Sample records for copper ion absorption

  1. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    PubMed

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  2. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  3. Electronic absorption spectrum of copper-doped magnesium potassium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Rao, S. N.; Sivaprasad, P.; Reddy, Y. P.; Rao, P. S.

    1992-04-01

    The optical absorption and EPR spectra of magnesium potassium phosphate hexahydrate (MPPH) doped with copper ions are recorded both at room and liquid nitrogen temperatures. The spectrum is characteristic of Cu2+ in tetragonal symmetry. The spin-Hamiltonian parameters and molecular orbital coefficients are evaluated. A correlation between EPR and optical absorption studies is drawn.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, E. N.; Rogalev, A.; Wilhelm, F.

    The local electronic structure of copper ions in a copper metaborate CuB{sub 2}O{sub 4} crystal is studied on the ESRF synchrotron using X-ray absorption polarization-dependent spectroscopy. The X-ray natural circular dichroism near the K absorption edge of copper is measured in the direction that is perpendicular to crystal axis c. The data obtained indicate the presence of hybridized p–d electronic states of copper. Theoretical calculations are used to separate the contributions of the two crystallographically nonequivalent positions of copper atoms in the unit cell of CuB{sub 2}O{sub 4} to the absorption and X-ray circular dichroism spectra of the crystal.

  5. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    NASA Astrophysics Data System (ADS)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  6. Measurement of electron-ion relaxation in warm dense copper

    DOE PAGES

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  7. Detection of Cu2+ in Water Based on Histidine-Gold Labeled Multiwalled Carbon Nanotube Electrochemical Sensor

    PubMed Central

    Zhu, Rilong; Zhou, Gangqiang; Tang, Fengxia; Wang, Yeyao

    2017-01-01

    Based on the strong interaction between histidine and copper ions and the signal enhancement effect of gold-labeling carbon nanotubes, an electrochemical sensor is established and used to measure copper ions in river water. In this study the results show that the concentrations of copper ion have well linear relationship with the peak current in the range of 10−11–10−7 mol/L, and the limit of detection is 10−12 mol/L. When using this method to detect copper ions in the Xiangjiang River, the test results are consistent with the atomic absorption method. This study shows that the sensor is convenient to be used in daily monitoring of copper ions in river water. PMID:28408929

  8. Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.

    PubMed

    Hiraide, M; Mizuike, A

    1975-06-01

    Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.

  9. The Copper Active Site of CBM33 Polysaccharide Oxygenases

    PubMed Central

    2013-01-01

    The capacity of metal-dependent fungal and bacterial polysaccharide oxygenases, termed GH61 and CBM33, respectively, to potentiate the enzymatic degradation of cellulose opens new possibilities for the conversion of recalcitrant biomass to biofuels. GH61s have already been shown to be unique metalloenzymes containing an active site with a mononuclear copper ion coordinated by two histidines, one of which is an unusual τ-N-methylated N-terminal histidine. We now report the structural and spectroscopic characterization of the corresponding copper CBM33 enzymes. CBM33 binds copper with high affinity at a mononuclear site, significantly stabilizing the enzyme. X-band EPR spectroscopy of Cu(II)-CBM33 shows a mononuclear type 2 copper site with the copper ion in a distorted axial coordination sphere, into which azide will coordinate as evidenced by the concomitant formation of a new absorption band in the UV/vis spectrum at 390 nm. The enzyme’s three-dimensional structure contains copper, which has been photoreduced to Cu(I) by the incident X-rays, confirmed by X-ray absorption/fluorescence studies of both aqueous solution and intact crystals of Cu-CBM33. The single copper(I) ion is ligated in a T-shaped configuration by three nitrogen atoms from two histidine side chains and the amino terminus, similar to the endogenous copper coordination geometry found in fungal GH61. PMID:23540833

  10. XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th-13th century)

    NASA Astrophysics Data System (ADS)

    Padovani, S.; Puzzovio, D.; Sada, C.; Mazzoldi, P.; Borgia, I.; Sgamellotti, A.; Brunetti, B. G.; Cartechini, L.; D'Acapito, F.; Maurizio, C.; Shokoui, F.; Oliaiy, P.; Rahighi, J.; Lamehi-Rachti, M.; Pantos, E.

    2006-06-01

    It has recently been shown that lustre decoration of medieval and Renaissance pottery consists of silver and copper nanoparticles dispersed in the glassy matrix of the ceramic glaze. Here the findings of an X-ray absorption fine structure (XAFS) study on lustred glazes of shards belonging to 10th and 13rd century pottery from the National Museum of Iran are reported. Absorption spectra in the visible range have been also measured in order to investigate the relations between colour and glaze composition. Gold colour is mainly due to Ag nanoparticles, though Ag+, Cu+ and Cu2+ ions can be also dispersed within the glassy matrix, with different ratios. Red colour is mainly due to Cu nanoparticles, although some Ag nanoparticles, Ag+ and Cu+ ions can be present. The achievement of metallic Cu and the absence of Cu2+ indicate a higher reduction of copper in red lustre. These findings are in substantial agreement with previous results on Italian Renaissance pottery. In spite of the large heterogeneity of cases, the presence of copper and silver ions in the glaze confirms that lustre formation is mediated by a copper- and silver-alkali ion exchange, followed by nucleation and growth of metal nanoparticles.

  11. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  12. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    PubMed

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  13. C-H oxidation and chelation of a dipyrromethane mediated rapid colorimetric naked-eye Cu(ii) chemosensor.

    PubMed

    Rajmohan, Rajamani; Ayaz Ahmed, Khan Behlol; Sangeetha, Sampathkumar; Anbazhagan, Veerappan; Vairaprakash, Pothiappan

    2017-09-08

    Copper(ii) ion mediated C-H oxidation of dipyrromethanes (DPMs) to the corresponding dipyrrins followed by complexation invoked the selective sensing of copper(ii) ions in aqueous solutions. On the addition of copper, the colour of the DPM solution instantaneously changes from yellow to pink with the detection limit of 0.104 μM measured by absorption spectroscopy, whereas visible colour changes could be observed by the naked eye for concentrations as low as 3 μM.

  14. In vitro release of cupric ion from intrauterine devices: influence of frame, shape, copper surface area and indomethacin.

    PubMed

    Zhang, Shuangshuang; Li, Ying; Yu, Panpan; Chen, Tong; Zhou, Weisai; Zhang, Wenli; Liu, Jianping

    2015-02-01

    The release of cupric ion from copper intrauterine device (Cu-IUD) in human uterus is essential for contraception. However, excessive cupric ion will cause cytotoxic effect. In this paper, we investigated the influence of device characteristics (frame, copper surface area, shape, copper type and indomethacin) on copper release for the efficacy and adverse effects vary with IUD types which may correlate to their different release behaviors. Nine types of Cu-IUDs were selected and incubated in simulated uterine fluid. They were paired for comparison based on the device properties and the release of cupric ion was determined by flame atomic absorption spectrometer for about 160 days. The result showed that there was a burst release during the first month and the release rate tends to slow down and become steady afterwards. In addition, the copper release was mainly influenced by frame, indomethacin and copper type (copper wire and copper sleeve) while the shape variation had little effect on copper release throughout the experiment. Moreover, the influence of copper surface area was only noticeable during the first month. These findings were seldom reported before and may provide some useful information for the design of Cu-IUDs.

  15. DSC and optical studies on BaO-Li{sub 2}O-B{sub 2}O{sub 3}-CuO glass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok, E-mail: ashokbhogi@gmail.com; Kumar, R. Vijaya; Ahmmad, Shaik Kareem

    2016-05-06

    Glasses with composition 15BaO-25Li{sub 2}O-(60-x)B{sub 2}O{sub 3} -xCuO (x= 0, 0.2, 0.4, 0.6, 0.8 and 1 mol%) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and density measurements. Optical absorption studies were carried out as a function of copper ion concentration. The optical absorption spectra of studied glasses containing copper oxide exhibit a single broad band around 761nm which has been assigned to the 2B{sub 1g}→2B{sub 2g} transition. From these studies, the variations in the values of glass transition temperature (T{sub g}) have been observed. The fundamental absorption edgemore » has been determined from the optical absorption spectra. The values of optical band gap and Urbach energy were determined with increase in concentration of CuO. The variations in density, glass transition temperature, optical band gap and Urbach energy with CuO content have been discussed in terms of changes in the glass structure. The analysis of these results indicated that copper ions mostly exist in Cu{sup 2+} state in these glasses when the concentration of CuO ≤ 0.8 mol% and above this concentration copper ions seem to subsist in Cu{sup 1+} state.« less

  16. Experimental study of copper-alkali ion exchange in glass

    NASA Astrophysics Data System (ADS)

    Gonella, F.; Caccavale, F.; Bogomolova, L. D.; D'Acapito, F.; Quaranta, A.

    1998-02-01

    Copper-alkali ion exchange was performed by immersing different silicate glasses (soda-lime and BK7) in different molten eutectic salt baths (CuSO4:Na2SO4 and CuSO4:K2SO4). The obtained optical waveguides were characterized by m-lines spectroscopy for the determination of refractive index profiles, and by secondary ion mass spectrometry for the concentration profiles of the ion species involved in the exchange process. The different oxidation states of copper inside the glass structure were studied by electron paramagnetic resonance and x-ray absorption techniques. Interdiffusion copper coefficients were also determined. The Cu-alkali exchange was observed to give rise to local structural rearrangement of the atoms in the glass matrix. The Cu+ ion was found to mainly govern the exchange process, while competition between Cu-Na and K-Na exchanges occurred when a potassium sulfate bath was used. In this case, significant waveguide modal birefringence was observed.

  17. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    PubMed

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  18. Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.

    PubMed

    Jiménez, José A

    2016-06-03

    CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of silver nanoparticles stabilized with C-phycocyanin and for fluorimetric detection of copper ions

    NASA Astrophysics Data System (ADS)

    Wei, Nana; Hou, Yanhua; Lu, Zongbao; Yu, Huatong; Wang, Quanfu

    2018-01-01

    In this study, C-phycocyanin as protective agent, AgNO3 as raw material and NaBH4 as reducing agent synthesized C-phycocyanin-Ag nanoparticles (PC-AgNPs). The synthesis conditions of PC-AgNPs were determined by optimization. The maximum UV absorption peak of PC-AgNPs at 400 nm. The fluorescence excitation wavelength was 580 nm and the emission wavelength was 625 nm. PC-AgNPs was spherical in transmission electron microscope and the particles sizes were about 10-25 nm. In addition, fluorescence quenching was observed after adding copper ions to PC-AgNPs, which indicated that PC-AgNPs has potential applications in the detection of copper ions in diverse water environment.

  20. Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

    DOE PAGES

    Lu, Qingquan; Zhang, Jian; Peng, Pan; ...

    2015-05-26

    An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfonesmore » are synthesized with good to excellent yields under mild conditions.« less

  1. Estimation of the molar absorption coefficient of copper salicylate within the spectral range 300-350 nm

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2017-12-01

    Additional absorption was detected in absorption spectra within the range 300-350 nm after addition of copper sulfate CuSO4(aq) to a solution of sodium salicylate NaНSal (рН = 7.8). The additional maximum absorption was observed at 320 nm. Assuming that the additional absorption depends on the formation of copper salicylate CuSal, the molar absorption coefficient εCuSal of this complex was determined to be (3.8 ± 0.02) · 103 М- 1 сm- 1. This value is almost equal to that of monoanion HSal-, εHSal - = (3.6 ± 0.04) · 103 М- 1 сm- 1, and is 2.5 times as much as εFe3 + HSal - = (1.55 ± 0.05) · 103 М- 1 сm- 1 for iron salicylate. The difference in εCuSal and εFe3 + HSal - is due to the difference in the initial electron states of Cu2 + and Fe3 + ions that have the d9 and d5 configurations, respectively.

  2. Rapid determination of trace copper in animal feed based on micro-plate colorimetric reaction and statistical partitioning correction.

    PubMed

    Niu, Yiming; Wang, Jiayi; Zhang, Chi; Chen, Yiqiang

    2017-04-15

    The objective of this study was to develop a micro-plate based colorimetric assay for rapid and high-throughput detection of copper in animal feed. Copper ion in animal feed was extracted by trichloroacetic acid solution and reduced to cuprous ion by hydroxylamine. The cuprous ion can chelate with 2,2'-bicinchoninic acid to form a Cu-BCA complex which was detected with high sensitivity by micro-plate reader at 354nm. The whole assay procedure can be completed within 20min. To eliminate matrix interference, a statistical partitioning correction approach was proposed, which makes the detection of copper in complex samples possible. The limit of detection was 0.035μg/mL and the detection range was 0.1-10μg/mL of copper in buffer solution. Actual sample analysis indicated that this colorimetric assay produced results consistent with atomic absorption spectrometry analysis. These results demonstrated that the developed assay can be used for rapid determination of copper in animal feed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Eu3 + amidst ionic copper in glass: Enhancement through energy transfer from Cu+, or quenching by Cu2 +?

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2017-02-01

    A barium-phosphate glass system doped with europium(III) and containing a high concentration of copper(I) together with a copper(II) remnant has been studied spectroscopically. The main object is to elucidate whether the orange-red emission of Eu3 + ions succeeds through sensitization via luminescent Cu+ ions or else is preferentially quenched by non-radiative transfer to Cu2 +. A characterization of the melt-quenched glass was first performed by UV/Vis optical absorption, 31P nuclear magnetic resonance and infrared absorption spectroscopy. A photoluminescence (PL) spectroscopy and emission decay dynamics assessment was subsequently performed. Despite the concentration of Cu+ being estimated to be much higher than that of Cu2 +, the data shows that quenching of Eu3 + PL by Cu2 + dominates. The lifetime analysis of emitting centers Cu+ and Eu3 + points to the origin of the manifestation being that the Eu3 + → Cu2 + non-radiative transfer rate responsible for the quenching is almost two times higher than that for the Cu+ → Eu3 + transfer accountable for the enhancement. Finally, an effort was made for the determination of Cu2 + in the glass containing Cu+, Cu2 + and Eu3 + ions based on the Eu3 + (5D0) emission decay rates. It was found to be in excellent agreement with the UV/Vis spectrophotometric approach, thus supporting the utility of Eu3 + ions for optical sensing of copper(II) in the solid state.

  4. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  5. Optical properties of stabilized copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com; Department of Chemistry, DAV College, Amritsar, Punjab India; Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution wasmore » adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.« less

  6. Optical properties of stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohindroo, Jeevan Jyoti; Garg, Umesh Kumar; Sharma, Anshul Kumar

    2016-05-01

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5%solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv)2 and hv vs. (αhv)1/2. The value of Band gap came out to be around 1.98-2.02 eV which is in close agreement with the earlier reported values

  7. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  8. Structural and optical properties of CuO in zinc phosphate glasses and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Ouis, M. A.; ElBatal, H. A.; Abdelghany, A. M.; Hammad, Ahmed H.

    2016-01-01

    Collective optical and infrared measurements have been employed to investigate the state of increasing copper ions in host 0.5ZnO-0.5P2O5 glass composition. The same spectral measurements were repeated after gamma irradiation with a dose of 20 and 80 KGy. Optical absorption spectra reveal strong UV absorption due to trace ferric ions present as unavoidable impurities within the chemicals used in the preparation of the glasses. Copper containing glasses show an additional broad visible-near infrared band due to distorted octahedrally coordinated Cu2+ ions which at high CuO contents exhibit splitting to several component absorption peaks. Gamma irradiation causes several variations between the response of the base host zinc phosphate glass and effect of increasing CuO. These changes are correlated with both the formation of induced defects through suggested photochemical reactions in the UV region and some shielding effects with increasing CuO in the visible-near infrared spectrum. Infrared absorption spectra reveal repetitive vibrational bands due to phosphate groups mainly from metaphosphate units and the spectra show some variations with the increase of CuO content visualize by the increase of the intensity of the mid broad band extending in the range 800-1500 cm-1.

  9. H2 Production Under Visible Light Irradiation from Aqueous Methanol Solution on CaTiO3:Cu Prepared by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young

    2017-10-01

    Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.

  10. Synthesis, structure, spectroscopic and electrochemical properties of (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet; Büyükgüngör, Orhan

    2007-05-01

    The (2-amino-4-methylpyrimidine)-(pyridine-2,6-dicarboxylato)copper(II) monohydrate complex was synthesized and characterized by spectroscopic (IR, UV/Vis, EPR), thermal (TG/DTA) and electrochemical methods. X-ray structural analysis of the title complex revealed that the copper ion can be considered to have two coordination spheres. In the first coordination sphere the copper ion forms distorted square-planar geometry with trans-N 2O 2 donor set, and also the metal ion is weakly bonded to the amino-nitrogen in the layer over and to the carboxylic oxygen in the layer underneath in the second coordination sphere. The second coordination environment on the copper ion is attributed to pseudo octahedron. The powder EPR spectra of Cu(II) complex at room and liquid nitrogen temperature were recorded. The calculated g and A parameters have indicated that the paramagnetic centre is axially symmetric. The molecular orbital bond coefficients of the Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centered electroactivity in the potential range -1.25 to 1.5 V versus Ag/AgCl reference electrode.

  11. Adsorption of Cu(II) from aqueous solution on sulfuric acid treated palygorskite

    NASA Astrophysics Data System (ADS)

    Niu, Yan-Ning; Yuan, Yuan; Gao, Wei-Xin; Qian, Sheng; Sun, Wen

    2018-03-01

    The absorption behavior of Cu2+ from aqueous solution on sulfuric acid treated palygorskite were investigated, the results showed that palygorskite had high absorption ability for Cu2+ from aqueous solution. Effects of the shaking time, pH and the copper ion concentration on the removal rate were discussed. The absorption behavior of Cu2+ could be well imitated by the Langmuir isothermal equation.

  12. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations.

    PubMed

    Soylak, Mustafa; Erdogan, Nilgun D

    2006-09-21

    A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 microg/l for iron-3.4 microg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey.

  13. Evaluation of the possible role of copper ions in drinking water in the pathogenesis of oral submucous fibrosis: a pilot study.

    PubMed

    Arakeri, Gururaj; Patil, Shekhar Gowda; Ramesh, D N S V; Hunasgi, Santosh; Brennan, Peter A

    2014-01-01

    We aimed to investigate the concentration of copper ions in drinking water and to assess whether copper has a role in the pathogenesis of oral submucous fibrosis (OSMF). We studied 50 patients with clinically and histologically diagnosed OSMF from the Yadgir district of Karnataka in India. Fifty healthy people matched for age and sex were used as controls. In both groups concentrations of copper ions in serum, saliva, and home drinking water were measured using atomic absorption spectroscopy and intelligent nephelometry technology. Serum ceruloplasmin concentrations were also estimated in both groups. The mean (SD) concentration of copper in the home drinking water of patients with OSMF was significantly higher (764.3 (445.9)μmol/L) than in the controls (305.7 (318.5)μmol/L) (p<0.001). Patients with OSMF also had a significantly higher copper concentrations in serum and saliva, and serum ceruloplasmin than controls (p<0.001). For the first time these data have shown a positive association between copper concentrations in home drinking water and OSMF. It raises the possibility that increased copper in drinking water contributes to the development of OSMF, and adds to that ingested when areca nut is chewed. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: key information from ultrafast electronic spectroscopy.

    PubMed

    Kar, Prasenjit; Sardar, Samim; Alarousu, Erkki; Sun, Jingya; Seddigi, Zaki S; Ahmed, Saleh A; Danish, Ekram Y; Mohammed, Omar F; Pal, Samir Kumar

    2014-08-11

    Protoporphyrin IX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supercontinuum generation through DNA-filled hollow core fiber for broadband absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cho, Youngho; Park, Byeongho; Oh, Juyeong; Seo, Min Ah; Lee, Kwanil; Kim, Chulki; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Kim, Hyung Min; Lee, Hyuk Jae; Oh, Kyunghwan; Yeom, Dong-Il; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    In this study, we successfully generated the large bandwidth of supercontinuum spectra through hollow fibers filled with DNA. Also, by observing that spectra bandwidth was the widest in the order of the hollow core fiber filled with DNA modified by copper ion, the hollow core fiber with only DNA, and the bulk hollow core fiber, we demonstrated that DNA material modified with copper ions can further enhance the spectral bandwidth of supercontinuum. As a result, we anticipate that the SCG as a broadband light source can be used in analytical methods to demonstrate a wide range of biological and environmental questions.

  16. Comparison of metal ion release from different bracket archwire combinations: an in vitro study.

    PubMed

    Karnam, Srinivas Kumar; Reddy, A Naveen; Manjith, C M

    2012-05-01

    The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations.

  17. Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase.

    PubMed

    Dooley, D M; Moog, R S; Liu, M Y; Payne, W J; LeGall, J

    1988-10-15

    Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.

  18. Modified surface based on magnetic nanocomposite of dithiooxamide/Fe3O4 as a sorbent for preconcentration and determination of trace amounts of copper

    NASA Astrophysics Data System (ADS)

    Mirabi, Ali; Shokuhi Rad, Ali; Khodadad, Hadiseh

    2015-09-01

    Magnetic nanocomposites surface (MNCS) which has anionic surfactant sodium dodecyl sulfate (SDS) coating and has undergone dithiooxamide treatment as the sorbent could be an easy and useful method to extract and make a pre-concentrated in detecting the copper ions before they are determined via the flame atomic absorption spectrometry (FAAS). The influences of the experimental parameters such as the pH of the sample, the type and concentration of the eluent, dithiooxamide concentration and volume, amount of sorbent and the interactions of ions with respect to the copper ion detection have been studied. The calibration graph was linear in the range of 2-600 ng ml-1 with detection limit of 0.2 ng ml-1. Relative standard deviation (RSD) for 6 replicate measurements was 1.8%. This method of detection has been applied to the determination of Cu ions at levels in real samples such as wheat flour, tomatoes, potatoes, red beans, oat, tap water, river water and sea water with satisfactory results.

  19. Investigation of Industrial Polyurethane Foams Modified with Antimicrobial Copper Nanoparticles

    PubMed Central

    Sportelli, Maria Chiara; Picca, Rosaria Anna; Ronco, Roberto; Bonerba, Elisabetta; Tantillo, Giuseppina; Pollini, Mauro; Sannino, Alessandro; Valentini, Antonio; Cataldi, Tommaso R.I.; Cioffi, Nicola

    2016-01-01

    Antimicrobial copper nanoparticles (CuNPs) were electrosynthetized and applied to the controlled impregnation of industrial polyurethane foams used as padding in the textile production or as filters for air conditioning systems. CuNP-modified materials were investigated and characterized morphologically and spectroscopically, by means of Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). The release of copper ions in solution was studied by Electro-Thermal Atomic Absorption Spectroscopy (ETAAS). Finally, the antimicrobial activity of freshly prepared, as well as aged samples—stored for two months—was demonstrated towards different target microorganisms. PMID:28773665

  20. Ion beam treatment of potential space materials at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kussmaul, Michael; Mirtich, Michael J.; Curren, Arthur

    1992-01-01

    Ion source systems in different configurations, have been used to generate unique morphologies for several NASA space applications. The discharge chamber of a 30 cm ion source was successfully used to texture potential space radiator materials for the purpose of obtaining values of thermal emittance greater than 0.85 at 700 and 900 K. High absorptance surfaces were obtained using ion beam seed texturing, for space radiator materials that were flown on the Long Duration Exposure Facility (LDEF) for 5.8 years in space. An ion source discharge chamber was also used to develop electrode surfaces with suppressed secondary electron emission characteristics for use in collectors in microwave amplifier traveling wave tubes. This was accomplished by sputtering textured carbon onto copper as well as texturing copper using tantalum and molybdenum as sacrificial texture inducing seeding materials. In a third configuration, a dual ion beam system was used to generate high transmittance diamondlike carbon (DLC) films.

  1. Role of copper oxides in contact killing of bacteria.

    PubMed

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  2. A theoretical and experimental study of calcium, iron, zinc, cadmium, and sodium ions absorption by aspartame.

    PubMed

    Mahnam, Karim; Raisi, Fatame

    2017-03-01

    Aspartame (L-Aspartyl-L-phenylalanine methyl ester) is a sweet dipeptide used in some foods and beverages. Experimental studies show that aspartame causes osteoporosis and some illnesses, which are similar to those of copper and calcium deficiency. This raises the issue that aspartame in food may interact with cations and excrete them from the body. This study aimed to study aspartame interaction with calcium, zinc, iron, sodium, and cadmium ions via molecular dynamics simulation (MD) and spectroscopy. Following a 480-ns molecular dynamics simulation, it became clear that the aspartame is able to sequester Fe 2+ , Ca 2+ , Cd 2+ , and Zn 2+ ions for a long time. Complexation led to increasing UV-Vis absorption spectra and emission spectra of the complexes. This study suggests a potential risk of cationic absorption of aspartame. This study suggests that purification of cadmium-polluted water by aspartame needs a more general risk assessment.

  3. Evidence of CuI/CuII Redox Process by X-ray Absorption and EPR Spectroscopy: Direct Synthesis of Dihydrofurans from b-Ketocarbonyl Derivatives and Olefins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Hong; Liao, Zhixiong; Zhang, Guanghui

    Abstract: The CuI/CuII and CuI/CuIII catalytic cycles have been subject to intense debate in the field of copper-catalyzed oxidative coupling reactions. A mechanistic study on the CuI/CuII redox process, by X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of CuII to CuI by 1,3-diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby-formed CuI has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper-catalyzed oxidative cyclization of b-ketocarbonyl derivatives to dihydrofurans. This protocol provides an idealmore » route to highly substituted dihydrofuran rings from easily available 1,3-dicarbonyls and olefins. Copper« less

  4. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples.

    PubMed

    Karimi, H; Ghaedi, M; Shokrollahi, A; Rajabi, H R; Soylak, M; Karami, B

    2008-02-28

    A simple, selective and rapid flotation method for the separation-preconcentration of trace amounts of cobalt, nickel, iron and copper ions using phenyl 2-pyridyl ketone oxime (PPKO) has been developed prior to their flame atomic absorption spectrometric determinations. The influence of pH, amount of PPKO as collector, type and amount of eluting agent, type and amount of surfactant as floating agent and ionic strength was evaluated on the recoveries of analytes. The influences of the concomitant ions on the recoveries of the analyte ions were also examined. The enrichment factor was 93. The detection limits based on 3 sigma for Cu, Ni, Co and Fe were 0.7, 0.7, 0.8, and 0.7 ng mL(-1), respectively. The method has been successfully applied for determination of trace amounts of ions in various real samples.

  5. Influence of valence state of copper ions on structural and spectroscopic properties of multi-component PbO-Al2O3-TeO2-GeO2-SiO2 glass ceramic system- a possible material for memory switching devices

    NASA Astrophysics Data System (ADS)

    Tirupataiah, Ch.; Narendrudu, T.; Suresh, S.; Srinivasa Rao, P.; Vinaya Teja, P. M.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-11-01

    Multi-component glass ceramics with composition 29PbO-5Al2O3-1TeO2 -10GeO2- (55-x) SiO2 doped with different concentrations of CuO (0 ≤ x ≤ 1.0 mol %) were synthesized by melt quenching technique and subsequent heat treatment. These glass ceramics were characterized by X-ray diffraction, scanning electron microscope, differential thermal analysis, optical absorption, electron paramagnetic resonance, Fourier transform infrared and Raman studies. The absorption spectra of these glass ceramics exhibited a broad absorption band in the range 650-950 nm which is ascribed to 2B1g → 2B2g octahedral transition of Cu2+ ions. A feeble band around 364 nm is also identified in the samples doped with CuO up to 0.6 mol% as being due to charge transfer between the two oxidation states Cu2+ and Cu+ of copper ions. The EPR spectrum recorded at room temperature exhibited a strong resonance signal at g⊥ = 2.072 and a shallow quadruplet at about gǁ = 2.401. FTIR and Raman spectra of the titled samples provide significant information about various structural units viz., silicate, germanate, PbO4, PbO6, AlO6, TeO4 and TeO3 that are present in these ceramic matrix. Analysis of the spectroscopic investigations reveals that with an increase in the concentration of CuO up to 0.6 mol% copper ions do exist in Cu2+ and Cu+ states and they act as modifiers and net work formers respectively. Therefore, glass ceramic sample contains 0.6 mol% of CuO is favorable for memory switching action.

  6. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  7. Determination of copper in tap water using solid-phase spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Philipp, Warren H.; Tanner, Stephen P.

    1994-01-01

    A new application of ion exchange films is presented. The films are used in a simple analytical method of directly determining low concentrations of Cu(2+) in aqueous solutions, in particular, drinking water. The basis for this new test method is the color and absorption intensity of the ion when adsorbed onto the film. The film takes on the characteristic color of the adsorbed cation, which is concentrated on the film by many orders of magnitude. The linear relationship between absorbance (corrected for variations in film thickness) and solution concentration makes the determinations possible. These determinations agree well with flame atomic absorption determinations.

  8. Nickel Ion Release from Three Types of Nickel-titanium-based Orthodontic Archwires in the As-received State and After Oral Simulation

    PubMed Central

    Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh

    2014-01-01

    Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049

  9. Effects of ionizing radiations on the optical properties of ionic copper-activated sol-gel silica glasses

    NASA Astrophysics Data System (ADS)

    Al Helou, Nissrine; El Hamzaoui, Hicham; Capoen, Bruno; Ouerdane, Youcef; Boukenter, Aziz; Girard, Sylvain; Bouazaoui, Mohamed

    2018-01-01

    Studying the impact of radiations on doped silica glasses is essential for several technological applications. Herein, bulk silica glasses, activated with various concentrations of luminescent monovalent copper (Cu+), have been prepared using the sol-gel technique. Thereafter, these glasses were subjected to X- or γ-rays irradiation at 1 MGy(SiO2) accumulated dose. The effect of these ionizing radiations on the optical properties of these glasses, as a function of the Cu-doping content, were investigated using optical absorption and photoluminescence spectroscopies. Before any irradiation, the glass with the lowest copper concentration exhibits blue and green luminescence bands under UV excitation, suggesting that Cu+ ions occupy both cubic and tetragonal symmetry sites. However, at higher Cu-doping level, only the green emission band exists. Moreover, we showed that the hydroxyl content decreases with increasing copper doping concentration. Both X and γ radiation exposures induced visible absorption due to HC1 color centers in the highly Cu-doped glasses. In the case of the lower Cu-doped glass, the Cu+ sites with a cubic symmetry are transformed into sites with tetragonal symmetry.

  10. Is a high serum copper concentration a risk factor for implantation failure?

    PubMed

    Matsubayashi, Hidehiko; Kitaya, Kotaro; Yamaguchi, Kohei; Nishiyama, Rie; Takaya, Yukiko; Ishikawa, Tomomoto

    2017-08-10

    Copper-containing contraceptive devices may deposit copper ions in the endometrium, resulting in implantation failure. The deposition of copper ions in many organs has been reported in patients with untreated Wilson's disease. Since these patients sometimes exhibit subfertility and/or early pregnancy loss, copper ions were also considered to accumulate in the uterine endometrium. Wilson's disease patients treated with zinc successfully delivered babies because zinc interfered with the absorption of copper from the gastrointestinal tract. These findings led to the hypothesis that infertile patients with high serum copper concentrations may have implantation failure due to the excess accumulation of copper ions. The relationship between implantation (pregnancy) rates and serum copper concentrations has not yet been examined. The Japanese government recently stated that actual copper intake was higher among Japanese than needed. Therefore, the aim of the present study was to investigate whether serum copper concentrations are related to the implantation (pregnancy) rates of human embryos in vivo. We included 269 patients (age <40 years old) who underwent vitrifying and warming single embryo transfer with a hormone replacement cycle using good blastocysts (3BB or more with Gardner's classification). Serum hCG, copper, and zinc concentrations were measured 16 days after the first date of progesterone replacement. We compared 96 women who were pregnant without miscarriage at 10 weeks of gestation (group P) and 173 women who were not pregnant (group NP). No significant differences were observed in age or BMI between the groups. Copper concentrations were significantly higher in group NP (average 193.2 μg/dL) than in group P (average 178.1 μg/dL). According to the area under the curve (AUC) on the receiver operating characteristic curve for the prediction of clinical pregnancy rates, the Cu/Zn ratio (AUC 0.64, 95% CI 0.54-0.71) was a better predictor than copper or zinc. When we set the cut-off as 1.59/1.60 for the Cu/Zn ratio, sensitivity, specificity, the positive predictive value, and negative predictive value were 0.98, 0.29, 0.71, and 0.88, respectively. Our single-center retrospective study suggests that high serum copper concentrations (high Cu/Zn ratio) are a risk factor for implantation failure.

  11. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    NASA Astrophysics Data System (ADS)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  12. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins

    DOE PAGES

    Chacon, Kelly N.; Mealman, Tiffany D.; McEvoy, Megan M.; ...

    2014-10-13

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host–pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. In this paper, we use selenomethionine (SeM) active site labelsmore » in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a “switch” role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Finally, our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm.« less

  13. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.

    PubMed

    Chacón, Kelly N; Mealman, Tiffany D; McEvoy, Megan M; Blackburn, Ninian J

    2014-10-28

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host-pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. Here, we use selenomethionine (SeM) active site labels in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a "switch" role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm.

  14. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  15. Incorporation of copper nanoparticles into paper for point-of-use water purification

    PubMed Central

    Smith, James A.

    2014-01-01

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 minutes and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). PMID:25014431

  16. Metal ion influence on eumelanin fluorescence and structure.

    PubMed

    Sutter, Jens-Uwe; Birch, David J S

    2014-04-10

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  17. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  18. Influence of environmental factors on absorption characteristics of suspended particulate matter and CDOM in Liaohe River watershed, northeast China.

    PubMed

    Shao, Tiantian; Zheng, Hui; Song, Kaishan; Zhao, Ying; Zhang, Bai

    2017-08-01

    Absorption characteristics of optically active substances, including non-algal particles, phytoplankton, and chromophoric dissolved organic matter (CDOM), were measured in conjunction with environmental factors in five rivers within the Liaohe River watershed. Spectral absorption of non-algal particles [a NAP (λ)] was similar to that of total particles for most samples, suggesting that the absorption of the total particles [a p (λ)] was dominated by a NAP (λ). The CDOM absorption spectra [a CDOM (λ)] of West Liaohe and Taizihe rivers were easily distinguished from those of Hunhe, Liaohe, and East Liaohe rivers. Redundancy analysis indicated that absorption by optically active substances and anthropogenic nutrient disturbances probably resulted in the diversity of water quality parameters. The environmental variables including dissolved organic carbon, total alkalinity (TAlk), and total nitrogen (TN) had a significant correlation with CDOM absorption at 440 nm [a CDOM (440)]. There was almost no correlation between a p (λ) and chlorophyll a, TN, total phosphorus, and TAlk. Moreover, total copper ion concentration and mercury ion concentration had a strong correlation with a p (440), a p (675), a NAP (440), and a NAP (675). The concentration of total aluminum ions exhibited a positive correlation with a p (675) and a NAP (675) (p < 0.05), and a significant correlation was observed between total arsenic concentration and a CDOM (440). Furthermore, the interaction between metal ions and optically active substances provided an insight into particulates and CDOM properties linked to water quality characteristics for rivers in semiarid areas.

  19. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead.

    PubMed

    Ghaedi, M; Ahmadi, F; Tavakoli, Z; Montazerozohori, M; Khanmohammadi, A; Soylak, M

    2008-04-15

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 microg L(-1) using activated carbon modified with DFID; 0.52 and 0.37 microg L(-1) using activated carbon modified with DFTD and 0.46 and 0.31 microg L(-1) using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%).

  20. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples.

    PubMed

    Ghaedi, M; Ahmadi, F; Soylak, M

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni2+, Cu2+ and Co2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 microg L(-1) for copper, 0.75 microg L(-1) for nickel and 0.80 microg L(-1) for cobalt. The loading capacity was 0.56 mg g(-1) for Ni2+, 0.50 mg g(-1) for Cu2+ and 0.47 mg g(-1) for Co2+. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n=3).

  1. Synthesis and characterization of oil palm empty fruit bunch-grafted-polyvinyl alcohol (OPEFB-g-PVA) hydrogel for removal of copper ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah

    2017-12-01

    Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.

  2. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    PubMed

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  3. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  4. Incorporation of copper nanoparticles into paper for point-of-use water purification.

    PubMed

    Dankovich, Theresa A; Smith, James A

    2014-10-15

    As a cost-effective alternative to silver nanoparticles, we have investigated the use of copper nanoparticles in paper filters for point-of-use water purification. This work reports an environmentally benign method for the direct in situ preparation of copper nanoparticles (CuNPs) in paper by reducing sorbed copper ions with ascorbic acid. Copper nanoparticles were quickly formed in less than 10 min and were well distributed on the paper fiber surfaces. Paper sheets were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and atomic absorption spectroscopy. Antibacterial activity of the CuNP sheets was assessed for by passing Escherichia coli bacteria suspensions through the papers. The effluent was analyzed for viable bacteria and copper release. The CuNP papers with higher copper content showed a high bacteria reduction of log 8.8 for E. coli. The paper sheets containing copper nanoparticles were effective in inactivating the test bacteria as they passed through the paper. The copper levels released in the effluent water were below the recommended limit for copper in drinking water (1 ppm). Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. CorA Is a Copper Repressible Surface-Associated Copper(I)-Binding Protein Produced in Methylomicrobium album BG8

    PubMed Central

    Johnson, Kenneth A.; Ve, Thomas; Larsen, Øivind; Pedersen, Rolf B.; Lillehaug, Johan R.; Jensen, Harald B.; Helland, Ronny; Karlsen, Odd A.

    2014-01-01

    CorA is a copper repressible protein previously identified in the methanotrophic bacterium Methylomicrobium album BG8. In this work, we demonstrate that CorA is located on the cell surface and binds one copper ion per protein molecule, which, based on X-ray Absorption Near Edge Structure analysis, is in the reduced state (Cu(I)). The structure of endogenously expressed CorA was solved using X-ray crystallography. The 1.6 Å three-dimensional structure confirmed the binding of copper and revealed that the copper atom was coordinated in a mononuclear binding site defined by two histidines, one water molecule, and the tryptophan metabolite, kynurenine. This arrangement of the copper-binding site is similar to that of its homologous protein MopE* from Metylococcus capsulatus Bath, confirming the importance of kynurenine for copper binding in these proteins. Our findings show that CorA has an overall fold similar to MopE, including the unique copper(I)-binding site and most of the secondary structure elements. We suggest that CorA plays a role in the M. album BG8 copper acquisition. PMID:24498370

  6. A porous Cu/LDPE composite for copper-containing intrauterine contraceptive devices.

    PubMed

    Zhang, Weiwei; Xia, Xianping; Qi, Cheng; Xie, Changsheng; Cai, Shuizhou

    2012-02-01

    To improve the rates of both cupric ion release and the utilization of copper in non-porous copper/low-density polyethylene (Cu/LDPE) composite, a porous Cu/LDPE composite is proposed and developed in the present work. Here 2,5-di-tert-butylhydroquinone was chosen as the porogen, ethyl acetate was chosen as the solvent for extraction, and the porous Cu/LDPE composite was obtained by using injection molding and the particulate leaching method. After any residual ethyl acetate remaining inside the porous Cu/LDPE composite had been removed by vacuum drying, the composite was characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry and absorption measurement. For comparison, a non-porous Cu/LDPE composite was also characterized in the same way. The results show that the porous structure was successfully introduced into the polymeric base of the non-porous Cu/LDPE composite, and the porous Cu/LDPE composite is a simple hybrid of copper particles and porous LDPE. The results also show that the introduction of a porous structure can improve the cupric ion release rate of the non-porous Cu/LDPE composite with a certain content of copper particles, indicating that the utilization rate of copper can be improved either the introduction of a porous structure, and that the porous Cu/LDPE composite is another promising material for copper-containing intrauterine devices. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. [Analysis the cupric ion release characteristics of different copper raw materials in intrauterine device in vitro using ICP method].

