long-term canine hepatic organoid culture allowing undifferentiated expansion of progenitor cells that can be differentiated toward functional hepatocytes. We show that cultures can be initiated from fresh and frozen liver tissues using Tru-Cut or fine-needle biopsies. The use of Wnt agonists proved important for canine organoid proliferation and inhibition of differentiation. Finally, we demonstrate that successful gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can be an effective means to cure copper storage disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure.

    PubMed

    Svenningsen, Nanna B; Martínez-García, Esteban; Nicolaisen, Mette H; de Lorenzo, Victor; Nybroe, Ole

    2018-06-01

    In natural environments most bacteria live in biofilms embedded in complex matrices of extracellular polymeric substances (EPS). This lifestyle is known to increase protection against environmental stress. Pseudomonas putida mt-2 harbours genes for the production of at least four different EPS polysaccharides, including alginate and cellulose. Little is known about the functional properties of cellulose, while alginate attenuates the accumulation of reactive oxygen species (ROS) caused by matric stress. By using mutants that are deficient in either alginate or cellulose production we show that even cellulose attenuates the accumulation of matric stress-induced ROS for cells in biofilms. Further, both cellulose and alginate attenuate ROS generated through exposure to copper. Interestingly, the two EPS polysaccharides protect cells in both liquid culture and in biofilms against ROS caused by matric stress, indicating that cellulose and alginate do not need to be produced as an integral part of the biofilm lifestyle to provide tolerance towards environmental stressors.

  5. A magnetic and electronic circular dichroism study of azurin, plastocyanin, cucumber basic protein, and nitrite reductase based on time-dependent density functional theory calculations.

    PubMed

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2010-06-03

    The excitation, circular dichroism, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectra of small models of four blue copper proteins are simulated on the TDDFT/BP86 level. X-Ray diffraction geometries are used for the modeling of the blue copper sites in azurin, plastocyanin, cucumber basic protein, and nitrite reductase. Comparison with experimental data reveals that the calculations reproduce most of the qualitative trends of the observed experimental spectra with some discrepancies in the orbital decompositions and the values of the excitation energies, the g( parallel) components of the g tensor, and the components of the A tensor. These discrepancies are discussed relative to deficiencies in the time-dependent density functional theory (TDDFT) methodology, as opposed to previous studies which address them as a result of insufficient model size or poor performance of the BP86 functional. In addition, attempts are made to elucidate the correlation between the MCD and EPR signals.

  6. Deep donor state of the copper acceptor as a source of green luminescence in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, J. L.; Alkauskas, A.; Janotti, A.; Van de Walle, C. G.

    2017-07-01

    Copper impurities have long been linked with green luminescence (GL) in ZnO. Copper is known to introduce an acceptor level close to the conduction band of ZnO, and the GL has conventionally been attributed to transitions involving an excited state which localizes holes on neighboring oxygen atoms. To date, a theoretical description of the optical properties of such deep centers has been difficult to achieve due to the limitations of functionals in the density functional theory. Here, we employ a screened hybrid density functional to calculate the properties of Cu in ZnO. In agreement with the experiment, we find that CuZn features an acceptor level near the conduction band of ZnO. However, we find that CuZn also gives rise to a deep donor level 0.46 eV above the valence band of ZnO; the calculated optical transitions involving this state agree well with the GL observed in ZnO:Cu.

  7. Copper-Catalyzed Domino Three-Component Approach for the Assembly of 2-Aminated Benzimidazoles and Quinazolines.

    PubMed

    Tran, Lam Quang; Li, Jihui; Neuville, Luc

    2015-06-19

    A copper-promoted three-component synthesis of 2-aminobenzimidazoles (1) or of 2-aminoquinazolines (2) involving cyanamides, arylboronic acids, and amines has been developed. The operationally simple oxidative process, performed in the presence of K2CO3, a catalytic amount of CuCl2·2H2O, 2,2'-bipyridine, and an O2 atmosphere (1 atm), allows the rapid assembly of either benzimidazoles or quinazolines starting from aryl- or benzyl-substituted cyanamides, respectively. In this process, the copper promotes the formation of three bonds, two C-N bonds, and an additional bond resulting from C-H functionalization event.

  8. Community-acquired acute kidney injury in Asia.

    PubMed

    Jha, Vivekanand; Chugh, Kirpal S

    2008-07-01

    Asia, the largest continent in the world, is heterogeneous in the ethnic, socioeconomic, and developmental status of its populations. A vast majority of it is poor with no adequate access to modern health care, making an accurate estimation of the nature and extent of acute kidney injury (AKI) difficult. Community-acquired AKI in otherwise healthy individuals is common, and the population developing AKI is younger compared with its counterparts in Europe or North America. The etiologic spectrum varies in different geographic regions of Asia depending on environmental, cultural, and socioeconomic factors. Some of the etiologic factors include AKI in relation to infectious diseases, intravascular hemolysis caused by glucose 6-phosphate dehydrogenase deficiency, poisonings caused by industrial chemicals or copper sulphate, animal venoms, natural medicines, heat stroke, and after complications of pregnancy. Preventive opportunities are missed because of failure to recognize the risk factors and early signs of AKI. Patients often present late for treatment, leading to multi-organ involvement and increased mortality. The exact etiologic diagnosis cannot be established in many instances because of a lack of appropriate laboratory support. Modern methods of renal replacement therapy are not universally available; and intermittent peritoneal dialysis is still widely practiced in many areas.

  9. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling

    PubMed Central

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-01-01

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg−1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg−1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated. PMID:26975802

  10. Dioxins reformation and destruction in secondary copper smelting fly ash under ball milling

    NASA Astrophysics Data System (ADS)

    Cagnetta, Giovanni; Hassan, Mohammed Mansour; Huang, Jun; Yu, Gang; Weber, Roland

    2016-03-01

    Secondary copper recovery is attracting increasing interest because of the growth of copper containing waste including e-waste. The pyrometallurgical treatment in smelters is widely utilized, but it is known to produce waste fluxes containing a number of toxic pollutants due to the large amount of copper involved, which catalyses the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (“dioxins”). Dioxins are generated in secondary copper smelters on fly ash as their major source, resulting in highly contaminated residues. In order to assess the toxicity of this waste, an analysis of dioxin-like compounds was carried out. High levels were detected (79,090 ng TEQ kg-1) in the ash, above the Basel Convention low POPs content (15,000 ng TEQ kg-1) highlighting the hazardousness of this waste. Experimental tests of high energy ball milling with calcium oxide and silica were executed to assess its effectiveness to detoxify such fly ash. Mechanochemical treatment obtained 76% dioxins reduction in 4 h, but longer milling time induced a partial de novo formation of dioxins catalysed by copper. Nevertheless, after 12 h treatment the dioxin content was substantially decreased (85% reduction) and the copper, thanks to the phenomena of incorporation and amorphization that occur during milling, was almost inactivated.

  11. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    PubMed

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  12. Multi-technique approach to assess the effects of microbial biofilms involved in copper plumbing corrosion.

