Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation
NASA Astrophysics Data System (ADS)
Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.
2006-11-01
Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.
NASA Astrophysics Data System (ADS)
Chen, G. S.; Chen, S. T.
2000-06-01
Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N (a-Ta2N) thin films yield intrinsic compressive stresses in the range 3-5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N (Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N (Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.
Deposition and properties of cobalt- and ruthenium-based ultra-thin films
NASA Astrophysics Data System (ADS)
Henderson, Lucas Benjamin
Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.
Development of low cost contacts to silicon solar cells
NASA Technical Reports Server (NTRS)
Tanner, D. P.
1980-01-01
The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper.
Electronic Devices With Diffusion Barrier and Process for Making Same
2000-05-03
components. Diffusion is also a problem with other high 10 conductivity metallization materials such as gold , silver, and platinum. As can be...those of subgroup IB of the Periodic Table (i.e., copper, silver, gold ), as well as platinum. These metals are highly attractive 10 for...the metal halide molecules of the desired thickness, is formed upon the monolayer portion of the barrier -7- material. The monolayer ( monoatomic
Diffusion barriers in modified air brazes
Weil, Kenneth Scott; Hardy, John S; Kim, Jin Yong; Choi, Jung-Pyung
2013-04-23
A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.
Diffusion barriers in modified air brazes
Weil, Kenneth Scott [Richland, WA; Hardy, John S [Richland, WA; Kim, Jin Yong [Richland, WA; Choi, Jung-Pyung [Richland, WA
2010-04-06
A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.
NASA Astrophysics Data System (ADS)
Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood
2017-11-01
The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).
A base-metal conductor system for silicon solar cells
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.
1980-01-01
Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.
NASA Astrophysics Data System (ADS)
Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang
2014-01-01
Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.
How thin barrier metal can be used to prevent Co diffusion in the modern integrated circuits?
NASA Astrophysics Data System (ADS)
Dixit, Hemant; Konar, Aniruddha; Pandey, Rajan; Ethirajan, Tamilmani
2017-11-01
In modern integrated circuits (ICs), billions of transistors are connected to each other via thin metal layers (e.g. copper, cobalt, etc) known as interconnects. At elevated process temperatures, inter-diffusion of atomic species can occur among these metal layers, causing sub-optimal performance of interconnects, which may lead to the failure of an IC. Thus, typically a thin barrier metal layer is used to prevent the inter-diffusion of atomic species within interconnects. For ICs with sub-10 nm transistors (10 nm technology node), the design rule (thickness scaling) demands the thinnest possible barrier layer. Therefore, here we investigate the critical thickness of a titanium-nitride (TiN) barrier that can prevent the cobalt diffusion using multi-scale modeling and simulations. First, we compute the Co diffusion barrier in crystalline and amorphous TiN with the nudged elastic band method within first-principles density functional theory simulations. Later, using the calculated activation energy barriers, we quantify the Co diffusion length in the TiN metal layer with the help of kinetic Monte Carlo simulations. Such a multi-scale modelling approach yields an exact critical thickness of the metal layer sufficient to prevent the Co diffusion in IC interconnects. We obtain a diffusion length of a maximum of 2 nm for a typical process of thermal annealing at 400 °C for 30 min. Our study thus provides useful physical insights for the Co diffusion in the TiN layer and further quantifies the critical thickness (~2 nm) to which the metal barrier layer can be thinned down for sub-10 nm ICs.
An experimental study of the composite CNT/copper coating
NASA Astrophysics Data System (ADS)
Panarin, Valentin Ye.; Svavil‧nyi, Nikolai Ye.; Khominich, Anastasiya I.
2018-03-01
This paper presents experimental results on the preparation and investigation of the carbon nanotubes-copper composite material. Carbon nanotubes (CNTs) were synthesized on silicon substrates by the chemical vapor deposition (CVD) method and then filled with copper by evaporation from a melting pot in a vacuum. Copper evenly covered both the surface of the entangled tubes and the free substrate surface between the tubes. To improve the adhesion of tubes and matrix material, a carbon substructure was grown on the surface of tubes by adding working gas plasma to the CNT synthesis area. It is proposed to use a copper coating as a diffusion barrier upon subsequent filling of the reinforcing CNT frame by a carbide-forming materials matrix with predetermined physico-mechanical and tribological properties.
Efficacy of Tantalum Tungsten Alloys for Diffusion Barrier Applications
NASA Astrophysics Data System (ADS)
Smathers, D. B.; Aimone, P. R.
2017-12-01
Traditionally either Niobium, Tantalum or a combination of both have been used as diffusion barriers in Nb3Sn Multi-filament wire. Vanadium has also been used successfully but the ultimate RRR of the copper is limited unless an external shell of Niobium is included. Niobium is preferred over Tantalum when alternating current losses are not an issue as the Niobium will react to form Nb3Sn. Pure Tantalum tends to deform irregularly requiring extra starting thickness to ensure good barrier qualities. Our evaluations showed Tantalum lightly alloyed with 3 wt% Tungsten is compatible with the wire drawing process while deforming as well as or better than pure Niobium. Ta3wt%W has been processed as a single barrier and as a distributed barrier to fine dimensions. In addition, the higher modulus and strength of the Tantalum Tungsten alloy improves the overall tensile properties of the wire.
Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kale, Abhijit; Beese, Emily; Saenz, Theresa
NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang
Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less
Stabilization of Oxidized Copper Nanoclusters in Confined Spaces
Akter, Nusnin; Wang, Mengen; Zhong, Jian-Qiang; ...
2018-01-04
Copper is an important industrial catalyst. The ability to manipulate the oxidation state of copper clusters in a controlled way is critical to understanding structure–reactivity relations of copper catalysts at the molecular level. Experimentally, cupric oxide surfaces or even small domains can only be stabilized at elevated temperatures and in the presence of oxygen, as copper can be easily reduced under reaction conditions. Herein bilayer silica films grown on a metallic substrate are used to trap diluted copper oxide clusters. By combining in situ experiments with first principles calculations, it is found that the confined space created by the silicamore » film leads to an increase in the energy barrier for Cu diffusion. Dispersed copper atoms trapped by the silica film can be easily oxidized by surface oxygen chemisorbed on the metallic substrate, which results in the formation and stabilization of Cu 2+ cations.« less
Multilevel Dual Damascene copper interconnections
NASA Astrophysics Data System (ADS)
Lakshminarayanan, S.
Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400oC, 500oC and 600oC for Ti, TiN and Ta barriers respectively. Via resistivity on the order of 10-9/ /Omegacm2 was measured for Cu/Ta/Cu interfaces and no degradation in the via resistance was observed upto 600oC on the 2 μm and 3 μm wide contact windows. Characterization of diode leakage and subthreshold currents of CMOS transistors fabricated with Ta adhesion layers, showed the failure of the Ta barrier at 450oC. Despite the good barrier performance of the CVD TiN films, obtaining low contact resistivity may be a concern. The potential use of Cu-Mg alloy as the backend metallization has also been studied. Fully encapsulated wiring has been fabricated by causing the Mg to out- diffuse towards the Cu/SiO2 interfaces and the free copper surface. The inter-connects exhibited good stability and oxidation resistance, but via resistances were extremely high, probably due to the presence of insulating films like MgO or MgF2 at the interface between the two metal levels. It may be possible to decrease the via resistance to values comparable to Cu/Ta/Cu by altering the process flow and using a suitable via clean. When used at the contact level, undesirable interaction with the CoSi2 film was observed at temperatures as low as 350oC. Another problem was the high contact resistance at the Cu-Mg/CoSi2 interface. Hence the use of this alloy as a contact fill material is not feasible at this time. An additional barrier layer may be required between the Cu-Mg and CoSi2 films to protect the integrity of the silicide and provide low contact resistance.
Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation
NASA Astrophysics Data System (ADS)
Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji
2018-06-01
Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.
NASA Astrophysics Data System (ADS)
Gandhi, D. D.; Singh, A. P.; Lane, M.; Eizenberg, M.; Ramanath, G.
2007-04-01
We demonstrate the use of polyallylamine hydrochloride (PAH)-polystyrene sulfonate (PSS) nanolayers to block Cu transport into silica. Cu/PSS-PAH/SiO2 structures show fourfold enhancement in device failure times during bias thermal annealing at 200 °C at an applied electric field of 2 MV/cm, when compared with structures with pristine Cu-SiO2 interfaces. Although the bonding at both Cu-PSS and PAH-SiO2 interfaces are strong, the interfacial toughness measured by the four-point bend tests is ˜2 Jm-2. Spectroscopic analysis of fracture surfaces reveals that weak electrostatic bonding at the PSS-PAH interface is responsible for the low toughness. Similar behavior is observed for Cu-SiO2 interfaces modified with other polyelectrolyte bilayers that inhibit Cu diffusion. Thus, while strong bonding at Cu-barrier and barrier-dielectric interfaces may be sufficient for blocking copper transport across polyelectrolyte bilayers, strong interlayer molecular bonding is a necessary condition for interface toughening. These findings are of importance for harnessing MNLs for use in future device wiring applications.
NASA Astrophysics Data System (ADS)
Padiyar, Sumant Devdas
2003-09-01
Current and future performance requirements for high- speed integrated circuit (IC) devices have placed great emphasis on the introduction of novel materials, deposition techniques and improved metrology techniques. The introduction of copper interconnects and more currently low-k dielectric materials in IC fabrication are two such examples. This introduction necessitates research on the compatibility of these materials and process techniques with adjacent diffusion barrier materials. One candidate, which has attracted significant attention is tantalum-silicon-nitride (TaSiN) on account of its superior diffusion barrier performance and high recrystallization temperature1. The subject of this dissertation is an investigation of the integration compatibility and performance of TaSiN barrier layers with a low-k dielectric polymer (SiLK ®2). A plasma- enhanced chemical vapor deposition (PECVD) approach is taken for growth of TaSiN films in this work due to potential advantages in conformal film coverage compared to more conventional physical vapor deposition methods. A Design of Experiment (DOE) methodology was introduced for PECVD of TaSiN on SiLK to optimize film properties such as film composition, resistivity, growth rate and film roughness with respect to the predictors viz. substrate temperature, precursor gas flow and plasma power. The first pass study determined the response window for optimized TaSiN film composition, growth rate and low halide contamination and the compatibility of the process with an organic polymer substrate, i.e. SiLK. Second-pass studies were carried out to deposit ultra- thin (10nm) films on: (a)blanket SiLK to investigate the performance of TaSiN films against copper diffusion, and (b)patterned SiLK to evaluate step coverage and conformality. All TaSiN depositions were carried out on SiO2 substrates for baseline comparisons. A second purpose of the diffusion barrier in IC processing is to improve interfacial adhesion between the barrier and the adjacent dielectric material; especially important for an organic polymer like SiLK. Hence, a detailed study was undertaken to evaluate the interfacial adhesion of TaSiN with SiLK and SiO2 and study the dependence of the adhesion with the film composition. The results of diffusion barrier performance studies, conformality studies, and interfacial adhesion studies of TaSiN films are discussed in relation to the elemental compositions of the films. 1J. S. Reid, M. Nicolet, J. Appl. Phys. 79 (2) p. 1109 (1996). 2SiLK is a low-k dielectric candidate registered by Dow Chemical Company, MI.
High conductivity composite metal
Zhou, Ruoyi; Smith, James L.; Embury, John David
1998-01-01
Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzocchero, Filippo; Bøggild, Peter; Booth, Timothy J.
We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035 °C in an Ar/H{sub 2} atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide channels, which are aligned with the intersections of the (100) surface of the wafer and the (110) planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission electron microscopy of focusedmore » ion beam fabricated lammelas and trenches in the structure to elucidate the process of their formation.« less
High conductivity composite metal
Zhou, R.; Smith, J.L.; Embury, J.D.
1998-01-06
Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.
Growth of nitrogen-doped graphene on copper: Multiscale simulations
NASA Astrophysics Data System (ADS)
Gaillard, P.; Schoenhalz, A. L.; Moskovkin, P.; Lucas, S.; Henrard, L.
2016-02-01
We used multiscale simulations to model the growth of nitrogen-doped graphene on a copper substrate by chemical vapour deposition (CVD). Our simulations are based on ab-initio calculations of energy barriers for surface diffusion, which are complemented by larger scale Kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape of grown doped graphene flakes depends on the temperature and deposition flux they are submitted during the process, but we found no significant effect of nitrogen doping on this shape. However, we show that nitrogen atoms have a preference for pyridine-like sites compared to graphite-like sites, as observed experimentally.
NASA Technical Reports Server (NTRS)
Meier, D. L.; Campbell, R. B.; Davis, J. R., Jr.; Rai-Choudhury, P.; Sienkiewicz, L. J.
1982-01-01
Two experimental contact systems were examined and compared to a baseline contact system consisting of evaporated layers of titanium, palladium, and silver and an electroplated layer of copper. The first experimental contact system consisted of evaporated layers of titanium, nickel, and copper and an electroplated layer of copper. This system performed as well as the baseline system in all respects, including its response to temperature stress tests, to a humidity test, and to an accelerated aging test. In addition, the cost of this system is estimated to be only 43 percent of the cost of the baseline system at a production level of 25 MW/year. The second experimental contact system consisted of evaporated layers of nickel and copper and an electroplated layer of copper. Cells with this system show serious degradation in a temperature stress test at 350 C for 30 minutes. Auger electron spectroscopy was used to show that the evaporated nickel layer is not an adequate barrier to copper diffusion even at temperatures as low as 250 C. This fact brings into question the long-term reliability of this contact system.
Speciation of copper diffused in a bi-porous molecular sieve
NASA Astrophysics Data System (ADS)
Huang, C.-H.; Paul Wang, H.; Wei, Y.-L.; Chang, J.-E.
2010-07-01
To better understand diffusion of copper in the micro- and mesopores, speciation of copper in a bi-porous molecular sieve (BPMS) possessing inter-connecting 3-D micropores (0.50-0.55 nm) and 2-D mesopores (4.1 nm) has been studied by X-ray absorption near edge structure (XANES) spectroscopy. It is found that about 77% (16% of CuO nanoparticles and 61% of CuO clusters) and 23% (CuO ads) of copper can be diffused into the meso- and micropores, respectively, in the BPMS. At least two diffusion steps in the BPMS may be involved: (i) free diffusion of copper in the mesopores and (ii) diffusion-controlled copper migrating into the micropores of the BPMS. The XANES data also indicate that diffusion rate of copper in the BPMS (4.68×10 -5 g/s) is greater than that in the ZSM-5 (1.11×10 -6 g/s) or MCM-41 (1.17×10 -5 g/s).
Renne, Walter George; Mennito, Anthony Samuel; Schmidt, Michael Gerard; Vuthiganon, Jompobe; Chumanov, George
2015-05-19
Provided are antibacterial and antimicrobial surface coatings and dental materials by utilizing the antimicrobial properties of copper chalcogenide and/or copper halide (CuQ, where Q=chalcogens including oxygen, or halogens, or nothing). An antimicrobial barrier is created by incorporation of CuQ nanoparticles of an appropriate size and at a concentration necessary and sufficient to create a unique bioelectrical environment. The unique bioelectrical environment results in biocidal effectiveness through a multi-factorial mechanism comprising a combination of the intrinsic quantum flux of copper (Cu.sup.0, Cu.sup.1+, Cu.sup.2+) ions and the high surface-to-volume electron sink facilitated by the nanoparticle. The result is the constant quantum flux of copper which manifests and establishes the antimicrobial environment preventing or inhibiting the growth of bacteria. The presence of CuQ results in inhibiting or delaying bacterial destruction and endogenous enzymatic breakdown of the zone of resin inter-diffusion, the integrity of which is essential for dental restoration longevity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth
Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturingmore » of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.« less
NASA Astrophysics Data System (ADS)
Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.
2012-05-01
Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.
Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.
Turan, N Gamze; Ergun, Osman Nuri
2009-08-15
All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.
Haywood, S; Vaillant, C
2014-01-01
Age-related regulatory failure of the brain barrier towards the influx of redox metals such as copper and iron may be associated with the pathological changes that characterize dementias such as Alzheimer's diseases (ADs) and amyotrophic lateral sclerosis (ALS). The integrity of the brain barrier to regulate copper in the brain is maintained by the complex interplay of membrane-located transporters, of which copper transporter 1 (CTR1) exerts a defining role. North Ronaldsay (NR) sheep are a primitive breed that have adapted to a copper-deficient environment by an enhanced uptake of the metal, resulting in copper overload in the liver and brain. This study reports that CTR1 is overexpressed in both the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB) of adult NR sheep when compared with a domesticated breed. The excess copper is stored ultimately in astrocytes as non-injurious copper-metallothionein (MT). NR sheep have apparently retained an immature regulatory setting for CTR1 in the BBB, promoting facilitated copper uptake into the brain. This putative failure of maturation of CTR1 allows insight into the regulatory control of brain copper homeostasis, whereby the BBB and BCB act in concert to sequester excess copper and protect neurons from injury. The elevated copper content of the ageing human brain may derive from a dysregulation of CTR1 at the brain barrier, with a return to the default (immature) setting and implications for neurodegenerative disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayat, Sardar Sikandar; Rehman, Zakirur; Shah, Zulfiqar Ali
2017-11-01
We study the diffusion of two-dimensional Cun(1 ≤ n ≤ 9) islands on Ag(111) surface using molecular dynamics (MD) simulations. The work is the extension of calculations of monomer and dimer Hayat et al. [Phys. Rev. B 82 (2010) 085411] and trimer results Shah et al. [Phys. Lett. A 378 (2014) 1732]. Simulations carried out at three different temperatures — 300, 500, and 700 K — show the concerted motion to be dominant for the smaller islands (2- to 4-atoms), while the shape-changing multiple-atom processes are responsible for the diffusion of larger islands. Arrhenius plots of the diffusion coefficients reveal that the effective energy barrier is less than 260 ± 5 meV for the largest island size of Cu/Ag(111). There is a scaling of the effective energy barrier with size to some extent, but most notably it remains constant for islands with 4- to 6-atoms. The diffusion coefficient increases within a factor of 10 at the three temperatures 300, 500, and 700 K. The observed anharmonic features of the Cun adislands (breakage and pop-up) at Ag(111) surface as well as the surface anharmonicity of the Ag-substrate (fissures, dislocations, vacancy generation, and atomic exchange), are also presented. These findings can serve as an input for kinetic Monte Carlo (KMC) simulations. For the smaller sized islands the variation in the effective energy barrier with the island size is in good agreement with the experimental findings.
NASA Astrophysics Data System (ADS)
Jiao, Guohua; Liu, Bo; Li, Qiran
2015-08-01
Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.
Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys
NASA Technical Reports Server (NTRS)
Raj, Sai V. (Inventor)
2005-01-01
A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.
Yoon, Jongchan; Bae, Sung Hwa; Sohn, Ho-Sang; Son, Injoon; Kim, Kyung Tae; Ju, Young-Wan
2018-09-01
In this study, we devised a method to bond thermoelectric elements directly to copper electrodes by plating indium with a relatively low melting point. A coating of indium, ~30 μm in thickness, was fabricated by electroplating the surface of a Bi2Te3-based thermoelectric element with a nickel diffusion barrier layer. They were then subjected to direct thermocompression bonding at 453 K on a hotplate for 10 min at a pressure of 1.1 kPa. Scanning electron microscopy images confirmed that a uniform bond was formed at the copper electrode/thermoelectric element interface, and the melted/solidified indium layer was defect free. Thus, the proposed novel method of fabricating a thermoelectric module by electroplating indium on the surface of the thermoelectric element and directly bonding with the copper electrode can be used to obtain a uniformly bonded interface even at a relatively low temperature without the use of solder pastes.
Aminosilanization nanoadhesive layer for nanoelectric circuits with porous ultralow dielectric film.
Zhao, Zhongkai; He, Yongyong; Yang, Haifang; Qu, Xinping; Lu, Xinchun; Luo, Jianbin
2013-07-10
An ultrathin layer is investigated for its potential application of replacing conventional diffusion barriers and promoting interface adhesion for nanoelectric circuits with porous ultralow dielectrics. The porous ultralow dielectric (k ≈ 2.5) substrate is silanized by 3-aminopropyltrimethoxysilane (APTMS) to form the nanoadhesive layer by performing oxygen plasma modification and tailoring the silanization conditions appropriately. The high primary amine content is obtained in favor of strong interaction between amino groups and copper. And the results of leakage current measurements of metal-oxide-semiconductor capacitor structure demonstrate that the aminosilanization nanoadhesive layer can block copper diffusion effectively and guarantee the performance of devices. Furthermore, the results of four-point bending tests indicate that the nanoadhesive layer with monolayer structure can provide the satisfactory interface toughness up to 6.7 ± 0.5 J/m(2) for Cu/ultralow-k interface. Additionally, an annealing-enhanced interface toughness effect occurs because of the formation of Cu-N bonding and siloxane bridges below 500 °C. However, the interface is weakened on account of the oxidization of amines and copper as well as the breaking of Cu-N bonding above 500 °C. It is also found that APTMS nanoadhesive layer with multilayer structure provides relatively low interface toughness compared with monolayer structure, which is mainly correlated to the breaking of interlayer hydrogen bonding.
NASA Astrophysics Data System (ADS)
Brady-Boyd, A.; O'Connor, R.; Armini, S.; Selvaraju, V.; Hughes, G.; Bogan, J.
2018-01-01
In this work x-ray photoelectron spectroscopy is used to investigate in-vacuo, the interaction of metallic manganese with a (3-trimethoxysilylpropyl)diethylenetriamine (DETA) self-assembled monolayer (SAM) on SiO2 and non-porous low-k dielectric materials. Subsequent deposition of a ∼0.5 nm thick Mn, followed by a 200 °C anneal results in the Mn diffusing through the SAM to interact with the underlying SiO2 layer to form a Mn-silicate layer. Furthermore, there is evidence that the Mn interacts with the carbon and nitrogen within the SAM to form Mn-carbide and Mn-nitride, respectively. When deposited on low-k materials the Mn is found to diffuse through to the SAM on deposition and interact both with the SAM and the underlying substrate in a similar fashion.
Weihs, Timothy P.; Barbee, Jr., Troy W.
2002-01-01
Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).
Correlation of filament distortion and RRR degradation in drawn and rolled PIT and RRP Nb 3 Sn wires
Brown, M.; Tarantini, C.; Starch, W.; ...
2016-07-11
PIT and RRP® Nb3Sn strands are being developed for high field accelerator magnet upgrades for the high luminosity LHC. Here we report a quantitative study of the shape and position of PIT filaments and RRP® sub-elements after rolling lengths of unreacted PIT and RRP® round wires to simulate cabling deformation. In the as-drawn condition, filament shape distortion occurs preferentially in the outer ring filaments. By contrast, rolling induces non-uniform shear bands that generate greater distortion of inner ring filaments. By making a full digitization of the shapes of all filaments, we find that a critical distortion occurs for thickness reductionsmore » between 10% and 20% when filament shapes in inner filament rings heavily degrade, especially in the vicinity of the strong 45° shear bands imposed by the rolling. It is well known that maintaining diffusion barrier integrity is vital to retaining adequate RRR in the stabilizing copper needed for magnet stability. Diffusion barrier breaks occur preferentially in these distorted inner filaments and drive local Sn leakage during reaction, increasing RRR degradation.« less
Geochemical barriers for environment protection and recovery of nonferrous metals.
Chanturiya, Valentine; Masloboev, Vladimir; Makarov, Dmitriy; Nesterov, Dmitriy; Bajurova, Julia; Svetlov, Anton; Men'shikov, Yuriy
2014-01-01
A study of natural minerals, ore tailings and their products as materials for artificial geochemical barriers is presented. In particular, it focuses on interaction between calcite and dolomite and sulfate solutions containing nickel, copper and iron under static conditions. Calcite of -0.1 mm fraction has been shown to perform well as a barrier when added to water phases of tailing dumps and natural reservoirs. Experiments under dynamic conditions have revealed a high potential of thermally activated copper-nickel tailings as barriers. After a 500-day precipitating period on a geochemical barrier, the contents of nickel and copper in ore dressing tailings were found to increase 12- and 28-fold, respectively. An effective sorbent of copper, iron and nickel ions is a brucite-based product of hydrochloric acid treatment of vermiculite ore tailings. Its sorption capacity can be essentially increased through thermal activation.
NASA Astrophysics Data System (ADS)
Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.
2014-09-01
SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.
Diffuse emission and control of copper in urban surface runoff.
Boller, M A; Steiner, M
2002-01-01
Copper washed off from roofs and roads is considered to be a major contribution to diffuse copper pollution of urban environments. In order to guarantee sustainable protection of soils and water, the long-term strategy is to avoid or replace copper containing materials on roofs and fagades. Until achievement of this goal, a special adsorber system is suggested to control the diffuse copper fluxes by retention of copper by a mixture of granulated iron-hydroxide (GEH) and calcium carbonate. Since future stormwater runoff concepts are based on decentralised runoff infiltration into the underground, solutions are proposed which provide for copper retention in infiltration sites using GEH adsorption layers. The example of a large copper façade of which the runoff is treated in an adsorption trench reveals the first full-scale data on façade runoff and adsorber performance. During the first year of investigation average façade runoff concentrations in the range of 1-10 mg Cu/l are reduced by 96-99% in the adsorption ditch.
NASA Astrophysics Data System (ADS)
Nam, N. D.; Bui, Q. V.; Nhan, H. T.; Phuong, D. V.; Bian, M. Z.
2014-09-01
The corrosion resistance of a multilayered (NiP-Pd-Au) coating with various thicknesses of palladium (Pd) interlayer deposited on copper by an electroless method was investigated using electrochemical techniques including potentiodynamic polarization and electrochemical impedance spectroscopy. In addition, the surface finish was examined by x-ray diffraction analysis and scanning electron microscopy, and the contact angle of the liquid-solid interface was recorded. The corrosion resistance of the copper substrate was considerably improved by Pd interlayer addition. Increase of the thickness of the Pd interlayer enhanced the performance of the Cu-NiP-Pd-Au coating due to low porosity, high protective efficiency, high charge-transfer resistance, and contact angle. These are attributed to the diffusion of layers in the Cu-NiP-Pd-Au coating acting as a physical barrier layer, leading to the protection provided by the coating.
The automated array assembly task of the low-cost silicon solar array project, phase 2
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.
1980-01-01
Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.
Introduction to Shaped Charges
2007-03-01
Figure 144. Late time collapse of a hemispherical depleted uranium liner. COPPER 430MM(17") LEAD-TIN EUTECTIC Figure 145. Comparison between...46 Figure 91. Setup for diffusion bonding of copper- nickel assemblies, temperature is 982 °C, time is 1–3 hr, argon atmosphere...46 Figure 92. Diffusion-bonded alternately layered copper- nickel
Multifilamentary niobium tin magnet conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larbalestier, D.C.; Madsen, P.E.; Lee, J.A.
1975-03-01
Practical magnet conductors of multifilamentary Nb$sub 3$Sn have been produced. Evaluation of these bronze route conductors is described. Conductors studied range from a 1369 filament all-bronze matrix conductor to 5143 and approximately 42,000 filament conductors, containing internal high purity copper protected by diffusion barriers. Filament sizes vary from approximately 3 to 8 $mu$m diameter. The effect of heat treatment conditions on critical current and transition temperature is presented and it is shown that overall critical current densities greater than those available in niobium titanium can now be produced in multifilamentary Nb$sub 3$Sn magnet conductor.
Modeling of batch sorber system: kinetic, mechanistic, and thermodynamic modeling
NASA Astrophysics Data System (ADS)
Mishra, Vishal
2017-10-01
The present investigation has dealt with the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase. Various rate models were evaluated to elucidate the kinetics of copper and zinc biosorptions, and the results indicated that the pseudo-second-order model was more appropriate than the pseudo-first-order model. The curve of the initial sorption rate versus the initial concentration of copper and zinc ions also complemented the results of the pseudo-second-order model. Models used for the mechanistic modeling were the intra-particle model of pore diffusion and Bangham's model of film diffusion. The results of the mechanistic modeling together with the values of pore and film diffusivities indicated that the preferential mode of the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase was film diffusion. The results of the intra-particle model showed that the biosorption of the copper and zinc ions was not dominated by the pore diffusion, which was due to macro-pores with open-void spaces present on the surface of egg-shell particles. The thermodynamic modeling reproduced the fact that the sorption of copper and zinc was spontaneous, exothermic with the increased order of the randomness at the solid-liquid interface.
NASA Astrophysics Data System (ADS)
Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.
2017-07-01
The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.
NASA Astrophysics Data System (ADS)
Lin, Yu; He, Rong; Sun, Liping; Yang, Yushan; Li, Wenqing; Sun, Fei
2016-12-01
Gold-based nanocrystals have attracted considerable attention for drug delivery and biological applications due to their distinct shapes. However, overcoming biological barriers is a hard and inevitable problem, which restricts medical applications of nanomaterials in vivo. Seeking for an efficient transportation to penetrate biological barriers is a common need. There are three barriers: blood-testis barrier, blood-placenta barrier, and blood-brain barrier. Here, we pay close attention to the blood-testis barrier. We found that the pentacle gold-copper alloy nanocrystals not only could enter GC-2 cells in vitro in a short time, but also could overcome the blood-testis barrier and enter male germ cells in vivo. Furthermore, we demonstrated that the entrance efficiency would become much higher in the development stages. The results also suggested that the pentacle gold-copper alloy nanocrystals could easier enter to germ cells in the pathological condition. This system could be a new method for theranostics in the reproductive system.
Copper Gas Diffusers For Purging Line-Focus Laser Welds
NASA Technical Reports Server (NTRS)
Fonteyne, Steve L.; Hosking, Timothy J.; Shelley, D. Mark
1996-01-01
Modified flow diffusers built for inert-gas purging of welds made with 5-kW CO(2) lasers operating with line-focus optics in conduction mode instead of with point-focus optics in customary keyhole mode. Diffusers made of copper components brazed together, robust enough to withstand strong reflections of line-focused laser energy.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1992-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1993-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
First-principles multiple-barrier diffusion theory. The case study of interstitial diffusion in CdTe
Yang, Ji -Hui; Park, Ji -Sang; Kang, Joongoo; ...
2015-02-17
The diffusion of particles in solid-state materials generally involves several sequential thermal-activation processes. However, presently, diffusion coefficient theory only deals with a single barrier, i.e., it lacks an accurate description to deal with multiple-barrier diffusion. Here, we develop a general diffusion coefficient theory for multiple-barrier diffusion. Using our diffusion theory and first-principles calculated hopping rates for each barrier, we calculate the diffusion coefficients of Cd, Cu, Te, and Cl interstitials in CdTe for their full multiple-barrier diffusion pathways. As a result, we found that the calculated diffusivity agrees well with the experimental measurement, thus justifying our theory, which is generalmore » for many other systems.« less
Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben
2012-01-01
Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972
NASA Astrophysics Data System (ADS)
Shtapenko, E. Ph.; Zabludovsky, V. A.; Dudkina, V. V.
2015-03-01
In this paper, we present the results of experimental investigations of the diffusion layer formed at the film-substrate interface upon the electrodeposition of zinc films on a copper substrate. The investigations have shown that, in the transient layer, the deposited metal is diffused into the material of the substrate. The depth of the diffusion layer and, consequently, the concentrations of the incorporated zinc atoms depend strongly on the conditions of electrocrystallization, which vary from 1.5 μm when using direct current to 4 μm when using direct current in combination with laser-stimulated deposition (LSD). The X-ray diffraction investigations of the transient layer at the film-substrate interface have shown that, upon electrocrystallization using pulsed current in rigid regimes with the application of the LSD, a CuZn2 phase is formed in the diffusion layer. This indicates that the diffusion of zinc into copper occurs via two mechanisms, i.e., grainboundary and bulk. The obtained values of the coefficient of diffusion of zinc adatoms in polycrystalline copper are equal to 1.75 × 10-15 m2/s when using direct current and 1.74 × 10-13 m2/s when using LSD.
Effect of copper on the recombination activity of extended defects in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feklisova, O. V., E-mail: feklisov@iptm.ru; Yakimov, E. B.
2015-06-15
The effect of copper atoms introduced by high-temperature diffusion on the recombination properties of dislocations and dislocation trails in p-type single-crystal silicon is studied by the electron-beam-induced current technique. It is shown that, in contrast to dislocations, dislocation trails exhibit an increase in recombination activity after the introduction of copper. Bright contrast appearance in the vicinity of dislocation trails is detected after the diffusion of copper and quenching of the samples. The contrast depends on the defect density in these trails.
Kinetic modeling of copper biosorption by immobilized biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veglio, F.; Beolchini, F.; Toro, L.
1998-03-01
Biosorption of heavy metals is one of the most promising technologies involved in the removal of toxic metals from industrial waste streams and natural waters. The kinetic modeling of copper biosorption by Arthrobacter sp. immobilized in a hydroxyethyl methacrylate-based matrix is reported in this work. The resin-biomass complex (RBC) has been used for copper biosorption in different conditions according to a factorial experiment. Factors investigated were cross-linker (trimethylolpropane trimethacrylate) concentration, biomass concentration in the solid, and particles` granulometry. A maximum copper specific uptake of abut 7 mg of Cu/g of biomass (dry weight) has been observed, in the case ofmore » a RBC with the following characteristics: 2% (w/w) cross-linker concentration, 8% (w/w) biomass concentration, and 425--750 {micro}m granulometry. The shrinking core model has been used for the fitting of experimental data. A good fit has been found in the case of controlling intraparticle diffusion in all experimental trials. The copper diffusion coefficient in RBC has been estimated from the slope of the regression lines. Values obtained for the diffusion coefficients do not differ from one another with respect to the estimated standard error. An average apparent copper diffusion coefficient of about 3 {times} 10{sup {minus}6} cm{sup 2}/s has been found.« less
Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes
NASA Technical Reports Server (NTRS)
Philipp, W. H.; May, C. E.
1983-01-01
The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.
Method for applying a diffusion barrier interlayer for high temperature components
Wei, Ronghua; Cheruvu, Narayana S.
2016-03-08
A coated substrate and a method of forming a diffusion barrier coating system between a substrate and a MCrAl coating, including a diffusion barrier coating deposited onto at least a portion of a substrate surface, wherein the diffusion barrier coating comprises a nitride, oxide or carbide of one or more transition metals and/or metalloids and a MCrAl coating, wherein M includes a transition metal or a metalloid, deposited on at least a portion of the diffusion barrier coating, wherein the diffusion barrier coating restricts the inward diffusion of aluminum of the MCrAl coating into the substrate.
New Cu(TiBN x ) copper alloy films for industrial applications
NASA Astrophysics Data System (ADS)
Lin, Chon-Hsin
2016-06-01
In this study, I explore a new type of copper alloy, Cu(TiBN x ), films by cosputtering Cu and TiB within an Ar/N2 gas atmosphere on Si substrates. The films are then annealed for 1 h in a vacuum environment at temperatures up to 700 °C. The annealed films exhibit not only excellent thermal stability and low resistivity but also little leakage current and strong adhesion to the substrates while no Cu/Si interfacial interactions are apparent. Within a Sn/Cu(TiBN x )/Si structure at 200 °C, the new alloy exhibits a minute dissolution rate, which is lower than that of pure Cu by at least one order of magnitude. Furthermore, the new alloy’s consumption rate is comparable to that of Ni commonly used in solder joints. The new films appear suitable for some industrial applications, such as barrierless Si metallization and new wetting and diffusion barrier layers required in flip-chip solder joints.
Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux
NASA Astrophysics Data System (ADS)
Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda
2003-08-01
Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.
NASA Astrophysics Data System (ADS)
Zainul, R.; Oktavia, B.; Dewata, I.; Efendi, J.
2018-04-01
This research aims to investigate the process of forming a multi-scale copper oxide semiconductor (CuO/Cu2O) through a process of calcining a copper plate. The changes that occur during the formation of the oxide are thermally and surface evaluated. Evaluation using Differential Thermal Analysis (DTA) obtained by surface change of copper plate happened at temperature 380°C. Calcination of oxide formation was carried out at temperature 380°C for 1 hour. Surface evaluation process by using Scanning Electron Microscope (SEM) surface and cross-section, to determine diffusion of oxide formation on copper plate. The material composition is monitored by XRF and XRD to explain the process of structural and physical changes of the copper oxide plate formed during the heating process. The thickness of Cu plates used is 200-250 μm. SEM analysis results, the oxygen atom interruption region is in the range of 20-30 μm, and diffuses deeper during thermal oxidation process. The maximum diffusion depth of oxygen atoms reaches 129 μm.
Apoplastic Diffusion Barriers in Arabidopsis
Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka
2013-01-01
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172
Multi-layer light-weight protective coating and method for application
NASA Technical Reports Server (NTRS)
Wiedemann, Karl E. (Inventor); Clark, Ronald K. (Inventor); Taylor, Patrick J. (Inventor)
1992-01-01
A thin, light-weight, multi-layer coating is provided for protecting metals and their alloys from environmental attack at high temperatures. A reaction barrier is applied to the metal substrate and a diffusion barrier is then applied to the reaction barrier. A sealant layer may also be applied to the diffusion barrier if desired. The reaction barrier is either non-reactive or passivating with respect to the metal substrate and the diffusion barrier. The diffusion barrier is either non-reactive or passivating with respect to the reaction barrier and the sealant layer. The sealant layer is immiscible with the diffusion barrier and has a softening point below the expected use temperature of the metal.
Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo
2017-11-01
The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.
Experimental studies of diffusion welding of YBCO to copper using solder layers
NASA Astrophysics Data System (ADS)
Xie, Y.; Ouyang, Z.; Shi, L.; Kuang, Z.; Meng, M.
2017-02-01
The welding technology is of great importance in YBCO application. To make better joints, the diffusion welding of YBCO tape to copper has been carried out in a vacuum environment. In consideration of high welding temperature (above 200°C) could do damage to the material performance, a new kind of diffusion welding method with temperature below 200 °C has been developed recently. A new welding appliance which can offer pressure over 35Kg/mm2 and controlled temperature has been designed and built; several YBCO coated conductors joints soldered with different melting points of tins has been tested. The results showed that the diffusion can perfectly connect YBCO to copper as well as stainless steel and resistance of the joint was low, and the YBCO tape could bear 217°C for at least 15mins.
Reactive diffusion in the presence of a diffusion barrier: Experiment and model
NASA Astrophysics Data System (ADS)
Mangelinck, D.; Luo, T.; Girardeaux, C.
2018-05-01
Reactions in thin films and diffusion barriers are important for applications such as protective coatings, electrical contact, and interconnections. In this work, the effect of a barrier on the kinetics of the formation for a single phase by reactive diffusion is investigated from both experimental and modeling point of views. Two types of diffusion barriers are studied: (i) a thin layer of W deposited between a Ni film and Si substrate and (ii) Ni alloy films, Ni(1%W) and Ni(5%Pt), that form a diffusion barrier during the reaction with the Si substrate. The effect of the barriers on the kinetics of δ-Ni2Si formation is determined by in situ X ray diffraction and compared to models that explain the kinetic slowdown induced by both types of barrier. A linear parabolic growth is found for the deposited barrier with an increasing linear contribution for increasing barrier thickness. On the contrary, the growth is mainly parabolic for the barrier formed by the reaction between an alloy film and the substrate. The permeability of the two types of barrier is determined and discussed. The developed models fit well with the dedicated model experiments, leading to a better understanding of the barrier effect on the reactive diffusion and allowing us to predict the barrier behaviour in various applications.