    PubMed

    Lu, Hua; Ding, Tingting; Yao, Tianping; Sun, Jiao

    2014-05-01

    To study the Cupric ion release characteristics of different copper raw materials in intrauterine device in vitro by ICP. Reveal the relationship between purity and shape of Cu-IUD copper and copper ion release. According to a certain proportion, the copper raw materials were 100 times diluted into the simulated uterine solution at 37 +/- 0.5 degrees C. Replaced medium at certain time points and collected soaking liquid. Using ICP analyzed the concentration of copper ion released. The largest daily release of copper ions was in the first 7 days. There was no statistically significant difference between the copper ion release amount of 99.99% and 99.95% purity copper wire (P > 0.05). The release of copper ion of the copper wire was far greater than that of the copper pipe in early stage (P < 0.01). The release amount decreased and stabilized at 56 day. Release characteristics of copper ion could effectively analysis by ICP. And in the same area, the release amount of copper ions of copper wire was greater than that of copper pipe.

  8. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  9. Stopping of relativistic heavy ions in various media

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.

    1986-01-01

    The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.

  10. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

    PubMed Central

    Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole

    2013-01-01

    Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

  11. Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1.

    PubMed

    Li, Wenbo; Lacey, Randy F; Ye, Yajin; Lu, Juan; Yeh, Kuo-Chen; Xiao, Youli; Li, Laigeng; Wen, Chi-Kuang; Binder, Brad M; Zhao, Yang

    2017-04-01

    Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human.

  12. Micro determination of plasma and erythrocyte copper by atomic absorption spectrophotometry

    PubMed Central

    Blomfield, Jeanette; Macmahon, R. A.

    1969-01-01

    The free and total plasma copper and total erythrocyte copper levels have been determined by simple, yet sensitive and highly specific methods, using atomic absorption spectrophotometry. For total copper determination, the copper was split from its protein combination in plasma or red cells by the action of hydrochloric acid at room temperature. The liberated copper was chelated by ammonium pyrrolidine dithiocarbamate and extracted into n-butyl acetate by shaking and the organic extract was aspirated into the atomic absorption spectrophotometer flame. The entire procedure was carried out in polypropylene centrifuge tubes, capped during shaking. For the free plasma copper measurement the hydrochloric acid step was omitted. Removal of the plasma or erythrocyte proteins was found to be unnecessary, and, in addition, the presence of trichloracetic acid caused an appreciable lowering of absorption. Using a double-beam atomic absorption spectrophotometer and scale expansion × 10, micro methods have been derived for determining the total copper of plasma or erythrocytes with 0·1 ml of sample, and the free copper of plasma with 0·5 ml. The macro plasma copper method requires 2 ml of plasma and is suitable for use with single-beam atomic absorption spectrophotometers. With blood from 50 blood donors, normal ranges of plasma and erythrocyte copper have been determined. PMID:5776543

  13. Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite

    NASA Astrophysics Data System (ADS)

    Tiberg, Charlotta; Sjöstedt, Carin; Persson, Ingmar; Gustafsson, Jon Petter

    2013-11-01

    Transport of lead(II) and copper(II) ions in soil is affected by the soil phosphorus status. Part of the explanation may be that phosphate increases the adsorption of copper(II) and lead(II) to iron (hydr)oxides in soil, but the details of these interactions are poorly known. Knowledge about such mechanisms is important, for example, in risk assessments of contaminated sites and development of remediation methods. We used a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and surface complexation modeling with the three-plane CD-MUSIC model to study the effect of phosphate on sorption of copper(II) and lead(II) to ferrihydrite. The aim was to identify the surface complexes formed and to derive constants for the surface complexation reactions. In the batch experiments phosphate greatly enhanced the adsorption of copper(II) and lead(II) to ferrihydrite at pH < 6. The largest effects were seen for lead(II).

  14. The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations

    NASA Astrophysics Data System (ADS)

    Olshin, Pavel K.; Myasnikova, Olesya S.; Kashina, Maria V.; Gorbunov, Artem O.; Bogachev, Nikita A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Pulkin, Sergey A.; Kochemirovsky, Vladimir A.; Skripkin, Mikhail Yu.; Mereshchenko, Andrey S.

    2018-03-01

    The results of spectrophotometric study and quantum chemical calculations for copper(II) chloro- and bromocomplexes in acetonitrile are reported. Electronic spectra of the individual copper(II) halide complexes were obtained in a wide spectral range 200-2200 nm. Stability constants of the individual copper(II) halide complexes in acetonitrile were calculated: log β1 = 8.5, log β2 = 15.6, log β3 = 22.5, log β4 = 25.7 for [CuCln]2-n and log β1 = 17.0, log β2 = 24.6, log β3 = 28.1, log β4 = 30.4 for [CuBrn]2-n. Structures of the studied complexes were optimized and electronic spectra were simulated using DFT and TD-DFT methodologies, respectively. According to the calculations, the more is the number of halide ligands the less is coordination number of copper ion.

  15. Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1

    PubMed Central

    Li, Wenbo; Ye, Yajin; Lu, Juan; Yeh, Kuo-Chen; Xiao, Youli; Li, Laigeng; Binder, Brad M.

    2017-01-01

    Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human. PMID:28388654

  16. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    PubMed

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  17. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streltsov, Victor A.; Titmuss, Stephen J.; Epa, V. Chandana

    Neurodegeneration observed in Alzheimer disease (AD) is believed to be related to the toxicity from reactive oxygen species (ROS) produced in the brain by the amyloid-{beta} (A{beta}) protein bound primarily to copper ions. The evidence for an oxidative stress role of A{beta}-Cu redox chemistry is still incomplete. Details of the copper binding site in A{beta} may be critical to the etiology of AD. Here we present the structure determined by combining x-ray absorption spectroscopy (XAS) and density functional theory analysis of A{beta} peptides complexed with Cu{sup 2+} in solution under a range of buffer conditions. Phosphate-buffered saline buffer salt (NaCl)more » concentration does not affect the high-affinity copper binding mode but alters the second coordination sphere. The XAS spectra for truncated and full-length A{beta}-Cu{sup 2+} peptides are similar. The novel distorted six-coordinated (3N3O) geometry around copper in the A{beta}-Cu{sup 2+} complexes include three histidines: glutamic, or/and aspartic acid, and axial water. The structure of the high-affinity Cu{sup 2+} binding site is consistent with the hypothesis that the redox activity of the metal ion bound to A{beta} can lead to the formation of dityrosine-linked dimers found in AD.« less

  19. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    NASA Astrophysics Data System (ADS)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  20. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches.

    PubMed

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-15

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu 2+ ), cobalt ions (Co 2+ ) and nickel ions (Ni 2+ ) mixture was 0.10μgL -1 , 0.15μgL -1 and 0.13μgL -1 , respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions

    NASA Astrophysics Data System (ADS)

    Du, Wen-Li; Xu, Ying-Lei; Xu, Zi-Rong; Fan, Cheng-Li

    2008-02-01

    The present study was conducted to prepare and characterize chitosan nanoparticle loaded copper ions, and evaluate their antibacterial activity. Chitosan nanoparticles were prepared based on ionotropic gelation, and then the copper ions were loaded. The particle size, zeta potential and morphology were determined. Antibacterial activity was evaluated against E. coli K88 by determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in vitro. Results showed that the antibacterial activity was significantly enhanced by the loading of copper ions compared to those of chitosan nanoparticles and copper ions. The MIC and MBC of chitosan nanoparticle loaded copper ions were 21 times and 42 times lower than those of copper ions, respectively. To confirm the antibacterial mechanism, morphological changes of E. coli K88 treated by chitosan nanoparticle loaded copper ions were dynamically observed with an atomic force microscope (AFM). It was found that chitosan nanoparticle loaded copper ions killed E. coli K88 through damage to the cell membrane.

  2. Copper ion as a new leakage tracer.

    PubMed

    Modaresi, J; Baharizade, M; Shareghi, A; Ahmadi, M; Daneshkazemi, A

    2013-12-01

    Most failures of root canal treatments are caused by bacteria. Studies showed that the most common cause of endodontic failures were the incomplete obturation of the root canal and the lack of adequate apical seal. Some in-vitro methods are used to estimate sealing quality, generally by measuring microleakage that allows the tracer agent to penetrate the filled canal. Conventional methods of evaluating the seal of endodontically treated teeth are complicated and have some drawbacks. We used copper ion diffusion method to assess the leakage and the results were compared to dye penetration method. The crowns of 21 extracted teeth were cut off at the CEJ level. After preparing the canals, the teeth were placed in tubes containing saline. They were divided randomly into 15 experimental cases; 3 positive and 3 negative controls. Positive controls were filled by single cone without sealer while the experimental and the negative control groups were filled by lateral technique. The coronal portion of gutta was removed and 9mm was left. The external surface of each tooth was coated with nail polish. Two millimeters of apical portion was immersed into 9ml of distilled water and 0.3ml of CuSO4 solution was injected into the coronal portion. After 2 days, copper sulfate was measured by an atomic absorption spectrophotometer. The teeth were then immersed in 2% methylene blue for 24 hours, sectioned and the extent of dye penetration was measured by a stereomicroscope. The maximum and minimum recorded copper ion concentrations for the experimental group were 18.37 and 2.87ppm respectively. The maximum and minimum recorded dye penetrations for the experimental group were 8.5 and 3.5mm respectively. The statistical analysis, adopting paired samples test, showed poor correlation between average recorded results of two methods. Based on our results, there was no significant correlation between the dye penetration and the copper ion diffusion methods.

  3. Pseudomonas stutzeri N2O reductase contains CuA-type sites.

    PubMed Central

    Scott, R A; Zumft, W G; Coyle, C L; Dooley, D M

    1989-01-01

    N2O reductase (N2O----N2) is the terminal enzyme in the energy-conserving denitrification pathway of soil and marine denitrifying bacteria. The protein is composed of two identical subunits and contains eight copper ions per enzyme molecule. The magnetic circular dichroism spectrum of resting (oxidized) N2O reductase is strikingly similar to the magnetic circular dichroism spectrum of the CuA site in mammalian cytochrome c oxidase [Greenwood, C., Hull, B. C., Barber, D., Eglinton, D. G. & Thomson, A. J. (1983) Biochem. J. 215, 303-316] and is unlike the magnetic circular dichroism spectra of all other biological copper chromophores obtained to date. Sulfur (or chlorine) scatterers are required to fit the copper extended x-ray absorption fine structure data of both the oxidized and reduced forms of N2O reductase. Satisfactory fits require a Cu-N or Cu-O [denoted Cu-(N, O)] interaction at 2.0 A, a Cu-(S, Cl) interaction at 2.3 A and an additional Cu(S, Cl) interaction at approximately 2.6 A (oxidized) or approximately 2.7 A (reduced). Approximately eight sulfur ions (per eight copper ions) at approximately 2.3 A are required to fit the extended x-ray absorption fine structure data for both the oxidized and reduced N2O reductase. The 2.3-A Cu-(S, Cl) distance is nearly identical to that previously determined for the CuA site in cytochrome c oxidase. A 2.6-2.7 A Cu-(S, Cl) interaction is also present in resting and fully reduced cytochrome c oxidase. Comparison of the N2O reductase sequence, determined by translating the structural NosZ gene, with cytochrome c oxidase subunit II sequences from several sources indicates that a Gly-Xaa-Xaa-Xaa-Xaa-Xaa-Cys-Ser-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-His stretch is highly conserved. This sequence contains three of the probable ligands (two cysteines and one histidine) in a CuA-type site. Collectively these data establish that Pseudomonas stutzeri N2O reductase contains CuA-type sites. PMID:2542963

  4. Influence of CuO content on the structure of lithium fluoroborate glasses: Spectral and gamma irradiation studies.

    PubMed

    Abdelghany, A M; ElBatal, H A; EzzElDin, F M

    2015-10-05

    Glasses of lithium fluoroborate of the composition LiF 15%-B2O3 85% with increasing CuO as added dopant were prepared and characterized by combined optical and FTIR spectroscopy before and after gamma irradiation. The optical spectrum of the undoped glass reveals strong UV absorption with two distinct peaks at about 235 and 310 nm and with no visible bands. This strong UV absorption is related to the presence of unavoidable trace iron impurity (Fe(3+)) within the materials used for the preparation of this glass. After irradiation, the spectrum of the undoped glass shows a decrease of the intensity of the UV bands together with the resolution of an induced visible broad band centered at about 520 nm. The CuO doped glasses reveal the same UV absorption beside a very broad visible band centered at 780 nm and this band shows extension and splitting to several component peaks with higher CuO contents. Upon gamma irradiation, the spectra of all CuO-doped glasses reveal pronounced decrease of their intensities. The response of irradiation on the studied glasses is correlated with suggested photochemical reactions together with some shielding effect of the copper ions. The observed visible band is related to the presence of copper as distorted octahedral Cu(2+) ions. Infrared absorption spectra of the prepared glasses show repetitive characteristic triangular and tetrahedral borate units similar to that published from alkali or alkaline earth oxides B2O3 glasses. A suggested formation of (BO3/2F) tetrahedral units is advanced through action of LiF on B2O3 and these suggested units showing the same position and number as BO4 tetrahedra. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  6. Dataset demonstrating effects of momentum transfer on sizing of current collector for lithium-ion batteries during laser cutting.

    PubMed

    Lee, Dongkyoung; Mazumder, Jyotirmoy

    2018-04-01

    Material properties of copper and aluminum required for the numerical simulation are presented. Electrodes used for the (paper) are depicted. This study describes the procedures of how penetration depth, width, and absorptivity are obtained from the simulation. In addition, a file format extracted from the simulation to visualize 3D distribution of temperature, velocity, and melt pool geometry is presented.

  7. Spectrometric determination of platinum with methoxypromazine maleate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thimmegowda, A.; Sankegowda, H.; Gowda, N.M.M.

    1984-03-01

    A simple, rapid, and sensitive spectrophotometric method has been developed for the determination of platinum in solution. The chromogenic reagent, methoxypromazine maleate, reacts with platinum(IV) almost instantaneously in phosphoric acid medium containing copper(II) catalyst to form a bluish pink 1:1 complex with an absorption maximum at 562 nm. The complexation is complete within 1 min. A 30-fold molar excess of the reagent over metal ion is necessary for completion of the reaction. Beer's law is obeyed over the concentration range of 0.4-9.8 ppm of platinum(IV) with an optimal range of 1.5-8.6 ppm. The molar absorptivity is 1.71 x 10/sub 4/more » L mol/sup -1/ cm/sup -1/ and the Sandell sensitivity is 11.4 ng cm/sup -2/. The apparent stability constant of the complex is log K = 5.58 +/- 0.1 at 27/sup 0/C. The effects of acid concentration, time, temperature, concentration of the reagent and copper, order of addition of reagents, and the interferences from various ions are investigated. The method has been used for the determination of platinum in synthetic solutions that approximate the composition of some alloys and minerals. 25 references, 1 figure, 2 tables.« less

  8. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    PubMed

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  9. Measured density of copper atoms in the ground and metastable states in argon magnetron discharge correlated with the deposition rate

    NASA Astrophysics Data System (ADS)

    Naghshara, H.; Sobhanian, S.; Khorram, S.; Sadeghi, N.

    2011-01-01

    In a dc-magnetron discharge with argon feed gas, densities of copper atoms in the ground state Cu(2S1/2) and metastable state Cu*(2D5/2) were measured by the resonance absorption technique, using a commercial hollow cathode lamp as light source. The operating conditions were 0.3-14 µbar argon pressure and 10-200 W magnetron discharge power. The deposition rate of copper in a substrate positioned at 18 cm from the target was also measured with a quartz microbalance. The gas temperature, in the range 300-380 K, was deduced from the emission spectral profile of N2(C 3Πu - B 3Πg) 0-0 band at 337 nm when trace of nitrogen was added to the argon feed gas. The isotope-shifts and hyperfine structures of electronic states of Cu have been taken into account to deduce the emission and absorption line profiles, and hence for the determination of atoms' densities from the measured absorption rates. To prevent error in the evaluation of Cu density, attributed to the line profile distortion by auto-absorption inside the lamp, the lamp current was limited to 5 mA. Density of Cu(2S1/2) atoms and deposition rate both increased with the enhanced magnetron discharge power. But at fixed power, the copper density augmented with argon pressure whereas the deposition rate followed the opposite trend. Whatever the gas pressure, the density of Cu*(2D5/2) metastable atoms remained below the detection limit of 1 × 1010 cm-3 for magnetron discharge powers below 50 W and hence increased much more rapidly than the density of Cu(2S1/2) atoms, over passing this later at some discharge power, whose value decreases with increasing argon pressure. This behaviour is believed to result from the enhancement of plasma density with increasing discharge power and argon pressure, which would increase the excitation rate of copper into metastable states. At fixed pressure, the deposition rate followed the same trend as the total density of copper atoms in the ground and metastable states. Two important conclusions of this work are (i) copper atoms sputtered from the target under ion bombardment are almost all in the ground state Cu(2S1/2) and hence in the plasma volume they can be excited into the metastable states; (ii) all atoms in the long-lived ground and metastable states contribute to the deposition of copper layer on the substrate.

  10. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  11. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    PubMed

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  12. Role of drinking water copper in pathogenesis of oral submucous fibrosis: a prospective case control study.

    PubMed

    Arakeri, Gururaj; Hunasgi, Santosh; Colbert, Serryth; Merkx, M A W; Brennan, Peter A

    2014-07-01

    Although oral submucous fibrosis (OSMF) is thought to be multifactorial in origin, the chewing of areca nut is thought to be the main cause. Alkaloids and tannins in areca nut are responsible for fibrosis, but recent evidence has suggested that copper ions are also an important mediator, and in a small pilot study we recently found that OSMF was significantly associated with a raised concentration of copper in drinking water. We have further investigated this association in a heterogeneous population in Hyderabad-Karnataka, India, a region with a high incidence of the condition. We evaluated 3 groups, each of 100 patients: those with OSMF who chewed gutkha, those who chewed gutkha but did not have OSMF, and healthy controls who did not chew gutkha. The difference between the groups in the mean concentration of copper in water measured by atomic absorption spectrometry was significant (p<0.001). There were also significant differences between the groups in mean concentrations of serum copper, salivary copper, and ceruloplasmin (p<0.001). Our results confirm that copper in drinking water contributes to the pathogenesis of OSMF, but ingestion of copper is unlikely to be the sole cause. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    NASA Astrophysics Data System (ADS)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  14. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    NASA Astrophysics Data System (ADS)

    Kim, Young-Hwan; Choi, Yu-ri; Kim, Kwang-Mahn; Choi, Se-Young

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 °C and 250 °C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm2 which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  15. Effects of copper ions on the characteristics of egg white gel induced by strong alkali.

    PubMed

    Shao, Yaoyao; Zhao, Yan; Xu, Mingsheng; Chen, Zhangyi; Wang, Shuzhen; Tu, Yonggang

    2017-09-01

    This study investigated the effects of copper ions on egg white (EW) gel induced by strong alkali. Changes in gel characteristics were examined through texture profile analysis, scanning electron microscopy (SEM), and chemical methods. The value of gel strength reached its maximum when 0.1% copper ions was added. However, the lowest cohesiveness values were observed at 0.1%. The springiness of gel without copper ions was significantly greater than the gel with copper ions added. SEM results illustrated that the low concentration of copper ions contributes to a dense and uniform gel network, and an open matrix was formed at 0.4%. The free and total sulphhydryl group content in the egg white protein gel significantly decreased with the increased copper. The increase of copper ions left the contents of ionic and hydrogen bonds basically unchanged, hydrophobic interaction presented an increasing trend, and the disulfide bond exhibited a completely opposite change. The change of surface hydrophobicity proved that the main binding force of copper induced gel was hydrophobic interaction. However, copper ions had no effect on the protein component of the gels. Generally, a low level of copper ions facilitates protein-protein association, which is involved in the characteristics of gels. Instead, high ionic strength had a negative effect on gels induced by strong alkali. © 2017 Poultry Science Association Inc.

  16. Copper, iron and zinc absorption, retention and status of young women fed vitamin B-6 deficient diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnlund, J.R.; Keyes, W.R.; Hudson, C.A.

    1991-03-11

    A study was conducted in young women to determine the effect of vitamin B-6 deficient diets on copper, iron and zinc metabolism. Young women were confined to a metabolic research unit for 84 and 98 days. They were fed a vitamin B-6 deficient formula diet initially, followed by food diet containing four increasing levels of vitamin B-6. Copper, iron and zinc absorption, retention and status were determined at intervals throughout the study. Absorption was determined using the stable isotopes {sup 65}Cu, {sup 54}Fe, and {sup 67}Zn. Status was based on serum copper and zinc, hemoglobin, hematocrit and mean corpuscular volume.more » Copper absorption averaged 18 {plus minus} 1% during vitamin B-6 depletion, significantly lower than 24 {plus minus} 1% during repletion, but serum copper was not affected and balance was positive. Iron absorption was not impaired significantly by vitamin B-6 deficient diets, but status declined during the depletion period. Zinc absorption averaged 40 {plus minus} 2% during depletion and 27 {plus minus} 2% during repletion. Zinc absorption and retention were significantly greater during vitamin B-6 depletion, but serum zinc declined suggesting the absorbed zinc was not available for utilization. The results suggest that vitamin B-6 depletion of young women may inhibit copper absorption, affect iron status and alter zinc metabolism. The effects of vitamin B-6 depletion differ markedly among these elements.« less

  17. Low-temperature Raman spectroscopy of copper and silver nanoparticles ion-synthesized in a silica glass and subjected to laser annealing

    NASA Astrophysics Data System (ADS)

    Kurbatova, N. V.; Galyautdinov, M. F.; Shtyrkov, E. I.; Nuzhdin, V. I.; Stepanov, A. L.

    2010-06-01

    The modification of the shape of ion-synthesized silver and copper nanoparticles in a silica glass during laser annealing has been studied for the first time by Raman spectroscopy at a temperature of 77 K. The laser annealing has been carried out for a wavelength of 694 nm at the edge of the plasmon absorption spectrum of nanoparticles. A comparison of the experimental spectra and the calculated modes of in-phase bending vibrations of the “harmonica” type in nanostrings of the corresponding metals has demonstrated their good agreement. The effects observed have been discussed from the standpoint of the size quantization of vibrations in metal nanowires. This methodical approach has made it possible to estimate the sizes of the Ag and Cu nanoparticles under the assumption that they have an elongated form; in this case, their average lengths are equal to 2.5 and 1.4 nm, respectively.

  18. Diaion HP-2MG modified with 2-(2,6-dichlorobenzylideneamino) benzenethiol as new adsorbent for solid phase extraction and flame atomic absorption spectrometric determination of metal ions.

    PubMed

    Ghaedi, M; Montazerozohori, M; Haghdoust, S; Zaare, F; Soylak, M

    2013-04-01

    A solid phase extraction method for enrichment-separation and the determination of cobalt (Co(2+)), copper (Cu(2+)), nickel (Ni(2+)), zinc (Zn(2+)) and lead (Pb(2+)) ions in real samples has been proposed. The influences of some analytical parameters like pH, flow rate, eluent type and interference of matrix ions on recoveries of analytes were optimized. The limits of detection were found in the range of 1.6-3.9 µg L(-1), while preconcentration factor for all understudy metal ions were found to be 166 with loading half time (t 1/2) less than 10 min. The procedure was applied for the enrichment-separation of analyte ions in environmental samples with recoveries higher than 94.8% and relative SD <4.9% (N = 5).

  19. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-ion resistant bacteria

    PubMed Central

    Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher

    2013-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951

  20. Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet.

    PubMed

    Behbahani, Mohammad; Tapeh, Nasim Akbari Ghareh; Mahyari, Mojtaba; Pourali, Ali Reza; Amin, Bahareh Golrokh; Shaabani, Ahmad

    2014-11-01

    We are introducing graphene oxide modified with amine groups as a new solid phase for extraction of heavy metal ions including cadmium(II), copper(II), nickel(II), zinc(II), and lead(II). Effects of pH value, flow rates, type, concentration, and volume of the eluent, breakthrough volume, and the effect of potentially interfering ions were studied. Under optimized conditions, the extraction efficiency is >97 %, the limit of detections are 0.03, 0.05, 0.2, 0.1, and 1 μg L(-1) for the ions of cadmium, copper, nickel, zinc, and lead, respectively, and the adsorption capacities for these ions are 178, 142, 110, 125, and 210 mg g(-1). The amino-functionalized graphene oxide was characterized by thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The proposed method was successfully applied in the analysis of environmental water and food samples. Good spiked recoveries over the range of 95.8-100.0 % were obtained. This work not only proposes a useful method for sample preconcentration but also reveals the great potential of modified graphene as an excellent sorbent material in analytical processes.

  1. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    PubMed

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  2. Stabilization of the Thermal Decomposition of Poly(Propylene Carbonate) Through Copper Ion Incorporation and Use in Self-Patterning

    NASA Astrophysics Data System (ADS)

    Spencer, Todd J.; Chen, Yu-Chun; Saha, Rajarshi; Kohl, Paul A.

    2011-06-01

    Incorporation of copper ions into poly(propylene carbonate) (PPC) films cast from γ-butyrolactone (GBL), trichloroethylene (TCE) or methylene chloride (MeCl) solutions containing a photo-acid generator is shown to stabilize the PPC from thermal decomposition. Copper ions were introduced into the PPC mixtures by bringing the polymer mixture into contact with copper metal. The metal was oxidized and dissolved into the PPC mixture. The dissolved copper interferes with the decomposition mechanism of PPC, raising its decomposition temperature. Thermogravimetric analysis shows that copper ions make PPC more stable by up to 50°C. Spectroscopic analysis indicates that copper ions may stabilize terminal carboxylic acid groups, inhibiting PPC decomposition. The change in thermal stability based on PPC exposure to patterned copper substrates was used to provide a self-aligned patterning method for PPC on copper traces without the need for an additional photopatterning registration step. Thermal decomposition of PPC is then used to create air isolation regions around the copper traces. The spatial resolution of the self-patterning PPC process is limited by the lateral diffusion of the copper ions within the PPC. The concentration profiles of copper within the PPC, patterning resolution, and temperature effects on the PPC decomposition have been studied.

  3. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu

    2017-10-01

    The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.

  4. Characterization of the Cu(Π) and Zn(Π) binding to the Amyloid-β short peptides by both the Extended X-ray Absorption Fine Structure and the Synchrotron Radiation Circular Dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyin; Sun, Shuaishuai; Xu, Jianhua; Zhang, Jing; Huang, Yan; Zhang, Bingbing; Tao, Ye

    2013-04-01

    Alzheimer's disease (AD) is a progressive and devastating neurodegenerative pathology, clinically characterized by dementia, cognitive impairment, personality disorders and memory loss. It is generally accepted that, misfolding of Aβ peptides is the key element in pathogenesis and the secondary structure of Aβ can be changed to major β-strand with reasons unknown yet. Many studies have shown that the misfolding may be linked with some biometals, mainly copper and zinc ions. To characterize interactions of Aβ and metal ions, we utilized both the extended X-ray fine structure spectroscopy (EXAFS) and the synchrotron radiation circular dichroism spectroscopy (SRCD). Aβ (13-22), Aβ (13-21), Aβ (E22G) and Aβ(HH-AA) were selected to study the mechanism of copper and zinc binding to Aβ. We found that Cu interaction with H13 and H14 residues led to the disappearance of the PPΠ, while the Cu binding E22 residue caused a remarkable conformation change to β-sheet enrichment. The Zn ion, in contrast, made little effect on the conformation and it coordinated to only one histidine (H residue) or not.

  5. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    ERIC Educational Resources Information Center

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  6. Optical and Morphological Characterization of Sonochemically Assisted Europium Doped Copper (I) Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Cosico, J. A. M.; Ruales, P. K.; Marquez, M. C.

    2017-06-01

    In the age where application of nanotechnology in our society has proven to be eminent, different routes of synthesizing nanoparticles have emerged. In this study nanoparticles of cuprous oxide (Cu2O) doped with different amounts of europium was prepared by using solution precursor route approach with the aid of ultrasonic sound. Copper sulphate and europium (III) nitrate pentahydrate was used as source for copper ions and europium ions respectively. X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR) were used to elucidate the cubic crystal structure and organic impurities present on Cu2Onanoparticles. UV-Vis spectroscopy was used to determine the absorption spectrum of the nanoparticles in the wavelength range of 400nm to 700nm. The bandgap of the undoped and doped Cu2O were found to fall between 2.1eV - 2.3eV. Scanning Electron Microscopy (SEM) coupled with energy dispersive x-ray was used to observe the dendritic and rodlike morphology and the presence of europium in the synthesized Cu2O nanoparticles. The observed effect on the absorbance of Cu2O upon adding Eu and a facile way of synthesizing Cu2O nanoparticles could bring a positive impact on the production of functional devices for optoelectronic and energy applications.

  7. Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Haeili, Mehri; Moore, Casey; Davis, Christopher J. C.; Cochran, James B.; Shah, Santosh; Shrestha, Tej B.; Zhang, Yaofang; Bossmann, Stefan H.; Benjamin, William H.

    2014-01-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. PMID:24752262

  8. Electrodeposition Process and Performance of CuIn(Se x S1- x )2 Film for Absorption Layer of Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun

    2017-11-01

    CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.

  9. Facile synthesis of CuSe nanoparticles and high-quality single-crystal two-dimensional hexagonal nanoplatelets with tunable near-infrared optical absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yimin; Korolkov, Ilia; Qiao, Xvsheng

    2016-06-15

    A rapid injection approach is used to synthesize the copper selenide nanoparticles and two-dimensional single crystal nanoplates. This technique excludes the use of toxic or expensive materials, increasing the availability of two-dimensional binary chalcogenide semiconductors. The structure of the nanocrystals has been studied and the possible formation mechanism of the nanoplates has been proposed. The optical absorption showed that the nanoplates demonstrated wide and tuneable absorption band in the visible and near infrared region. These nanoplates could be interesting for converting solar energy and for nanophotonic devices operating in the near infrared. - Graphical abstract: TEM images of the coppermore » selenides nanoparticles and nanoplates synthesized at 180 °C for 0 min, 10 min, 60 min. And the growth mechanism of the copper selenide nanoplates via the “oriented attachment”. Display Omitted - Highlights: • CuSe nanoparticles and nanoplates are synthesized by a rapid injection approach. • CuSe band gap can be widely tuned simply by modifying the synthesized time. • Al{sup 3+} ions have a significant impact on the growth rate of the nanoplates. • Growth mechanism of the CuSe nanoplates is based on the “oriented attachment”.« less

  10. What is the origin of concentration quenching of Cu+ luminescence in glass?

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2016-10-01

    Monovalent copper-doped luminescent glasses are attractive materials for white light-emitting devices, photonic waveguides, and solar spectral conversion in photovoltaic cells. However, the occurrence of concentration quenching in such is not fully understood at present. In this work, calcium-phosphate glasses with high concentrations of luminescent Cu+ ions have been prepared by a simple melt-quench method via CuO and SnO co-doping. The aim is to elucidate the origin of concentration quenching of Cu+ light emission. A spectroscopic characterization was carried out by optical absorption and photoluminescence (PL) spectroscopy including emission decay dynamics. The concentrations of both CuO and SnO dopants were varied as 5, 10 and 15 mol%. Monovalent copper content is estimated in the CuO/SnO-containing glasses following the assessment of the concentration dependence of Cu2+ absorption in the visible for CuO singly-doped glasses. Contrary to the conventionally acknowledged direct Cu+→Cu2+ transfer, the data supports a Cu+-Cu+ energy migration channel at the origin of the PL quenching.

  11. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.

    PubMed

    Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen

    2005-06-21

    The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.

  12. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  13. Porins Increase Copper Susceptibility of Mycobacterium tuberculosis

    PubMed Central

    Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael

    2013-01-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632

  14. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  15. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes.

    PubMed

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A

    2017-01-05

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.

  16. Copper complexation screen reveals compounds with potent antibiotic properties against methicillin-resistant Staphylococcus aureus.

    PubMed

    Haeili, Mehri; Moore, Casey; Davis, Christopher J C; Cochran, James B; Shah, Santosh; Shrestha, Tej B; Zhang, Yaofang; Bossmann, Stefan H; Benjamin, William H; Kutsch, Olaf; Wolschendorf, Frank

    2014-07-01

    Macrophages take advantage of the antibacterial properties of copper ions in the killing of bacterial intruders. However, despite the importance of copper for innate immune functions, coordinated efforts to exploit copper ions for therapeutic interventions against bacterial infections are not yet in place. Here we report a novel high-throughput screening platform specifically developed for the discovery and characterization of compounds with copper-dependent antibacterial properties toward methicillin-resistant Staphylococcus aureus (MRSA). We detail how one of the identified compounds, glyoxal-bis(N4-methylthiosemicarbazone) (GTSM), exerts its potent strictly copper-dependent antibacterial properties on MRSA. Our data indicate that the activity of the GTSM-copper complex goes beyond the general antibacterial effects of accumulated copper ions and suggest that, in contrast to prevailing opinion, copper complexes can indeed exhibit species- and target-specific activities. Based on experimental evidence, we propose that copper ions impose structural changes upon binding to the otherwise inactive GTSM ligand and transfer antibacterial properties to the chelate. In turn, GTSM determines target specificity and utilizes a redox-sensitive release mechanism through which copper ions are deployed at or in close proximity to a putative target. According to our proof-of-concept screen, copper activation is not a rare event and even extends to already established drugs. Thus, copper-activated compounds could define a novel class of anti-MRSA agents that amplify copper-dependent innate immune functions of the host. To this end, we provide a blueprint for a high-throughput drug screening campaign which considers the antibacterial properties of copper ions at the host-pathogen interface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    NASA Astrophysics Data System (ADS)

    Kowalska, Izabela; Klimonda, Aleksandra

    2017-11-01

    The aim of the study was to assess the usefulness of micellar-enhanced ultrafiltration (MEUF) for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi-pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration)). Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L), the average concentration of copper ions in the permeate ranged from 1.2-4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  18. [Flotation spectrophotometric determination of copper on isochromatic dye ion pair with crystal violet and bromopnenol blue].

    PubMed

    Liu, B; Chen, C; Zuo, B

    1999-02-01

    Bromophenol blue (BPB) was produced and entered into the aqueous phase when NaOH solution of pH = 10 was added to Cu(biq)2BPB by trichloromethane and isoamyl alcohol (20:1) extractive. And then CV x BPB was floated by crystal violet (CV) with benzene solution. The flotation was dissolved in ethanol and the absorbance of the solution measured at 590 nm. The sensitivity was raised because of the two dyes assistant effect. The molar absorptivity was 1.45 x 10(5) L x mol(-1) x cm(-1). Copper in the sample was separated first by extracting the Cu(biq)2BPB complex with trichloromethane and isoamyl alcohol, thus achieving a high selectivity. Beer's law was obeyd in the range of 0-0. 4 mg/L with a relative standard deviation of 3.6%. For 4.8 x 10(-8) g/mL copper solution, the recoveries were 97.8%-101.7%.

  19. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Kazi, Tasneem Gul; Soylak, Mustafa; Hazer, Baki

    2014-01-01

    A new adsorbent, polyhydroxybutyrate-b-polyethyleneglycol, was used for the separation and preconcentration of copper(II) and lead(II) ions prior to their flame atomic absorption spectrometric detections. The influences of parameters such as pH, amount of adsorbent, flow rates and sample volumes were investigated. The polymer does not interact with alkaline, alkaline-earth metals and transition metals. The enrichment factor was 50. The detection limits were 0.32 μg L(-1) and 1.82 μg L(-1) for copper and lead, respectively. The recovery values were found >95%. The relative standard deviations were found to be less than 6%. The validation of the procedure was performed by analysing certified reference materials; NIST SRM 1515 Apple leaves, IAEA-336 Lichen and GBW-07605 Tea. The method was successfully applied for the analysis of analytes in water and food samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    PubMed Central

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  1. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions.

  2. Development of a new passive sampler based on diffusive milligel beads for copper analysis in water.

    PubMed

    Perez, M; Reynaud, S; Lespes, G; Potin-Gautier, M; Mignard, E; Chéry, P; Schaumlöffel, D; Grassl, B

    2015-08-26

    A new passive sampler was designed and characterized for the determination of free copper ion (Cu(2+)) concentration in aqueous solution. Each sampling device was composed of a set of about 30 diffusive milligel (DMG) beads. Milligel beads with incorporated cation exchange resin (Chelex) particles were synthetized using an adapted droplet-based millifluidic process. Beads were assumed to be prolate spheroids, with a diameter of 1.6 mm and an anisotropic factor of 1.4. The milligel was controlled in chemical composition of hydrogel (monomer, cross-linker, initiator and Chelex concentration) and characterized in pore size. Two types of sampling devices were developed containing 7.5% and 15% of Chelex, respectively, and 6 nm pore size. The kinetic curves obtained demonstrated the accumulation of copper in the DMG according to the process described in the literature as absorption (and/or adsorption) and release following the Fick's first law of diffusion. For their use in water monitoring, the typical physico-chemical characteristics of the samplers, i.e. the mass-transfer coefficient (k0) and the sampler-water partition coefficient (Ksw), were determined based on a static exposure design. In order to determine the copper concentration in the samplers after their exposure, a method using DMG bead digestion combined to Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES) analysis was developed and optimized. The DMG devices proved to be capable to absorb free copper ions from an aqueous solution, which could be accurately quantified with a mean recovery of 99% and a repeatability of 7% (mean relative uncertainty). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Biosorption of copper and lead ions by waste beer yeast.

    PubMed

    Han, Runping; Li, Hongkui; Li, Yanhu; Zhang, Jinghua; Xiao, Huijun; Shi, Jie

    2006-10-11

    Locally available waste beer yeast, a byproduct of brewing industry, was found to be a low cost and promising adsorbent for adsorbing copper and lead ions from wastewater. In this work, biosorption of copper and lead ions on waste beer yeast was investigated in batch mode. The equilibrium adsorptive quantity was determined to be a function of the solution pH, contact time, beer yeast concentration, salt concentration and initial concentration of copper and lead ions. The experimental results were fitted well to the Langmuir and Freundlich model isotherms. According to the parameters of Langmuir isotherm, the maximum biosorption capacities of copper and lead ions onto beer yeast were 0.0228 and 0.0277 mmol g(-1) at 293 K, respectively. The negative values of the standard free energy change (DeltaG degrees ) indicate spontaneous nature of the process. Competitive biosorption of two metal ions was investigated in terms of sorption quantity. The amount of one metal ion adsorbed onto unit weight of biosorbent (q(e)) decreased with increasing the competing metal ion concentration. The binding capacity for lead is more than for copper. Ion exchange is probably one of the main mechanism during adsorptive process.