    PubMed

    Vargas, Ignacio T; Alsina, Marco A; Pavissich, Juan P; Jeria, Gustavo A; Pastén, Pablo A; Walczak, Magdalena; Pizarro, Gonzalo E

    2014-06-01

    Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions. MIC is currently considered as a series of interdependent processes occurring at the metal-liquid interface. The presence of a biofilm results in the following effects: (a) the formation of localized microenvironments with distinct pH, dissolved oxygen concentrations, and redox conditions; (b) sorption and desorption of labile copper bonded to organic compounds under changing water chemistry conditions; (c) change in morphology by deposition of solid corrosion by-products; (d) diffusive transport of reactive chemical species from or towards the metal surface; and (e) detachment of scale particles under flow conditions. Using a multi-technique approach that combines pipe and coupon experiments this paper reviews the effects of microbial biofilms on the corrosion of copper plumbing systems, and proposes an integrated conceptual model for this phenomenon supported by new experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  14. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE PAGES

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah; ...

    2017-05-08

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  15. LEAKAGE TESTING METHOD

    DOEpatents

    McAdams, Wm.A.; Foss, M.H.

    1958-08-12

    A method of testing containers for leaks is described, particularly the testing of containers or cans in which the uranium slugs for nuelear reactors are jacketed. This method involves the immersion of the can in water under l50 pounds of pressure, then removing, drying, and coating the can with anhydrous copper sulfate. Amy water absorbed by the can under pressure will exude and discolor the copper sulfate in the area about the leak.

  16. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    PubMed

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. A Comparative Study on Antioxidant System in Fish Hepatopancreas and Intestine Affected by Choline Deficiency: Different Change Patterns of Varied Antioxidant Enzyme Genes and Nrf2 Signaling Factors

    PubMed Central

    Wu, Pei; Liu, Yang; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2017-01-01

    The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas. PMID:28099509

  18. A Comparative Study on Antioxidant System in Fish Hepatopancreas and Intestine Affected by Choline Deficiency: Different Change Patterns of Varied Antioxidant Enzyme Genes and Nrf2 Signaling Factors.

    PubMed

    Wu, Pei; Liu, Yang; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2017-01-01

    The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas.

  19. Chronic severe axonal polyneuropathy associated with hyperthyroidism and multivitamin deficiency.

    PubMed

    Sugie, Kazuma; Umehara, Fujio; Kataoka, Hiroshi; Kumazawa, Aya; Ueno, Satoshi

    2012-01-01

    Hyperthyroidism is often associated with various neuromuscular disorders, most commonly proximal myopathy. Peripheral nerve involvement in hyperthyroidism is very uncommon and has rarely been reported. We describe a 29-year-old woman with untreated hyperthyroidism who presented with chronic severe axonal sensory-motor polyneuropathy. Peripheral nerve involvement developed together with other symptoms of hyperthyroidism 2 years before presentation. She also had anorexia nervosa for the past 6 months, resulting in multivitamin deficiency. Electrophysiological and pathological findings as well as clinical manifestations confirmed the diagnosis of severe axonal polyneuropathy. Anorexia nervosa has been considered a manifestation of untreated hyperthyroidism. We considered hyperthyroidism to be an important causal factor in the polyneuropathy in our patient, although peripheral nerve involvement in hyperthyroidism is rare. To our knowledge, this is the first documented case of chronic severe axonal polyneuropathy ascribed to both hyperthyroidism and multivitamin deficiency. Our findings strongly suggest that not only multivitamin deficiency, but also hyperthyroidism can cause axonal polyneuropathy, thus expanding the clinical spectrum of hyperthyroidism.

  20. American Society for Metabolic and Bariatric Surgery Integrated Health Nutritional Guidelines for the Surgical Weight Loss Patient 2016 Update: Micronutrients.

    PubMed

    Parrott, Julie; Frank, Laura; Rabena, Rebecca; Craggs-Dino, Lillian; Isom, Kellene A; Greiman, Laura

    2017-05-01

    Optimizing postoperative patient outcomes and nutritional status begins preoperatively. Patients should be educated before and after weight loss surgery (WLS) on the expected nutrient deficiencies associated with alterations in physiology. Although surgery can exacerbate preexisting nutrient deficiencies, preoperative screening for vitamin deficiencies has not been the norm in the majority of WLS practices. Screening is important because it is common for patients who present for WLS to have at least 1 vitamin or mineral deficiency preoperatively. The focus of this paper is to update the 2008 American Society for Metabolic and Bariatric Surgery Nutrition in Bariatric Surgery Guidelines with key micronutrient research in laparoscopic adjustable gastric banding, Roux-en-Y gastric bypass, laparoscopic sleeve gastrectomy, biliopancreatic diversion, and biliopancreatic diversion/duodenal switch. Four questions regarding recommendations for preoperative and postoperative screening of nutrient deficiencies, preventative supplementation, and repletion of nutrient deficiencies in pre-WLS patients have been applied to specific micronutrients (vitamins B1 and B12; folate; iron; vitamins A, E, and K; calcium; vitamin D; copper; and zinc). Out of the 554 articles identified as meeting preliminary search criteria, 402 were reviewed in detail. There are 92 recommendations in this update, 79 new recommendations and an additional 13 that have not changed since 2008. Each recommendation has a corresponding graded level of evidence, from grade A through D. Data continue to suggest that the prevalence of micronutrient deficiencies is increasing, while monitoring of patients at follow-up is decreasing. This document should be viewed as a guideline for a reasonable approach to patient nutritional care based on the most recent research, scientific evidence, resources, and information available. It is the responsibility of the registered dietitian nutritionist and WLS program to determine individual variations as they relate to patient nutritional care. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  1. Mechanical tearing of graphene on an oxidizing metal surface.

    PubMed

    George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-11

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  2. Metal Dyshomeostasis and Inflammation in Alzheimer's and Parkinson's Diseases: Possible Impact of Environmental Exposures

    PubMed Central

    Myhre, Oddvar; Utkilen, Hans; Duale, Nur; Brunborg, Gunnar; Hofer, Tim

    2013-01-01

    A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes. PMID:23710288

  3. Copper Coordination in the Full-Length, Recombinant Prion Protein†

    PubMed Central

    Burns, Colin S.; Aronoff-Spencer, Eliah; Legname, Giuseppe; Prusiner, Stanley B.; Antholine, William E.; Gerfen, Gary J.; Peisach, Jack; Millhauser, Glenn L.