Real-time oxide evolution of copper protected by graphene and boron nitride barriers.
Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L
2017-01-09
Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.
Development of low cost contacts to silicon solar cells
NASA Technical Reports Server (NTRS)
Tanner, D. P.; Iles, P. A.
1980-01-01
A copper based contact system using plated Pd-Cr-Cu was developed. Good cells were made but cells degraded under low temperature (300 C) heat treatments. The degradation was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. An electroless nickel solution was substituted for the electroless chromium solution in the original process.
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1983-01-01
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.
NASA Astrophysics Data System (ADS)
Fouad, Mohamed Ahmed; Zewail, Taghreed Mohamed; Amine, Nieven Kamal Abbes
2017-06-01
Rate of diffusion controlled corrosion in 90° Copper Elbow acidified dichromate has been investigated in relation to the following parameters: effect of solution velocity in the absence and presence of drag- reducing polymer on the rate of diffusion controlled corrosion, and effect of the presence of suspended solids on the rate of diffusion controlled corrosion. It was found that the presence of drag reducing polymer inhibited the rate of mass transfer, while the presence of suspended solid increased significantly the rate of mass transfer.
Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A
2015-01-01
A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.
NASA Astrophysics Data System (ADS)
Roma, Maria Penafrancia C.; Kudtarkar, Santosh; Kierse, Oliver; Sengupta, Dipak; Cho, Junghyun
2018-02-01
Copper micropillars plated onto a silicon die and soldered with Sn-Ag solder to a copper lead frame in a flip chip on lead package have been subjected to high-temperature storage at 150°C and 175°C for 500 h, 1000 h, and 1500 h. Cu6Sn5 and Cu3Sn intermetallic compounds were found on both sides of the solder, but the growth rates were not the same as evidenced by different values of the growth exponent n. Cu and Sn diffusion controlled the Cu3Sn growth in the Cu pillar interface ( n ≈ 0.5), while interface reactions controlled the growth in the Cu lead frame interface ( n ≈ 0.8). Increasing the aging temperature increased the growth of Cu3Sn as well as the presence of microvoids in the Cu lead frame side. Adding Ni as a barrier layer on the Cu pillar prevented the growth of Cu3Sn in the Cu pillar interface and reduced its growth rate on the lead frame side, even at higher aging temperatures.
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
2018-01-17
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Trace copper measurements and electrical effects in LPE HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Norton, P. W.; Bollong, A. B.; Socha, A.; Tregilgas, J. H.; Ard, C. K.; Arlinghaus, H. F.
1996-08-01
Recent improvements in sputter initiated resonance ionization spectroscopy (SIRIS) have now made it possible to measure copper in HgCdTe films into the low 1013 cm-3 range. We have used this technique to show that copper is responsible for type conversion in n-type HgCdTe films. Good n-type LPE films were found to have less than 1 x 1014 cm-3 copper, while converted p-type samples were found to have copper concentrations approximately equal to the hole concentrations. Some compensated n-type samples with low mobilities have copper concentrations too low to account for the amount of compensation and the presence of a deep acceptor level is suggested. In order to study diffusion of copper from substrates into LPE layers, a CdTe boule was grown intentionally spiked with copper at approximately 3 x 1016 cm-3. Annealing HgCdTe films at 360°C was found to greatly increase the amount of copper that diffuses out of the substrates and a substrate screening technique was developed based on this phenomenon. SIRIS depth profiles showed much greater copper in HgCdTe films than in the substrates, indicating that copper is preferentially attracted to HgCdTe over Cd(Zn)Te. SIRIS spatial mapping showed that copper is concentrated in substrate tellurium inclusions 5 25 times greater than in the surrounding CdZnTe matrix.
Grain boundary and triple junction diffusion in nanocrystalline copper
NASA Astrophysics Data System (ADS)
Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.
2014-09-01
Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes,
NASA Astrophysics Data System (ADS)
Jatimurti, Wikan; Sutarsis, Cunika, Aprida Ulya
2017-01-01
In a dead mild steel with maximum carbon content of 0.15%, carbon does not contribute much to its strength. By adding copper as an alloying element, a balance between strength and ductility could be obtained through grain refining, solid solution, or Cu precipitation. This research aimed to analyse the changes in microstructures and copper behaviour on AISI 1006, including the phases formed, composition, and Cu dispersion. The addition of cooper was done by immersing steel into molten copper or so we called, copperizing using the principles of diffusion. Specimens were cut with 6 × 3 × 0.3 cm measurement then preheated to 900°C and melting the copper at 1100°C. Subsequently, the immersion of the specimens into molten copper varied to 5 and 7 minutes, and also varying the cooling rate to annealing, normalizing, and quenching. A series of test being conduct were optical microscope test, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), optical emission spectroscopy (OES), and X-ray diffraction (XRD). The results showed that the longer the immersion time and slower cooling rate, the more Cu diffused causing smaller grain size with the highest Cu diffused recorded was 0.277% in the copperized AISI 1006 steel with 7 minutes of immersion and was annealed. The grain size reduced to 23041.5404 µm2. The annealed specimens show ferrite phase, the normalized ones show polygonal ferrite phase, while the quenched ones show granular bainite phase. The phase formed is single phase Cu. In addition, the normalized and quenched specimens show that Cu dissolved in Fe crystal forming solid solution.
NASA Astrophysics Data System (ADS)
Zhang, De-Lin; Schliep, Karl B.; Wu, Ryan J.; Quarterman, P.; Reifsnyder Hickey, Danielle; Lv, Yang; Chao, Xiaohui; Li, Hongshi; Chen, Jun-Yang; Zhao, Zhengyang; Jamali, Mahdi; Mkhoyan, K. Andre; Wang, Jian-Ping
2018-04-01
We studied the tunnel magnetoresistance (TMR) of L10-FePd perpendicular magnetic tunnel junctions (p-MTJs) with an FePd free layer and an inserted diffusion barrier. The diffusion barriers studied here (Ta and W) were shown to enhance the TMR ratio of the p-MTJs formed using high-temperature annealing, which are necessary for the formation of high quality L10-FePd films and MgO barriers. The L10-FePd p-MTJ stack was developed with an FePd free layer with a stack of FePd/X/Co20Fe60B20, where X is the diffusion barrier, and patterned into micron-sized MTJ pillars. The addition of the diffusion barrier was found to greatly enhance the magneto-transport behavior of the L10-FePd p-MTJ pillars such that those without a diffusion barrier exhibited negligible TMR ratios (<1.0%), whereas those with a Ta (W) diffusion barrier exhibited TMR ratios of 8.0% (7.0%) at room temperature and 35.0% (46.0%) at 10 K after post-annealing at 350 °C. These results indicate that diffusion barriers could play a crucial role in realizing high TMR ratios in bulk p-MTJs such as those based on FePd and Mn-based perpendicular magnetic anisotropy materials for spintronic applications.
Superplastic Forming of Duplex Stainless Steel for Aerospace Part
NASA Astrophysics Data System (ADS)
Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo
2011-08-01
In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.
Ajji, Zaki; Ali, Ali M
2010-01-15
Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions.
Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation
Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming
2016-01-01
In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films. PMID:27734900
Monitoring of copper nanoparticle penetration into dentin of human tooth in vitro
NASA Astrophysics Data System (ADS)
Selifonov, Alexey A.; Glukhovskoy, Evgeny G.; Skibina, Yulia S.; Zakharevich, Andrey M.; Begletsova, Nadezhda N.; Tuchin, Valery V.
2018-04-01
Study of the penetration depth of synthesized copper nanoparticles into cut samples of human dentin was conducted. The scanning electron microscopy was used to determine the elemental composition of fresh transverse cleavage of the dentin cut for determination of the copper nanoparticles penetration with an effective antiseptic effect. The morphology of the cut surface of the dentin of a human tooth was studied and the lower limit of the diffusion boundary was determined. It was found that copper nanoparticles penetrate into the dentin cut to a depth of 1.8 μm with the diffusion coefficient of 1.8×10-11 cm2/s. Despite the rather small size of the synthesized copper nanoparticles (20-80 nm), a rather small penetration depth can be explained by the high aggregation ability of copper nanoparticles, as well as the ability of a micellar solution of sodium dodecyl sulfate, in which nanoparticles were stabilized, to form conglomerates in micelles of much larger sizes.
Atomic and Molecular Adsorption on Cu(111)
Xu, Lang; Lin, Joshua; Bai, Yunhai; ...
2018-05-15
Here, due to the wide use of copper-based catalysts in industrial chemical processes, fundamental understanding of the interactions between copper surfaces and various reaction intermediates is highly desired. Here, we performed periodic, self-consistent density functional theory (DFT-GGA) calculations to study the adsorption of five atomic species (H, C, N, O, and S), seven molecular species (NH 3, CH 4, N 2, CO, HCN, NO, and HCOOH), and 13 molecular fragments (CH, CH 2, CH 3, NH, NH 2, OH, CN, COH, HCO, COOH, HCOO, NOH, and HNO) on the Cu(111) surface at a coverage of 0.25 monolayer. The preferred bindingmore » site, binding energy, and the corresponding surface deformation energy of each species were determined, as well as the estimated diffusion barrier and diffusion pathway. The binding strengths calculated using the PW91 functional decreased in the following order: CH > C > O > S > CN > NH > N > CH 2 > OH > HCOO > COH > H > NH 2 > NOH > COOH > HNO > HCO > CH 3 > NO > CO > NH 3 > HCOOH. No stable binding structures were observed for N 2, HCN, and CH 4. The adsorbate–surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites were deternined. Using the calculated adsorption energetics, potential energy surfaces were constructed for the direct decomposition of CO, CO 2, NO, N 2, NH 3, and CH 4 and the hydrogen-assisted decomposition of CO, CO 2, and NO.« less
Atomic and Molecular Adsorption on Cu(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lang; Lin, Joshua; Bai, Yunhai
Here, due to the wide use of copper-based catalysts in industrial chemical processes, fundamental understanding of the interactions between copper surfaces and various reaction intermediates is highly desired. Here, we performed periodic, self-consistent density functional theory (DFT-GGA) calculations to study the adsorption of five atomic species (H, C, N, O, and S), seven molecular species (NH 3, CH 4, N 2, CO, HCN, NO, and HCOOH), and 13 molecular fragments (CH, CH 2, CH 3, NH, NH 2, OH, CN, COH, HCO, COOH, HCOO, NOH, and HNO) on the Cu(111) surface at a coverage of 0.25 monolayer. The preferred bindingmore » site, binding energy, and the corresponding surface deformation energy of each species were determined, as well as the estimated diffusion barrier and diffusion pathway. The binding strengths calculated using the PW91 functional decreased in the following order: CH > C > O > S > CN > NH > N > CH 2 > OH > HCOO > COH > H > NH 2 > NOH > COOH > HNO > HCO > CH 3 > NO > CO > NH 3 > HCOOH. No stable binding structures were observed for N 2, HCN, and CH 4. The adsorbate–surface and intramolecular vibrational modes of all the adsorbates at their preferred binding sites were deternined. Using the calculated adsorption energetics, potential energy surfaces were constructed for the direct decomposition of CO, CO 2, NO, N 2, NH 3, and CH 4 and the hydrogen-assisted decomposition of CO, CO 2, and NO.« less
Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.
Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana
2017-11-08
Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.
Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari
2013-01-01
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically-inducible diffusion trap (C-IDT) for probing permeable barriers. PMID:23731778
Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V
2009-01-01
Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.
Printed Nano Cu and NiSi Contacts and Metallization for Solar Cell Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, Michael John
There has long been a desire to replace the front-side silver contacts in silicon solar cells. There are two driving forces to do this. First, silver is an expensive precious metal. Secondly, the process to use silver requires that it be formulated into screen print pastes that need a lead-containing glass frit, and the use of lead is forbidden in many parts of the world. Because of the difficulty in replacing these pastes and the attendant processes, lead exemptions have granted to solar cells. Copper has been the replacement metal of choice because it is significantly cheaper than silver andmore » is very close to silver in electrical conductivity. Using processes which do not use lead, obviates it as an environmental contaminant. However, copper cannot be in contact with the silicon of the cell since it migrates through the silicon and causes defects which severely damage the efficiency of the cell. Hence, a conductive barrier must be placed between the copper and silicon and nickel, and especially nickel silicide, have been shown to be materials of choice. However, nickel must be sputtered and annealed to create the nickel silicide barrier, and copper has either been sputtered or plated. All of these processes require expensive, specialized equipment and plating uses environmentally unfriendly chemicals. Therefore, Intrinsiq proposed using printed nano nickel silicide ink (which we had previously invented) and printed nano copper ink to create these electrodes and barriers. We found that nano copper ink could be readily printed and sintered under a reducing atmosphere to give highly conductive grids. We further showed that nano nickel silicide ink could be readily jetted into grids on top of the silicon cell. It could then be annealed to create a barrier. However, it was found that the combination of printed NiSi and printed Cu did not give contact resistivity good enough to produce efficient cells. Only plated copper on top of the printed NiSi gave useful contact resistivity, and that proved to five to ten times less conductive than the commercial silver grids. Even so, the NiSi layer was a very good barrier to copper migration, even under harsh environmental conditions. Additionally, both plated copper and printed copper could be soldered to. While it may be possible to produce an all printed copper/nickel silicide top electrode for silicon cells, it was not easily demonstrated within the time and monetary constraints of the present project. Additionally, potential customers have told us that having to laser ablate the anti-reflection coating of cells to create a connection for NiSi, and the addition of two printing and annealing (sintering for copper) steps, adds too much expense to compensate for any potential cost savings from using copper. The cost benefits of copper have been further eroded by the facts that over the lifetime of this project, the cost of silver electrodes decreased due to manufacturers finding ways to use less and less silver, and inventing pastes which use less costly silver materials to begin with. All of these factors were considered and led to the decision to stop the program before actual manufacturing scale was attempted.« less
Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.
Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang
2014-06-01
Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aparna, N.; Vasa, N. J.; Sarathi, R.
2018-06-01
This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.
Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata
2011-11-21
The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.
Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari
2013-08-01
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vacuum barrier for excimer lasers
Shurter, Roger P.
1992-01-01
A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.
Cadmium-free junction fabrication process for CuInSe.sub.2 thin film solar cells
Ramanathan, Kannan V.; Contreras, Miguel A.; Bhattacharya, Raghu N.; Keane, James; Noufi, Rommel
1999-01-01
The present invention provides an economical, simple, dry and controllable semiconductor layer junction forming process to make cadmium free high efficiency photovoltaic cells having a first layer comprised primarily of copper indium diselenide having a thin doped copper indium diselenide n-type region, generated by thermal diffusion with a group II(b) element such as zinc, and a halide, such as chlorine, and a second layer comprised of a conventional zinc oxide bilayer. A photovoltaic device according the present invention includes a first thin film layer of semiconductor material formed primarily from copper indium diselenide. Doping of the copper indium diselenide with zinc chloride is accomplished using either a zinc chloride solution or a solid zinc chloride material. Thermal diffusion of zinc chloride into the copper indium diselenide upper region creates the thin n-type copper indium diselenide surface. A second thin film layer of semiconductor material comprising zinc oxide is then applied in two layers. The first layer comprises a thin layer of high resistivity zinc oxide. The second relatively thick layer of zinc oxide is doped to exhibit low resistivity.
Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Astrophysics Data System (ADS)
Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Technical Reports Server (NTRS)
Young, S. G.; Zellars, G. R.
1978-01-01
Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.
Nuriya, Mutsuo; Shinotsuka, Takanori; Yasui, Masato
2013-09-01
Molecular diffusion in the extracellular space (ECS) plays a key role in determining tissue physiology and pharmacology. The blood-brain barrier regulates the exchange of substances between the brain and the blood, but the diffusion properties of molecules at this blood-brain interface, particularly around the astrocyte endfeet, are poorly characterized. In this study, we used 2-photon microscopy and acute brain slices of mouse neocortex and directly assessed the diffusion patterns of fluorescent molecules. By observing the diffusion of unconjugated and 10-kDa dextran-conjugated Alexa Fluor 488 from the ECS of the brain parenchyma to the blood vessels, we find various degrees of diffusion barriers at the endfeet: Some allow the invasion of dye inside the endfoot network while others completely block it. Detailed analyses of the time course for dye clearance support the existence of a tight endfoot network capable of acting as a diffusion barrier. Finally, we show that this diffusion pattern collapses under pathological conditions. These data demonstrate the heterogeneous nature of molecular diffusion dynamics around the endfeet and suggest that these structures can serve as the diffusion barrier. Therefore, astrocyte endfeet may add another layer of regulation to the exchange of molecules between blood vessels and brain parenchyma.
Lavi, Yael; Gov, Nir; Edidin, Michael; Gheber, Levi A.
2012-01-01
Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters. PMID:22500754
Lessing, Paul A [Idaho Falls, ID
2008-07-22
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Lessing, Paul A.
2004-09-07
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Vacuum barrier for excimer lasers
Shurter, R.P.
1992-09-15
A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.
Simson, Päivo; Jepihhina, Natalja; Laasmaa, Martin; Peterson, Pearu; Birkedal, Rikke; Vendelin, Marko
2016-08-01
Adequate intracellular energy transfer is crucial for proper cardiac function. In energy starved failing hearts, partial restoration of energy transfer can rescue mechanical performance. There are two types of diffusion obstacles that interfere with energy transfer from mitochondria to ATPases: mitochondrial outer membrane (MOM) with voltage-dependent anion channel (VDAC) permeable to small hydrophilic molecules and cytoplasmatic diffusion barriers grouping ATP-producers and -consumers. So far, there is no method developed to clearly distinguish the contributions of cytoplasmatic barriers and MOM to the overall diffusion restriction. Furthermore, the number of open VDACs in vivo remains unknown. The aim of this work was to establish the partitioning of intracellular diffusion obstacles in cardiomyocytes. We studied the response of mitochondrial oxidative phosphorylation of permeabilized rat cardiomyocytes to changes in extracellular ADP by recording 3D image stacks of NADH autofluorescence. Using cell-specific mathematical models, we determined the permeability of MOM and cytoplasmatic barriers. We found that only ~2% of VDACs are accessible to cytosolic ADP and cytoplasmatic diffusion barriers reduce the apparent diffusion coefficient by 6-10×. In cardiomyocytes, diffusion barriers in the cytoplasm and by the MOM restrict ADP/ATP diffusion to similar extents suggesting a major role of both barriers in energy transfer and other intracellular processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia
NASA Technical Reports Server (NTRS)
Good, Brian
2011-01-01
Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.
Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide
NASA Astrophysics Data System (ADS)
Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.
2008-01-01
Dielectric spectroscopy analysis of the high permittivity (κ˜104) copper (II) oxide (CuO) ceramic shows that the grain contribution plays a major role for the giant-κ value at low temperature, whereas grain boundary (GB) contribution dominates around room temperature and above. Moreover, impedance spectroscopy analysis reveals electrically heterogeneous microstructure in CuO consisting of semiconducting grains and insulating GBs. Finally, the giant dielectric phenomenon exhibited by CuO is attributed to the internal barrier layer (due to GB) capacitance mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V.
The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.
Initial stages of benzotriazole adsorption on the Cu(111) surface
NASA Astrophysics Data System (ADS)
Grillo, Federico; Tee, Daniel W.; Francis, Stephen M.; Früchtl, Herbert; Richardson, Neville V.
2013-05-01
Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion.Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s; however, the molecular level detail of how inhibition occurs remains a matter of debate. The onset of BTAH adsorption on a Cu(111) single crystal was investigated via scanning tunnelling microscopy (STM), vibrational spectroscopy (RAIRS) and supporting DFT modelling. BTAH adsorbs as anionic (BTA-), CuBTA is a minority species, while Cu(BTA)2, the majority of the adsorbed species, form chains, whose sections appear to diffuse in a concerted manner. The copper surface appears to reconstruct in a (2 × 1) fashion. Electronic supplementary information (ESI) available: Calculated IR spectra, RAIRS assignments, modeling details, statistics on diffusion, experimental details, additional STM images, movie low coverage diffusing species. See DOI: 10.1039/c3nr00724c
NASA Astrophysics Data System (ADS)
Zhu, Huan; Fu, Zhiqiang; Xie, Qi; Yue, Wen; Wang, Chengbiao; Kang, Jiajie; Zhu, Lina
2018-01-01
Copper-carbon alloy films have been applied in barrier-less Cu metallization as seed layers for improving the thermal stabilities. The effect of the deposition temperature on the microstructure and properties of C-doped Cu films on Si substrates was investigated. The films were prepared by ion beam-assisted deposition at various deposition temperatures by co-sputtering of Cu and graphite targets. No inter-diffusion between Cu and Si was observed in Cu(C) films throughout this experiment, because XRD patterns corresponding to their deep-level reaction product, namely, Cu3Si, were not observed in XRD patterns and EDS results of Cu(C) films. Amorphous carbon layer and SiC layer were found in the interface of Cu(C) as-deposited films when deposition temperature rose to 100 °C by TEM, high-resolution image and Fourier transformation pattern. The Cu(C) films deposited at 100 °C had the best thermal stabilities and the lowest electrical resistivity of 4.44 μW cm after annealing at 400 °C for 1 h. Cu agglomeration was observed in Cu(C) alloy films with deposition temperatures of 200, 300 and 400 °C, and the most serious agglomeration occurred in Cu(C) films deposited at 200 °C. Undesired Cu agglomeration resulted in a sharp increase in the resistivity after annealing at 300 °C for 1 h. The deposition temperature of 100 °C reflected the superior thermal stabilities of Cu(C) seed layers compared with those of other layers.
Lithium diffusion at Si-C interfaces in silicon-graphene composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odbadrakh, Khorgolkhuu; McNutt, N. W.; Nicholson, D. M.
2014-08-04
Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.
Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier
2015-01-01
We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.
NASA Astrophysics Data System (ADS)
Wen-bo, LUO; Ji-kun, WANG; Yin, GAN
2018-01-01
Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.
Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift
NASA Astrophysics Data System (ADS)
Lyubomirsky, Igor; Rabinal, M. K.; Cahen, David
1997-05-01
We show that the transient ion drift (TID) method, which is based on recording junction capacitance under constant reverse bias [A. Zamouche, T. Heiser, and A. Mesli, Appl. Phys. Lett. 66, 631 (1995)], can be used not only for measurements of the diffusion coefficient of mobile impurities, but also to estimate the concentration of mobile species as part of the total dopant density. This is illustrated for CdTe, contaminated by Cu, and intentionally doped by Li or Ag and for CuInSe2. We show also that, with some restrictions, the TID method can be used if the mobile ions are major dopants. This is demonstrated using Schottky barriers on CdTe, and p-n junction devices in (Hg,Cd)Te, and CuInSe2. The values that we obtain for the diffusion coefficients (for Li, Ag, and Cu in CdTe and for Cu in CuInSe2) agree well with measured or extrapolated values, obtained by other methods, as reported in the literature. Furthermore, we could distinguish between diffusion and chemical reactions of dopants, as demonstrated for the case of Cu in CdTe and Ag-doped (Hg,Cd)Te. In the former case this allows us to separate copper-free from contaminated CdTe samples.
Athanasiadis, Konstantinos; Helmreich, Brigitte; Horn, Harald
2007-08-01
On-site infiltration may be considered as a promising way of managing rainwater runoffs in urban areas, provided the hydrological and ecological conditions allow infiltration, and provided there is adequate treatment of the contaminants to avoid a risk of soil and groundwater pollution. The aim of this study was to evaluate the feasibility of the application of a new technical infiltration system equipped with clinoptilolite as an artificial barrier material for the treatment of the copper roof runoff of the Academy of Fine Arts in Munich, Germany. During the 2-yr sampling period, 30 rain events were examined. The cover material of the roof and the drainage system was responsible for the high copper concentrations in the roof runoff. The rain height and the rain intensity were of great significance regarding the establishment of the copper runoff rate. The technical infiltration system applied was able to reduce the copper from the roof runoff by a factor up to 96%. The mean measured copper concentration in percolation water was lower than the critical value of 50 microg/l set by the German Federal Soil Protection Act and Ordinance, indicating no risk for soil and groundwater contamination.
Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.
Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F
2010-04-23
A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.
Diffusion Barriers to Increase the Oxidative Life of Overlay Coatings
NASA Technical Reports Server (NTRS)
Nesbitt, James A.; Lei, Jih-Fen
1999-01-01
Currently, most blades and vanes in the hottest section of aero gas turbine engines require some type of coating for oxidation protection. Newly developed single crystal superalloys have the mechanical potential to operate at increasingly higher component temperatures. However, at these elevated temperatures, coating/substrate interdiffusion can shorten the protective life of the coating. Diffusion barriers between overlay coatings and substrates are being examined to extend the protective life of the coating. A previously- developed finite-difference diffusion model has been modified to predict the oxidative life enhancement due to use of a diffusion barrier. The original diffusion model, designated COSIM, simulates Al diffusion in the coating to the growing oxide scale as well as Al diffusion into the substrate. The COSIM model incorporates an oxide growth and spalling model to provide the rate of Al consumption during cyclic oxidation. Coating failure is predicted when the Al concentration at the coating surface drops to a defined critical level. The modified COSIM model predicts the oxidative life of an overlay coating when a diffusion barrier is present eliminating diffusion of Al from the coating into the substrate. Both the original and the modified diffusion models have been used to predict the effectiveness of a diffusion barrier in extending the protective life of a NiCrAl overlay coating undergoing cyclic oxidation at 1100 C.
Investigation the electroplating behavior of self formed CuMn barrier.
Wu, Chia-Yang; Lee, Wen-Hsi; Chang, Shih-Chieh; Wang, Ying-Lang
2013-08-01
The electrical and material properties of Copper (Cu) mixed with [0-10 atomic% manganese (Mn)] and pure Cu films deposited on silicon oxide (SiO2)/silicon (Si) are explored. Cu electroplating on self formed CuMn barrier was investigated with different Mn content. The electrochemical deposition of the Cu thin film onto the electrode using CuMn barrier was investigated. Scanning electron microscopic (SEM) micrographs of copper electroplating on CuMn films were examined, and the copper nucleation behaviors changed with the Mn content. Since the electrochemical impedance spectroscopy (EIS) is widely recognized as a powerful tool for the investigation of electrochemical behaviors, the tool was also used to verify the phenomena during plating. It was found that the charge-trasfer impedance decrease with the rise in the Mn content below 5%, but increase with the rise in the Mn content higher than 5%. The result was corresponded to the surface energy, the surface morphology, the corrosion and the oxidation of the substrate.
A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell
Clay, Lori; Caudron, Fabrice; Denoth-Lippuner, Annina; Boettcher, Barbara; Buvelot Frei, Stéphanie; Snapp, Erik Lee; Barral, Yves
2014-01-01
In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI: http://dx.doi.org/10.7554/eLife.01883.001 PMID:24843009
Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum
NASA Astrophysics Data System (ADS)
Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.
2018-03-01
The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.
NASA Astrophysics Data System (ADS)
Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.
2003-11-01
The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.
CO Diffusion and Desorption Kinetics in CO2 Ices
NASA Astrophysics Data System (ADS)
Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.
2018-01-01
The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Astrophysics Data System (ADS)
Good, Brian
2015-03-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the diffusion of oxygen and water vapor through these coatings is undesirable if high temperature corrosion is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated oxygen diffusion in Ytterbium Disilicate. Oxygen vacancy site energies and diffusion barrier energies are computed using Density Functional Theory. We find that many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small in the pure material, with the result that the material is unlikely to exhibit significant oxygen permeability.
NASA Astrophysics Data System (ADS)
Nagai, Shingo
2013-11-01
We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.
NASA Astrophysics Data System (ADS)
Hossain, Md I.; Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.
2016-07-01
We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.
Hossain, Md I; Maksud, M; Palapati, N K R; Subramanian, A; Atulasimha, J; Bandyopadhyay, S
2016-07-29
We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.
CO Diffusion into Amorphous H2O Ices
NASA Astrophysics Data System (ADS)
Lauck, Trish; Karssemeijer, Leendertjan; Shulenberger, Katherine; Rajappan, Mahesh; Öberg, Karin I.; Cuppen, Herma M.
2015-03-01
The mobility of atoms, molecules, and radicals in icy grain mantles regulates ice restructuring, desorption, and chemistry in astrophysical environments. Interstellar ices are dominated by H2O, and diffusion on external and internal (pore) surfaces of H2O-rich ices is therefore a key process to constrain. This study aims to quantify the diffusion kinetics and barrier of the abundant ice constituent CO into H2O-dominated ices at low temperatures (15-23 K), by measuring the mixing rate of initially layered H2O(:CO2)/CO ices. The mixed fraction of CO as a function of time is determined by monitoring the shape of the infrared CO stretching band. Mixing is observed at all investigated temperatures on minute timescales and can be ascribed to CO diffusion in H2O ice pores. The diffusion coefficient and final mixed fraction depend on ice temperature, porosity, thickness, and composition. The experiments are analyzed by applying Fick’s diffusion equation under the assumption that mixing is due to CO diffusion into an immobile H2O ice. The extracted energy barrier for CO diffusion into amorphous H2O ice is ˜160 K. This is effectively a surface diffusion barrier. The derived barrier is low compared to current surface diffusion barriers in use in astrochemical models. Its adoption may significantly change the expected timescales for different ice processes in interstellar environments.
Janette Williams, S; Huang, Han-Hung; Kover, Karen; Moore, Wayne; Berkland, Cory; Singh, Milind; Smirnova, Irina V; MacGregor, Ronal
2010-01-01
For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter >150 µm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter <100 µm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 µm/min in small islets and 2.8 µm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150 µm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets. PMID:20885858
The Long and Viscous Road: Uncovering Nuclear Diffusion Barriers in Closed Mitosis
Zavala, Eder; Marquez-Lago, Tatiana T.
2014-01-01
Diffusion barriers are effective means for constraining protein lateral exchange in cellular membranes. In Saccharomyces cerevisiae, they have been shown to sustain parental identity through asymmetric segregation of ageing factors during closed mitosis. Even though barriers have been extensively studied in the plasma membrane, their identity and organization within the nucleus remains poorly understood. Based on different lines of experimental evidence, we present a model of the composition and structural organization of a nuclear diffusion barrier during anaphase. By means of spatial stochastic simulations, we propose how specialised lipid domains, protein rings, and morphological changes of the nucleus may coordinate to restrict protein exchange between mother and daughter nuclear lobes. We explore distinct, plausible configurations of these diffusion barriers and offer testable predictions regarding their protein exclusion properties and the diffusion regimes they generate. Our model predicts that, while a specialised lipid domain and an immobile protein ring at the bud neck can compartmentalize the nucleus during early anaphase; a specialised lipid domain spanning the elongated bridge between lobes would be entirely sufficient during late anaphase. Our work shows how complex nuclear diffusion barriers in closed mitosis may arise from simple nanoscale biophysical interactions. PMID:25032937
NASA Astrophysics Data System (ADS)
Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan
2017-04-01
The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.
First-principles study of transition-metal nitrides as diffusion barriers against Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Zhi-Gang; Yacout, Abdellatif M.; Kim, Yeon Soo
2016-04-01
Using density-functional theory based first-principles calculations we provided a comparative study of the diffusion barrier properties of TiN, ZrN, and HfN against Al for U-Mo dispersion fuel applications. We firstly examined the thermodynamic stability of these transition-metal nitrides with Al. The calculated heats of reaction show that both TiN and ZrN are thermodynamically unstable diffusion barrier materials, which might be decomposed by Al at relatively high temperatures. As a comparison, HfN is a stable diffusion barrier material for Al. To evaluate the kinetic stability of these nitride systems against Al diffusion, we investigated the diffusion mechanisms of Al in TiN,more » ZrN and HfN using atomic scale simulations. The effect of non-stoichiometry on the defect formation and Al migration was systematically studied. (C) 2015 ELSEVIER B.V. All rights reserved« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.
2015-01-21
Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less
Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.
2015-01-01
Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355
Synergy and Diffusion with a Borax-Copper Hydroxide Groundline Preservative: 20 Year Update
Stan Lebow; Bessie Woodward; Bill Abbott; Mike West
2014-01-01
A groundline remedial treatment containing 3.1% copper hydroxide (2% elemental copper) and 40% sodium tetraborate decahydrate (borax) was applied to unseasoned pine posts prior to placement in a test site in southern Mississippi. The soundness of the posts was periodically evaluated using a push test. After 3.5, 6.5, 10, 15 and 20 years, sections were taken from two...
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
Zhang, Q B; Hua, Y X
2014-12-28
The electrochemical nucleation and growth kinetics of copper nanoparticles on a Ni electrode have been studied with cyclic voltammetry and chronoamperometry in the choline chloride (ChCl)-urea based deep eutectic solvent (DES). The copper source was introduced into the solvent by the dissolution of Cu(I) oxide (Cu2O). Cyclic voltammetry indicates that the electroreduction of Cu(I) species in the DES is a diffusion-controlled quasi-reversible process. The analysis of the chronoamperometric transient behavior during electrodeposition suggests that the deposition of copper on the Ni electrode at low temperatures follows a progressive nucleation and three-dimensional growth controlled by diffusion. The effect of temperature on the diffusion coefficient of Cu(I) species that is present in the solvent and electron transfer rate constant obeys the Arrhenius law, according to which the activation energies are estimated to be 49.20 and 21.72 kJ mol(-1), respectively. The initial stage of morphological study demonstrates that both electrode potential and temperature play important roles in controlling the nucleation and growth kinetics of the nanocrystals during the electrodeposition process. Electrode potential is observed to affect mainly the nucleation process, whereas temperature makes a major contribution to the growth process.
Shielding gas effect to diffusion activities of magnesium and copper on aluminum clad
NASA Astrophysics Data System (ADS)
Manurung, Charles SP; Napitupulu, Richard AM
2017-09-01
Aluminum is the second most metal used in many application, because of its corrosion resistance. The Aluminum will be damaged in over time if it’s not maintained in good condition. That is important to give protection to the Aluminums surface. Cladding process is one of surface protection methodes, especially for metals. Aluminum clad copper (Al/Cu) or copper clad aluminum (Cu/Al) composite metals have been widely used for many years. These mature protection method and well tested clad metal systems are used industrially in a variety application. The inherent properties and behavior of both copper and aluminum combine to provide unique performance advantages. In this paper Aluminum 2024 series will be covered with Aluminum 1100 series by hot rolling process. Observations will focus on diffusion activities of Mg and Cu that not present on Aluminum 1100 series. The differences of clad material samples is the use of shielding gas during heating before hot rolling process. The metallurgical characteristics will be examined by using optical microscopy. Transition zone from the interface cannot be observed but from Energy Dispersive Spectrometry it’s found that Mg and Cu are diffused from base metal (Al 2024) to the clad metal (Al 1100). Hardness test proved that base metals hardness to interface was decrease.
Strange, Richard W; Hough, Michael A; Antonyuk, Svetlana V; Hasnain, S Samar
2012-01-01
Copper-zinc superoxide dismutase (SOD) is of fundamental importance to our understanding of oxidative damage. Its primary function is catalysing the dismutation of superoxide to O(2) and H(2)O(2). SOD also reacts with H(2)O(2), leading to the formation of a strong copper-bound oxidant species that can either inactivate the enzyme or oxidise other substrates. In the presence of bicarbonate (or CO(2)) and H(2)O(2), this peroxidase activity is enhanced and produces the carbonate radical. This freely diffusible reactive oxygen species is proposed as the agent for oxidation of large substrates that are too bulky to enter the active site. Here, we provide direct structural evidence, from a 2.15 Å resolution crystal structure, of (bi)carbonate captured at the active site of reduced SOD, consistent with the view that a bound carbonate intermediate could be formed, producing a diffusible carbonate radical upon reoxidation of copper. The bound carbonate blocks direct access of substrates to Cu(I), suggesting that an adjunct to the accepted mechanism of SOD catalysed dismutation of superoxide operates, with Cu(I) oxidation by superoxide being driven via a proton-coupled electron transfer mechanism involving the bound carbonate rather than the solvent. Carbonate is captured in a different site when SOD is oxidised, being located in the active site channel adjacent to the catalytically important Arg143. This is the probable route of diffusion from the active site following reoxidation of the copper. In this position, the carbonate is poised for re-entry into the active site and binding to the reduced copper.
Strange, Richard W.; Hough, Michael A.; Antonyuk, Svetlana V.; Hasnain, S. Samar
2012-01-01
Copper-zinc superoxide dismutase (SOD) is of fundamental importance to our understanding of oxidative damage. Its primary function is catalysing the dismutation of superoxide to O2 and H2O2. SOD also reacts with H2O2, leading to the formation of a strong copper-bound oxidant species that can either inactivate the enzyme or oxidise other substrates. In the presence of bicarbonate (or CO2) and H2O2, this peroxidase activity is enhanced and produces the carbonate radical. This freely diffusible reactive oxygen species is proposed as the agent for oxidation of large substrates that are too bulky to enter the active site. Here, we provide direct structural evidence, from a 2.15 Å resolution crystal structure, of (bi)carbonate captured at the active site of reduced SOD, consistent with the view that a bound carbonate intermediate could be formed, producing a diffusible carbonate radical upon reoxidation of copper. The bound carbonate blocks direct access of substrates to Cu(I), suggesting that an adjunct to the accepted mechanism of SOD catalysed dismutation of superoxide operates, with Cu(I) oxidation by superoxide being driven via a proton-coupled electron transfer mechanism involving the bound carbonate rather than the solvent. Carbonate is captured in a different site when SOD is oxidised, being located in the active site channel adjacent to the catalytically important Arg143. This is the probable route of diffusion from the active site following reoxidation of the copper. In this position, the carbonate is poised for re-entry into the active site and binding to the reduced copper. PMID:22984565
Characteristics and antimicrobial activity of copper-based materials
NASA Astrophysics Data System (ADS)
Li, Bowen
In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger antibacterial activity than copper vermiculite against E. coli. With 200 ppm exfoliated copper vermiculite in bacteria suspension (4.68 ppm of metal copper), the reduction of viable bacteria are 99.8% at 1 hour, and >99.9% at 2 hours. With 10 ppm exfoliated copper vermiculite in bacteria dilution (0.234 ppm of copper atoms), the reduction of viable E. coli reached 98.7% at 1 hour, and >95.6% at 2 hours. Molds have the potential to cause health problems, such as allergic reactions, irritations, and mycotoxins, and damage to buildings, historic relics, properties, etc. Since copper has better antifungal property, an initial antifungal activity of copper vermiculite was evaluated in this study. Fat-free milk was used to develop molds in the test samples by saturated samples. Incubated at 36°C for 48 hours, all of the surfaces of untreated control samples, including micron-sized vermiculite, exfoliated vermiculite, bentonite, and kaolin, have been covered by thick mold layers. However, there were no mold showed on copper vermiculite and exfoliated copper vermiculite. Even after the incubation was lasted for 10 days, copper vermiculite and exfoliated copper vermiculite did not show any mold on the surface. These results exhibited copper vermiculite has excellent antifungal activities against mold. Stability of copper ions in copper vermiculite was measured by aqueous leaching process. Copper vermiculite and exfoliated copper vermiculite were put into distilled water in a ratio of 2.0g/100ml, and then implemented leaching processes by continuously shaking (leaching) and statically storing (soaking) for desired periods of time, respectively. According to the analytic result by inductively coupled plasma spectroscopy (ICP), the major metals released were copper, magnesium, iron, silicon, and aluminum. The release rate of copper depends on the environmental conditions. Under the dynamic leaching condition, all the major elements had shown linear leaching rates, and slowly increases along with the leaching time. Copper concentration in 1 hour leached solutions had sufficient concentration to inhibit E. coli in aqueous solution. Lasting for 1 month, 1 gram of copper vermiculite only released 185mug of copper. At this velocity, 11.5 years are required to completely exhaust the copper atoms from copper vermiculite. A soaking process provided a lower release rate than leaching process. Comparably, exfoliated copper vermiculite had lower copper concentration, stronger antimicrobial effect, but faster release rate than copper vermiculite, due to their different structure characteristics. (Abstract shortened by UMI.)