  4. Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolucci, Christopher; Verma, Anuj A.; Bates, Shane A.

    2014-10-27

    Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI uponmore » reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4 + completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.« less

  5. Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paolucci, Christopher; Verma, Anuj A.; Bates, Shane A.

    2014-09-12

    Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI uponmore » reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4 + completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.« less

  6. High Electrochemical Sensitivity of TiO2- x Nanosheets and an Electron-Induced Mutual Interference Effect toward Heavy Metal Ions Demonstrated Using X-ray Absorption Fine Structure Spectra.

    PubMed

    Zhou, Wen-Yi; Li, Shan-Shan; Song, Jie-Yao; Jiang, Min; Jiang, Tian-Jia; Liu, Jin-Yun; Liu, Jin-Huai; Huang, Xing-Jiu

    2018-04-03

    Mutual interference is a severe issue that occurs during the electrochemical detection of heavy metal ions. This limitation presents a notable drawback for its high sensitivity to specific targets. Here, we present a high electrochemical sensitivity of ∼237.1 μA cm -2 μM -1 toward copper(II) [Cu(II)] based on oxygen-deficient titanium dioxide (TiO 2- x ) nanosheets. We fully demonstrated an atomic-level relationship between electrochemical behaviors and the key factors, including the high-energy (001) facet percentage, oxygen vacancy concentration, surface -OH content, and charge carrier density, is fully demonstrated. These four factors were quantified using Raman, electron spin resonance, X-ray photoelectron spectroscopy spectra, and Mott-Schottky plots. In the mutual interference investigation, we selected cadmium(II) [Cd(II)] as the target ion because of the significant difference in its stripping potential (∼700 mV). The results show that the Cd(II) can enhance the sensitivity of TiO 2- x nanosheets toward Cu(II), exhibiting an electron-induced mutual interference effect, as demonstrated by X-ray absorption fine structure spectra.

  7. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.

    PubMed

    Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang

    2016-05-01

    Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Copper Nanoparticle Induced Cytotoxicity to Nitrifying Bacteria ...

    EPA Pesticide Factsheets

    With the inclusion of engineered nanomaterials in industrial processes and consumer products, wastewater treatments plants (WWTPs) will serve as a major sink for these emerging contaminants. Previous research has demonstrated that nanomaterials are potentially toxic to microbial communities utilized in biological wastewater treatment (BWT). Copper-based nanoparticles (CuNPs) are of particular interest based on their increasing use in wood treatment, paints, household products, coatings, and byproducts of semiconductor manufacturing. A critical step in BWT is nutrient removal via denitrification. This study examined the potential toxicity of bare and polyvinylpyrrolidone (PVP) coated CuO, and Cu2O nanoparticles, as well as Cu ions to microbial communities responsible for nitrogen removal in BWT. Inhibition was inferred from changes to the specific oxygen uptake rate (sOUR) in the absence and presence of Cu ions and CuNPs. X-ray absorption fine structure spectroscopy, with Linear Combination Fitting (LCF), was utilized to track changes to Cu speciation throughout exposure. Results indicate that the dissolution of Cu ions from CuNPs drive microbial inhibition. The presence of a PVP coating on CuNPs has little effect on inhibition. LCF fitting of the biomass combined with metal partitioning analysis supports the current hypothesis that Cu-induced cytotoxicity is primarily caused by reactive oxygen species formed from ionic Cu in solution via catalytic reaction inter

  9. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    PubMed

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  10. Electronic perturbation investigations into excitation and ionization in the millisecond pulsed glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Li, Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.

    2006-06-01

    This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ˜25 μs after the discharge power termination.

  11. [Effect of Cu2+ and Zn2+ ions in Ca-ATPase activity isolated from Pachymerus nucleorum (Fabricius) (Coleoptera: Chrysomelidae, Bruchinae) larvae].

    PubMed

    Dias, Decivaldo S; Coelho, Milton V

    2007-01-01

    ATPases, an important target of insecticides, are enzymes that hydrolyze ATP and use the energy released in that process to accomplish some type of cellular work. Pachymerus nucleorum (Fabricius) larvae possess an ATPase, that presents high Ca-ATPase activity, but no Mg-ATPase activity. In the present study, the effect of zinc and copper ions in the activity Ca-ATPase of that enzyme was tested. More than 90% of the Ca-ATPase activity was inhibited in 0.5 mM of copper ions or 0.25 mM of zinc ions. In the presence of EDTA, but not in the absence, the inhibition by zinc was reverted with the increase of calcium concentration. The inhibition by copper ions was not reverted in the presence or absence of EDTA. The Ca-ATPase was not inhibited by treatment of the ATPase fraction with copper, suggesting that the copper ion does not bind directly to the enzyme. The results suggest that zinc and copper ions form a complex with ATP and bind to the enzyme inhibiting its Ca-ATPase activity.

  12. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    PubMed

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  13. Magnetic separation of heavy metal ions and evaluation based on surface-enhanced Raman spectroscopy: copper(II) ions as a case study.

    PubMed

    Yan, Xue; Zhang, Xue-Jiao; Yuan, Ya-Xian; Han, San-Yang; Xu, Min-Min; Gu, Ren'ao; Yao, Jian-Lin

    2013-11-01

    A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p-Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface-enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface-enhanced Raman spectroscopy bands from p-mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. UV spectroscopy determination of aqueous lead and copper ions in water

    NASA Astrophysics Data System (ADS)

    Tan, C. H.; Moo, Y. C.; Mat Jafri, M. Z.; Lim, H. S.

    2014-05-01

    Lead (Pb2+) and copper (Cu2+) ions are very common pollutants in water which have dangerous potential causing serious disease and health problems to human. The aim of this paper is to determine lead and copper ions in aqueous solution using direct UV detection without chemical reagent waste. This technique allow the determination of lead and copper ions from range 0.2 mg/L to 10 mg/L using UV wavelength from 205 nm to 225 nm. The method was successfully applied to synthetic sample with high performance.

  15. Potential immobilized Saccharomyces cerevisiae as heavy metal removal

    NASA Astrophysics Data System (ADS)

    Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua

    2015-05-01

    Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.

  16. Mineralization and optical characterization of copper oxide nanoparticles using a high aspect ratio bio-template

    NASA Astrophysics Data System (ADS)

    Zaman, Mohammed Shahriar; Haberer, Elaine D.

    2014-10-01

    Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu2O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap of 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.

  17. Mineralization and optical characterization of copper oxide nanoparticles using a high aspect ratio bio-template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaman, Mohammed Shahriar; Haberer, Elaine D., E-mail: haberer@ucr.edu; Materials Science and Engineering Program, University of California, Riverside, California 92521

    Organized chains of copper oxide nanoparticles were synthesized, without palladium (Pd) activation, using the M13 filamentous virus as a biological template. The interaction of Cu precursor ions with the negatively charged viral coat proteins were studied with Fourier transform infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. Discrete nanoparticles with an average diameter of 4.5 nm and narrow size distribution were closely spaced along the length of the high aspect ratio templates. The synthesized material was identified as a mixture of cubic Cu₂O and monoclinic CuO. UV/Vis absorption measurements were completed and a direct optical band gap ofmore » 2.87 eV was determined using Tauc's method. This value was slightly larger than bulk, signaling quantum confinement effects within the templated materials.« less

  18. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  19. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    PubMed

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  20. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  1. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  2. Selective ion exchange governed by the Irving-Williams series in K2Zn3[Fe(CN)6]2 nanoparticles: toward a designer prodrug for Wilson's disease.

    PubMed

    Kandanapitiye, Murthi S; Wang, Fan Jennifer; Valley, Benjamin; Gunathilake, Chamila; Jaroniec, Mietek; Huang, Songping D

    2015-02-16

    The principle of the Irving-Williams series is applied to the design of a novel prodrug based on K2Zn3[Fe(CN)6]2 nanoparticles (ZnPB NPs) for Wilson's disease (WD), a rare but fatal genetic disorder characterized by the accumulation of excess copper in the liver and other vital organs. The predetermined ion-exchange reaction rather than chelation between ZnPB NPs and copper ions leads to high selectivity of such NPs for copper in the presence of the other endogenous metal ions. Furthermore, ZnPB NPs are highly water-dispersible and noncytotoxic and can be readily internalized by cells to target intracellular copper ions for selective copper detoxification, suggesting their potential application as a new-generation treatment for WD.

  3. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis.

    PubMed

    Takahashi, Shunsuke; Ando, Akira; Takagi, Hiroshi; Shima, Jun

    2009-11-01

    Saccharomyces cerevisiae is exposed to freeze-thaw stress in commercial processes, including frozen dough baking. Cell viability and fermentation activity after a freeze-thaw cycle were dramatically decreased due to freeze-thaw injury. Because this type of injury involves complex phenomena, the injury mechanisms are not fully understood. We examined freeze-thaw injury by indirect gene expression analysis during postthaw incubation after freeze-thaw treatment using DNA microarray profiling. The results showed that genes involved in the homeostasis of metal ions were frequently contained in genes that were upregulated, depending on the freezing period. We assessed the phenotype of deletion mutants of the metal ion homeostasis genes that exhibited freezing period-dependent upregulation and found that the strains with deletion of the MAC1 and CTR1 genes involved in copper ion homeostasis exhibited freeze-thaw sensitivity, suggesting that copper ion homeostasis is required for freeze-thaw tolerance. We found that supplementation with copper ions during postthaw incubation increased intracellular superoxide dismutase activity and intracellular levels of reactive oxygen species were decreased. Moreover, cell viability was increased by supplementation with copper ions. These results suggest that insufficiency of copper ion homeostasis may be one of the causes of freeze-thaw injury.

  4. Structural and optical properties of co-precipitated copper doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Pandey, Devendra K.; Modi, Anchit; Pandey, Padmini; Gaur, N. K.

    2018-05-01

    We have synthesized pure and copper doped zinc oxide Zn1-xO:Cux (x = 0, 0.03) powder by wet chemical co-precipitation method followed by sintering of the co-precipitated amorphous phase powder at 450°C for 4 hours. The experiment is performed to recognize the effect of nominal doping of transition metal over the structural, morphological and optical properties. The structural parameters are observed by using Rietveld refinement of X-ray diffraction data which clearly represents that Cu ion is perfectly incorporated at the Zn site with minimal distortions within the lattice. The crystallite size is estimated by Debye-Scherrer and Hall-Williamson formulation. The particle morphology and size is determined with scanning electron microscopic (SEM) technique. The band gap and optical measurements are carried out with UV-visible absorption and photoluminescence (PL) spectroscopic technique, respectively. Enhanced PL spectral response is observed for ZnO:Cu along with non-radiative transitions from conduction band to valence band. The energy levels near the conduction band that are commonly involved in the optoelectronic transitions in the UV-region are traced by using absorption and luminescence spectral graphs.

  5. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    PubMed

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. © 2016 Poultry Science Association Inc.

  6. Effects of Excess Copper Ions on Decidualization of Human Endometrial Stromal Cells.

    PubMed

    Li, Ying; Kang, Zhen-Long; Qiao, Na; Hu, Lian-Mei; Ma, Yong-Jiang; Liang, Xiao-Huan; Liu, Ji-Long; Yang, Zeng-Ming

    2017-05-01

    The aim of this study was to investigate the effects of copper ions on decidualization of human endometrial stromal cells (HESCs) cultured in vitro. Firstly, non-toxic concentrations of copper D-gluconate were screened in HESCs based on cell activity. Then, the effects of non-toxic concentrations of copper ions (0~250 μM) were examined on decidualization of human endometrial stromal cells. Our data demonstrated that the mRNA expressions of insulin-like growth factor binding protein (IGFBP-1), prolactin (PRL), Mn-SOD, and FOXO1were down-regulated during decidualization following the treatments with 100 or 250 μM copper ions. Meanwhile, the amount of malonaldehyde (MDA) in the supernatant of HESCs was increased. These results showed that in vitro decidualization of HESCs was impaired by copper treatment.

  7. Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials

    NASA Astrophysics Data System (ADS)

    Bastos, Carlos A. P.; Faria, Nuno; Ivask, Angela; Bondarenko, Olesja M.; Kahru, Anne; Powell, Jonathan

    2018-04-01

    Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here, we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe, and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm and a mean zeta potential of - 40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range, but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 h. We provide a practical formulation for topical copper-based antimicrobial therapy. Further studies, especially in vivo, are merited.

  8. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  9. Biosorption of metal ions from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiaping; Yiacoumi, Sotira

    1997-01-01

    Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role inmore » the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.« less

  10. Spectroscopic and DFT Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Non-Local Electrostatic Contributions to Reduction Potentials

    PubMed Central

    Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.

    2012-01-01

    The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400

  11. ELECTROLYSIS AND ION EXCHANGE FOR THE IN PROCESS RECYCLING OF COPPER FROM SEMI-CONDUCTOR PROCESSING SOLUTIONS

    EPA Science Inventory

    The objectives of the study are to develop an understanding of the electrodeposition of copper onto extended-area electrodes, and of the adsorption/desorption of copper onto ion exchange resins with a high affinity for copper. The principles elucidated in this work will pave the ...

  12. Localization and Specification of Copper Ions in Biofilms on Corroding Copper Surfaces.

    DTIC Science & Technology

    1994-01-01

    WW~nhi~. OC ;mmS 1 . Agency use unay (L-mUv umia. IA. "O" ,.ie. $3. Report Type and Dates Covered. I 1994 Final - Proceedings 4. Title and Subtitle. S...structure (XANES) techniques can be used to differentiate Cu’ 1 and Cu+2 species within biofilms attached to surfaces. Copper ions , uld not be... 1 The organism with associated polymer has been shown to bind copper ions from solution. Geesey et al.2 demonstrated that exopolymers produced by

  13. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    PubMed

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A natural macroalgae consortium for biosorption of copper from aqueous solution: Optimization, modeling and design studies.

    PubMed

    Deniz, Fatih; Ersanli, Elif Tezel

    2018-03-21

    In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin-Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g -1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.

  15. [The role of essential metal ions in the human organism and their oral supplementation to the human body in deficiency states].

    PubMed

    Lakatos, Béla; Szentmihályi, Klára; Vinkler, Péter; Balla, József; Balla, György

    2004-06-20

    The role of essential nutrient metal ions (Mg, Fe, Cu, Zn, Mn and Co) often deficient in our foodstuffs, although vitally essential in the function of the human organism as well as the different reasons for these deficiencies both in foods and in the human body have been studied. The most frequent nutritional disease is iron deficient anaemia. Inorganic salts, artificial synthetic monomer organic metal complexes of high stability or organic polymer complexes of high molecular mass are unsatisfactory for supplementation to the human body, owing to poor absorption, low availability and/or harmful side effects. In contrast, we have recently found that mixed metal complexes of oligo/polygalacturonic acids with medium molecular weight prepared from natural pectin of plant origin are efficient for oral supplementation. Sufficient absorption of essential metal ions from metal oligo/polygalacturonate mixed complexes with polynuclear innersphere structure is due to the high ionselectivity and medium stability values. Metal oligo/polygalacturonate mixed complexes contain all deficient essential metal ions in adequate amounts and ratios for higher bioavailability of metal ions and optimal vital function. Therefore, by oral administration of these complexes, metal ion homeostasis and optimal interactions with vitamins and hormones can be ensured. Prelatent or latent macroelement Mg deficiency can often be observed among clinical or ambulance patients. Latent or manifest mesoelement iron deficiency is the most common, however, the occurrence of microelement copper, zinc, manganese and cobalt latent deficiencies is not seldom either. Supplementation studies utilizing essential metal oligo/polygalacturonate complexes led to satisfactory outcome without harmful side effects.

  16. An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field

    PubMed Central

    Xiang, Jin Yu; Ponder, Jay W.

    2014-01-01

    An extensible polarizable force field for transition metal ion was developed based on AMOEBA and the angular overlap model (AOM) with consistent treatment of electrostatics for all atoms. Parameters were obtained by fitting molecular mechanics (MM) energies to various ab initio gas-phase calculations. The results of parameterization were presented for copper (II) ion ligated to water and model fragments of amino acid residues involved in the copper binding sites of type 1 copper proteins. Molecular dynamics (MD) simulations were performed on aqueous copper (II) ion at various temperatures, as well as plastocyanin (1AG6) and azurin (1DYZ). Results demonstrated that the AMOEBA-AOM significantly improves the accuracy of classical MM in a number of test cases when compared to ab initio calculations. The Jahn-Teller distortion for hexa-aqua copper (II) complex was handled automatically without specifically designating axial and in-plane ligands. Analyses of MD trajectories resulted in a 6-coordination first solvation shell for aqueous copper (II) ion and a 1.8ns average residence time of water molecules. The ensemble average geometries of 1AG6 and 1DYZ copper binding sites were in general agreement with X-ray and previous computational studies. PMID:25045338

  17. Synthesis and Characterization of Tetrakis(2-amino-3-methylpyridine)copper(II) Sulfate Tetrahydrate

    NASA Astrophysics Data System (ADS)

    Rahardjo, S. B.; Saraswati, T. E.; Masykur, A.; Finantrena, N. N. F.; Syaima, H.

    2018-04-01

    The complex of Tetrakis(2-amino-3-methylpyridine)copper(II) sulfate tetrahydrate has been synthesized in a ratio of 1: 6 metal to ligand in methanol. The percentage of copper in the complex measured by Atomic Absorption Spectrometer (AAS) showed the complex formula was Cu(2-amino-3-metilpyridine)4SO4(H2O)n (n = 3, 4, or 5). The analysis of TG/DTA showed that 1 mole of complex contains 4 moles of H2O. The conductivity measurement indicated that the complex is in 1 to 1 electrolyte. The formula of the complex was estimated as [Cu(2-amino-3-metilpyridine)4]SO4·4H2O. The complex was paramagnetic with µeff of 1.85 BM. The UV-Vis spectra showed a band peak at 730 nm with an electronic transition Eg→T2g. IR spectral data indicated that the functional groups of N-pyridine 2-amino-3-metilpyridine coordinated to ion Cu(II). The geometry of the complex was probably square planar.

  18. Metal colloids employed in the SERS of biomolecules: activation when exciting in the visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. V.; Sánchez-Cortés, S.

    1997-03-01

    Silver, gold and copper colloids have been employed in the study of the nucleic bases cytosine, guanine, their alkyl derivatives 1-methylcytosine, 5-methylcytosine, 1,5-dimethylcytosine, 7-methylcytosine and 9-ethylguanosine. Cytidine, 5'-cytidinemonophosphate and 5'-adenosinemonophosphate have been also studied using silver and copper colloids. The interaction and orientation of these compounds on the metal colloids are interpreted on the basis of the SER spectra obtained, and further compared with interactions with the corresponding metallic ions in aqueous solution. Transmission electronic microscopy and ultraviolet-visible absorption spectroscopy were also employed to characterize the silver and copper colloids before and after aggregation by 1,5-dimethylcytosine. Information on the aggregation process is presented. The activation effect of chloride, perchlorate and nitrate anions on the silver colloids employed is studied for both the visible and near-infrared regions. An assessment of the effectiveness of each colloid is made at different excitation lines. Finally, an explanation of the mechanism through which these anions exert their activation effect is given on the basis of the morphologies of the particles contained in the colloid.

  19. In vitro corrosion behaviour and microhardness of high-copper amalgams with platinum and indium.

    PubMed

    Ilikli, B G; Aydin, A; Işimer, A; Alpaslan, G

    1999-02-01

    Samples prepared from Luxalloy, GS-80, Permite-C and Logic and polished after 24 h by traditional methods were stored in polypropylene tubes containing phosphate-buffered saline solutions (pH 3.5 and 6.5) and distilled water. The amounts of mercury, silver, tin, copper, zinc, platinum and indium in the test solutions were determined at the first, second, eighth, 52nd and 78th week by atomic absorption spectrometry. At the end of the eighth week the amalgam samples were removed from solutions and evaluated by Rockwell Super Scial Microhardness tester. Statistically significant low amounts of metal ions were measured for Permite-C containing indium and Logic containing platinum. The microhardness test results showed that there were statistically significant increases in the microhardness of Permite-C and Logic. As a result it was shown that the amalgam samples were affected from corrosion conditions to different degrees. Sample of the Logic group that was stored in distilled water, showed smoother surface properties than other amalgam samples containing high copper. However, it was observed that samples of Permite-C group had the smoothest surface properties.

  20. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe 2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe 2 O 4. A phase pure tetragonal CuFe 2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structuremore » (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  1. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  2. Copper absorption from foods labelled intrinsically and extrinsically with Cu-65 stable isotope.

    PubMed

    Harvey, L J; Dainty, J R; Beattie, J H; Majsak-Newman, G; Wharf, S G; Reid, M D; Fairweather-Tait, S J

    2005-03-01

    To determine copper absorption from copper containing foods labelled either intrinsically or extrinsically with a highly enriched Cu-65 stable isotope label. A longitudinal cross-over study. The study was conducted at the Institute of Food Research, Human Nutrition Unit, Norwich, UK. Subjects were recruited locally via advertisements placed around the Norwich Research Park. A total of 10 volunteers (nine female, one male) took part in the study, but not all volunteers completed each of the test meals. A highly enriched Cu-65 stable isotope label was administered to volunteers in the form of a reference dose or in breakfast test meals consisting of red wine, soya beans, mushrooms or sunflower seeds. Faecal monitoring and mass spectrometry techniques were used to estimate the relative quantities of copper absorbed from the different test meals. True copper absorption from the reference dose (54%) was similar to extrinsically labelled red wine (49%) and intrinsically labelled sunflower seeds (52%), but significantly higher than extrinsically labelled mushrooms (35%), intrinsically (29%) and extrinsically (15%) labelled soya beans and extrinsically labelled sunflower seed (32%) test meals. The use of Cu-65 extrinsic labels in copper absorption studies requires validation according to the food being examined; intrinsic and extrinsic labelling produced significantly different results for sunflower seeds.

  3. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    DOE PAGES

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan; ...

    2017-08-28

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less

  4. Diaquachloro-tris(ethyl-p-Aminobenzoate)copper(II) Chloride: Synthesis, Characterization and In Vitro Investigation of Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Rahardjo, S. B.; Lestari, W. W.; Syaima, H.

    2017-07-01

    The new complex of [Cu(benz)3(H2O)2Cl]Cl has been synthesized in 1:4 mole ratio of CuCl2·2H2O and ethyl-p-aminobenzoate (benz) in ethanol at room temperature. The complex was characterized by UV-Vis and infrared spectroscopy, Atomic Absorption Spectroscopy (AAS), thermal analysis, magnetic measurement and molar conductivity. Infrared spectra indicated that benz was coordinated to the metal ion through nitrogen of primary amine group. Water molecules and chloride ion were also coordinated to Cu(II). CuCl2·2H2O, benz, and Cu(II) complex were screened for investigating in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli using a modified Kirby-Bauer method.

  5. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less

  6. Tear copper and its association with liver copper concentrations in six adult ewes.

    PubMed Central

    Schoster, J V; Stuhr, C; Kiorpes, A

    1995-01-01

    Tear and liver copper concentrations from 6 clinically healthy adult mixed-breed ewes were measured by Atomic Absorption Electrothermal Atomization (graphite furnace) Spectrometry and Flame Absorption Spectrometry, respectively, 7 times over 227 d to determine if their tears contained copper and if so, whether tear copper concentrations could reliably predict liver copper concentrations. To produce changes in liver copper concentration, the diet was supplemented with copper at concentrations that increased from 23 mg to 45 mg Cu/kg feed/day/sheep during the study. This regimen raised liver copper for all sheep to potentially toxic hepatic tissue concentration of greater than 500 mg/kg dry (DM) matter (tissue). The results of the study showed that copper was present in the tears of all sheep. The mean tear copper concentration showed a positive correlation with liver copper concentration (P = 0.003), increasing from 0.07 mg/kg DM at the start to 0.44 mg/kg DM at the end of the study, but could not reliably predict liver copper concentration (R2 = 0.222). PMID:7648525

  7. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole.

    PubMed

    Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D

    2012-02-15

    Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Spectroscopic studies on Solvatochromism of mixed-chelate copper(II) complexes using MLR technique

    NASA Astrophysics Data System (ADS)

    Golchoubian, Hamid; Moayyedi, Golasa; Fazilati, Hakimeh

    2012-01-01

    Mixed-chelate copper(II) complexes with a general formula [Cu(acac)(diamine)]X where acac = acetylacetonate ion, diamine = N,N-dimethyl,N'-benzyl-1,2-diaminoethane and X = BPh 4-, PF 6-, ClO 4- and BF 4- have been prepared. The complexes were characterized on the basis of elemental analysis, molar conductance, UV-vis and IR spectroscopies. The complexes are solvatochromic and their solvatochromism were investigated by visible spectroscopy. All complexes demonstrated the positive solvatochromism and among the complexes [Cu(acac)(diamine)]BPh 4·H 2O showed the highest Δ νmax value. To explore the mechanism of interaction between solvent molecules and the complexes, different solvent parameters such as DN, AN, α and β using multiple linear regression (MLR) method were employed. The statistical results suggested that the DN parameter of the solvent plays a dominate contribution to the shift of the d-d absorption band of the complexes.

  9. From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity.

    PubMed

    Ro, Soo Y; Ross, Matthew O; Deng, Yue Wen; Batelu, Sharon; Lawton, Thomas J; Hurley, Joseph D; Stemmler, Timothy L; Hoffman, Brian M; Rosenzweig, Amy C

    2018-05-08

    Particulate methane monooxygenase (pMMO) is a copper-dependent, integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. Studies of isolated pMMO have been hindered by loss of enzymatic activity upon its removal from the native membrane. To characterize pMMO in a membrane-like environment, we reconstituted pMMOs from Methylococcus ( Mcc. ) capsulatus (Bath) and Methylomicrobium ( Mm. ) alcaliphilum 20Z into bicelles. Reconstitution into bicelles recovers methane oxidation activity lost upon detergent solubilization and purification without substantial alterations to copper content or copper electronic structure as observed by electron paramagnetic resonance (EPR) spectroscopy.. These findings suggest that loss of pMMO activity upon isolation is due to removal from the membranes rather than caused by loss of the catalytic copper ions. A 2.7 Å resolution crystal structure of pMMO from Mm. alcaliphilum 20Z revealed a mononuclear copper center in the PmoB subunit and indicated that the transmembrane PmoC subunit may be conformationally flexible. Finally, results from extended X-ray absorption fine structure (EXAFS) analysis of pMMO from Mm. alcaliphilum 20Z were consistent with the observed monocopper center in the PmoB subunit. These results underscore the importance of studying membrane proteins in a membrane-like environment, and provide valuable insight into pMMO function. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Electrochemical studies of mesoporous and copper-modified mesoporous TiO2 -anode material

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, R.; Venkateswara Rao, A.; Rajesh, Ch.

    2018-05-01

    Herein, we developed a method to synthesize highly ordered mesoporous TiO2 (MT) and copper-modified M- TiO2 (CMT) with a high surface area by the hydrothermal method using Pluronic P-123 as a surfactant at 150 ° C. CMT with different copper concentrations (0.1, 0.2 and 0.3%) was synthesized. The structural characterization studies revealed that MT and CMT particles are in anatase phase. The average particle size was found to be 24± 0.8 nm for MT and that of CMT was 25± 0.6 , 27± 0.4 and 28± 0.3 nm, respectively. The presence of ordered spherical MT and CMT particles with uniform size distribution was confirmed by performing morphological studies using FE-SEM. Optical absorption studies indicate the presence of copper because of the red shift in the band gap and also a broad peak around 800nm when compared with MT. EIS studies point out an increase in conductivity from MT through 0.3% CMT by a decrease in the charge transfer resistance. Further, charge-discharge studies were carried on this material at room temperature for lithium-ion battery applications. CMT with 0.3% copper showed high initial discharge capacity and better cyclability. The results indicate that this material can act as a promising negative electrode.

  11. Formation of Copper Catalysts for CO 2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy

    DOE PAGES

    Eilert, André; Roberts, F. Sloan; Friebel, Daniel; ...

    2016-04-04

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less

  12. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation

    DOE PAGES

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.; ...

    2015-09-09

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. Finally and more generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.« less

  13. A Study on Anti – Fouling Behaviour and Mechanical Properties of PVA/Chitosan/TEOS Hybrid membrane in The Treatment of Copper Solution

    NASA Astrophysics Data System (ADS)

    Sulaiman, N. A.; Kassim Shaari, N. Z.; Rahman, N. Abdul

    2018-05-01

    In a wastewater treatment by using membrane filtration, fouling has been one of the major problems. In this study, the anti-fouling behaviour of the fabricated thin-film composite membrane were studied during the treatment of water containing copper ion. The membranes were prepared from a polymer blend of 2wt.% chitosan with 10 wt.% poly(vinyl alcohol) (PVA) and then it was cross – linked with tetraethylorthosilicate (TEOS) through sol-gel method. The membrane had been evaluated for its resistance against organic fouling where humic acid had been chosen as organic foulant model which represent the natural organic matter (NOM) in water or wastewater. The dead-end filtration experiments were carried out by using 50 ppm of copper solution with and without the presence of humic acid as feed solution, which was passed through two types of thin film composite membranes. The possible reversible fouling was evaluated by using relative flux decay (RFD) and relative flux recovery (RFR) calculations. The percentage of copper ion removal was evaluated by using Atomic Absorption Spectroscopy (AAS). Based on the results, with the presence of humic acid, the membrane incorporated with silica precursor (TEOS) showed lower flux decay (3%) and higher flux recovery (76%), which show that the formulated hybrid membrane possesses the anti fouling property. The same trend was observed in the mechanical properties of hybrid membrane, where the presence of TEOS has improved the tensile strength and flexibility of the membrane. Therefore, the fabricated thin film composite with the anti-fouling properties and good physical flexibility has potential to be used in the treatment of wastewater containing heavy metal as it could result in good saving in term of operational cost.

  14. Structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative and its mononuclear and trinuclear copper(II)-coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2014-11-01

    Multicopper oxidases are fundamental in a variety of biological processes in bacteria, fungi and vertebrates. The catalytic center in these enzymes is formed basically by three copper ions, bridged by oxygen bonds. In order to get insights into the reactivity of these complex systems, biomimetic compounds are usually synthesized. Accordingly, in this work, we studied structural, vibrational, and electronic properties of an uncoordinated pseudoephedrine derivative, as well as its corresponding mononuclear and trinuclear copper(II)-coordinated complexes by means of density functional theory. The calculations are compared with experimental results using measurements of the infrared spectra. It is obtained that the molecular configuration of the pseudoephedrine amino-alcohol derivative is stabilized by hydrogen bonding Osbnd H⋯N and by Csbnd H⋯π interactions that are not present in the mononuclear and trinuclear compounds. The coordination compounds show octahedral and square pyramid geometries, respectively, which are slightly distorted by Jahn-Teller effects. The analysis of their theoretical and experimental IR spectra reveals signals related with hydrogen bonding as well as metal-ligand vibrational modes. Regarding the electronic structure, the density of states was calculated in order to analyze the atomic orbital contributions present in these compounds. This analysis would provide useful insights about the optical behavior, for example, in the visible region of the spectrum of the coordinated compounds. At these energies, the optical absorption would be influenced by the orbital interaction of the Cu2+d orbitals with sp ones of the ligand, reflecting a decrease of the HOMO-LUMO gap of the organic ligand due to the presence of the copper(II) ions.

  15. The Optical Properties of Ion Implanted Silica

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.

  16. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    PubMed

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  17. Applications of peat-based sorbents for removal of metals from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.D.; Stack, E.M.; Eltayeb, S.

    1995-12-31

    The results reported in this paper are derived from one part of an ongoing investigation of peat sorption properties, in particular, the capacities of acid-treated peats to adsorb chromium, nickel, zinc, copper, and cadmium from water. Acid treatment was done to remove as much previously adsorbed metal as possible before testing. Four peat types were selected for study, two highly decomposed types (a woody, Taxodium-dominated peat from the Okefenokee Swamp of Georgia and a sedge-dominated, charcoal-rich peat from the Tamiami Trail region of Florida) and two less decomposed ones (a Sphagnum moss-dominated peat from Maine and a Nymphaea-dominated peat frommore » the Okefenokee Swamp of Georgia). Single metal and mixed metal solutions were tested in slurry experiments with each peat type. Solutions were analyzed using a Perkin-Elmer model 305B Flame Atomic Absorption Spectrophotometer. In single metal tests, chromium and copper tended to be adsorbed to a greater extent than the other metals. Three of the peats were found to be capable of adsorbine more copper ions than zince ions, while a fourth type adsorbed approximately the same amounts of each. Degree of decomposition of the peats tended to affect sorption properties for certain metals. The results of batch studies revealed that chromium was always preferentially adsorbed regardless of the peat type tested. The results of these studies further confirm that remediation of metal-contaminated waters using peats will require selection of specific peats to match the contaminants.« less

  18. Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils - a new route for biodiesel syntheses.

    PubMed

    da Silva, Rondinelly Brandão; Lima Neto, Alcides Fernandes; Soares Dos Santos, Lucas Samuel; de Oliveira Lima, José Renato; Chaves, Mariana Helena; Dos Santos, José Ribeiro; de Lima, Geraldo Magela; de Moura, Edmilson Miranda; de Moura, Carla Verônica Rodarte

    2008-10-01

    Catalysts of Cu(II) and Co(II) adsorbed in chitosan was used in transesterification of soy bean and babassu oils. The catalysts were characterized by infrared, atomic absorption and TG, and biodiesels was characterized by infrared, NMR, CG, TG, physic chemistry analysis. The maximum adsorption values found for copper and cobalt cations were 1.584 and 1.260mgg(-1), respectively, in 180min. However, conversion of oils in biodiesel was better when used Co(II) adsorbed in chitosan.

  19. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  20. Chemically modified Moringa oleifera seed husks as low cost adsorbent for removal of copper from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ghafar, Faridah; Mohtar, Aminullah; Sapawe, Norzahir; Hadi, Norulakmal Nor; Salleh, Marmy Roshaidah Mohd

    2017-12-01

    Moringa oleifera husks (MOH) are an agricultural byproduct that may have potential as adsorbent for removal of heavy metal ions in wastewater such as copper (Cu2+). The release of Cu2+ to the environment by the mining and electroplating industries cause a major problem because it is toxic and can cause liver and kidney problems. Hence, it is important to remove copper before the wastewater can be discharged to the environment. In order to increase the adsorption capacity, the MOH was chemically modified using citric acid. The raw and modified MOH were analyzed using Fourier Transform Infra-Red (FTIR) for identification of functional groups present at the adsorbent surface. The adsorption study was carried out using the batch technique in water bath shaker investigating different parameters; adsorbent dosage (30 - 70 g/L), initial concentration of copper (30 - 150 mg/L), contact time (2 - 90 min), temperature (27 - 60 °C) at constant agitation of 100 rpm. The concentrations of copper in aqueous solution before and after the adsorption process was analyzed using Atomic Absorption Spectrum (AAS). The highest percentage removal of copper was found at 10g/L of adsorbent dosage with 30 mg/L of initial concentration and temperature 30 °C. It was also observed that the adsorption of copper by MOH was approaching to equilibrium at 60 min of reaction time. From the FTIR analysis, it was found that the MOH contains hydroxyl, carboxyl and amine groups. The high adsorption capacity of modified MOH to remove copper from aqueous solution makes it preferable and attractive alternative to commercial adsorbent.

  1. Zinc stress induces copper depletion in Acinetobacter baumannii.

    PubMed

    Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A

    2017-03-11

    The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.

  2. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿

    PubMed Central

    Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600

  3. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    ScienceCinema

    Brookhaven Lab - Fulvia Pilat

    2017-12-09

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  4. Combined copper/zinc attachment to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  5. Sustainable p-type copper selenide solar material with ultra-large absorption coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Erica M.; Williams, Logan; Olvera, Alan

    We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm −1 ) in the entire visible range make it a promising Earth-abundant solar absorber material.

  6. Sustainable p-type copper selenide solar material with ultra-large absorption coefficient

    DOE PAGES

    Chen, Erica M.; Williams, Logan; Olvera, Alan; ...

    2018-01-01

    We report the synthesis of CTSe, a p-type titanium copper selenide semiconductor. Its band gap (1.15 eV) and its ultra-large absorption coefficient (10 5 cm −1 ) in the entire visible range make it a promising Earth-abundant solar absorber material.

  7. Enhanced 1.53 μm emission of Er{sup 3+} ions in phosphate glass via energy transfer from Cu{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, José A., E-mail: jose.jimenez@unf.edu; Sendova, Mariana

    2014-07-21

    Optimizing the efficiency of Er{sup 3+} emission in the near-infrared telecommunication window in glass matrices is currently a subject of great interest in photonics research. In this work, Cu{sup +} ions are shown to be successfully stabilized at a high concentration in Er-containing phosphate glass by a single-step melt-quench method, and demonstrated to transfer energy to Er{sup 3+} thereby enhancing the near-infrared emission about 15 times. The spectroscopic data indicate an energy conversion process where Cu{sup +} ions first absorb photons broadly around 360 nm and subsequently transfer energy from the Stokes-shifted emitting states to resonant Er{sup 3+} absorption transitions inmore » the visible. Consequently, the Er{sup 3+} electronic excited states decay and the {sup 4}I{sub 3/2} metastable state is populated, leading to the enhanced emission at 1.53 μm. Monovalent copper ions are thus recognized as sensitizers of Er{sup 3+} ions, suggesting the potential of Cu{sup +} co-doping for applications in the telecommunications, solar cells, and solid-state lasing realizable under broad band near-ultraviolet optical pumping.« less

  8. Direct ROS scavenging activity of CueP from Salmonella enterica serovar Typhimurium.

    PubMed

    Yoon, Bo-Young; Yeom, Ji-Hyun; Kim, Jin-Sik; Um, Si-Hyeon; Jo, Inseong; Lee, Kangseok; Kim, Yong-Hak; Ha, Nam-Chul

    2014-02-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.

  9. [Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].

    PubMed

    Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia

    2014-04-01

    The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.

  10. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    PubMed

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  11. Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.

    PubMed

    Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W

    2006-07-20

    Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.

  12. Modeling ultrasonic compression wave absorption during the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution.

    PubMed

    Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S

    2002-11-01

    Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.

  13. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    PubMed

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that do not efficiently extract copper from soluble amyloids. We have designed and developed new tetradendate ligands such as 21 and PA1637 based on bis(8-aminoquinolines) that are specific for copper chelation and are able to extract copper(II) from amyloids and then can release copper ion upon reduction with a biological reducing agent. These studies contribute to the understanding of the physicochemical properties of the tetradentate copper ligands compared with bidentate ligands like clioquinol. One of these copper ligands, PA1637, after selection with a nontransgenic mouse model that is able to efficiently monitor the loss of episodic memory, is currently under preclinical development.

  14. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu; Tahara, Shuta

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  15. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.

  16. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  17. A HiPIMS plasma source with a magnetic nozzle that accelerates ions: application in a thruster

    NASA Astrophysics Data System (ADS)

    Bathgate, Stephen N.; Ganesan, Rajesh; Bilek, Marcela M. M.; McKenzie, David R.