    2010-01-01

    The prion protein (PrP) binds divalent copper at physiologically relevant conditions and is believed to participate in copper regulation or act as a copper-dependent enzyme. Ongoing studies aim at determining the molecular features of the copper binding sites. The emerging consensus is that most copper binds in the octarepeat domain, which is composed of four or more copies of the fundamental sequence PHGGGWGQ. Previous work from our laboratory using PrP-derived peptides, in conjunction with EPR and X-ray crystallography, demonstrated that the HGGGW segment constitutes the fundamental binding unit in the octarepeat domain [Burns et al. (2002) Biochemistry 41, 3991–4001; Aronoff-Spencer et al. (2000) Biochemistry 39, 13760–13771]. Copper coordination arises from the His imidazole and sequential deprotonated glycine amides. In this present work, recombinant, full-length Syrian hamster PrP is investigated using EPR methodologies. Four copper ions are taken up in the octarepeat domain, which supports previous findings. However, quantification studies reveal a fifth binding site in the flexible region between the octarepeats and the PrP globular C-terminal domain. A series of PrP peptide constructs show that this site involves His96 in the PrP(92–96) segment GGGTH. Further examination by X-band EPR, S-band EPR, and electron spin–echo envelope spectroscopy, demonstrates coordination by the His96 imidazole and the glycine preceding the threonine. The copper affinity for this type of binding site is highly pH dependent, and EPR studies here show that recombinant PrP loses its affinity for copper below pH 6.0. These studies seem to provide a complete profile of the copper binding sites in PrP and support the hypothesis that PrP function is related to its ability to bind copper in a pH-dependent fashion. PMID:12779334

  4. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds. PMID:22214286

  5. Cytokinin oxidase from Phaseolus vulgaris callus tissues. Enhanced in vitro activity of the enzyme in the presence of copper-imidazole complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatfield, J.M.; Armstrong, D.J.

    1987-07-01

    The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N/sup 6/-(..delta../sup 2/-isopentenyl)-adenine-2,8-/sup 3/H (i/sup 6/ Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, asmore » judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N/sup 6/-side chain of i/sup 6/ Ade.« less

  6. Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in copper-depleted and repleted rats.

    PubMed

    Panemangalore, M; Bebe, F N

    1996-01-01

    The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; < 1 mg Cu/kg), marginal (MAR; 2 mg Cu/kg), or control (CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON; p < or = 0.05) in the DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0-3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p < or = .05) in the DEF group, increased to control activity after 1 d of CuS and declined slightly after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p < or = 0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.

  7. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    PubMed Central

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Zhang, Wei-Peng; Bajic, Vladimir

    2014-01-01

    ABSTRACT Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. PMID:25370493

  8. Cerebellar Expression of Copper Chaperone for Superoxide, Cytosolic Cu/Zn-Superoxide Dismutase, 4-Hydroxy-2-Nonenal, Acrolein and Heat Shock Protein 32 in Patients with Menkes Kinky Hair Disease: Immunohistochemical Study

    PubMed Central

    Yokoyama, Atsushi; Ohno, Kousaku; Hirano, Asao; Shintaku, Masayuki; Kato, Masako; Hayashi, Kazuhiko; Kato, Shinsuke

    2014-01-01

    Background To clarify the pathogenesis of cerebellar Purkinje cell death in patients with Menkes kinky hair disease (MD), a disorder of copper absorption, we investigated the morphological and functional abnormalities of residual Purkinje cells in MD patients and the mechanism of cell death. Methods Seven MD patients and 39 neurologically normal autopsy cases were studied. We performed histopathological and quantitative analyses of the Purkinje cells. In addition, we used immunohistochemistry to detect copper-dependent enzymes [cytosolic Cu/Zn-superoxide dismutase (SOD1) and copper chaperone for superoxide dismutase (CCS)], oxidative stress markers [4-hydroxy-2-nonenal (HNE) and acrolein] and heat shock protein 32 (hsp 32). Results The surviving MD Purkinje cells showed abnormal development, such as somatic sprouts and heterotopic location. Due to maldevelopment and degeneration, dendrites showed the cactus and weeping willow patterns. Axonal degeneration led to the formation of torpedoes. Quantitative analysis revealed loss of approximately 50% of the Purkinje cells in MD patients. Almost all of the normal Purkinje cells were positive for immunostaining by anti-CCS and anti-SOD1 antibodies, with staining of the cell bodies, dendrites and axons. Normal Purkinje cells were not stained by antibodies for HNE, acrolein or hsp 32. In MD patients, the majority of Purkinje cells were positive for CCS, but the positive rate for SOD1 was only about 23%. Approximately 56%, 42% and 40% of the Purkinje cells of MD patients were positive for HNE, acrolein and hsp 32, respectively. Conclusion In MD patients, about 50% of the Purkinje cells have been lost due to maldevelopment and degeneration. In the residual Purkinje cells, CCS expression seems to be nearly normal as a protective response to decreased SOD1 activity due to copper deficiency. Because oxidative stress is elevated secondary to decreased SOD1 activity, hsp 32 is induced as another protective mechanism. PMID:25067875

  9. Cerebellar expression of copper chaperone for superoxide, cytosolic cu/zn-superoxide dismutase, 4-hydroxy-2-nonenal, acrolein and heat shock protein 32 in patients with menkes kinky hair disease: immunohistochemical study.

    PubMed

    Yokoyama, Atsushi; Ohno, Kousaku; Hirano, Asao; Shintaku, Masayuki; Kato, Masako; Hayashi, Kazuhiko; Kato, Shinsuke

    2014-03-01

    To clarify the pathogenesis of cerebellar Purkinje cell death in patients with Menkes kinky hair disease (MD), a disorder of copper absorption, we investigated the morphological and functional abnormalities of residual Purkinje cells in MD patients and the mechanism of cell death. Seven MD patients and 39 neurologically normal autopsy cases were studied. We performed histopathological and quantitative analyses of the Purkinje cells. In addition, we used immunohistochemistry to detect copper-dependent enzymes [cytosolic Cu/Zn-superoxide dismutase (SOD1) and copper chaperone for superoxide dismutase (CCS)], oxidative stress markers [4-hydroxy-2-nonenal (HNE) and acrolein] and heat shock protein 32 (hsp 32). The surviving MD Purkinje cells showed abnormal development, such as somatic sprouts and heterotopic location. Due to maldevelopment and degeneration, dendrites showed the cactus and weeping willow patterns. Axonal degeneration led to the formation of torpedoes. Quantitative analysis revealed loss of approximately 50% of the Purkinje cells in MD patients. Almost all of the normal Purkinje cells were positive for immunostaining by anti-CCS and anti-SOD1 antibodies, with staining of the cell bodies, dendrites and axons. Normal Purkinje cells were not stained by antibodies for HNE, acrolein or hsp 32. In MD patients, the majority of Purkinje cells were positive for CCS, but the positive rate for SOD1 was only about 23%. Approximately 56%, 42% and 40% of the Purkinje cells of MD patients were positive for HNE, acrolein and hsp 32, respectively. In MD patients, about 50% of the Purkinje cells have been lost due to maldevelopment and degeneration. In the residual Purkinje cells, CCS expression seems to be nearly normal as a protective response to decreased SOD1 activity due to copper deficiency. Because oxidative stress is elevated secondary to decreased SOD1 activity, hsp 32 is induced as another protective mechanism.