In situ removal of copper from sediments by a galvanic cell.
Yuan, Songhu; Wu, Chan; Wan, Jinzhong; Lu, Xiaohua
2009-01-01
This study dealt with in situ removal of copper from sediments through an electrokinetic (EK) process driven by a galvanic cell. Iron (Fe) and carbon (C) were placed separately and connected with a conductive wire. Polluted sediments were put between them and water was filled above the sediments. The galvanic cell was thus formed due to the different electrode potentials of Fe and C. The cell could remove the pollutants in the sediments by electromigration and/or electroosmosis. Results showed that a weak voltage less than 1V was formed by the galvanic cell. The voltage decreased with the increase of time. A slight increase of sediment pH from the anode (Fe) to the cathode (C) was observed. The presence of supernatant water inhibited the variation of sediment pH because H(+) and OH(-) could diffuse into the water. The removal of copper was affected by the sediment pH and the distribution of electrolyte in sediment and supernatant water. Lower pH led to higher removal efficiency. More electrolyte in the sediment and/or less electrolyte in the supernatant water favored the removal of copper. The major removal mechanism was proposed on the basis of the desorption of copper from sediment to pore solution and the subsequent electromigration of copper from the anode to the cathode. The diffusion of copper from sediment to supernatant water was negligible.
A demonstration of the antimicrobial effectiveness of various copper surfaces
2013-01-01
Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176
Douglas Crawford; Stan Lebow; Mike West; Bill Abbott
2005-01-01
In 1993, unseasoned pine posts were treated with groundline remedial treatment containing 3.1% copper hydroxide and 40% sodium tetraborate decahydrate (borax). The soundness of the posts was periodically evaluated using a push test. After 3.5, 6.5, and 10 years, sections were taken from two posts to determine retention of borax and copper hydroxide below ground to 36...
2011-09-01
Testing Input electrodes consisting of 1/2” diameter, 6” long copper rods were wired to separate conductors of a shielded, commercially available...underwater-rated electrical cable (three-conductor, shielded, shipboard cable (TSS-2), 18 American Wire Gauge (AWG) stranded copper ). Electrode pairs...sandpaper prior to use to ensure the best electrical continuity between the water and electrode by removing any copper oxide. This electrode
Long-term stability of Cu surface nanotips
NASA Astrophysics Data System (ADS)
Jansson, V.; Baibuz, E.; Djurabekova, F.
2016-07-01
Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the < 110> crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 {{μ }}{{s}} at room temperature. Moreover, the nanotips built up along the < 110> crystallographic directions were found to be significantly more stable than those oriented in the < 100> or < 111> crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.
Review of Graphene as a Solid State Diffusion Barrier.
Morrow, Wayne K; Pearton, Stephen J; Ren, Fan
2016-01-06
Conventional thin-film diffusion barriers consist of 3D bulk films with high chemical and thermal stability. The purpose of the barrier material is to prevent intermixing or penetration from the two materials that encase it. Adhesion to both top and bottom materials is critical to the success of the barrier. Here, the effectiveness of a single atomic layer of graphene as a solid-state diffusion barrier for common metal schemes used in microelectronics is reviewed, and specific examples are discussed. Initial studies of electrical contacts to graphene show a distinct separation in behavior between metallic groups that strongly or weakly bond to it. The two basic classes of metal reactions with graphene are either physisorbed metals, which bond weakly with graphene, or chemisorbed metals, which bond strongly to graphene. For graphene diffusion barrier testing on Si substrates, an effective barrier can be achieved through the formation of a carbide layer with metals that are chemisorbed. For physisorbed metals, the barrier failure mechanism is loss of adhesion at the metal–graphene interface. A graphene layer encased between two metal layers, in certain cases, can increase the binding energy of both films with graphene, however, certain combinations of metal films are detrimental to the bonding with graphene. While the prospects for graphene's future as a solid-state diffusion barrier are positive, there are open questions, and areas for future research are discussed. A better understanding of the mechanisms which influence graphene's ability to be an effective diffusion barrier in microelectronic applications is required, and additional experiments are needed on a broader range of metals, as well as common metal stack contact structures used in microelectronic applications. The role of defects in the graphene is also a key area, since they will probably influence the barrier properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New WC-Cu thermal barriers for fusion applications: High temperature mechanical behaviour
NASA Astrophysics Data System (ADS)
Tejado, E.; Dias, M.; Correia, J. B.; Palacios, T.; Carvalho, P. A.; Alves, E.; Pastor, J. Y.
2018-01-01
The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 °C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.
NASA Astrophysics Data System (ADS)
Nagasawa, Riki; Asayama, Yoshihiro; Nakayama, Takashi
2018-04-01
Metal-atom diffusion from metal electrodes into SiO2 in electric fields was studied using first-principles calculations. It was shown in the case without electric field that the diffusion barrier of a metal atom is mainly made of the cohesive energy of bulk metal layers, while the shape of the diffusion potential reflects the hybridization of the metal-atom state with metal-induced gap states (MIGSs) and the electron transfer between the metal atom and the electrode. We found that the metal-atom diffusion is markedly accelerated by the applied electric field, such that the diffusion barrier ϕB(E) decreases almost linearly with increasing electric field strength E. By analyzing the physical origins of the metal-atom diffusion, we derived the universal formula to estimate the diffusion barrier in the electric field, which is closely related to MIGSs.
Intergranular metal phase increases thermal shock resistance of ceramic coating
NASA Technical Reports Server (NTRS)
Carpenter, H. W.
1966-01-01
Dispersed copper phase increases the thermal shock resistance of a plasma-arc-sprayed coating of zirconia used as a heat barrier on a metal substrate. A small amount of copper is deposited on the granules of the zirconia powder before arc-spraying the resultant powder composite onto the substrate.
Protective coatings for sensitive materials
Egert, Charles M.
1997-01-01
An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.
NASA Astrophysics Data System (ADS)
Tchitchekova, Deyana S.; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-01
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ˜3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Tchitchekova, Deyana S; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-21
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface
NASA Astrophysics Data System (ADS)
Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei
2018-01-01
This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.
Sutton, Jonathan E.; Beste, Ariana; Steven H. Overbury
2015-10-12
In this study, we use density functional theory to explain the preferred structure of partially reduced CeO 2(111). Low-energy ordered structures are formed when the vacancies are isolated (maximized intervacancy separation) and the size of the Ce 3+ ions is minimized. Both conditions help minimize disruptions to the lattice around the vacancy. The stability of the ordered structures suggests that isolated vacancies are adequate for modeling more complex (e.g., catalytic) systems. Oxygen diffusion barriers are predicted to be low enough that O diffusion between vacancies is thermodynamically controlled at room temperature. The O-diffusion-reaction energies and barriers are decreased when onemore » Ce f electron hops from a nearest-neighbor Ce cation to a next-nearest-neighbor Ce cation, with a barrier that has been estimated to be slightly less than the barrier to O diffusion in the absence of polaron hopping. In conculsion, this indicates that polaron hopping plays a key role in facilitating the overall O diffusion process, and depending on the relative magnitudes of the polaron hopping and O diffusion barriers, polaron hopping may be the kinetically limiting process.« less
Axial diffusion barriers in near-infrared nanopillar LEDs.
Scofield, Adam C; Lin, Andrew; Haddad, Michael; Huffaker, Diana L
2014-11-12
The growth of GaAs/GaAsP axial heterostructures is demonstrated and implemented as diffusion current barriers in nanopillar light-emitting diodes at near-infrared wavelengths. The nanopillar light-emitting diodes utilize an n-GaAs/i-InGaAs/p-GaAs axial heterostructure for current injection. Axial GaAsP segments are inserted into the n- and p-GaAs portions of the nanopillars surrounding the InGaAs emitter region, acting as diffusion barriers to provide enhanced carrier confinement. Detailed characterization of growth of the GaAsP inserts and electronic band-offset measurements are used to effectively implement the GaAsP inserts as diffusion barriers. The implementation of these barriers in nanopillar light-emitting diodes provides a 5-fold increase in output intensity, making this a promising approach to high-efficiency pillar-based emitters in the near-infrared wavelength range.
NASA Astrophysics Data System (ADS)
Sicot, M.; Fagot-Revurat, Y.; Kierren, B.; Vasseur, G.; Malterre, D.
2014-11-01
We report on the intercalation of a submonolayer of copper at 775 K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77 K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these results, a Cu penetration path beneath graphene is proposed to occur via metal aided defect formation with no or poor self healing of the graphene sheet. This work illustrates the fact that Cu intercalation is harmful for graphene grown on Ir(111) at the atomic scale.
Corrosion issues in high-level nuclear waste containers
NASA Astrophysics Data System (ADS)
Asl, Samin Sharifi
In this dissertation different aspects of corrosion and electrochemistry of copper, candidate canister material in Scandinavian high-level nuclear waste disposal program, including the thermodynamics and kinetics of the reactions that are predicted to occur in the practical system have been studied. A comprehensive thermodynamic study of copper in contact with granitic groundwater of the type and composition that is expected in the Forsmark repository in Sweden has been performed. Our primary objective was to ascertain whether copper would exist in the thermodynamically immune state in the repository, in which case corrosion could not occur and the issue of corrosion in the assessment of the storage technology would be moot. In spite of the fact that metallic copper has been found to exist for geological times in granitic geological formations, copper is well-known to be activated from the immune state to corrode by specific species that may exist in the environment. The principal activator of copper is known to be sulfur in its various forms, including sulfide (H2S, HS-, S2-), polysulfide (H2Sx, HSx -, Sx 2-), poly sulfur thiosulfate ( SxO3 2-), and polythionates (SxO6 2-). A comprehensive study of this aspect of copper chemistry has never been reported, and yet an understanding of this issue is vital for assessing whether copper is a suitable material for fabricating canisters for the disposal of HLNW. Our study identifies and explores those species that activate copper; these species include sulfur-containing entities as well as other, non-sulfur species that may be present in the repository. The effects of temperature, solution pH, and hydrogen pressure on the kinetics of the hydrogen electrode reaction (HER) on copper in borate buffer solution have been studied by means of steady-state polarization measurements, including electrochemical impedance spectroscopy (EIS). In order to obtain electrokinetic parameters, such as the exchange current density and the cathodic Tafel slope, two stages of optimization have been performed. From the optimization process, the activation energy (Eac) of the HER on copper was obtained as ≈32 kJ mol-1. Moreover, the mechanism of the hydrogen evolution reaction (HER) on copper in mildly alkaline media has been studied by means of EIS over the frequency range of 0.01 Hz ≤ f ≤ 5 kHz. The impedance spectra were modeled using a mechanism based upon the Volmer-Heyrovsky-Tafel steps for hydrogen evolution and by considering the reactions involved in hydrogen atom and hydroxyl group adsorption on the copper surface. A single set of kinetic parameters, including the rate constants and transfer coefficient, have been derived for each pH by optimization of the mechanistic model on the experimental impedance (EIS) data. It is postulated that the HER proceeds through the Volmer-Heyrovsky-Tafel mechanism with the Volmer reaction being the rate-determining step. The kinetics of growth of the passive sulfide film on copper in deaerated aqueous sodium chloride solution as a function of applied potential, sulfide species concentrations and temperature were explored by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The electronic and compositional properties of the passive layer were investigated with Mott-Schottky analysis and X-ray photoelectron spectroscopy (XPS). It is found that metal vacancies are predominant defects in the barrier layer which is in agreement with the p-type character of the film observed experimentally. A point defect model (PDM) for formation and dissolution of the passive sulfide film on copper is proposed. Finally, the behavior of the system interpreted in terms of reaction mechanisms and kinetic parameters extracted from the experimental impedance data by mathematical optimization using a genetic algorithm approach. The diffusion coefficient of cation vacancies is obtained directly from optimization of the proposed model onto the EIS experimental data and was found to be essentially independent from the applied potential within the passive range. The diffusivity of the predominance defects (cation vacancies) found to increase with increase in solution temperature from approx. 10-13 (cm2 s-1 ) at 25 °C to 10-11 (cm2 S -1) at 75 °C.
A durability test of wood posts in Hawaii...third progress report
Roger G. Skolmen
1971-01-01
Round posts of 10 Hawaii-grown wood species were treated with copper chromate-copper arsenate by the double-diffusion process. These and untreated posts were exposed for 10 years. Except with two coniferous species, the treatment did not lengthen service life enough to be judged worthwhile.
Inter-diffusion of copper and hafnium as studied by x-ray photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Pearson, Justin; Chourasia, A. R.
The Cu/Hf interface has been characterized by x-ray photoelectron spectroscopy. Thin films (thicknesses ranging from 100 nm to 150 nm) of hafnium were deposited on a silicon substrate. About 80 nm of copper was then deposited on such samples. The e-beam method was used for the deposition. The samples were annealed for 30 min at temperatures of 100, 200, 300, 400, and 500°C. The inter-diffusion of copper and hafnium was investigated by sequential sputter depth profiling and x-ray photoelectron spectroscopy. The interdiffusion in each case was analyzed by the Matano-Boltzmann's procedure using the Fick's second law. The interdiffusion coefficients and the width of the interface as determined from the data have been correlated with the annealing temperature. Supported by Organized Research, TAMU-Commerce.
Development and production integration of a planarized AlCu interconnect process for submicron CMOS
NASA Astrophysics Data System (ADS)
Brown, Kevin C.; Hill, Rodney; Reddy, Krishna; Gadepally, Kamesh
1995-09-01
A planarized aluminum alloy interconnect has been developed as an alternative to tungsten plugs for a 0.65 (mu) CMOS technology. Contact resistance can increase with either an inadequate RF sputter clean or titanium that is too thin to reduce the native oxide. Diffusion barrier results show that a minimum amount of titanium nitride, whether deposited conventionally or with collimation, is necessary for low junction leakage and good sort yield. Stacked contacts and vias are supported while via resistance and defect density are improved. Electrical bridging due to silicon residues from AlSiCu can be minimized with metal overetching, but not to the extent of AlCu. Sidewall pitting was observed to be due to galvanic corrosion from copper precipitate formation. Overall yield has been improved along with decreased wafer cost compared to conventional tungsten plug technology.
Silicon dendritic web material
NASA Technical Reports Server (NTRS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-01-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
Silicon dendritic web material
NASA Astrophysics Data System (ADS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-03-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
NASA Astrophysics Data System (ADS)
Abbaspour, R.; Brown, D. K.; Bakir, M. S.
2017-02-01
This paper presents the fabrication and electrical characterization of high aspect-ratio (AR) sub-micron diameter through silicon vias (TSVs) for densely interconnected three-dimensional (3D) stacked integrated circuits (ICs). The fabricated TSV technology features an AR of 16:1 with 680 nm diameter copper (Cu) core and 920 nm overall diameter. To address the challenges in scaling TSVs, scallop-free low roughness nano-Bosch silicon etching and direct Cu electroplating on a titanium-nitride (TiN) diffusion barrier layer have been developed as key enabling modules. The electrical resistance of the sub-micron TSVs is measured to be on average 1.2 Ω, and the Cu resistivity is extracted to be approximately 2.95 µΩ cm. Furthermore, the maximum achievable current-carrying capacity (CCC) of the scaled TSVs is characterized to be approximately 360 µA for the 680 nm Cu core.
Mesoscale elucidation of laser-assisted chemical deposition of Sn nanostructured electrodes
NASA Astrophysics Data System (ADS)
Liu, Zhixiao; Deng, Biwei; Cheng, Gary J.; Deng, Huiqiu; Mukherjee, Partha P.
2015-06-01
Nanostructured tin (Sn) is a promising high-capacity electrode for improved performance in lithium-ion batteries for electric vehicles. In this work, Sn nanoisland growth for nanostructured electrodes assisted by the pulse laser irradiation has been investigated based on a mesoscale modeling formalism. The influence of pertinent processing conditions, such as pulse duration, heating/cooling rates, and atom flux, on the Sn nanostructure formation is specifically considered. The interaction between the adsorbed atom and the substrate, represented by the adatom diffusion barrier, is carefully studied. It is found that the diffusion barrier predominantly affects the distribution of Sn atoms. For both α-Sn and β-Sn, the averaged coordination number is larger than 3 when the diffusion barrier equals to 0.15 eV. The averaged coordination number decreases as the diffusion barrier increases. The substrate temperature, which is determined by heating/cooling rates and pulse duration, can also affect the formation of Sn nanoislands. For α-Sn, when applied low heating/cooling rates, nanoislands cannot form if the diffusion barrier is larger than 0.35 eV.
NASA Astrophysics Data System (ADS)
Mortley, Aba
Oxygen-free, phosphorous doped copper containers have been proposed for the storage of the used nuclear fuel bundles as a part of Canada's multi-barrier, adaptive phased management procedure for long term storage of spent nuclear fuel bundles. The spent nuclear fuel disposal system proposed for Canada has been engineered based on the multi-barrier approach intended to minimize the risk that the radioactive materials enter the biosphere. Copper is known to be susceptible to corrosion and it is thought that the simultaneous exposure to aggressive ionizing radiation field and residual heat produced by the spent nuclear fuel and the surrounding groundwater would all challenge the container's integrity. The goal of the present work is to reduce the impact of corrosion in the early stages of emplacement with the addition of a protective coating. Specifically, castor oil based polyurethanes were assessed as coatings and their ability to act as an additional physical barrier in the multi-barrier system mentioned previously. The novelty of this work stems from the use of a naturally derived non-petroleum based material in the form of castor oil as the polyol component. Two types of castor oil polyurethanes were investigated, one based on an aliphatic hexamethylene diisocyanate (HMDI), and the other based on an aromatic 2,4-toluene diisocyanate (TDI). Radiation and saturation tests were conducted using varying conditions. Mixed field ionizing radiation was provided by a SLOWPOKE-2 pool-type nuclear research reactor, up to accumulated doses of 6 MGy at dose rates of 37 kGy h-1 and 55.5 kGy h-1. Weight gain immersion studies, at temperatures of 25° C, 50° C, 70° C, were used to determine the mass uptake of several different solutions. The solutions utilized in the present work included hydrochloric acids of varying pHs, distilled water, and buffered solutions, which simulated chloride and sulphide rich calcium-sodium bicarbonate waters. After being exposed to radiation and saturation individually and in several combinations, the polymer samples were tested using a battery of tests. These tests were used to determine how the physico-mechanical properties of the materials, such as their strength, and their ability to be deformed and stretched were affected by radiation. The gist of these tests being that, if the sample showed significant variations in the physico-mechanical properties, then the material would be deemed as unacceptable for use in combined radiation-temperature-pH environments of the deep geological repository (DGR). The tests used included: Fourier transform infrared spectroscopy (FTIR), Matrix-assisted laser desorption/ionization (MALDI) spectroscopy, electronic ionization mass spectroscopy (EI MS), wide angle x-ray scattering (WAXS), solid-state nuclear magnetic resonance ( 13C-NMR), dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). Radiation dose increases from 0 MGy to 2.0 MGy showed a four-fold increase from 0.930 MPa to 4.365 MPa in the initial modulus and 0.149 MPa to 0.747 MPa in the tensile strength values of the polyurethanes. Above 2.0 MGy, the modulus and the tensile strength values exhibited a plateau at values above those of the unirradiated samples. The sorption and diffusion experiments demonstrated a mass uptake of less than 2 %, regardless of what polar solution was used. As a reflection of the more rigid polymer matrix provided by the aromatic ring, the aromatic polyurethanes generally exhibited higher modulus and tensile strength values and lower solution mass uptake and diffusivities. The diffusion values ranged from 8.5 x 10-7 cm2 s-1 to 3.31 X 10-6 cm2 s -1 for the aliphatic polyurethanes and 8.8 x 10-7 cm 2 s-1 to 1.60 x 10-6 cm2 S-1 for the aromatic polyurethanes. The order in which the experimental conditions were applied, Le. sequentially or simultaneously, had definite effects on the finished product. However, regardless of the manner in which the radiation and saturation were combined, in a sequential or simultaneous manner, the end results showed that the moduli values remained above those of the virgin samples (> 2 MPa). The results of the present work indicate that the castor oil based polyurethanes may indeed be used as a viable material where the end-use conditions include combined radiation-thermal-pH environments such as part of the container to store used nuclear fuel. Future development on this work can look at how the adhesive qualities between the castor oil based polyurethanes and the metal copper container may change in such environments.
Protective coatings for sensitive materials
Egert, C.M.
1997-08-05
An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.
Perez, Magali; Simpson, Stuart L; Lespes, Gaëtane; King, Josh J; Adams, Merrin S; Jarolimek, Chad V; Grassl, Bruno; Schaumlöffel, Dirk
2016-12-01
Fluctuations in concentrations of bioavailable metals occur in most natural waters. In situ measurements are desirable to predict risks of adverse effects to aquatic organisms. We evaluated Diffusive Milli-Gels (DMG), a new in situ passive sampler, for assessing the bioavailability and toxicity of copper in waters exhibiting a wide range of characteristics. The performance was compared to an established Chelex-column method that measures labile copper concentrations by discrete sampling, and the ability to predict acute toxicity to the cladoceran, Ceriodaphnia dubia. The labile copper concentrations measured by the DMG and Chelex-column methods decreased with increasing dissolved organic carbon (DOC) (1.9-15 mg L -1 ) and hardness (21-270 mg CaCO 3 L -1 hardness), with 20-70% of total dissolved copper being present as labile copper. Toxicity decreased with increasing DOC and hardness. Strong linear relationships existed between the EC50 for C. dubia and DOC, and when the EC50 was related to either the labile copper concentrations measured by DMG (r 2 = 0.874) or the Chelex column (0.956) methods. The study demonstrates that the DMG passive sampler is a relevant tool for the in situ assessment of environmental risks posed by metals whose toxicity is strongly influenced by speciation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Porins Increase Copper Susceptibility of Mycobacterium tuberculosis
Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael
2013-01-01
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632
First-principles investigation of point defect and atomic diffusion in Al2Ca
NASA Astrophysics Data System (ADS)
Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu
2017-04-01
Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.
Effects of ultrasound and temperature on copper electro reduction in Deep Eutectic Solvents (DES).
Mandroyan, Audrey; Mourad-Mahmoud, Mahmoud; Doche, Marie-Laure; Hihn, Jean-Yves
2014-11-01
This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride-ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV-visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80°C) and under ultrasonic conditions (F=20kHz, PT=5.8W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of Cu(II)/Cu(I). On the other hand, temperature is more beneficial than ultrasound for mass transfer of Cu(I)/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F=20kHz, PT=5.6W at 50°C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T=25°C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehm, F., E-mail: frederik.nehm@iapp.de; Müller-Meskamp, L.; Klumbies, H.
A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity formore » the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.« less
Investigation to develop a method to apply diffusion barrier to high strength fibers
NASA Technical Reports Server (NTRS)
Veltri, R. D.; Paradis, R. D.; Douglas, F. C.
1975-01-01
A radio frequency powered ion plating process was used to apply the diffusion barriers of aluminum oxide, yttrium oxide, hafnium oxide and titanium carbide to a substrate tungsten fiber. Each of the coatings was examined as to its effect on both room temperature strength and tensile strength of the base tungsten fiber. The coated fibers were then overcoated with a nickel alloy to become single cell diffusion couples. These diffusion couples were exposed to 1093 C for 24 hours, cycled between room temperature and 1093 C, and given a thermal anneal for 100 hours at 1200 C. Tensile testing and metallographic examinations determined that the hafnium oxide coating produced the best high temperature diffusion barrier for tungsten of the four coatings.
Copper uptake by the water hyacinth. [Eichornia crassipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.A.; Hardy, J.K.
1987-01-01
Factors affecting Cu/sup +2/ uptake by the water hyacinth (Eichornia crassipes) were examined. Two phases of copper uptake were observed throughout the uptake range (1-1000 mg/1). An initial rapid uptake phase of 4 hours followed by a slower, near linear uptake phase extending past 48 hours was observed. Stirring the solution enhanced uptake, suggesting copper removal is partially diffusion limited. Variations in pH over the range of 3 to 10 did not significantly affect uptake. Increasing the root mass of the plant increased the amount of copper taken up. As solution volume was increased more copper was removed. The presencemore » of complexing agents during the uptake phase reduced copper uptake. The inability of complexing agents to recover all copper initially removed by a plant suggests a migration to sites within the plant.« less
NASA Astrophysics Data System (ADS)
Zou, Jianxiong; Liu, Bo; Lin, Liwei; Lu, Yuanfu; Dong, Yuming; Jiao, Guohua; Ma, Fei; Li, Qiran
2018-01-01
Ultrathin graded ZrNx self-assembled diffusion barriers with controllable stoichiometry was prepared in Cu/p-SiOC:H interfaces by plasma immersion ion implantation (PIII) with dynamic regulation of implantation fluence. The fundamental relationship between the implantation fluence of N+ and the stoichiometry and thereby the electrical properties of the ZrNx barrier was established. The optimized fluence of a graded ZrN thin film with gradually decreased Zr valence was obtained with the best electrical performance as well. The Cu/p-SiOC:H integration is thermally stable up to 500 °C due to the synergistic effect of Cu3Ge and ZrNx layers. Accordingly, the PIII process was verified in a 100-nm-thick Cu dual-damascene interconnect, in which the ZrNx diffusion barrier of 1 nm thick was successfully self-assembled on the sidewall without barrier layer on the via bottom. In this case, the via resistance was reduced by approximately 50% in comparison with Ta/TaN barrier. Considering the results in this study, ultrathin ZrNx conformal diffusion barrier can be adopted in the sub-14 nm technology node.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Alloyed coatings for dispersion strengthened alloys
NASA Technical Reports Server (NTRS)
Wermuth, F. R.; Stetson, A. R.
1971-01-01
Processing techniques were developed for applying several diffusion barriers to TD-Ni and TD-NiCr. Barrier coated specimens of both substrates were clad with Ni-Cr-Al and Fe-Cr-Al alloys and diffusion annealed in argon. Measurement of the aluminum distribution after annealing showed that, of the readily applicable diffusion barriers, a slurry applied tungsten barrier most effectively inhibited the diffusion of aluminum from the Ni-Cr-Al clad into the TD-alloy substrates. No barrier effectively limited interdiffusion of the Fe-Cr-Al clad with the substrates. A duplex process was then developed for applying Ni-Cr-Al coating compositions to the tungsten barrier coated substrates. A Ni-(16 to 32)Cr-3Si modifier was applied by slurry spraying and firing in vacuum, and was then aluminized by a fusion slurry process. Cyclic oxidation tests at 2300 F resulted in early coating failure due to inadequate edge coverage and areas of coating porosity. EMP analysis showed that oxidation had consumed 70 to 80 percent of the aluminum in the coating in less than 50 hours.
TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique
NASA Astrophysics Data System (ADS)
Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.
2018-06-01
Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.
2011-03-01
Mile per hour ms Millisecond NEDU Navy Experimental Diving Unit PFD Personal flotation device PIW Person in the water PVC Polyvinyl chloride RDC...electrically resistive, yet conductive, clay. We then encapsulated the clay around a 1/2” diameter, 6-inch long copper rod, and then tightly wrapped it with...short length of 12 American Wire Gauge (AWG) stranded copper wire to the copper rod within each electrode. For each electrode pair, we joined
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2018-02-01
Surface leakage and lateral diffusion currents in InAs-based nBn photodetectors have been investigated. Devices fabricated using a shallow etch processing scheme that etches through the top contact and stops at the barrier exhibited large lateral diffusion current but undetectably low surface leakage. Such large lateral diffusion current significantly increased the dark current, especially in small devices, and causes pixel-to-pixel crosstalk in detector arrays. To eliminate the lateral diffusion current, two different approaches were examined. The conventional solution utilized a deep etch process, which etches through the top contact, barrier, and absorber. This deep etch processing scheme eliminated lateral diffusion, but introduced high surface current along the device mesa sidewalls, increasing the dark current. High device failure rate was also observed in deep-etched nBn structures. An alternative approach to limit lateral diffusion used an inverted nBn structure that has its absorber grown above the barrier. Like the shallow etch process on conventional nBn structures, the inverted nBn devices were fabricated with a processing scheme that only etches the top layer (the absorber, in this case) but avoids etching through the barrier. The results show that inverted nBn devices have the advantage of eliminating the lateral diffusion current without introducing elevated surface current.
Pujol, Jesus; Fenoll, Raquel; Macià, Dídac; Martínez-Vilavella, Gerard; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Deus, Joan; Blanco-Hinojo, Laura; Querol, Xavier; Sunyer, Jordi
2016-06-01
Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.
Onaizi, Sagheer A
2018-03-01
The dynamic adsorption of the anionic biosurfactant, surfactin, at the air-water interface has been investigated in this work and compared to those of two synthetic surfactants: the anionic sodium dodecylbenzenesulfonate (SDBS) and the nonionic octaethylene glycol monotetradecyl ether (C 14 E 8 ). The results revealed that surfactin adsorption at the air-water interface is purely controlled by diffusion mechanism at the initial stage of the adsorption process (i.e., [Formula: see text]), but shifts towards a mixed diffusion-barrier mechanism when surface tension approaches equilibrium (i.e., [Formula: see text]) due to the development of an energy barrier for adsorption. Such energy barrier has been found to be a function of the surfactin bulk concentration (increases with increasing surfactin concentration) and it is estimated to be in the range of 1.8-9.5 kJ/mol. Interestingly, such a trend (pure diffusion-controlled mechanism at [Formula: see text] and mixed diffusion-barrier mechanism at [Formula: see text]) has been also observed for the nonionic C 14 E 8 surfactant. Unlike the pure diffusion-controlled mechanism of the initial surfactin adsorption, which was the case in the presence and the absence of the sodium ion (Na + ), SDBS showed a mixed diffusion-barrier controlled at both short and long time, with an energy barrier of 3.0-9.0 and 3.8-18.0 kJ/mol, respectively. Such finding highlights the nonionic-like adsorption mechanism of surfactin despite its negative charge.
Migration mechanisms and diffusion barriers of vacancies in Ga2O3
NASA Astrophysics Data System (ADS)
Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico
2017-06-01
We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.
NASA Astrophysics Data System (ADS)
Chandran, Narendraraj; Kolakieva, Lilyana; Kakanakov, Roumen; Polychroniadis, E. K.
2015-11-01
The composition and structure of TiAl-based metallizations have been investigated depending on the Ti and Mo barriers. The lowest contact resistivity of 4 × 10-6 Ω.cm2 for a Ti barrier and 7 × 10-6 Ω.cm2 for a Mo barrier is obtained at a Ti/Al ratio of 0.43 after annealing at 800 °C. The scanning transmission electron microscope (STEM) and energy dispersive spectroscopy (EDS) analyses reveal that Mo is not an effective barrier for the Au in-diffusion and Al out of diffusion during annealing. The intensive diffusion processes lead to the formation of the semimetal TiN compound at the interface and intermetallic phases of Au, Al, and Ti, the structure and composition of which depend on the barrier metal.
Development of a new passive sampler based on diffusive milligel beads for copper analysis in water.
Perez, M; Reynaud, S; Lespes, G; Potin-Gautier, M; Mignard, E; Chéry, P; Schaumlöffel, D; Grassl, B
2015-08-26
A new passive sampler was designed and characterized for the determination of free copper ion (Cu(2+)) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k0) and the sampler-water partition coefficient (Ksw), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). Copyright © 2015 Elsevier B.V. All rights reserved.
Colombara, Diego; Werner, Florian; Schwarz, Torsten; Cañero Infante, Ingrid; Fleming, Yves; Valle, Nathalie; Spindler, Conrad; Vacchieri, Erica; Rey, Germain; Guennou, Mael; Bouttemy, Muriel; Manjón, Alba Garzón; Peral Alonso, Inmaculada; Melchiorre, Michele; El Adib, Brahime; Gault, Baptiste; Raabe, Dierk; Dale, Phillip J; Siebentritt, Susanne
2018-02-26
Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se 2 films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe 2 grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se 2 and Cu(In,Ga) 3 Se 5 phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.
Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro
2008-11-01
This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.
Material Barriers to Diffusive Mixing
NASA Astrophysics Data System (ADS)
Haller, George; Karrasch, Daniel
2017-11-01
Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.
Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides
NASA Technical Reports Server (NTRS)
Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)
1996-01-01
A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.
NASA Astrophysics Data System (ADS)
Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu
2018-02-01
We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.
Rotation and diffusion of naphthalene on Pt(111)
NASA Astrophysics Data System (ADS)
Kolsbjerg, E. L.; Goubert, G.; McBreen, P. H.; Hammer, B.
2018-03-01
The behavior of naphthalene on Pt(111) surfaces is studied by combining insight from scanning tunneling microscopy (STM) and van der Waals enabled density functional theory. Adsorption, diffusion, and rotation are investigated by a series of variable temperature STM experiments revealing naphthalene ability to rotate on-site with ease with a rotational barrier of 0.69 eV. Diffusion to neighbouring sites is found to be more difficult. The experimental results are in good agreement with the theoretical investigations which confirm that the barrier for diffusion is slightly higher than the one for rotation. The theoretical barriers for rotation and translation are found to be 0.75 and 0.78 eV, respectively. An automatic mapping of the possible diffusion pathways reveals very detailed diffusion paths with many small local minima that would have been practically impossible to find manually. This automated procedure provides detailed insight into the preferred diffusion pathways that are important for our understanding of molecule-substrate interactions.
Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Kakihana, Masato
2012-06-01
A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.
NASA Astrophysics Data System (ADS)
Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan
2018-04-01
Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).
The Drosophila blood-brain barrier: development and function of a glial endothelium.
Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian
2014-01-01
The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.
Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations
Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...
2016-04-01
Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO 3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancymore » is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less
NASA Technical Reports Server (NTRS)
Mc Crae, A. W., Jr.
1967-01-01
Multiconductor instrumentation cable in which the conducting wires are routed through two concentric copper tube sheaths, employing a compressed insulator between the conductors and between the inner and outer sheaths, is durable and easily installed in high thermal or nuclear radiation area. The double sheath is a barrier against moisture, abrasion, and vibration.
NASA Astrophysics Data System (ADS)
Zhao, Larry; Pantouvaki, Marianna; Croes, Kristof; Tőkei, Zsolt; Barbarin, Yohan; Wilson, Christopher J.; Baklanov, Mikhail R.; Beyer, Gerald P.; Claeys, Cor
2011-11-01
The role of copper in time dependent dielectric breakdown (TDDB) of a porous low-k dielectric with TaN/Ta barrier was investigated on a metal-insulator-metal capacitor configuration where Cu ions can drift into the low-k film by applying a positive potential on the top while they are not permitted to enter the low-k dielectric if a negative potential is applied on the top. No difference in TDDB performance was observed between the positive and negative bias conditions, suggesting that Cu cannot penetrate TaN/Ta barrier to play a critical role in the TDDB of porous low-k material.
NASA Astrophysics Data System (ADS)
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
Ion-barrier for memristors/ReRAM and methods thereof
Haase, Gad S.
2017-11-28
The present invention relates to memristive devices including a resistance-switching element and a barrier element. In particular examples, the barrier element is a monolayer of a transition metal chalcogenide that sufficiently inhibits diffusion of oxygen atoms or ions out of the switching element. As the location of these atoms and ions determine the state of the device, inhibiting diffusion would provide enhanced state retention and device reliability. Other types of barrier elements, as well as methods for forming such elements, are described herein.
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.
Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less
Investigation of heavy-ion fusion with deformed surface diffuseness: Actinide and lanthanide targets
NASA Astrophysics Data System (ADS)
Alavi, S. A.; Dehghani, V.
2017-05-01
By using a deformed Broglia-Winther nuclear interaction potential in the framework of the WKB method, the near- and above-barrier heavy-ion-fusion cross sections of 16O with some lanthanides and actinides have been calculated. The effect of deformed surface diffuseness on the nuclear interaction potential, the effective interaction potential at distinct angle, barrier position, barrier height, cross section at each angles, and fusion cross sections of 16O+147Sm,150Nd,154Sm , and 166Er and 16O+232Th,238U,237Np , and 248Cm have been studied. The differences between the results obtained by using deformed surface diffuseness and those obtained by using constant surface diffuseness were noticeable. Good agreement between experimental data and theoretical calculation with deformed surface diffuseness were observed for 16O+147Sm,154Sm,166Er,238U,237Np , and 248Cm reactions. It has been observed that deformed surface diffuseness plays a significant role in heavy-ion-fusion studies.
Formation of copper precipitates in silicon
NASA Astrophysics Data System (ADS)
Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.
1999-12-01
The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.
Effect of Post Treatment For Cu-Cr Source/Drain Electrodes on a-IGZO TFTs.
Hu, Shiben; Fang, Zhiqiang; Ning, Honglong; Tao, Ruiqiang; Liu, Xianzhe; Zeng, Yong; Yao, Rihui; Huang, Fuxiang; Li, Zhengcao; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao
2016-07-27
We report a high-performance amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with new copper-chromium (Cu-Cr) alloy source/drain electrodes. The TFT shows a high mobility of 39.4 cm 2 ·V - 1 ·s - 1 a turn-on voltage of -0.8 V and a low subthreshold swing of 0.47 V/decade. Cu diffusion is suppressed because pre-annealing can protect a-IGZO from damage during the electrode sputtering and reduce the copper diffusion paths by making film denser. Due to the interaction of Cr with a-IGZO, the carrier concentration of a-IGZO, which is responsible for high mobility, rises.
Effect of Post Treatment For Cu-Cr Source/Drain Electrodes on a-IGZO TFTs
Hu, Shiben; Fang, Zhiqiang; Ning, Honglong; Tao, Ruiqiang; Liu, Xianzhe; Zeng, Yong; Yao, Rihui; Huang, Fuxiang; Li, Zhengcao; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao
2016-01-01
We report a high-performance amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin-film transistor (TFT) with new copper-chromium (Cu-Cr) alloy source/drain electrodes. The TFT shows a high mobility of 39.4 cm2·V−1·s−1 a turn-on voltage of −0.8 V and a low subthreshold swing of 0.47 V/decade. Cu diffusion is suppressed because pre-annealing can protect a-IGZO from damage during the electrode sputtering and reduce the copper diffusion paths by making film denser. Due to the interaction of Cr with a-IGZO, the carrier concentration of a-IGZO, which is responsible for high mobility, rises. PMID:28773743
Network of Porosity Formed in Ultrafine-Grained Copper Produced by Equal Channel Angular Pressing
NASA Astrophysics Data System (ADS)
Ribbe, Jens; Baither, Dietmar; Schmitz, Guido; Divinski, Sergiy V.
2009-04-01
Radiotracer experiments on diffusion of Ni63 and Rb86 in severely deformed commercially pure copper (8 passes of equal channel angular pressing) reveal unambiguously the existence of ultrafast transport paths. A fraction of these paths remains in the material even after complete recrystallization. Scanning electron microscopy and focused ion beam techniques are applied. Deep grooves are found which are related to original high-energy interfaces. In-depth sectioning near corresponding triple junctions reveals clearly multiple microvoids or microcracks caused by the severe deformation. Long-range tracer penetration over tens of micrometers proves that these submicrometer-large defects are connected by highly diffusive paths and that they appear with significant frequency.