    2017-01-01

    We demonstrate a solid fuel electrodeless ion thruster that uses a magnetic nozzle to collimate and accelerate copper ions produced by a high power impulse magnetron sputtering discharge (HiPIMS). The discharge is initiated using argon gas but in a practical device the consumption of argon could be minimised by exploiting the self-sputtering of copper. The ion fluence produced by the HiPIMS discharge was measured with a retarding field energy analyzer (RFEA) as a function of the magnetic field strength of the nozzle. The ion fraction of the copper was determined from the deposition rate of copper as a function of substrate bias and was found to exceed 87%. The ion fluence and ion energy increased in proportion with the magnetic field of the nozzle and the energy of the ions was found to follow a Maxwell-Boltzmann distribution with a directed velocity. The effectiveness of the magnetic nozzle in converting the randomized thermal motion of the ions into a jet was demonstrated from the energy distribution of the ions. The maximum ion exhaust velocity of at least 15.1 km/s, equivalent to a specific impulse of 1543 s was measured which is comparable to existing Hall thrusters and exceeds that of Teflon pulsed plasma thrusters.

  18. Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions.

    PubMed

    Wang, Ying; Liu, Xu; Wang, Hongfang; Xia, Guangmei; Huang, Wei; Song, Rui

    2014-02-15

    In the current study, microporous spongy chitosan monoliths doped with small amount of graphene oxide (CSGO monoliths) with high porosity (96-98%), extraordinary high water absorption (more than 2000%) and low density (0.0436-0.0607 g cm(-3)) were prepared by the freeze-drying method and used as adsorbents for anionic dyes methyl orange (MO) and Cu(2+) ions. The adsorption behavior of the CSGO monoliths and influencing factors such as pH value, graphene oxide (GO) content, concentration of pollutants as well as adsorption kinetics were studied. Specifically, the saturated adsorption capacity for MO is 567.07 mg g(-1), the highest comparing with other publication results, and it is 53.69 mg g(-1) for Cu(2+) ions. Since they are biodegradable, non-toxic, efficient, low-cost and easy to prepare, we believe that these microporous spongy CSGO monoliths will be the promising candidates for water purification. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.

    PubMed

    Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M

    2010-05-01

    The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).

  20. Spectator Ions ARE Important! A Kinetic Study of the Copper-Aluminum Displacement Reaction

    ERIC Educational Resources Information Center

    Sobel, Sabrina G.; Cohen, Skyler

    2010-01-01

    Surprisingly, spectator ions are responsible for unexpected kinetics in the biphasic copper(II)-aluminum displacement reaction, with the rate of reaction dependent on the identity of the otherwise ignored spectator ions. Application of a published kinetic analysis developed for a reaction between a rotating Al disk and a Cu(II) ion solution to the…

  1. Removal of copper ions from aqueous solutions by a steel-making by-product.

    PubMed

    López, F A; Martín, M I; Pérez, C; López-Delgado, A; Alguacil, F J

    2003-09-01

    A study is made of the use of a steel-making by-product (rolling mill scale) as a material for removing Cu(2+) ions from aqueous solutions. The influence of contact time, initial copper ion concentration and temperature on removal capability is considered. The removal of Cu(2+) ions from an aqueous solution involves two processes: on the one hand, the adsorption of Cu(2+) ions on the surface of mill scale due to the iron oxides present in the latter; and on the other hand, the cementation of Cu(2+) onto metallic iron contained in the mill scale. Rolling mill scale is seen to be an effective material for the removal of copper ions from aqueous solutions.

  2. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    NASA Astrophysics Data System (ADS)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  3. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  4. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential is applied to the calculated spectra to obtain satisfactory agreement with measured spectra.

  5. Interactions between copper(II) and DOM in the urban stormwater runoff: modeling and characterizations.

    PubMed

    Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui

    2018-01-01

    Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.

  6. Biosorption of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms.

    PubMed

    Wan Ngah, W S; Hanafiah, M A K M

    2008-01-01

    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions from aqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed, pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increased with increase in pH, stirring speed and copper concentration but decreased with increase in biosorbent dose and ionic strength. The isotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. The maximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27 degrees C. The kinetic study revealed that pseudosecond order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determining step in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fourier transform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the binding of copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ion exchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na+, Ca2+, and Mg2+) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at > 99% using 0.05 mol/L HCl, 0.01 mol/L HNO3, and 0.01 mol/L EDTA solutions.

  7. A novel colorimetric probe derived from isonicotic acid hydrazide for copper (II) determination based on internal charge transfer (ICT).

    PubMed

    Liu, Qing; Fei, Qiang; Fei, Yanqun; Fan, Qian; Shan, Hongyan; Feng, Guodong; Huan, Yanfu

    2015-12-05

    A novel isonicotic acid hydrazide Schiff base derivative N'-(3,5-di-tert-butyl-2-hydroxy-benzylidene) isonicotinohydrazide (DHIH) has been synthesized and developed as a high selective and sensitive colorimetric probe for Cu(2+) determination. Addition of Cu(2+) to the solution of DHIH resulted in a rapid color change from colorless to yellow together with an obvious new absorption band appeared at the range of 400-440 nm by forming a 1:1 complex. Experimental results indicated that the DHIH could provide absorption response to Cu(2+) with a linear dynamic range from 1.0×10(-5) to 1.0×10(-4)mol/L. The detection limit of Cu(2+) was 5.24×10(-7)mol/L with good tolerance of other metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Copper-2 Ingestion, Plus Increased Meat Eating Leading to Increased Copper Absorption, Are Major Factors Behind the Current Epidemic of Alzheimer's Disease.

    PubMed

    Brewer, George J

    2015-12-02

    It has become clear that copper toxicity is playing a major role in Alzheimer's disease; but why is the brain copper toxicity with cognition loss in Alzheimer's disease so much different clinically than brain copper toxicity in Wilson's disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer's is at least in part, a copper-2 toxicity disease, while Wilson's is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer's epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure.

  9. Copper-2 Ingestion, Plus Increased Meat Eating Leading to Increased Copper Absorption, Are Major Factors Behind the Current Epidemic of Alzheimer’s Disease

    PubMed Central

    Brewer, George J.

    2015-01-01

    It has become clear that copper toxicity is playing a major role in Alzheimer’s disease; but why is the brain copper toxicity with cognition loss in Alzheimer’s disease so much different clinically than brain copper toxicity in Wilson’s disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer’s is at least in part, a copper-2 toxicity disease, while Wilson’s is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer’s epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure. PMID:26633489

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. Finally and more generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.« less

  11. Phenotypic Characterization of a copA Mutant of Neisseria gonorrhoeae Identifies a Link between Copper and Nitrosative Stress

    PubMed Central

    Djoko, Karrera Y.; Franiek, Jessica A.; Edwards, Jennifer L.; Falsetta, Megan L.; Kidd, Stephen P.; Potter, Adam J.; Chen, Nathan H.; Apicella, Michael A.; Jennings, Michael P.

    2012-01-01

    NGO0579 is annotated copA in the Neisseria gonorrhoeae chromosome, suggesting that it encodes a cation-transporting ATPase specific for copper ions. Compared to wild-type cells, a copA mutant was more sensitive to killing by copper ions but not to other transition metals. The mutant also accumulated a greater amount of copper, consistent with the predicted role of CopA as a copper efflux pump. The copA mutant showed a reduced ability to invade and survive within human cervical epithelial cells, although its ability to form a biofilm on the surface of these cells was not significantly different from that of the wild type. In the presence of copper, the copA mutant exhibited increased sensitivity to killing by nitrite or nitric oxide. Therefore, we concluded that copper ion efflux catalyzed by CopA is linked to the nitrosative stress defense system of Neisseria gonorrhoeae. These observations suggest that copper may exert its effects as an antibacterial agent in the innate immune system via an interaction with reactive nitrogen species. PMID:22184419

  12. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II) Ions in Aqueous Solution

    PubMed Central

    Heo, Jungho; Hwang, Cheong-Soo

    2016-01-01

    Water-dispersible ZnS:Mn nanocrystals (NCs) were synthesized by capping the surface with polar L-aspartic acid (Asp) molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS) absorption spectrum and photoluminescence (PL) emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM) image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV) in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II) cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu2+ ions. PMID:28335210

  13. Synthesis, structure, spectroscopic and electrochemical properties of bis(histamine-saccharinate) copper(II) complex

    NASA Astrophysics Data System (ADS)

    Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet

    2007-05-01

    Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.

  14. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Bone Building Blues: Self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria.

    PubMed

    Rau, Julietta V; Wu, Victoria M; Graziani, Valerio; Fadeeva, Inna V; Fomin, Alexander S; Fosca, Marco; Uskoković, Vuk

    2017-10-01

    A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against Gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper-free cements. The difference in the mechanism of protection of dehydratases in prokaryotes and eukaryotes was used as a rationale for explaining the hereby evidenced selectivity in biological response. It presents the basis for the consideration of copper as a dually effective ion when synergized with calcium phosphates: toxic for bacteria and beneficial for the healthy cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Analysis of spectra of 3s-3p and 3p-3d transitions of highly-charged copper ions

    NASA Astrophysics Data System (ADS)

    Su, M. G.; Min, Q.; He, S. Q.; Wu, L.; Sun, R.; Ding, X. B.; Sun, D. X.

    2017-08-01

    Beam-foil excited spectra in the range of 160-360 Å from highly charged copper ions were identified with the aid of the National Institute of Standards and Technology Atomic Spectra Database and theoretical calculations with Cowan and Flexible Atomic Code (FAC) calculations. Spectra arising from 3s-3p and 3p-3d transitions of Cu13+-Cu22+ ions were considered. The ion fraction at an ion beam energy of 110 MeV was estimated from the equilibrium charge distribution of the fast ion beams after passing through the solid. The corresponding simulated spectra were in good agreement with the experimental result. Our Cowan and FAC calculation results should be useful for further spectral identification and lifetime measurements of highly charged copper ions.

  17. Visual Observation of Dissolution of Copper Ions from a Copper Electrode

    ERIC Educational Resources Information Center

    Ikemoto, Isao; Saitou, Kouichi

    2013-01-01

    During electrolysis, to visually observe the conversion of a metal to its cation, either the cation or its complex ion should have a distinct color while the electrolyte solution must be colorless and transparent. A demonstration is described in which copper is used as the electrodes and sodium polyacrylate (a superabsorbent polymer) solution is…

  18. Simultaneous determination of iron, cadmium, zinc, copper, nickel, lead, and uranium in seawater by stable isotope dilution spark source mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mykytiuk, A.P.; Russell, D.S.; Sturgeon, R.E.

    Trace concentrations (ng/mL) of Fe, Cd, Zn, Cu, Ni, Pb, U, and Co have been determined in seawater by stable isotope dilution spark source mass spectrometry. The seawater samples were preconcentrated on the ion exchanger Chelex-100 and the concentrate was evaporated on a graphite or silver electrode. The results are compared with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. The technique avoids the use of calibration standards and is capable of producing results in cases where the analyte is only partially recovered. 2 tables.

  19. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    PubMed

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    NASA Astrophysics Data System (ADS)

    Zhou, Weitao; Huang, Haitao; Du, Shan; Huo, Yingdong; He, Jianxin; Cui, Shizhong

    2015-08-01

    In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu2+ adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions.

  1. Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagade, Abhay Abhimanyu; Sharma, Ramphal; Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791

    2009-02-15

    The studies are carried out on the effect of swift heavy ion (SHI) irradiation on surface morphology and electrical properties of copper sulfide (Cu{sub x}S) thin films with three different chemical compositions (x values). The irradiation experiments have been carried out on Cu{sub x}S films with x=1.4, 1.8, and 2 by 100 MeV gold heavy ions at room temperature. These as-deposited and irradiated thin films have been used to detect ammonia gas at room temperature (300 K). The SHI irradiation treatment on x=1.4 and 1.8 copper sulfide films enhances the sensitivity of the gas sensor. The results are discussed consideringmore » high electronic energy deposition by 100 MeV gold heavy ions in a matrix of copper sulfide.« less

  2. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  3. Investigation into Spectroscopic Techniques for Thermal Barrier Coating Spall Detection

    NASA Technical Reports Server (NTRS)

    deGroot, Wim; Opila, Beth

    2001-01-01

    Spectroscopic methods are proposed for detection of thermal barrier coating (TBC) spallation from engine hot zone components. These methods include absorption and emission of airborne marker species originally embedded in the TBC bond coat. In this study, candidate marker materials for this application were evaluated. Thermochemical analysis of candidate marker materials combined with additional constraints such as toxicity and uniqueness to engine environment, provided a short list of four potential species: platinum, copper oxide, zinc oxide. and indium. The melting point of indium was considered to be too low for serious consideration. The other three candidate marker materials, platinum, copper oxide, and zinc oxide were placed in a high temperature furnace and emission and absorption properties were measured over a temperature range from 800-1400 C and a spectral range from 250 to 18000 nm. Platinum did not provide the desired response, likely due to the low vapor Pressure of the metallic species and the low absorption of the oxide species. It was also found, however. that platinum caused a broadening of the carbon dioxide absorption at 4300 nm. The nature of this effect is not known. Absorption and emission caused by sodium and potassium impurities in the platinum were found in the platinum tests. Zinc oxide did not provide the desired response, again, most likely due to the low vapor pressure of the metallic species and the low absorption of the oxide species. Copper oxide generated two strongly temperature dependent absorption peaks at 324.8 and 327.4 nm. The melting point of copper oxide was determined to be too low for serious consideration as marker material.

  4. Research on plasma and saliva levels of some bivalent cations in patients with chronic periodontitis (salivary cations in chronic periodontitis).

    PubMed

    Manea, A; Nechifor, M

    2014-01-01

    The purpose of this study was to determine whether chronic periodontitis can stand behind modifications in the salivary and blood concentration of some bivalent cations (Calcium, Magnesium, Zinc and Copper). For this purpose, we formed a group of 30 adult patients with clinically onset chronic periodontitis, and another one of 30 healthy patients as control. Both groups were free from acute oral pathology and general illnesses. The groups were divided again according to the habit of smoking. Total saliva samples were obtained as "first time in the morning", then weighed and processed. Cations were read on Atomic Absorption Spectrophotometer and by Ion Chromatography (Magnesium). The same patients were required to undergo laboratory blood tests for Calcium, Magnesium and Zinc. Data obtained was normalised, then statistically interpreted using two-tailed heteroscedastic t-Student tests. Our data confirmed the existence of a connection between salivary calcium, magnesium, zinc and copper, and of blood magnesium, and chronic periodontitis. Salivary calcium and magnesium are affected by smoking.

  5. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    PubMed

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  6. Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum)

    NASA Astrophysics Data System (ADS)

    Kadiri, L.; Lebkiri, A.; Rifi, E. H.; Ouass, A.; Essaadaoui, Y.; Lebkiri, I.; Hamad, H.

    2018-05-01

    The adsorption of copper ions Cu2+ by Coriandrum Sativum seeds (CSS) from aqueous solution was studied in order to highlight the importance of coriander seeds as a potential tool in the treatment of wastewaters containing heavy metals. The kinetic studies of adsorption of Cu (II) were discussed using the spectroscopic technique "Inducting Coupled Plasma" (ICP). The effects of initial copper ion concentration and contact time were determined. All results show that coriander seeds have, over their culinary and medicinal benefits, a significant adsorbent power of copper ions.

  7. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    PubMed Central

    2012-01-01

    Background The aim of the study was to investigate the effect of dietary supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein, on the effectiveness of chemically induced mammary cancer and the changes in the content of selected elements (Zn, Cu, Mg, Fe, Ca) in tumors as compared with normal tissue of the mammary gland. Methods Female Sprague-Dawley rats were divided into study groups which, apart from the standard diet and DMBA (7,12-dimethyl-1,2- benz[a]anthracene), were treated with zinc ions (Zn) or zinc ions + resveratrol (Zn + resveratrol) or zinc ions + genistein (Zn + genistein) via gavage for a period from 40 days until 20 weeks of age. The ICP-OES (inductively coupled plasma optical emission spectrometry) technique was used to analyze the following elements: magnesium, iron, zinc and calcium. Copper content in samples was estimated in an atomic absorption spectrophotometer. Results Regardless of the diet (standard; Zn; Zn + resveratrol; Zn + genistein), DMBA-induced breast carcinogenesis was not inhibited. On the contrary, in the Zn + resveratrol supplemented group, tumorigenesis developed at a considerably faster rate. On the basis of quantitative analysis of selected elements we found - irrespectively of the diet applied - great accumulation of copper and iron, which are strongly prooxidative, with a simultaneous considerable decrease of the magnesium content in DMBA-induced mammary tumors. The combination of zinc supplementation with resveratrol resulted in particularly large differences in the amount of the investigated elements in tumors as compared with their content in normal tissue. Conclusions Diet supplementation with zinc and polyphenol compounds, i.e. resveratrol and genistein had no effect on the decreased copper level in tumor tissue and inhibited mammary carcinogenesis in the rat. Irrespectively of the applied diet, the development of the neoplastic process in rats resulted in changes of the iron and magnesium content in the cancerous tissue in comparison with the healthy mammary tissue. The application of combined diet supplementation with zinc ions and resveratrol considerably promoted the rate of carcinogenesis and increased the number of DMBA-induced mammary tumors. PMID:22507225

  8. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater

    PubMed Central

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-01-01

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm−1 to ~1504 cm−1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH4+, Mn2+, Mg2+, K+, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water. PMID:29140287

  9. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater.

    PubMed

    Ly, Nguyễn Hoàng; Nguyen, Thanh Danh; Zoh, Kyung-Duk; Joo, Sang-Woo

    2017-11-15

    A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu 2+ ) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu 2+ , showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm -1 to ~1504 cm -1 on AuNPs at a high concentration of Cu 2+ above 1 μM. The other ions of Zn 2+ , Pb 2+ , Ni 2+ , NH₄⁺, Mn 2+ , Mg 2+ , K⁺, Hg 2+ , Fe 2+ , Fe 3+ , Cr 3+ , Co 2+ , Cd 2+ , and Ca 2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe 3+ , Ni 2+ , and Zn 2+ . The Raman spectroscopy-based quantification of Cu 2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu 2+ ions. A micromolar range detection limit of Cu 2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

  10. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  11. Copper Reduction and Contact Killing of Bacteria by Iron Surfaces

    PubMed Central

    Mathews, Salima; Kumar, Ranjeet

    2015-01-01

    The well-established killing of bacteria by copper surfaces, also called contact killing, is currently believed to be a combined effect of bacterial contact with the copper surface and the dissolution of copper, resulting in lethal bacterial damage. Iron can similarly be released in ionic form from iron surfaces and would thus be expected to also exhibit contact killing, although essentially no contact killing is observed by iron surfaces. However, we show here that the exposure of bacteria to iron surfaces in the presence of copper ions results in efficient contact killing. The process involves reduction of Cu2+ to Cu+ by iron; Cu+ has been shown to be considerably more toxic to cells than Cu2+. The specific Cu+ chelator, bicinchoninic acid, suppresses contact killing by chelating the Cu+ ions. These findings underline the importance of Cu+ ions in the contact killing process and infer that iron-based alloys containing copper could provide novel antimicrobial materials. PMID:26150470

  12. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, E. M., E-mail: e.m.osipov@gmail.com; Polyakov, K. M.; Engelhardt Institute of Molecular Biology, Vavilova str. 32, Moscow 119991

    2015-11-18

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu{sup +}-containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. Withmore » the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu{sup +}- and Cu{sup 2+}-containing solutions. Copper ions were found to be incorporated into the active site only when Cu{sup +} was used. A comparative analysis of the native and depleted forms of the enzymes was performed.« less

  13. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance.

    PubMed

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-25

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  14. Determination of palladium and platinum by atomic absorption

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.

  15. Studies on Zinc and Copper Ion in Relation to Wound Healing in Male and Female West African Dwarf Goats.

    PubMed

    Olaifa, A K; Fadason, S T

    2017-03-06

    Wound healing remains a challenging clinical problem for which precise and efficient management is essential in order to curtail morbidity and mortality. Wound healing has been shown to depend upon the availability of appropriate trace elements like copper and zinc which serve as enzyme cofactors and structural components in tissue repair. This study aims at evaluating the distribution of zinc and copper found in the hair as well as skin during epidermal wound healing. Adult and healthy West African dwarf (WAD) goats of both sexes fed with concentrate, grass, cassava peel and water ad libitum were used. The animals were housed for three weeks before commencement of the experiments. Epidermal wounds were created on the trunks of all the goats using cardboard template of 1cm². Progressive changes in wound contraction were monitored grossly by placing clean and sterile venier calliper on the wound margin. Hair and skin elemental (copper and zinc) analyses were done using atomic absorption spectroscopy (AAS). Significant increases in Cu level were observed in the female hair compared with that of males. There were significant increases in the Zn levels of the females' hair compared with the males. The wound healed faster in female goat compared with the males. The ratio of copper to zinc is clinically more important than the concentration of either of these trace metals. The pattern of distribution between zinc and copper concentration in the skin and hair of the male and female goats observed in this study could be added factor responsible for early wound healing in female. Therefore, our findings suggest that the distribution in the Cu and Zinc level in skin and hair of both male and female goats could also be a factor for wound healing in the animals.

  16. Target-specific copper hybrid T7 phage particles.

    PubMed

    Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai

    2012-12-18

    Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7 phage could be endocytosed by cancer cells in culture.

  17. Stress Corrosion Cracking Control Plans. 3. Copper Alloys

    DTIC Science & Technology

    1975-06-01

    convenience intended to include amines and all other species which can react with copper to produce the cupric -ammonium complex ion or perhap...capability of forming complexes even resembling the cupric -ammonium complex should be considered as potentially causative of SCC as ammonia unless...nitrate, acetate, tartrate , or citrate which also contain copper ions. There is some evidence that oxides of nitrogen (generating ammoniacal species

  18. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  19. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanalmore » components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.« less

  20. Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper

    PubMed Central

    Stafford, Sian L.; Bokil, Nilesh J.; Achard, Maud E. S.; Kapetanovic, Ronan; Schembri, Mark A.; McEwan, Alastair G.; Sweet, Matthew J.

    2013-01-01

    The immunomodulatory and antimicrobial properties of zinc and copper have long been appreciated. In addition, these metal ions are also essential for microbial growth and survival. This presents opportunities for the host to either harness their antimicrobial properties or limit their availability as defence strategies. Recent studies have shed some light on mechanisms by which copper and zinc regulation contribute to host defence, but there remain many unanswered questions at the cellular and molecular levels. Here we review the roles of these two metal ions in providing protection against infectious diseases in vivo, and in regulating innate immune responses. In particular, we focus on studies implicating zinc and copper in macrophage antimicrobial pathways, as well as the specific host genes encoding zinc transporters (SLC30A, SLC39A family members) and CTRs (copper transporters, ATP7 family members) that may contribute to pathogen control by these cells. PMID:23738776

  1. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    PubMed

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  2. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.

    2017-10-01

    Large, areal, brittle fracture of copper current collector foils has been observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture is hidden and non-catastrophic to a degree because the graphite layers deform plastically, and hold the materials together so that the cracks in the foils cannot be seen under optical and electron microscopy. The cracking of copper foils could not be immediately confirmed when the cell is opened for post-mortem examination. However, 3D XCT on the indented cell reveals ;mud cracks; within the copper layer and an X-ray radiograph on a single foil of the Cu anode shows clearly that the copper foil has broken into multiple pieces. This failure mode of anodes in Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. The fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.

  3. Role of Trace Elements for Oxidative Status and Quality of Human Sperm.

    PubMed

    Nenkova, Galina; Petrov, Lubomir; Alexandrova, Albena

    2017-08-04

    Oxidative stress affects sperm quality negatively. To maintain the pro/antioxidant balance, some metal ions (e.g. copper, zink, iron, selenium), which are co-factors of the antioxidant enzymes, are essential. However, iron and copper could act as prooxidants inducing oxidative damage of spermatozoa. To reveal a possible correlation between the concentrations of some metal ions (iron, copper, zinc, and selenium) in human seminal plasma, oxidative stress, assessed by malondialdehyde and total glutathione levels, and semen quality, assessed by the parameters count, motility, and morphology. Descriptive study. The semen analysis for volume, count, and motility was performed according to World Health Organization (2010) guidelines, using computer-assisted semen analysis. For the determination of spermatozoa morphology, a SpermBlue staining method was applied. Depending on their parameters, the sperm samples were categorized into normozoospermic, teratozoospermic, asthenoteratozoospermic, and oligoteratozoospermic. The seminal plasma content of iron, copper, zinc, and selenium was estimated by atomic absorption spectroscopy. The malondialdehyde and total glutathione levels were quantified spectrophotometrically. In the groups with poor sperm quality, the levels of Fe were higher, whereas those of Zn and Se were significantly lower than in the normozoospermic group. In all groups with poor sperm quality, increased levels of malondialdehyde and decreased glutathione levels were detected as evidence of oxidative stress occurrence. All these differences are most pronounced in the asthenoteratozoospermic group where values differ nearly twice as much compared to the normozoospermic group. The Fe concentration correlated positively with the malondialdehyde (r=0.666, p=0.018), whereas it showed a negative correlation with the level of total glutathione (r=-0.689, p=0.013). The total glutathione level correlated positively with the sperm motility (r=0.589, p=0.044). The elevated levels of Fe and the reduced Se levels are associated with sperm damage. The changes in the concentrations of the trace elements in human seminal plasma may be related to sperm quality since they are involved in the maintenance of the pro-/antioxidative balance in ejaculate.

  4. Design a sensitive optical thin film sensor based on incorporation of isonicotinohydrazide derivative in sol-gel matrix for determination of trace amounts of copper (II) in fruit juice: Effect of sonication time on immobilization approach.

    PubMed

    Shahamirifard, Seyed Alireza; Ghaedi, Mehrorang; Montazerozohori, Morteza

    2018-04-01

    A new selective and sensitive optical sensor based on the incorporation of new synthesized N'-(2-hydroxy-5-iodobenzylidene) isonicotinohydrazide (HIBIN) as an effective reagent into the nanoporous of a transparent glass like material through the sol-gel process was developed which was suitable for the determination of copper (II) ions in aqueous solutions. The thin film sensors were constructed by spin-coating of prepared sol onto glass plate and their surface morphology were studied by field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM) technique. Influence of sonication time on immobilization of HIBIN into silica matrix was investigated through calculation of leaching percentage. The Results shown that sonication time of 35 min is suitable to give more stable thin films without fluctuation in sensitivity and response time of presented sensor for a long period of time. The proposed optical sensor can be used for determination of copper (II) ions in the range of 9.1 × 10 -8 -1.12 × 10 -5  mol L -1 with a detection limit of 1.8 × 10 -8  mol L -1 . It also showed relative standard deviation 3.4 and 0.72% for reproducibility and repeatability respectively, along with a fast response time about of 2 min. The constructed optode is stable in wet conditions and could be stored for at least 6 weeks without observing any change in its sensitivity. The developed sensor was successfully applied to the determination of copper (II) in fruit juice and water samples which results were confirmed by atomic absorption spectrometry method. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Molecular dynamics simulations of apocupredoxins: insights into the formation and stabilization of copper sites under entatic control.

    PubMed

    Abriata, Luciano A; Vila, Alejandro J; Dal Peraro, Matteo

    2014-06-01

    Cupredoxins perform copper-mediated long-range electron transfer (ET) in biological systems. Their copper-binding sites have evolved to force copper ions into ET-competent systems with decreased reorganization energy, increased reduction potential, and a distinct electronic structure compared with those of non-ET-competent copper complexes. The entatic or rack-induced state hypothesis explains these special properties in terms of the strain that the protein matrix exerts on the metal ions. This idea is supported by X-ray structures of apocupredoxins displaying "closed" arrangements of the copper ligands like those observed in the holoproteins; however, it implies completely buried copper-binding atoms, conflicting with the notion that they must be exposed for copper loading. On the other hand, a recent work based on NMR showed that the copper-binding regions of apocupredoxins are flexible in solution. We have explored five cupredoxins in their "closed" apo forms through molecular dynamics simulations. We observed that prearranged ligand conformations are not stable as the X-ray data suggest, although they do form part of the dynamic landscape of the apoproteins. This translates into variable flexibility of the copper-binding regions within a rigid fold, accompanied by fluctuations of the hydrogen bonds around the copper ligands. Major conformations with solvent-exposed copper-binding atoms could allow initial binding of the copper ions. An eventual subsequent incursion to the closed state would result in binding of the remaining ligands, trapping the closed conformation thanks to the additional binding energy and the fastening of noncovalent interactions that make up the rack.

  6. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.

    PubMed

    Wessells, Colin D; McDowell, Matthew T; Peddada, Sandeep V; Pasta, Mauro; Huggins, Robert A; Cui, Yi

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes.

  7. Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106–115

    PubMed Central

    2016-01-01

    The ability of the cellular prion protein (PrPC) to bind copper in vivo points to a physiological role for PrPC in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrPC. Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting CuI and CuII binding properties. We have evaluated CuI coordination to the PrP(106–115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. CuI coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5–8, both methionine (Met) residues bind to CuI, forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrPC (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrPC to maintain the bound CuI ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant CuI-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrPC. This study provides further insight into the CuI coordination properties of His111 in human PrPC and the molecular mechanism of oxygen activation by this site. PMID:26930130

  8. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.

    PubMed

    Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping

    2016-01-05

    A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.

  9. The effects of copper proximity on oxalate production in Fibroporia radiculosa

    Treesearch

    Katie M. Jenkins; Carol A. Clausen; Frederick Green III

    2014-01-01

    Copper remains a key component used in wood preservatives available today. However, the observed tolerance of several critical wood rotting organisms continues to be problematic. Tolerance to copper has been linked to the production and accumulation of oxalate, which precipitates copper into insoluble copper-oxalate crystals, thus inactivating copper ions. The purpose...

  10. Roles of Copper-Binding Proteins in Breast Cancer.

    PubMed

    Blockhuys, Stéphanie; Wittung-Stafshede, Pernilla

    2017-04-20

    Copper ions are needed in several steps of cancer progression. However, the underlying mechanisms, and involved copper-binding proteins, are mainly elusive. Since most copper ions in the body (in and outside cells) are protein-bound, it is important to investigate what copper-binding proteins participate and, for these, how they are loaded with copper by copper transport proteins. Mechanistic information for how some copper-binding proteins, such as extracellular lysyl oxidase (LOX), play roles in cancer have been elucidated but there is still much to learn from a biophysical molecular viewpoint. Here we provide a summary of copper-binding proteins and discuss ones reported to have roles in cancer. We specifically focus on how copper-binding proteins such as mediator of cell motility 1 (MEMO1), LOX, LOX-like proteins, and secreted protein acidic and rich in cysteine (SPARC) modulate breast cancer from molecular and clinical aspects. Because of the importance of copper for invasion/migration processes, which are key components of cancer metastasis, further insights into the actions of copper-binding proteins may provide new targets to combat cancer.

  11. Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)

    NASA Astrophysics Data System (ADS)

    Zaka-ul-Islam, Mujahid; Naeem, Muhammad; Shafiq, Muhammad; Sitara; Jabbar Al-Rajab, Abdul; Zakaullah, Muhammad

    2017-07-01

    Polymers such as polytetrafluoroethylene (PTFE) are widely used in artificial organs where long-term anti-bacterial properties are required to avoid bacterial proliferation. Copper or silver ion implantation on the polymer surface is known as a viable method to generate long-term anti-bacterial properties. Here, we have tested pulsed DC plasma with copper cathodic cage for the PTFE surface treatment. The surface analysis of the treated specimens suggests that the surface, structural properties, crystallinity and chemical structure of the PTFE have been changed, after the plasma treatment. The copper release tests show that copper ions are released from the polymer at a slow rate and quantity of the released copper increases with the plasma treatment time.

  12. Effect of copper on the properties of Pr-Dy-Fe-Co-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Kablov, E. N.; Piskorskii, V. P.; Valeev, R. A.; Volkov, N. V.; Davydova, E. A.; Shaikhutdinov, K. A.; Balaev, D. A.; Semenov, S. V.

    2014-01-01

    The effect of copper on the properties of magnets (Pr0.52Dy0.48)13(Fe65Co0.35)80.3 - x Cu x B6.7 ( x = 0-10) has been studied. Alloying with copper is shown to decrease the sintering temperature and to increase the content of the principal (Pr,Dy)2(Fe,Co)14B magnetic phase. For compositions with x = 1.3-3.3, copper is found to affect the value and sign of the temperature induction coefficient (TIC). It is shown that the effect of copper on the TIC is determined by the substitution of copper ions for iron ions in lattice sites, which are coupled via an antiferromagnetic exchange interaction.

  13. Copper, lead and zinc concentrations of human breast milk as affected by maternal dietary practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umoren, J.; Kies, C.

    1986-03-01

    Maternal dietary practices have been found to affect the concentrations of some nutrients in human breast milk. Lead toxicity is a concern in young children. Lead, copper and zinc are thought to compete for intestinal absorption sites. The objective of the current project was to compare copper, lead and zinc contents of breast milk from practicing lacto-vegetarian and omnivore, lactating women at approximately four months post-partum. Analyses were done by atomic absorption spectrophotometry using a carbon rod attachment. Copper concentrations were higher in milk samples from lacto-ovo-vegetarians. Milk samples from the omnivores had the highest lead and zinc concentrations. Leadmore » and copper concentrations in milk were negatively correlated. The higher zinc concentrations in the milk of the omnivore women may have been related to better utilization of zinc from meat than from plant food sources.« less

  14. Phage-directed synthesis of copper sulfide: structural and optical characterization

    NASA Astrophysics Data System (ADS)

    Shahriar Zaman, Mohammed; Moon, Chung Hee; Bozhilov, Krassimir N.; Haberer, Elaine D.

    2013-08-01

    The growth of crystalline copper sulfide using a viral template was investigated using sequential incubation in CuCl2 and Na2S precursors. Non-specific electrostatic attraction between a genetically-modified M13 bacteriophage and copper cations in the CuCl2 precursor caused phage agglomeration and bundle formation. Following the addition of Na2S, polydisperse nanocrystals 2-7 nm in size were found along the length of the viral scaffold. The structure of the copper sulfide material was identified as cubic anti-fluorite type Cu1.8S, space group F m\\bar {3}m. Strong interband absorption was observed within the ultraviolet to visible range with an onset near 800 nm. Furthermore, free carrier absorption, associated with the localized surface plasmon resonance of the copper sulfide nanocrystals, was seen in the near infrared with absorbance maxima at 1060 nm and 3000 nm, respectively.

  15. Reagent precipitation of copper ions from wastewater of machine-building factories

    NASA Astrophysics Data System (ADS)

    Porozhnyuk, L. A.; Lupandina, N. S.; Porozhnyuk, E. V.

    2018-03-01

    The article presents the results of reagent removal of copper ions from wastewater of machine-building factories. The urgency of the study is conditioned by the widening of the range of effective reagents through the implementation of industrial waste. The investigation covers mineralogical and fractional composition of chalk enrichment waste. In the work, the conditions of thermal activation of chalk enrichment waste used for reagent removal of copper ions from wastewater were elaborated. It was shown that the thermal activation of waste facilitates the increased treatment efficacy up to the set sanitation, hygiene and technological standards.

  16. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  17. Modeling of batch sorber system: kinetic, mechanistic, and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Mishra, Vishal

    2017-10-01

    The present investigation has dealt with the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase. Various rate models were evaluated to elucidate the kinetics of copper and zinc biosorptions, and the results indicated that the pseudo-second-order model was more appropriate than the pseudo-first-order model. The curve of the initial sorption rate versus the initial concentration of copper and zinc ions also complemented the results of the pseudo-second-order model. Models used for the mechanistic modeling were the intra-particle model of pore diffusion and Bangham's model of film diffusion. The results of the mechanistic modeling together with the values of pore and film diffusivities indicated that the preferential mode of the biosorption of copper and zinc ions on the surface of egg-shell particles in the liquid phase was film diffusion. The results of the intra-particle model showed that the biosorption of the copper and zinc ions was not dominated by the pore diffusion, which was due to macro-pores with open-void spaces present on the surface of egg-shell particles. The thermodynamic modeling reproduced the fact that the sorption of copper and zinc was spontaneous, exothermic with the increased order of the randomness at the solid-liquid interface.

  18. Trace mineral absorption status in infants with ileostomies

    USDA-ARS?s Scientific Manuscript database

    Infants with ileostomies are often supplemented with zinc and limited in copper, because of potential increased bilious zinc loss and increased cholestasis due to reduced copper excretion. However, no data exist on zinc or copper balance in infants with ileostomies. To determine the effect of an ile...

  19. Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

    PubMed Central

    Seo, Youngsik; Cho, Young-Sik; Huh, Young-Duk; Park, Heonyong

    2016-01-01

    Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions (Cu+ and Cu2+), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped Cu2O and CuO crystals were prepared to test the role of the two different ions, Cu+ and Cu2+, respectively. The Cu2O crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The Cu2O crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. Cu2O crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit Cu2O-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of Cu+ ions in the vascular system, where Cu+ induces autophagy while Cu2+ has no detected effect. PMID:26743904

  20. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  1. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode mutant strains containing gene knockouts in the divalent-metal transporters smf-1 and smf-2 showed increased tolerance to copper exposure. These results lend credence to the hypothesis that some toxicological effects to eukaryotic organisms from copper oxide nanoparticle exposure may be due to properties specific to the nanoparticles and not solely from the released copper ions.

  2. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  3. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    PubMed Central

    Sankova, Tatiana P.; Orlov, Iurii A.; Saveliev, Andrey N.; Kirilenko, Demid A.; Babich, Polina S.; Brunkov, Pavel N.; Puchkova, Ludmila V.

    2017-01-01

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed. PMID:29099786

  4. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo.

    PubMed

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V

    2017-11-03

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  5. Changes in the structure and wear resistance of the surface layer of copper under treatment by nitrogen ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergeev, Victor P., E-mail: vserg@mail.tomsknet.ru, E-mail: kmp1980@mail.ru; Kalashnikov, Mark P., E-mail: vserg@mail.tomsknet.ru, E-mail: kmp1980@mail.ru; Rybalko, Evgeniya V., E-mail: evgeniaribka@yandex.com, E-mail: alfred-1972@mail.ru, E-mail: tehnovak@ispms.tsc.ru, E-mail: zhastas@mail.ru

    2014-11-14

    The structural-phase state of the treated sample surface was investigated by TEM. It was shown by the TEM and VIMS method that the improvement of tribological properties of the copper samples can be associated with an increase of relaxation ability due to a significant increase of the nitrogen concentration in it, which is accompanied by the refinement of fcc-Cu main phase grain structure and the formation of nanopores or gas bubbles in the ion-modified surface layer. A high-dose implantation of nitrogen ions and copper samples increases the wear resistance in 1.5-4.5 times together with a counterbody from the same materialmore » in the argon environment. The microhardness of the copper samples also increases.« less

  6. Copper cladding on polymer surfaces by ionization-assisted deposition

    NASA Astrophysics Data System (ADS)

    Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki

    2018-03-01

    Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.

  7. Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species.

    PubMed

    Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S

    2010-01-01

    Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions. Copyright © 2010 S. Karger AG, Basel.