  10. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

    PubMed Central

    Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380

  12. Effects of manganese deficiency on the microstructure of proximal tibia and OPG/RANKL gene expression in chicks.

    PubMed

    Liu, Ran; Jin, Cong; Wang, Zhenyong; Wang, Zhaojun; Wang, Jian; Wang, Lin

    2015-03-01

    Manganese (Mn) deficiency can result in perosis in chicks, but the mechanism of Mn deficiency on tibia development remains poorly understood. Ninety one-day-old Arbor Acres male broiler chickens administered with control diet (60 mg Mn/kg) and Mn-deficient diets (40 mg Mn/kg, 8.7 mg Mn/kg) to investigate the effects of Mn deficiency on morphology of tibia and related signal transduction pathways in broiler chickens. At the age of 42 days, the bone trabecula, damaged osteoblasts and OPG/RANKL mRNA expression levels were investigated by histological assessment, electron microscopic examination and real-time quantitative PCR analysis, respectively. Results of histological observations showed that decreased trabecular thickness, trabecular number and trabecular bone area (%) together with increased trabecular bone separation were involved in perosis induced by Mn deficiency. The most striking ultrastructural modifications involved disruption of nuclear membrane and mitochondria outer membrane, loss of mitochondrion cristae and alteration in endoplasmic reticulum in osteoblasts of the Mn-deficient groups. Likewise, Mn deficiency results in a significant (P < 0.05) decrease in the relative mRNA expression levels of OPG and RANKL with a significantly higher RANKL/OPG ratio (P < 0.05). In conclusion, Mn deficiency can affect the development of tibia in broiler chickens, leading to metaphyseal osteoporosis which may be due to decreased OPG/RANKL mRNA expression.

  13. MicroRNA408 Is Critical for the HY5-SPL7 Gene Network That Mediates the Coordinated Response to Light and Copper[C][W

    PubMed Central

    Zhang, Huiyong; Zhao, Xin; Li, Jigang; Cai, Huaqing; Deng, Xing Wang; Li, Lei

    2014-01-01

    Light and copper are important environmental determinants of plant growth and development. Despite the wealth of knowledge on both light and copper signaling, the molecular mechanisms that integrate the two pathways remain poorly understood. Here, we use Arabidopsis thaliana to demonstrate an interaction between SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) and ELONGATED HYPOCOTYL5 (HY5), which mediate copper and light signaling, respectively. Through whole-genome chromatin immunoprecipitation and RNA sequencing analyses, we elucidated the SPL7 regulon and compared it with that of HY5. We found that the two transcription factors coregulate many genes, including those involved in anthocyanin accumulation and photosynthesis. Moreover, SPL7 and HY5 act coordinately to transcriptionally regulate MIR408, which results in differential expression of microRNA408 (miR408) and its target genes in response to changing light and copper conditions. We demonstrate that this regulation is tied to copper allocation to the chloroplast and plastocyanin levels. Finally, we found that constitutively activated miR408 rescues the distinct developmental defects of the hy5, spl7, and hy5 spl7 mutants. These findings revealed the existence of crosstalk between light and copper, mediated by a HY5-SPL7 network. Furthermore, integration of transcriptional and posttranscriptional regulation is critical for governing proper metabolism and development in response to combined copper and light signaling. PMID:25516599

  14. Subchronic treatment of rats with aurothioglucose; effects on plasma, hepatic, renal and urinary zinc, copper and metallothionein.

    PubMed

    McVety, K J; Shaikh, Z A

    1987-11-01

    Administration of sodium aurothioglucose (10 mg/kg per day) to female rats for up to 8 weeks resulted in no apparent effects on the kidney. Gold accumulated in kidney, liver, spleen, pancreas, skin and blood. Although plasma and hepatic gold levels increased with time, no remarkable change in either copper, zinc or metallothionein (MT) levels was observed. Gel filtration chromatography of plasma showed binding of gold to albumin, whereas copper was associated with albumin, ceruloplasmin and a protein eluting in the void volume of the Sephadex G-150 column. Almost all of the hepatic gold was bound to proteins other than MT. In the kidney, not only gold but also copper and MT increased rapidly, reached a maximum between 2 and 4 weeks and exhibited insignificant change thereafter. Gold-treated animals showed an increase in binding of copper to the very high molecular weight plasma protein, which may be involved in transport of copper to the kidneys. Urinary gold and MT followed a pattern similar to that in the kidney. Renal zinc also increased but returned to normal by week 8. In renal cytosol 57% and 54% of the gold and copper, respectively, were associated with MT. It appears that the elevated levels of copper and zinc, rather than gold, are responsible for the induction of MT synthesis. This then provides a mechanism by which gold and the inducing metals are retained by the kidney.

  15. Experimental study of copper-alkali ion exchange in glass

    NASA Astrophysics Data System (ADS)

    Gonella, F.; Caccavale, F.; Bogomolova, L. D.; D'Acapito, F.; Quaranta, A.

    1998-02-01

    Copper-alkali ion exchange was performed by immersing different silicate glasses (soda-lime and BK7) in different molten eutectic salt baths (CuSO4:Na2SO4 and CuSO4:K2SO4). The obtained optical waveguides were characterized by m-lines spectroscopy for the determination of refractive index profiles, and by secondary ion mass spectrometry for the concentration profiles of the ion species involved in the exchange process. The different oxidation states of copper inside the glass structure were studied by electron paramagnetic resonance and x-ray absorption techniques. Interdiffusion copper coefficients were also determined. The Cu-alkali exchange was observed to give rise to local structural rearrangement of the atoms in the glass matrix. The Cu+ ion was found to mainly govern the exchange process, while competition between Cu-Na and K-Na exchanges occurred when a potassium sulfate bath was used. In this case, significant waveguide modal birefringence was observed.

  16. Laboratory studies on biomachining of copper using Staphylococcus sp.

    PubMed

    Shikata, Shinji; Sreekumari, Kurissery R; Nandakumar, Kanavillil; Ozawa, Mazayoshi; Kikuchi, Yasushi

    2009-01-01

    The possibility of using bacteria to drill metallic surfaces has been demonstrated using Staphylococcus sp., a facultative anaerobic bacterium, isolated from corroded copper piping. The experiment involved exposure of copper coupons (25 mm x 15 mm x 3 mm) to a culture of Staphylococcus sp. for a maximum period of 7 days. Coupons exposed to sterile bacterial growth medium were used as controls. Exposed coupons were removed intermittently and observed microscopically for the extent of drilling. The total pit area and volume on these coupons were determined using image analysis. The results showed that both the biomachined area and volume increased with the duration of coupon exposure. In the drilling experiment, a copper thin film 2 microm thick was perforated by this bacterium within a period of 7 days. In conclusion, the results suggested that bacteria can be used as a tool for machining metallic surfaces.