NASA Technical Reports Server (NTRS)
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
NASA Astrophysics Data System (ADS)
Aparna, N.; Vasa, Nilesh J.; Sarathi, R.; Rajan, J. Sundara
2014-10-01
In recent times, copper sulphide (Cu2S) diffusion in the transformer insulation is a major problem reducing the life of transformers. It is therefore essential to identify a simple methodology to understand the diffusion of Cu2S into the solid insulation [oil impregnated pressboard (OIP)]. In the present work, laser-induced breakdown spectroscopy (LIBS) was adopted to study the diffusion of Cu2S into the pressboard insulation and to determine the depth of diffusion. The diffusion of Cu2S in pressboard was confirmed by electrical discharge studies. In general, flashover voltage and increase in ageing duration of pressboard insulation/Cu concentration had inverse relationship. The characteristic emission lines were also studied through optical emission spectroscopy. Based on LIBS studies with Cu powder dispersed pressboard samples, Cu I emission lines were found to be resolvable up to a lowest concentration of 5 μg/cm2. The LIBS intensity ratio of Cu I-Ca II emission lines were found to increase with increase in the ageing duration of the OIP sample. LIBS studies with OIP samples showed an increase in the optical emission lifetime. LIBS results were in agreement with the electrical discharge studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S.; Dey, S.; Yu, K.
2016-01-01
Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less
Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite
Huang, Chih-Wei; Aoh, Jong-Ning
2018-01-01
In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM) and Transmission Electron Microscopy (TEM) investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS), electron probe micro-analyzer (EPMA), and X-ray diffraction (XRD) were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites. PMID:29652846
Modeling of copper sorption onto GFH and design of full-scale GFH adsorbers.
Steiner, Michele; Pronk, Wouter; Boller, Markus A
2006-03-01
During rain events, copper wash-off occurring from copper roofs results in environmental hazards. In this study, columns filled with granulated ferric hydroxide (GFH) were used to treat copper-containing roof runoff. It was shown that copper could be removed to a high extent. A model was developed to describe this removal process. The model was based on the Two Region Model (TRM), extended with an additional diffusion zone. The extended model was able to describe the copper removal in long-term experiments (up to 125 days) with variable flow rates reflecting realistic runoff events. The four parameters of the model were estimated based on data gained with specific column experiments according to maximum sensitivity for each parameter. After model validation, the parameter set was used for the design of full-scale adsorbers. These full-scale adsorbers show high removal rates during extended periods of time.
Hedberg, Yolanda S; Goidanich, Sara; Herting, Gunilla; Wallinder, Inger Odnevall
2015-01-01
Predictions of the diffuse dispersion of metals from outdoor constructions such as roofs and facades are necessary for environmental risk assessment and management. An existing predictive model has been compared with measured data of copper runoff from copper sheets exposed at four different inclinations facing four orientations at two different urban sites (Stockholm, Sweden, and Milan, Italy) during a 4-year period. Its applicability has also been investigated for copper sheet exposed at two marine sites(Cadiz, Spain, for 5 years, and Brest, France, for 9 years). Generally the model can be used for all given conditions. However, vertical surfaces should be considered as surfaces inclined 60-80 due to wind driven effects. The most important parameters that influence copper runoff, and not already included in the model, are the wind and rain characteristics that influence the actual rainfall volume impinging the surface of interest.
Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H
2012-10-01
The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling the Impenetrable Barrier to Inward Transport of Ultra-relativistic Radiation Belt Electrons
NASA Astrophysics Data System (ADS)
Tu, W.; Cunningham, G.; Chen, Y.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.
2014-12-01
It has long been considered that the inner edge of the Earth's outer radiation belt is closely correlated with the minimum plasmapause location. However, recent discoveries by Baker et al. [1] show that it is not the case for ultra-relativistic electrons (2-10 MeV) in the radiation belt. Based on almost two years of Van Allen Probes/REPT data, they find that the inner edge of highly relativistic electrons is rarely collocated with the plasmapause; and more interestingly, there is a clear, persistent, and nearly impenetrable barrier to inward transport of high energy electrons, observed to locate at L~2.8. The presence of such an impenetrable barrier at this very specific location poses a significant puzzle. Using our DREAM3D diffusion model, which includes radial, pitch angle, and momentum diffusion, we are able to simulate the observed impenetrable barrier of ultra-relativistic electrons. The simulation demonstrates that during strong geomagnetic storms the plasmapause can be compressed to very low L region (sometimes as low as L~3), then strong chorus waves just outside the plasmapause can locally accelerate electrons up to multiple-MeV; when storm recovers, plasmapause moves back to large L, while the highly-relativistic electrons generated at low L continue to diffuse inward and slow decay by pitch angle diffusion from plasmaspheric hiss. The delicate balance between slow inward radial diffusion and weak pitch angle scattering creates a fixed inner boundary or barrier for ultra-relativistic electrons. The barrier is found to locate at a fixed L location, independent of the initial penetration depth of electrons that is correlated with the plasmapause location. Our simulation results quantitatively reproduce the evolution of the flux versus L profile, the L location of the barrier, and the decay rate of highly energetic electrons right outside the barrier. 1Baker, D. N., et al. (2014), Nearly Impenetrable Barrier to Inward Ultra-relativistic Magnetospheric Electron Transport, submitted to Nature.
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α-Fe-Si alloys
NASA Astrophysics Data System (ADS)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.; Mathaudhu, Suveen; Rohatgi, Aashish
2018-01-01
Diffusion of Si atom and vacancy in the A2-phase of α-Fe-Si alloys in the ferromagnetic state, with and without magnetic order and in various temperature ranges, are studied using AKSOME, an on-lattice self-learning KMC code. Diffusion of the Si atom and the vacancy are studied in the dilute limit and up to 12 at.% Si, respectively, in the temperature range 350-700 K. Local Si neighborhood dependent activation energies for vacancy hops were calculated on-the-fly using a broken-bond model based on pairwise interaction. The migration barrier and prefactor for the Si diffusion in the dilute limit were obtained and found to agree with published data within the limits of uncertainty. Simulations results show that the prefactor and the migration barrier for the Si diffusion are approximately an order of magnitude higher, and a tenth of an electron-volt higher, respectively, in the magnetic disordered state than in the fully ordered state. However, the net result is that magnetic disorder does not have a significant effect on Si diffusivity within the range of parameters studied in this work. Nevertheless, with increasing temperature, the magnetic disorder increases and its effect on the Si diffusivity also increases. In the case of vacancy diffusion, with increasing Si concentration, its diffusion prefactor decreases while the migration barrier more or less remained constant and the effect of magnetic disorder increases with Si concentration. Important vacancy-Si/Fe atom exchange processes and their activation barriers were identified, and the effect of energetics on ordered phase formation in Fe-Si alloys are discussed.
Urquiza, Nora M; Manca, Silvia G; Moyano, María A; Dellmans, Raquel Arrieta; Lezama, Luis; Rojo, Teófilo; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G
2010-04-01
Methimazole (MeimzH) is an anti-thyroid drug and the first choice for patients with Grave's disease. Two new copper(II) complexes of this drug: [Cu(MeimzH)(2)(NO(3))(2)]*0.5H(2)O and [Cu(MeimzH)(2)(H(2)O)(2)](NO(3))(2)*H(2)O were synthesized and characterized by elemental analysis, dissolution behavior, thermogravimetric analysis and UV-vis, diffuse reflectance, FTIR and EPR spectroscopies. As it is known that copper(II) cation can act as an inhibitor of alkaline phosphatase (ALP), the inhibitory effect of methimazole and its copper(II) complexes on ALP activity has also been investigated.
Corrosion resistant coatings suitable for elevated temperature application
Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX
2012-07-31
The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.
Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics
NASA Technical Reports Server (NTRS)
Good, Brian
2013-01-01
Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.
Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance.
Abdulagatov, A I; Yan, Y; Cooper, J R; Zhang, Y; Gibbs, Z M; Cavanagh, A S; Yang, R G; Lee, Y C; George, S M
2011-12-01
Al(2)O(3) and TiO(2) atomic layer deposition (ALD) were employed to develop an ultrathin barrier film on copper to prevent water corrosion. The strategy was to utilize Al(2)O(3) ALD as a pinhole-free barrier and to protect the Al(2)O(3) ALD using TiO(2) ALD. An initial set of experiments was performed at 177 °C to establish that Al(2)O(3) ALD could nucleate on copper and produce a high-quality Al(2)O(3) film. In situ quartz crystal microbalance (QCM) measurements verified that Al(2)O(3) ALD nucleated and grew efficiently on copper-plated quartz crystals at 177 °C using trimethylaluminum (TMA) and water as the reactants. An electroplating technique also established that the Al(2)O(3) ALD films had a low defect density. A second set of experiments was performed for ALD at 120 °C to study the ability of ALD films to prevent copper corrosion. These experiments revealed that an Al(2)O(3) ALD film alone was insufficient to prevent copper corrosion because of the dissolution of the Al(2)O(3) film in water. Subsequently, TiO(2) ALD was explored on copper at 120 °C using TiCl(4) and water as the reactants. The resulting TiO(2) films also did not prevent the water corrosion of copper. Fortunately, Al(2)O(3) films with a TiO(2) capping layer were much more resilient to dissolution in water and prevented the water corrosion of copper. Optical microscopy images revealed that TiO(2) capping layers as thin as 200 Å on Al(2)O(3) adhesion layers could prevent copper corrosion in water at 90 °C for ~80 days. In contrast, the copper corroded almost immediately in water at 90 °C for Al(2)O(3) and ZnO films by themselves on copper. Ellipsometer measurements revealed that Al(2)O(3) films with a thickness of ~200 Å and ZnO films with a thickness of ~250 Å dissolved in water at 90 °C in ~10 days. In contrast, the ellipsometer measurements confirmed that the TiO(2) capping layers with thicknesses of ~200 Å on the Al(2)O(3) adhesion layers protected the copper for ~80 days in water at 90 °C. The TiO(2) ALD coatings were also hydrophilic and facilitated H(2)O wetting to copper wire mesh substrates. © 2011 American Chemical Society
Native oxide formation on pentagonal copper nanowires: A TEM study
NASA Astrophysics Data System (ADS)
Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian
2018-06-01
Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.
Microstructure and properties of pure iron/copper composite cladding layers on carbon steel
NASA Astrophysics Data System (ADS)
Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang
2016-08-01
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
Effects of copper vapour on thermophysical properties of CO2-N2 plasma
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Wang, Xiaohua; Rong, Mingzhe; Cressault, Yann
2016-10-01
CO2-N2 mixtures are often used as arc quenching medium (to replace SF6) in circuit breakers and shielding gas in arc welding. In such applications, copper vapour resulting from electrode surfaces can modify characteristics of plasmas. This paper therefore presents an investigation of the effects of copper on thermophysical properties of CO2-N2 plasma. The equilibrium compositions, thermodynamic properties (including mass density, specific enthalpy, and specific heat), transport coefficients (including electrical conductivity, viscosity, and thermal conductivity), and four kinds of combined diffusion coefficients due to composition gradients, applied electric fields, temperature gradients, and pressure gradients respectively, were calculated and discussed for CO2-N2 (mixing ratio 7:3) plasma contaminated by different proportions of copper vapour. The significant influences of copper were observed on all the properties of CO2-N2-Cu mixtures. The better ionization ability and larger molar mass of copper and larger collision integrals related to copper, should be responsible for such influences.
NASA Astrophysics Data System (ADS)
Yang, De-zheng; Wang, Wen-chun; Jia, Li; Nie, Dong-xia; Shi, Heng-chao
2011-04-01
In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.
NASA Astrophysics Data System (ADS)
Chen, Wei-Jhen; Lee, Yue-Lin; Wu, Ti-Yuan; Chen, Tzu-Ching; Hsu, Chih-Hui; Lin, Ming-Tzer
2018-01-01
This study investigated the effects of electric current and external stress on electromigration of intermetallic compounds (IMC) between solder and copper substrate. Different samples were tested under three different sets of conditions: (1) thermal aging only, (2) thermal aging with electric current ,where resistivity changes were measured using four-point probe measurements, (3) thermal aging with electric current and external stress provided using a four-point bending apparatus. The micro-structural changes in the samples were observed. The results were closely examined; particularly the coupling effect of electric current and external stress to elucidate the electromigration mechanism, as well as the formation of IMC in the samples. For thermal-aging-only samples, the IMC growth mechanism was controlled by grain boundary diffusion. Meanwhile, for thermal aging and applied electric current samples, the IMC growth mechanism was dominated by volume diffusion and interface reaction. Lastly, the IMC growth mechanism in the electric current and external stress group was dominated by grain boundary diffusion with grain growth. The results reveal that the external stress/strain and electric current play a significant role in the electromigration of copper-tin IMC. The samples exposed to tensile stress have reduced electromigration, while those subjected under compressive stress have enhanced electromigration.
NASA Astrophysics Data System (ADS)
Spencer, Todd J.; Chen, Yu-Chun; Saha, Rajarshi; Kohl, Paul A.
2011-06-01
Incorporation of copper ions into poly(propylene carbonate) (PPC) films cast from γ-butyrolactone (GBL), trichloroethylene (TCE) or methylene chloride (MeCl) solutions containing a photo-acid generator is shown to stabilize the PPC from thermal decomposition. Copper ions were introduced into the PPC mixtures by bringing the polymer mixture into contact with copper metal. The metal was oxidized and dissolved into the PPC mixture. The dissolved copper interferes with the decomposition mechanism of PPC, raising its decomposition temperature. Thermogravimetric analysis shows that copper ions make PPC more stable by up to 50°C. Spectroscopic analysis indicates that copper ions may stabilize terminal carboxylic acid groups, inhibiting PPC decomposition. The change in thermal stability based on PPC exposure to patterned copper substrates was used to provide a self-aligned patterning method for PPC on copper traces without the need for an additional photopatterning registration step. Thermal decomposition of PPC is then used to create air isolation regions around the copper traces. The spatial resolution of the self-patterning PPC process is limited by the lateral diffusion of the copper ions within the PPC. The concentration profiles of copper within the PPC, patterning resolution, and temperature effects on the PPC decomposition have been studied.
Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan.
Prakash, Nagan; Latha, Srinivasan; Sudha, Persu N; Renganathan, N Gopalan
2013-02-01
The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan-clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k (1), for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu(2+) ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.
The Diffusion Process of Patient Education in Dutch Community Pharmacy: An Exploration.
ERIC Educational Resources Information Center
Pronk, M. C. M.; Blom, A. Th. G.; Van Burg, A.; Jonkers, R.
2001-01-01
Identifies barriers and facilitators to the implementation of patient education in community pharmacies and classifies these barriers and facilitators into the diffusion stages of Rogers'"Innovations in Organizations" model. Discusses the implementation of patient education activities that require individual and organizational change in…
Theory and simulation of ion conduction in the pentameric GLIC channel.
Zhu, Fangqiang; Hummer, Gerhard
2012-10-09
GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.
Jumping, Rotating, and Flapping: The Atomic-Scale Motion of Thiophene on Cu(111).
Lechner, Barbara A J; Sacchi, Marco; Jardine, Andrew P; Hedgeland, Holly; Allison, William; Ellis, John; Jenkins, Stephen J; Dastoor, Paul C; Hinch, B J
2013-06-06
Self-assembled monolayers of sulfur-containing heterocycles and linear oligomers containing thiophene groups have been widely employed in organic electronic applications. Here, we investigate the dynamics of isolated thiophene molecules on Cu(111) by combining helium spin-echo (HeSE) spectroscopy with density functional theory calculations. We show that the thiophene/Cu(111) system displays a rich array of aperiodic dynamical phenomena that include jump diffusion between adjacent atop sites over a 59-62 meV barrier and activated rotation around a sulfur-copper anchor, two processes that have been observed previously for related systems. In addition, we present experimental evidence for a new, weakly activated process, the flapping of the molecular ring. Repulsive inter-adsorbate interactions and an exceptionally high friction coefficient of 5 ± 2 ps(-1) are also observed. These experiments demonstrate the versatility of the HeSE technique, and the quantitative information extracted in a detailed analysis provides an ideal benchmark for state-of-the-art theoretical techniques including nonlocal adsorbate-substrate interactions.
23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
NASA Astrophysics Data System (ADS)
Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.; Boccard, Mathieu; Cheacharoen, Rongrong; Mailoa, Jonathan P.; McMeekin, David P.; Hoye, Robert L. Z.; Bailie, Colin D.; Leijtens, Tomas; Peters, Ian Marius; Minichetti, Maxmillian C.; Rolston, Nicholas; Prasanna, Rohit; Sofia, Sarah; Harwood, Duncan; Ma, Wen; Moghadam, Farhad; Snaith, Henry J.; Buonassisi, Tonio; Holman, Zachary C.; Bent, Stacey F.; McGehee, Michael D.
2017-02-01
As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity.
NASA Astrophysics Data System (ADS)
Zhang, Yaozhong; Zhou, Jun; Zhang, Xiaoli; Hu, Jun; Gao, Han
2014-11-01
This article reports the effect of solvent polarity on the formation of n-octadecanethiol self-assembled monolayers (C18SH-SAMs) on pure copper surface and oxidized copper surface. The quality of SAMs prepared in different solvents (n-hexane, toluene, trichloroethylene, chloroform, acetone, acetonitrile, ethanol) was monitored by EIS, RAIRS and XPS. The results indicated that C18SH-SAMs formed in these solvents were in good barrier properties on pure copper surface and the structures of monolayers formed in high polarity solvents were more compact and orderly than that formed in low polarity solvents. For comparison, C18SH adsorbed on the surface of oxidized copper in these solvents were studied and the results indicated that C18SH could be adsorbed on oxidized copper surface after the reduction of copper oxide layer by thiols. Compared with high polarity solvents, a limited reduction process of oxidized copper by thiols led to the incompletely formation of monolayers in low polarity solvents. This can be interpreted that the generated water on solid-liquid interface and a smaller reaction force restrict the continuous reduction reaction in low polarity solvents
Amorphous-Metal-Film Diffusion Barriers
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1987-01-01
Incorporation of N into Ni/W films reduces reactivity with Si substrate. Paper describes reactions between Si substrates and deposited amorphous Ni/W or Ni/N/W films. Thermal stability of amorphous Ni/W films as diffusion barriers in Si markedly improved by introduction of N into Ni/W films during deposition.
Reactive Membrane Barriers for Containment of Subsurface Contamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Arnold; Edward L. Cussler
2007-02-26
The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents andmore » cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when groundwater was used in place of deionized water. The performance of high density polyethylene (HDPE) membranes containing Fe{sup 0} was then evaluating using carbon tetrachloride as the target contaminant. Only with a hydrophilic additive (glycerol), was the iron able to extend lag times. Lag times were increased by a factor of 15, but only 2-3% of the iron was used, likely due to formation of oxide precipitates on the iron surface, which slowed the reaction. With thicker membranes and lower carbon tetrachloride concentrations, it is expected that performance will improve. Previous models for reactive membranes were also extended. The lag time is a measurement of when the barrier is breached, but contaminants do slowly leak through prior to the lag time. Thus, two parameters, the leakage and the kill time, were developed to determine when a certain amount of pollutant has escaped (the kill time) or when a given exposure (concentration x time) occurs (the leakage). Finally, a model was developed to explain the behavior of mobile reaction products in reactive barrier membranes. Although the goal of the technology is to avoid such products, it is important to be able to predict how these products will behave. Interestingly, calculations show that for any mobile reaction products, one half of the mass will diffuse into the containment area and one half will escape, assuming that the volumes of the containment area and the surrounding environment are much larger than the barrier membrane. These parameters/models will aid in the effective design of barrier membranes.« less
Barbero, Ana M; Frasch, H Frederick
2017-08-28
The impact of the complex structure of the stratum corneum on transdermal penetration is not yet fully described by existing models. A quantitative and thorough study of skin permeation is essential for chemical exposure assessment and transdermal delivery of drugs. The objective of this study is to analyze the effects of heterogeneity, anisotropy, asymmetry, follicular diffusion, and location of the main barrier of diffusion on percutaneous permeation. In the current study, the solution of the transient diffusion through a two-dimensional-anisotropic brick-and-mortar geometry of the stratum corneum is obtained using the commercial finite element program COMSOL Multiphysics. First, analytical solutions of an equivalent multilayer geometry are used to determine whether the lipids or corneocytes constitute the main permeation barrier. Also these analytical solutions are applied for validations of the finite element solutions. Three illustrative compounds are analyzed in these sections: diethyl phthalate, caffeine and nicotine. Then, asymmetry with depth and follicular diffusion are studied using caffeine as an illustrative compound. The following findings are drawn from this study: the main permeation barrier is located in the lipid layers; the flux and lag time of diffusion through a brick-and-mortar geometry are almost identical to the values corresponding to a multilayer geometry; the flux and lag time are affected when the lipid transbilayer diffusivity or the partition coefficients vary with depth, but are not affected by depth-dependent corneocyte diffusivity; and the follicular contribution has significance for low transbilayer lipid diffusivity, especially when flux between the follicle and the surrounding stratum corneum is involved. This study demonstrates that the diffusion is primarily transcellular and the main barrier is located in the lipid layers. Published by Elsevier B.V.
Annealing effects in plated-wire memory elements. I - Interdiffusion of copper and Permalloy.
NASA Technical Reports Server (NTRS)
Knudson, C. I.; Kench, J. R.
1971-01-01
Results of investigations using X-ray diffraction and electron-beam microprobe techniques have shown that copper and Permalloy platings interdiffuse at low temperatures when plated-wire memory elements are annealed for times as short as 50 hr. Measurable interdiffusion between Permalloy platings and gold substrates does not occur in similar conditions. Both magnetic and compositional changes during aging are found to occur by a thermally activated process with activation energies around 38 kcal/mol. It is shown, however, that copper-diffusion and magnetic-dispersion changes during aging are merely concurrent processes, neither being the other's cause.
Ionic Diffusion in Cu6PS5Br Studied by 63Cu NMR
NASA Astrophysics Data System (ADS)
Ohki, H.; Harazono, K.; Erata, T.; Tasaki, A.; Ikeda, R.
1993-10-01
Applying 63Cu NMR technique, we observed exchange between the nonequivalent copper sites in crystalline Cu6PS5Br, known as a member of the mineral "argyrodite". Below 200 K, where the motion of the copper (I) ion is slow, we could distinguish several nonequivalent copper sites. On increasing the temperature, the chemical exchange between the nonequivalent cation sites was seen on the 63Cu NMR spectra. We could determine the activation energy for this motion to be 35 kJ mol-1 , in good agreement with the published ionic conductivity.
NASA Astrophysics Data System (ADS)
Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.
2011-05-01
The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.
Transport of Organic Compounds Through Porous Systems Containing Humic Acids.
Smilek, Jiri; Sedlacek, Petr; Lastuvkova, Marcela; Kalina, Michal; Klucakova, Martina
2017-03-01
Soil pollution by the presence of different contaminants (e.g. heavy metal ions or pesticides) is one of the biggest problems worldwide. The positive affinity of natural humic acids towards these contaminants might contribute to the soil and ground water protection; therefore it is necessary to study the reactivity and barrier properties of humic acids. An original reactivity-mapping tool based on diffusion techniques designed to study the reactivity and barrier properties of polyelectrolytes was developed and tested on humic acids. The results of diffusion experiments demonstrate that the electrostatic interactions between humic acids functioning as a polyelectrolyte interpenetrated in a supporting hydrogel matrix (agarose) and cationic dye (methylene blue) as a model solute have a crucial impact on the rate of diffusion processes and on the barrier properties of hydrogels. The intensity of interactions was evaluated by fundamental diffusion parameters (effective diffusion coefficients and breakthrough time). The impact of modification of humic acids was also studied by means of diffusion experiments conducted on two types of standard humic acids (Leonardite 1S104H) and humic acids with selectively methylated carboxylic groups.
NASA Astrophysics Data System (ADS)
Solomon, J. S.
1981-05-01
The effects of the electrochemical anodization of dioxidized 2024-T3 aluminum on copper were characterized by Auger electron spectroscopy and Rutherford backscattering. Anodization was performed in phosphoric acid at constant potential. Data is presented which shows that constant potential anodization of 2024-T3 is more efficient than aluminum in terms of oxide growth rates for short anodization times. However the maximum anodic oxide thickness achievable on the alloy is less than the pure metal. Copper is shown to be enriched at the oxide metal interface because of its diffusion from the bulk during anodization. The presence of copper at the oxide-metal interface is shown to affect oxide morphology.
Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng
2015-02-14
Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.
Chang, Shou-Yi; Li, Chen-En; Huang, Yi-Chung; Hsu, Hsun-Feng; Yeh, Jien-Wei; Lin, Su-Jien
2014-01-01
We report multi-component high-entropy materials as extraordinarily robust diffusion barriers and clarify the highly suppressed interdiffusion kinetics in the multi-component materials from structural and thermodynamic perspectives. The failures of six alloy barriers with different numbers of elements, from unitary Ti to senary TiTaCrZrAlRu, against the interdiffusion of Cu and Si were characterized, and experimental results indicated that, with more elements incorporated, the failure temperature of the barriers increased from 550 to 900°C. The activation energy of Cu diffusion through the alloy barriers was determined to increase from 110 to 163 kJ/mole. Mechanistic analyses suggest that, structurally, severe lattice distortion strains and a high packing density caused by different atom sizes, and, thermodynamically, a strengthened cohesion provide a total increase of 55 kJ/mole in the activation energy of substitutional Cu diffusion, and are believed to be the dominant factors of suppressed interdiffusion kinetics through the multi-component barrier materials. PMID:24561911
NASA Astrophysics Data System (ADS)
Li, Ganglong; Wu, Houya; Luo, Honglong; Chen, Zhuo; Tay, Andrew A. O.; Zhu, Wenhui
2017-09-01
Three-dimensional (3D) integration technology using Cu interconnections has emerged as a promising solution to improve the performance of silicon microelectronic devices. However, Cu diffuses into SiO2 and requires a barrier layer such as Ta to ensure acceptable reliability. In this paper, the effects of temperature and strain normal to the interface on the inter-diffusion of Cu and Ta at annealing conditions are investigated using a molecular dynamics (MD) technique with embedded atomic method (EAM) potentials. Under thermal annealing conditions without strain, it is found that a Cu-rich diffusion region approximately 2 nm thick is formed at 1000 K after 10 ns of annealing. Ta is capable of diffusing into the interior of Cu but Cu hardly diffuses into the inner lattice of Ta. At the Cu side near the interface an amorphous structure is formed due to the process of diffusion. The diffusion activation energy of Cu and Ta are found to be 0.9769 and 0.586 eV, respectively. However, when a strain is applied, a large number of crystal defects are generated in the sample. As the strain is increased, extrinsic stacking faults (ESFs) and lots of Shockley partial dislocations appear. The density of the dislocations and the diffusion channels increase, promoting the diffusion of Cu atoms into the inner lattice of Ta. The thickness of the diffusion layer increases to 4 times the value when only a temperature load of 700 K is applied. The MD simulations demonstrated that Ta is very effective as a barrier layer under thermal loading only, and its effectiveness is impaired by tensile strain at the Cu/Ta interface. The simulations also clarified the mechanism that caused the impairment. The methodology and approach described in this paper can be followed further to study the effectiveness of barrier layers under various annealing and strain conditions, and to determine the minimum thickness of barrier layers required for a particular application.
Anode composite for molten carbonate fuel cell
Iacovangelo, Charles D.; Zarnoch, Kenneth P.
1983-01-01
An anode composite useful for a molten carbonate fuel cell comprised of a porous sintered metallic anode component having a porous bubble pressure barrier integrally sintered to one face thereof, said barrier being comprised of metal coated ceramic particles sintered together and to said anode by means of said metal coating, said metal coating enveloping said ceramic particle and being selected from the group consisting of nickel, copper and alloys thereof, the median pore size of the barrier being significantly smaller than that of the anode.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-02-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-05-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
Eutectic structures in friction spot welding joint of aluminum alloy to copper
NASA Astrophysics Data System (ADS)
Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.
2014-05-01
A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.
NASA Astrophysics Data System (ADS)
Gągor, A.; Pietraszko, A.; Kaynts, D.
2005-11-01
In order to understand the structural transformations leading to high ionic conductivity of Cu + ions in Cu 6PS 5I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T=(144-169) K Cu 6PS 5I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above Tc delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43 c ( a'=19.528 Å, z=32). Finally, above T1=274 K increasing disordering of the Cu + ions heightens the symmetry to F-43 m ( a=9.794 Å, z=4). In this work, the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions ( R1=0.0397 for F-43 c phase, and 0.0245 for F-43 m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.
Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel
NASA Astrophysics Data System (ADS)
Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.
Metal diffusion barriers for GaAs solar cells.
van Leest, R H; Mulder, P; Bauhuis, G J; Cheun, H; Lee, H; Yoon, W; van der Heijden, R; Bongers, E; Vlieg, E; Schermer, J J
2017-03-15
In this study accelerated ageing testing (AAT), J-V characterization and TEM imaging in combination with phase diagram data from literature are used to assess the potential of Ti, Ni, Pd and Pt as diffusion barriers for Au/Cu-based metallization of III-V solar cells. Ni barriers show the largest potential as at an AAT temperature of 250 °C both cells with 10 and 100 nm thick Ni barriers show significantly better performance compared to Au/Cu cells, with the cells with 10 nm Ni barriers even showing virtually no degradation after 7.5 days at 250 °C (equivalent to 10 years at 100 °C at an E a of 0.70 eV). Detailed investigation shows that Ni does not act as a barrier in the classical sense, i.e. preventing diffusion of Cu and Au across the barrier. Instead Ni modifies or slows down the interactions taking place during device degradation and thus effectively acts as an 'interaction' barrier. Different interactions occur at temperatures below and above 250 °C and for thin (10 nm) and thick (100 nm) barriers. The results of this study indicate that 10-100 nm thick Ni intermediate layers in the Cu/Au based metallization of III-V solar cells may be beneficial to improve the device stability upon exposure to elevated temperatures.
Divacancy complexes induced by Cu diffusion in Zn-doped GaAs
NASA Astrophysics Data System (ADS)
Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.
2013-08-01
Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.
Different approach to the modeling of nonfree particle diffusion
NASA Astrophysics Data System (ADS)
Buhl, Niels
2018-03-01
A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.
Investigation of LRS dependence on the retention of HRS in CBRAM
NASA Astrophysics Data System (ADS)
Xu, Xiaoxin; Lv, Hangbing; Liu, Hongtao; Luo, Qing; Gong, Tiancheng; Wang, Ming; Wang, Guoming; Zhang, Meiyun; Li, Yang; Liu, Qi; Long, Shibing; Liu, Ming
2015-02-01
The insufficient retention prevents the resistive random access memory from intended application, such as code storage, FPGA, encryption, and others. The retention characteristics of high resistance state (HRS) switching from different low resistance state (LRS) were investigated in a 1-kb array with one transistor and one resistor configuration. The HRS degradation was found strongly dependent on the LRS: the lower the resistance of the LRS ( R LRS) is, the worse HRS retention will be. According to the quantum point contact model, the HRS corresponds to a tiny tunnel gap or neck bridge with atomic size in the filament. The degradation of HRS is due to the filling or widening of the neck point by the diffusion of copper species from the residual filament. As the residual filament is stronger in case of the lower R LRS, the active area around the neck point for copper species diffusion is larger, resulting in higher diffusion probability and faster degradation of HRS during the temperature-accelerated retention measurement.
Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments
Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal
2007-01-01
One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979
Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud
2017-01-01
Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420
Discrete Cu(i) complexes for azide-alkyne annulations of small molecules inside mammalian cells.
Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea; Pérez, Pedro J; Mascareñas, José L
2018-02-21
The archetype reaction of "click" chemistry, namely, the copper-promoted azide-alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)-tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of "non-innocent" reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities.
Yang, Zhihong; Xie, Changsheng; Xiang, Hua; Feng, Jinqing; Xia, Xianping; Cai, Shuizhou
2009-03-01
Copper/indomethacin/low-density polyethylene (Cu/IDM/LDPE) nanocomposite was prepared as a novel material for intra-uterine device (IUD). IDM release profile of the nanocomposite was investigated by using spectrophotometer. The results show that IDM release rate of Cu/IDM/LDPE nanocomposite is higher in simulated uterine solution than that in methanol, confirming that the release process of IDM is dominated mainly by pore diffusion. The decrease in copper particle size and the increase in copper mass content all accelerate IDM release, indicating that IDM release rate can be adjusted by changing copper loading or copper particle size. The surface of the incubated nanocomposite was characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray microanalysis. A few deposits composed of P, Cl, Ca, Cu and O were observed on the nanocomposite surface, which may be related to the presence of IDM particles with large particle size.
What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?
NASA Astrophysics Data System (ADS)
Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed
2017-02-01
Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.
General Protein Diffusion Barriers create Compartments within Bacterial Cells
Schlimpert, Susan; Klein, Eric A.; Briegel, Ariane; Hughes, Velocity; Kahnt, Jörg; Bolte, Kathrin; Maier, Uwe G.; Brun, Yves V.; Jensen, Grant J.; Gitai, Zemer; Thanbichler, Martin
2013-01-01
SUMMARY In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell cycle-dependent manner. Their presence is critical for cellular fitness, as they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins. PMID:23201141
One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite
Subramaniam, Chandramouli; Yamada, Takeo; Kobashi, Kazufumi; Sekiguchi, Atsuko; Futaba, Don N.; Yumura, Motoo; Hata, Kenji
2013-01-01
Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube–copper composite exhibiting similar conductivity (2.3–4.7 × 105 S cm−1) as copper (5.8 × 105 S cm−1), but with a 100-times higher ampacity (6 × 108 A cm−2). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (∼2.0 eV) in carbon nanotube–copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters. PMID:23877359
One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite
NASA Astrophysics Data System (ADS)
Subramaniam, Chandramouli; Yamada, Takeo; Kobashi, Kazufumi; Sekiguchi, Atsuko; Futaba, Don N.; Yumura, Motoo; Hata, Kenji
2013-07-01
Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 × 105Scm-1) as copper (5.8 × 105Scm-1), but with a 100-times higher ampacity (6 × 108Acm-2). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (~2.0eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.
Theoretical analysis of nBn infrared photodetectors
NASA Astrophysics Data System (ADS)
Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Gunapala, Sarath D.
2017-09-01
The depletion and surface leakage dark current suppression properties of unipolar barrier device architectures such as the nBn have been highly beneficial for III-V semiconductor-based infrared detectors. Using a one-dimensional drift-diffusion model, we theoretically examine the effects of contact doping, minority carrier lifetime, and absorber doping on the dark current characteristics of nBn detectors to explore some basic aspects of their operation. We found that in a properly designed nBn detector with highly doped excluding contacts the minority carriers are extracted to nonequilibrium levels under reverse bias in the same manner as the high operating temperature (HOT) detector structure. Longer absorber Shockley-Read-Hall (SRH) lifetimes result in lower diffusion and depletion dark currents. Higher absorber doping can also lead to lower diffusion and depletion dark currents, but the benefit should be weighted against the possibility of reduced diffusion length due to shortened SRH lifetime. We also briefly examined nBn structures with unintended minority carrier blocking barriers due to excessive n-doping in the unipolar electron barrier, or due to a positive valence band offset between the barrier and the absorber. Both types of hole blocking structures lead to higher turn-on bias, although barrier n-doping could help suppress depletion dark current.
Tong, Cunzhu; Yoon, Soon Fatt; Wang, Lijun
2012-09-24
We demonstrate experimentally the submicron size self-assembled (SA) GaAs quantum rings (QRs) by quantum size effect (QSE). An ultrathin In0.1 Ga0.9As layer with different thickness is deposited on the GaAs to modulate the surface nucleus diffusion barrier, and then the SA QRs are grown. It is found that the density of QRs is affected significantly by the thickness of inserted In0.1 Ga0.9As, and the diffusion barrier modulation reflects mainly on the first five monolayer . The physical mechanism behind is discussed. The further analysis shows that about 160 meV decrease in diffusion barrier can be achieved, which allows the SA QRs with density of as low as one QR per 6 μm2. Finally, the QRs with diameters of 438 nm and outer diameters of 736 nm are fabricated using QSE.
Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.
1996-01-01
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.
Gray, A.G.
1958-10-01
Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.
The Interaction of Polycrystalline Copper Films with Dilute Aqueous Solutions of Cupric Chloride
1989-10-01
to interconnect semiconductor devices and other computer components Electronic circuits are mass / produced to obtain poduct uniformity and lowestx...so one needs to determine what if any pH change is produced by this extraneous oxide film growth. Thus, in order to determine any interference which...diffusion type; bulk diffusion rates would lie between 10 - 1 3 and 6x10-12mol.h- 1cm-2 mixed grain -13 boundary and bulk diffusion would lie between 6x10
Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope
NASA Technical Reports Server (NTRS)
Heinemann, K.; Rao, D. B.; Douglass, D. L.
1975-01-01
Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.
Eutectic structures in friction spot welding joint of aluminum alloy to copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Junjun, E-mail: junjun.shen@hzg.de; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.
2014-05-12
A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.
2007-02-01
years if kept refrigerated in its preservative solution of ethanol, sodium benzoate , and ethylene diamine tetra-acetic acid (EDTA). Alternatively... sodium bicarbonate solution, EDTA, and sodium azide solution to remove residual gylcerol, sulfide, cadmium, chromium, copper, iron, nickel, zinc, and lead...Magnesium Cadmium Nickel Potassium Chromium Selenium Sodium Copper Vanadium Aluminum Iron Zinc Arsenic Lead Antimony Manganese Anions (1-3 days
1980-11-01
aqueous solutions : use of activity coefficients in transition-state models: Geochimica et Cosmochimica Acta, v...native state at 25°C at any activity level below 10+46.0 in an aqueous solution . Because such an activity level is impossible, sodium cannot be reduced...stoichiometric coefficients . It is necessary to calculqte the activity coefficients of dissolved copper in the test solutions in order to render an
Multiscale simulations of the early stages of the growth of graphene on copper
NASA Astrophysics Data System (ADS)
Gaillard, P.; Chanier, T.; Henrard, L.; Moskovkin, P.; Lucas, S.
2015-07-01
We have performed multiscale simulations of the growth of graphene on defect-free copper (111) in order to model the nucleation and growth of graphene flakes during chemical vapour deposition and potentially guide future experimental work. Basic activation energies for atomic surface diffusion were determined by ab initio calculations. Larger scale growth was obtained within a kinetic Monte Carlo approach (KMC) with parameters based on the ab initio results. The KMC approach counts the first and second neighbours to determine the probability of surface diffusion. We report qualitative results on the size and shape of the graphene islands as a function of deposition flux. The dominance of graphene zigzag edges for low deposition flux, also observed experimentally, is explained by its larger dynamical stability that the present model fully reproduced.