  8. Recovery of copper and cyanide from waste cyanide solutions using emulsion liquid membrane with LIX 7950 as the carrier.

    PubMed

    Xie, Feng; Wang, Wei

    2017-08-01

    The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.

  9. DJ-1 Is a Copper Chaperone Acting on SOD1 Activation*

    PubMed Central

    Girotto, Stefania; Cendron, Laura; Bisaglia, Marco; Tessari, Isabella; Mammi, Stefano; Zanotti, Giuseppe; Bubacco, Luigi

    2014-01-01

    Lack of oxidative stress control is a common and often prime feature observed in many neurodegenerative diseases. Both DJ-1 and SOD1, proteins involved in familial Parkinson disease and amyotrophic lateral sclerosis, respectively, play a protective role against oxidative stress. Impaired activity and modified expression of both proteins have been observed in different neurodegenerative diseases. A potential cooperative action of DJ-1 and SOD1 in the same oxidative stress response pathway may be suggested based on a copper-mediated interaction between the two proteins reported here. To investigate the mechanisms underlying the antioxidative function of DJ-1 in relation to SOD1 activity, we investigated the ability of DJ-1 to bind copper ions. We structurally characterized a novel copper binding site involving Cys-106, and we investigated, using different techniques, the kinetics of DJ-1 binding to copper ions. The copper transfer between the two proteins was also examined using both fluorescence spectroscopy and specific biochemical assays for SOD1 activity. The structural and functional analysis of the novel DJ-1 copper binding site led us to identify a putative role for DJ-1 as a copper chaperone. Alteration of the coordination geometry of the copper ion in DJ-1 may be correlated to the physiological role of the protein, to a potential failure in metal transfer to SOD1, and to successive implications in neurodegenerative etiopathogenesis. PMID:24567322

  10. Green Preconcentration of Trace Amounts of Copper from Water and Food Samples onto Novel Organo-Nanoclay Prior to Flame Atomic Absorption Spectrometry.

    PubMed

    Beyki, Mostafa Hossein; Shemirani, Farzaneh; Khani, Rouhollah

    2014-01-01

    In this work, the nanoclay was intercalated with acyclovir (9-[(2-hydroxyethoxy) methyl] guanine), the toxicity of which to mammalian cells is very low. We used no organic solvents for preparation of modified clay and desorption of Cu ions from the sorbent. Batch and column methods were used, and sorption of Cu was quantitative (>98%) in the pH range of 7.5 to 10.0. Quantitative desorption occurred with 5.0 mL of 3.0 M HCl, and the amount of Cu(II) was measured by using flame atomic absorption spectrometry. In the initial solution the linear dynamic range and the LOD were 3.0-1000.0 and 0.58 μg/L, respectively. With 500.0 mL of sample, an enrichment factor of 100 was obtained. The RSD was 2.0% (n = 8, concentration = 0.5 mg/L), and the maximum capacity of the sorbent was 45.0 mg/g. The influence of experimental parameters including sample pH, ionic strength, type and volume of the eluent, and interference of some ions on the recoveries of Cu was investigated. The proposed method using a new and easier prepared solid sorbent was applied to the determination of Cu in different real samples with satisfactory results.

  11. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  12. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    PubMed

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  13. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    PubMed

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Structural effects of Cu(II)-coordination in the octapeptide region of the human prion protein.

    PubMed

    Riihimäki, Eva-Stina; Martínez, José Manuel; Kloo, Lars

    2008-05-14

    The copper-binding ability of the prion protein is thought to be central to its function. The structural effects of copper coordination in the octapeptide region of the human prion protein have been investigated by molecular dynamics simulations. Simulations were performed with the apo state, in order to investigate the behavior of the region without copper ions, as well as with the octapeptide region in the presence of copper ions. While the structure of the apo state is greatly influenced by the interaction between the rings in the histidine, tryptophan and proline residues, the region shows evidence of highly ordered coordination sites in the presence of copper ions. The position of the tryptophan indole ring is stabilized by cation-pi interactions. Two stable orientations of the indole ring with respect to the equatorial coordination plane of copper were observed, which showed that the indole ring can reside on both sides of the coordination plane. The interaction with the indole ring was found to occur without a mediating axial water molecule.

  15. Characterization of Cu(II)-reconstituted ACC Oxidase using experimental and theoretical approaches.

    PubMed

    El Bakkali-Tahéri, Nadia; Tachon, Sybille; Orio, Maylis; Bertaina, Sylvain; Martinho, Marlène; Robert, Viviane; Réglier, Marius; Tron, Thierry; Dorlet, Pierre; Simaan, A Jalila

    2017-06-01

    1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Microwave plasma torch mass spectrometry for the direct detection of copper and molybdenum ions in aqueous liquids.

    PubMed

    Xiong, Xiaohong; Jiang, Tao; Zhou, Runzhi; Wang, Shangxian; Zou, Wei; Zhu, Zhiqiang

    2016-05-01

    Microwave plasma torch (MPT) is a simple and low power-consumption ambient ion source. And the MPT Mass spectra of many metal elements usually exhibit some novel features different from their inductively coupled plasma (ICP) mass spectra, which may be helpful for metal element analysis. Here, we presented the results about the MPT mass spectra of copper and molybdenum elements by a linear ion trap mass spectrometer (LTQ). The generated copper or molybdenum contained ions in plasma were characterized further in collision-induced dissociated (CID) experiments. These researches built a novel, direct and sensitive method for the direct analysis of trace levels of copper and molybdenum in aqueous liquids. Quantitative results showed that the limit of detection (LOD) by using MS(2) procedure was estimated to be 0.265 µg/l (ppb) for copper and 0.497 µg/l for molybdenum. The linear dynamics ranges cover at least 2 orders of magnitude and the analysis of a single aqueous sample can be completed in 5-6 min with a reasonable semi-quantitative sense. Two practical aqueous samples, milk and urine, were also analyzed qualitatively with reasonable recovery rates and RSD. These experimental data demonstrated that the MPT MS is able to turn into a promising and hopeful tool in field analysis of copper and molybdenum ions in water and some aqueous media, and can be applied in many fields, such as environmental controlling, hydrogeology, and water quality inspection. Moreover, MPT MS could also be used as the supplement of ICP-MS for the rapid and in-situ analysis of metal ions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    NASA Astrophysics Data System (ADS)

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influence of the green wavelength on energy coupling during heat conduction welding and deep penetration welding as well as the influence on the weld shape has been investigated.

  18. Heavy metal contents of play dough, face and finger paint samples sold in turkish markets.

    PubMed

    Erbas, Zeliha; Karatepe, Aslihan; Soylak, Mustafa

    2017-08-01

    Lead, cadmium, nickel, manganese, cobalt and copper contents of some play dough, face and finger paint samples were determined by using a new solid phase extraction method which has been developed by using multi-walled carbon nanotube with patent blue (V) sodium salt to selectively separate and preconcentrate these metal ions. Flame atomic absorption spectrometry was used to determine the metal ions. Analytical parameters affecting the complex formation and solid phase extraction performance such as pH, the amount of ligand and volume of sample solution were investigated. The recoveries of the studied metal ions were not affected by the foreign ions. Analytes were recovered quantitatively at pH 5.5 and with a nitric acid of 2molL -1 as eluent. Analysis of a certified reference material was performed to validate the method before applying it to determine the metal ions in the real samples. Detection limits were found to be as Pb(II): 7.71μgL -1 , Cu(II): 1.43μgL -1 , Cd(III): 0.21μgL -1 , Mn(II): 0.47μgL -1 , Ni(II): 3.52μgL -1 and Co(II): 1.96μgL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Insoluble zinc, cupric and tin pyrophosphates inhibit the formation of volatile sulphur compounds.

    PubMed

    Jonski, G; Young, A; Wåler, S M; Rölla, G

    2004-10-01

    Oral malodour is mainly a result of the production of volatile sulphur compounds (VSC). The present study was concerned with investigating the anti-VSC effect of insoluble pyrophosphates (PP) of zinc, copper(II) and tin(II). The hypothesis to be tested was that the sulphide anions produced when VSC are solubilized in water have a higher affinity for the respective metal ions than the PP anion. The anti-VSC effects of insoluble PP were compared with the corresponding soluble metal salts using three in vitro methods: saliva putrefaction; dialysis of a suspension of PP and saliva against water; and analysis of water containing hydrogen sulphide and methyl mercaptan gases, and gases in the headspace. The levels of VSC were analysed by gas chromatography in the first and third methods, and released metal ions were analysed by atomic absorption spectroscopy in the second. The results showed that: the insoluble metal PP inhibited VSC formation in saliva by 99-100%; under dialysis, only minute amounts of metal ions are released from the combination of PP and saliva; and the PP lost their metal cations in water containing dissolved gases and inhibited VSC formation. Hence, the results support the experimental hypothesis. Sulphide ions are obviously very strong ligands for these metal ions.

  20. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    PubMed

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  1. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  2. Development of two highly sensitive immunoassays for detection of copper ions and a suite of relevant immunochemicals.

    PubMed

    Zhao, Hongwei; Nan, Tiegui; Tan, Guiyu; Gao, Wei; Cao, Zhen; Sun, Shuo; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2011-09-19

    Availability of highly sensitive assays for metal ions can help monitor and manage the environmental and food contamination. In the present study, a monoclonal antibody against Copper(II)-ethylenediaminetetraacetic acid was used to develop two sensitive ELISAs for Cu(II) analysis. Cobalt(II)-EDTA-BSA was the coating antigen in a heterologous indirect competitive ELISA (hicELISA), whereas Co(II)-EDTA-BSA-horseradish peroxidase (HRP) was the enzyme tracer in a heterologous direct competitive ELISA (hdcELISA). Both ELISAs were validated for detecting the content of Cu(II) in environmental waters. The ELISA data agreed well with those from graphite furnace atomic absorption spectroscopy. The methods of developing the Cu(II) hicELISA and hdcELISA are potentially applicable for developing ELISAs for other metals. The chelator-protein complexes such as EDTA-BSA and EDTA-BSA-HRP can form a suite of metal complexes having the consistent hapten density, location and orientation on the conjugates except the difference of the metal core, which can be used as ideal reagents to investigate the relationship between assay sensitivity and antibody affinities for the haptens and the analytes. The strategy of conjugating a haptenated protein directly with HRP can reduce the loss of HRP activity during the conjugation reaction and thus can be applicable for the development of ELISAs for small molecules. Copyright © 2011. Published by Elsevier B.V.

  3. The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations.

    PubMed

    Levy, Ariel R; Turgeman, Meital; Gevorkyan-Aiapetov, Lada; Ruthstein, Sharon

    2017-08-01

    Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X-ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site-directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer. © 2017 The Protein Society.

  4. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  5. Effect of citric acid modification of aspen wood on sorption of copper ion

    Treesearch

    James D. McSweeny; Roger M. Rowell; Soo Hong Min

    2006-01-01

    Milled aspen wood was thermochemically modified with citric acid for the purpose of improving the copper (Cu2+) ion sorption capacity of the wood when tested in 24-hour equilibrium batch tests. The wood-citric acid adducts provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ ion uptake of the modified wood compared with that...

  6. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studiesmore » the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.« less

  7. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan

    Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less

  8. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    DOE PAGES

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; ...

    2017-08-29

    Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less

  9. New highlights on degradation process of verdigris from easel paintings

    NASA Astrophysics Data System (ADS)

    Santoro, Carlotta; Zarkout, Karim; Le Hô, Anne-Solenn; Mirambet, François; Gourier, Didier; Binet, Laurent; Pagès-Camagna, Sandrine; Reguer, Solenn; Mirabaud, Sigrid; Le Du, Yann; Griesmar, Pascal; Lubin-Germain, Nadège; Menu, Michel

    2014-03-01

    Verdigris is a green copper organometallic pigment, widely used in paintings during the fifteenth and sixteenth centuries. With ageing, chromatic modifications like browning or darkening can be observed on those green painted layers. An original but crucial approach has been developed based on the characterization of a reference neutral verdigris pigment—anhydrous copper acetate—and model samples, made of verdigris and linseed oil. Samples have undergone artificial ageing (temperature, light) to reproduce the color change effect. They were analysed before and after accelerated ageing tests by a complementary set of classical techniques: colorimetry, electron paramagnetic resonance, X-ray absorption spectroscopy, and UV-visible absorption. Our experiments revealed that the incorporation of the verdigris pigment in linseed oil induces a transformation of the copper acetate bimetallic structure, with the formation of monomeric species. These monomers, however, are not directly responsible for the darkening. The chromatic alteration seems instead linked to the transient formation of Cu(I) in the copper complexes of the pigment/oil system. This formation could be initiated by ambient light absorption through ligand-to-metal charge transfer, which favors the decarboxylation of the copper complexes leading to the reduction of Cu(II) into Cu(I). Moreover, dioxygen can react with partially decarboxylated dimers to form peroxy-Cu dimer complexes that can be responsible for the darkening.

  10. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal.

    PubMed

    Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng

    2017-01-01

    Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.

  11. Continuous flow analysis combined with a light-absorption ratio variation approach for determination of copper at ng/ml level in natural water.

    PubMed

    Gao, Hong-Wen; Wang, Chun-Lei; Jia, Jiang-Yan; Zhang, Ya-Lei

    2007-06-01

    The complexation between Cu(II) and naphthochrome green (NG) is very sensitive at pH 4.09 with the formation of complex ion [Cu(NG)2(H2O)2](2-). It can thus used for the determination of Cu(II) by the light-absorption ratio variation approach (LARVA) with a good selectivity. Both the ordinary detection procedure and continuous flow analysis (CFA) were carried out, where the latter is fit for continuous and rapid analysis of samples. The limit of detection (LOD) of Cu(II) is only 1 ng/ml, which is favorable for direct monitoring of natural water. About 30 samples could be analyzed per hour by CFA. Cu(II) contents in Yangtze River, West Lake, Taihu Lake of China and seawater near Shanghai were determined with satisfactory results. The CFA-LARVA spectrophotometry was the first to be coupled and it will play an important role in the in-situ analysis of natural water quality.

  12. Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj, E-mail: torajmohammadi@iust.ac.ir

    Highlights: • CNTs–mullite composite was prepared via chemical vapor deposition (CVD) method. • The prepared composite was modified with concentrated nitric acid and chitosan. • The modified CNTs–mullite composites were used as novel adsorbents. • Copper ion removal from water by the prepared adsorbents was performed. • Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. - Abstract: Carbon nanotubes–mullite composite was synthesized by direct growth of carbon nanotubes on mullite particles via chemical vapor deposition method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. The carbon nanotubes–mullite composite was oxidized withmore » concentrated nitric acid and functionalized with chitosan and then used as a novel adsorbent for copper ions removal from water. The results demonstrated that modification with concentrated nitric acid and chitosan improves copper ions adsorption capacity of the prepared composite, significantly. Langmuir and Freundlich isotherms and two kinetic models were applied to fit the experimental data. The carbon nanotubes growth on mullite particles to form the carbon nanotubes–mullite composite with further modification is an inherently safe approach for many promising environmental applications to avoid some concerns regarding environment, health and safety. It was found that the modified carbon nanotubes–mullite composite can be considered as an excellent adsorbent for copper ions removal from water.« less

  13. Why Gold and Copper Are Colored but Silver Is Not.

    ERIC Educational Resources Information Center

    Guerrero, Ariel H.; Fasoli, Hector J.; Costa, Jose Luis

    1999-01-01

    Explains why silver, which has the same external electronic configuration as copper and gold, does not appear yellow: white light reflects on most metals without color absorption or change to the naked eye; however, copper and gold appear yellow because they absorb "blue" and "red" photons during electron transitions between…

  14. Diffusion paths formation for Cu + ions in superionic Cu 6PS 5I single crystals studied in terms of structural phase transition

    NASA Astrophysics Data System (ADS)

    Gągor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-01

    In order to understand the structural transformations leading to high ionic conductivity of Cu + ions in Cu 6PS 5I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T=(144-169) K Cu 6PS 5I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above Tc delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43 c ( a'=19.528 Å, z=32). Finally, above T1=274 K increasing disordering of the Cu + ions heightens the symmetry to F-43 m ( a=9.794 Å, z=4). In this work, the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions ( R1=0.0397 for F-43 c phase, and 0.0245 for F-43 m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.

  15. Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice

    PubMed Central

    Li, Xiaoxiao; Zhai, Qixiao; Wang, Gang; Zhang, Qiuxiang; Zhang, Hao; Chen, Wei

    2015-01-01

    Lactobacillus plantarum CCFM8246, which has a relatively strong copper binding capacity and tolerance to copper ions, was obtained by screening from 16 lactic acid bacteria in vitro. The selected strain was then applied to a mouse model to evaluate its protective function against copper intoxication in vivo. The experimental mice were divided into an intervention group and a therapy group; mice in the intervention group received co-administration of CCFM8246 and a copper ion solution by gavage, while mice in the therapy group were treated with CCFM8246 after 4 weeks of copper exposure. In both two groups, mice treated with copper alone and that treated with neither CCFM8246 nor copper served as positive and negative controls, respectively. At the end of the experimental period, the copper content in feces and tissues, the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and oxidation stress indices in liver and kidney tissue were determined. Learning and memory ability was evaluated by Morris water maze experiments. The results indicated that treatment with CCFM8246 significantly increased the copper content in feces to promote copper excretion, reduce the accumulation of copper in tissues, reverse oxidative stress induced by copper exposure, recover the ALT and AST in serum and improve the spatial memory of mice. PMID:26605944

  16. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    PubMed

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.

  17. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    PubMed

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  18. Use of Eichhornia crassipes modified Nano-chitosan as a biosorbent for lead (II), cadmium (II), and copper (II) ion removal from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Alkaff, A. H.; Hendri, H.; Farozy, I. H.; Annisa, M.; Aritonang, R. P.

    2018-01-01

    Industrial waste in a major city poses a considerable threat to water environment from the accumulation of heavy metals. Additionally, uncontrolled growth of Eichhornia crassipes will also damage the water environment by lowering the levels of dissolved oxygen. Therefore, we conduct research to not only treat industrial waste in water but also reduce the population of E. crassipes in water. We made this biosorbent by mixing E. crassipes with nano-chitosan in various compositions. Its absorptivity was tested against single metal solutions of lead (II), cadmium (II), and copper (II) to get the best biosorbent composition. The chosen biosorbent then went through an adsorptivity test against a mixture of three solutions, with each test was carried at various pH. The best biosorbent composition is the mixture of 1 g of E. crassipes with 30 mL of nano-chitosan 0.01%, while adsorption tests in single or three metals solution show that the biosorbent performs better in neutral pH.

  19. Redox Sorption of Oxygen Dissolved in Water on Copper Nanoparticles in an Ion Exchange Matrix

    NASA Astrophysics Data System (ADS)

    Vakhnin, D. D.; Pridorogina, V. E.; Polyanskii, L. N.; Kravchenko, T. A.; Gorshkov, V. S.

    2018-01-01

    The redox sorption of molecular oxygen from water by a thin granular layer of a copper-ion exchanger nanocomposite in the currentless mode and under cathodic polarization is studied. The speed of propagation of the boundaries of the chemical reaction of stepwise oxidation of copper nanoparticles under the conditions of polarization slows considerably. At the same time, the amount of electrochemically regenerated copper from the resulting oxides that is capable of interacting with oxygen again grows. The stationarity of the redox sorption of oxygen is due to the equality of the rates of oxidation and reduction of the metallic component of the composite.

  20. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.

  1. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  2. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  3. Bioaccumulation of Vanadium by Vanadium-Resistant Bacteria Isolated from the Intestine of Ascidia sydneiensis samea.

    PubMed

    Romaidi; Ueki, Tatsuya

    2016-06-01

    Isolation of naturally occurring bacterial strains from metal-rich environments has gained popularity due to the growing need for bioremediation technologies. In this study, we found that the vanadium concentration in the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea could reach 0.67 mM, and thus, we isolated vanadium-resistant bacteria from the intestinal contents and determined the ability of each bacterial strain to accumulate vanadium and other heavy metals. Nine strains of vanadium-resistant bacteria were successfully isolated, of which two strains, V-RA-4 and S-RA-6, accumulated vanadium at a higher rate than did the other strains. The maximum vanadium absorption by these bacteria was achieved at pH 3, and intracellular accumulation was the predominant mechanism. Each strain strongly accumulated copper and cobalt ions, but accumulation of nickel and molybdate ions was relatively low. These bacterial strains can be applied to protocols for bioremediation of vanadium and heavy metal toxicity.

  4. Effect of copper and silver ionization on Legionella pneumophila eradication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.E.; Vidic, R.D.; Stout, J.E.

    1995-11-01

    The presence of Legionella pneumophila in water distribution systems has been epidemiologically linked to hospital-acquired Legionnaires` disease. The objective of this study was to evaluate the efficiency of copper and silver ions for inactivation of Legionella pneumophila. Experimental results showed that L. pneumophila was completely inactivated at copper concentration of 0.1 mg/L within the period of 2.5 hours while 6-log reduction requires a Ct value of 0.8 mg/L*hour. On the other hand, more than 24 hours was required to completely eradicate L. pneumophila at the highest silver ion concentration (0.08 mg/L) tested and only 4-log reduction is observed for Ctmore » value of 0.8 mg/L*hour. The effective synergism of these ions in eradicating L. pneumophila was observed for copper concentrations of 0.05 and silver concentration of 0.04 mg/L. One approach for the control of L. pneumophila in water distribution systems is to initiate copper/silver ion concentrations at 0.4/0.04 mg/L to achieve complete eradication of L. pneumophila already present in the water distribution system (as established in previous studies) followed by a lower residual (0.05/0.04 mg/L) protection against L. pneumophila in the incoming water.« less

  5. Sorption of copper, zinc and cobalt by oat and oat products.

    PubMed

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  6. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples.

  7. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    PubMed

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  8. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE PAGES

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...

    2017-02-01

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  9. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effectsmore » of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  10. Synthesis and characterization of metal-dielectric composites with copper nanoparticles embedded in a glass matrix: A multitechnique approach

    NASA Astrophysics Data System (ADS)

    Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Mariotto, Gino; Kalita, Patricia E.; Ohki, Yoshimichi

    2005-09-01

    The precipitation and growth of copper nanoparticles in an optically transparent aluminosilicate glass matrix was investigated. The size of particles in this heterophase glass-based composite was modified in a controlled manner by isothermal heat treatments. A multitechnique approach, consisting of Raman scattering spectroscopy, high-resolution transmission electron microscopy, x-ray diffraction technique, and optical absorption spectroscopy, has been used to study the nucleation and crystallization processes. Optical absorption spectroscopy revealed the presence of intense absorption bands attributed to oscillations of free electrons, known as the surface-plasmon resonance band of copper particles, and confirmed a gradual increase of the particles' mean size and density with annealing time. The Raman scattering on acoustical phonons from Cu quantum dots in the glass matrix measured for off-resonance conditions demonstrated the presence of intense, inhomogeneously broadened peaks that have been assigned to the confined acoustic eigenmodes of copper nanoparticles. The particle-size dependence of the acoustic peak energies and the relation between the size distribution and bandwidths of these peaks were derived. High-resolution transmission electron microscopy was used to monitor the nucleation of the nanoparticles and to estimate their mean size.

  11. Reduction of the "burst release" of copper ions from copper-based intrauterine devices by organic inhibitors.

    PubMed

    Alvarez, Florencia; Schilardi, Patricia L; de Mele, Monica Fernández Lorenzo

    2012-01-01

    The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  13. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  14. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar.

    PubMed

    Oliveira, Paulo Roberto; Lamy-Mendes, Alyne C; Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2015-03-15

    This work describes for first time the use of biochar as electrode modifier in combination with differential pulse adsorptive stripping voltammetric (DPAdSV) techniques for preconcentration and determination of copper (II) ions in spirit drinks samples (Cachaça, Vodka, Gin and Tequila). Using the best set of the experimental conditions a linear response for copper ions in the concentration range of 1.5 × 10(-6) to 3.1 × 10(-5) mol L(-1) with a Limit of Detection (LOD) of 4.0 × 10(-7) mol L(-1). The repeatability of the proposed sensor using the same electrode surface was measured as 3.6% and 6.6% using different electrodes. The effect of foreign species on the voltammetric response was also evaluated. Determination of copper ions content in different samples of spirit drinks samples was also realized adopting inductively coupled plasma optical emission spectroscopy (ICP-OES) and the results achieved are in agreement at a 95% of confidence level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  16. Investigating waste rock, tailings, slag and coal ash clinker as adsorbents for heavy metals: Batch and column studies

    NASA Astrophysics Data System (ADS)

    Letina, D.; Letshwenyo, W. M.

    2018-06-01

    Wastewater from the mining industry is a concern because most of the time it contains heavy metals with concentrations above permissible levels, posing a threat to terrestrial and aquatic life. The study was conducted to evaluate the effectiveness of locally available waste materials (waste rock, tailings, coal ash clinker, and slag) generated by BCL (Ltd) mine, a copper and nickel mining and smelting company in Botswana, for removal of nickel and copper from the real mining wastewater. Batch adsorption studies were conducted to establish the adsorptive efficiency and kinetics of each media with respect to nickel and copper ions. The best media was further evaluated through fixed bed column studies at 24 and 48 h empty bed contact time. The results indicate that the percentage removal for coal ash clinker, waste rock, smelter slag and tailings was 98%, 15%, 3% and -3% with respect to copper ions, and 46%, 9%, 7% and 2% with respect to nickel ions for each media respectively. Coal ash clinker followed pseudo first order kinetic model and Langmuir isotherm model with respect to nickel ions indicating the dominance of physisorption and mono layer coverage respectively. The Langmuir separation factor (RL) was 0.37 suggesting favourable adsorption onto the media. Fixed bed column studies revealed that copper was completely retained in the bed at both 24 and 48 h contact times. In the case of nickel, removal efficiency ranged between 83% and 99% when contact time was 48 h and between 68% and 99% when the contact time was reduced to 24 h. Breakthrough was not reached after 19 bed volumes. It can be concluded that coal ash clinker is a better candidate for the removal of copper and nickel ions from mining wastewater.

  17. Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment.

    PubMed

    Stähli, Christoph; Muja, Naser; Nazhat, Showan N

    2013-02-01

    The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.

  18. New insights into single-compound and binary adsorption of copper and lead ions on a treated sea mango shell: experimental and theoretical studies.

    PubMed

    Sellaoui, Lotfi; Edi Soetaredjo, Felycia; Ismadji, Suryadi; Cláudio Lima, Éder; Dotto, Guilherme L; Ben Lamine, Abdelmottaleb; Erto, Alessandro

    2017-10-04

    Herein, adsorption isotherms of Pb(ii) and Cu(ii) ions on treated sea mango fruit in both single-compound and binary systems were experimentally realized at different temperatures in the range of 30-50 °C. Experimental results show that adsorption of Pb(ii) was more as compared to that of Cu(ii) ions; however, for both ions, a significant reduction in the adsorption capacity was observed in the binary system as compared to that in the single-compound systems. Moreover, under all the investigated conditions, adsorption seems to be promoted by an increase in temperature. To understand and interpret the experimental evidences, the Hill and competitive Hill models developed on the basis of the grand canonical ensemble were applied for the analysis of adsorption equilibrium data. These models contain some physicochemical parameters that allow an exhaustive analysis of the dynamics of single-compound and binary adsorptions. Based on the fitting results, in particular, through the evaluation of the number of ions bonded per site (n and n i ), it was found that lead and copper ions interacted by inclined and horizontal positions on treated sea mango in single-compound and binary systems, respectively. In addition, based on the same parameters, a significant interaction between ions was retrieved. A study focused on the saturation adsorption capacity in single-compound and binary systems affirmed that the adsorbent was more selective for lead than for copper. The reduction of the adsorbed capacity ratio between the binary and single-compound systems (i.e. Q b /Q s ) explained and confirmed that an inhibition effect between copper and lead ions at the same receptor site occurred. Finally, based on the energetic investigations, it was deduced that the adsorption energy represented the dominant factor promoting the greater adsorption of lead than that of copper in both systems.

  19. Diffusion paths formation for Cu{sup +} ions in superionic Cu{sub 6}PS{sub 5}I single crystals studied in terms of structural phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-15

    In order to understand the structural transformations leading to high ionic conductivity of Cu{sup +} ions in Cu{sub 6}PS{sub 5}I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T{sub c}=(144-169)K Cu{sub 6}PS{sub 5}I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above T{sub c} delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43c (a{sup '}=19.528A, z=32). Finally, above T{sub 1}=274K increasing disordering of the Cu{sup +} ions heightens the symmetry to F-43m (a=9.794A, z=4). In this work,more » the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions (R{sub 1}=0.0397 for F-43c phase, and 0.0245 for F-43m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.« less

  20. An efficient, cost effective, sensing behaviour liquid-liquid extraction and spectrophotometric determination of copper(II) incorporated with 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole: Analysis of food samples, leafy vegetables, fertilizers and environmental samples

    NASA Astrophysics Data System (ADS)

    Barache, Umesh B.; Shaikh, Abdul B.; Lokhande, Tukaram N.; Kamble, Ganesh S.; Anuse, Mansing A.; Gaikwad, Shashikant H.

    2018-01-01

    The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH 4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414 nm which remains stable for > 48 h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5 μg mL- 1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5 μg mL- 1 to 17.5 μg mL- 1. The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813 × 104 L mol- 1 cm- 1, 0.01996 μg cm- 2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%.

  1. An efficient, cost effective, sensing behaviour liquid-liquid extraction and spectrophotometric determination of copper(II) incorporated with 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole: Analysis of food samples, leafy vegetables, fertilizers and environmental samples.

    PubMed

    Barache, Umesh B; Shaikh, Abdul B; Lokhande, Tukaram N; Kamble, Ganesh S; Anuse, Mansing A; Gaikwad, Shashikant H

    2018-01-15

    The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414nm which remains stable for >48h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5μgmL -1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5μgmL -1 to 17.5μgmL -1 . The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813×10 4 Lmol -1 cm -1 , 0.01996μgcm -2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy vegetables, and water samples. The results are compared with those obtained with a reference procedure. Good agreement was attained. All the obtained results are indicative of a convenient, fast method for the extraction and quantification of micro levels of copper(II) from various environmental matrices without use of sophisticated instrumentation and procedure. The method showed a relative standard deviation of 0.42%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  3. Synergistic extraction and spectrophotometric determination of copper(II) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol: Analysis of alloys, pharmaceuticals and biological samples

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Kolekar, Sanjay S.; Anuse, Mansing A.

    2011-05-01

    A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L -1 pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL -1 of copper(II) and optimum range of 20-70 μg mL -1 the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87 × 10 3 L mol -1 cm -1 and 0.072 μg cm -2, respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method.

  4. Development of Novel DNA Cleavage Systems Based on Copper Complexes. Synthesis and Characterisation of Cu(II) Complexes of Hydroxyflavones

    PubMed Central

    el Amrani, F. Ben-Allal; Perelló, L.; Torres, L.

    2000-01-01

    Copper(II) complexes of several hydroxyflavones were prepared and characterised through their physico-chemical properties. The nuclease activity of three synthesised complexes is reported. These copper(II) complexes present more nuclease activity than the ligands and the copper(II) ion. PMID:18475969

  5. Solid state solubility of copper oxides in hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  6. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention.

    PubMed

    Arif, Hussain; Sohail, Aamir; Farhan, Mohd; Rehman, Ahmed Abdur; Ahmad, Aamir; Hadi, S M

    2018-01-01

    Flavonoids, a class of polyphenols are known to be effective inducers of apoptosis and cytotoxicity in cancer cells. It is believed that antioxidant activity of polyphenols cannot fully account for induction of apoptosis and chemotherapeutic prevention in various cancers. In this article, by employing single cell alkaline gel electrophoresis (comet assay), we established that antioxidants, flavonoids such as (myricetin=MN, fisetin=FN, quercetin=QN, kaempferol=KL and galangin=GN) can cause cellular DNA breakage, also act as pro-oxidant in presence of transition metal ion such as copper. It was observed that the extent of cellular DNA breakage was found significantly higher in presence of copper. Hydroxyl radicals are generated as a sign of flavonoids' pro-oxidant nature through redox recycling of copper ions. Further, a dose-dependent inhibition of proliferation of breast cancer cells MDA-MB-231 by MN was found leading to pro-oxidant cell death, as assessed by MTT assay. Since levels of copper are considerably elevated in tissue, cell and serum during various malignancies, suggesting that cancer cells would be more subject to copper induced oxidative DNA breakage. Such a copper dependent pro-oxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of chloride ion concentration on the galvanic corrosion of α phase brass by eccrine sweat.

    PubMed

    Meekins, Andrew; Bond, John W; Chaloner, Penelope

    2012-07-01

    Inductively coupled plasma mass spectrometry measurement of the relative concentration of sodium, chloride, calcium, and potassium ions in eccrine sweat deposits from 40 donors revealed positive correlations between chloride and sodium (ρ = 0.684, p < 0.01) and chloride and calcium ions (ρ = 0.91, p < 0.01). Correlations between ion concentration and the corrosion of α phase brass by the donated sweat were investigated by visual grading of the degree of corrosion, by measuring the copper/zinc ratio using energy-dispersive X-ray spectroscopy, and from a measurement of the potential difference between corroded and uncorroded brass when a large potential was applied to the uncorroded brass. An increasing copper/zinc ratio (indicative of dezincification) was found to correlate positively to both chloride ion concentration and visual grading of corrosion, while visual grading gave correlations with potential difference measurements that were indicative of the preferential surface oxidation of zinc rather than copper. © 2012 American Academy of Forensic Sciences.

  8. Excitation functions of heavy ion induced nuclear reactions between 16O ion beam and natural copper: Measurements, analysis and its applicability in TLA study

    NASA Astrophysics Data System (ADS)

    Chowdhury, D. P.; Guin, R.; Saha, S. K.; Sudersanan, M.

    2003-11-01

    Experimental cross sections of a number of reaction channels of 16O ion induced reactions on natural copper target have been determined at different energies in the range of 50-110 MeV of 16O projectile by stacked foil activation technique. The cross sections have been compared with theoretical calculations using the computer code ALICE-91. The experimental values compared reasonably well with the corresponding theoretical estimates. The results indicate no significant role of incomplete fusion process in the 16O induced reactions on natural copper in the energy range of ⩽7 MeV/nucleon. As heavy ion beam produces an extremely narrow layer of activities in the surface of a material, these reactions could be useful for thin layer activation (TLA) study. The purpose of this work is to apply heavy ion activation in TLA technique for the study of surface wear with increased sensitivity.

  9. Colorimetric detection of copper in water using a Schiff base derivative

    NASA Astrophysics Data System (ADS)

    Peralta Domínguez, D.; Ramos-Ortiz, G.; Maldonado, J. L.; Rodriguez, M.; Meneses-Nava, M. A.; Barbosa-Garcia, O.; Santillan, R.; Farfán, N.

    2013-09-01

    Organic molecular sensors have the advantage of being used through an easy, fast, economical and reliable optical method for detecting toxic metal ions in our environment. In this work, we present a simple but highly specific organic ligand compound 5-Chloro-2-((E)-((E)-3-(4-(dimethylamino)phenyl)allylidene)amino)phenol (L1) that acts as a colorimetric sensor for ions in a mixture of acetonitrile/water (ratio 10:1, v:v). Binding interaction between L1 and various metal-ions has been established by ultraviolet-visible spectroscopic measurements that indicate favorable coordination of the ligand with selective metal ions, particularly, with copper. These results showed that the electronic transition band shape of L1 change after binding with copper in aqueous solution. L1 exhibited binding-induced color changes from yellow to pink one detected by the naked eye. This new sensor presented 2.5 × 10-6 M as limit detection, even under the presence of other metal ions.

  10. Distribution and oxidation state of copper in the cell walls of treated wood examined by synchrotron based XANES and XFM

    Treesearch

    Samuel L. Zelinka; Grant T. Kirker; Joseph E. Jakes; Leandro Passarini; Barry Lai

    2016-01-01

    Recently, synchrotron based X-ray fluorescence microscopy (XFM) and X-ray absorption near edge spectroscopy (XANES) were used to examine the metal fastener corrosion in copper-treated wood. XFM is able to map the copper concentration in the wood with a spatial resolution of 0.5 µm and is able to quantify the copper concentration to within 0.05 µg cm-3...

  11. Study of coagulation processes of selected humic acids under copper ions influence*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Humic acids have limited sorption capacity and big dose of metal or other mineral component which can be sorbed on humic acids, can cause saturation of negative, surface charge of humic acids leading to destabilization of dissolved humic acids compounds. Destabilisation can be observed as coagulation and floculation proces of humic acids. However there are a lot of mechanisms which causing precipitation of humic acids. Thereby, in order to full description of coagulation process, different methods should be applied. Ordinarily, humic acids coagulation is studied by measurement of absorbance, transmittance or carbon loss in solution. Meanwhile, very significant information is also variation of metal content in soil solution and information whether metal goes to precipitate together with humic acids or stays in dissolved form in solution. So, that, from one side, processes of stronger accumulation of metal can lead to soil degradation and micronutrient deficiency for plants. However, there is also possibility to stay metal in solution in toxic and bioavailable form for plants. Main aim of this paper was to study coagulation process of different humic acids extracted from mucking peats under copper ions influence at adjusted pH to 5. In order to this, four peaty-muck soils were taken from selected places in east part of Poland (meadows and river valleys). These soils differed by humification degree, secondary transformation, density and pH. At next step, humic acids were extracted from soils using sodium hydroxide (NaOH) extractant. After exact purification by washing with HF-HCl mixture and water, humic acids were liofilized. Solutions of humic acids were prepared at concentration 40 mg/dm3 with addition of different amount of copper ions to obtain final concentration of Cu(II) ranged from 0-40mg/dm3. After 24 hours solutions were investigated using measurements of absorbance at 470nm (UV-VIS spectrometer Jasco V-530), measurements of organic carbon in solution (carbon analyzer: Multi NC2000, Analityk Jena) and measurements of copper content in solution (atomic absorption spectrometer: Contraa300, Analityk Jena). On the base of obtained results initial and end point of coagulation was determined for each of humic acids. Results showed that coagulation points differed for different humic acids and it was probably depended on sorption possibilities. Coagulation points determined from UV-VIS measurements overlapped with points from carbon measurement. Loss of carbon during coagulation was almost total but loss of copper in solution during humic acid coagulation was much smaller and did not cover exactly points of carbon precipitation. So that, coagulation of humic acids under copper influence could resulted from both bonding of metal by functional groups and creating complexes and also from increasing ionic strength. Important is that organic carbon went to insoluble form and copper stayed in movable compounds. Such studies and conclusions coming from them, can be very important from ecological side. *This work was partly supported by the National Science Centre in Poland, grant No. UMO-2011/03/N/NZ9/04239.

  12. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T < 10 K. For this complex, the structure is identified and the distance between the copper ions is determined. It is shown that the nitrate counterion plays the role of a bridge between the hexaaqua copper(II) complex and the dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  13. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF

    2014-05-05

    Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes inmore » the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). NSLS is a national scientific user facility supported by the US DOE.« less

  14. Pyrazolate-based copper(II) and nickel(II) [2 x 2] grid complexes: protonation-dependent self-assembly, structures and properties.