  17. Increased anxiety but normal fear and safety learning in orexin-deficient mice.

    PubMed

    Khalil, Radwa; Fendt, Markus

    2017-03-01

    The loss of orexin neurons in humans leads to the disease narcolepsy, characterized by daytime sleepiness and cataplexy. Recent data suggest that orexin is also involved in emotional processing. The goal of the present study was to evaluate fear and safety learning as well as unconditioned fear (anxiety) in orexin-deficient animals. Orexin-deficient mice are an established animal model used to investigate the neuropathology and potential treatments for narcolepsy. Here, we present novel data showing that orexin-deficient mice express increased anxiety in the open field, light-dark box test and carnivore odor-induced avoidance, but are normal in fear and safety learning. These findings suggest an important role of orexin in brain areas involved in anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Nitric oxide is involved in phosphorus deficiency-induced cluster root development and citrate exudation in white lupin

    USDA-ARS?s Scientific Manuscript database

    White lupin (Lupinus albus) forms specialized cluster roots characterized by exudation of organic anions under phosphorus (P) deficiency. Here, we evaluated the role of nitric oxide (NO) in P deficiency-induced cluster-root formation and citrate exudation in white lupin. Plants were treated with NO ...

  19. The effects of copper on Na(+)/K (+)-ATPase and aquaporin expression in two euryhaline invertebrates.

    PubMed

    Boyle, R T; Oliveira, L F; Bianchini, A; Souza, M M

    2013-03-01

    We used immunocytochemical and fluorometric techniques to show that gill cells of two marine invertebrates, the crab Neohelice granulata (osmoregulator) and the clam Mesodesma mactroides (osmoconformer), increase the expression of membrane transporters [Na(+)/K(+)-ATPase and aquaporin (AQP1)] after whole-animals exposure (96 h) to sublethal concentrations of copper in water of salinity 30 ppt, when both clams and crabs are isosmotic with respect to the environmental medium. A plausible interpretation of our findings is that this increased expression in membrane transporters may serve as an attempt to ameliorate the deleterious effects of copper on the mechanisms involved in ion and volume regulation in gill cells.

  20. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  1. Distribution of copper, iron, and zinc in biological samples (scalp hair, serum, blood, and urine) of Pakistani viral hepatitis (A-E) patients and controls.

    PubMed

    Kolachi, Nida Fatima; Kazi, Tasneem Gul; Afridi, Hassan Imran; Kazi, Naveed; Kandhro, Ghulam Abbas; Shah, Abdul Qadir; Baig, Jameel Ahmed; Wadhwa, Sham Kumar; Khan, Sumaira; Shah, Faheem; Jamali, Mohammad Khan; Arain, Mohammad Balal

    2011-10-01

    The aim of the present study was to compare the level of copper (Cu), iron (Fe) and zinc (Zn) in biological samples (serum, blood, urine, and scalp hair) of patients suffering from different viral hepatitis (A, B, C, D, and E; n = 521) of both gender age ranged 31-45 years. For comparative study, 255 age-matched control subjects, of both genders residing in the same city were selected as referents. The elements in the biological samples were analyzed by flame atomic absorption spectrophotometry, prior to microwave-assisted acid digestion. The validity and accuracy of the methodology was checked by using certified reference materials (CRMs) and with those values obtained by conventional wet acid digestion method on same CRMs. The results of this study showed that the mean values of Cu and Fe were higher in blood, sera, and scalp hair samples of hepatitis patients, while Zn level was found to be lower than age-matched control subjects. The urinary levels of these elements were found to be higher in the hepatitis patients than in the age-matched healthy controls (p < 0.05). These results are consistent with literature-reported data, confirming that the deficiency of zinc and hepatic iron and copper overload can directly cause lipid peroxidation and eventually hepatic damage.

  2. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level.

    PubMed

    Liu, Yu; Yang, Huarong; Song, Zhi; Gu, Shaojuan

    2014-12-01

    Copper is an essential trace element that serves as an important catalytic cofactor for cuproenzymes, carrying out major biological functions in growth and development. Although Wilson's disease (WD) is unquestionably caused by mutations in the ATP7B gene and subsequent copper overload, the precise role of copper in inducing pathological changes remains poorly understood. Our study aimed to explore, in HepG2 cells exposed to copper, the cell viability and apoptotic cells was tested by MTT and Hoechst 33342 stainning respectively, and the signaling pathways involved in oxidative stress response, apoptosis and lipid metabolism were determined by real time RT-PCR and Western blot analysis. The results demonstrate dose- and time-dependent cell viability and apoptosis in HepG2 cells following treatment with 10 μM, 200 μM and 500 μM of copper sulfate for 8 and 24 h. Copper overload significantly induced the expression of HSPA1A (heat shock 70 kDa protein 1A), an oxidative stress-responsive signal gene, and BAG3 (BCL2 associated athanogene3), an anti-apoptotic gene, while expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a lipid biosynthesis and lipid metabolism gene, was inhibited. These findings provide new insights into possible mechanisms accounting for the development of liver apoptosis and steatosis in the early stages of Wilson's disease.

  3. Prevalence and aetiology of anaemia in lymphoid malignancies.

    PubMed

    Ghosh, J; Singh, R K Bikramjit; Saxena, R; Gupta, R; Vivekanandan, S; Sreenivas, V; Raina, V; Sharma, A; Kumar, L

    2013-01-01

    We prospectively studied the prevalence, type and causes of anaemia in newly diagnosed patients with lymphoid malignancies. Between January 2007 and June 2008, a total of 316 newly diagnosed, consecutive patients (aged 15 years or above) of Hodgkin lymphoma, non-Hodgkin lymphoma and chronic lymphocytic leukaemia with anaemia (haemoglobin <11 g/dl), were analysed to determine the prevalence and a subgroup of 46 patients was analysed for the cause of anaemia. Hodgkin lymphoma, non-Hodgkin lymphoma and chronic lymphocytic leukaemia were the diagnoses in 81 (25.8%), 203 (64.7%) and 30 (9.6%) patients, respectively. Anaemia was present in 134 patients (42.4%). Anaemia of chronic disease was present in 33/46 (71.7%) and iron deficiency in 18/46 (39.1%) patients. Vitamin B12 and/or folate deficiency was detected in 10/46 (21.7%) patients (B12 deficiency alone in 7, folate deficiency alone in 1 and combined B12 and folate deficiency in 2). Autoimmune haemolytic anaemia was detected in 5/46 (10.9%) although direct Coombs test was positive in 17/46 (37%) patients. Among patients with Hodgkin lymphoma and non-Hodgkin lymphoma, anaemia due to bone marrow involvement was present in 16/40 (40%). In most patients with bone marrow involvement, anaemia was due to other causes. In only 3 patients, anaemia was attributable to bone marrow involvement alone. Anaemia was multifactorial in 18/46 (39.1%) patients. Nutritional deficiency alone or in combination was present in 22/46 (47.8%) patients. Anaemia is common in lymphoid malignancies at initial presentation. Besides managing anaemia of chronic disease and bone marrow involvement, nutritional and autoimmune causes should be ruled out. Copyright 2013, NMJI.