Boardman, Allison; Jayawardena, Asitha; Oprescu, Florin; Cook, Thomas; Morcuende, Jose A
2011-01-01
The Ponseti method for correcting clubfoot is a safe, effective, and minimally invasive treatment that has recently been implemented in Latin America. This study evaluates the initial impact and unique barriers to the diffusion of the Ponseti method throughout this region. Structured interviews were conducted with 30 physicians practicing the Ponseti method in three socioeconomically diverse countries: Chile, Peru and Guatemala. Since learning the Ponseti method, these physicians have treated approximately 1,740 clubfoot patients, with an estimated 1,705 (98%) patients treated using the Ponseti method, and 35 (2%) patients treated using surgical techniques. The barriers were classified into the following themes: physician education, health care system of the country, culture and beliefs of patients, physical distance and transport, financial barriers for patients, and parental compliance with the method. The results yielded several common barriers throughout Latin America including lack of physician education, physical distance to the treatment centers, and financial barriers for patients. Information from this study can be used to inform, and to implement and evaluate specific strategies to improve the diffusion of the Ponseti method for treating clubfoot throughout Latin America.
NASA Astrophysics Data System (ADS)
O'Rourke, Conn; Morgan, Benjamin J.
2018-04-01
The (Li,Al)-codoped magnesium spinel (LixMg1 -2 xAl2 +xO4 ) is a solid lithium-ion electrolyte with potential use in all-solid-state lithium-ion batteries. The spinel structure means that interfaces with spinel electrodes, such as LiyMn2O4 and Li4 +3 zTi5O12 , may be lattice matched, with potentially low interfacial resistances. Small lattice parameter differences across a lattice-matched interface are unavoidable, causing residual epitaxial strain. This strain potentially modifies lithium diffusion near the electrolyte-electrode interface, contributing to interfacial resistance. Here, we report a density functional theory study of strain effects on lithium diffusion pathways for (Li,Al)-codoped magnesium spinel, for xLi=0.25 and xLi=0.5 . We have calculated diffusion profiles for the unstrained materials, and for isotropic and biaxial tensile strains of up to 6 % , corresponding to {100 } epitaxial interfaces with LiyMn2O4 and Li4 +3 zTi5O12 . We find that isotropic tensile strain reduces lithium diffusion barriers by as much as 0.32 eV , with typical barriers reduced by ˜0.1 eV. This effect is associated with increased volumes of transitional octahedral sites, and broadly follows qualitative changes in local electrostatic potentials. For biaxial (epitaxial) strain, which more closely approximates strain at a lattice-matched electrolyte-electrode interface, changes in octahedral site volumes and in lithium diffusion barriers are much smaller than under isotropic strain. Typical barriers are reduced by only ˜0.05 eV. Individual effects, however, depend on the pathway considered and the relative strain orientation. These results predict that isotropic strain strongly affects ionic conductivities in (Li,Al)-codoped magnesium spinel electrolytes, and that tensile strain is a potential route to enhanced lithium transport. For a lattice-matched interface with candidate spinel-structured electrodes, however, epitaxial strain has a small, but complex, effect on lithium diffusion barriers.
Molecular dynamics simulations of substitutional diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Jones, Reese E.; Gruber, Jacob
2016-12-18
In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In 0.1 Ga 0.9 N as an example,more » we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. As a result, this may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.; ...
2018-03-09
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Robinett, Natalie G; Peterson, Ryan L; Culotta, Valeria C
2018-03-30
The copper-containing superoxide dismutases (SODs) represent a large family of enzymes that participate in the metabolism of reactive oxygen species by disproportionating superoxide anion radical to oxygen and hydrogen peroxide. Catalysis is driven by the redox-active copper ion, and in most cases, SODs also harbor a zinc at the active site that enhances copper catalysis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are widespread, from the periplasm of bacteria to virtually every organelle in the human cell. However, a new class of copper-containing SODs has recently emerged that function without zinc. These copper-only enzymes serve as extracellular SODs in specific bacteria ( i.e. Mycobacteria), throughout the fungal kingdom, and in the fungus-like oomycetes. The eukaryotic copper-only SODs are particularly unique in that they lack an electrostatic loop for substrate guidance and have an unusual open-access copper site, yet they can still react with superoxide at rates limited only by diffusion. Copper-only SOD sequences similar to those seen in fungi and oomycetes are also found in the animal kingdom, but rather than single-domain enzymes, they appear as tandem repeats in large polypeptides we refer to as CSRPs (copper-only SOD-repeat proteins). Here, we compare and contrast the Cu,Zn versus copper-only SODs and discuss the evolution of copper-only SOD protein domains in animals and fungi. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Z.; Chen, Y.; Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca
A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes overmore » 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.« less
Effects of sodium and potassium on the photovoltaic performance of CIGS solar cells
Raguse, John M.; Muzzillo, Christopher P.; Sites, James R.; ...
2016-11-17
Here, the deliberate introduction of K and Na into Cu(In, Ga)Se 2 (CIGS) absorbers was investigated by varying a combination of an SiO 2 diffusion barrier, coevaporation of KF with the CIGS absorber, and a KF postdeposition treatment (PDT). Devices made with no diffusion barrier and KF coevaporation treatment exhibited the highest photovoltaic conversion efficiency with the smallest overall distribution in key current density-voltage (J-V) performance metrics. Out-diffusion of Na and K from the substrate, KF coevaporation, and KF PDT all increased carrier concentration, open-circuit voltage, fill factor, and power conversion efficiency. Quantum-efficiency analysis of devices highlighted the greatest lossmore » in the short-circuit current density due to incomplete absorption and collection. Secondary ion mass spectrometry illustrated the efficacy of the SiO 2 film as a sodium and potassium diffusion barrier, as well as their relative concentration in the absorber. Introduction of KF appeared to enhance diffusion of Na from the substrate, in agreement with previous studies.« less
NASA Astrophysics Data System (ADS)
Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.
2014-01-01
The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.
The role of insufficient copper in lipid synthesis and fatty-liver disease.
Morrell, Austin; Tallino, Savannah; Yu, Lei; Burkhead, Jason L
2017-04-01
The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X-linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood-brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub-optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non-alcoholic fatty-liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD. © 2016 IUBMB Life, 69(4):263-270, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunjung; Park, Jingyu; Jeon, Heeyoung
Diffusion barrier characteristics of tungsten–nitride–carbide (WN{sub x}C{sub y}) thin films interposed between Cu and SiO{sub 2} layers were studied. The WN{sub x}C{sub y} films were deposited by remote plasma atomic layer deposition (RPALD) using a metal organic source, ({sup Me}Cp)W(CO){sub 2}(NO), and ammonia. Auger electron spectroscopy analysis indicated the WN{sub x}C{sub y} films consisted of tungsten, nitrogen, carbon, and oxygen. X-ray diffraction (XRD) analysis showed that the film deposited at 350 °C was nanocrystalline. The resistivity of WN{sub x}C{sub y} film deposited by RPALD was very low compared to that in previous research because of the lower nitrogen content and differentmore » crystal structures of the WN{sub x}C{sub y}. To verify the diffusion barrier characteristics of the WN{sub x}C{sub y} film, Cu films were deposited by physical vapor deposition after WN{sub x}C{sub y} film was formed by RPALD on Si substrate. The Cu/WN{sub x}C{sub y}/Si film stack was annealed in a vacuum by rapid thermal annealing at 500 °C. Cu diffusion through the barrier layer was verified by XRD. Stable film properties were observed up to 500 °C, confirming that WN{sub x}C{sub y} film is suitable as a Cu diffusion barrier in microelectronic circuits.« less
A new model integrating short- and long-term aging of copper added to soils
Zeng, Saiqi; Li, Jumei; Wei, Dongpu
2017-01-01
Aging refers to the processes by which the bioavailability/toxicity, isotopic exchangeability, and extractability of metals added to soils decline overtime. We studied the characteristics of the aging process in copper (Cu) added to soils and the factors that affect this process. Then we developed a semi-mechanistic model to predict the lability of Cu during the aging process with descriptions of the diffusion process using complementary error function. In the previous studies, two semi-mechanistic models to separately predict short-term and long-term aging of Cu added to soils were developed with individual descriptions of the diffusion process. In the short-term model, the diffusion process was linearly related to the square root of incubation time (t1/2), and in the long-term model, the diffusion process was linearly related to the natural logarithm of incubation time (lnt). Both models could predict short-term or long-term aging processes separately, but could not predict the short- and long-term aging processes by one model. By analyzing and combining the two models, we found that the short- and long-term behaviors of the diffusion process could be described adequately using the complementary error function. The effect of temperature on the diffusion process was obtained in this model as well. The model can predict the aging process continuously based on four factors—soil pH, incubation time, soil organic matter content and temperature. PMID:28820888
Le concept suédois pour stockage définitif des déchets nucléaires
NASA Astrophysics Data System (ADS)
Hedman, Tommy; Nyström, Anders; Thegerström, Claes
2002-10-01
The purpose of a disposal is to isolate the radioactive waste from man and the environment. If the isolation is broken, the leakage and transport of radioactive substances must be retarded. The package is one of several barriers, used to achieve these two main functions. For short-lived, low and intermediate level waste four standard containers of steel and concrete are used. Spent fuel will be placed in a canister consisting of a pressure-bearing insert of cast nodular iron and an outer corrosion barrier of copper before it is deposited in a deep geological repository. In particular, the development of a high integrity copper canister for the isolation of spent nuclear fuel is described in this paper. To cite this article: T. Hedman et al., C. R. Physique 3 (2002) 903-913.
Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.
1996-08-06
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.
Anomalous diffusion of single metal atoms on a graphene oxide support
Furnival, Tom; Leary, Rowan K.; Tyo, Eric C.; ...
2017-04-21
Recent studies of single-atom catalysts open up the prospect of designing exceptionally active and environmentally efficient chemical processes. The stability and durability of such catalysts is governed by the strength with which the atoms are bound to their support and their diffusive behaviour. Here we use aberration-corrected STEM to image the diffusion of single copper adatoms on graphene oxide. As a result, we discover that individual atoms exhibit anomalous diffusion as a result of spatial and energetic disorder inherent in the support, and interpret the origins of this behaviour to develop a physical picture for the surface diffusion of singlemore » metal atoms.« less
NASA Astrophysics Data System (ADS)
Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong
2018-04-01
The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagor, A.; Pietraszko, A.; Kaynts, D.
2005-11-15
In order to understand the structural transformations leading to high ionic conductivity of Cu{sup +} ions in Cu{sub 6}PS{sub 5}I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T{sub c}=(144-169)K Cu{sub 6}PS{sub 5}I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above T{sub c} delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43c (a{sup '}=19.528A, z=32). Finally, above T{sub 1}=274K increasing disordering of the Cu{sup +} ions heightens the symmetry to F-43m (a=9.794A, z=4). In this work,more » the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions (R{sub 1}=0.0397 for F-43c phase, and 0.0245 for F-43m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.« less
NASA Astrophysics Data System (ADS)
Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Harsha, Cirandur Sri; Reddy, V. Rajagopal; Lee, Sung-Nam; Won, Jonghan; Choi, Chel-Jong
2018-02-01
Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I-V, Cheung's and Norde's methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I-V and C-V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.
Development of sputtered techniques for thrust chambers
NASA Technical Reports Server (NTRS)
Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.
1975-01-01
Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.
Long-distance connections in the Copper Age: New evidence from the Alpine Iceman’s copper axe
Angelini, Ivana; Kaufmann, Günther; Canovaro, Caterina; Dal Sasso, Gregorio; Villa, Igor Maria
2017-01-01
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC. PMID:28678801
Long-distance connections in the Copper Age: New evidence from the Alpine Iceman's copper axe.
Artioli, Gilberto; Angelini, Ivana; Kaufmann, Günther; Canovaro, Caterina; Dal Sasso, Gregorio; Villa, Igor Maria
2017-01-01
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC.
Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.
Jang, J G; Park, S M; Lee, H K
2016-11-15
The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior. Copyright © 2016 Elsevier B.V. All rights reserved.
Copper/solder intermetallic growth studies.
Kirchner, K W; Lucey, G K; Geis, J
1993-08-01
Copper samples, hot solder (eutectic) dipped and thermally aged, were cross-sectioned and placed in an environmental scanning electronic microscope (ESEM). While in the ESEM the samples were heated for approximately 2.5 h at 170 degrees C to stimulate the growth of additional Cu/Sn intermetallic compound. The intent of the study was to obtain a continuous real-time videotape record of the diffusion process and compare the observations to static SEM images reported to represent long-term, naturally aged intermetallic growth. The video obtained allows the observation of the diffusion process and relativistic growth phenomena at the Cu, Cu3Sn, Cu6Sn5, and solder interfaces as well as effects on the bulk Cu and solder. Effects contrary to earlier reports were observed; for example, growth rates of Cu3Sn were found to greatly exceed those of Cu6Sn5.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
Lalaoui, Noémie; Holzinger, Michael; Le Goff, Alan; Cosnier, Serge
2016-07-18
We report the controlled orientation of bilirubin oxidases (BOD) from Myrothecium verrucaria on multiwalled carbon nanotubes (MWCNTs) functionalised by electrografting of 6-carboxynaphthalenediazonium and 4-(2-aminoethyl)benzenediazonium salts. On negatively charged naphthoate-modified MWCNTs, a high-potential (0.44 V vs. SCE) oxygen reduction electrocatalysis is observed, occurring via the T1 copper centre. On positively charged ammonium-modified MWCNTs, a low-potential (0.15 V) oxygen reduction electrocatalysis is observed, occurring through a partially oxidised state of the T2/T3 trinuclear copper cluster. Finally, chemically modified naphthoate MWCNTs exhibit high bioelectrocatalytic current densities of 3.9 mA cm(-2) under air at gas-diffusion electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.H., E-mail: AZHLIU@ntu.edu.sg; Zhang, D.Q., E-mail: ZHANGDQ@ntu.edu.sg; Sing, S.L., E-mail: SING0011@e.ntu.edu.sg
2014-08-15
Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracturemore » was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.« less
Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions
NASA Astrophysics Data System (ADS)
van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura
2017-12-01
Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.
Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models
NASA Astrophysics Data System (ADS)
Giese, Wolfgang; Eigel, Martin; Westerheide, Sebastian; Engwer, Christian; Klipp, Edda
2015-12-01
In silico experiments bear the potential for further understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results. Cell polarization and spatial reorganization of membrane proteins are fundamental for cell division, chemotaxis and morphogenesis. We chose the yeast Saccharomyces cerevisiae as an exemplary model system which entails the shuttling of small Rho GTPases such as Cdc42 and Rho, between an active membrane-bound form and an inactive cytosolic form. We used partial differential equations to describe the membrane-cytosol shuttling of proteins. In this study, a consistent extension of a class of 1D reaction-diffusion systems into higher space dimensions is suggested. The membrane is modeled as a thin layer to allow for lateral diffusion and the cytosol is modeled as an enclosed volume. Two well-known polarization mechanisms were considered. One shows the classical Turing-instability patterns, the other exhibits wave-pinning dynamics. For both models, we investigated how cell shape and diffusion barriers like septin structures or bud scars influence the formation of signaling molecule clusters and subsequent polarization. An extensive set of in silico experiments with different modeling hypotheses illustrated the dependence of cell polarization models on local membrane curvature, cell size and inhomogeneities on the membrane and in the cytosol. In particular, the results of our computer simulations suggested that for both mechanisms, local diffusion barriers on the membrane facilitate Rho GTPase aggregation, while diffusion barriers in the cytosol and cell protrusions limit spontaneous molecule aggregations of active Rho GTPase locally.
D'Eramo, Fabiana; Marioli, Juan M; Arévalo, Alejandro H; Sereno, Leonides E
2003-11-04
A modified electrode consisting of copper dispersed in a poly-1-naphthylamine (p-1-NAP/Cu) film on a glassy carbon electrode was used as an amperometric detector for the on-line analysis of various carbohydrates separated by high performance liquid chromatography. The results obtained with this new sensor were compared to those obtained with a modified electrode based on the same polymer but with copper ions incorporated at open circuit, as described in a previous paper. In this new modified electrode the copper microparticles were electrochemically deposited into the polymeric matrix by single potential step chronoamperometry. A nucleation and growth mechanism was proposed to explain the current transients of copper electrodeposition. The experimental results were fitted to the proposed mechanism by using a mathematical equation that considers three-dimensional growth and progressive nucleation, assuming a no overlap and no diffusion mechanism. Cyclic voltammetric experiments showed that the electrodeposited copper microparticles provided a catalytic surface suited for the oxidation of glucose and several carbohydrates. The sensitivity of the electrode was influenced by the amount of copper electrodeposited, which in turn depended on the applied overpotential used for the deposition of copper. Liquid chromatographic experiments were carried out to test the analytical performance of these electrodes for the determination of various carbohydrates.
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602
Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo
2014-01-01
The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.
Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide
NASA Astrophysics Data System (ADS)
Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.
2016-06-01
Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.
Miguel-Ávila, Joan; Tomás-Gamasa, María; Olmos, Andrea
2018-01-01
The archetype reaction of “click” chemistry, namely, the copper-promoted azide–alkyne cycloaddition (CuAAC), has found an impressive number of applications in biological chemistry. However, methods for promoting intermolecular annulations of exogenous, small azides and alkynes in the complex interior of mammalian cells, are essentially unknown. Herein we demonstrate that isolated, well-defined copper(i)–tris(triazolyl) complexes featuring designed ligands can readily enter mammalian cells and promote intracellular CuAAC annulations of small, freely diffusible molecules. In addition to simplifying protocols and avoiding the addition of “non-innocent” reductants, the use of these premade copper complexes leads to more efficient processes than with the alternative, in situ made copper species prepared from Cu(ii) sources, tris(triazole) ligands and sodium ascorbate. Under the reaction conditions, the well-defined copper complexes exhibit very good cell penetration properties, and do not present significant toxicities. PMID:29675241
Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.
1983-01-01
In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Stewart, Derek A.
2016-04-01
Metal oxide resistive memory devices based on Ta2O5 have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta2O5 is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta2O5. Identified diffusion paths are associated with collective motion of neighboring atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta2O5 is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta2O5 based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.
Understanding the antimicrobial activity behind thin- and thick-rolled copper plates.
Yousuf, Basit; Ahire, Jayesh J; Dicks, Leon M T
2016-06-01
The aim of this study was to compare the antibacterial properties of the surfaces of copper plates that were rolled to a thickness of 25 and 100 μm. Differences in topology of 25- and 100-μm-thick copper plates were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Antibacterial activity of the copper surfaces was tested against strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella typhimurium, Streptococcus sp. BY1, Enterococcus sp. BY2, and Bacillus cereus BY3. Changes in viable cell numbers were determined by plating onto optimal growth media and staining with LIVE/DEAD BacLight™. Changes in metabolic activity were recorded by expression of the luciferase (lux) gene. Cell morphology was studied using SEM. Accumulation and diffusion of copper from cells were recorded using inductively coupled plasma mass spectroscopy (ICP-MS). Lipid and protein oxidation were recorded spectrophotometrically. Surfaces of 25-μm-thick copper plates were rough compared to that of 100-μm-thick copper plates. For most species, a five-log reduction in cell numbers, cell membrane instability, and a decline in metabolic activity were recorded after 15 min of exposure to 25-μm-thick copper plates. Copper accumulated in the cells, and lipids and proteins were oxidized. The rough surface of thinner copper plates (25 μm thick) released more copper and was more antimicrobial compared to thicker (100 μm) copper plates. Cell death was attributed to destabilization of the cell membrane, lipid peroxidation, and protein oxidation.
NASA Astrophysics Data System (ADS)
Li, Siyang; Yang, Donghua; Tan, Qing; Li, Liangliang
2015-06-01
The diffusion barrier property of Co-P film as a buffer layer between SiC-dispersed Bi2Te3 bulk material and In-48Sn solder was investigated. A Co-P film with thickness of ~6 µm was electroplated on SiC-dispersed Bi2Te3 substrate, joined with In-48Sn solder by a reflow process, and annealed at 100°C for up to 625 h. The formation and growth kinetics of intermetallic compounds (IMCs) at the interface between the In-48Sn and substrate were studied using transmission electron microscopy and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The results showed that crystalline Co(In,Sn)3 formed as an irregular layer adjacent to the solder side at the solder/Co-P interface due to diffusion of Co towards the solder, and a small amount of amorphous Co45P13In12Sn30 appeared at the Co-P side because of diffusion of In and Sn into Co-P. The growth of Co(In,Sn)3 and Co45P13In12Sn30 during solid-state aging was slow, being controlled by interfacial reaction and diffusion, respectively. For comparison, In-48Sn/Bi2Te3-SiC joints were prepared and the IMCs in the joints analyzed. Without a diffusion barrier, In penetrated rapidly into the substrate, which led to the formation of amorphous In x Bi y phase in crystalline In4Te3 matrix. These IMCs grew quickly with prolongation of the annealing time, and their growth was governed by volume diffusion of elements. The experimental data demonstrate that electroplated Co-P film is an effective diffusion barrier for use in Bi2Te3-based thermoelectric modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, D.; Akis, R.; Brinkman, D.
An improved model of copper p-type doping in CdTe absorbers is proposed that accounts for the mechanisms related to tightly bound Cu(i)-Cu(Cd) and Cd(i)-Cu(Cd) complexes that both limit diffusion and cause self-compensation of Cu species. The new model explains apparent discrepancy between DFT-calculated and fitted diffusion parameters of Cu reported in our previous work, and allows for better understanding of performance and metastabilities in CdTe PV devices.
Computational characterization of lightweight multilayer MXene Li-ion battery anodes
NASA Astrophysics Data System (ADS)
Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.
2016-01-01
MXenes, a class of two-dimensional transition metal carbides and nitrides, have shown promise experimentally and computationally for use in energy storage applications. In particular, the most lightweight members of the monolayer MXene family (M = Sc, Ti, V, or Cr) are predicted to have gravimetric capacities above 400 mAh/g, higher than graphite. Additionally, intercalation of ions into multilayer MXenes can be accomplished at low voltages, and low diffusion barriers exist for Li diffusing across monolayer MXenes. However, large discrepancies have been observed between the calculated and experimental reversible capacities of MXenes. Here, dispersion-corrected density functional theory calculations are employed to predict reversible capacities and other battery-related properties for six of the most promising members of the MXene family (O-functionalized Ti- and V-based carbide MXenes) as bilayer structures. The calculated reversible capacities of the V2CO2 and Ti2CO2 bilayers agree more closely with experiment than do previous calculations for monolayers. Additionally, the minimum energy paths and corresponding energy barriers along the in-plane [1000] and [0100] directions for Li travelling between neighboring MXene layers are determined. V4C3O2 exhibits the lowest diffusion barrier of the compositions considered, at 0.42 eV, but its reversible capacity (148 mAh/g) is dragged down by its heavy formula unit. Conversely, the V2CO2 MXene shows good reversible capacity (276 mAh/g), but a high diffusion barrier (0.82 eV). We show that the diffusion barriers of all bilayer structures are significantly higher than those calculated for the corresponding monolayers, advocating the use of dispersed monolayer MXenes instead of multilayers in high performance anodes.
Gas Suppression via Copper Interlayers in Magnetron Sputtered Al-Cu2O Multilayers.
Kinsey, Alex H; Slusarski, Kyle; Sosa, Steven; Weihs, Timothy P
2017-07-05
The use of thin-foil, self-propagating thermite reactions to bond components successfully depends on the ability to suppress gas generation and avoid pore formation during the exothermic production of brazes. To study the mechanisms of vapor production in diluted thermites, thin film multilayer Al-Cu-Cu 2 O-Cu foils are produced via magnetron sputtering, where the Cu layer thickness is systematically increased from 0 to 100 nm in 25 nm increments. The excess Cu layers act as diffusion barriers, limiting the transport of oxygen from the oxide to the Al fuel, as determined by slow heating differential scanning calorimetry experiments. Furthermore, by adding excess Cu to the system, the temperature of the self-propagating thermite reactions drops below the boiling point of Cu, eliminating the metal vapor production. It is determined that Cu vapor production can be eliminated by increasing the Cu interlayer thickness above 50 nm. However, the porous nature of the final products suggests that only metal vapor production is suppressed via dilution. Gas generation via oxygen release is still capable of producing a porous reaction product.
Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.
2018-05-01
The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.
Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Govind, Niranjan; Andersen, Amity
2016-03-16
Atomistic on-lattice self-learning kinetic Monte Carlo (SLKMC) method was used to examine the vacancy-mediated diffusion of an Al atom in pure hcp Mg. Local atomic environment dependent activation barriers for vacancy-atom exchange processes were calculated on-the-fly using climbing image nudged-elastic band method (CI-NEB) and using a Mg-Al binary modified embedded-atom method (MEAM) interatomic potential. Diffusivities of vacancy and Al atom in pure Mg were obtained from SLKMC simulations and are compared with values available in the literature that are obtained from experiments and first-principle calculations. Al Diffusivities obtained from SLKMC simulations are lower, due to larger activation barriers and lowermore » diffusivity prefactors, than those available in the literature but have same order of magnitude. We present all vacancy-Mg and vacancy-Al atom exchange processes and their activation barriers that were identified in SLKMC simulations. We will describe a simple mapping scheme to map a hcp lattice on to a simple cubic lattice that would enable hcp lattices to be simulated in an on-lattice KMC framework. We also present the pattern recognition scheme used in SLKMC simulations.« less
Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits
NASA Astrophysics Data System (ADS)
Kesler, Stephen E.; Wilkinson, Bruce H.
2008-03-01
Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that
125,895 porphyrycopper deposits were formed during Phanerozoic time, that only
47,789 of these remain at various crustal depths, and that thesecontain
1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus,
0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.
NASA Astrophysics Data System (ADS)
Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun
2017-11-01
CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.
Arab, Anas; Wojna-Pelczar, Anna; Khairnar, Amit; Szabó, Nikoletta; Ruda-Kucerova, Jana
2018-05-01
Pathology of neurodegenerative diseases can be correlated with intra-neuronal as well as extracellular changes which lead to neuronal degeneration. The central nervous system (CNS) is a complex structure comprising of many biological barriers. These microstructural barriers might be affected by a variety of pathological processes. Specifically, changes in the brain tissue's microstructure affect the diffusion of water which can be assessed non-invasively by diffusion weighted (DW) magnetic resonance imaging (MRI) techniques. Diffusion tensor imaging (DTI) is a diffusion MRI technique that considers diffusivity as a Gaussian process, i.e. does not account for any diffusion hindrance. However, environment of the brain tissues is characterized by a non-Gaussian diffusion. Therefore, diffusion kurtosis imaging (DKI) was developed as an extension of DTI method in order to quantify the non-Gaussian distribution of water diffusion. This technique represents a promising approach for early diagnosis of neurodegenerative diseases when the neurodegenerative process starts. Hence, the purpose of this article is to summarize the ongoing clinical and preclinical research on Parkinson's, Alzheimer's and Huntington diseases, using DKI and to discuss the role of this technique as an early stage biomarker of neurodegenerative conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ji, Xiang; Wang, Yang; Zhang, Junqian
2018-06-01
The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.
Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F(1)-ATPase.
Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko
2015-06-19
The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F(1), which is a component of F(o)F(1) adenosine triphosphate synthase. We discuss the energetic properties of F(1) and identify a high energy barrier of the rotary potential to be 20k(B)T, with the condition that the adenosine diphosphates are tightly bound to the F(1) catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.
Giant Acceleration of Diffusion Observed in a Single-Molecule Experiment on F1-ATPase
NASA Astrophysics Data System (ADS)
Hayashi, Ryunosuke; Sasaki, Kazuo; Nakamura, Shuichi; Kudo, Seishi; Inoue, Yuichi; Noji, Hiroyuki; Hayashi, Kumiko
2015-06-01
The giant acceleration (GA) of diffusion is a universal phenomenon predicted by the theoretical analysis given by Reimann et al. [Phys. Rev. Lett. 87, 010602 (2001)]. Here we apply the theory of the GA of diffusion to a single-molecule experiment on a rotary motor protein, F1 , which is a component of Fo F1 adenosine triphosphate synthase. We discuss the energetic properties of F1 and identify a high energy barrier of the rotary potential to be 20 kBT , with the condition that the adenosine diphosphates are tightly bound to the F1 catalytic sites. To conclude, the GA of diffusion is useful for measuring energy barriers in nonequilibrium and single-molecule experiments.
Shahcheraghi, Seyed Hadi; Schaffie, Mahin; Ranjbar, Mohammad
2018-06-01
The main objective of this study was the development of a simple, clean, and industrial applicable electrochemical process for production of high pure nano-copper oxides from mining and industrial resources (e.g., ore, spent, slag and wastewater). To conduct the proposed process, a special set up containing an electrochemical cell in an ultrasonic system (28 kHz and 160 W) was proposed. Accordingly, using this set up and applying appropriate voltage (≈ 5 V) at 25 °C, in the presence of N 2 gas, the simultaneous anode dissolution and nano-copper oxides formation (≈ 24 nm) can be occurred, rapidly (less than 45 min). Then, the effect of N 2 gas and free radicals generated by ultrasonic irradiation was studied. The results showed, in the absence of ultrasonic irradiation and N 2 , an increase of electrolyte pH from 6.42 to 10.92, a decrease of electrolyte Eh from 285 mV to -1.14 V, and formation of copper nanoparticles. While, in the presence of ultrasonic and N 2 , the CuO nanoparticles were formed due to presence of H 2 O 2 generated by interaction of free radicals. Moreover, a novel method for kinetics modeling of nanoparticles agglomeration was proposed according to distributed activation energy model and Arrhenius parameters variation. The results showed that, in the absence of ultrasonic irradiation, the nanoparticle agglomerates were firstly formed (interface controlled mechanism) and then, the diffusion of nanoparticle agglomerates was occurred (diffusion controlled mechanism). Therefore, the control of nanoparticles size and shape may be impossible without surfactant. Also, in the presence of ultrasonic irradiation, the whole of agglomeration process followed interface controlled mechanism. Therefore, using ultrasonic irradiation, the nanoparticles shape and size don't change due to prevention of agglomerates diffusion. Copyright © 2018 Elsevier B.V. All rights reserved.
Method of preparing composite superconducting wire
Verhoeven, John D.; Gibson, Edwin D.; Finnemore, Douglas K.; Ostenson, Jerome E.; Schmidt, Frederick A.; Owen, Charles V.
1985-08-06
An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.
Improved method of preparing composite superconducting wire
Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.
1979-10-17
An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.
NASA Technical Reports Server (NTRS)
Ferrante, J.
1973-01-01
Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.
Analysis of Molecular Movement Reveals Latticelike Obstructions to Diffusion in Heart Muscle Cells
Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko
2012-01-01
Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. PMID:22385844
Mechanical tearing of graphene on an oxidizing metal surface.
George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu
2015-12-11
Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang; ...
2016-06-01
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Extremely low-outgassing material: 0.2% beryllium copper alloy
NASA Astrophysics Data System (ADS)
Watanabe, Fumio
2004-01-01
Exploration for low-outgassing materials for use in ultrahigh vacuum and extreme high-vacuum systems is one of the most important topics of a vacuum researcher. We have found that a copper alloy containing 0.2% beryllium (0.2% BeCu) can attain an extremely low hydrogen outgassing rate of 10-14 Pa (H2) m/s order. Almost the entire surface of 0.2% BeCu is dominated by a BeO layer, after a 400 °C×72 h prebakeout treatment in an ultrahigh vacuum. This layer functions as a barrier to the processes of oxidization and permeation of hydrogen. In addition, this layer resists carbon contamination. Temperature-programmed desorption spectra show only a single peak for water at 150 °C and small quantities of any other desorption gases. Therefore, an in situ bakeout process in which the temperature simply ramps up to 150 °C and immediately ramps back down is enough for degassing; it does not require an ordinary sustained-temperature bakeout. Using an outgassing sample consisting of 0.2% BeCu disks housed in a 0.2% BeCu nipple chamber, a lowest outgassing rate of the 5.6×10-14 Pa (H2) m/s was measured by the pressure-rise method after pump cutoff. The pressure-rise versus time curve was completely nonlinear. It rises over time to a constant slope of 1/2 in a log-log plot, due to hydrogen diffusion from the bulk, but this requires over a week at room temperature. The hydrogen outgassing from the 0.2% BeCu bulk is completely dominated by a diffusion-limited mechanism. This article will describe why we obtain such low-outgassing rates with 0.2% BeCu. It is based on the observed surface changes with prebakeout treatment seen by x-ray photoelectron spectroscopy, and the improvement of hydrogen outgassing measurements by the pressure-rise method. A comparison is made to ordinary stainless steel. In addition, the concept of an outgassing reduction method will be discussed from a review of the published ultralow-outgassing data and reduction methods. .
2015-01-01
We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2–3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC. PMID:24932319
Farmahini, Amir H; Shahtalebi, Ali; Jobic, Hervé; Bhatia, Suresh K
2014-06-05
We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO 2 and CH 4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO 2 and CH 4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2-3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH 4 in the nanostructure of SiC-DC.
Observation of copper atoms behavior in a vacuum arc discharge using laser spectroscopy
NASA Astrophysics Data System (ADS)
Sung, Y. M.; Hayashi, Y.; Okraku-Yirenkyi, Y.; Otsubo, M.; Honda, C.; Sakoda, T.
2003-01-01
In order to investigate the most important parameters influencing the breaking characteristic of a vacuum circuit breaker (VCB), the behavior of copper (Cu) particles emitted from electrodes designed as an imitation of a vacuum valve of the VCB was observed. The temporal-spatial intensity distributions due to Cu particles in an excited state or a neutral state were measured using the laser induced fluorescence (LIF) technique and a charge coupled device camera attached with a special filter. The diffusion velocity of a Cu atom was also investigated by evaluating a Doppler shift of the LIF signal. The results showed that most Cu particles were emitted from the anode and were in an excited state or an ionized state during an arc discharge. Also, Cu particles were distributed between electrodes even after the discharge chocked, and its diffusion velocity in the direction of the cathode from the anode was about 2.6 km/s.
Ductile alloy and process for preparing composite superconducting wire
Verhoeven, John D.; Finnemore, Douglas K.; Gibson, Edwin D.; Ostenson, Jerome E.
1983-03-29
An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and orientated dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritric particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.
Ductile alloy and process for preparing composite superconducting wire
Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.
An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.
NASA Astrophysics Data System (ADS)
Zbrzezny, Adam R.
Near-eutectic Sn-Ag-Cu (SAC) solders are currently considered as major lead-free replacement candidates for Sn-Pb eutectic alloys in microelectronics applications. In this thesis, the microstructural thermal stability including recrystallization, grain growth behavior, Pb and Au contamination effects and interaction of the SAC solder with Cu and Ni substrates were investigated. The true eutectic composition of the Sn-Ag-Cu alloy was verified to be Sn3.5Ag0.9Cu wt.%, and the eutectic melting temperature was determined to be 217.4 +/- 0.8°C. The system was classified as belonging to faceting (Cu6Sn5)-faceting (Ag3Sn)-nonfaceting (Sn matrix) ternary eutectic. The most significant consequence of Pb contamination was the formation of a quaternary eutectic phase (Sn-Ag-Cu-Pb) with a melting point at 176°C. Similarly, the presence of gold in the SAC alloy led to a development of a new quaternary phase (Sn-Ag-Cu-Au) melting at 204°C. Prolonged aging of SAC-4 wt.% Au on nickel resulted in the deposition of a new, previously unreported, intermetallic (IMC) layer, ((Au1-xCUx)6Sn 5, 15 wt.% of Au) on top of the existing (Cu1-yNi y)6Sn5 layer. The interfacial products that formed during soldering to copper were Cu6Sn5 and Cu3Sn. Soldering to nickel resulted in the formation of one layer, (Cu1-yNiy) 6Sn5, which was different from the expected Ni3Sn 4 layer. A small copper content in the SAC solder (0.7 wt.%) was sufficient to promote this thermodynamic shift. Intermetallic growth on Cu during solid state aging was established to be bulk diffusion controlled. The IMC layers in the SAC system grew at a slower rate than in the Sn-Pb system. It was found that the reliability of SAC solder joints on copper was considerably better than on nickel due to copper enrichment during reflow and subsequent Cu6Sn5 intermetallic precipitation. Enhanced copper and silver diffusion followed by tin recrystallization and grain growth, cavity nucleation and subsequent micro-crack linkage formed the framework of a proposed microstructural model of solder degradation mechanisms under cyclic creep conditions. A multilayer diffusion model of the SAC/Cu couple was proposed and employed for predicting intermetallic layer growth kinetics. In general, the calculated IMC thicknesses for short and intermediate aging times were in reasonable agreement with the experimental data.
Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite
NASA Astrophysics Data System (ADS)
Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher
2015-06-01
An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).
Vargas, Ignacio T; Alsina, Marco A; Pavissich, Juan P; Jeria, Gustavo A; Pastén, Pablo A; Walczak, Magdalena; Pizarro, Gonzalo E
2014-06-01
Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions. MIC is currently considered as a series of interdependent processes occurring at the metal-liquid interface. The presence of a biofilm results in the following effects: (a) the formation of localized microenvironments with distinct pH, dissolved oxygen concentrations, and redox conditions; (b) sorption and desorption of labile copper bonded to organic compounds under changing water chemistry conditions; (c) change in morphology by deposition of solid corrosion by-products; (d) diffusive transport of reactive chemical species from or towards the metal surface; and (e) detachment of scale particles under flow conditions. Using a multi-technique approach that combines pipe and coupon experiments this paper reviews the effects of microbial biofilms on the corrosion of copper plumbing systems, and proposes an integrated conceptual model for this phenomenon supported by new experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tari, Alireza; Wong, William S.
2018-02-01
Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.
Ion Exchange Method - Diffusion Barrier Investigations
NASA Astrophysics Data System (ADS)
Pielak, G.; Szustakowski, M.; Kiezun, A.
1990-01-01
Ion exchange method is used to GRIN-rod lenses manufacturing. In this process the ion exchange occurs between bulk glass (rod) and a molten salt. It was find that diffusion barrier exists on a border of glass surface and molten salt. The investigations of this barrier show that it value varies with ion exchange time and process temperature. It was find that in the case when thalium glass rod was treated in KNO3, bath, the minimum of the potential after 24 h was in temperature of 407°C, after 48 h in 422°C, after 72 h in 438°C and so on. So there are the possibility to keep the minimum of diffusion barrier by changing the temperature of the process and then the effectiveness of ion exchange process is the most effective. The time needed to obtain suitable refractive index distribution in a process when temperature was linearly changed from 400°C to 460°C was shorter of about 30% compare with the process in which temperature was constant and equal 450°C.
Chen, Mengjun; Huang, Jinxiu; Ogunseitan, Oladele A; Zhu, Nengming; Wang, Yan-min
2015-07-01
Waste printed circuit boards (WPCBs) are attracting increasing concerns because the recovery of its content of valuable metallic resources is hampered by the presence of hazardous substances. In this study, we used ionic liquids (IL) to leach copper from WPCBs. [BSO3HPy]OTf, [BSO3HMIm]OTf, [BSO4HPy]HSO4, [BSO4HMim]HSO4 and [MIm]HSO4 were selected. Factors that affect copper leaching rate were investigated in detail and their leaching kinetics were also examined with the comparison of [Bmim]HSO4. The results showed that all six IL acids could successfully leach copper out, with near 100% recovery. WPCB particle size and leaching time had similar influences on copper leaching performance, while IL acid concentration, hydrogen peroxide addition, solid to liquid ratio, temperature, showed different influences. Moreover, IL acid with HSO4(-) was more efficient than IL acid with CF3SO3(-). These six IL acids indicate a similar behavior with common inorganic acids, except temperature since copper leaching rate of some IL acids decreases with its increase. The results of leaching kinetics studies showed that diffusion plays a more important role than surface reaction, whereas copper leaching by inorganic acids is usually controlled by surface reaction. This innovation provides a new option for recovering valuable materials such as copper from WPCBs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Superconducting MgB2 wires with vanadium diffusion barrier
NASA Astrophysics Data System (ADS)
Hušek, I.; Kováč, P.; Melišek, T.; Kulich, M.; Rosová, A.; Kopera, L.; Szundiová, B.