    PubMed

    Klingele, Julia; Prikhod'ko, Alexander I; Leibeling, Guido; Demeshko, Serhiy; Dechert, Sebastian; Meyer, Franc

    2007-05-28

    The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x

  15. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    PubMed

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    PubMed

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  17. Extractive determination of ephedrine hydrochloride and bromhexine hydrochloride in pure solutions, pharmaceutical dosage form and urine samples

    NASA Astrophysics Data System (ADS)

    Abdel-Ghani, N. T.; Rizk, M. S.; Mostafa, M.

    2013-07-01

    Simple, rapid, sensitive, precise and accurate spectrophotometeric methods for the determination of ephedrine hydrochloride (E-HCl) and bromhexine hydrochloride (Br-HCl) in bulk samples, dosage form and in spiked urine samples were investigated. The methods are based on the formation of a yellow colored ion-associates due to the interaction between the examined drugs with picric acid (PA), chlorophyllin coppered trisodium salt (CLPH), alizarin red (AR) and ammonium reineckate (Rk) reagents. A buffer solution had been used and the extraction was carried out using organic solvent, the ion associates exhibit absorption maxima at 410, 410, 430 and 530 nm of (Br-HCl)with PA, CLPH, AR and Rk respectively; 410, 410, 435 and 530 of (E-HCl) with PA, CLPH, AR and Rk respectively. (E-HCl) and (Br-HCl) could be determined up to 13, 121, 120 and 160; 25, 200, 92 and 206 μg mL-1, using PA, CLPH, AR and Rk respectively. The optimum reaction conditions for quantitative analysis were investigated. In addition, the molar absorptivity, Sandell sensitivity were determined for the investigated drug. The correlation coefficient was ⩾0.995 (n = 6) with a relative standard deviation (RSD) ⩽1.15 for five selected concentrations of the reagents. Therefore the concentration of Br-HCl and E-HCl drugs in their pharmaceutical formulations and spiked urine samples had been determined successfully.

  18. A Robust Analytical Approach for the Identification of Specific Protein Carbonylation Sites: Metal-Catalyzed Oxidations of Human Serum Albumin

    PubMed Central

    Ugur, Zafer; Gronert, Scott

    2017-01-01

    The formation of protein carbonyls in the metal-catalyzed oxidation of human serum albumin (HSA) is characterized using a new analytical approach that involves tagging the modification site with multiple hydrazide reagents. Protein carbonyl formation at lysine and arginine residues was catalyzed with copper and iron ions, and the resulting oxidation patterns in HSA are contrasted. A total of 18 modification sites were identified with iron ion catalysis and 14 with copper ion catalysis. However, with the more stringent requirement of identification with at least two tagging reagents, the number of validated modification sites drops to 10 for iron and 9 for copper. Of the 14 total validated sites, there were only five in common for the two metal ions. The results illustrate the value of using multiple tagging agents and highlight the selective and specific nature of metal-catalyzed protein oxidations. PMID:28303033

  19. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  20. A selective naked-eye chemosensor derived from 2-methoxybenzylamine and 2,3-dihydroxybenzaldehyde - synthesis, spectral characterization and electrochemistry of its bis-bidentates Schiff bases metal complexes

    NASA Astrophysics Data System (ADS)

    Djouhra, Aggoun; Ali, Ourari; Ramiro, Ruiz-Rosas; Emilia, Morallon

    2017-09-01

    A new colorimetric receptor HL, acting as a bidentate Schiff base ligand, has been synthesized by condensation of 2-methoxybenzylamine on 2,3-dihydroxybenzaldehyde in a methanolic solution. Interestingly, this chelating agent can selectively detect Cu2 +, Co2 +, Fe2 + and Fe3 + ions with a simple and an easy-to-make, well defined naked-eye visible color changes in two different solvents like acetonitrile and methanol. This bidentate ligand coordinates three metal ions of Co(II), Cu(II) and Fe(II) via nitrogen and oxygen atoms. The molecular structures of the synthesized compounds were elucidated by various physicochemical properties such as the elemental analysis, FT-IR, HNMR, UV-Vis and the Mass spectrometry. The resulting general formulae [M(L)2·H2O] (M(II) = Cu, Fe, Co) are proposed as mononuclear complexes. The solvatochromism properties of these compounds were studied with their absorption spectra using different solvents as methanol (MeOH), acetonitrile (AN), tetrahydrofuran (THF), dimethylformamid (DMF), dimethylsulfoxid (DMSO) and dichloromethane (DC). The Electrochemical behavior of copper complex was explored in DMF solutions by cyclic voltammetry (CV) with two working electrodes: glassy carbon (GC) and platinum electrode (Pt). This study reveals that copper complex shows successively two redox systems as CuIII/II and CuII/I. The FeIII/II and CoII/I redox systems have also been studied in DMF and DMSO media.

  1. Effects of chronic copper exposure during early life in rhesus monkeys.

    PubMed

    Araya, Magdalena; Kelleher, Shannon L; Arredondo, Miguel A; Sierralta, Walter; Vial, María Teresa; Uauy, Ricardo; Lönnerdal, Bo

    2005-05-01

    Whether infants regulate copper absorption and the potential effects of excess copper in early life remain poorly defined. The objective of the study was to assess copper retention, liver copper content, and liver function in infant rhesus monkeys fed infant formula containing 6.6 mg Cu/L. From birth to 5 mo of age, infant rhesus monkeys were fed formula that was supplemented with copper (0.6 mg Cu/L; n = 5) or not supplemented (n = 4). In all animals, weight and crown-rump length (by anthropometry), hemoglobin, hematocrit, plasma ceruloplasmin activity, and zinc and copper concentrations were measured monthly (birth to 6 mo) and at 8 and 12 mo. When the animals were 1, 5, and 8 mo old, liver copper and metallothionein concentrations, liver histology (by light and electron microscopy), and the number of Kupffer cells were assessed, and 67Cu retention was measured. Liver function was assessed by measurement of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and alkaline phosphatase activities and protein, albumin, bilirubin, and blood urea nitrogen concentrations. 67Cu retention was 19.2% and 10.9% after 1 and 5 mo of copper treatment, respectively, compared with approximately 75% in controls at age 2 mo. At age 8 mo, 67Cu retention was 22.9% in copper-treated animals and 31.5% in controls. Liver histology remained normal by light microscopy, with mild ultrastructural signs of cell damage at 5 mo. Liver copper concentration was 4711, 1139, and 498 microg/g dry tissue at 1, 5, and 8 mo, respectively, in copper-treated animals and 250 microg/g at 2 mo in controls. Measurements could not be completed in all animals. No clinical evidence of copper toxicity was observed. Copper absorption was down-regulated; increases in liver copper content at ages 1 and 5 mo did not result in histologic damage. Ultrastructural changes at age 5 mo could signal early cellular damage.

  2. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials

    NASA Astrophysics Data System (ADS)

    Li, W. Q.; Qu, Z. G.; He, Y. L.; Tao, Y. B.

    2014-06-01

    A highly efficient thermal strategy to manage a high-powered Li-ion battery package within the required safe temperature range is of great demand for electric vehicles (EVs) applications. A sandwiched cooling structure using copper metal foam saturated with phase change materials was designed. The thermal efficiency of the system was experimentally evaluated and compared with two control cases: a cooling mode with pure phase change materials and an air-cooling mode. The results showed that the thermal management with air natural convection cannot fulfill the safety demand of the Li-ion battery. The use of pure PCM can dramatically reduce the surface temperature and maintain the temperature within an allowable range due to the latent heat absorption and the natural convection of the melted PCM during the melting process. The foam-paraffin composite further reduced the battery's surface temperature and improved the uniformity of the temperature distribution caused by the improvement of the effective thermal conductivity. Additionally, the battery surface temperature increased with an increase in the porosity and the pore density of the metal foam.

  3. Synthesis, structural, optical and electrical properties of metal nanoparticle-rare earth ion dispersed in polymer film

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Singh, P.; Rai, S. B.

    2013-03-01

    Cu-nanoparticles have been prepared by ablating a copper target submerged in benzene with laser pulses of Nd:YAG (wavelength: 355, 532 nm and 1,064 nm). Colloidal nanoparticles have been characterized by UV-Vis spectroscopy and transmission electron microscopy. The obtained radius for the nanoparticles prepared using 1,064 nm irradiation lies in the range 15-30 nm, with absorption peak at 572 nm. Luminescence properties of Tb3+ ions in the presence and absence of Cu-nanoparticles have been investigated using 355 nm excitation. An enhancement in luminescence of Tb3+ by local field effect causing increase in lifetime of 5D4 level of Tb3+ ion has been observed. Frequency and temperature-dependent conductivity of Tb3+ doped PVA thin films with and without Cu-nanoparticles have been measured in the frequency range 20 Hz-1 MHz and in the temperature range 318-338 K (well below its melting temperature). Real part of the conductivity spectra has been explained in terms of power law. The electrical properties of the thin films show a decrease in dc conductivity on incorporation of the Cu-nanoparticles.

  4. Copper-silver ionization at a US hospital: interaction of treated drinking water with plumbing materials, aesthetics and other considerations

    EPA Science Inventory

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into...

  5. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    NASA Astrophysics Data System (ADS)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  6. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area].

    PubMed

    Qu, Yong-hua; Jiao, Si-hong; Liu, Su-hong; Zhu, Ye-qing

    2015-11-01

    Heavy metal mining activities have caused the complex influence on the ecological environment of the mining regions. For example, a large amount of acidic waste water containing heavy metal ions have be produced in the process of copper mining which can bring serious pollution to the ecological environment of the region. In the previous research work, bare soil is mainly taken as the research target when monitoring environmental pollution, and thus the effects of land surface vegetation have been ignored. It is well known that vegetation condition is one of the most important indictors to reflect the ecological change in a certain region and there is a significant linkage between the vegetation spectral characteristics and the heavy metal when the vegetation is effected by the heavy metal pollution. It means the vegetation is sensitive to heavy metal pollution by their physiological behaviors in response to the physiological ecology change of their growing environment. The conventional methods, which often rely on large amounts of field survey data and laboratorial chemical analysis, are time consuming and costing a lot of material resources. The spectrum analysis method using remote sensing technology can acquire the information of the heavy mental content in the vegetation without touching it. However, the retrieval of that information from the hyperspectral data is not an easy job due to the difficulty in figuring out the specific band, which is sensitive to the specific heavy metal, from a huge number of hyperspectral bands. Thus the selection of the sensitive band is the key of the spectrum analysis method. This paper proposed a statistical analysis method to find the feature band sensitive to heavy metal ion from the hyperspectral data and to then retrieve the metal content using the field survey data and the hyperspectral images from China Environment Satellite HJ-1. This method selected copper ion content in the leaves as the indicator of copper pollution level, using stepwise multiple linear regression and cross validation on the dataset which is consisting of 44 groups of copper ion content information in the polluted vegetation leaves from Dexing Copper Mine in Jiangxi Province to build up a statistical model by also incorporating the HJ-1 satellite images. This model was then used to estimate the copper content distribution over the whole research area at Dexing Copper Mine. The result has shown that there is strong statistical significance of the model which revealed the most sensitive waveband to copper ion is located at 516 nm. The distribution map illustrated that the copper ion content is generally in the range of 0-130 mg · kg⁻¹ in the vegetation covering area at Dexing Copper Mine and the most seriously polluted area is located at the South-east corner of Dexing City as well as the mining spots with a higher value between 80 and 100 mg · kg⁻¹. This result is consistent with the ground observation experiment data. The distribution map can certainly provide some important basic data on the copper pollution monitoring and treatment.

  7. Hydrothermal preparation of copper doped NaTaO3 nanoparticles and study on the photocatalytic mechanism.

    PubMed

    Liu, Yulu; Su, Yiguo; Han, Hui; Wang, Xiaojing

    2013-02-01

    Effects of copper cations doping into wide band gap semiconductor photocatalysts of tantalate on morphology, visible light response, and photocatalytic performance were studied. A series of Cu-doped NaTaO3 catalysts were prepared by hydrothermal method. XRD and XPS results suggested that copper were successfully doped into the NaTaO3 nanocrystal in the Cu2+ state. TEM studies showed the formation of the cube shape nanoparticles of NaTaO3 as well as Cu-doped NaTaO3. UV-Vis diffuse reflectance spectra clearly indicated the red-shift in the series of copper doped NaTaO3 catalysts, resulting in a decrease in the band gap of NaTaO3. The trend of red shift was increased with an increase of copper doping concentration, whereas the photo-degradation methylene blue (MB) is not improved by the doping of copper ions. The simulation of energy band structure by density functional theory unfolded that the substitution of Ta5+ ions by Cu2+ ions results in forming an intermediate band (IB) upper the top of the valence band (VB), which is mainly attributed to the state of Cu 3d. The intermediate band is responsible for the red-shift caused by the doping of Cu ions. Meanwhile Cu species can become the recombination centers of photoinduced electrons and holes. Thus, the quickly recombination of e(-)h(+) pairs is one of the most significant factors which deteriorate the photoactivity of Cu-doped NaTaO3.

  8. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue

    NASA Astrophysics Data System (ADS)

    Maiti, Sayantani; Llorca, Jordi; Dominguez, Montserrat; Colussi, Sara; Trovarelli, Alessandro; Priolkar, Kaustubh R.; Aquilanti, Giuliana; Gayen, Arup

    2016-02-01

    A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 °C with ∼5% CO selectivity at GHSV = 30,000 h-1 and H2O:CH3OH = 1.1. The analogous impregnated catalyst, CuO (10 at%)/FeAl2O4, is found to be much less active. These materials are characterized by XRD, H2-TPR, BET, HRTEM, XPS and XANES analyses. Spinel phase formation is highly facilitated upon Cu-ion substitution and Cu loading beyond 10 at% leads to the formation of CuO as an additional phase. The ionic substitution of copper in FeAl2O4 leads to the highly crystalline SCS catalyst containing Cu2+ ion sites that are shown to be more active than the dispersed CuO nano-crystallites on the FeAl2O4 impregnated catalyst, despite its lower surface area. The as prepared SCS catalyst contains also a portion of copper as Cu1+ that increases when subjected to reforming atmosphere. The MSR activity of the SCS catalyst decreases with time-on-stream due to the sintering of catalyst crystallites as established from XPS and HRTEM analyses.

  9. Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.

    PubMed

    Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping

    2013-02-01

    This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.

  10. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity.

    PubMed

    Mira, Lurdes; Fernandez, M Tereza; Santos, Marta; Rocha, Rui; Florêncio, M Helena; Jennings, Keith R

    2002-11-01

    The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe3+) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfill these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu2+ additionally at the ortho-catechol group, the chelating site for catechin with Cu2+ at pH 7.4. Chelation studies of Fe3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe3+, complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe3+ at pH 5.5, suggesting that flavonoids reduce Fe3+ to Fe2+ before association.

  11. Rolling contact fatigue behavior of Cu and TiN coatings on bearing steel substrates

    NASA Technical Reports Server (NTRS)

    Hochman, R. F.; Erdemir, A.; Dolan, F. J.; Thom, R. L.

    1985-01-01

    The resistance of copper and TiN coatings on various bearing substrates to high-load rolling contact fatigue (RCF) is investigated. Special attention is given to the lubricating characteristics of copper deposited by ion plating, and the wear resistant characteristics of TiN deposited by ion plating and magnetron sputtering techniques. RCF samples of 440C and AMS 5749 bearing steels were coated. Sputter deposited and ion plated films were on the RCF samples in a range of thickness from about 2000 A to 2 microns. Results showed a marked improvement of the RCF for pure copper tested on 440C, but a degradation for copper on AMS 5749. It is also found that the 2000 A TiN films behave favorably on the 440C and AMS 5749 bearing steels at RCF stress levels of 786 ksi. Scanning electron microscopy, X-ray diffraction, and electron spectroscopy for chemical analysis were used during the investigation.

  12. Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans

    PubMed Central

    Zanon, Tyler; Kappell, Anthony D.; Petrella, Lisa N.; Andersen, Erik C.; Hristova, Krassimira R.

    2016-01-01

    Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress). PMID:27911941

  13. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-01

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  14. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper.

    PubMed

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-04

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  15. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    PubMed

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Assessment and modification of an ion source grid design in KSTAR neutral beam system.

    PubMed

    Lee, Dong Won; Shin, Kyu In; Jin, Hyung Gon; Choi, Bo Guen; Kim, Tae-Seong; Jeong, Seung Ho

    2014-02-01

    A new 2 MW NB (Neutral Beam) ion source for supplying 3.5 MW NB heating for the KSTAR campaign was developed in 2012 and its grid was made from OFHC (Oxygen Free High Conductivity) copper with rectangular cooling channels. However, the plastic deformation such as a bulging in the plasma grid of the ion source was found during the overhaul period after the 2012 campaign. A thermal-hydraulic and a thermo-mechanical analysis using the conventional code, ANSYS, were carried out and the thermal fatigue life assessment was evaluated. It was found that the thermal fatigue life of the OFHC copper grid was about 335 cycles in case of 0.165 MW/m(2) heat flux and it gave too short fatigue life to be used as a KSTAR NB ion source grid. To overcome the limited fatigue life of the current design, the following methods were proposed in the present study: (1) changing the OHFC copper to CuCrZr, copper-alloy or (2) adopting a new design with a pure Mo metal grid and CuCrZr tubes. It is confirmed that the proposed methods meet the requirements by performing the same assessment.

  17. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness.

    PubMed

    Garcia, S S; Du, Q; Wu, H

    2016-12-01

    The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Decrease in cytotoxicity of copper-based intrauterine devices (IUD) pretreated with 6-mercaptopurine and pterin as biocompatible corrosion inhibitors.

    PubMed

    Alvarez, Florencia; Grillo, Claudiaa; Schilardi, Patricial; Rubert, Aldo; Benítez, Guillermo; Lorente, Carolina; de Mele, Mónica Fernández Lorenzo

    2013-01-23

    The copper intrauterine device (IUD) based its contraceptive action on the release of cupric ions from a copper wire. Immediately after the insertion, a burst release of copper ions occurs, which may be associated to a variety of side effects. 6-Mercaptopurine (6-MP) and pterin (PT) have been proposed as corrosion inhibitors to reduce this harmful release. Pretreatments with 1 × 10(-4) M 6-MP and 1 × 10(-4) M PT solutions with 1h and 3h immersion times were tested. Conventional electrochemical techniques, EDX and XPS analysis, and cytotoxicity assays with HeLa cell line were employed to investigate the corrosion behavior and biocompatibility of copper with and without treatments. Results showed that copper samples treated with PT and 6-MP solutions for 3 and 1 h, respectively, are more biocompatible than those without treatment. Besides, the treatment reduces the burst release effect of copper in simulated uterine solutions during the first week after the insertion. It was concluded that PT and 6-MP treatments are promising strategies able to reduce the side effects related to the "burst release" of copper-based IUD without altering the contraceptive action.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudeck, P.J.; Harper, J.M.E.; Fryer, P.M.

    The copper concentration in aluminum--copper alloys can be altered by ion bombardment during film deposition. We have measured the sputtering yields of aluminum and copper in Al--Cu alloys as a function of the Cu concentration (5--13 at. %) and the angle of ion incidence (0--40/sup 0/ from normal). During deposition, the films were partially resputtered by 500-eV Ar/sup +/ ion bombardment from a Kaufman ion source. We found that the Cu sputtering yield decreases by up to a factor of 10 in the alloy, relative to elemental Cu. The Al sputtering yield remains close to the elemental value. The netmore » effect is a strong preferential sputtering of Al relative to Cu, which enhances the Cu concentration in an ion bombarded film. The Al/Cu sputtering yield ratio for normal incidence ion bombardment ranges from 3 to 5 as a function of Cu concentration. This ratio decreases with increasing angle of incidence to as low as 2 for 40/sup 0/ incident ions. However, since a higher fraction of the film is resputtered from a sloping surface, a higher Cu concentration is found on a sloping surface relative to a flat surface. These results show that in multicomponent film deposition under ion bombardment, the film composition will vary as a function of the surface topography. We will also show how the level of argon left trapped in the films varies inversely with respect to the ion flux.« less

  20. Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.

    PubMed

    Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana

    2017-11-08

    Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.

  1. X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions

    NASA Astrophysics Data System (ADS)

    Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.

    2016-08-01

    Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.

  2. Surface Structures Formed by a Copper(II) Complex of Alkyl-Derivatized Indigo

    PubMed Central

    Honda, Akinori; Noda, Keisuke; Tamaki, Yoshinori; Miyamura, Kazuo

    2016-01-01

    Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed. PMID:28773957

  3. Ultrafast studies of the excited-state dynamics of copper and nickel phthalocyanine tetrasulfonates: potential sensitizers for the two-photon photodynamic therapy of tumors.

    PubMed

    Fournier, Michel; Pépin, Claude; Houde, Daniel; Ouellet, René; van Lier, Johan E

    2004-01-01

    In order to evaluate the potential of copper and nickel phthalocyanine tetrasulfonates as sensitizers for two-photon photodynamic therapy, we conducted kinetic femtosecond measurements of transient absorption and bleaching of their excited state dynamics in aqueous solution. Samples were pumped with 620 nm and 310 nm laser light, which allowed us to study relaxation processes from both the first and second singlet (or doublet for the copper phthalocyanine) excited states. A second excitation from the first excited triplet state, approximately 685 and 105 ps after the first excitation for copper and nickel phthalocyanine tetrasulfonate respectively, was the most efficient way to bring the molecules to an upper triplet state. Presumably this highest triplet state can inflict molecular damage on adjacent biomolecules int eh absence of oxygen, resulting in the desired cytotoxic cellular response. Transient absorption spectra at different fixed delays indicate that optimum efficiency would require that the second photon has a wavelength of approximately 750 nm.

  4. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  5. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water.

    PubMed

    López-Ramón, María V; Álvarez, Miguel A; Moreno-Castilla, Carlos; Fontecha-Cámara, María A; Yebra-Rodríguez, África; Bailón-García, Esther

    2018-02-01

    A copper ferrite synthesized by a sol-gel combustion method was calcined at different temperatures up to 800°C, determining changes in its structural characteristics and magnetic measurements and studying its catalytic performance in gallic acid removal by Fenton reaction. The main objective was to study the effect of the calcination temperature of copper ferrite on its crystalline phase formation and transformation, activity and metal ion leaching. The cubic-to-tetragonal transformation of the spinel occurred via its reaction with the CuO phase, displacing Fe 3+ ions in B (octahedral) sites out of the spinel structure by the following reaction: 2Fe 3+ B +3CuO→Fe 2 O 3 +3Cu 2+ B . The catalysts showed superparamagnetic or substantial superparamagnetic behaviour. At higher calcination temperatures, catalyst activity was lower, and Cu ion leaching was markedly decreased. There was no Fe ion leaching with any catalyst. The as-prepared catalyst showed better catalytic performance than a commercial copper ferrite. Leached Cu ions acted as homogeneous catalysts, and their contribution to the overall removal mechanism was examined. Cu 2 O present in the as-prepared catalysts made only a small contribution to their activity. Finally, the reutilization of various catalysts was studied by performing different catalytic cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Interference-free determination of trace copper in freshly ripened honeys by flame atomic absorption spectrometry following a preconcentration by solid-phase extraction and a two-step elution process.

    PubMed

    Pohl, Pawel; Stecka, Helena; Jamroz, Piotr

    2014-02-01

    A fast and straightforward procedure aimed at separating copper (Cu) ions from monosacharides and preconcentrating their traces before flame atomic absorption spectrometry (FAAS) measurements was developed, and its suitability was evaluated by the analysis of freshly ripened honeys on the content of this environmentally and physiologically relevant element. This procedure included the passage (at 20 mL/min) of 10 % (m/v) solutions of honeys (100 mL) through resin beds of Dowex 50 W × 8-400 to retain Cu by solid-phase extraction (SPE) and separate it from the glucose and fructose matrix. In turn, SPE columns were rinsed at 20 mL/min with 20 mL of water and subsequently washed with 20 mL of a 0.5 mol/L HNO3 solution (at 2.0 mL/min) to elute potassium and sodium. Preconcentrated Cu was stripped (at 2.0 mL/min) with 5.0 mL of a 2.0 mol/L HCl solution and determined by FAAS. The proposed procedure was used for the analysis of six ripened monoflower and multiflower honeys, enabling the measurement of Cu within the range of 0.17-0.42 μg/g and with a precision of 3-10%. Recoveries of Cu added to respective honey solutions were within 94-102%, proving the good accuracy of this procedure. The detection limit of Cu achieved with this SPE preconcentration/separation procedure and FAAS detection was 3.6 ng/g.

  7. Synthesis, Structure, and Characterization of Cu4S10(4-methylpyridine)4

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Richman, Robert M.; Duraj, Stan A.; Andras, Maria T.; Moore, Hall L.; Sabat, Michal; Eckles, William E.; Martuch, Robert A.

    1996-01-01

    The title compound, Cu4S10(4-methylpyridine)(sub 4) (dot) 4-methylpyridine was prepared by three different reactions: the oxidation of copper powder by sulfur and the reaction of copper (I) sulfide (or CuBr (dot) SMe2) with excess sulfur, both in the coordinating solvent, 4-methylpyridine. Red crystals of the compound obtained by layering with hexanes were subjected to single crystal X-ray diffraction. The structure was refined to R = 0.026 and R(sub w) = 0.036 in a space group P1bar (No. 2), with Z = 2, a = 13.983 (2) A, b = 15.384 (2) A, c = 9.660 (1) A, alpha = 93.87 (1)deg., beta = 93.38 (1)deg., gamma = 99.78 (1)deg., V = 2037.9 (9) A(exp 3). The compound has approximate S(sub 4) symmetry and consists of two pentasulfide chains linking four Cu(I) ions, each with a corrdinating 2-methylpyridine. The infrared spectrum was dominated by absorption due to coordinated 4-methylpyridine with several low-energy peaks attributable to S-S stretches, which were also observed by Raman spectroscopy. A featureless electronic absorption spectrum yielded a single peak in the near ultraviolet upon computer enhancement (lambda = 334 nm, epsilon = 10,000), most likely an intraligand transition. Cyclic voltammetry indicates that the polysulfide complex undergoes irrversible oxidation and reduction at +0.04 and -0.34 V vs. SCE, respectively, at 298 K in 4-methylpyridine when swept at 20 mV/sec. The electrochemical behavior was unvaried even at sweep rates as high as 100 V/sec.

  8. Mineral content of the honey produced in Zulia state, Venezuela.

    PubMed

    Sulbarán de Ferrer, Betzabé; Ojeda de Rodríguez, Graciela; Peña, Jorge; Martínez, Janeth; Morán, María

    2004-09-01

    The mineral content of the honey produced in five zones of the Zulia state, Venezuela, during dry and rainy seasons was determined. The analyzed elements were: sodium, potassium (by emission spectroscopy), calcium, magnesium, copper, iron, manganese (by atomic absorption spectroscopy), phosphorus (phosphate ions, by colorimetric method), and ash content of raw honey samples directly collected from different beekeepers. The mean values for Na, K, Ca, Mg, Cu, Fe, Mn, and P were 353+84; 1774+138; 237+66; 52+24; 0.76+0.43; 13.5+10.23; 0.92+0.42 and 1642+323 mg/kg respectively. The mean ash content was 0.431+0.15%. Potassium was the most abundant of the elements determined. This results confirm that Zulian honey can be considered a good source of minerals.

  9. Extraction of heavy metals by mercaptans attached to silica gel by a corkscrew mechanism.

    PubMed

    Bowe, Craig A; Benson, Robert F; Martin, Dean F

    2002-09-01

    Saturated, straight chain mercaptans were attached to silica gel and used as coordinating agents for removal of cadmium(II), copper(II), lead(II), and nickel(II) ions from standard solutions. It is believed that the mercaptans become wedged in the silica pores, but are available for reaction. Four thiols were used, viz., 1-hexanethiol, 1-dodecanethiol, 1-hexadecanethiol, and 1-octadecanethiol. Standard solutions of metals (1.57 mM) were stirred with the supported mercaptans for two hours, and at 25 degrees C, and the sample supernatants were analyzed using atomic absorption spectrometry. At pH = 8, the percent removal was 99 (Cd), 91.5 (Cu), 80.8 (Pb), and 97 (Ni). It was possible to acidify the metal-containing solids, and regenerate the supported chelating agents.

  10. Aluminium or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  11. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  12. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals.

    PubMed

    Nadal, Rebecca C; Rigby, Stephen E J; Viles, John H

    2008-11-04

    Oxidative stress plays a key role in Alzheimer's disease (AD). In addition, the abnormally high Cu(2+) ion concentrations present in senile plaques has provoked a substantial interest in the relationship between the amyloid beta peptide (Abeta) found within plaques and redox-active copper ions. There have been a number of studies monitoring reactive oxygen species (ROS) generation by copper and ascorbate that suggest that Abeta acts as a prooxidant producing H2O2. However, others have indicated Abeta acts as an antioxidant, but to date most cell-free studies directly monitoring ROS have not supported this hypothesis. We therefore chose to look again at ROS generation by both monomeric and fibrillar forms of Abeta under aerobic conditions in the presence of Cu(2+) with/without the biological reductant ascorbate in a cell-free system. We used a variety of fluorescence and absorption based assays to monitor the production of ROS, as well as Cu(2+) reduction. In contrast to previous studies, we show here that Abeta does not generate any more ROS than controls of Cu(2+) and ascorbate. Abeta does not silence the redox activity of Cu(2+/+) via chelation, but rather hydroxyl radicals produced as a result of Fenton-Haber Weiss reactions of ascorbate and Cu(2+) rapidly react with Abeta; thus the potentially harmful radicals are quenched. In support of this, chemical modification of the Abeta peptide was examined using (1)H NMR, and specific oxidation sites within the peptide were identified at the histidine and methionine residues. Our studies add significant weight to a modified amyloid cascade hypothesis in which sporadic AD is the result of Abeta being upregulated as a response to oxidative stress. However, our results do not preclude the possibility that Abeta in an oligomeric form may concentrate the redox-active copper at neuronal membranes and so cause lipid peroxidation.

  13. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  14. Extraction-spectrophotometric determination of traces of gold in copper in silver, lead, blister copper, copper concentrate and anode slime with 4,4'-bis(dimethylamino)-thiobenzophenone.

    PubMed

    Tsukahara, I

    1977-10-01

    A sensitive spectrophotometric method has been developed for the determination of gold in copper, silver, lead, blister copper, copper concentrate and anode slime. Optimal conditions have been established for the extraction and determination of gold. Gold is extracted as its bromo complex with tri-n-octylamine and determined photometrically with 4,4'-bis(dimethylamino)thiobenzophenone; the absorbance of the organic phase is measured at 540 nm and the apparent molar absorptivity is about 1.2 x 10(5) 1.mole(-1). cm(-1). As little as 0.1 or 0.2 ppm of gold in these materials can be determined.

  15. Periodate and hypobromite modification of Southern pine wood to improve sorption of copper ion

    Treesearch

    James D. McSweeny; Roger M. Rowell; George C. Chen; Thomas L. Eberhardt; Min Soo-Hong

    2008-01-01

    Milled southern pine wood was modified with sequential treatments of sodium periodate and sodium hypobromite for the purpose of improving copper ion (Cu2+) sorption capacity of the wood when tested in 24-h equilibrium batch tests. The modified wood provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ uptake over that of...

  16. iMAST Quarterly, Number 3, 2000

    DTIC Science & Technology

    2000-01-01

    components which depend on evaporating unit capabilities. There are three components (EB-gun, water cooled copper crucible and vacuum chamber) in the EB-PVD...Ion Implantation and Ion Plating electromagnetic deflected through 180 or 2700. Similarly, evaporant material is placed in a water-cooled copper ... crucible , which could be either pocket type for small quantity evaporation application or continuous ingot feeding through the crucible for larger quantity

  17. A ligation DNAzyme-induced magnetic nanoparticles assembly for ultrasensitive detection of copper ions.

    PubMed

    Yin, Honghong; Kuang, Hua; Liu, Liqiang; Xu, Liguang; Ma, Wei; Wang, Libing; Xu, Chuanlai

    2014-04-09

    A novel biosensor for ultrasensitive detection of copper (Cu(2+)) was established based on the assembly of magnetic nanoparticles induced by the Cu(2+)-dependent ligation DNAzyme. With a low limit of detection of 2.8 nM and high specificity, this method has the potential to serve as a general platform for the detection of heavy metal ions.

  18. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release.

    PubMed

    Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J

    2009-07-01

    Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials.

  19. Crystallography with online optical and X-ray absorption spectroscopies demonstrates an ordered mechanism in copper nitrite reductase.

    PubMed

    Hough, Michael A; Antonyuk, Svetlana V; Strange, Richard W; Eady, Robert R; Hasnain, S Samar

    2008-04-25

    Nitrite reductases are key enzymes that perform the first committed step in the denitrification process and reduce nitrite to nitric oxide. In copper nitrite reductases, an electron is delivered from the type 1 copper (T1Cu) centre to the type 2 copper (T2Cu) centre where catalysis occurs. Despite significant structural and mechanistic studies, it remains controversial whether the substrates, nitrite, electron and proton are utilised in an ordered or random manner. We have used crystallography, together with online X-ray absorption spectroscopy and optical spectroscopy, to show that X-rays rapidly and selectively photoreduce the T1Cu centre, but that the T2Cu centre does not photoreduce directly over a typical crystallographic data collection time. Furthermore, internal electron transfer between the T1Cu and T2Cu centres does not occur, and the T2Cu centre remains oxidised. These data unambiguously demonstrate an 'ordered' mechanism in which electron transfer is gated by binding of nitrite to the T2Cu. Furthermore, the use of online multiple spectroscopic techniques shows their value in assessing radiation-induced redox changes at different metal sites and demonstrates the importance of ensuring the correct status of redox centres in a crystal structure determination. Here, optical spectroscopy has shown a very high sensitivity for detecting the change in T1Cu redox state, while X-ray absorption spectroscopy has reported on the redox status of the T2Cu site, as this centre has no detectable optical absorption.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudeck, P.J.; Harper, J.M.E.; Fryer, P.M.

    The copper concentration in aluminum-copper alloys can be altered by ion bombardment during film deposition. We have measured the sputtering yields of aluminum and copper in Al-Cu alloys as a function of the Cu concentration (5--13 at. %) and the angle of ion incidence (0/sup 0/--40/sup 0/ from normal). During deposition, the films were partially resputtered by 500 eV Ar/sup +/ ion bombardment from a Kaufman ion source. We found that the Cu sputtering yield decreases by up to a factor of 10 in the alloy, relative to elemental Cu. The Al sputtering yield remains close to the elemental value.more » The net effect is a strong preferential sputtering of Al relative to Cu, which enhances the Cu concentration in an ion-bombarded film. The Al/Cu sputtering yield ratio for normal incidence ion bombardment ranges from 3 to 5 as a function of Cu concentration. This ratio decreases with increasing angle of incidence to as low as 2 for 40/sup 0/ incident ions. However, since a higher fraction of the film is resputtered from a sloping surface, a higher Cu concentration is found on a sloping surface relative to a flat surface. These results show that the film composition will vary as a function of the surface topography.« less

  1. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.

    PubMed

    Hahn, C; Hans, M; Hein, C; Mancinelli, R L; Mücklich, F; Wirth, R; Rettberg, P; Hellweg, C E; Moeller, R

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity. Key Words: Contact killing-E. coli-S. cohnii-Antimicrobial copper surfaces-Copper oxide layers-Human health-Planetary protection. Astrobiology 17, 1183-1191.

  2. The determination of copper in biological materials by flame spectrophotometry

    PubMed Central

    Newman, G. E.; Ryan, M.

    1962-01-01

    A method for the determination of the copper content of biological materials by flame spectrophotometry is described. The effects of interference by ions such as sodium and phosphate were eliminated by isolating copper as the dithizonate in CCl4. Results obtained for the urinary excretion of copper by a patient with Wilson's disease before and after treatment with penicillamine are reported. PMID:14479334

  3. Oxidation of nitroxyl anion to nitric oxide by copper ions

    PubMed Central

    Nelli, Silvia; Hillen, Mark; Buyukafsar, Kansu; Martin, William

    2000-01-01

    This study made use of a nitric oxide-sensitive electrode to examine possible means of generating nitric oxide from nitroxyl anion (NO−) released upon the decomposition of Angeli's salt. Our results show that copper ions (from CuSO4) catalyze the rapid and efficient oxidation of nitroxyl to nitric oxide. Indeed, the concentrations of copper required to do so (0.1–100 μM) are roughly 100-times lower than those required to generate equivalent amounts of nitric oxide from S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Experiments with ascorbate (1 mM), which reduces Cu2+ ions to Cu+, and with the Cu2+ chelators, EDTA and cuprizone, and the Cu+ chelator, neocuproine, each at 1 mM, suggest that the oxidation is catalyzed by copper ions in both valency states. Some compounds containing other transition metals, i.e. methaemoglobin, ferricytochrome c and Mn(III)TMPyP, were much less efficient than CuSO4 in catalyzing the formation of nitric oxide from nitroxyl, while FeSO4, FeCl3, MnCl2, and ZnSO4 were inactive. Of the copper containing enzymes examined, Cu-Zn superoxide dismutase and ceruloplasmin were weak generators of nitric oxide from nitroxyl, even at concentrations (2500 and 30 u ml−1, respectively) vastly greater than are present endogenously. Two others, ascorbate oxidase (10 u ml−1) and tyrosinase (250 u ml−1) were inactive. Our findings suggest that a copper-containing enzyme may be responsible for the rapid oxidation of nitroxyl to nitric oxide by cells, but the identity of such an enzyme remains elusive. PMID:10991931

  4. Nanoscale Zero-Valent Iron Decorated on Bentonite/Graphene Oxide for Removal of Copper Ions from Aqueous Solution.

    PubMed

    Shao, Jicheng; Yu, Xiaoniu; Zhou, Min; Cai, Xiaoqing; Yu, Chuang

    2018-06-04

    The removal efficiency of Cu(II) in aqueous solution by bentonite, graphene oxide (GO), and nanoscale iron decorated on bentonite (B-nZVI) and nanoscale iron decorated on bentonite/graphene oxide (GO-B-nZVI) was investigated. The results indicated that GO-B-nZVI had the best removal efficiency in different experimental environments (with time, pH, concentration of copper ions, and temperature). For 16 hours, the removal efficiency of copper ions was 82% in GO-B-nZVI, however, it was 71% in B-nZVI, 26% in bentonite, and 18% in GO. Bentonite, GO, B-nZVI, and GO-B-nZVI showed an increased removal efficiency of copper ions with the increase of pH under a certain pH range. The removal efficiency of copper ions by GO-B-nZVI first increased and then fluctuated slightly with the increase of temperature, while B-nZVI and bentonite increased and GO decreased slightly with the increase of temperature. Lorentz-Transmission Electron Microscope (TEM) images showed the nZVI particles of GO-B-nZVI dispersed evenly with diameters ranging from 10 to 86.93 nm. Scanning electron microscope (SEM) images indicated that the nanoscale iron particles were dispersed evenly on bentonite and GO with no obvious agglomeration. The q e,cal (73.37 mg·g -1 and 83.89 mg·g -1 ) was closer to the experimental value q e,exp according to the pseudo-second-order kinetic model. The q m of B-nZVI and GO-B-nZVI were 130.7 mg·g -1 and 184.5 mg·g -1 according to the Langmuir model.