  4. MT2013-31: Allo HCT for Metabolic Disorders and Severe Osteopetrosis

    ClinicalTrials.gov

    2018-01-19

    Mucopolysaccharidosis Disorders; Hurler Syndrome; Hunter Syndrome; Maroteaux Lamy Syndrome; Sly Syndrome; Alpha-Mannosidosis; Fucosidosis; Aspartylglucosaminuria; Glycoprotein Metabolic Disorders; Sphingolipidoses; Recessive Leukodystrophies; Globoid Cell Leukodystrophy; Metachromatic Leukodystrophy; Niemann-Pick B; Niemann-Pick C Subtype 2; Sphingomyelin Deficiency; Peroxisomal Disorders; Adrenoleukodystrophy With Cerebral Involvement; Zellweger Syndrome; Neonatal Adrenoleukodystrophy; Infantile Refsum Disease; Acyl-CoA Oxidase Deficiency; D-Bifunctional Enzyme Deficiency; Multifunctional Enzyme Deficiency; Alpha-methylacyl-CoA Racmase Deficiency; Mitochondrial Neurogastrointestingal Encephalopathy; Severe Osteopetrosis; Hereditary Leukoencephalopathy With Axonal Spheroids (HDLS; CSF1R Mutation); Inherited Metabolic Disorders

  5. Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent.

    PubMed

    Zhang, Q B; Abbott, Andrew P; Yang, C

    2015-06-14

    Nanoporous copper films were fabricated by a facile electrochemical alloying/dealloying process without the need of a template. A deep eutectic solvent made from choline chloride (ChCl) and urea was used with zinc oxide as the metal salt. Cyclic voltammetry was used to characterise the electrochemical reduction of zinc and follow Cu-Zn alloy formation on the copper substrate at elevated temperatures from 353 to 393 K. The alloy formation was confirmed by X-ray diffraction spectra. 3D, open and bicontinuous nanoporous copper films were obtained by in situ electrochemically etching (dealloying) of the zinc component in the Cu-Zn surface alloys at an appropriate potential (-0.4 V vs. Ag). This dealloying process was found to be highly temperature dependent and surface diffusion controlled, which involved the self-assembly of copper atoms at the alloy/electrolyte interface. Additionally, the effects of the deposition parameters, including deposition temperature, current density as well as total charge density on resulting the microstructure were investigated by scanning electron microscopy, and atomic force microscope.

  6. Application of support vector machines for copper potential mapping in Kerman region, Iran

    NASA Astrophysics Data System (ADS)

    Shabankareh, Mahdi; Hezarkhani, Ardeshir

    2017-04-01

    The first step in systematic exploration studies is mineral potential mapping, which involves classification of the study area to favorable and unfavorable parts. Support vector machines (SVM) are designed for supervised classification based on statistical learning theory. This method named support vector classification (SVC). This paper describes SVC model, which combine exploration data in the regional-scale for copper potential mapping in Kerman copper bearing belt in south of Iran. Data layers or evidential maps were in six datasets namely lithology, tectonic, airborne geophysics, ferric alteration, hydroxide alteration and geochemistry. The SVC modeling result selected 2220 pixels as favorable zones, approximately 25 percent of the study area. Besides, 66 out of 86 copper indices, approximately 78.6% of all, were located in favorable zones. Other main goal of this study was to determine how each input affects favorable output. For this purpose, the histogram of each normalized input data to its favorable output was drawn. The histograms of each input dataset for favorable output showed that each information layer had a certain pattern. These patterns of SVC results could be considered as regional copper exploration characteristics.

  7. The lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otoikhian, Adenike; Barry, Amanda N.; Mayfield, Mary

    2012-05-14

    Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper translocating ATPase (ATP7A or ATP7B) but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role ofmore » this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1, 15N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased towards 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met while at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.« less

  8. The Lumenal Loop M672-P707 of the Menkes Protein (ATP7A) Transfers Copper to Peptidylglycine Monooxygenase

    PubMed Central

    Otoikhian, Adenike; Barry, Amanda N.; Mayfield, Mary; Nilges, Mark; Huang, Yiping; Lutsenko, Svetlana; Blackburn, Ninian J.

    2012-01-01

    Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper translocating ATPase (ATP7A or ATP7B) but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1, 15N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased towards 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met while at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump. PMID:22577880

  9. Does Dietary Copper Supplementation enhance or diminish PCB126 Toxicity in Rodent Liver?

    PubMed Central

    Lai, Ian K.; Klaren, William D.; Li, Miao; Wels, Brian; Simmons, Donald L.; Olivier, Alicia K.; Haschek, Wanda M.; Wang, Kai; Ludewig, Gabriele; Robertson, Larry W.

    2013-01-01

    Copper is essential for the function of the mitochondrial electron transport chain and several antioxidant proteins. However, in its free form copper can participate in Fenton-like reactions that produce reactive hydroxyl radicals. Aryl-hydrocarbon receptor (AhR) agonists, including the most potent polychlorinated biphenyl (PCB) congener, 3,3',4,4',5-pentachlorobiphenyl (PCB126), increase copper levels in rodent livers. This is accompanied by biochemical and toxic changes. To assess the involvement of copper in PCB toxicity, male Sprague Dawley rats were fed an AIN-93G diet with differing dietary copper levels: low (2 ppm), adequate (6 ppm), and high (10 ppm). After three weeks, rats from each group were given a single ip injection of corn oil (control), 1, or 5 μmol/kg body weight PCB126. Two weeks following injections, biochemical and morphological markers of hepatic toxicity, trace metal status, and hepatic gene expression of metalloproteins were evaluated. Increasing dietary copper was associated with elevated tissue levels of copper and ceruloplasmin. In the livers of PCB126-treated rats the hallmark signs of AhR activation were present, including increased cytochrome P-450 and lipid levels, and decreased glutathione. In addition a doubling of hepatic copper levels was seen and overall metals homeostasis was disturbed, resulting in decreased hepatic selenium, manganese, zinc and iron. Expression of key metalloproteins was either decreased (cytochrome c oxidase), unchanged (ceruloplasmin and CuZnSOD) or increased (tyrosinase, metallothionein 1 and 2) with exposure to PCB126. Increases in metallothionein may contribute/reflect the increased copper seen. Alterations in dietary copper did not amplify or abrogate the hepatic toxicity of PCB126. PCB126 toxicity, i.e. oxidative stress and steatosis, is clearly associated with disturbed metals homeostasis. Understanding the mechanisms of this disturbance may provide tools to prevent liver toxicity by other AhR agonists. PMID:23527585

  10. Old iron, young copper: from Mars to Venus.

    PubMed

    Crichton, R R; Pierre, J L

    2001-06-01

    Iron and copper are metals which play an important role in the living world. From a brief consideration of their chemistry and biochemistry we conclude that the early chemistry of life used water soluble ferrous iron while copper was in the water-insoluble Cu(I) state as highly insoluble sulphides. The advent of oxygen was a catastrophic event for most living organisms, and can be considered to be the first general irreversible pollution of the earth. In contrast to the oxidation of iron and its loss of bioavailability as insoluble Fe(III), the oxidation of insoluble Cu(I) led to soluble Cu(II). A new iron biochemistry became possible after the advent of oxygen, with the development of chelators of Fe(III), which rendered iron once again accessible, and with the control of the potential toxicity of iron by its storage in a water soluble, non-toxic, bio-available storage protein (ferritin). Biology also discovered that whereas enzymes involved in anaerobic metabolism were designed to operate in the lower portion of the redox spectrum, the arrival of dioxygen created the need for a new redox active metal which could attain higher redox potentials. Copper, now bioavailable, was ideally suited to exploit the oxidizing power of dioxygen. The arrival of copper also coincided with the development of multicellular organisms which had extracellular cross-linked matrices capable of resisting attack by oxygen free radicals. After the initial 'iron age' subsequent evolution moved, not towards a 'copper age', but rather to an 'iron-copper' age. In the second part of the review, this symbiosis of iron and copper is examined in yeast. We then briefly consider iron and copper metabolism in mammals, before looking at iron-copper interactions in mammals, particularly man, and conclude with the reflection that, as in Greek and Roman mythology, a better understanding of the potentially positive interactions between Mars (iron) and Venus (copper) can only be to the advantage of our species.