2017-10-01
Single-core MgB2 wires with a vanadium barrier and Cu stabilization have been made by the in situ powder-in-tube (PIT) and internal magnesium diffusion (IMD) into boron processes. Heat treatment of PIT wires was done at the temperature range of 650 °C-850 °C/30 min. Critical currents of differently treated MgB2/V/Cu wires have been measured and related with the structure of MgB2. It was found that critical current density of MgB2/V wire annealed above 700 °C decreases rapidly. The obtained results clearly show that vanadium is a well formable metal and can be applied as an effective diffusion barrier for MgB2 wires heat-treated at temperatures ≤700 °C. This temperature limit is well applicable for MgB2 wires with high current densities made by PIT and also by the IMD process.
Diffusion of pain management research into nursing practice.
Dooks, P
2001-04-01
The promotion of evidence based practice is a challenge within nursing. Pain management is a prime example of this practice research gap. There is solid evidence for 20 years to promote positive change in our methods of pain management, yet outdated approaches are still amazingly evident. Even among oncology nurses, who place a high value on promoting patient comfort, there is a lack of evidence-based pain management. Rogers' Diffusion of Innovation Theory provides an interesting framework for examining the issues and possible solutions to this complex problem. Rogers' theory examines how changes diffuse through a social system over time and also exposes some of the barriers and facilitators to this process. The theory looks at adopters, the nature of the innovation, the social system, and communication patterns. Identifying the barriers of the past will help nursing to overcome these same barriers and increase the adoption of evidence-based pain management approaches in the future.
NASA Technical Reports Server (NTRS)
Douglas, F. C.; Paradis, E. L.; Veltri, R. D.
1973-01-01
A radio frequency powered ion-plating system was used to plate protective layers of refractory oxides and carbide onto high strength fiber substrates. Subsequent overplating of these combinations with nickel and titanium was made to determine the effectiveness of such barrier layers in preventing diffusion of the overcoat metal into the fibers with consequent loss of fiber strength. Four substrates, five coatings, and two metal matrix materials were employed for a total of forty material combinations. The substrates were tungsten, niobium, NASA-Hough carbon, and Tyco sapphire. The diffusion-barrier coatings were aluminum oxide, yttrium oxide, titanium carbide, tungsten carbide with 14% cobalt addition, and zirconium carbide. The metal matrix materials were IN 600 nickel and Ti 6/4 titanium. Adhesion of the coatings to all substrates was good except for the NASA-Hough carbon, where flaking off of the oxide coatings in particular was observed.
NASA Astrophysics Data System (ADS)
Bernsmann, Falk; Laube, Norbert; Baldsiefen, Gerhard; Castellucci, Mattia
2014-11-01
Inflammations and crystalline bacterial biofilms (encrustations) remain a major complication in long-term artificial urinary tract drainage. To solve this problem we present urological implants with coatings made of amorphous hydrogenated carbon (a-C:H) that show excellent protection from encrustation in-vitro as well as in-vivo. Part of the success of a-C:H coatings is attributed to their ability to act as a diffusion barrier between an implant and the body, which prevents leaching of solvents from polymeric implants. To further enhance their barrier properties a-C:H coatings are combined with parylene coatings to develop diffusion-barrier multilayer coatings with a total thickness between 0.2 μm and 0.8 μm. The combination of the two types of coatings leads to a reduction of water diffusion by a factor of up to ten with respect to uncoated 25 μm thick polyimide sub-strates. The diffusion of water vapour from a controlled atmospheric pressure chamber through coated foils to a vacuum chamber is measured in a custom-built device.
Nanoscopic compartmentalization of membrane protein motion at the axon initial segment.
Albrecht, David; Winterflood, Christian M; Sadeghi, Mohsen; Tschager, Thomas; Noé, Frank; Ewers, Helge
2016-10-10
The axon initial segment (AIS) is enriched in specific adaptor, cytoskeletal, and transmembrane molecules. During AIS establishment, a membrane diffusion barrier is formed between the axonal and somatodendritic domains. Recently, an axonal periodic pattern of actin, spectrin, and ankyrin forming 190-nm-spaced, ring-like structures has been discovered. However, whether this structure is related to the diffusion barrier function is unclear. Here, we performed single-particle tracking time-course experiments on hippocampal neurons during AIS development. We analyzed the mobility of lipid-anchored molecules by high-speed single-particle tracking and correlated positions of membrane molecules with the nanoscopic organization of the AIS cytoskeleton. We observe a strong reduction in mobility early in AIS development. Membrane protein motion in the AIS plasma membrane is confined to a repetitive pattern of ∼190-nm-spaced segments along the AIS axis as early as day in vitro 4, and this pattern alternates with actin rings. Mathematical modeling shows that diffusion barriers between the segments significantly reduce lateral diffusion along the axon. © 2016 Albrecht et al.
Blocking germanium diffusion inside silicon dioxide using a co-implanted silicon barrier
NASA Astrophysics Data System (ADS)
Barba, D.; Wang, C.; Nélis, A.; Terwagne, G.; Rosei, F.
2018-04-01
We investigate the effect of co-implanting a silicon sublayer on the thermal diffusion of germanium ions implanted into SiO2 and the growth of Ge nanocrystals (Ge-ncs). High-resolution imaging obtained by transmission electron microscopy and energy dispersive spectroscopy measurements supported by Monte-Carlo calculations shows that the Si-enriched region acts as a diffusion barrier for Ge atoms. This barrier prevents Ge outgassing during thermal annealing at 1100 °C. Both the localization and the reduced size of Ge-ncs formed within the sample region co-implanted with Si are observed, as well as the nucleation of mixed Ge/Si nanocrystals containing structural point defects and stacking faults. Although it was found that the Si co-implantation affects the crystallinity of the formed Ge-ncs, this technique can be implemented to produce size-selective and depth-ordered nanostructured systems by controlling the spatial distribution of diffusing Ge. We illustrate this feature for Ge-ncs embedded within a single SiO2 monolayer, whose diameters were gradually increased from 1 nm to 5 nm over a depth of 100 nm.
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
Global diffusive fluxes of methane in marine sediments
NASA Astrophysics Data System (ADS)
Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker
2018-06-01
Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (<200 m water depth). Using anaerobic oxidation as a nearly quantitative sink for methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.
Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
2017-07-24
Poor electronic conductivity of bulk lithium sulfide (Li 2S) is a critical challenge for the debilitating performance of the lithium–sulfur battery. In this study we focus on investigating the thermodynamic and kinetic properties of native defects in Li 2S based on a first-principles approach. It is found that the hole polaron p + can form in Li 2S by removing a 3p electron from an S 2– anion. The p + diffusion barrier is only 90 meV, which is much lower than the Li vacancy (V Li –) diffusion barrier. Hence p + has the potential to serve as amore » charge carrier in the discharge product. Once the vacancy–polaron complex (V Li -––2p +) forms, the charge transport will be hindered due to the relatively higher diffusion barrier of the complex. Heteroatom dopants, which can decrease the p + formation energy and increase V Li – formation energy, are expected to be introduced to the discharge product to improve the electronic conductivity.« less
Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun
2012-07-01
A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.
Diffusion of gas mixtures in the sI hydrate structure
NASA Astrophysics Data System (ADS)
Waage, Magnus H.; Trinh, Thuat T.; van Erp, Titus S.
2018-06-01
Replacing methane with carbon dioxide in gas hydrates has been suggested as a way of harvesting methane, while at the same time storing carbon dioxide. Experimental evidence suggests that this process is facilitated if gas mixtures are used instead of pure carbon dioxide. We studied the free energy barriers for diffusion of methane, carbon dioxide, nitrogen, and hydrogen in the sI hydrate structure using molecular simulation techniques. Cage hops between neighboring cages were considered with and without a water vacancy and with a potential inclusion of an additional gas molecule in either the initial or final cage. Our results give little evidence for enhanced methane and carbon dioxide diffusion if nitrogen is present as well. However, the inclusion of hydrogen seems to have a substantial effect as it diffuses rapidly and can easily enter occupied cages, which reduces the barriers of diffusion for the gas molecules that co-occupy a cage with hydrogen.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
NASA Astrophysics Data System (ADS)
Krzyżewski, Filip; Załuska-Kotur, Magdalena A.
2017-01-01
Height and type of Schwoebel barriers (direct or inverse) decides about the character of the surface instability. Different surface morphologies are presented. Step bunches, double steps, meanders, mounds and irregular patterns emerge at the surface as a result of step (Schwoebel) barriers at some temperature or miscut values. The study was carried out on the two-component kinetic Monte Carlo (kMC) model of GaN(0001bar) surface grown in nitrogen rich conditions. Diffusion of gallium adatoms over N-polar surface is slow and nitrogen adatoms are almost immobile. We show that in such conditions surfaces remain smooth when gallium adatoms diffuse in the presence of low inverse Schwoebel barrier. It is illustrated by adequate stability diagrams for surface morphologies.
Barriers to the free diffusion of proteins and lipids in the plasma membrane
Trimble, William S.
2015-01-01
Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. PMID:25646084
Barriers to the free diffusion of proteins and lipids in the plasma membrane.
Trimble, William S; Grinstein, Sergio
2015-02-02
Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. © 2015 Trimble and Grinstein.
NASA Astrophysics Data System (ADS)
Maggioni, G.; Carturan, S.; Raniero, W.; Riccetto, S.; Sgarbossa, F.; Boldrini, V.; Milazzo, R.; Napoli, D. R.; Scarpa, D.; Andrighetto, A.; Napolitani, E.; De Salvador, D.
2018-03-01
A new method for the formation of hole-barrier contacts in high purity germanium (HPGe) is described, which consists in the sputter deposition of a Sb film on HPGe, followed by Sb diffusion produced through laser annealing of the Ge surface in the melting regime. This process gives rise to a very thin ( ≤ 100 nm) n-doped layer, as determined by SIMS measurement, while preserving the defect-free morphology of HPGe surface. A small prototype of gamma ray detector with a Sb laser-diffused contact was produced and characterized, showing low leakage currents and good spectroscopy data with different gamma ray sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang
2016-01-01
The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms.more » We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.« less
Lee, Jacqueline A; Marsden, Islay D; Glover, Chris N
2010-08-01
Copper is an important ionoregulatory toxicant in freshwater, but its effects in marine and brackish water systems are less well characterised. The effect of salinity on short-term copper accumulation and sublethal toxicity in two estuarine animals was investigated. The osmoregulating crab Hemigrapsus crenulatus accumulated copper in a concentration-dependent, but salinity-independent manner. Branchial copper accumulation correlated positively with branchial sodium accumulation. Sublethal effects of copper were most prevalent in 125% seawater, with a significant increase in haemolymph chloride noted after 96h at exposure levels of 510 microg Cu(II) L(-1). The osmoconforming gastropod, Scutus breviculus, was highly sensitive to copper exposure, a characteristic recognised previously in related species. Toxicity, as determined by a behavioural index, was present at all salinities and was positively correlated with branchial copper accumulation. At 100% seawater, increased branchial sodium accumulation, decreased haemolymph chloride and decreased haemolymph osmolarity were observed after 48h exposure to 221 microg Cu(II) L(-1), suggesting a mechanism of toxicity related to ionoregulation. However, these effects were likely secondary to a general effect on gill barrier function, and possibly mediated by mucus secretion. Significant impacts of copper on haemocyanin were also noted in both animals, highlighting a potentially novel mechanism of copper toxicity to animals utilising this respiratory pigment. Overall these findings indicate that physiology, as opposed to water chemistry, exerts the greatest influence over copper toxicity. An understanding of the physiological limits of marine and estuarine organisms may be critical for calibration of predictive models of metal toxicity in waters of high and fluctuating salinities. Copyright 2010 Elsevier B.V. All rights reserved.
Electronic Devices with Strontium Barrier Film and Process for Making Same
1998-08-20
structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another...another embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of...High Energy Electron 10 Diffraction (RHEED) diagnostic system directed toward the substrate 26. A diffusion barrier precursor compound effusion
Electronic Devices with Composite Atomic Barrier Film and Process for Making Same
1998-08-20
structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of...High Energy Electron 10 Diffraction (RHEED) diagnostic system directed toward the substrate 26. A diffusion barrier precursor compound effusion
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
2016-04-08
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
Copper and zinc removal from roof runoff: from research to full-scale adsorber systems.
Steiner, M; Boller, M
2006-01-01
Large, uncoated copper and zinc roofs cause environmental problems if their runoff is infiltrated into the underground or discharged into receiving waters. Since source control is not always feasible, barrier systems for efficient copper and zinc removal are recommended in Switzerland. During the last few years, research carried out in order to test the performance of GIH-calcite adsorber filters as a barrier system. Adsorption and mass transport processes were assessed and described in a mathematical model. However, this model is not suitable for practical design, because it does not give explicit access to design parameters such as adsorber diameter and adsorber bed depth. Therefore, for e.g. engineers, an easy to use design guideline for GIH-calcite adsorber systems was developed, mainly based on the mathematical model. The core of this guideline is the design of the depth of the GIH-calcite adsorber layer. The depth is calculated by adding up the GIH depth for sorption equilibrium and the depth for the mass transfer zone (MTZ). Additionally, the arrangement of other adsorber system components such as particle separation and retention volume was considered in the guideline. Investigations of a full-scale adsorber confirm the successful application of this newly developed design guideline for the application of GIH-calcite adsorber systems in practice.
NASA Astrophysics Data System (ADS)
Radnaev, A. R.; Kalashnikov, S. V.; Nomoev, A. V.
2016-05-01
This article is devoted to the analysis of the reasons for the occurrence of diffraction fringes in the cores of the core-shell nanoparticles Cu/SiO2. Moiré and diffraction fringes are observed while studying the nanoparticle cores under a transmission electron microscope. The formation of diffraction fringes is closely connected to the mechanism of nanoparticle formation under study and appears to be its consequence, letting us develop a hypothesis of metastable phase formation in nanoparticle cores. In our opinion, the emergence of diffraction fringes in cores of copper is connected to clasterisation in solid solution oversaturated with silicon α-Cu with the diffused interphase state. Only copper and oxygen (oxygen is presented as oxides in such types of copper as M0 - up to 0.01%; and M1 - up to 0.03%), Copper and silicon with oxygen in a stoichiometric proportion that is only sufficient for silicon dioxide formation (SiO2), Copper and silicon with oxygen in an amount that is sufficient not only for silicon dioxide formation, but also for the dissolution of silicon in the α-Cu solid solution, The amount of silicon in the alloy is not sufficient for the total fixation of oxygen contained in copper, Copper, oxygen and silicon whose contamination is greater than 8 wt.%. In the first case, the top-cut of oxygen in α-Cu solid solution is 0.03% at the temperature of 1066 °C. At slow cooling, secondary recrystallisation leads to the formation of equilibrium Cu2O on the line of the ultimate solubility (Figure 1a - line of maximum solubility of oxygen in copper). In the case of fast cooling fixation of oversaturated, single-phase, non-equilibrium α-Cu, solid solution (heat-treated) takes place, which contains saluted oxygen in an interstice crystal lattice of copper.Room temperature for nonferrous alloys (metals) is sufficient for the diffusive mobility of atoms, but insufficient for the formation of an equilibrium phase and stable phase of Cu2O. This is why diffusion of oxygen atoms in certain areas (clusters) with their increased diffusion of oxygen atoms in certain areas (clusters) with their increased number has been suggested [4]. At the same time, there is a boundary between the stable phase of α-Cu and 'pre-precipitations' containing oxygen, but not having the full value oxide: red copper ore, Cu2O (Figure 1b - solvus of suggested metastable phase). In this case, diffraction fringes can be treated as 'pre-precipitations' in the form of Guinier-Preston zones with diffuse interfaces and a stable α-Cu phase.In the second case, all oxygen and silicon after condensation and crystallisation are fixed in the form of amorphous SiO2 on the core surface of copper. As far as there are no atoms of saluted oxygen or silicon in copper, there are no conditions for the formation of non-equilibrium structures. Consequently, the diffraction pattern of nanoparticle cores is not observed (Figure 2a).In the third case, in the presence of quite a large amount of silicon in the stoichiometric drop, the process of copper oxide formation is not possible, because all the oxygen is used for the production of silicon dioxide since the sensitivity of oxygen to silicon is higher than to copper. This can be explained by the difference in Gibbs energy for the oxidising reaction of components. At the temperature of 25 °C it is 29.0 J/(g mol) - for copper, and 80.8 J/(g mol) for silicon. Silicon dioxide occurring due to the oxygen content in copper will be displaced on the surface of the drop in the form of ash, forming the SiO2 shell [24]. The reason lies in the lower specific density of silicon (approximately 2.2 g/cm3) compared to copper (8.92 g/cm3). This is why, in our case, it is appropriate to study the system where there is no influence of oxygen on the crystallisation of the Cu-Si system [5]. In the cores of such nanoparticles, prominent diffraction fringes can be observed in the α-Cu core (Figure 3b).Analysis of the Cu-Si phase diagram (Figure 3) shows that the maximum solubility of silicon α-Cu at the temperature 552 °C comprises 4.65 wt.% Si. This part of the Cu-Si phase diagram containing up to 8 wt.% silicon represents a classical example of the well-studied phase diagram of Al-Cu components, with the formation of Guinier-Preston zones in the quenched aluminium alloy [25].Single-phase solid solution of silicon α-Cu is fixed at fast cooling in our case. During its formation, cooling and natural ageing of the nanoparticle core, and redistribution of silicon into certain areas, takes place, forming metastable clusters in the matrix with high silicon content. They seem to be 'pre-precipitations' of the γ-phase of copper, though they really are not. In our opinion, diffraction fringes observed in these particles appear to be metastable phases according to Guinier-Preston zone type, i.e. α-Cu area with excessive silicon content.For nonferrous alloys, room temperature is sufficient for diffusive mobility of atoms of the saluted component [19]. Clusters are formed both at the time of cooling and in the long-term process (i.e. natural ageing). Provided that it is not a new phase, but rather the area of the initial matrix α-Cu solid solution enriched with dissolved silicon, such areas may be treated as Guinier-Preston zones. In contrast to intermediate phases with qualitatively new structures, characterised by their own lattices, Guinier-Preston zones have the same lattice as the matrix solution, but are deformed because of the difference in the atomic diameters of the solute and solvent. There is no clear boundary between the zone and solid solution by which it is surrounded. Compared to concentration fluctuations that appear continuously and are diffused by thermal motion, Guinier-Preston zones are stable for a long time (at low temperatures, for an intermediate amount of time). Experiments have shown that, with the increase of ageing duration, zone sizes are also increased. Furthermore, larger zones grow due to dissolution of the smaller ones, i.e. the same way as in coagulation of crystal grains in the solid state (i.e. collective crystallisation) [19]. The number of the zones at the given ageing temperature does not depend on the alloy composition.In some alloys, Guinier-Preston zones appear immediately after heat treatment or even during the cooling after heat treatment. At the same time, intermediate phases and stable phases appear after the incubation interval. All these facts show that Guinier-Preston zones are different to intermediate and stable phases. This is why Guinier-Preston zones are often called 'pre-precipitations' to differentiate them from real precipitations of intermediate and stable phases with a qualitatively new structure [19].Unlike such a structured approach that treats Guinier-Preston zones as 'pre-precipitations' from a thermodynamic point of view, they can be treated as independent stable phases, intermediate between the matrix solution and the stable phase. Consequently, these zones can be treated as the second phase that is in metastable equilibrium with the matrix solution.Moreover, a Guinier-Preston zone in the dual Cu-Si system with limited solubility of silicon in solid state can have its own line limit of solubility km (Figure 3). Metastable phases with a high content of silicon in the α-Cu matrix crystalline lattice appear below this line.Provided that the Guinier-Preston zone is treated as a phase, at the moment of its origin, the change of the free energy of the alloy is as follows: ΔU = -ΔUtot + ΔUsurf + ΔUel (Utot - total energy of the system, Usurf - surface energy of the crystal, Uel - elastic energy component). Because of the coherence property of the zone and the matrix, the ΔUsurf component can be neglected as its value is very small. Then, at relatively high oversaturation, the energy barrier for the origin of the Guinier-Preston zone should be relatively small, which explains the occurrence of clusters immediately after heat treatment or even at the moment of cooling and following natural ageing.The fact that Guinier-Preston zones can easily appear throughout the whole volume of the matrix solid solution and give the structure of equable decay with high density is of high practical value for us (Figure 2b).Thus, diffraction fringes in copper cores of core-shell nanoparticles should be treated as the second metastable phase, which is in equilibrium with the matrix solid solution. Similar to the exfoliation curve km in the solid solution α-Cu, the solvus curve for γ-Cu with intermediate 'pre-precipitations' can be built. The structure of the boundary with the matrix differentiates Guinier-Preston zones from other intermediate phases. These zones are fully coherent extractions, which is why their boundary with the matrix is poorly defined.As the rate accuracy of basal spacing with the method of electronic diffraction does not exceed 1 Å, according to the data it is not possible to evaluate accurately the change dα-Cu in diffraction fringes of the nanoparticle core; phase nonuniformity of structures has been suggested [26]. This is why it is necessary to treat such structures as solid solutions of α-Cu matrix, with the presence of metastable phases with the deformed crystal lattice.In the fourth case, formation of core-shell nanoparticle Cu/SiO2 happens much like in the third case, but due to the fact the amount of silicon is insufficient for the total fixation of oxygen and copper, a transition zone containing Cu2O is formed. Moiré in such particles are observed at the possible placing of double diffraction from two or more crystals of solid solution α-Cu (Figure 4a) [3]. The nanoparticle according to SAED analysis is very much like a 'sandwich': core α-Cu (Figure 4b, basal spacing d(111) ≈ 2.0 Å, corresponding to the tabular data for Cu), transition zone - copper oxide Cu2O (Figure 5a, basal spacing d(111) ≈ 2.4 Å) and shell - amorphous silicon dioxide, according to the EDAX data, the content of oxygen in this area is greater than 12% [11]. High copper oxide (CuO) was discovered only on the surface of the nanoparticle shell SiO2 (Figure 5b, basal spacing d(111) ≈ 2.5 Å).In the fifth case, when the silicon content is from 8.3-8.5 wt.% to 13 wt.%, copper with silicon in solid state at room temperature forms a continuous series of solid solutions of copper α, γ, ɛ and η. Silicon containing more than 13 wt.% copper undergoes eutectic decomposition only at (η″ + Si) [5]; structurally, such a solution contains eutectics in eutectics. In the obtained powder of nanoparticles, there are no modifications of solid solutions of copper, except for α-Cu.
Zhang, Q B; Abbott, Andrew P; Yang, C
2015-06-14
Nanoporous copper films were fabricated by a facile electrochemical alloying/dealloying process without the need of a template. A deep eutectic solvent made from choline chloride (ChCl) and urea was used with zinc oxide as the metal salt. Cyclic voltammetry was used to characterise the electrochemical reduction of zinc and follow Cu-Zn alloy formation on the copper substrate at elevated temperatures from 353 to 393 K. The alloy formation was confirmed by X-ray diffraction spectra. 3D, open and bicontinuous nanoporous copper films were obtained by in situ electrochemically etching (dealloying) of the zinc component in the Cu-Zn surface alloys at an appropriate potential (-0.4 V vs. Ag). This dealloying process was found to be highly temperature dependent and surface diffusion controlled, which involved the self-assembly of copper atoms at the alloy/electrolyte interface. Additionally, the effects of the deposition parameters, including deposition temperature, current density as well as total charge density on resulting the microstructure were investigated by scanning electron microscopy, and atomic force microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.; Knox, A.; Kuhne, W.
2015-10-15
DOE sites conduct traditional environmental monitoring programs that require collecting, processing, and analyzing water, sediment, and fish samples. However, recently developed passive sampling technologies, such as Diffusive Gradient in Thin films (DGT), may measure the chemical phases that are available and toxic to organisms (the bioavailable fraction), thereby producing more accurate and economical results than traditional methods. Our laboratory study showed that dissolved copper concentrations measured by DGT probes were strongly correlated with the uptake of copper by Lumbriculus variegatus, an aquatic worm, and with concentrations of copper measured by conventional methods. Dissolved copper concentrations in DGT probes increased with timemore » of exposure, paralleling the increase in copper with time that ocurred in Lumbriculus. Additional studies with a combination of seven dissolved metals showed similar results. These findings support the use of DGT as a biomimetic monitoring tool and provide a basis for refinement of these methods for cost-effective environmental monitoring at DOE sites.« less
NASA Astrophysics Data System (ADS)
Xu, Ya-Xin; Luo, Xiao-Tao; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu
2016-02-01
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706; Stewart, Derek A., E-mail: derek.stewart@hgst.com
Metal oxide resistive memory devices based on Ta{sub 2}O{sub 5} have demonstrated high switching speed, long endurance, and low set voltage. However, the physical origin of this improved performance is still unclear. Ta{sub 2}O{sub 5} is an important archetype of a class of materials that possess an adaptive crystal structure that can respond easily to the presence of defects. Using first principles nudged elastic band calculations, we show that this adaptive crystal structure leads to low energy barriers for in-plane diffusion of oxygen vacancies in λ phase Ta{sub 2}O{sub 5}. Identified diffusion paths are associated with collective motion of neighboringmore » atoms. The overall vacancy diffusion is anisotropic with higher diffusion barriers found for oxygen vacancy movement between Ta-O planes. Coupled with the fact that oxygen vacancy formation energy in Ta{sub 2}O{sub 5} is relatively small, our calculated low diffusion barriers can help explain the low set voltage in Ta{sub 2}O{sub 5} based resistive memory devices. Our work shows that other oxides with adaptive crystal structures could serve as potential candidates for resistive random access memory devices. We also discuss some general characteristics for ideal resistive RAM oxides that could be used in future computational material searches.« less
Cui, Qing; Brandt, Nils; Sinha, Rajib; Malmström, Maria E
2010-06-01
A coupled source-transport-storage model was developed to determine the origin and path of copper from materials/goods in use in the urban drainage area and the fate of copper in local recipient lakes. The model was applied and tested using five small lakes in Stockholm, Sweden. In the case of the polluted lakes Råcksta Träsk, Trekanten and Långsjön, the source strengths of copper identified by the model were found to be well linked with independently observed copper contents in the lake sediments through the model. The model results also showed that traffic emissions, especially from brake linings, dominated the total load in all five cases. Sequential sedimentation and burial proved to be the most important fate processes of copper in all lakes, except Råcksta Träsk, where outflow dominated. The model indicated that the sediment copper content can be used as a tracer of the urban diffuse copper source strength, but that the response to changes in source strength is fairly slow (decades). Major uncertainties in the source model were related to management of stormwater in the urban area, the rate of wear of brake linings and weathering of copper roofs. The uncertainty of the coupled model is in addition affected mainly by parameters quantifying the sedimentation and bury processes, such as particulate fraction, settling velocity of particles, and sedimentation rate. As a demonstration example, we used the model to predict the response of the sediment copper level to a decrease in the copper load from the urban catchment in one of the case study lakes. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Investigation into Spectroscopic Techniques for Thermal Barrier Coating Spall Detection
NASA Technical Reports Server (NTRS)
deGroot, Wim; Opila, Beth
2001-01-01
Spectroscopic methods are proposed for detection of thermal barrier coating (TBC) spallation from engine hot zone components. These methods include absorption and emission of airborne marker species originally embedded in the TBC bond coat. In this study, candidate marker materials for this application were evaluated. Thermochemical analysis of candidate marker materials combined with additional constraints such as toxicity and uniqueness to engine environment, provided a short list of four potential species: platinum, copper oxide, zinc oxide. and indium. The melting point of indium was considered to be too low for serious consideration. The other three candidate marker materials, platinum, copper oxide, and zinc oxide were placed in a high temperature furnace and emission and absorption properties were measured over a temperature range from 800-1400 C and a spectral range from 250 to 18000 nm. Platinum did not provide the desired response, likely due to the low vapor Pressure of the metallic species and the low absorption of the oxide species. It was also found, however. that platinum caused a broadening of the carbon dioxide absorption at 4300 nm. The nature of this effect is not known. Absorption and emission caused by sodium and potassium impurities in the platinum were found in the platinum tests. Zinc oxide did not provide the desired response, again, most likely due to the low vapor pressure of the metallic species and the low absorption of the oxide species. Copper oxide generated two strongly temperature dependent absorption peaks at 324.8 and 327.4 nm. The melting point of copper oxide was determined to be too low for serious consideration as marker material.
Reactivity and oxygen diffusion property of resistive barriers for Bi-2223/Ag tapes
NASA Astrophysics Data System (ADS)
Kováč, P.; Hušek, I.
2002-12-01
Reactivity of several oxide materials (OM) with BSCCO powder and oxygen diffusion through OM layer has been tested at temperature ≈840 °C in air. The OM (e.g.: BaZrO 3, SrCO 3, MgO and ZrO 2) showing the low or no reactivity with BSCCO have been mixed (10 wt.%) with precursor powder and used for single-core tapes. Bi-2223/Ag/OM/Ag single-core tapes with oxide barriers made of BaZrO 3, SrCO 3, ZrO 2 and Al 2O 3 have been also prepared by a standard powder-in-tube technique. The used OM in the direct contact with BSCCO influences the electrical properties of Bi-2223 phase differently. These is because the oxides react with BSCCO during the heat treatment and simultaneously affect the 2212→2223 phase transformation, the Bi-2223 grain growth and so also grain connectivity. SrCO 3 powder has been evaluated as the best material from the point of no destructive effect on 2223 phase transport current property. The oxide barrier controls the oxygen diffusion during the tape heat treatment and simultaneously the HTS phase formation kinetics, its purity and content within the superconducting core. For single-core Bi-2223/Ag/OM/Ag tapes, the highest current density was measured for Al 2O 3 due to only slightly reduced oxygen diffusion through the barrier.
Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells.
Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko
2012-02-22
Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Method of manufacturing lightweight thermo-barrier material
NASA Technical Reports Server (NTRS)
Blair, Winford (Inventor)
1987-01-01
A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.
Molecular dynamics simulations of hydrogen diffusion in aluminum
Zhou, X. W.; El Gabaly, F.; Stavila, V.; ...
2016-03-23
In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear howmore » they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.« less
Radiation induced corrosion of copper for spent nuclear fuel storage
NASA Astrophysics Data System (ADS)
Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats
2013-11-01
The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
Johansson, M L; Banks, M A; Glunt, K D; Hassel-Finnegan, H M; Buonaccorsi, V P
2008-07-01
The copper rockfish is a benthic, nonmigratory, temperate rocky reef marine species with pelagic larvae and juveniles. A previous range-wide study of the population-genetic structure of copper rockfish revealed a pattern consistent with isolation-by-distance. This could arise from an intrinsically limited dispersal capability in the species or from regularly-spaced extrinsic barriers that restrict gene flow (offshore jets that advect larvae offshore and/or habitat patchiness). Tissue samples were collected along the West Coast of the contiguous USA between Neah Bay, WA and San Diego, CA, with dense sampling along Oregon. At the whole-coast scale (approximately 2200 km), significant population subdivision (F(ST) = 0.0042), and a significant correlation between genetic and geographical distance were observed based on 11 microsatellite DNA loci. Population divergence was also significant among Oregon collections (approximately 450 km, F(ST) = 0.001). Hierarchical amova identified a weak but significant 130-km habitat break as a possible barrier to gene flow within Oregon, across which we estimated that dispersal (N(e)m) is half that of the coast-wide average. However, individual-based Bayesian analyses failed to identify more than a single population along the Oregon coast. In addition, no correlation between pairwise population genetic and geographical distances was detected at this scale. The offshore jet at Cape Blanco was not a significant barrier to gene flow in this species. These findings are consistent with low larval dispersal distances calculated in previous studies on this species, support a mesoscale dispersal model, and highlight the importance of continuity of habitat and adult population size in maintaining gene flow.
A qualitative exploration of emergency contraception users' willingness to select the copper IUD.
Wright, Rachel L; Frost, Caren J; Turok, David K
2012-01-01
The copper T intrauterine device (IUD) is an effective but underutilized method of emergency contraception (EC). This study investigates the factors influencing a woman's decision around which method of EC to select. In-depth interviews with 14 IUD and 14 oral EC users aged 18-30 years accessing public health clinics. Emergency contraception users associated long-term methods of contraception with long-term sexual relationships. Women were not aware of the possibility of using the copper IUD for EC. Cost was identified as a major barrier to accessing IUDs. Perceived side effects and impact on future pregnancies further influenced the EC method a participant selected. Women think about contraception in the context of each separate relationship and not as a long-term individual plan. Most women were unaware of the copper IUD for EC. Furthermore, there is little discussion between women and their health-care providers around EC. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian
2015-08-01
Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.
Sohrabnezhad, Sh; Zanjanchi, M A; Hosseingholizadeh, S; Rahnama, R
2014-04-05
The synthesis of CuS nanomaterial in MCM-41 matrix has been realized by chemical synthesis between MCM-41, copper sulfate pentahydrate and thiourea via a solvothermal method in ethylene glycol and water, separately. X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) were used to characterize the products. At synthesized CuS/MCM-41 sample in ethylene glycol, X-ray diffraction and diffuse reflectance spectroscopy showed pure covellite phase of copper sulfide with high crystality. But prepared CuS/MCM-41 sample in water shows the covellite, chalcocite and the djurleite phase of copper sulfide nanostructures. The formation of CuS nanostructures was confirmed by FT-IR. Photocatalytic activity of CuS/MCM-41 nanocomposites was studied for degradation of Methylene Blue (MB) under visible light. The CuS/MCM-41 nanocomposite is more effective nanocatalyst than synthesized CuS/MCM-41 sample in water for degradation of methylene blue. Several parameters were examined, catalyst amount (0.1-1gL(-1)), pH (1-13) and initial concentration of MB (0.96-10ppm). The extent of degradation was estimated from the residual concentration by spectrophotometrically. The support size was obtained in the range 60-145nm by TEM. In the same way, the average size of copper sulfide in CuSMCM-41E and CuS/MCM-41W nanostructures were obtained about 10nm and 16nm, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Gamma radiation induces hydrogen absorption by copper in water
NASA Astrophysics Data System (ADS)
Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats
2016-04-01
One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.
Anti-collimation of ballistic electrons by a potential barrier
NASA Astrophysics Data System (ADS)
Coleridge, P. T.; Taylor, R. P.; Sachrajda, A. S.; Adams, J. A.
1994-03-01
A pair of Quantum Point Contacts separated by a continuous barrier have been fabricated using the surface gate technique. Transport measurements for each component of this system and for various combinations have shown both additive and non-additive behaviour. The results are explained by a combination of reflection by the barrier of electrons collimated by the Quantum Point Contacts and transport by diffusion across the barrier.
NASA Astrophysics Data System (ADS)
Korte, L.; Treichler, R.; Schreiber, M.; Tanner, Ch.; Kristen, G.; Hanke, C.; Weimann, G.
1991-01-01
The interaction of Mg and Si has been studied in GaAs/Al xGa 1- xAs DQW laser structures with a 50 nm Si diffusion barrier. The samples have been exposed to capless heat treatments at 860°C and under Si/SiO 2 and Si 3N 4 cap layers, and were analysed by SIMS. The Mg diffusion is highly dependent on the surface conditions during heating. A Si barrier is effective for temperature treatments under H 2/AsH 3 and Si/SiO 2. It is not effective under a Si 3N 4 cap where we detected very fast Mg diffusion. The Mg diffusion behaviour is discussed in terms of Si-Mg interaction and the influence of crystal defects.
Fan, Kaimin; Tang, Jing; Wu, Shiyun; Yang, Chengfu; Hao, Jiabo
2016-12-21
The adsorption and diffusion behaviors of lithium (Li) in a graphene/blue-phosphorus (G/BP) heterostructure have been investigated using a first principles method based on density functional theory (DFT). The effect of an external electric field on the adsorption and diffusion behaviors has also been investigated. The results show that the adsorption energy of Li on the graphene side of the G/BP heterostructure is higher than that on monolayer graphene, and Li adsorption on the BP side of the G/BP/Li system is slightly stronger than that on monolayer BP (BP/Li). The adsorption energy of Li reaches 2.47 eV, however, the energy barriers of Li diffusion decrease in the interlayer of the G/BP heterostructure. The results mentioned above suggest that the rate performance of the G/BP heterostructure is better than that of monolayer graphene. Furthermore, the adsorption energies of Li atoms in the three different most stable sites, i.e., H G , T P and H 1 sites, increase by about 0.49 eV, 0.26 eV, and 0.13 eV, respectively, as the electric field intensity reaches 0.6 V Å -1 . The diffusion energy barrier is significantly decreased by an external electric field. It is demonstrated that the external electric field can not only enhance the adsorption but can also modulate the diffusion barriers of Li atoms in the G/BP heterostructure.
NASA Astrophysics Data System (ADS)
Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung
2015-01-01
Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.
Modeling the migration of platinum nanoparticles on surfaces using a kinetic Monte Carlo approach
Li, Lin; Plessow, Philipp N.; Rieger, Michael; ...
2017-02-15
We propose a kinetic Monte Carlo (kMC) model for simulating the movement of platinum particles on supports, based on atom-by-atom diffusion on the surface of the particle. The proposed model was able to reproduce equilibrium cluster shapes predicted using Wulff-construction. The diffusivity of platinum particles was simulated both purely based on random motion and assisted using an external field that causes a drift velocity. The overall particle diffusivity increases with temperature; however, the extracted activation barrier appears to be temperature independent. Additionally, this barrier was found to increase with particle size, as well as, with the adhesion between the particlemore » and the support.« less
An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-01-01
The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122
Parra, Carolina; Montero-Silva, Francisco; Henríquez, Ricardo; Flores, Marcos; Garín, Carolina; Ramírez, Cristian; Moreno, Macarena; Correa, Jonathan; Seeger, Michael; Häberle, Patricio
2015-04-01
Understanding biological interaction with graphene and hexagonal-boron nitride (h-BN) membranes has become essential for the incorporation of these unique materials in contact with living organisms. Previous reports show contradictions regarding the bacterial interaction with graphene sheets on metals. Here, we present a comprehensive study of the interaction of bacteria with copper substrates coated with single-layer graphene and h-BN. Our results demonstrate that such graphitic coatings substantially suppress interaction between bacteria and underlying Cu substrates, acting as an effective barrier to prevent physical contact. Bacteria do not "feel" the strong antibacterial effect of Cu, and the substrate does not suffer biocorrosion due to bacteria contact. Effectiveness of these systems as barriers can be understood in terms of graphene and h-BN impermeability to transfer Cu(2+) ions, even when graphene and h-BN domain boundary defects are present. Our results seem to indicate that as-grown graphene and h-BN films could successfully protect metals, preventing their corrosion in biological and medical applications.
Contact-metal dependent current injection in pentacene thin-film transistors
NASA Astrophysics Data System (ADS)
Wang, S. D.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Aoyagi, Y.