  5. Column leaching and sorption experiments to assess the mobility of potentially toxic elements in industrially contaminated land.

    PubMed

    Anderson, P; Davidson, C M; Duncan, A L; Littlejohn, D; Ure, A M; Garden, L M

    2000-06-01

    Made-up ground collected from layers of a trial pit excavated on a former industrial site was treated with artificial rainwater in a series of column leaching and sorption experiments. Metal mobility and the ability of various layers of material obtained from the pit to act as sources or sinks of potentially toxic elements were assessed. Samples from different layers varied in their abilities to raise the pH of rainwater applied at pH 3.5 and 4.3, and this was reflected in the amounts of metals mobilised by the rainwater as it percolated through the soil column. Material from the top two layers of the pit released cadmium, copper, manganese, lead, nickel and zinc to the aqueous phase, but the lower layers, with higher buffering capacity, were able to resist acidification even when the equivalent of 12 months' rainfall (western UK) was applied. Column sorption experiments confirmed the ability of material from layer 4 (48-50 cm) to take up copper, manganese and zinc. Metals were determined in the leachates by flame and electrothermal atomic absorption spectrometry and principle anions by ion chromatography.

  6. Adsorbent material based on passion-fruit wastes to remove lead (Pb), chromium (Cr) and copper (Cu) from metal-contaminated waters

    NASA Astrophysics Data System (ADS)

    Campos-Flores, Gaby; Castillo-Herrera, Alberto; Gurreonero-Fernández, Julio; Obeso-Obando, Aída; Díaz-Silva, Valeria; Vejarano, Ricardo

    2018-04-01

    The aim of the present work was to evaluate the feasibility of passion-fruit shell (PFS) biomass as adsorbent material to remove heavy metals from contaminated waters. Model mediums were used, which were composed of distilled water and the respective metal: lead (Pb), chromium (Cr) and copper (Cu), with a dose of 10g of dry PFSbiomass per liter of medium. The residual concentration of each metal was determined by Atomic Absorption Spectrophotometry (AAS). A good adsorption capacity was exhibited by this agro industrial waste, achieving removal levels of 96,93 and 82% for Pb, Cr and Cu, respectively. In addition, the results obtained showed an adequate fit to the Freundlich model (R2 > 0.91), on the basis of which, the following values of adsorption capacity (k: 1.7057, 0.6784, 0.3302) and adsorption intensity (n: 0.6869, 2.3474, 1.0499), for Pb, Cr and Cu respectively, were obtained. Our results suggest that Pb, Cr and Cu ions can be removed by more than 80% by using this agro industrial waste, which with a minimum treatment could be used as an adsorbent material in the treatment of metal-contaminated waters.

  7. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  8. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.

    PubMed

    Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi

    2014-07-07

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  9. Antifungal evaluation studies of copper sulfide nano-aquaformulations and its impact on seed quality of rice ( Oryzae sativa)

    NASA Astrophysics Data System (ADS)

    Sidhu, Anjali; Barmota, Heena; Bala, Anju

    2017-11-01

    Surface capped copper sulfide nano-aquaformulations were prepared by in situ combination of copper ions with sulfide ions using sonochemical method, followed by microwave irradiations, in the presence of capping agents. Prepared nano-aquaformulations were characterized for particle size, morphology and optical properties. The in vitro antifungal evaluations studies indicated multifold efficacy against Alternaria alternata, Drechslera oryzae and Curvularia lunata in comparison to standard used. The in vivo seed treatment on discoloured paddy seeds showed the optimum results on application @ 7μg/ml for 2 h in case of citrate capped copper sulfide nanoformulation (NCuS3). Significant reduction in seed rot and seedling blight was observed with favourable effect on germination and growth parameters at this concentration.

  10. Structural Modifications and Photophysical Studies of Fluorescent Conjugated Polymers for Solid State Sensor Development

    NASA Astrophysics Data System (ADS)

    Chen, Anting

    Fluorescent conjugated polymers (FCPs) represent an exciting area of research in chemosensors and biosensors. Previously, the polymer tmeda-PPETE, N,N,N'-trimethylethylenediamino (tmeda) receptors on a poly[2,5-thiophenediyl-1,2-ethynediyl-1,4-phenylenediyl-1,2-ethynediyl] (PPETE) backbone, showed significant quenching when copper(II) was added. Tmeda-PPETE polymer preloaded with copper(II) was found to be a fluorescent "turn-on" sensor for iron cations. Additional investigation of this metallopolymer revealed a selective sensory system toward carbonate and phosphorus anions through a competitive binding of copper(II) between the polymer tmeda-PPETE and the anions. Fluorescent turn-on response under systematically varied pH was affected by the equilibrium shift of the ionization of polyprotic ions. A sterically hindered pentiptycene group was introduced to the PPETE polymer backbone aiming to reduce aggregation and self-quenching in the solid state. A new FCP, tmeda-PPpETE (poly[(pentiptycene ethynylene)-alt-(thienylene ethynylene)] with tmeda receptors, has been designed and synthesized via Sonogashira cross-coupling reaction. Absorption and emission spectra of tmeda-PPpETE showed blue shifting from tmeda-PPETE, suggesting increased rigidity of polymer backbone. Tmeda-PPpETE showed a high selectivity towards copper(II) with improved sensitivity compared to tmeda-PPETE. The fluorescent quenching response is over 120-fold at emission maximum, and the detection limit is 1.04 ppb, significantly lower than the EPA action level of 1.3 ppm for copper(II). A small turn-off fluorescent response of tmeda-PPpETE was also observed upon addition of iron cations. To further investigate the interaction between pentiptycene containing polymers and iron cations, tmpda-PPpETE containing N,N,N'-trimethylpropylenediamino (tmpda) receptors was designed and synthesized. The absorption and emission spectra for tmpda-PPpETE were analogous to those of tmeda-PPpETE, with a higher quantum yield for tmpda-PPpETE. The cation selectivity test in solution showed selective fluorescent quenching for iron cations. Investigation of the polymer-iron interaction showed that two binding mechanisms were involved. This is the first report of pentiptycene-derived polymer participating in a metal complex formation. By using 1,3,5-triethynylbenzene as the linker group, a network of PPETE polymer backbone loaded with tmeda receptors was designed and synthesized. This transformed the linear FCP, tmeda-PPETE into a network polymer. Two derivatives of this polymer were also successfully synthesized. The metal cation selectivity test showed similar fluorescent response as tmeda-PPETE, which revealed the potential in developing solid state sensors.

  11. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity.

  12. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  13. Low zinc status and absorption exist in infants with jejunostomies or ileostomies which persists after intestinal repair

    USDA-ARS?s Scientific Manuscript database

    There is very little data regarding trace mineral nutrition in infants with small intestinal ostomies. Here we evaluated 14 infants with jejunal or ileal ostomies to measure their zinc absorption and retention and biochemical zinc and copper status. Zinc absorption was measured using a dual-tracer s...

  14. Studies on heavy metal contamination in Godavari river basin

    NASA Astrophysics Data System (ADS)

    Hussain, Jakir; Husain, Ikbal; Arif, Mohammed; Gupta, Nidhi

    2017-12-01

    Surface water samples from Godavari river basin was analyzed quantitatively for the concentration of eight heavy metals such as arsenic, cadmium, chromium, copper, iron, lead, nickel and zinc using atomic absorption spectrophotometer. The analyzed data revealed that iron and zinc metals were found to be the most abundant metals in the river Godavari and its tributaries. Iron (Fe) recorded the highest, while cadmium (Cd) had the least concentration. Arsenic, cadmium, chromium, iron and zinc metals are within the acceptable limit of BIS (Bureau of Indian Standards (BIS) 1050 (2012) Specification for drinking water, pp 1-5). The analysis of Godavari river and its tributary's water samples reveals that the water is contaminated at selected points which are not suitable for drinking. Nickel and Copper concentration is above acceptable limit and other metal concentration is within the acceptable limit. Comprehensive study of the results reveals that out of 18 water quality stations monitored, water samples collected at 7 water quality stations are found to be within the permissible limit for all purposes. While Rajegaon, Tekra, Nandgaon, P. G. Bridge, Bhatpalli, Kumhari, Pauni, Hivra, Ashti, Bamini, and Jagda stations were beyond the desirable limit due to presence of copper and nickel metals. The contents of copper metal ions were higher at some water quality stations on Wunna river (Nandgaon); Wardha river (Hivra) and Wainganga river (Kumhari, Pauni, Ashti) during Feb. 2012, while nickel concentration during Feb. 2012, June 2012, March 2013 and Aug. 2013 at some water quality stations on rivers Bagh, Indravati, Pranhita, Wunna, Penganga, Peddavagu, Wainganga and Wardha. It can be concluded that rapid population growth and industrialization have brought about resource degradation and a decline in environmental quality.

  15. [Spectrum characterization and fine structure of copper phthalocyanine-doped TiO2 microcavities].

    PubMed

    Liu, Cheng-lin; Zhang, Xin-yi; Zhong, Ju-hua; Zhu, Yi-hua; He, Bo; Wei, Shi-qiang

    2007-10-01

    Copper phthalocyanine-doped TiO2 microcavities were fabricated by chemistry method. Their spectrum characterization was studied by Fourier transform infrared (FTIR) and Raman spectroscopy, and their fine structure was analyzed by X-ray absorption fine structure (XAFS). The results show that there is interaction of copper phthalocyanine (CuPc) and TiO2 microcavities after TiO2 microcavities was doped with CuPc. For example, there is absorption at 900.76 cm(-1) in FTIR spectra, and the "red shift" of both OH vibration at 3392.75 cm(-1) and CH vibration at 2848.83 cm(-1). There exist definite peak shifts and intensity changes in infrared absorption in the C-C or C-N vibration in the planar phthalocyanine ring, the winding vibration of C-H inside and C-N outside plane of benzene ring. In Raman spectrum, there are 403.4, 592.1 and 679.1 cm(-1) characterized peaks of TiO2 in CuPc-doped TiO2 microcavities, but their wave-numbers show shifts to anatase TiO2. The vibration peaks at 1586.8 and 1525.6 cm(-1) show that there exists the composite material of CuPc and TiO2. These changes are related to the plane tropism of the molecule structure of copper phthalocyanine. XAFS showed tetrahedron TiO4 structure of Ti in TiO2 microcavities doped with copper phthalocyanine, and the changes of inner "medial distances" and the surface structure of TiO2 microcavities.

  16. A Study of Moroccan Pupils' Difficulties at Second Baccalaureate Year in Solving Chemistry Problems Relating to the Reactivity of Ethanoate Ions and to Copper-Aluminium Cells

    ERIC Educational Resources Information Center

    Ouasri, Ali

    2017-01-01

    This paper investigates the difficulties that Moroccan pupils (18-19) of the second Baccalaureate year encountered in solving chemical equilibrium problems relating to ethanoate ions' reactivity with water and methanoic acid, and to copper-aluminum cells. The pupils were asked to provide answers to questions derived from two problems. The…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilert, André; Roberts, F. Sloan; Friebel, Daniel

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO 2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO 2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)–carbonate/hydroxide is also reported. In conclusion, this study highlights the importance of using oxidized copper precursors formore » constructing selective CO 2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.« less

  18. Adsorption kinetic and desorption studies of Cu2+ on Multi-Carboxylic-Functionalized Silica Gel

    NASA Astrophysics Data System (ADS)

    Li, Min; Meng, Xiaojing; Liu, Yushuang; Hu, Xinju; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of copper (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of contact time on adsorption capacity of copper (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. And the adsorption mechanism of the process was studied by intra-particle and film diffusion, it was found out that the adsorption rate was governed primarily by film diffusion to the adsorption onto the SG-MCF. In addition, column experiments were conducted to assess the effects initial inlet concentration and the flow rate on breakthrough time and adsorption capacity ascertaining the practical applicability of the adsorbent. The results suggest that the total amount of adsorbed copper (II) ion increased with declined flow rate and increased the inlet concentration. The adsorption-desorption experiment confirmed that adsorption capacity of copper (II) ion didn’t present an obvious decrease after five cycles.

  19. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability.

    PubMed

    Semisch, Annetta; Ohle, Julia; Witt, Barbara; Hartwig, Andrea

    2014-02-13

    Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive.

  20. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability

    PubMed Central

    2014-01-01

    Background Nano- or microscale copper oxide particles (CuO NP, CuO MP) are increasingly applied as catalysts or antimicrobial additives. This increases the risk of adverse health effects, since copper ions are cytotoxic under overload conditions. Methods The extra- and intracellular bioavailability of CuO NP and CuO MP were explored. In addition, different endpoints related to cytotoxicity as well as direct and indirect genotoxicity of the copper oxides and copper chloride (CuCl2) were compared. Results Comprehensively characterized CuO NP and CuO MP were analysed regarding their copper ion release in model fluids. In all media investigated, CuO NP released far more copper ions than CuO MP, with most pronounced dissolution in artificial lysosomal fluid. CuO NP and CuCl2 caused a pronounced and dose dependent decrease of colony forming ability (CFA) in A549 and HeLa S3 cells, whereas CuO MP exerted no cytotoxicity at concentrations up to 50 μg/mL. Cell death induced by CuO NP was at least in part due to apoptosis, as determined by subdiploid DNA as well as via translocation of the apoptosis inducing factor (AIF) into the cell nucleus. Similarly, only CuO NP induced significant amounts of DNA strand breaks in HeLa S3 cells, whereas all three compounds elevated the level of H2O2-induced DNA strand breaks. Finally, all copper compounds diminished the H2O2-induced poly(ADP-ribosyl)ation, catalysed predominantly by poly(ADP-ribose)polymerase-1 (PARP-1); here, again, CuO NP exerted the strongest effect. Copper derived from CuO NP, CuO MP and CuCl2 accumulated in the soluble cytoplasmic and nuclear fractions of A549 cells, yielding similar concentrations in the cytoplasm but highest concentrations in the nucleus in case of CuO NP. Conclusions The results support the high cytotoxicity of CuO NP and CuCl2 and the missing cytotoxicity of CuO MP under the conditions applied. For these differences in cytotoxicity, extracellular copper ion levels due to dissolution of particles as well as differences in physicochemical properties of the particles like surface area may be of major relevance. Regarding direct and indirect genotoxicity, especially the high copper content in the cell nucleus derived after cell treatment with CuO NP appears to be decisive. PMID:24520990

  1. Copper Nanoparticle Induced Cytotoxicity to Nitrifying Bacteria in Wastewater Treatment: A Mechanistic Copper Speciation Study by X-ray Absorption Spectroscopy

    EPA Science Inventory

    With the inclusion of engineered nanomaterials in industrial processes and consumer products, wastewater treatments plants (WWTPs) will serve as a major sink for these emerging contaminants. Previous research has demonstrated that nanomaterials are potentially toxic to microbial ...

  2. [The change in optical spectra from solid and liquid solution of copper phthalocyanines derivatives].

    PubMed

    Zheng, Xiao-pan; He, Zhi-qun; Zhang, Chun-xiu; Xu, Zheng; Wang, Yong-sheng

    2006-06-01

    In the present work, the change in electronic absorption spectra from three copper phthalocyanines (CuPc, tb-CuPc, oo-CuPc) in different environments was investigated. The mechanism of red shift Q-band absorption from the three species in an organic solvent before and after protonation was discussed. This was used to compare with those dispersed in solid films. The relation between the molecular interactions and the spectra change was studied. In a combination of POM, DSC and XRD techniques, the structure and morphology of the thin films were characterised. It was found that the molecules in the doped matrices of PC were associated or aggregated. This association and hence the corresponding change in absorption spectra cannot be altered by the modification of dopant concentration.

  3. Synthesis of nanoscale copper nitride thin film and modification of the surface under high electronic excitation.

    PubMed

    Ghosh, S; Tripathi, A; Ganesan, V; Avasthi, D K

    2008-05-01

    Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.

  4. Selective coating for collecting solar energy on aluminum

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1974-01-01

    Presently used coatings, which were originally developed for brass, copper, and steel substrates, yield relatively low absorptance/emittance ratios when applied to aluminum. Efficient, black-nickel plating applied to aluminum substrate enhances solar absorptance to 93% and reduces emittance to 6%.

  5. Hand-held optical sensor using denatured antibody coated electro-active polymer for ultra-trace detection of copper in blood serum and environmental samples.

    PubMed

    Chandra, Sutapa; Dhawangale, Arvind; Mukherji, Soumyo

    2018-07-01

    An optimum copper concentration in environment is highly desired for all forms of life. We have developed an ultrasensitive copper sensor which functions from femto to micro molar concentration accurately (R 2 = 0.98). The sensor is based on denatured antibody immunoglobulin G (IgG), immobilized on polyaniline (PAni) which in turn is the coating on the core of an optical fiber. The sensing relies on changes in evanescent wave absorbance in the presence of the analyte. The sensor showed excellent selectivity towards Cu (II) ions over all other metal ions. The sensor was tested with lake and marine water samples to determine unknown concentrations of copper ions and the recovery results were within 90-115%, indicating reasonable accuracy. We further integrated the fiber-optic sensor with a miniaturized hand-held instrumentation platform to develop an accurate and field deployable device which can broadly be applicable to determine Cu (II) concentration in a wide range of systems - natural water bodies, soil as well as blood serum. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Spectral characterization of a newly synthesized fluorescent semicarbazone derivative and its usage as a selective fiber optic sensor for copper(II).

    PubMed

    Oter, Ozlem; Ertekin, Kadriye; Kirilmis, Cumhur; Koca, Murat

    2007-02-19

    In this work photoluminescent properties of highly Cu(2+) selective organic fluoroionophore, semicarbazone derivative; bis(naphtho[2,1-b]furan-2-yl)methanone semicarbazone (BNF) was investigated in different solvents (dichloromethane, tetrahydrofuran, toluene and ethanol) and in polymer matrices of polyvinylchloride (PVC) and ethyl cellulose (EC) by absorption and emission spectrometry. The BNF derivative displayed enhanced fluorescence emission quantum yield, Q(f)=6.1 x 10(-2) and molar extinction coefficient, epsilon=29,000+/-65 cm(-1)M(-1) in immobilized PVC matrix, compared to 2.6 x 10(-3) and 24,573+/-115 in ethanol solution. The offered sensor exhibited remarkable fluorescence intensity quenching upon exposure to Cu(2+) ions at pH 4.0 in the concentration range of 1.0 x 10(-9) to 3.0 x 10(-4)M [Cu(2+)] while the effects of the responding ions (Ca(2+), Hg(+), Pb(2+), Al(3+), Cr(3+), Mn(2+), Mg(2+), Sn(2+), Cd(2+), Co(2+) and Ni(2+)) were less pronounced.

  7. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    PubMed

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  8. Synthetic fluorescent probes for studying copper in biological systems

    PubMed Central

    Cotruvo, Joseph A.; Aron, Allegra T.; Ramos-Torres, Karla M.; Chang, Christopher J.

    2015-01-01

    The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals. PMID:25692243

  9. Synthetic fluorescent probes for studying copper in biological systems.

    PubMed

    Cotruvo, Joseph A; Aron, Allegra T; Ramos-Torres, Karla M; Chang, Christopher J

    2015-07-07

    The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals.

  10. Antimicrobial properties of ternary eutectic aluminum alloys.

    PubMed

    Hahn, Claudia; Hans, Michael; Hein, Christina; Dennstedt, Anne; Mücklich, Frank; Rettberg, Petra; Hellweg, Christine Elisabeth; Leichert, Lars Ingo; Rensing, Christopher; Moeller, Ralf

    2018-06-27

    Several Escherichia coli deletion mutants of the Keio collection were selected for analysis to better understand which genes may play a key role in copper or silver homeostasis. Each of the selected E. coli mutants had a deletion of a single gene predicted to encode proteins for homologous recombination or contained functions directly linked to copper or silver transport or transformation. The survival of these strains on pure copper surfaces, stainless steel, and alloys of aluminum, copper and/or silver was investigated. When exposed to pure copper surfaces, E. coli ΔcueO was the most sensitive, whereas E. coli ΔcopA was the most resistant amongst the different strains tested. However, we observed a different trend in sensitivities in E. coli strains upon exposure to alloys of the system Al-Ag-Cu. While minor antimicrobial effects were detected after exposure of E. coli ΔcopA and E. coli ΔrecA to Al-Ag alloys, no effect was detected after exposure to Al-Cu alloys. The release of copper ions and cell-associated copper ion concentrations were determined for E. coli ΔcopA and the wild-type E. coli after exposure to pure copper surfaces. Altogether, compared to binary alloys, ternary eutectic alloys (Al-Ag-Cu) had the highest antimicrobial effect and thus, warrant further investigation.

  11. An Investigation of Low Biofouling Copper-charged Membranes

    NASA Astrophysics Data System (ADS)

    Asapu, Sunitha

    Water is essential for the survival of life on Earth, but pollutants in water can cause dangerous diseases and fatalities. The need for purified water has been increasing with increasing world population; however, natural sources of water such as rivers, lakes and streams, are progressively falling shorter and shorter of meeting water needs. The provision of clean, drinkable water to people is a key factor for the development of novel and alternative water purification technologies, such as membrane separations. Nanofiltration (NF) is a membrane separations technology that purifies water from lower quality sources, such as brackish water, seawater and wastewater. During the filtration of such sources, materials that are rejected by the membrane may accumulate on the surface of the membrane to foul it. Such materials include organic and inorganic matter, colloids, salts and microorganisms. The former four can often be controlled via pretreatment; however, the accumulation of microorganisms is more problematic to membranes. Biofouling is the accumulation and growth of microorganisms on the surface of membranes and on feed spacers. After attachment, microorganisms excrete extracellular polymeric substances (EPS), which form a matrix around the organism's outer surface as biofilm. These biofilms are detrimental and result in irreversible membrane fouling. Copper and silver ions inactivate the bacterial cells and prevent the DNA replication in microbial cells. Previous studies using copper-charged feed spacers have shown the ability of copper to control biofouling without a significant amount of copper leaching from copper-charged polypropylene (PP) feed spacers during crossflow filtration. Also, filtration using unmodified speed facers experienced almost 70% flux decline, while filtration using copper-charged feed spacers displayed only 25% flux decline. These intriguing results led to the hypothesis that the polymer chemistry could be extrapolated to produce membranes with increased biofouling resistance. The goal of this project was to develop low-biofouling nanofiltration cellulose acetate (CA) membranes through functionalization with metal chelating ligands charged with biocidal metal ions, i.e. copper ions. To this end, glycidyl methacrylate (GMA), an epoxy, was used to attach a chelating agent, iminodiacetic acid (IDA) to facilitate the charging of copper to the membrane surface. Both CA and CA-GMA membranes were cast using the phase-inversion method. The CA-GMA membranes were then charged with copper ions to make them low biofouling. Pore size distribution analysis of CA and copper charged membranes were conducted using various molecular weights of polyethylene glycol (PEG). CA and copper-charged membranes were characterized using Fourier Transform Infrared (FTIR), contact angle to measure hydrophilicity changes, and using scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy EDS to monitor copper leaching. Permeation experiments were conducted with distilled (DI) water, protein solutions, and synthetic brackish water containing microorganisms. The DI water permeation of the copper-charged membranes was initially lower than the CA membranes. The membranes were then subjected to bovine serum albumin (BSA) and lipase filtration. The copper-charged membranes showed higher pure water flux values for both proteins as compared to CA membranes. The rejection of BSA and lipase was the same for both the copper charged and CA membranes. The filtration with the synthetic brackish water showed that copper-charged membranes had higher flux values as compared to CA membranes, and biofouling analysis showed more bacteria on the CA membranes as compared to copper-charged membranes. Therefore, the copper-charged membranes made here have shown a potential to be used as low-biofouling membranes in the future.

  12. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles: An Undergraduate Experiment Exploring Catalytic Nanomaterials

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Lyon, Jennifer L.; Croley, J. Sawyer; Crooks, Richard M.; Vanden Bout, David A.; Stevenson, Keith J.

    2009-01-01

    Copper nanoparticles were synthesized using generation 4 hydroxyl-terminated (G4-OH) poly(amidoamine) (PAMAM) dendrimers as templates. The synthesis is conducted by coordinating copper ions with the interior amines of the dendrimer, followed by chemical reduction to form dendrimer-encapsulated copper nanoparticles (Cu-DEN). The catalytic…

  13. Advanced hair damage model from ultra-violet radiation in the presence of copper.

    PubMed

    Marsh, J M; Davis, M G; Flagler, M J; Sun, Y; Chaudhary, T; Mamak, M; McComb, D W; Williams, R E A; Greis, K D; Rubio, L; Coderch, L

    2015-10-01

    Damage to hair from UV exposure has been well reported in the literature and is known to be a highly complex process involving initiation via absorption of UV light followed by formation and propagation of reactive oxygen species (ROS). The objective of this work was to understand these mechanisms, explain the role of copper in accelerating the formation of ROS and identify strategies to reduce the hair damage caused by these reactive species. The location of copper in hair was measured by Transmission electron microscopy-(TEM) X-ray energy dispersive spectroscopy (XEDS) and levels measured by ICP-OES. Protein changes were measured as total protein loss via the Lowry assay, and MALDI ToF was used to identify the biomarker protein fragments. TBARS assay was used to measure lipid peroxide formation. Sensory methods and dry combing friction were used to measure hair damage due to copper and UV exposure and to demonstrate the efficacy of N,N' ethylenediamine disuccinic acid (EDDS) and histidine chelants to reduce this damage. In this work, a biomarker protein fragment formed during UV exposure is identified using mass spectrometry. This fragment originates from the calcium-binding protein S100A3. Also shown is the accelerated formation of this peptide fragment in hair containing low levels of copper absorbed from hair during washing with tap water containing copper ions. Transmission electron microscopy (TEM) X-ray energy dispersive spectroscopy (XEDS) studies indicate copper is located in the sulphur-poor endo-cuticle region, a region where the S100A3 protein is concentrated. A mechanism for formation of this peptide fragment is proposed in addition to the possible role of lipids in UV oxidation. A shampoo and conditioner containing chelants (EDDS in shampoo and histidine in conditioner) is shown to reduce copper uptake from tap water and reduce protein loss and formation of S100A3 protein fragment. In addition, the long-term consequences of UV oxidation and additional damage induced by copper are illustrated in a four-month wear study where hair was treated with a consumer relevant protocol of hair colouring treatments, UV exposure and regular shampoo and conditioning. The role of copper in accelerating UV damage to hair has been demonstrated as well as the ability of chelants such as EDDS and histidine in shampoo and conditioner products to reduce this damage. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    PubMed

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and <4%, respectively. The adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  15. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies

    NASA Astrophysics Data System (ADS)

    Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan

    2016-09-01

    Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.

  16. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to bothmore » Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.« less

  17. New concept to remove heavy metals from liquid waste based on electrochemical pH-switchable immobilized ligands

    NASA Astrophysics Data System (ADS)

    Pascal, Viel; Laetitia, Dubois; Joël, Lyskawa; Marc, Sallé; Serge, Palacin

    2007-01-01

    Absorption on resins is often used as secondary step in the treatment of water-based effluents, in order to reach very low concentrations. The separation of the trapped effluents from the resins and the regeneration of the resins for further use create wide volumes of secondary effluents coming from the washings of the resins with chemical reagents. We propose an alternative solution based on a "surface strategy" through adsorption phenomena and electrical control of the expulsion stage. The final goal is to limit or ideally to avoid the use of chemical reagents at the expulsion (or regeneration) stage of the depolluting process. Heavy metal ions were captured on active filters composed by a conducting surface covered by poly-4-vinylpyridine (P 4VP). Due to pyridine groups those polymer films have chelating properties for copper ions. Our strategy for electrical triggering of the copper expulsion in aqueous medium is based on pH sensitive chelating groups. Applying moderate electro-oxidizing conditions generates acidic conditions in the vicinity of the electrode, i.e. "inside" the polymer film. This allows a "switch-off" of the complexing properties of the film from the basic form of pyridine to pyridinium. Interestingly, no buffer washing is necessary to restore (or "switch-on") the complexing properties of the polymer film because the pH of the external medium is left unchanged by the electrochemical effect that affects only the vicinity of the electrode. Switch-on/switch-off cycles are followed and attested by IR spectroscopy and EQCM method.

  18. Extractive determination of ephedrine hydrochloride and bromhexine hydrochloride in pure solutions, pharmaceutical dosage form and urine samples.

    PubMed

    Abdel-Ghani, N T; Rizk, M S; Mostafa, M

    2013-07-01

    Simple, rapid, sensitive, precise and accurate spectrophotometeric methods for the determination of ephedrine hydrochloride (E-HCl) and bromhexine hydrochloride (Br-HCl) in bulk samples, dosage form and in spiked urine samples were investigated. The methods are based on the formation of a yellow colored ion-associates due to the interaction between the examined drugs with picric acid (PA), chlorophyllin coppered trisodium salt (CLPH), alizarin red (AR) and ammonium reineckate (Rk) reagents. A buffer solution had been used and the extraction was carried out using organic solvent, the ion associates exhibit absorption maxima at 410, 410, 430 and 530 nm of (Br-HCl)with PA, CLPH, AR and Rk respectively; 410, 410, 435 and 530 of (E-HCl) with PA, CLPH, AR and Rk respectively. (E-HCl) and (Br-HCl) could be determined up to 13, 121, 120 and 160; 25, 200, 92 and 206 μg mL(-1), using PA, CLPH, AR and Rk respectively. The optimum reaction conditions for quantitative analysis were investigated. In addition, the molar absorptivity, Sandell sensitivity were determined for the investigated drug. The correlation coefficient was ≥0.995 (n=6) with a relative standard deviation (RSD) ≤1.15 for five selected concentrations of the reagents. Therefore the concentration of Br-HCl and E-HCl drugs in their pharmaceutical formulations and spiked urine samples had been determined successfully. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effect of Cu2+ substitution on the structural, optical and magnetic behaviour ofchemically derived manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Vasuki, G.; Balu, T.

    2018-06-01

    Mixed spinel copper manganese ferrite (CuXMn1‑XFe2O4, X = 0, 0.25, 0.5, 0.75, 1) nanoparticles were synthesized by chemical co-precipitation technique. From the powder x-ray diffraction analysis the lattice constant, volume of unit cell, x-ray density, hopping lengths, crystallite size, surface area, dislocation density and microstrain were calculated. The substitution of Cu2+ ions shows a considerable reduction in the crystallite size of manganese ferrite from 34 nm to 22 nm. Further a linear fit of Williamson-Hall plot has been drawn to determine the microstrain and crystallite size. The crystallite size and morphology were further observed through high resolution transmission electron microscope and scanning electron microscope. The diffraction rings observed from selected area electron diffraction pattern exhibits the crystalline nature of all the samples. The energy dispersive x-ray analysis shows the composition of all the elements incorporated in the synthesized nanomaterials. FTIR studies reveal the absorption peaks that correspond to the metal-oxygen vibrations in the tetrahedral and octahedral sites. From the UV–vis absorption spectra the band gap energy, refractive index and optical dielectric constant were determined. Magnetic studies carried out using vibrating sample magnetometer shows interesting behaviour in the variation of magnetisation and coercivity. Peculiar magnetic behaviour is observed when Cu2+ ions are substituted in manganese ferrites. All the synthesized materials have very low value of squareness ratio which attributes to the superparamagnetic behaviour.

  20. Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials.

    PubMed

    Popescu, R A; Magyari, K; Vulpoi, A; Trandafir, D L; Licarete, E; Todea, M; Ştefan, R; Voica, C; Vodnar, D C; Simon, S; Papuc, I; Baia, L

    2016-07-19

    In the present study our interest is focused on finding the efficiency of 60SiO2·(32 - x)CaO·8P2O5·xCuO (mol%) glass-ceramics, with 0 ≤ x ≤ 4 mol%, in terms of bioactivity, biocompatibility, antibacterial properties and cell viability in order to determine the most appropriate composition for their further use in in vivo trials. The sol-gel synthesized samples show a preponderantly amorphous structure with a few crystallization centers associated with the formation of an apatite and calcium carbonate crystalline phases. The Fourier Transform Infrared (FT-IR) spectra revealed slightly modified absorption bands due to the addition of copper oxide, while the information derived from the measurements performed by transmission electron microscopy, UV-vis and electron paramagnetic resonance spectroscopy showed the presence of ions and metallic copper species. X-Ray photoelectron spectroscopic analysis indicated the presence of copper metallic species, in a reduced amount, only on the sample surface with the highest Cu content. Regarding in vitro assessment of bioactivity, the results obtained by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy, demonstrated the formation of a calcium phosphate layer on all investigated sample surfaces. The inhibitory effect of the investigated samples was more significant on the Pseudomonas aeruginosa than the Staphylococcus aureus strain, the sample with the lowest concentration of copper oxide (0.5 mol%) being also the most efficient in both bacterial cultures. This sample also exhibits a very good bactericidal activity, for the other samples it was necessary to use a higher quantity to inhibit and kill the bacterial species. The secondary structure of adsorbed albumin presents few minor changes, indicating the biocompatibility of the glass-ceramics. The cell viability assay shows a good proliferation rate on samples with 0.5 and 1.5 mol% CuO, although all glass-ceramic samples exhibited a good in vivo tolerance.

  1. Biochemical characterization of P-type copper ATPases

    PubMed Central

    Inesi, Giuseppe; Pilankatta, Rajendra; Tadini-Buoninsegni, Francesco

    2014-01-01

    Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of ATP, bound copper undergoes displacement from the TMBS to the lumenal membrane surface, with no H+ exchange. Although PII-type ATPases sustain active transport of alkali/alkali-earth ions (i.e. Na+, Ca2+) against electrochemical gradients across defined membranes, PIB-type ATPases transfer transition metal ions (i.e. Cu+) from delivery to acceptor proteins and, prominently in mammalian cells, undergo trafficking from/to various membrane compartments. A specific component of copper ATPases is the NMBD (N-terminal metal-binding domain), containing up to six copper-binding sites in mammalian (ATP7A and ATP7B) enzymes. Copper occupancy of NMBD sites and interaction with the ATPase headpiece are required for catalytic activation. Furthermore, in the presence of copper, the NMBD allows interaction with protein kinase D, yielding phosphorylation of serine residues, ATP7B trafficking and protection from proteasome degradation. A specific feature of ATP7A is glycosylation and stabilization on plasma membranes. Cisplatin, a platinum-containing anti-cancer drug, binds to copper sites of ATP7A and ATP7B, and undergoes vectorial displacement in analogy with copper. PMID:25242165

  2. A New Role for Carbonic Anhydrase 2 in the Response of Fish to Copper and Osmotic Stress: Implications for Multi-Stressor Studies

    PubMed Central

    de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.

    2014-01-01

    The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015

  3. Helium Ion Secondary Electron Mode Microscopy For Interconnect Material Imaging

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinichi; Thompson, William; Stern, Lewis; Scipioni, Larry; Notte, John; Farkas, Lou; Barriss, Louise

    2010-04-01

    The recently developed helium ion microscope (HIM) is now capable of 0.35 nm secondary electron (SE) mode image resolution. When low-k dielectrics or copper interconnects in ultra large scale integrated circuits (ULSI) interconnect structures were imaged in this mode, it was found that unique pattern dimension and fidelity information at sub-nanometer resolution was available for the first time. This paper will discuss the helium ion microscope architecture and the SE imaging techniques that make the HIM observation method of particular value to the low-k dielectric and dual damascene copper interconnect technologies.

  4. Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal

    PubMed Central

    Moreno, Juan Carlos; Gómez, Rigoberto; Giraldo, Liliana

    2010-01-01

    Cow bone charcoal (CBC) was synthesized and used for the removal of metals ions (manganese, iron, nickel and copper) from aqueous solutions. Two different adsorption models were used for analyzing the data. Adsorption capacities were determined: copper ions exhibit the greatest adsorption on cow bone charcoal because of their size and pH conditions. Adsorption capacity varies as a function of pH. Adsorption isotherms from aqueous solution of heavy metals on CBC were determined. Adsorption isotherms are consistent with Langmuir´s adsorption model. Adsorbent quantity and immersion enthalpy were studied.

  5. Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties.

    PubMed

    Jaidev, L R; Kumar, Sachin; Chatterjee, Kaushik

    2017-11-01

    Despite several recent advances, poor vascularization in implanted scaffolds impedes complete regeneration for clinical success of bone tissue engineering. The present study aims to develop a multi-biofunctional nanocomposite for bone tissue regeneration using copper nanoparticle decorated reduced graphene oxide (RGO_Cu) hybrid particles in polycaprolactone (PCL) matrix (PCL/RGO_Cu). X-ray photoelectron spectroscopy and X-ray diffraction confirmed the presence of copper oxides (CuO and Cu 2 O) on RGO. Thermogravimetric analysis showed that 11.8% of copper was decorated on RGO. PCL/RGO_Cu exhibited steady release of copper ions in contrast to burst release from the composite containing copper alone (PCL/Cu). PCL/RGO_Cu exhibited highest modulus due to enhanced filler exfoliation. Endothelial cells rapidly proliferated on PCL/RGO_Cu confirming cytocompatibility. The sustained release of ions from PCL/RGO_Cu composites augmented tube formation by endothelial cells evidenced enhanced angiogenic activity. Gene expression of angiogenic markers VEGF and ANG-2 was higher on PCL/RGO_Cu compared to PCL. The osteogenic activity of PCL/RGO_Cu was confirmed by the 87% increase in mineral deposition by pre-osteoblasts compared to PCL. The bactericidal activity of PCL/RGO_Cu showed 78% reduction in viability of Escherichia coli. Thus, the multi-biofunctional PCL/RGO_Cu composite exhibits angiogenic, osteogenic and bactericidal properties, a step towards addressing some of the critical challenges in bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.

    PubMed

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu

    2017-05-12

    Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO 4 ). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH 4 -N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu 2+ indicated the loss of cell viability in sludge flocs.

  7. Copper Metal-Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes.

    PubMed

    Xiao, Jisheng; Zhu, Yunxiao; Huddleston, Samantha; Li, Peng; Xiao, Baixue; Farha, Omar K; Ameer, Guillermo A

    2018-02-27

    The successful treatment of chronic nonhealing wounds requires strategies that promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Copper ions have been reported to stimulate angiogenesis; however, several applications of copper salts or oxides to the wound bed are required, leading to variable outcomes and raising toxicity concerns. We hypothesized that copper-based metal-organic framework nanoparticles (Cu-MOF NPs), referred to as HKUST-1, which are rapidly degraded in protein solutions, can be modified to slowly release Cu 2+ , resulting in reduced toxicity and improved wound healing rates. Folic acid was added during HKUST-1 synthesis to generate folic-acid-modified HKUST-1 (F-HKUST-1). The effect of folic acid incorporation on NP stability, size, hydrophobicity, surface area, and copper ion release profile was measured. In addition, cytotoxicity and in vitro cell migration processes due to F-HKUST-1 and HKUST-1 were evaluated. Wound closure rates were assessed using the splinted excisional dermal wound model in diabetic mice. The incorporation of folic acid into HKUST-1 enabled the slow release of copper ions, which reduced cytotoxicity and enhanced cell migration in vitro. In vivo, F-HKUST-1 induced angiogenesis, promoted collagen deposition and re-epithelialization, and increased wound closure rates. These results demonstrate that folic acid incorporation into HKUST-1 NPs is a simple, safe, and promising approach to control Cu 2+ release, thus enabling the direct application of Cu-MOF NPs to wounds.