  11. Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort.

    PubMed

    Stepien, Magdalena; Jenab, Mazda; Freisling, Heinz; Becker, Niels-Peter; Czuban, Magdalena; Tjønneland, Anne; Olsen, Anja; Overvad, Kim; Boutron-Ruault, Marie-Christine; Mancini, Francesca Romana; Savoye, Isabelle; Katzke, Verena; Kühn, Tilman; Boeing, Heiner; Iqbal, Khalid; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Sieri, Sabina; Tumino, Rosario; Naccarati, Alessio; Panico, Salvatore; Bueno-de-Mesquita, H B As; Peeters, Petra H; Weiderpass, Elisabete; Merino, Susana; Jakszyn, Paula; Sanchez, Maria-Jose; Dorronsoro, Miren; Huerta, José María; Barricarte, Aurelio; Boden, Stina; van Guelpen, Behany; Wareham, Nick; Khaw, Kay-Tee; Bradbury, Kathryn E; Cross, Amanda J; Schomburg, Lutz; Hughes, David J

    2017-07-01

    Adequate intake of copper and zinc, two essential micronutrients, are important for antioxidant functions. Their imbalance may have implications for development of diseases like colorectal cancer (CRC), where oxidative stress is thought to be etiologically involved. As evidence from prospective epidemiologic studies is lacking, we conducted a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort to investigate the association between circulating levels of copper and zinc, and their calculated ratio, with risk of CRC development. Copper and zinc levels were measured by reflection X-ray fluorescence spectrometer in 966 cases and 966 matched controls. Multivariable adjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional logistic regression and are presented for the fifth versus first quintile. Higher circulating concentration of copper was associated with a raised CRC risk (OR = 1.50; 95% CI: 1.06, 2.13; P-trend = 0.02) whereas an inverse association with cancer risk was observed for higher zinc levels (OR = 0.65; 95% CI: 0.43, 0.97; P-trend = 0.07). Consequently, the ratio of copper/zinc was positively associated with CRC (OR = 1.70; 95% CI: 1.20, 2.40; P-trend = 0.0005). In subgroup analyses by follow-up time, the associations remained statistically significant only in those diagnosed within 2 years of blood collection. In conclusion, these data suggest that copper or copper levels in relation to zinc (copper to zinc ratio) become imbalanced in the process of CRC development. Mechanistic studies into the underlying mechanisms of regulation and action are required to further examine a possible role for higher copper and copper/zinc ratio levels in CRC development and progression. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Flammini, D.; Loreti, S.; Moro, F.; Pillon, M.; Villar, R.; Klix, A.; Fischer, U.; Kodeli, I.; Perel, R. L.; Pohorecky, W.

    2017-09-01

    A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 70 cm3) aimed at testing and validating the recent nuclear data libraries for fusion applications was performed in the frame of the European Fusion Program at the 14 MeV ENEA Frascati Neutron Generator (FNG). Reaction rates, neutron flux spectra and doses were measured using different experimental techniques (e.g. activation foils techniques, NE213 scintillator and thermoluminescent detectors). This paper first summarizes the analyses of the experiment carried-out using the MCNP5 Monte Carlo code and the European JEFF-3.2 library. Large discrepancies between calculation (C) and experiment (E) were found for the reaction rates both in the high and low neutron energy range. The analysis was complemented by sensitivity/uncertainty analyses (S/U) using the deterministic and Monte Carlo SUSD3D and MCSEN codes, respectively. The S/U analyses enabled to identify the cross sections and energy ranges which are mostly affecting the calculated responses. The largest discrepancy among the C/E values was observed for the thermal (capture) reactions indicating severe deficiencies in the 63,65Cu capture and elastic cross sections at lower rather than at high energy. Deterministic and MC codes produced similar results. The 14 MeV copper experiment and its analysis thus calls for a revision of the JEFF-3.2 copper cross section and covariance data evaluation. A new analysis of the experiment was performed with the MCNP5 code using the revised JEFF-3.3-T2 library released by NEA and a new, not yet distributed, revised JEFF-3.2 Cu evaluation produced by KIT. A noticeable improvement of the C/E results was obtained with both new libraries.

  13. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection

    PubMed Central

    Subashchandrabose, Sargurunathan; Hazen, Tracy H.; Brumbaugh, Ariel R.; Himpsl, Stephanie D.; Smith, Sara N.; Ernst, Robert D.; Rasko, David A.; Mobley, Harry L. T.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of uncomplicated urinary tract infection (UTI), manifested by inflammation of the urinary bladder, in humans and is a major global public health concern. Molecular pathogenesis of UPEC has been primarily examined using murine models of UTI. Translational research to develop novel therapeutics against this major pathogen, which is becoming increasingly antibiotic resistant, requires a thorough understanding of mechanisms involved in pathogenesis during human UTIs. Total RNA-sequencing (RNA-seq) and comparative transcriptional analysis of UTI samples to the UPEC isolates cultured in human urine and laboratory medium were used to identify novel fitness genes that were specifically expressed during human infection. Evidence for UPEC genes involved in ion transport, including copper efflux, nickel and potassium import systems, as key fitness factors in uropathogenesis were generated using an experimental model of UTI. Translational application of this study was investigated by targeting Cus, a bacterial copper efflux system. Copper supplementation in drinking water reduces E. coli colonization in the urinary bladder of mice. Additionally, our results suggest that anaerobic processes in UPEC are involved in promoting fitness during UTI in humans. In summary, RNA-seq was used to establish the transcriptional signature in UPEC during naturally occurring, community acquired UTI in women and multiple novel fitness genes used by UPEC during human infection were identified. The repertoire of UPEC genes involved in UTI presented here will facilitate further translational studies to develop innovative strategies against UTI caused by UPEC. PMID:25489107

  14. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.