2007-11-01
Contact-metal dependent current injection in top-contact pentacene thin-film transistors is analyzed, and the local mobility in the contact region was found to follow the Meyer-Neldel rule. An exponential trap distribution, rather than the metal/organic hole injection barrier, is proposed to be the dominant factor of the contact resistance in pentacene thin-film transistors. The variable temperature measurements revealed a much narrower trap distribution in the copper contact compared with the corresponding gold contact, and this is the origin of the smaller contact resistance for copper despite a lower work function.
A reaction-diffusion model of the Darien Gap Sterile Insect Release Method
NASA Astrophysics Data System (ADS)
Alford, John G.
2015-05-01
The Sterile Insect Release Method (SIRM) is used as a biological control for invasive insect species. SIRM involves introducing large quantities of sterilized male insects into a wild population of invading insects. A fertile/sterile mating produces offspring that are not viable and the wild insect population will eventually be eradicated. A U.S. government program maintains a permanent sterile fly barrier zone in the Darien Gap between Panama and Columbia to control the screwworm fly (Cochliomyia Hominivorax), an insect that feeds off of living tissue in mammals and has devastating effects on livestock. This barrier zone is maintained by regular releases of massive quantities of sterilized male screwworm flies from aircraft. We analyze a reaction-diffusion model of the Darien Gap barrier zone. Simulations of the model equations yield two types of spatially inhomogeneous steady-state solutions representing a sterile fly barrier that does not prevent invasion and a barrier that does prevent invasion. We investigate steady-state solutions using both phase plane methods and monotone iteration methods and describe how barrier width and the sterile fly release rate affects steady-state behavior.
NASA Technical Reports Server (NTRS)
Campbell, J., Jr.; Cobb, S. M.
1976-01-01
An existing, but damaged, 25,000-pound thrust, flightweight, oxygen/hydrogen aerospike rocket thrust chamber was disassembled and partially repaired. A description is presented of the aerospike chamber configuration and of the damage it had suffered. Techniques for aerospike thrust chamber repair were developed, and are described, covering repair procedures for lightweight tubular nozzles, titanium thrust structures, and copper channel combustors. Effort was terminated prior to completion of the repairs and conduct of a planned hot fire test program when it was found that the copper alloy walls of many of the thrust chamber's 24 combustors had been degraded in strength and ductility during the initial fabrication of the thrust chamber. The degradation is discussed and traced to a reaction between oxygen and/or oxides diffused into the copper alloy during fabrication processes and the hydrogen utilized as a brazing furnace atmosphere during the initial assembly operation on many of the combustors. The effects of the H2/O2 reaction within the copper alloy are described.
Growth Of Single Crystalline Copper Nanowhiskers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, Matthias; Richter, Gunther
2010-11-24
Nanowhiskers are defect free single crystals with high aspect ratios and as result exhibit superior physical, e.g. mechanical properties. This paper sheds light on the kinetics of copper nanowhisker growth and thickening. Whisker growth was provoked by covering silicon wafers with a thin carbon film and subsequently coating them with copper by molecular beam epitaxy. The whiskers grown were examined by scanning electron microscopy and the length and diameter were measured as a function of the amount of copper deposited. The experiments show that nanowhisker growth follows Ruth and Hirth's growth model. A fit of the model parameters to themore » acquired data shows that adsorption of atoms on the substrate and on the whisker surface, with subsequent surface diffusion to the whisker tip, delivers by far the greatest portion of material for whisker growth. Additionally, the experiments demonstrate that the crystallographic orientation of the substrate surface greatly influences the growth rate in the early stage of whisker growth.« less
Hydrogen transport behavior of metal coatings for plasma-facing components
NASA Astrophysics Data System (ADS)
Anderl, R. A.; Holland, D. F.; Longhurst, G. R.
1990-12-01
Plasma-facing components for experimental and commercial fusion reactor studies may include cladding or coatings of refractory metals like tungsten on metallic structural substrates such as copper, vanadium alloys and austenitic stainless steel. Issues of safety and fuel economy include the potential for inventory buildup and permeation of tritium implanted into the plasma-facing surface. This paper reports on laboratory-scale studies with 3 keV D +3 ion beams to investigate the hydrogen transport behavior in tungsten coatings on substrates of copper. These experiments entailed measurements of the deuterium re-emission and permeation rates for tungsten, copper, and tungsten-coated copper specimens at temperatures ranging from 638 to 825 K and implanting particle fluxes of approximately 5 × 10 19 D/m 2 s. Diffusion constants and surface recombination coefficients with enhancement factors due to sputtering were obtained from these measurements. These data may be used in calculations to estimate permeation rates and inventory buildups for proposed diverter designs.
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1981-01-01
Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.
Fernandes, Marisa Narciso; da Cruz, André Luis; da Costa, Oscar Tadeu Ferreira; Perry, Steven Franklin
2012-09-01
The gills and the respiratory swim bladders of juvenile specimens (mean body mass 100g) of the basal teleost Arapaima gigas (Cuvier 1829) were evaluated using stereological methods in vertical sections. The surface areas, harmonic mean barrier thicknesses and morphometric diffusing capacities for oxygen and carbon dioxide were estimated. The average respiratory surface area of the swim bladder (2173 cm² kg⁻¹) exceeded that of the gills (780 cm² kg⁻¹) by a factor of 2.79. Due to the extremely thin air-blood barrier in the swim bladder (harmonic mean 0.22 μm) and the much thicker water-blood barrier of the gills (9.61 μm), the morphometric diffusing capacity for oxygen and carbon dioxide was 88 times greater in the swim bladder than in the gills. These data clearly indicate the importance of the swim bladder, even in juvenile A. gigas that still engage in aquatic respiration. Because of the much greater diffusion constant of CO₂ than O₂ in water, the gills also remain important for CO₂ release. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, K. J.
2012-02-01
Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.
Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.
Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue
2015-08-10
Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Submersed sensing electrode used in fuel-cell type hydrogen detector
NASA Technical Reports Server (NTRS)
Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.
1971-01-01
Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.
Chemical reaction of atomic oxygen with evaporated films of copper, part 4
NASA Technical Reports Server (NTRS)
Fromhold, A. T.; Williams, J. R.
1990-01-01
Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).
Code of Federal Regulations, 2011 CFR
2011-01-01
... welds with substantial amounts of repetition of layout. The equipment, components and piping systems are... fully fluorinated hydrocarbon polymers. 1. Assemblies and components especially designed or prepared for use in gaseous diffusion enrichment. 1.1 Gaseous Diffusion Barriers Especially designed or prepared...
Code of Federal Regulations, 2012 CFR
2012-01-01
... welds with substantial amounts of repetition of layout. The equipment, components and piping systems are... fully fluorinated hydrocarbon polymers. 1. Assemblies and components especially designed or prepared for use in gaseous diffusion enrichment. 1.1 Gaseous Diffusion Barriers Especially designed or prepared...
Code of Federal Regulations, 2014 CFR
2014-01-01
... welds with substantial amounts of repetition of layout. The equipment, components and piping systems are... fully fluorinated hydrocarbon polymers. 1. Assemblies and components especially designed or prepared for use in gaseous diffusion enrichment. 1.1 Gaseous Diffusion Barriers Especially designed or prepared...
Code of Federal Regulations, 2013 CFR
2013-01-01
... welds with substantial amounts of repetition of layout. The equipment, components and piping systems are... fully fluorinated hydrocarbon polymers. 1. Assemblies and components especially designed or prepared for use in gaseous diffusion enrichment. 1.1 Gaseous Diffusion Barriers Especially designed or prepared...
Ag out-surface diffusion in crystalline SiC with an effective SiO 2 diffusion barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, H.; Xiao, H. Y.; Zhu, Z.
2015-05-07
For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope ( 110mAg) through the SiC coating layer is a safety concern. In order to understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. Our results suggestmore » little migration of buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO 2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less
Ag Out-surface Diffusion In Crystalline SiC With An Effective SiO2 Diffusion Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, H.; Xiao, Haiyan Y.; Zhu, Zihua
2015-09-01
For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration ofmore » buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.« less
Structural Stability of Diffusion Barriers in Cu/Ru/MgO/Ta/Si
Hsieh, Shu-Huei; Chen, Wen Jauh; Chien, Chu-Mo
2015-01-01
Various structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si were prepared by sputtering and electroplating techniques, in which the ultra-thin trilayer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is used as the diffusion barrier against the interdiffusion between Cu film and Si substrate. The various structures of Cu/Ru/MgO/Ta/Si were characterized by four-point probes for their sheet resistances, by X-ray diffractometers for their crystal structures, by scanning electron microscopes for their surface morphologies, and by transmission electron microscopes for their cross-section and high resolution views. The results showed that the ultra-thin tri-layer of Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm) is an effective diffusion barrier against the interdiffusion between Cu film and Si substrate. The MgO, and Ta layers as deposited are amorphous. The mechanism for the failure of the diffusion barrier is that the Ru layer first became discontinuous at a high temperature and the Ta layer sequentially become discontinuous at a higher temperature, the Cu atoms then diffuse through the MgO layer and to the substrate at the discontinuities, and the Cu3Si phases finally form. The maximum temperature at which the structures of Cu (50 nm)/Ru (2 nm)/MgO (0.5–3 nm)/Ta (2 nm)/Si are annealed and still have low sheet resistance is from 550 to 750 °C for the annealing time of 5 min and from 500 to 700 °C for the annealing time of 30 min. PMID:28347099
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Huang; C. Kammerer; D. D. Keiser, Jr.
2014-04-01
U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembledmore » and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.« less
NASA Astrophysics Data System (ADS)
Lin, Wen-Chih; Li, Ying-Sih; Wu, Albert T.
2018-01-01
This paper investigates the interfacial reaction between Sn and Sn3Ag0.5Cu (SAC305) solder on n-type Bi2Te3 thermoelectric material. An electroless Ni-P layer successfully suppressed the formation of porous SnTe intermetallic compound at the interface. The formation of the layers between Bi2Te3 and Ni-P indicates that Te is the dominant diffusing species. Shear tests were conducted on both Sn and SAC305 solder on n- and p-type Bi2Te3 with and without a Ni-P barrier layer. Without a Ni-P layer, porous SnTe would result in a more brittle fracture. A comparison of joint strength for n- and p-type thermoelectric modules is evaluated by the shear test. Adding a diffusion barrier increases the mechanical strength by 19.4% in n-type and 74.0% in p-type thermoelectric modules.
NASA Astrophysics Data System (ADS)
Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang
2014-02-01
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.
Yuan, Fenglin; Zhang, Yanwen; Weber, William J.
2015-05-19
In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less
Chemically-inducible diffusion trap at cilia (C-IDTc) reveals molecular sieve-like barrier
Lin, Yu-Chun; Phua, Siew Cheng; Jiao, John; Levchenko, Andre; Inoue, Takafumi; Rohatgi, Rajat; Inoue, Takanari
2013-01-01
Primary cilia function as specialized compartments for signal transduction. The stereotyped structure and signaling function of cilia inextricably depend on the selective segregation of molecules in cilia. However, the fundamental principles governing the access of soluble proteins to primary cilia remain unresolved. We developed a methodology termed Chemically-Inducible Diffusion Trap at Cilia (C-IDTc) to visualize the diffusion process of a series of fluorescent proteins ranging in size from 3.2 to 7.9 nm into primary cilia. We found that the interior of the cilium was accessible to proteins as large as 7.9 nm. The kinetics of ciliary accumulation of this panel of proteins was exponentially limited by their Stokes radii. Quantitative modeling suggests that the diffusion barrier operates as a molecular sieve at the base of cilia. Our study presents a set of powerful, generally applicable tools for the quantitative monitoring of ciliary protein diffusion under both physiological and pathological conditions. PMID:23666116
First-principles study of fission gas incorporation and migration in zirconium nitride
Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.
2017-03-24
To evaluate the effectiveness of ZrN as a diffusion barrier against fission gases, we investigate in this paper the incorporation and migration of fission gas atoms, with a focus on Xe, in ZrN by first-principles calculations. The formations of point defects in ZrN, including vacancies, interstitials, divacancies, Frenkel pairs, and Schottky defects, are first studied. Among all the defects, the Schottky defect with two vacancies as first nearest neighbor is predicted to be the most favorable incorporation site for fission gas Xe in ZrN. The migration of Xe gas atom in ZrN is investigated through two diffusion mechanisms, i.e., interstitialmore » and vacancy-assisted diffusions. The migration barrier of Xe gas atom through the intrinsic interstitials in ZrN is considerably lower than that through vacancies. Finally, therefore, at low temperatures fission gas Xe atoms diffuse mainly through interstitials in single crystal ZrN, whereas at high temperatures Xe may diffuse in ZrN assisted by vacancies.« less
Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...
2015-06-16
We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less
Simple rules for passive diffusion through the nuclear pore complex
Mironska, Roxana; Kim, Seung Joong
2016-01-01
Passive macromolecular diffusion through nuclear pore complexes (NPCs) is thought to decrease dramatically beyond a 30–60-kD size threshold. Using thousands of independent time-resolved fluorescence microscopy measurements in vivo, we show that the NPC lacks such a firm size threshold; instead, it forms a soft barrier to passive diffusion that intensifies gradually with increasing molecular mass in both the wild-type and mutant strains with various subsets of phenylalanine-glycine (FG) domains and different levels of baseline passive permeability. Brownian dynamics simulations replicate these findings and indicate that the soft barrier results from the highly dynamic FG repeat domains and the diffusing macromolecules mutually constraining and competing for available volume in the interior of the NPC, setting up entropic repulsion forces. We found that FG domains with exceptionally high net charge and low hydropathy near the cytoplasmic end of the central channel contribute more strongly to obstruction of passive diffusion than to facilitated transport, revealing a compartmentalized functional arrangement within the NPC. PMID:27697925
NASA Astrophysics Data System (ADS)
Fernández, R.; MacDonald, D.; Nastić, A.; Jodoin, B.; Tieu, A.; Vijay, M.
2016-12-01
Thick copper coatings have been envisioned as corrosion protection barriers for steel containers used in repositories for nuclear waste fuel bundles. Due to its high deposition rate and low oxidation levels, cold spray is considered as an option to produce these coatings as an alternative to traditional machining processes to create corrosion protective sleeves. Previous investigations on the deposition of thick cold spray copper coatings using only nitrogen as process gas on carbon steel substrates have continuously resulted in coating delamination. The current work demonstrates the possibility of using an innovative surface preparation process, forced pulsed waterjet, to induce a complex substrate surface morphology that serves as anchoring points for the copper particles to mechanically adhere to the substrate. The results of this work show that, through the use of this surface preparation method, adhesion strength can be drastically increased, and thick copper coatings can be deposited using nitrogen. Through finite element analysis, it was shown that it is likely that the bonding created is purely mechanical, explaining the lack of adhesion when conventional substrate preparation methods are used and why helium is usually required as process gas.
Multi-100 kW: Planar low cost solar array development
NASA Technical Reports Server (NTRS)
1982-01-01
The applicability of selected low cost options to solar array blanket design was studied by fabricating representative modules and submitting them to thermal cycle environment. Large area (5.9 x 5.9 cm) solar cells of 3 varieties were purchased: (1) Standard wraparound, (2) Copper contacts substituted for the conventional Titanium-Palladium-Silver, and (3) Standard wraparound except with gridded back contact instead of continuous metallization. The baseline cell was purchased to compare fabrication cost and to serve as a control cell during test evaluation of the other two cells. All cells were assembled into either substrate modules where the cell is individually filtered and welded to an integrated Kapton-copper circuit or into a superstrate configuration with 4 cells jointly adhered to a single sheet of microsheet and then welded to the integrated Kapton-copper circuit. Cell quality, particularly in the metallization of contacts, was less than desired. Problems were encountered with copper metallization in laying down a barrier metal which would ohmically bond to the silicon. The cells received were shunted (sintered) or with low contact pull strength (non-sintered), thus leading to the decision to solder rather than weld the copper cells to the Kapton substrate.
Analysis of aging time dependent electrical characteristics of AuCu/n-Si/Ti Schottky type diode
NASA Astrophysics Data System (ADS)
Taser, Ahmet; Şenarslan, Elvan; Güzeldir, Betül; Saǧlam, Mustafa
2017-04-01
The purpose of this study is to fabricate AuCu/n-Si/Ti Schottky type diode and determine the effects of aging time on the diode parameters such as ideality factor, barrier height, series resistance, interface state density and rectification ratio. Gold and copper ratios in the gold-copper alloy used in making the Schottky contact were taken as equal. Schottky barrier contact using AuCu alloy and ohmic contact using Ti metal were made on n-Si by thermal evaporation. The electrical characterization of the AuCu/n-Si/Ti diode was made immediately based on the aging time at room temperature in dark conditions. The I-V measurements were also repeated 1, 7, 15, 30 and 90 days after fabrication of the diode in order to observe the effect of the aging time. The determined values of the ideality factor are in the range of 1,21 (for immediately)-1,075 (for 90 days). In the same way, values of the barrier height are also in the range of 0,566 eV (for immediately)-0,584 eV (for 90 days). From the I-V characteristics, it is seen that the diode appears to have a good rectification character.
Modelisation de la diffusion sur les surfaces metalliques: De l'adatome aux processus de croissance
NASA Astrophysics Data System (ADS)
Boisvert, Ghyslain
Cette these est consacree a l'etude des processus de diffusion en surface dans le but ultime de comprendre, et de modeliser, la croissance d'une couche mince. L'importance de bien mai triser la croissance est primordiale compte tenu de son role dans la miniaturisation des circuits electroniques. Nous etudions ici les surface des metaux nobles et de ceux de la fin de la serie de transition. Dans un premier temps, nous nous interessons a la diffusion d'un simple adatome sur une surface metallique. Nous avons, entre autres, mis en evidence l'apparition d'une correlation entre evenements successifs lorsque la temperature est comparable a la barriere de diffusion, i.e., la diffusion ne peut pas etre associee a une marche aleatoire. Nous proposons un modele phenomenologique simple qui reproduit bien les resultats des simulations. Ces calculs nous ont aussi permis de montrer que la diffusion obeit a la loi de Meyer-Neldel. Cette loi stipule que, pour un processus active, le prefacteur augmente exponentiellement avec la barriere. En plus, ce travail permet de clarifier l'origine physique de cette loi. En comparant les resultats dynamiques aux resultats statiques, on se rend compte que la barriere extraite des calculs dynamiques est essentiellement la meme que celle obtenue par une approche statique, beaucoup plus simple. On peut donc obtenir cette barriere a l'aide de methodes plus precises, i.e., ab initio, comme la theorie de la fonctionnelle de la densite, qui sont aussi malheureusement beaucoup plus lourdes. C'est ce que nous avons fait pour plusieurs systemes metalliques. Nos resultats avec cette derniere approche se comparent tres bien aux resultats experimentaux. Nous nous sommes attardes plus longuement a la surface (111) du platine. Cette surface regorge de particularites interessantes, comme la forme d'equilibre non-hexagonale des i lots et deux sites d'adsorption differents pour l'adatome. De plus, des calculs ab initio precedents n'ont pas reussi a confirmer la forme d'equilibre et surestiment grandement la barriere. Nos calculs, plus complets et dans un formalisme mieux adapte a ce genre de probleme, predisent correctement la forme d'equilibre, qui est en fait due a un relachement different du stress de surface aux deux types de marches qui forment les cotes des i lots. Notre valeur pour la barriere est aussi fortement diminuee lorsqu'on relaxe les forces sur les atomes de la surface, amenant le resultat theorique beaucoup plus pres de la valeur experimentale. Nos calculs pour le cuivre demontre en effet que la diffusion de petits i lots pendant la croissance ne peut pas etre negligee dans ce cas, mettant en doute la valeur des interpretations des mesures experimentales. (Abstract shortened by UMI.)
Characterization of double oxide system Cu-Cr-O supported on γ-Al2O3
NASA Astrophysics Data System (ADS)
Cherkezova-Zheleva, Z.; Kolev, H.; Krstić, J.; Dimitrov, D.; Ivanov, K.; Loncarević, D.; Jovanović, D.; Mitov, I.
2009-09-01
Series of alumina supported chromium-copper catalysts were prepared by co-impregnation method. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and UV-visible diffuse reflectance spectroscopy. Dispersion and porosity was also obtained. The experimental and catalytic test results have drawn a conclusion that an interaction between copper and chromium ions takes place. This interaction is responsible for the enhanced catalytic activity of studied catalysts in reaction of total oxidation of industrial formaldehyde production exhaust gas, which contains CO, dimethyl ether and methanol as main components.
Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods
NASA Technical Reports Server (NTRS)
Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.
1959-01-01
The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.
Development of Surfaces Optically Suitable for Flat Solar Panels
NASA Technical Reports Server (NTRS)
Desmet, D.; Jason, A.
1978-01-01
Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, R.F.; Kravchenko, I.I.; Kuharik, J.C.
Widespread use of chromated copper arsenate (CCA) as a wood preservative has led to increasing public concern regarding possible toxic contamination of areas surrounding CCA-treated structures, e.g., decks, playground equipment, etc. Appreciable leaching of arsenic, chromium, and copper into soils adjacent to such structures has been demonstrated via standard techniques of analytical chemistry. The advantages of PIXE [rapid analysis, quick sample turnover, possible lower cost] suggest its application to this area of interest. PIXE studies in our laboratory of CCA-contaminated soil samples show good agreement with previous analyses of As, Cu, Cr, and other heavy-elemental content, with some variability inmore » diffusion rates.« less
Copper ion as a new leakage tracer.
Modaresi, J; Baharizade, M; Shareghi, A; Ahmadi, M; Daneshkazemi, A
2013-12-01
Most failures of root canal treatments are caused by bacteria. Studies showed that the most common cause of endodontic failures were the incomplete obturation of the root canal and the lack of adequate apical seal. Some in-vitro methods are used to estimate sealing quality, generally by measuring microleakage that allows the tracer agent to penetrate the filled canal. Conventional methods of evaluating the seal of endodontically treated teeth are complicated and have some drawbacks. We used copper ion diffusion method to assess the leakage and the results were compared to dye penetration method. The crowns of 21 extracted teeth were cut off at the CEJ level. After preparing the canals, the teeth were placed in tubes containing saline. They were divided randomly into 15 experimental cases; 3 positive and 3 negative controls. Positive controls were filled by single cone without sealer while the experimental and the negative control groups were filled by lateral technique. The coronal portion of gutta was removed and 9mm was left. The external surface of each tooth was coated with nail polish. Two millimeters of apical portion was immersed into 9ml of distilled water and 0.3ml of CuSO4 solution was injected into the coronal portion. After 2 days, copper sulfate was measured by an atomic absorption spectrophotometer. The teeth were then immersed in 2% methylene blue for 24 hours, sectioned and the extent of dye penetration was measured by a stereomicroscope. The maximum and minimum recorded copper ion concentrations for the experimental group were 18.37 and 2.87ppm respectively. The maximum and minimum recorded dye penetrations for the experimental group were 8.5 and 3.5mm respectively. The statistical analysis, adopting paired samples test, showed poor correlation between average recorded results of two methods. Based on our results, there was no significant correlation between the dye penetration and the copper ion diffusion methods.
Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.
ERIC Educational Resources Information Center
Ebisuzaki, Y.; Sanborn, W. B.
1985-01-01
Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
Gauge calibration by diffusion
NASA Technical Reports Server (NTRS)
Brock, F. J.; Feakes, F. (Inventor)
1968-01-01
Vacuum gage calibration by diffusing a known quantity of gas through a heated barrier into a gauge is examined. The gas flow raises the pressure in the gauge to known level and is then compared with the gauge's pressure reading.
Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Lstiburek, J. W.
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.« less
Development of Formulations for a-SiC and Manganese CMP and Post-CMP Cleaning of Cobalt
NASA Astrophysics Data System (ADS)
Lagudu, Uma Rames Krishna
We have investigated the chemical mechanical polishing (CMP) of amorphous SiC (a-SiC) and Mn and Post CMP cleaning of cobalt for various device applications. During the manufacture of copper interconnects using the damascene process the polishing of copper is followed by the polishing of the barrier material (Co, Mn, Ru and their alloys) and its post CMP cleaning. This is followed by the a-SiC hard mask CMP. Silicon carbide thin films, though of widespread use in microelectronic engineering, are difficult to process by CMP because of their hardness and chemical inertness. The earlier part of the SiC work discusses the development of slurries based on silica abrasives that resulted in high a-SiC removal rates (RRs). The ionic strength of the silica dispersion was found to play a significant role in enhancing material removal rate, while also providing very good post-polish surface-smoothness. For example, the addition of 50 mM potassium nitrate to a pH 8 aqueous slurry consisting of 10 wt % of silica abrasives and 1.47 M hydrogen peroxide increased the RR from about 150 nm/h to about 2100 nm/h. The role of ionic strength in obtaining such high RRs was investigated using surface zeta-potentials measurements and X-ray photoelectron spectroscopy (XPS). Evidently, hydrogen peroxide promoted the oxidation of Si and C to form weakly adhered species that were subsequently removed by the abrasive action of the silica particles. The effect of potassium nitrate in increasing material removal is attributed to the reduction in the electrostatic repulsion between the abrasive particles and the SiC surface because of screening of surface charges by the added electrolyte. We also show that transition metal compounds when used as additives to silica dispersions enhance a-SiC removal rates (RRs). Silica slurries containing potassium permanganate gave RRs as high as 2000 nm/h at pH 4. Addition of copper sulfate to this slurry further enhanced the RRs to ˜3500 nm/h at pH 6. Furthermore, addition of a low concentration of 250 ppm Brij-35 to this slurry suppressed the RRs of silicon dioxide to zero, while retaining the RRs of a-SiC at ˜2700 nm/h , a combination of RRs that is appropriate for hard mask polishing. The second part of this thesis focuses on the polishing of manganese which was proposed as a "self-forming" barrier material to prevent copper diffusion in advanced generation (22 nm and smaller) Si devices. A major challenge associated with such a self-forming Mn barrier for Cu interconnects in sub-22nm devices is galvanic corrosion that can occur at the Cu-Mn interface during chemical mechanical planarization. In the present work, it was shown that an aqueous solution of sucrose, BTA and potassium periodate reduces the corrosion potential gap between Cu and Mn to ˜ 0.01 V at pH 10 while also lowering the galvanic currents significantly and hence can be an excellent candidate for a polishing slurry. We discuss the role of these reagents and the inhibiting film that can be formed at the interface of the bimetallic system in this solution. Preliminary polishing results for Cu and Mn using a silica-based slurry formulated with this solution are also presented. The third part involves the development of compositions for Post CMP cleaning of cobalt barriers in advanced generation (22 nm and smaller). The thickness of the cobalt films was found to impact the corrosion behavior of the films. Thinner films of cobalt were found be more prone to galvanic corrosion in the presence of copper. The corrosion currents were low for both Cu and Co in all the solutions tested but the galvanic currents varied significantly. It was found that while BTA was not able to suppress the galvanic corrosion between Cu and Co (2000 A) at pH 8, either 60 mM of 3 Amino 1,2,4 triazole or 30 mM of 3 Amino 5 methyl thio 1,2,4 triazole were able to suppress the galvanic corrosion between Cu and Co (2000 A) to < 0.3 micro amperes per square cm at pH 8. These compositions however were not able to suppress the galvanic corrosion of Co (20 A) films. Changing the pH to 10 did not improve the results. Furthermore, addition of several complexing agents and other corrosion inhibitors also did not lower the Ecorr of Co (20 A) and Cu. Further experiments are being conducted to identify compositions to protect Co and Cu from corrosion. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Salas, Y.; Guerrero, L.; Blanco, J.; Jimenez, C.; Vera-Monroy, S. P.; Mejía-Camacho, A.
2017-12-01
In this work, DC electrochemical techniques were used to determine the corrosion rate of copper and stainless-steel electrodes used in grounding, varying the level of humidity, in sandy loam and clay loam soils. The maximum corrosion potentials were: for copper -211 and -236mV and for stainless steel of -252 and -281mV, in sandy loam and clay loam respectively, showing that in sandy loam the values are higher, about 30mV. The mechanism by which steel controls corrosion is by diffusion, whereas in copper it is carried out by transfer of mass and charge, which affects the rate of corrosion, which in copper reached a maximum value of 5mm/yr and in Steel 0.8mm/yr, determined by Tafel approximations. The behaviour of the corrosion rate was mathematically adjusted to an asymptotic model that faithfully explains the C.R. as a function of humidity, however, it is necessary to define the relation between the factor □ established in the model and the precise characteristics of the soil, such as the permeability or quantity of ions present.
Unal, Emre; Idilman, Ilkay Sedakat; Karçaaltıncaba, Muşturay
2017-02-01
New advances in liver magnetic resonance imaging (MRI) may enable diagnosis of unseen pathologies by conventional techniques. Normal T1 (550-620 ms for 1.5 T and 700-850 ms for 3 T), T2, T2* (>20 ms), T1rho (40-50 ms) mapping, proton density fat fraction (PDFF) (≤5%) and stiffness (2-3kPa) values can enable differentiation of a normal liver from chronic liver and diffuse diseases. Gd-EOB-DTPA can enable assessment of liver function by using postcontrast hepatobiliary phase or T1 reduction rate (normally above 60%). T1 mapping can be important for the assessment of fibrosis, amyloidosis and copper overload. T1rho mapping is promising for the assessment of liver collagen deposition. PDFF can allow objective treatment assessment in NAFLD and NASH patients. T2 and T2* are used for iron overload determination. MR fingerprinting may enable single slice acquisition and easy implementation of multiparametric MRI and follow-up of patients. Areas covered: T1, T2, T2*, PDFF and stiffness, diffusion weighted imaging, intravoxel incoherent motion imaging (ADC, D, D* and f values) and function analysis are reviewed. Expert commentary: Multiparametric MRI can enable biopsyless diagnosis and more objective staging of diffuse liver disease, cirrhosis and predisposing diseases. A comprehensive approach is needed to understand and overcome the effects of iron, fat, fibrosis, edema, inflammation and copper on MR relaxometry values in diffuse liver disease.
Kinetic Monte Carlo Simulations of Oxygen Diffusion in Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Good, Brian S.
2017-01-01
Ceramic Matrix Composite (CMC) materials are of interest for use in next-generation turbine engine components, offering a number of significant advantages, including reduced weight and high operating temperatures. However, in the hot environment in which such components operate, the presence of water vapor can lead to corrosion and recession, limiting the useful life of the components. Such degradation can be reduced through the use of Environmental Barrier Coatings (EBCs) that limit the amount of oxygen and water vapor reaching the component. Candidate EBC materials include Yttrium and Ytterbium silicates. In this work we present results of kinetic Monte Carlo (kMC) simulations of oxygen diffusion, via the vacancy mechanism, in Yttrium and Ytterbium disilicates, along with a brief discussion of interstitial diffusion.
NASA Technical Reports Server (NTRS)
Okojie, Robert S.; Lukco, Dorothy
2017-01-01
The degradation of ohmic contacts to 4H-SiC pressure sensors over time at high temperature is primarily due to two failure mechanisms: migrating bond pad Au and atmospheric O toward the ohmic contact SiC interface and the inter-metallic mixing between diffusion barrier systems (DBS) and the underlying ohmic contact metallization. We investigated the effectiveness of Pt/TaSi2/Pt/W (DBS-A) and Pt/Ti/W (DBS-B) in preventing Au and O diffusion through the underlying binary Ti/W or alloyed W50:Ni50 ohmic contacts to 4H-SiC and the DBS ohmic contact intermixing at temperature up to 700 C.
Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter
2018-01-15
To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.
Hou, Lin; Shan, Xiaoning; Hao, Lisha; Feng, Qianhua; Zhang, Zhenzhong
2017-05-01
Localized cancer treatment with combination therapy has attracted increasing attention for effective inhibition of tumor growth. In this work, we introduced diffusion molecular retention (DMR) tumor targeting effect, a new strategy that employed transferrin (Tf) modified hollow mesoporous CuS nanoparticles (HMCuS NPs) to undergo extensive diffuse through the interstitium and tumor retention after a peritumoral (PT) injection. Herein, HMCuS NPs with strong near-infrared (NIR) absorption and photothermal conversion efficiency could serve as not only a drug carrier but also a powerful contrast agent for photoacoustic imaging to guide chemo-phototherapy. The iron-dependent artesunate (AS), which possessed profound cytotoxicity against tumor cell, was used as model drug. As a result, this AS loaded Tf-HMCuS NPs (AS/Tf-HMCuS NPs) system could specially target to tumor cells and synchronously deliver AS as well as irons into tumor to achieve enhanced antitumor activity. It was found that AS/Tf-HMCuS NPs was taken up by MCF-7 cells via Tf-mediated endocytosis, and could effectively convert NIR light into heat for photothermal therapy as well as generated high levels of reactive oxygen species (ROS) for photodynamic therapy. In addition, in vivo antitumor efficacy studies showed that tumor-bearing mice treated with AS/Tf-HMCuS NPs through peritumoral (PT) injection under NIR laser irradiation displayed the strongest inhibition rate of about 74.8%, even with the reduced frequency of administration. Furthermore, to demonstrate DMR, the optical imaging, photoacoustic tomography and immunofluorescence after PT injection were adopted to track the behavior of AS/Tf-HMCuS NPs in vivo. The results exhibited that Tf-HMCuS NPs prolonged the local accumulation and retention together with slow vascular uptake and extensive interstitial diffusion, which was consistent with the biodistribution studies of AS/Tf-HMCuS NPs. Therefore, the approach of localized delivery through DMR combined with multi-mechanism therapy may be a promising method for cancer treatment. In recent years, localized cancer treatment using different biomaterials has attracted increasing attention for effective inhibition of tumor growth. However, it is still challenging for this kind of system to achieve a high drug loading, overcome biological barriers from the site of injection to the site of action, and combine synergetic therapy with diagnosis without adversely affecting the formation process. This study provides a localized diffusion molecular retention (DMR) tumor targeting drug delivery system based on hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) entrapment of anticancer drug for the first time, which can achieve high drug loading, improve local drug accumulation and retention, accomplish synergistic combination of chemo-phototherapy, and finally enhance antitumor effect. In addition, HMCuS NPs also possesses the property suitable for photoacoustic imaging, which could offer us a theranostic platform. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Han, Yong; Evans, James W.
2015-10-27
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less
Density Functional Theory Investigation of Proton Diffusion in Tungsten Oxide And Its Hydrates
NASA Astrophysics Data System (ADS)
Lin, Hao
Fast proton conduction mechanism is of key importance for achieving high performance in fuel cell membranes, batteries, supercapacitors, and electrochromic materials. Enhanced proton diffusion is often observed in hydrated materials where it is thought to occur via the famous Grotthuss mechanism through pathways formed by structural water. Using first-principles calculations, we demonstrate that proton diffusion in tungsten oxide dihydrate (WO3·2H 2O), a known good proton conductor, takes place within the layers of corner-sharing WO6 octahedra without direct involvement of structural water. The calculated proton migration barrier in WO3·2H 2O is in good agreement with the experimental value inferred from the temperature dependence of conductivity. The preferred proton diffusion path in WO3·2H2O is essentially the same as in gamma-WO 3. In contrast to the small intercalation voltages calculated for WO 3 and WO3·2H2O, we find that proton absorption in the monohydrate WO3·H2O is energetically highly favorable. However, strong proton-proton repulsion limits the equilibrium H content at zero voltage. We find a fast one-dimensional diffusion channel in WO3·H2O at dilute proton concentrations, but much higher barriers are expected at near-equilibrium concentrations due to strong repulsive interactions with other protons. Our results illustrate that low proton diffusion barriers and low insertion voltages both contribute to fast proton transport in bulk WO3·2H2O and gamma-WO 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Evans, James W.
2015-10-28
Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atommore » in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)« less
Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon
NASA Astrophysics Data System (ADS)
Ziebarth, Benedikt; Mrovec, Matous; Elsässer, Christian; Gumbsch, Peter
2015-09-01
The efficiency of silicon (Si)-based solar cells is strongly affected by crystal defects and impurities. Metallic impurities, in particular interstitial iron (Fe) atoms, cause large electric losses because they act as recombination centers for photogenerated charge carriers. Here, we present a systematic first-principles density functional theory (DFT) study focusing on the influence of hydrostatic, uniaxial, and shear strains on the thermodynamic stability and the diffusivity of Fe impurities in crystalline Si. Our calculations show that the formation energy of neutral Fe interstitials in tetrahedral interstitial sites is almost unaffected by uniform deformations of the Si crystal up to strains of 5%. In contrast, the migration barrier varies significantly with strain, especially for hydrostatic deformation. In order to determine effective diffusion coefficients for different strain states, a kinetic Monte Carlo (kMC) model was set up based on the activation energy barriers and frequency factors obtained from the DFT simulations. By using the strain dependence of the migration barrier, we examined the migration of Fe interstitials in the vicinity of perfect 1 /2 <110 > screw and 60∘ mixed dislocations, and 1 /6 <112 > 90∘ and 30∘ partial dislocations. While the strain field of the perfect screw dislocation always enhances the local Fe diffusion, the existence of tensile and compressive regions around the 60∘ mixed dislocation results in a strong anisotropic diffusion profile with significantly faster and slower diffusivities on its tensile and compressive sides. The influences of the partial dislocations are qualitatively similar to that of the 60∘ mixed dislocation.
Electronic Devices with Rubidium Barrier Film and Process for Making Same
1998-08-20
barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another embodiment of the 20 invention where the barrier film is... plurality of contiguous monolayers in which different monolayers thereof are formed of different types of metal atoms. -10- FIG. 8 is a schematic...system directed toward the substrate 26. A diffusion barrier precursor compound effusion cell, for example a barium fluoride, strontium fluoride or the
NASA Astrophysics Data System (ADS)
Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh
2016-09-01
A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.
The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases*
Peterson, Ryan L.; Galaleldeen, Ahmad; Villarreal, Johanna; Taylor, Alexander B.; Cabelli, Diane E.; Hart, P. John; Culotta, Valeria C.
2016-01-01
In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies. PMID:27535222
The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases
Peterson, Ryan L.; Galaleldeen, Ahmad; Villarreal, Johanna; ...