  8. Glassy carbon electrode modified with polyanilne/ethylenediamine for detection of copper ions

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Shirsat, Mahendra D.

    2018-05-01

    Increasing water pollution is having high concern, since it creates the threats to all leaving organisms of existence. Industrial sewages have not only polluted the main stream lines of water, also the ground level water is having serious contaminations. Heavy metal ions are the pollutants which are not degradable and can be accumulated on living things ultimately the excess accumulation results into the serious concerns. Therefore, it is necessary to develop the sensors which can detect the heavy metal ions up to its maximum contamination limits. Conducting polymers are the materials which possess large application spectra. This investigation reports the electrochemically synthesized polyaniline (PANI) for modification of glassy carbon electrode (GCE). Ethylenediamine (EDA) - chelating ligand used for the modification of polyaniline so as to inculcate the selectivity toward copper ions Cu (II). The electrochemical cyclic voltammetry (CV) was used for the study of redox characteristics of PANI and influence of EDA modification. The result of CV has shown the reduced oxidation and reduction peak currents after modification indicating the domination of EDA. GCE modified with PANI/EDA was then employed for the detection of divalent copper ions and have shown the affinity toward Cu ions. The detection limit achieved was equal to 10mg/lit.

  9. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  10. Immobilization of Magnetic Nanoparticles onto Amine-Modified Nano-Silica Gel for Copper Ions Remediation

    PubMed Central

    Elkady, Marwa; Hassan, Hassan Shokry; Hashim, Aly

    2016-01-01

    A novel nano-hybrid was synthesized through immobilization of amine-functionalized silica gel nanoparticles with nanomagnetite via a co-precipitation technique. The parameters, such as reagent concentrations, reaction temperature and time, were optimized to accomplish the nano-silica gel chelating matrix. The most proper amine-modified silica gel nanoparticles were immobilized with magnetic nanoparticles. The synthesized magnetic amine nano-silica gel (MANSG) was established and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). The feasibility of MANSG for copper ions’ remediation from wastewater was examined. MANSG achieves a 98% copper decontamination from polluted water within 90 min. Equilibrium sorption of copper ions onto MANSG nanoparticles obeyed the Langmuir equation compared to the Freundlich, Temkin, Elovich and Dubinin-Radushkevich (D-R) equilibrium isotherm models. The pseudo-second-order rate kinetics is appropriate to describe the copper sorption process onto the fabricated MANSG. PMID:28773583

  11. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.

    PubMed

    Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

    2012-02-01

    The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Copper-65-absorption by men fed intrinsically and extrinsically labeled whole wheat bread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, P.E.; Lykken, G.I.

    Six men were fed a diet composed of conventional foods with all bread as whole wheat bread. Intrinsically labeled /sup 65/Cu bread (containing 6.5 ppm Cu and 48 atom % /sup 65/Cu) was substituted for unlabeled bread for 3 days, and stools were collected for 24 days. Extrinsically labeled bread was then substituted for 3 days and another 24-day stool collection made. /sup 65/Cu excretion was measured by mass spectrometry. Mean Cu intake was 1.10 mg of Cu/day. Average Cu balance was /minus/0.06 /+-/ 0.08 mg/day. Average absorption of the intrinsic copper was 72.2 /+-/ 9.3% and of extrinsic Cumore » 64.2 /+-/ 5.8%. The ratio of extrinsic to intrinsic absorption was 0.906 /+-/ 0.164. Absorption of intrinsic and extrinsic tracers did not differ significantly (p > 0.05) by a paired t-test, and the ratio (E/I) was not significantly different from 1. Use of extrinsic Cu tracers to assess Cu absorption is supported by these results.« less

  13. Vertically Aligned Carbon Nanotube Electrodes for Lithium-Ion Batteries

    DTIC Science & Technology

    2011-01-01

    wpafb.af.mil (M.F. Durstock). [11] nanowires, and iron oxide/copper [12] and tin/copper [13] nanorods. Carbon nanotubes ( CNTs ) have also been examined as...negative electrodes [14–17]. Although CNTs and other nega- tive electrode nanomaterials have been shown to exhibit similar or greater capacities...rate capability [18]. Studies suggest that aligned CNTs could allow for better contact with the current collector and increased ion diffu- sivity to

  14. Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes

    DOE PAGES

    Tan, Guoqiang; Wu, Feng; Yuan, Yifei; ...

    2016-06-03

    Here, structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core–shell nano-architecture. Cable-like copper oxide/carbon-nitride core–shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays providemore » abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.« less

  15. Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes.

    PubMed

    Tan, Guoqiang; Wu, Feng; Yuan, Yifei; Chen, Renjie; Zhao, Teng; Yao, Ying; Qian, Ji; Liu, Jianrui; Ye, Yusheng; Shahbazian-Yassar, Reza; Lu, Jun; Amine, Khalil

    2016-06-03

    Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core-shell nano-architecture. Cable-like copper oxide/carbon-nitride core-shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays provide abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.

  16. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  17. [Biosorption ability of mutants of Rhodotorula mucilaginosa UCM Y-1776].

    PubMed

    Mamieieva, O H; Kasatkina, T P; Lavrinchuk, V Ia

    2007-01-01

    Twenty stable mutants with various coloration intensity have been allocated in carotene-synthesizing natural strain Rhodotorula mucilaginosa UCM Y-1776 (wild type) after nitrosoguanidine action. Two brightly orange mutants 4L and 11 and one non-pigmented mutant 2 were chosen for the further researches. The ultraviolet was inefficient as a mutagen. Resistance to high concentration of copper ions (up to 200 mg/g), high sorption ability (Qmax = 9.1 mmol/g) was characteristic of R. mucilaginosa UCM Y-1776. Concentration of copper ions 50 mg/l was toxic for mutants 4L, 11 and 2, which sorption ability was lower in comparison with carotene pigmented R. mucilaginosa UCM Y-1776. It was shown, for the first time that there was a direct dependence between the presence of carotenoid pigments, resistance to high concentration of copper ions and sorption ability for yeast R. mucilaginosa UCM Y-1776.

  18. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  19. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    USGS Publications Warehouse

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  20. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  1. Effect and interactions of commercial additives and chloride ion in copper electrowinning

    NASA Astrophysics Data System (ADS)

    Cui, Wenyuan

    This thesis is to understand and compare the effects and interactions of modified polysaccharide (HydroStar), polyacrylamide (Cyquest N-900) and chloride ion on copper electrowinning. A study of the nucleation and growth was conducted in a synthetic electrolyte (40 g/L Cu, 160 g/L H2SO 4, 20 mg/L Cl-) with the addition of HydroStar or Cyquest N-900 using potential step measurements. The current responses generated were compared to theoretical models of nucleation and growth mechanisms. The nucleation and growth mechanism changed as function of potential and the presence of organic additives. The nucleation and growth mechanisms were confirmed using scanning electron microscopy (SEM). At low overpotentials, electrodeposition from the electrolyte without additives proceeded by progressive nucleation with three-dimensional (3-D) growth. The addition of HydroStar produced smaller nuclei and changed the mechanism to progressive nucleation and 2-D growth. Cyquest N-900 used there appeared to be progressive nucleation with 2-D growth and polarize the cathodes. In addition, instantaneous nucleation under diffusion control occurred at high overpotentials. Chloride ion and its interaction with HydroStar and Cyquest N-900 were further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The trends observed from Nyquist plots and equivalent circuit models were consistent with the CV results. Chloride, on its own, depolarized copper electrodeposition, while chloride ion associated with Cyquest N-900 inhibited the reaction. It is proposed that Cl- acted as a bridging ligand between copper and Cyquest N-900. The addition of HydroStar depolarized copper deposition, but it did not interact with.

  2. Copper phthalocyanine-based CMPs with various internal structures and functionalities.

    PubMed

    Ding, Xuesong; Han, Bao-Hang

    2015-08-18

    Several kinds of copper phthalocyanine-based conjugated microporous polymers have been synthesized, which present enhanced long-wavelength photon absorption capability and high efficiency for singlet oxygen generation under low energy light irradiation. This strategy opens a facile avenue towards expanding the scope of phthalocyanine-based porous materials with various internal structures and functionalities.

  3. Ecological-Evaluation of Organotin-Contaminated Sediment.

    DTIC Science & Technology

    1985-07-01

    the potential for bioaccumulation of cadmium, chromium, copper, mercury , silver, pesticides, PCBs, petroleum hydrocarbons, and organotins RESULTS The...tissues were frozen for subsequent bioaccumulation estimates. Tissues and sediment samples were analyzed for cadmium, chromium, copper, mercury , silver...spectroscopy; mercury was analyzed by cold vapor atomic absorption spectroscopy. Pesticides, PCBs, and petroleum hydrocarbons were measured by gas

  4. Investigation of the effects of dietary protein source on copper and zinc bioavailability in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Limited research has examined the effects that dietary protein sources have on copper (Cu) and Zinc (Zn) absorption, interactions and utilization in rainbow trout. Therefore, the objective of the first trial was to determine what effect protein source (plant vs. animal based), Cu source (complex vs....

  5. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    PubMed

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electrothermal atomic absorption spectrometric determination of copper in nickel-base alloys with various chemical modifiers*1

    NASA Astrophysics Data System (ADS)

    Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing

    1997-07-01

    The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.

  7. Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators.

    PubMed

    Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan

    2017-08-01

    Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  9. In-vitro study of copper doped SiO2-CaO-P2O5 system for bioactivity and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Kaur, Harpreet; Arora, Daljit Singh

    2015-08-01

    Samples of the xCuO-(45-x)CaO-10P2O5-45SiO2 system (x varies from 0 to 4 mole%) have been synthesized for application as biomaterials to slow or inhibit the growth of living organisms (fungi and other pathogenic microorganisms) by the combination of sol-gel and co-precipitation processes. Prepared samples have been characterized by X-Ray Diffraction, Fourier Transform Infra-Red and Field Emission Scanning Electron Microscopy techniques before and after immersion in simulated body fluid. Antimicrobial activity of samples has been investigated against Staphylococcus aureus. Releasing of Cu2+and other ions in the simulated body fluid has been determined by Atomic Absorption Spectroscopy to ensure the use of prepared material as biomaterial with good antibacterial properties.

  10. Essentiality of copper in humans.

    PubMed

    Uauy, R; Olivares, M; Gonzalez, M

    1998-05-01

    The biochemical basis for the essentiality of copper, the adequacy of the dietary copper supply, factors that condition deficiency, and the special conditions of copper nutriture in early infancy are reviewed. New biochemical and crystallographic evidence define copper as being necessary for structural and catalytic properties of cuproenzymes. Mechanisms responsible for the control of cuproprotein gene expression are not known in mammals; however, studies using yeast as a eukaryote model support the existence of a copper-dependent gene regulatory element. Diets in Western countries provide copper below or in the low range of the estimated safe and adequate daily dietary intake. Copper deficiency is usually the consequence of decreased copper stores at birth, inadequate dietary copper intake, poor absorption, elevated requirements induced by rapid growth, or increased copper losses. The most frequent clinical manifestations of copper deficiency are anemia, neutropenia, and bone abnormalities. Recommendations for dietary copper intake and total copper exposure, including that from potable water, should consider that copper is an essential nutrient with potential toxicity if the load exceeds tolerance. A range of safe intakes should be defined for the general population, including a lower safe intake and an upper safe intake, to prevent deficiency as well as toxicity for most of the population.

  11. Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.

    PubMed

    Haryanto, Bode; Chang, Chien-Hsiang

    2015-01-01

    In this study, the interfacial properties of biosurfactant rhamnolipid were investigated and were applied to remove adsorbed heavy metal ions from sand surfaces with flushing operations. The surface tension-lowering activity, micelle charge characteristic, and foaming ability of rhamnolipid were identified first. For rhamnolipid in water, the negatively charged characteristic of micelles or aggregates was confirmed and the foaming ability at concentrations higher than 40 mg/L was evaluated. By using the rhamnolipid solutions in a batch washing approach, the potential of applying the interfacial properties of rhamnolipid to remove adsorbed copper ions from sand surfaces was then demonstrated. In rhamnolipid solution flushing operations for sand-packed medium, higher efficiency was found for the removal of adsorbed copper ions with residual type than with inner-sphere interaction type, implying the important role of interaction type between the copper ion and the sand surface in the removal efficiency. In addition, the channeling effect of rhamnolipid solution flow in the sand-packed medium was clearly observed in the solution flushing operations and was responsible for the low removal efficiency with low contact areas between solution and sand. By using rhamnolipid solution with foam to flush the sand-packed medium, one could find that the channeling effect of the solution flow was reduced and became less pronounced with the increase in the rhamnolipid concentration, or with the enhanced foaming ability. With the reduced channeling effect in the flushing operations, the removal efficiency for adsorbed copper ions was significantly improved. The results suggested that the foam-enhanced rhamnolipid solution flushing operation was efficient in terms of surfactant usage and operation time.

  12. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    PubMed

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-04

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    NASA Astrophysics Data System (ADS)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  14. Use of natural clinoptilolite for the removal of lead, copper and zinc in fixed bed column.

    PubMed

    Stylianou, Marinos A; Hadjiconstantinou, Michalis P; Inglezakis, Vasilis J; Moustakas, Konstantinos G; Loizidou, Maria D

    2007-05-08

    This work deals with the removal of lead, copper and zinc from aqueous solutions by using natural zeolite (clinoptilolite). Fixed bed experiments were performed, using three different volumetric flow rates of 5, 7 and 10bed volume/h, under a total normality of 0.01N, at initial pH of 4 and ambient temperature (25 degrees C). The removal efficiency increased when decreasing the flow rate and the following selectivity series was found: Pb(2+)>Zn(2+)> or =Cu(2+). Conductivity measurements showed that lead removal follows mainly ion exchange mechanism, while copper and zinc removal follows ion exchange and sorption mechanism as well.

  15. Microbial Copper-binding Siderophores at the Host-Pathogen Interface*

    PubMed Central

    Koh, Eun-Ik; Henderson, Jeffrey P.

    2015-01-01

    Numerous pathogenic microorganisms secrete small molecule chelators called siderophores defined by their ability to bind extracellular ferric iron, making it bioavailable to microbes. Recently, a siderophore produced by uropathogenic Escherichia coli, yersiniabactin, was found to also bind copper ions during human infections. The ability of yersiniabactin to protect E. coli from copper toxicity and redox-based phagocyte defenses distinguishes it from other E. coli siderophores. Here we compare yersiniabactin to other extracellular copper-binding molecules and review how copper-binding siderophores may confer virulence-associated gains of function during infection pathogenesis. PMID:26055720

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, Yu. M.; Paholnitcaia, A. Yu.; Petrenko, P. A.

    Two crystal modifications of nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper (I and II) and two modifications of chloro-(2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) copper (III and IV) have been synthesized and studied by X-ray diffraction. In structures I and II, the copper atoms coordinate a monodeprotonated molecule of the organic ligand, nitrate ions, and a water molecule. In crystals of I, the complexes are monomeric, whereas complexes II are linked via nitrate ions to form polymeric chains. In both structures the coordination polyhedron of the copper atom can be described as a distorted tetragonal bipyramid—(4 + 1 + 1) in I and (4 + 2) in II. These coordinationmore » polyherdra have different compositions. In structures III and IV, the metal atoms coordinate a monodeprotonated (2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazole molecule and chloride ions. In III the complex-forming ion has square-planar coordination geometry, whereas structure IV consists of centrosymmetric dimers with two bridging chlorine atoms. It was found that nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper possesses antitumor activity.« less

  17. Hydrogen bonding in basic copper salts: a spectroscopic study of malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Lutz, H. D.

    1993-05-01

    Infrared and Raman spectra of the basic copper salts malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4, as well as of deuterated and 13C substituted samples are presented and discussed in terms of group theory and the hydrogen bonds present. The main results are that (i) the hydrogen donor strengths of the OH- ions are strongly increased due to the very great synergetic effect of the copper ions, (ii) the acceptor strengths of the H-bond acceptor groups (SO4 2-, CO3 2-, and OH- ions) are significantly modified by the linkage and coordination of the acceptor atoms — this complicates true assignment of the OH bands observed to the two and six different OH- ions present in malachite and brochantite, respectively -, and (iii) the Cu — O stretching modes at 430 590 cm-1 and 420 520 cm-1 for malachite and brochantite, respectively, exhibit strong, partially covalent Cu — O bonding.

  18. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T., E-mail: m.t.weller@bath.ac.uk

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen,more » as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.« less

  19. Super-hard cubic BN layer formation by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.

    1994-11-01

    Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.

  20. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan.

    PubMed

    Prakash, Nagan; Latha, Srinivasan; Sudha, Persu N; Renganathan, N Gopalan

    2013-02-01

    The influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan from simulated industrial wastewater is evaluated. Chitosan-clay blend with ratio of (1:1), (1:2), and (2:1) have been prepared, and these were used as membranes to remove copper and cadmium ions from synthetic industrial wastewater. The chemical parameters for quantities of adsorption of heavy metal contamination have been done, and the kinetics of adsorption has also been carried out. Clay provides enough absorbable sites to overcome mass transfer limitations. The number of absorbable sites for cadmium is more compared to copper, and thus the rate of recovery of cadmium is faster than copper, and the percentage removal of cadmium is more than copper at all times on clay over nylon 6. This difference indicates the influence of clay in the adsorption of heavy metals in comparison to synthetic polymer nylon 6. Rate constant for first-order kinetics of adsorption, k (1), for copper and cadmium is less than that of clay, which clearly indicates that clay, which is a natural polymer, is more kinetically favored compared to synthetic polymer. The difference in the intraparticle diffusion in both the natural and synthetic polymer is not much, and it suggests that the particle diffusion mechanism is the same in both cases. Copper and cadmium recovery is parallel at all times. The percentage of removal of copper increased with an increase in pH from 3 to 5. In the case of cadmium containing wastewater, the maximum removal of metal occurred at pH 5. The uptake amount of Cu(2+) ions on chitosan increased rapidly with increasing the contact time from 0 to 360 min and then reaches equilibrium after 360 min, and the equilibrium constant for copper and cadmium ions are more or less the same for the adsorption reaction. There are more adsorption sites for cadmium in the presence of clay and mass transfer limitation is avoided without resorting to rotation, which is the highlight of the present work. And more so, this is pronounced in the case of natural polymer compared to synthetic polymer.

  1. Rapid separation on copper powder of total mercury in blood and determination of mercury by flameless atomic absorption spectrometry.

    PubMed

    Dogan, S; Haerdi, W

    1979-01-01

    The determination of mercury in blood by flameless atomic absorption spectrometry (FAAS) has been described. Prior to its analysis, the sample was decomposed by combustion and separated on a copper powder micro-column. A special type of cell has been used which gives a better sensitivity compared with the types of cells described in the literature and the method of FAAS analysis has been improved. The sensitivity of 0.1 ng for 1% absorbance was observed and the standard deviation for six determinations at this level was found to be +/- 0.05 ng, for 95% probability.

  2. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    NASA Astrophysics Data System (ADS)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  3. Phytoremediation of heavy metal copper (Cu2+) by sunflower (Helianthus annuus l.)

    NASA Astrophysics Data System (ADS)

    Mahardika, G.; Rinanti, A.; Fachrul, M. F.

    2018-01-01

    A study in microcosmic condition has been carried out to determine the effectiveness of Helianthus annuus as a hyperaccumulator plant for heavy metal, Copper (Cu2+), that exposed in the soil. Artificial pollutants containing Copper (Cu2+) 0, 60, 120, 180 ppm are exposed to uncontaminated soil. The 12-weeks old H. annuus seedling were grown in Cu2+ contaminated soil, with variations of absorption time 3, 6, and 9 weeks. Analysis of Cu2+ concentration on soil and H. annuus (root, stem, leaf) was analised by Atomic Absorbtion Spectrometry (AAS). H. annuus are capable for Cu2+ removal, and the highest removal of Cu2+ is 85.56%, the highest metal accumulation/bioconcentration factor (BCF) is 0.99 occurred at roots with 9 weeks of exposure time and the highest translocation factor (TF) is 0.71. This highest removal is five times better than absorption by stems and leaves. The results concluded, the use of H. annuus for phytoextraction of heavy metals Cu2+ in contaminated soil can be an alternative to the absorption of heavy metal Cu2+ with low concentration metals which is generally very difficult to do in physical-chemical removal.

  4. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.

    PubMed

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-08-14

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.

  5. Ion release from dental casting alloys as assessed by a continuous flow system: Nutritional and toxicological implications.

    PubMed

    López-Alías, José F; Martinez-Gomis, Jordi; Anglada, Josep M; Peraire, Maria

    2006-09-01

    The aims of this study were to quantify the metallic ions released by various dental alloys subjected to a continuous flow of saliva and to estimate the nutritional and toxicological implications of such a release. Four pieces of three nickel-based, one noble, one high-noble and two copper-aluminum alloys were cast and then immersed in a continuous flow of artificial saliva for 15 days. To simulate three meals a day, casts were subjected to thrice-daily episodes, lasting 30 min each and consisting of pH decreases and salinity increases. After 15 days, the metallic ions in the artificial saliva were analyzed. Data were expressed as averaged release rate: microg/cm2/day of ion released for each alloy. The highest value of 95% Cl of each ion was adapted to a hypothetical worst scenario of a subject with 100 cm2 of exposed metal surface. The results were compared with the tolerable upper daily intake level of each ion. The copper-aluminum alloys released copper, aluminum, nickel, manganese and iron. The nickel-based alloys essentially released nickel and chromium, while the beryllium-containing alloy released beryllium and significantly more nickel. The noble and high-noble alloys were very resistant to corrosion. The amount of ions released remained far below the upper tolerable intake level, with the exception of nickel, released by beryllium-containing nickel-based alloy, whose levels approach 50% of this threshold. The daily amount of ions released seems to be far below the tolerable upper intake levels for each ion.

  6. Toxic effects of heavy metal Cu2+ on the pacific oyster Crassostrea gigas

    NASA Astrophysics Data System (ADS)

    Gao, Ceng; Zhang, Xinxin; Li, Xiumei; Tang, Xuexi

    2017-05-01

    The effects of different concentrations of heavy metal ions on the survival of the Pacific oyster Crassostrea gigas were studied by using experimental ecology method in 96 h. The results showed that the LC50 of copper ion was 21.748mg/L and the safe concentration was 2.1748mg/L mg/L. Under the condition of laboratory, under laboratory conditions, the research of Cu2+ Stress on the C. gigas gill and digestive gland and adductor muscle tissue SOD, GPx and the induction of CAT activity. The results showed that the activities of SOD, GPx and CAT in the C. gigas were significantly changed by copper ion + stress. The results showed that in the low concentration Cu2+ treatment could induce the three kinds of enzymes, in the high concentration Cu2+ treatment group, SOD and CAT and GPx on the inhibition of the effect. The sensitivity of the three antioxidant enzymes to copper ion showed a certain difference. The sensitivity of the three kinds of tissue enzymes to Cu2+ treatment was digestive gland> fascia> gill. The experimental results show that the single factor for copper in water pollutants, the C. gigas digestive gland tissue SOD, GPX and CAT activity has certain significance to it, but will it as index applied to the actual water need further study.

  7. Synthesis of N-acetyl-L-cysteine capped Mn:doped CdS quantum dots for quantitative detection of copper ions

    NASA Astrophysics Data System (ADS)

    Yang, Xiupei; Jia, Zhihui; Cheng, Xiumei; Luo, Na; Choi, Martin M. F.

    2018-06-01

    In this work, a new assembled copper ions sensor based on the Mn metal-enhanced fluorescence of N-acetyl-L-cysteine protected CdS quantum dots (NAC-Mn:CdS QDs) was developed. The NAC and Mn:CdS QDs nanoparticles were assembled into NAC-Mn:CdS QDs complexes through the formation of Cdsbnd S and Mnsbnd S bonds. As compared to NAC capped CdS QDs, higher fluorescence quantum yields of NAC-Mn:CdS QDs was observed, which is attributed to the surface plasmon resonance of Mn metal. In addition, the fluorescence intensity of as-formed complexes weakened in the presence of copper ions. The decrease in fluorescence intensity presented a linear relationship with copper ions concentration in the range from 0.16-3.36 μM with a detection limit of 0.041 μM . The characterization of as-formed QDs was analyzed by photoluminescence (PL), ultra violet-visible (UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS) respectively. Furthermore, the recoveries and relative standard deviations of Cu2+ spiked in real water samples for the intra-day and inter-day analyses were 88.20-117.90, 95.20-109.90, 0.80-5.80 and 1.20-3.20%, respectively. Such a metal-enhanced QDs fluorescence system may have promising application in chemical and biological sensors.

  8. The pH dependence of silicon-iron interaction in rats.

    PubMed

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  9. [Exposure to metal compounds in occupational galvanic processes].

    PubMed

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  10. Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate

    NASA Astrophysics Data System (ADS)

    de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-10-01

    This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.

  11. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    PubMed

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  12. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    PubMed

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  13. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    NASA Astrophysics Data System (ADS)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  14. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen

    NASA Astrophysics Data System (ADS)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.

    2014-12-01

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  15. A thiourea derivative as potential ionophore for copper sensing

    NASA Astrophysics Data System (ADS)

    Ying, Kook Shih; Heng, Lee Yook; Hassan, Nurul Izzaty; Hasbullah, Siti Aishah

    2018-04-01

    A new thiourea derivative, N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (TPC), as a potential copper ionophore was investigated. TPC was immobilized via drop casting method into poly(n-butyl acrylate) pBA membrane and the sensor was characterized by potentiometric method. The sensor fabricated based on TPC showed a Nernstian response towards copper ion with the slope of 27.07±2.84 mV/decade in the range of 1.0×10-6 - 1.0-10-4 M and limit of detection of 6.24 × 10-7 M. In addition, based on the separate solution method (SSM), the logarithm selectivity coefficients were less than -3.00 for monovalent, divalent and trivalent cations that are present in the environmental water samples such as K+, Ca2+, Mg2+ and Fe3+. This confirmed that the sensor fabricated with TPC exhibited good sensitivity and selectivity towards copper ion.

  16. Synthesis and Characterization of Chlorpyrifos/Copper(II) Schiff Base Mesoporous Silica with pH Sensitivity for Pesticide Sustained Release.

    PubMed

    Chen, Huayao; Lin, Yueshun; Zhou, Hongjun; Zhou, Xinhua; Gong, Sheng; Xu, Hua

    2016-11-02

    The salicylaldehyde-modified mesoporous silica (SA-MCM-41) was prepared through a co-condensation method. Through the bridge effect from the copper ion, which also acts as the nutrition of the plant, the model drug chlorpyrifos (CH) was supported on the copper(II) Schiff base mesoporous silica (Cu-MCM-41) to form a highly efficient sustained-release system (CH-Cu-MCM-41) for pesticide delivery. The experimental results showed that the larger the concentration of the copper ion, the more adsorption capacity (AC) of Cu-MCM-41 for chlorpyrifos and the smaller its release rate. The results confirmed the existence of a coordination bond between SA-MCM-41 and copper ions as well as a coordination bond between Cu-MCM-41 and chlorpyrifos. The AC of SA-MCM-41 is 106 mg/g, while that of Cu-MCM-41 is 295 mg/g. The as-synthesized system showed significant pH sensitivity. Under the condition of pH ≤ 7, the release rate of chlorpyrifos decreased with increasing pH, whereas its release rate in weak base conditions was slightly larger than that in weak acid conditions. Meanwhile, the drug release rate of the as-synthesized system was also affected by the temperature. Their sustained-release curves can be described by the Korsmeyer-Peppas equation.

  17. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    NASA Astrophysics Data System (ADS)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  18. Formulation and Evaluation of Antibacterial Creams and Gels Containing Metal Ions for Topical Application

    PubMed Central

    Chen, Mei X.; Alexander, Kenneth S.

    2016-01-01

    Background. Skin infections occur commonly and often present therapeutic challenges to practitioners due to the growing concerns regarding multidrug-resistant bacterial, viral, and fungal strains. The antimicrobial properties of zinc sulfate and copper sulfate are well known and have been investigated for many years. However, the synergistic activity between these two metal ions as antimicrobial ingredients has not been evaluated in topical formulations. Objective. The aims of the present study were to (1) formulate topical creams and gels containing zinc and copper alone or in combination and (2) evaluate the in vitro antibacterial activity of these metal ions in the formulations. Method. Formulation of the gels and creams was followed by evaluating their organoleptic characteristics, physicochemical properties, and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. Results. Zinc sulfate and copper sulfate had a strong synergistic antibacterial activity in the creams and gels. The minimum effective concentration was found to be 3 w/w% for both active ingredients against the two tested microorganisms. Conclusions. This study evaluated and confirmed the synergistic in vitro antibacterial effect of copper sulfate and zinc sulfate in a cream and two gels. PMID:27885352

  19. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    PubMed

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  20. A closed loop process for recycling spent lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan

    2014-09-01

    As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.

  1. Boron-copper neutron absorbing material and method of preparation

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry

    1991-01-01

    A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

  2. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.

    PubMed

    Hedberg, Jonas; Karlsson, Hanna L; Hedberg, Yolanda; Blomberg, Eva; Odnevall Wallinder, Inger

    2016-05-01

    Copper nanoparticles (Cu NPs) are increasingly used in various biologically relevant applications and products, e.g., due to their antimicrobial and catalytic properties. This inevitably demands for an improved understanding on their interactions and potential toxic effects on humans. The aim of this study was to investigate the corrosion of copper nanoparticles in various biological media and to elucidate the speciation of released copper in solution. Furthermore, reactive oxygen species (ROS) generation and lung cell (A549 type II) membrane damage induced by Cu NPs in the various media were studied. The used biological media of different complexity are of relevance for nanotoxicological studies: Dulbecco's modified eagle medium (DMEM), DMEM(+) (includes fetal bovine serum), phosphate buffered saline (PBS), and PBS+histidine. The results show that both copper release and corrosion are enhanced in DMEM(+), DMEM, and PBS+histidine compared with PBS alone. Speciation results show that essentially no free copper ions are present in the released fraction of Cu NPs in neither DMEM(+), DMEM nor histidine, while labile Cu complexes form in PBS. The Cu NPs were substantially more membrane reactive in PBS compared to the other media and the NPs caused larger effects compared to the same mass of Cu ions. Similarly, the Cu NPs caused much more ROS generation compared to the released fraction only. Taken together, the results suggest that membrane damage and ROS formation are stronger induced by Cu NPs and by free or labile Cu ions/complexes compared with Cu bound to biomolecules. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Copper import in Escherichia coli by the yersiniabactin metallophore system

    PubMed Central

    Koh, Eun-Ik; Robinson, Anne E.; Bandara, Nilantha; Rogers, Buck E.; Henderson, Jeffrey P.

    2017-01-01

    Copper plays a dual role as nutrient and toxin during bacterial infections. While uropathogenic Escherichia coli (UPEC) strains can use the copper-binding metallophore yersiniabactin (Ybt) to resist copper toxicity, Ybt also converts bioavailable copper to Cu(II)-Ybt in low copper conditions. Although E. coli have long been considered to lack a copper import pathway, we observed Ybt-mediated copper import in UPEC using canonical Fe(III)-Ybt transport proteins. UPEC removed copper from Cu(II)-Ybt with subsequent re-export of metal-free Ybt to the extracellular space. Copper released through this process became available to an E. coli cuproenzyme (the amine oxidase TynA), linking this import pathway to a nutrient acquisition function. Ybt-expressing E. coli thus engage in nutritional passivation, a strategy of minimizing a metal ion's toxicity while preserving its nutritional availability. Copper acquisition through this process may contribute to the marked virulence defect of Ybt transport-deficient UPEC. PMID:28759019

  4. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    guides Taps for plastics Orthopedic implants (hip and knee joints, etc.) Extrusion spinnerettes Finishing rolls for copper rod Extrusion nozzles...detail in following sections. C. Comparison to Coating Techniques -,* Because ion implantation is a process that modifies surface properties it is often...Therefore, it is important to understand the differences between ion implantation and coating techniques, especially ion plating. The result of ion

  5. Metamagnetism in hydrophobically induced carboxylate (phenylmalonate)-bridged copper(II) layers.

    PubMed

    Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Campo, Javier; Lloret, Francesc; Julve, Miguel

    2006-07-21

    Self-assembly of copper(l) ions, phenylmalonate and pyrimidine yields the layered compound [Cu(pym)(Phmal)n (1) where intralayer ferro- and interlayer antiferromagnetic interactions occur with three-dimensional antiferromagnetic ordering at T(c) = 2.15 K.

  6. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    ERIC Educational Resources Information Center

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  7. The Colour of the Noble Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1983-01-01

    Examines the physical basis for colors of noble metals (copper, silver, gold) developed from energy conservation/quantum mechanical view of free electron photoabsorption. Describes production of absorption edges produced by change in density of occupied valence electron states in the d-band, which allows stronger absorption in the visible photon…

  8. Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.

    PubMed

    Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang

    2017-08-25

    A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates.

    PubMed

    Basheer, Sabeel M; Kumar, Saravana Loganathan Ashok; Kumar, Moorthy Saravana; Sreekanth, Anandaram

    2017-03-01

    1,5-Bis(2-fluorene)thiocarbohydrazone (FBTC) was designed and synthesized for selective sensing of fluoride and copper ions. The binding constants of FBTC towards fluoride and copper ions have been calculated using the Benesi-Hildebrand equation, and FBTC has more binding affinity towards copper ion than fluoride ion. The 1 H NMR and 13 C NMR titration studies strongly support the deprotonation was taken from the N-H protons followed by the formation of hydrogen bond via N-H … F. To understand the fluoride ion sensing mechanism, theoretical investigation had been carried out using the density functional theory and time-dependent density functional theory. The theoretical data well reproduced the experimental results. The deprotonation process has a moderate transition barrier (481.55kcal/mol). The calculated ΔE and ΔG values (-253.92 and -192.41kcal/mol respectively) suggest the feasibility of sensing process. The potential energy curves give the optimized structures of FBTC-F complex in the ground state and excited state, which states the proton transition occurs at the excited state. The excited state proton transition mechanism was further confirmed with natural bond orbital analysis. The reversibility of the sensor was monitored by the alternate addition of F - and Cu 2+ ions, which was explained with "Read-Erase-Write-Read" behaviour. The multi-ion detection of sensor used to construct the molecular logic gate, such as AND, OR, NOR and INHIBITION logic gates. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantitative Determination of NTA and Other Chelating Agents in Detergents by Potentiometric Titration with Copper Ion Selective Electrode.

    PubMed

    Ito, Sana; Morita, Masaki

    2016-01-01

    Quantitative analysis of nitrilotriacetate (NTA) in detergents by titration with Cu 2+ solution using a copper ion selective electrode was achieved. This method tolerates a wide range of pH and ingredients in detergents. In addition to NTA, other chelating agents, having relatively lower stability constants toward Cu 2+ , were also qualified with sufficient accuracy by this analytical method for model detergent formulations. The titration process was automated by automatic titrating systems available commercially.

  11. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  12. Role of the constant region domain in the structural diversity of human antibody light chains.

    PubMed

    Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo

    2017-04-01

    Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.

  13. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash.

    PubMed

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them.

  14. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash

    PubMed Central

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them. PMID:26697148

  15. Development and tests of molybdenum armored copper components for MITICA ion source

    NASA Astrophysics Data System (ADS)

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  16. Development and tests of molybdenum armored copper components for MITICA ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it; Marcuzzi, Diego; Rizzolo, Andrea

    2016-02-15

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analysesmore » of the prototypes simulating the test conditions in GLADIS as well as the experimental results.« less

  17. Development and tests of molybdenum armored copper components for MITICA ion source.

    PubMed

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  18. A novel high performance nano chemosensor for copper (II) ion based on an ultrasound-assisted synthesized diphenylamine-based Schiff base: Design, fabrication and density functional theory calculations.

    PubMed

    Parsaee, Zohreh; Haratipour, Pouya; Lariche, Milad Janghorban; Vojood, Arash

    2018-03-01

    A novel high selective colorimetric chemosensor was introduced based on a nano diphenyl-based Schiff base (H 2 L), 2,2'-((1E,1'E)-(((hexylazanediyl)bis(4,1-phenylene))bis(methanylylidene))bis(azanylylidene))bis(4-methylphenol) that synthesized using sonochemical method. H 2 L was characterized by FT-IR, MS, TGA, 1 H NMR, 13 C NMR, SEM and elemental analysis techniques, then fabricated as the portable strips for sensing copper (II) ions in aqueous media. The binding interaction between H 2 L and various metal ions was investigated by UV-Vis spectroscopic that showed favorable coordination toward Cu 2+ ion. H 2 L exhibited binding-induced color changes from yellow to pink and practically no interference in the presence of other metal ions, i.e., Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Mg 2+ and Ca 2+ . The chemsensor showd the color change from yellow to pink in presence of copper (II) ion in aqueous media due to binging of H 2 L and Cu (II). This sensor can determine the copper (II) at in the rang of 7.5 × 10 -8 -1.8 × 10 -5  mol L -1 with a correlation equation: Absorbance = 0.0450[Cu 2+ ] × 10 -6  + 0.71 and R 2  = 0.975 and low detection limit of 1.89 × 10 -8  mol L -1 . Density functional theory (DFT) calculations were carried out at the B3LYP levels of theory with B3LYP/6-311+G(d,p) and LANL2DZ/6-311+G(d,p) basis sets for chemosensor and its copper complex respectively. The optimized geometry, harmonic vibrational frequencies, 1 H NMR and 13 C NMR chemical, Molecular orbital (M.O.), Mulliken population analysis (MPA), contour of Electrostatic Potential (ESP) and Molecular Electrostatic Potential (MEP) map of H 2 L were calculated which show good agreement with behavior of sensor for detection of Cu 2+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas

    Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand andmore » replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.« less

  20. The optoelectronic properties and role of Cu concentration on the structural and electrical properties of Cu doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Omri, K.; Bettaibi, A.; Khirouni, K.; El Mir, L.

    2018-05-01

    In the current study, we synthesized a Cu-doped ZnO (CZO) nanoparticles material using a sol-gel method with different doping concentrations of Cu (0, 2, 3 and 4 at.%). The control of the Cu concentration on structural, electrical and optical properties of CZO nanoparticles was investigated in detail. The XRD analysis of the CZO nanoparticles reveals the formation of ZnO hexagonal wurtzite structure for all samples which confirm the incorporation of Cu2+ ions into the ZnO lattice by substitution. Furthermore, CZO nanoparticles showed a small red shift of absorption band with the incorporation of Cu from 0 to 4 at.%; i.e. a decreased band gap value from 3.34 eV to 3.27 eV with increasing of Cu doping content. The frequency dispersion of the electric conductivity were studied using the Jonscher universal power law, according to relation σ(ω) = σDC + A ωs(T). Alternative current conductivity increases with increasing Cu content in spite of the decrease the activation energy with copper loading. It was found that the conductivity reached its maximum value for critical Cu concentration of 3 at.%. The frequency relaxation phenomenon was also investigated and all results were discussed in term of the copper doping concentration.

Top