    2010-10-14

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at themore » low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O2 or N2O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of water is also observed during this titration as the copper surface is re-reduced. These results indicate that co-adsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl.« less

  15. The Copper Homeostasis Transcription Factor CopR Is Involved in H2O2 Stress in Lactobacillus plantarum CAUH2

    PubMed Central

    Yang, Yang; Yin, Jia; Liu, Jie; Xu, Qi; Lan, Tian; Ren, Fazheng; Hao, Yanling

    2017-01-01

    Transcriptional factors (TFs) play important roles in the responses to oxidative, acid, and other environmental stresses in Gram-positive bacteria, but the regulatory mechanism of TFs involved in oxidative stress remains unknown in lactic acid bacteria. In the present work, homologous overexpression strains with 43 TFs were constructed in the Lactobacillus plantarum CAUH2 parent strain. The strain overexpressing CopR displayed the highest sensitivity and a 110-fold decrease in survival rate under H2O2 challenge. The importance of CopR in the response to H2O2 stress was further confirmed by a 10.8-fold increase in the survival of a copR insertion mutant. In silico analysis of the genes flanking copR revealed putative CopR-binding “cop box” sequences in the promoter region of the adjacent gene copB encoding a Cu2+-exporting ATPase. Electrophoretic mobility shift assay (EMSA) analysis demonstrated the specific binding of CopR with copB in vitro, suggesting copB is a target gene of CopR in L. plantarum. The role of CopB involved in oxidative stress was verified by the significantly decreased survival in the copB mutant. Furthermore, a growth defect in copper-containing medium demonstrated that CopB functions as an export ATPase for copper ions. Furthermore, EMSAs revealed that CopR functions as a regulator that negatively regulates copB gene and Cu2+ serves as inducer of CopR to activate the expression of CopB in response to H2O2 stress in L. plantarum CAUH2. Our findings indicated that CopR plays an important role in enhancing oxidative resistance by regulating copB to modulate copper homeostasis. PMID:29089937

  16. Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson’s Disease

    PubMed Central

    2016-01-01

    Copper is an essential nutrient for life, but at the same time, hyperaccumulation of this redox-active metal in biological fluids and tissues is a hallmark of pathologies such as Wilson’s and Menkes diseases, various neurodegenerative diseases, and toxic environmental exposure. Diseases characterized by copper hyperaccumulation are currently challenging to identify due to costly diagnostic tools that involve extensive technical workup. Motivated to create simple yet highly selective and sensitive diagnostic tools, we have initiated a program to develop new materials that can enable monitoring of copper levels in biological fluid samples without complex and expensive instrumentation. Herein, we report the design, synthesis, and properties of PAF-1-SMe, a robust three-dimensional porous aromatic framework (PAF) densely functionalized with thioether groups for selective capture and concentration of copper from biofluids as well as aqueous samples. PAF-1-SMe exhibits a high selectivity for copper over other biologically relevant metals, with a saturation capacity reaching over 600 mg/g. Moreover, the combination of PAF-1-SMe as a material for capture and concentration of copper from biological samples with 8-hydroxyquinoline as a colorimetric indicator affords a method for identifying aberrant elevations of copper in urine samples from mice with Wilson’s disease and also tracing exogenously added copper in serum. This divide-and-conquer sensing strategy, where functional and robust porous materials serve as molecular recognition elements that can be used to capture and concentrate analytes in conjunction with molecular indicators for signal readouts, establishes a valuable starting point for the use of porous polymeric materials in noninvasive diagnostic applications. PMID:27285482

  17. Influence of indigenous and added iron on copper extraction from soil.

    PubMed

    Di Palma, Luca

    2009-10-15

    Experimental tests of copper leaching from a low permeability soil are presented and discussed. The objective of the experiments was to investigate the influence of indigenous and added iron in the soil towards copper mobilization. Metals' leaching was performed by flushing (column tests) or washing (batch tests) the soil with an aqueous solution of ethylenediaminetetraacetic acid, EDTA. An excess of EDTA was used in flushing tests (up to a EDTA:Cu molar ratio of about 26.2:1), while, in washing tests, the investigated EDTA vs. copper molar ratios were in the range between 1 (equimolar tests) and 8. Copper extraction yield in flushing tests (up to about 85%) was found to depend upon contact time between the soil and the leaching solution and the characteristics of the conditioning solution. The saturation of the soil with a NaNO(3) solution before the treatment, favoured the flushing process reducing the time of percolation, but resulted in a lower metal extraction during the following percolation of EDTA. The indigenous iron was competitive with copper to form EDTA complexes only when it was present in the organic and oxides-hydroxides fractions. Artificial iron addition to the soil resulted in an increase of both the exchangeable iron and the iron bonded to the organic fraction of the soil, thus increasing the overall amount of iron available to extraction. In both batch and continuous tests, the mechanism of copper extraction was found to involve the former dissolution of metal salts, that lead to an initial high concentration of both copper and selected competitive cations (essentially Ca(2+)), and the following EDTA exchange reaction between calcium and copper complexes. The initial metal salts dissolution was found to be pH-dependant.

  18. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2α pathway in mice.

    PubMed

    Ma, Quan; Ying, Ming; Sui, Xiaojing; Zhang, Huimin; Huang, Haiyan; Yang, Linqing; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei

    2015-01-01

    Copper is an essential element for human growth and development; however, excessive intake of copper could contribute to neurotoxicity. Here we show that chronic exposure to copper in drinking water impaired spatial memory with simultaneous selective loss of hippocampal pre-synaptic protein synapsin 1, and post-synaptic density protein (PSD)-93/95 in mice. Copper exposure was shown to elevate the levels of nitrotyrosine and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampus, two markers of oxidative stress. Concurrently, we also found that copper exposure activated double stranded RNA-dependent protein kinase (PKR) as evidenced by increased ratio of phosphorylated PKR at Thr451 and total PKR and increased the phosphorylation of its downstream signaling molecule eukaryotic initiation factor 2α (eIF2α) at Ser51 in hippocampus. Consistent with activation of PKR/eIF2α signaling pathway which was shown to mediate synaptic deficit and cognitive impairment, the levels of activating transcription factor 4 (ATF-4), a downstream signaling molecule of eIF2α and a repressor of CREB-mediated gene expression, were significantly increased, while the activity of cAMP response elements binding protein (CREB) was inactivated as suggested by decreased phosphorylation of CREB at Ser133 by copper exposure. In addition, the expression of the pro-apoptotic target molecule C/EBP homology protein (CHOP) of ATF-4 was upregulated and hippocampal neuronal apoptosis was induced by copper exposure. Taken together, we propose that chronic copper exposure might cause spatial memory impairment, selective loss of synaptic proteins, and neuronal apoptosis through the mechanisms involving activation of PKR/eIF2α signaling pathway.

  19. Synthesis of Strained 1,3-Diene Macrocycles via Copper-Mediated Castro-Stephens Coupling/Alkyne Reduction Tandem Reactions.

    PubMed

    Li, Wei; Schneider, Christopher M; Georg, Gunda I

    2015-08-07

    A copper-mediated macrocyclization involving the reaction of a vinyl iodide and a terminal alkyne followed by an in situ reduction of the enyne intermediate is reported. The reaction generates a conjugated Z-double bond within a strained medium-size lactone, lactam, or ether macrocycle. A variety of macrocyclic compounds bearing different ring sizes and functionalities were synthesized. A complementary stepwise procedure was also developed for less strained ring systems.

  20. Cleaning and activation of beryllium-copper electron multiplier dynodes.

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1972-01-01

    Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.

Top