2016-08-17
In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. We reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. In spite of these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form ofmore » extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. Furthermore, SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Robert Alan
1999-12-01
Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 μm)more » copper layers sandwiched between the alumina (bulk) and niobium (127 μm). However, unlike the case of copper/nickel/copper obium is limited. Consequently, the copper is not entirely dissolved in the process, resulting in a two phase (copper-rich and niobium-rich phases) microstructure. Different processing conditions (temperature and applied load) result in different morphologies of the copper-rich and niobium-rich phases at the interface. These different microstructures exhibit distinct strength characteristics. Extended annealing of as-processed joints can influence the strengths differently depending on the ambient partial oxygen pressure at the annealing temperature. The focus of this work is to correlate processing conditions, microstructure, and resulting joint strength. Under optimum processing conditions (1400°C, 2.2 MPa), joints with strengths in excess of 200 MPa at 1200°C are fabricated.« less
Encapsulation of organic light emitting diodes
NASA Astrophysics Data System (ADS)
Visweswaran, Bhadri
Organic Light Emitting Diodes (OLEDs) are extremely attractive candidates for flexible display and lighting panels due to their high contrast ratio, light weight and flexible nature. However, the materials in an OLED get oxidized by extremely small quantities of atmospheric moisture and oxygen. To obtain a flexible OLED device, a flexible thin-film barrier encapsulation with low permeability for water is necessary. Water permeates through a thin-film barrier by 4 modes: microcracks, contaminant particles, along interfaces, and through the bulk of the material. We have developed a flexible barrier film made by Plasma Enhanced Chemical Vapor Deposition (PECVD) that is devoid of any microcracks. In this work we have systematically reduced the permeation from the other three modes to come up with a barrier film design for an operating lifetime of over 10 years. To provide quantitative feedback during barrier material development, techniques for measuring low diffusion coefficient and solubility of water in a barrier material have been developed. The mechanism of water diffusion in the barrier has been identified. From the measurements, we have created a model for predicting the operating lifetime from accelerated tests when the lifetime is limited by bulk diffusion. To prevent the particle induced water permeation, we have encapsulated artificial particles and have studied their cross section. A three layer thin-film that can coat a particle at thicknesses smaller than the particle diameter is identified. It is demonstrated to protect a bottom emission OLED device that was contaminated with standard sized glass beads. The photoresist and the organic layers below the barrier film causes sideways permeation that can reduce the lifetime set by permeation through the bulk of the barrier. To prevent the sideways permeation, an impermeable inorganic grid made of the same barrier material is designed. The reduction in sideways permeation due to the impermeable inorganic grid is demonstrated in an encapsulated OLED. In this work, we have dealt with three permeation mechanisms and shown solution to each of them. These steps give us reliable flexible encapsulation that has a lifetime of greater than 10 years.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-19
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Capolupo, Alessandra; Pindozzi, Stefania; Okello, Collins; Fiorentino, Nunzio; Boccia, Lorenzo
2015-05-01
Campania Region of Southern Italy has a complex environmental situation, due to geogenic and anthropogenic soil pollution. Some of the pollutants such as copper are mobilized in the organic matter. It has been shown that wetlands provide physical as well as biogeochemical barriers against pollutants. Therefore, the objective of this study was to introduce and test an innovative approach able to predict copper accumulation points at plot scales, using a combination of aerial photos, taken by drones, micro-rill network modelling and wetland prediction indices usually used at catchment scales. Data were collected from an area measuring 4500 m(2) in Trentola Ducenta locality of Caserta Province of southern Italy. The photos processing with a fifth generation software for photogrammetry resulted in a high resolution Digital Elevation Model (DEM), used to study micro-rill processes. The DEM was also used to test the ability of Topographic Index (TI) and the Clima-Topographic Index (CTI) to predict copper sedimentation points at plot scale (0.1-10 ha) by comparing the map of the predicted and the actual copper distribution in the field. The DEM obtained with a resolution of 30 mm showed a high potential for the study of micro-rill processes and TI and CTI indices were able to predict zones of copper accumulation at a plot scale. Copyright © 2015 Elsevier B.V. All rights reserved.
Transition joints between Zircaloy-2 and stainless steel by diffusion bonding
NASA Astrophysics Data System (ADS)
Bhanumurthy, K.; Krishnan, J.; Kale, G. B.; Banerjee, S.
1994-11-01
The diffusion bonding between Zircaloy-2 and stainless steel (AISI 304L) using niobium, nickel and copper as intermediate layers has been investigated in the temperature range of 750 to 900°C. Bonding was carried out in a vacuum hot press, under compressive loading. Electron probe microanalysis and metallographic analysis showed a good metallurgical compatibility and also indicated the absence of discontunities, micropores and intermetallic compounds at various interfaces. The bond strength of the diffusion bonded assembly was found to be about 400 MPa for the couples bonded at 870°C for 2 h. The dimple structure on the fractured surface is indicative of the ductile mode of failure of the bonded assembly.
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin; Duan, Yuhua; Morgan, Dane; Sorescu, Dan; Abernathy, Harry
Cation diffusion in La1-xSrxMnO3+/-δ (LSM) and in related perovskite materials play an important role in controlling long term performance and stability of solid oxide fuel cell (SOFCs) cathodes. Due to sluggish rates of cation diffusion and complex coupling between defect chemistry and cation diffusion pathways, currently there is still lack of quantitative theoretical model predictions on cation diffusivity vs. T and P(O2) to describe experimental cation tracer diffusivities. In this work, based on ab initio modeling of LSM defect chemistry and migration barriers of the possible cation diffusion pathways, we assess the rates of A-site and B-site cation diffusion in a wide range of T and P(O2) at x =0.0 and 0.2 for SOFC applications. We demonstrate the active cation diffusion pathways in LSM involve cation defect clusters as cation transport carriers, where reduction in the cation migration barriers, which are governed by the steric effect associated with the metal-oxygen cage in the perovskite lattice, is much greater than the penalty of repulsive interaction in the A-site and B-site cation vacancy clusters, leading to higher cation diffusion rates as compared to those of single cation vacancy hopping mechanisms. The predicted Mn and La/Sr cation self-diffusion coefficients of LSM at at x =0.0 and 0.2 along with their 1/T and P(O2) dependences, are in good agreement with the experimental tracer diffusion coefficients.
Saathoff, Manuela; Blum, Barbara; Quast, Thomas; Kirfel, Gregor; Herzog, Volker
2004-10-01
The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier. Copyright 2004 Elsevier Inc.
Erman, Andreja; Kerec Kos, Mojca; Žakelj, Simon; Resnik, Nataša; Romih, Rok; Veranič, Peter
2013-11-01
High transepithelial electrical resistance (TEER) demonstrates a functional permeability barrier of the normal urothelium, which is maintained by a layer of highly differentiated superficial cells. When the barrier is challenged, a quick regeneration is induced. We used side-by-side diffusion chambers as an ex vivo system to determine the time course of functional and structural urothelial regeneration after chitosan-induced injury. The exposure of the urothelium to chitosan caused a 60 % decrease in TEER, the exposure of undifferentiated urothelial cells to the luminal surface and leaky tight junctions. During the regeneration period (350 min), TEER recovered to control values after approximately 200 min, while structural regeneration continued until 350 min after injury. The tight junctions are the earliest and predominant component of the barrier to appear, while complete barrier regeneration is achieved by delayed superficial cell terminal differentiation. The barrier function and the structure of untreated urothelium were unaffected in side-by-side diffusion chambers for at least 6 h. The urinary bladder tissue excised from an animal thus retains the ability to maintain and restore the transepithelial barrier and cellular ultrastructure for a sufficient period to allow for studies of regeneration in ex vivo conditions.
Comparing potential copper chelation mechanisms in Parkinson's disease protein
NASA Astrophysics Data System (ADS)
Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry
2011-03-01
We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.
NASA Astrophysics Data System (ADS)
Lei, Huaping; Wang, Caizhuang; Yao, Yongxin; Wang, Yangang; Hupalo, Myron; McDougall, Dan; Tringides, Michael; Ho, Kaiming
2013-12-01
The adsorption, diffusion, and molecular dissociation of hydrogen on the biaxially strained Mg (0001) surface have been systematically investigated by the first principle calculations based on density functional theory. When the strain changes from the compressive to tensile state, the adsorption energy of H atom linearly increases while its diffusion barrier linearly decreases oppositely. The dissociation barrier of H2 molecule linearly reduces in the tensile strain region. Through the chemical bonding analysis including the charge density difference, the projected density of states and the Mulliken population, the mechanism of the strain effect on the adsorption of H atom and the dissociation of H2 molecule has been elucidated by an s-p charge transfer model. With the reduction of the orbital overlap between the surface Mg atoms upon the lattice expansion, the charge transfers from p to s states of Mg atoms, which enhances the hybridization of H s and Mg s orbitals. Therefore, the bonding interaction of H with Mg surface is strengthened and then the atomic diffusion and molecular dissociation barriers of hydrogen decrease accordingly. Our works will be helpful to understand and to estimate the influence of the lattice deformation on the performance of Mg-containing hydrogen storage materials.
NASA Astrophysics Data System (ADS)
Qin, Dan; Ge, Xu-Jin; Lü, Jing-Tao
2018-05-01
Through density functional theory based calculations, we study the adsorption and diffusion of tin phthalocyanine (SnPc) molecule on Au(111) and Cu(111) surfaces. SnPc has two conformers with Sn pointing to the vacuum (Sn-up) and substrate (Sn-down), respectively. The binding energies of the two conformers with different adsorption sites on the two surfaces, including top, bridge, fcc, hcp, are calculated and compared. It is found that the SnPc molecule binds stronger on Cu(111) surface, with binding energy about 1 eV larger than that on Au(111). Only the bridge and top adsorption sites are stable on Cu(111), while all the four adsorption sites are stable on Au(111), with small diffusion barriers between them. Moreover, the flipping barrier from Sn-up to Sn-down conformer is of the same magnitude on the two metal surfaces. These results are consistent with a recent experiment [Zhang, et al., Angew. Chem., 56, 11769 (2017)], which shows that conformation change from Sn-up to Sn-down on Cu(111) surface can be induced by a C60-functionalized STM tip, while similar change is difficult to realize on Au(111), due to smaller diffusion barrier on Au(111).
NASA Astrophysics Data System (ADS)
Ghiyasiyan-Arani, Maryam; Masjedi-Arani, Maryam; Ghanbari, Davood; Bagheri, Samira; Salavati-Niasari, Masoud
2016-05-01
In this work, copper pyrovanadate (Cu3V2O7(OH)2(H2O)2) nanoparticles have been synthesized by a simple and rapid chemical precipitation method. Different copper-organic complexes were used to control the size and morphology of products. The morphology and structure of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrum, electron dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and photoluminescence (PL) spectroscopy. The influence of copper pyrovanadate nanostructures on the flame retardancy of the polystyrene, poly vinyl alcohol and cellulose acetate was studied. Dispersed nanoparticles play the role of a magnetic barrier layer, which slows down product volatilization and prevents the flame and oxygen from the sample during decomposition of the polymer. Cu3V2O7(OH)2(H2O)2 is converted to Cu3V2O8 with an endothermic reaction which simultaneously releases water and decrease the temperature of the flame region.
NASA Astrophysics Data System (ADS)
Shizuma, Kiyoshi; Endo, Satoru; Shinozaki, Kenji; Fukushima, Hiroshi
2013-05-01
Fast neutron activation data for 63Ni in copper samples exposed to the Hiroshima atomic bomb are important in evaluating neutron doses to the survivors. Up to until now, accelerator mass spectrometry and liquid scintillation counting methods have been applied in 63Ni measurements and data were accumulated within 1500 m from the hypocenter. The slope of the activation curve versus distance shows reasonable agreement with the calculation result, however, data near the hypocenter are scarce. In the present work, two copper samples obtained from the Atomic bomb dome (155 m from the hypocenter) and the Bank of Japan building (392 m) were utilized in 63Ni beta-ray measurement with a Si surface barrier detector. Additionally, microscopic observation of the metal surfaces was performed for the first time. Only upper limit of 63Ni production was obtained for copper sample of the Atomic bomb dome. The result of the 63Ni measurement for Bank of Japan building show reasonable agreement with the AMS measurement and to fast neutron activation calculations based on the Dosimetry System 2002 (DS02) neutrons.
Search for selective ion diffusion through membranes
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.
1983-01-01
The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.
Spintronics: spin accumulation in mesoscopic systems.
Johnson, Mark
2002-04-25
In spintronics, in which use is made of the spin degree of freedom of the electron, issues concerning electrical spin injection and detection of electron spin diffusion are fundamentally important. Jedema et al. describe a magneto-resistance study in which they claim to have observed spin accumulation in a mesoscopic copper wire, but their one-dimensional model ignores two-dimensional spin-diffusion effects, which casts doubt on their analysis. A two-dimensional vector formalism of spin transport is called for to model spin-injection experiments, and the identification of spurious background resistance effects is crucial.
Yasueda, Shin-ichi; Higashiyama, Masayo; Yamaguchi, Masazumi; Isowaki, Akiharu; Ohtori, Akira
2007-08-01
The cornea is a solid barrier against drug permeation. We searched the critical barrier of corneal drug permeation using a hydrophobic drug, dexamethasone (DM), and a hydrophilic drug, lomefloxacin hydrochloride (LFLX). The activation energies for permeability of DM and LFLX across the intact cornea were 88.0 and 42.1 kJ/mol, respectively. Their activation energies for permeability across the cornea without epithelium decreased to 33.1 and 16.6 kJ/mol, respectively. The results show that epithelium is the critical barrier on the cornea against the permeation of a hydrophobic drug of DM as well as a hydrophilic drug of LFLX. The activation energy of partition for DM (66.8 kJ/mol) was approximately 3-fold larger than that of diffusion (21.2 kJ/mol). The results indicate that the partition for the hydrophobic drug of DM to the corneal epithelium is the primary barrier. Thermodynamic evaluation of activation energy for the drug permeation parameters is a good approach to investigate the mechanism of drug permeability.
Predicting First Traversal Times for Virions and Nanoparticles in Mucus with Slowed Diffusion
Erickson, Austen M.; Henry, Bruce I.; Murray, John M.; Klasse, Per Johan; Angstmann, Christopher N.
2015-01-01
Particle-tracking experiments focusing on virions or nanoparticles in mucus have measured mean-square displacements and reported diffusion coefficients that are orders of magnitude smaller than the diffusion coefficients of such particles in water. Accurate description of this subdiffusion is important to properly estimate the likelihood of virions traversing the mucus boundary layer and infecting cells in the epithelium. However, there are several candidate models for diffusion that can fit experimental measurements of mean-square displacements. We show that these models yield very different estimates for the time taken for subdiffusive virions to traverse through a mucus layer. We explain why fits of subdiffusive mean-square displacements to standard diffusion models may be misleading. Relevant to human immunodeficiency virus infection, using computational methods for fractional subdiffusion, we show that subdiffusion in normal acidic mucus provides a more effective barrier against infection than previously thought. By contrast, the neutralization of the mucus by alkaline semen, after sexual intercourse, allows virions to cross the mucus layer and reach the epithelium in a short timeframe. The computed barrier protection from fractional subdiffusion is some orders of magnitude greater than that derived by fitting standard models of diffusion to subdiffusive data. PMID:26153713
Bicarbonate diffusion through mucus.
Livingston, E H; Miller, J; Engel, E
1995-09-01
The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.
Quantitative SIMS depth profiling of diffusion barrier gate-oxynitride structures in TFT-LCDs.
Dreer, Sabine; Wilhartitz, Peter; Piplits, Kurt; Mayerhofer, Karl; Foisner, Johann; Hutter, Herbert
2004-06-01
Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device. The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.
NASA Astrophysics Data System (ADS)
Shi, Jianjian; Wang, Zhiguo; Qing Fu, Yong
2016-12-01
Coating LiMnPO4 with a thin layer of LiFePO4 shows a better electrochemical performance than the pure LiFePO4 and LiMnPO4, thus it is critical to understand Li diffusion at their interfaces to improve the performance of electrode materials. Li diffusion at the (1 0 0)\\text{LiFeP{{\\text{O}}4}} //(1 0 0)\\text{LiMnP{{\\text{O}}4}} , (0 1 0)\\text{LiFeP{{\\text{O}}4}} //(0 1 0)\\text{LiMnP{{\\text{O}}4}} , and (0 0 1)\\text{LiFeP{{\\text{O}}4}} //(0 0 1)\\text{LiMnP{{\\text{O}}4}} interfaces between LiFePO4 and LiMnPO4 was investigated using density functional theory. The calculated diffusion energy barriers are 0.55 eV for Li to diffuse along the (0 0 1) interface, 0.44 and 0.49 eV for the Li diffusion inside the LiMnPO4 and along the (1 0 0) interface, respectively. When Li diffuses from the LiFePO4 to LiMnPO4 by passing through the (0 1 0) interfaces, the diffusion barriers are 0.45 and 0.60 eV for the Li diffusions in both sides. The diffusion barriers for Li to diffuse in LiMnPO4 near the interfaces decrease compared with those in the pure LiMnPO4. The calculated diffusion coefficient of Li along the (1 0 0) interface is in the range of 3.65 × 10-11-5.28 × 10-12 cm2 s-1, which is larger than that in the pure LiMnPO4 with a value of 7.5 × 10-14 cm2 s-1. Therefore, the charging/discharging rate performance of the LiMnPO4 can be improved by surface coating with the LiFePO4.
Barriers to front propagation in laminar, three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.
2018-03-01
We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.
Stuffed MO layer as a diffusion barrier in metallizations for high temperature electronics
NASA Technical Reports Server (NTRS)
Boah, J. K.; Russell, V.; Smith, D. P.
1981-01-01
Auger electron spectroscopy was employed to characterize the diffusion barrier properties of molybdenum in the CrSi2/Mo/Au metallization system. The barrier action of Mo was demonstrated to persist even after 2000 hours annealing time at 300 C in a nitrogen ambient. At 340 C annealing temperature, however, rapid interdiffusion was observed to have occurred between the various metal layers after only 261 hours. The presence of controlled amounts of oxygen in the Mo layer is believed to be responsible for suppressing the short circuit interdiffusion between the thin film layers. Above 340 C, its is believed that the increase in the oxygen mobility led to deterioration of its stuffing action, resulting in the rapid interdiffusion of the thin film layers along grain boundaries.
NASA Astrophysics Data System (ADS)
Xu, Jun; Mills, Allen P.; Case, Carlye
2005-08-01
Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10-5 in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate that it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.
Fractional Brownian motion with a reflecting wall
NASA Astrophysics Data System (ADS)
Wada, Alexander H. O.; Vojta, Thomas
2018-02-01
Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior
Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models.
Zimmermann, Nils E R; Hannah, Daniel C; Rong, Ziqin; Liu, Miao; Ceder, Gerbrand; Haranczyk, Maciej; Persson, Kristin A
2018-02-01
We report on a scheme for estimating intercalant jump-diffusion barriers that are typically obtained from demanding density functional theory-nudged elastic band calculations. The key idea is to relax a chain of states in the field of the electrostatic potential that is averaged over a spherical volume using different finite-size ion models. For magnesium migrating in typical intercalation materials such as transition-metal oxides, we find that the optimal model is a relatively large shell. This data-driven result parallels typical assumptions made in models based on Onsager's reaction field theory to quantitatively estimate electrostatic solvent effects. Because of its efficiency, our potential of electrostatics-finite ion size (PfEFIS) barrier estimation scheme will enable rapid identification of materials with good ionic mobility.
Nonlocal transport in the presence of transport barriers
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, D.
2013-10-01
There is experimental, numerical, and theoretical evidence that transport in plasmas can, under certain circumstances, depart from the standard local, diffusive description. Examples include fast pulse propagation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and non-Gaussian statistics of fluctuations. From the theoretical perspective, non-diffusive transport descriptions follow from the relaxation of the restrictive assumptions (locality, scale separation, and Gaussian/Markovian statistics) at the foundation of diffusive models. We discuss an alternative class of models able to capture some of the observed non-diffusive transport phenomenology. The models are based on a class of nonlocal, integro-differential operators that provide a unifying framework to describe non- Fickian scale-free transport, and non-Markovian (memory) effects. We study the interplay between nonlocality and internal transport barriers (ITBs) in perturbative transport including cold edge pulses and power modulation. Of particular interest in the nonlocal ``tunnelling'' of perturbations through ITBs. Also, flux-gradient diagrams are discussed as diagnostics to detect nonlocal transport processes in numerical simulations and experiments. Work supported by the US Department of Energy.
NASA Technical Reports Server (NTRS)
Good, Brian S.
2011-01-01
Yttria-stabilized zirconia s high oxygen diffusivity and corresponding high ionic conductivity, and its structural stability over a broad range of temperatures, have made the material of interest for use in a number of applications, for example, as solid electrolytes in fuel cells. At low concentrations, the stabilizing yttria also serves to increase the oxygen diffusivity through the presence of corresponding oxygen vacancies, needed to maintain charge neutrality. At higher yttria concentration, however, diffusivity is impeded by the larger number of relatively high energy migration barriers associated with yttrium cations. In addition, there is evidence that oxygen vacancies preferentially occupy nearest-neighbor sites around either dopant or Zr cations, further affecting vacancy diffusion. We present the results of ab initio calculations that indicate that it is energetically favorable for oxygen vacancies to occupy nearest-neighbor sites adjacent to Y ions, and that the presence of vacancies near either species of cation lowers the migration barriers. Kinetic Monte Carlo results from simulations incorporating this effect are presented and compared with results from simulations in which the effect is not present.
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
Hydrogen-permeable composite metal membrane and uses thereof
Edlund, D.J.; Friesen, D.T.
1993-06-08
Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.
Li, Wei; Huang, Li; Evans, James W.; ...
2016-04-11
Epitaxial growth of Ag on Fe(100) and postdeposition relaxation have been studied in several experiments. We provide a first-principles density functional theory analysis of key adatom interaction energies and diffusion barriers controlling growth and relaxation kinetics for the submonolayer regime, as these have not been assessed previously. A cluster expansion approach is used to obtain an extensive set of conventional lateral interactions between adatoms on fourfold hollow adsorption sites. We find robust oscillatory decay of pair interactions with increasing separation, and of trio interactions with increasing perimeter length. First- and second-nearest-neighbor pair interactions, as well as compact linear and bentmore » trio interactions, dominate. The adatom terrace diffusion barrier is estimated to be E d ≈ 0.39 eV. We also provide a limited analysis of unconventional interactions for which one adatom is at the bridge-site transition state for hopping and one or more others are at fourfold hollow sites. Furthermore, energy barriers for diffusion along island edges can be determined with the aid of both conventional and unconventional interactions.« less
Fabrication of fine-grain tantalum diffusion barrier tube for Nb3Sn conductors
NASA Astrophysics Data System (ADS)
Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.
2014-01-01
Diffusion barriers used in Nb3Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.
Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms.
Keren-Paz, Alona; Brumfeld, Vlad; Oppenheimer-Shaanan, Yaara; Kolodkin-Gal, Ilana
2018-01-01
In nature, bacteria predominantly exist as highly structured biofilms, which are held together by extracellular polymeric substance and protect their residents from environmental insults, such as antibiotics. The mechanisms supporting this phenotypic resistance are poorly understood. Recently, we identified a new mechanism maintaining biofilms - an active production of calcite minerals. In this work, a high-resolution and robust µCT technique is used to study the mineralized areas within intact bacterial biofilms. µCT is a vital tool for visualizing bacterial communities that can provide insights into the relationship between bacterial biofilm structure and function. Our results imply that dense and structured calcium carbonate lamina forms a diffusion barrier sheltering the inner cell mass of the biofilm colony. Therefore, µCT can be employed in clinical settings to predict the permeability of the biofilms. It is demonstrated that chemical interference with urease, a key enzyme in biomineralization, inhibits the assembly of complex bacterial structures, prevents the formation of mineral diffusion barriers and increases biofilm permeability. Therefore, biomineralization enzymes emerge as novel therapeutic targets for highly resistant infections.
NASA Astrophysics Data System (ADS)
Mešić, Biljana; Schroeder, Herbert
2011-09-01
The high permittivity perovskite oxides have been intensively investigated for their possible application as dielectric materials for stacked capacitors in dynamic random access memory circuits. For the integration of such oxide materials into the CMOS world, a conductive diffusion barrier is indispensable. An optimized stack p++-Si/Pt/Ta21Si57N21/Ir was developed and used as the bottom electrode for the oxide dielectric. The amorphous TaSiN film as oxygen diffusion barrier showed excellent conductive properties and a good thermal stability up to 700 °C in oxygen ambient. The additional protective iridium layer improved the surface roughness after annealing. A 100-nm-thick (Ba,Sr)TiO3 film was deposited using pulsed laser deposition at 550 °C, showing very promising properties for application; the maximum relative dielectric constant at zero field is κ ≈ 470, and the leakage current density is below 10-6 A/cm2 for fields lower then ± 200 kV/cm, corresponding to an applied voltage of ± 2 V.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada
2011-06-01
The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.
Performance of two differently designed permeable reactive barriers with sulfate and zinc solutions.
Pérez, Norma; Schwarz, Alex O; Barahona, Esteban; Sanhueza, Pamela; Diaz, Isabel; Urrutia, Homero
2018-06-18
For the first time, this laboratory-scale study evaluates the feasibility of incorporating diffusive exchange in permeable reactive barriers. In order to do this, the performance of two permeable reactive barriers (PRB) with different internal substrate arrangements were compared during the administration of a sulfate solution without metals (for 163 days) and with metals (for 60 days), simulating groundwater contaminated with acid mine drainage (AMD). In order to simulate a traditional PRB, a homogeneous distribution was implemented in the first reactor and the other PRB reactor utilized diffusion-active technology (DAPRB). In the DAPRB, the distribution of the reactive material was interspersed with the conductive material. The measurements in the internal ports showed that transverse gradients of sulfide formed in the DAPRB, causing the diffusion of sulfide from the substrate toward the layer interface, which is where the sulfide reacts by forming complexes with the metal. The DAPRB prevents the microorganisms from direct contact with AMD. This protection caused greater activity (sulfide production). Copyright © 2018 Elsevier B.V. All rights reserved.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications
NASA Technical Reports Server (NTRS)
Ellis, David L.
2005-01-01
While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.
Ghysels, An; Venable, Richard M; Pastor, Richard W; Hummer, Gerhard
2017-06-13
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
Retention and diffusion of H, He, O, C impurities in Be
NASA Astrophysics Data System (ADS)
Zhang, Pengbo; Zhao, Jijun; Wen, Bin
2012-04-01
We report the energetics and diffusion behavior of H, He, O, and C impurities in beryllium as fusion materials from first-principles calculations. Among the six interstitial sites in Be, the basal tetrahedral one is most stable for H, He, O, while C prefers to occupy an octahedral site. Solution of O impurity in Be is an exothermic process with solution energy of -2.37 eV, whereas solution of H, C and He is an endothermic process (solution energy: 1.55 eV, 2.46 eV, and 5.70 eV, respectively). Overall speaking, these impurities prefer to diffuse along longer paths. The H and O impurities share the same out-of-plane diffusion path via basal tetrahedral sites, while the He and C impurities in Be mainly diffuse via basal tetrahedral and octahedral sites along the (0 0 1) plane. Diffusion of He in Be is easiest with a lowest barrier of 0.14 eV; whereas H diffusion in Be is also rather fast with migration energies of 0.4 eV. On the contrary, diffusion of C and O impurities is more difficult because of strong bonding with lattice atoms and high energy barriers of 0.42 and 1.63 eV, respectively. Our theoretical results provide the fundamental parameters for understanding the impurity aggregation and bubble formation in early stage of irradiation damage.
Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lathrop, J. W.
1982-01-01
The accelerated stress test results obtained on all terrestrial solar cells since the inception of the program are summarized. Tested cells were grouped according to the method used to form the conductive metallization layer: solder dipped, vacuum deposited, screen printed, and copper plated. Although metallization systems within each group were quite similar, they differed in numerous details according to the procedures employed by each manufacturer. Test results were summarized for all cells according to both electrical degradation and catastrophic mechanical changes. These results indicated a variability within each metallization category which was dependent on the manufacturer. Only one manufacturer was represented in the copper plated category and, although these showed no signs of detrimental copper diffusion during high temperature testing, their metallization was removed easily during high humidity pressure cooker testing. Preliminary testing of encapsulated cells showed no major differences between encapsulated and unencapsulated cells when subjected to accelerated testing.
Gan, Patrick; Foord, John S; Compton, Richard G
2015-10-01
Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur.
Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odette, G.R.; Lucas, G.E.; Wirth, B.
1997-02-01
Radiation enhanced diffusion at RPV operating temperatures around 290{degrees}C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper,more » nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools.« less
Electrodeposition of Metals in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Nishikawa, K.; Homma, T.; Chassaing, E.; Rosso, M.; Fukunaka, Y.
2012-01-01
Metal electrodeposition may introduce various morphological variations depending on the electrolytic conditions including cell configurations. For liquid electrolytes, a precise study of these deposits may be complicated by convective motion due to buoyancy. Zero-gravity (0-G) condition provided by drop shaft or parabolic flight gives a straightforward mean to avoid this effect: we present here 0-G electrodeposition experiments, which we compare to ground experiments (1-G). Two electrochemical systems were studied by laser interferometry, allowing to measure the concentration variations in the electrolyte: copper deposition from copper sulfate aqueous solution and lithium deposition from an ionic liquid containing LiTFSI. For copper, concentration variations were in good agreement with theory. For lithium, an apparent induction time was observed for the concentration evolution at 1-G: due to this induction time and to the low diffusion coefficient in ionic liquid, the concentration variations were hardly measurable in the parabolic flight 0-G periods of 20 seconds.
Enantioselective Cyanation of Benzylic C–H Bonds via Copper-Catalyzed Radical Relay
Zhang, Wen; Wang, Fei; McCann, Scott D.; Wang, Dinghai; Chen, Pinhong; Stahl, Shannon; Liu, Guosheng
2017-01-01
Direct methods for stereoselective functionalization of C(sp3)–H bonds in complex organic molecules could facilitate much more efficient preparation of therapeutics and agrochemicals. Here, we report a copper-catalyzed radical relay pathway for enantioselective conversion of benzylic C–H bonds into benzylic nitriles. Hydrogen-atom abstraction affords an achiral benzylic radical that undergoes asymmetric C(sp3)–CN bond upon reaction with a chiral copper catalyst. The reactions proceed efficiently at room temperature with the benzylic substrate as limiting reagent, exhibit broad substrate scope with high enantioselectivity (typically 90-99% enantiomeric excess), and afford products that are key precursors to important bioactive molecules. Mechanistic studies provide evidence for diffusible organic radicals and highlight the difference between these reactions and C–H oxidations mediated by enzymes and other catalysts that operate via radical rebound pathways. PMID:27701109
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ken Shuang
2004-11-01
This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimentalmore » data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.« less
Brem, S. S.; Zagzag, D.; Tsanaclis, A. M.; Gately, S.; Elkouby, M. P.; Brien, S. E.
1990-01-01
Microvascular proliferation, a hallmark of malignant brain tumors, represents an attractive target of anticancer research, especially because of the quiescent nonproliferative endothelium of the normal brain. Cerebral neoplasms sequester copper, a trace metal that modulates angiogenesis. Using a rabbit brain tumor model, normocupremic animals developed large vascularized VX2 carcinomas. By contrast, small, circumscribed, relatively avascular tumors were found in the brains of rabbits copper-depleted by diet and penicillamine treatment (CDPT). The CDPT rabbits showed a significant decrease in serum copper, copper staining of tumor cell nuclei, microvascular density, the tumor volume, endothelial cell turnover, and an increase in the vascular permeability (breakdown of the blood-brain barrier), as well as peritumoral brain edema. In non-tumor-bearing animals, CDPT did not alter the vascular permeability or the brain water content. CDPT also inhibited the intracerebral growth of the 9L gliosarcoma in F-344 rats, with a similar increase of the peritumoral vascular permeability and the brain water content. CDPT failed to inhibit tumor growth and the vascularization of the VX2 carcinoma in the thigh muscle or the metastases to the lung, findings that may reflect regional differences in the responsiveness of the endothelium, the distribution of copper, or the activity of cuproenzymes. Metabolic and pharmacologic withdrawal of copper suppresses intracerebral tumor angiogenesis; angiosuppression is a novel biologic response modifier for the in situ control of tumor growth in the brain. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 8 Figure 10 Figure 12 Figure 15 Figure 16 PMID:1700617
Healing of voids in the aluminum metallization of integrated circuit chips
NASA Technical Reports Server (NTRS)
Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas R.
1990-01-01
The thermal stability of GaAs modulation-doped field effect transistors (MODFETs) is evaluated in order to identify failure mechanisms and validate the reliability of these devices. The transistors were exposed to thermal step-stress and characterized at ambient temperatures to indicate device reliability, especially that of the transistor ohmic contacts with and without molybdenum diffusion barriers. The devices without molybdenum exhibited important transconductance deterioration. MODFETs with molybdenum diffusion barriers were tolerant to temperatures above 300 C. This tolerance indicates that thermally activated failure mechanisms are slow at operational temperatures. Therefore, high-reliability MODFET-based circuits are possible.
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Ryan L.; Galaleldeen, Ahmad; Villarreal, Johanna
In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. We reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. In spite of these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form ofmore » extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. Furthermore, SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.« less
Hu, Ching-Yao; Shih, Kaimin; Leckie, James O
2010-09-15
The study reported herein indicated the stabilization mechanisms at work when copper-laden sludge is thermally treated with gamma-alumina and kaolinite precursors, and evaluated the prolonged leachability of their product phases. Four copper-containing phases - copper oxide (CuO), cuprous oxide (Cu(2)O), copper aluminate spinel (CuAl(2)O(4)), and cuprous aluminate delafossite (CuAlO(2)) - were found in the thermal reactions of the investigated systems. These phases were independently synthesized for leaching by 0.1M HCl aqueous solution, and the relative leachabilities were found to be CuAl(2)O(4)
Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten
NASA Astrophysics Data System (ADS)
Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.
2018-01-01
Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
Back-diffusion--fact or fiction?
Thjodleifsson, B; Wormsley, K G
1977-01-01
Alterations in the concentration of acid in gastric juice secreted at different flow rates and disappearance of acid from the gastric lumen, when the gastric mucosa is exposed to acid luminal contents, have been interpreted as indicating "back-diffusion" of acid into the gastric mucosa from the luminal contents. The loss of acid from the gastric contents increases when the mucosa is exposed to certain drugs or is diseased, giving rise to the suggestion that the increased degree of "back-diffusion" of acid indicates mucosal damage, reflecting a breakdown of the gastric mucosal "barrier" to back-diffusion of acid from the gastric lumen. The change in the "barrier" properties of the gastric mucosa has been found to be associated with change in the electrical properties of the mucosa, so that alterations of the transmucosal potential difference has been considered to denote gastric mucosal damage. The case for every one of these hypotheses and for their underlying assumptions is discussed and found wanting for lack of direct evidence.
An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier
Breslow, David K.; Koslover, Elena F.; Seydel, Federica; Spakowitz, Andrew J.
2013-01-01
Specific proteins are concentrated within primary cilia, whereas others remain excluded. To understand the mechanistic basis of entry into cilia, we developed an in vitro assay using cells in which the plasma membrane was permeabilized, but the ciliary membrane was left intact. Using a diffusion-to-capture system and quantitative analysis, we find that proteins >9 nm in diameter (∼100 kD) are restricted from entering cilia, and we confirm these findings in vivo. Interference with the nuclear pore complex (NPC) or the actin cytoskeleton in permeabilized cells demonstrated that the ciliary diffusion barrier is mechanistically distinct from those of the NPC or the axon initial segment. Moreover, applying a mass transport model to this system revealed diffusion coefficients for soluble and membrane proteins within cilia that are compatible with rapid exploration of the ciliary space in the absence of active transport. Our results indicate that large proteins require active transport for entry into cilia but not necessarily for movement inside cilia. PMID:24100294
Diffusion of hydrogen into and through γ-iron by density functional theory
NASA Astrophysics Data System (ADS)
Chohan, Urslaan K.; Koehler, Sven P. K.; Jimenez-Melero, Enrique
2018-06-01
This study is concerned with the early stages of hydrogen embrittlement on an atomistic scale. We employed density functional theory to investigate hydrogen diffusion through the (100), (110) and (111) surfaces of γ-Fe. The preferred adsorption sites and respective energies for hydrogen adsorption were established for each plane, as well as a minimum energy pathway for diffusion. The H atoms adsorb on the (100), (110) and (111) surfaces with energies of ∼4.06 eV, ∼3.92 eV and ∼4.05 eV, respectively. The barriers for bulk-like diffusion for the (100), (110) and (111) surfaces are ∼0.6 eV, ∼0.5 eV and ∼0.7 eV, respectively. We compared these calculated barriers with previously obtained experimental data in an Arrhenius plot, which indicates good agreement between experimentally measured and theoretically predicted activation energies. Texturing austenitic steels such that the (111) surfaces of grains are preferentially exposed at the cleavage planes may be a possibility to reduce hydrogen embrittlement.
Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films
Cho, Joon Hyong; Gorman, Jason J.; Na, Seung Ryul; Cullinan, Michael
2017-01-01
Growth of high quality and monolayer graphene on copper thin films on silicon wafers is a promising approach to massive and direct graphene device fabrication in spite of the presence of potential dewetting issues in the copper film during graphene growth. Current work demonstrates roles of a nickel adhesion coupled with the copper film resulting in mitigation of dewetting problem as well as uniform monolayer graphene growth over 97 % coverage on films. The feasibility of monolayer graphene growth on Cu-Ni alloy films as thin as 150 nm in total is also demonstrated. During the graphene growth on Cu-Ni films, the nickel adhesion layer uniformly diffuses into the copper thin film resulting in a Cu-Ni alloy, helping to promote graphene nucleation and large area surface coverage. Furthermore, it was found that the use of extremely thin metal catalyst films also constraint the total amount of carbon that can be absorbed into the film during growth, which helps to eliminate adlayer formation and promote monolayer growth regardless of alloying content, thus improving the monolayer fraction of graphene coverage on the thinner films. These results suggest a path forward for the large scale integration of high quality, monolayer graphene into nanoelectronic and nanomechanical devices. PMID:28669999
NASA Astrophysics Data System (ADS)
Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young
2017-10-01
Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.
NASA Astrophysics Data System (ADS)
Choudhary, R. K.; Laik, A.; Mishra, P.
2017-03-01
Vacuum brazing of stainless steel and copper plates was done using a silver-based filler alloy. In one set of experiments, around 30-µm-thick nickel coatings were electrochemically applied on stainless steel plates before carrying out the brazing runs and its effect in making changes in the braze-zone microstructure was studied. For brazing temperature of 830 °C, scanning electron microscopy examination of the braze-zone revealed that relatively sound joints were obtained when brazing was done with nickel-coated stainless steel than with uncoated one. However, when brazing of nickel-coated stainless steel and copper plates was done at 860 °C, a wide crack appeared in the braze-zone adjacent to copper side. Energy-dispersive x-ray analysis and electron microprobe analysis confirmed that at higher temperature, the diffusion of Cu atoms from copper plate towards the braze-zone was faster than that of Ni atoms from nickel coating. Helium leak rate of the order 10-11 Pa m3/s was obtained for the crack-free joint, whereas this value was higher than 10-4 Pa m3/s for the joint having crack. The shear strength of the joint was found to decrease considerably due to the presence of crack.
Inter-diffusion analysis of joint interface of tungsten-rhenium couple
NASA Astrophysics Data System (ADS)
Hua, Y. F.; Li, Z. X.; Zhang, X.; Du, J. H.; Huang, C. L.; Du, M. H.
2011-09-01
The tungsten-rhenium couple was prepared by using glow plasma physical vapor deposition (PVD) on the isotropic fine grained graphite (IG) substrates. Diffusion anneals of the tungsten-rhenium couple were conducted at the temperature from 1100 °C to 1400 °C to investigate the inter-diffusion behaviors. The results showed that the thickness of the inter-diffusion zone increased with increasing annealing temperature. The relationship between the inter-diffusion coefficient and the annealing temperature accorded with the Arrhenius manner. The value of inter-diffusion activation energies was 189 kJ/mole (1.96 eV). The service time of tungsten-rhenium multilayer diffusion barrier was limited by the inter-diffusion for rhenium and tungsten rather than the diffusion of carbon in rhenium.
Wan Ngah, W S; Hanafiah, M A K M
2008-01-01
The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions from aqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed, pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increased with increase in pH, stirring speed and copper concentration but decreased with increase in biosorbent dose and ionic strength. The isotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. The maximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27 degrees C. The kinetic study revealed that pseudosecond order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determining step in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fourier transform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the binding of copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ion exchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na+, Ca2+, and Mg2+) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at > 99% using 0.05 mol/L HCl, 0.01 mol/L HNO3, and 0.01 mol/L EDTA solutions.